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Resumo

Dada a busca por um aumento no uso dos transportes públicos na mobilidade urbana e a busca
pela automação em várias tarefas realizadas por humanos, é certo que isso afetará todos os as-
pectos desse campo. Ferrovias e elétricos podem beneficiar da introdução desses aspectos de
maneira a melhorar a confiabilidade e a segurança. Considerando que a automação e os sistemas
de assistência a motorista nestes campos ainda podem ser aplicados à maioria das linhas fer-
roviárias e de elétricos existentes, e que esses sistemas dependem de diferentes tipos de dados
para cumprir seu propósito, nesta tese clarificamos o possível uso de visão baseada em câmera
como fonte de dados para a melhoria da perceção do seu ambiente, por parte dos sistemas de
eléctricos. Concentramo-nos em conceitos como detecção, segmentação, classificação, semáforos
de trânsito de elétricos/carros e transferencia de conhecimento. Devido à pesquisa limitada sobre
implementações de elétrico deste tipo, esta tese funciona como uma prova de conceito para pos-
síveis implementações destas tecnologias. Ao aplicar um modelo de deep learning amplamente
utilizado para tarefa de detecção de semáforos de trânsito de elétricos, medimos a viabilidade
desse tipo de aplicação e chegamos à conclusão de que definitivamente vale a pena aprofundar a
pesquisa nestes tipos de implementações. Portanto, esta tese fornece ao leitor conhecimentos so-
bre: a criação de um dataset a partir de informações disponíveis publicamente; a aplicabilidade e
viabilidade de transfer learning entre implementações diferentes; a afinação desses modelos com
transfer learning.
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Abstract

Given the increased demand for public transportation in urban mobility and the pursuit of automa-
tion across most human-performed tasks, such changes are sure to influence every aspect of this
field. Both railways and trams can benefit from these developments to improve reliability and
safety. Given that automation and driver assist systems in these fields can still be applied to the
majority of existing railway and tram lines, and that these systems rely on different types of data to
achieve their purpose, this dissertation offers insights into a possible usage of camera-based vision
as a source of data for the improvement of tramway systems’ awareness. This research focuses on
concepts such as detection, segmentation, classification, tram/car traffic lights and transfer learn-
ing. Due to the limited research on tramway implementations of this type, this dissertation serves
as a proof of concept for possible applications of these technologies. By applying a widely used
deep learning convolutional model to the task of tram traffic light detection, this work gauges the
feasibility of these applications, and reaches the conclusion that further research into these kinds
of implementations is worthwhile. Thus, this dissertation provides the reader with knowledge
on: the creation of a dataset from publicly available information; the applicability and feasibility
of transfer learning between different implementations; and the tuning of these transfer learning
models.

Keywords: Trams, Railway, Tram Traffic Lights, Classification, segmentation, Detection,
Convolutional Neural Networks, Deep Learning, Neural Networks, Transfer Learning, Computer
Vision, ADAS.
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‘(...)for example, a kid asks mommy why is the grass green and very often you get an answer,
’Don’t ask dumb questions’ or ’who knows.’ (...) How much better would it be to say to the child

’that’s a good question, I don’t know the answer, maybe we can look it up”’

Carl Sagan
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Chapter 1

Introduction

1.1 Problem definition

The introduction of public transportation in cities has been increasing steadily since the intro-

duction of the European Union [1], as it strives for a low-carbon economy and lifestyle for its

inhabitants. This has meant that even though car usage and ownership have increased since 2013

[2], providing users with options for transport has been at the core of the urban planning push

inside the European Union [3].

As the emphasis shifts towards reducing and potentially eliminating emissions [3], the trans-

portation sector (particularly personal transportation) emerges as ripe for a paradigm change in

how society approaches both short and long-distance travel. This drive towards low-carbon mobil-

ity has positioned countries such as Austria, Singapore, and Japan [4] as leaders of urban mobility.

The core of these public transportation systems comprises walking, cycling, and the use of sub-

way/metro and rail networks, providing efficient and environmentally conscious ways to navigate

cities.

When striving for more transportation options, safety must remain at the forefront of any

implementation. Advanced Driver Assistance Systems (ADAS) are at the heart of these safety

concerns and have been the focus of extensive research with the objective of ensuring safety

throughout the path to achieving complete automation. Regarding safety in rail transport, the

number of accidents in railways and trams has been dropping [2], as observed with most modes

of transportation. Nevertheless, a considerable quantity still remains, particularly with fatal acci-

dents, of which two-thirds involve rolling stock in motion [2].

One example of rolling stock subject to safety concerns is trams. Trams usually operate

either in dedicated lanes or sharing lanes with other active traffic participants, such as bicycles,

motor vehicles and people. Because of this, improving trams’ or the drivers’ awareness of their

environments would be beneficial in reducing accidents. These accidents often result from the lack

of due procedure in accordance with traffic laws, as one-third of fatal ones happen at crossways [2].

Given that traffic lights are one of the main ways of physically representing traffic laws, a vision-

based system that detects these lights could help diminish the number of accidents if integrated

1



Introduction 2

into decision-making systems. Despite regional railways and trams being a primary mode of land

transportation [2], the intensity of research and development efforts devoted to obstacle detection

for these systems needs to catch up to that of road transport [2]. Nonetheless, advances in car-

centric algorithms have the potential to be transferable through additional improvements.

In conclusion, as our society moves towards a sustainable future [3], public transport will

inevitably become widespread, with maintaining safety in their implementations being imperative.

1.1.1 Objectives

This dissertation aims at developing a model for detecting tram traffic lights, focusing specif-

ically on five types of traffic lights outlined in German legislation [5]. By successfully detecting

and classifying these tram traffic lights, valuable insights can be gained into developing a strategy

that, in the future, could reduce the risks associated with tram public transportation.

It is important to highlight that this work was conducted within the framework of an internship

at Continental Engineering Services in Porto, Portugal. Therefore, the development and imple-

mentation of this project adhered to the standards and practices set by the company. The collabo-

ration with Continental Engineering Services provided an invaluable opportunity to leverage their

expertise in the field.

1.1.2 Keywords and research questions

Within the context defined above and the current state of the usage of models to detect tram

traffic lights, the main research keywords were tram traffic light detection, classification, seg-
mentation and deep learning. With the main research questions derived from the aforementioned

keywords, it is possible to raise the following questions:

• Is using an artificial intelligence model to detect tram traffic lights possible?

• Is there any available public model in the context of trams in urban areas?

• What are the main drawbacks when implementing such a model for the selected algorithms

in the defined scenario?

1.1.3 Document overview

The document starts with Chapter 2, in which a comprehensive overview of the essential concepts

necessary to grasp the work presented in this dissertation is provided. It delves into classical meth-

ods and continues on to explore Neural Networks (NN)s, Convolution Neural Networks (CNN)s

and their parameters. This chapter also discusses the tuning of these parameters and highlights

real-world implementations, providing insights into their functionality and overall effectiveness.

Sequentially, Chapter 3 offers a survey of the current state-of-the-art techniques and imple-

mentations in car-focused and rail-focused scenarios. It encompasses various applications, from

railway object detection to sign recognition and rail maintenance.
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In Chapter 4, the core of this dissertation is discussed, detailing the work undertaken through-

out this project. This chapter encompasses a comprehensive account of the entire process, begin-

ning with the task of dataset collection and labelling, supplying images and labels into a model

and the training of said model with various parameter variations.

Chapter 5 focuses on the results obtained from the employed techniques and developed strate-

gies, following the same sequence of events outlined in Chapter 4. Results and metrics are exam-

ined and conclusions are drawn to evaluate the extent to which the objectives were accomplished.

Lastly, Chapter 6 serves as the conclusion of this dissertation. In this chapter, the entire work

is revisited, analyzing the results in the context of our initial objectives. Additionally, this chapter

identifies potential areas of improvement and suggests ways for future exploration and improve-

ment in specific aspects of this project.



Chapter 2

Theoretical concepts

In this chapter, the focus will be on the main concepts needed to fully understand the work being

done in this thesis. Before delving into computer vision techniques, this chapter clarifies the main

domains and distinguishes classical from Artificial Intelligence (AI)-based techniques. Then, it

presents the concept of NN, its components and working principles, and optimization strategies.

All of this can then be focused on CNNs, which will be fully understood as well, as these are a

sub-category of NN, which usually focus on image analysis. Additional focus will be given to

datasets and data augmentation, as they are crucial to any model using NN.

2.1 Computer vision, its’ domains and approaches

Computer vision tries to derive information from visual data so as to interpret and understand

said data. This can be done for multiple objectives, such as classifying and segmenting entities in

images and videos. Using AI for object detection is a sub-field of computer vision that allows

computers to perceive, analyze and comprehend visual data, with the ultimate goal of emulat-

ing human vision and detecting objects inside images [6], this supported by the authors work

in demonstrating our ability to generalize enormous amounts of classification problems, and our

robustness to interference. This technology is enabled by training on vast amounts of data and de-

riving correlations between said data points with greater dimensionality [6]. Sub-domains within

computer vision include:

• Object classification, which is the task of assigning a label or class to an object in an image,

focusing on identifying the presence of specific objects or categories within the image.

• Object segmentation, which involves localizing objects within an image or video.

• Object detection joins both segmentation and classification with the goal of giving both the

position and class of an object.

Over time, advancements in camera technology, processing power, and model architectures have

led to the development of different techniques for real-time object detection, with the emphasis

driving the research in this topic being into automating various human-based systems [7].

4
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The task of object detection can be done with techniques that are mainly divided into two

broad categories[8]: classical and deep learning techniques. Those considered to be classical

computer vision have had less attention in recent years, but perform well in lower variability and

adaptability scenarios [9].

2.2 Traditional computer vision techniques

Here, techniques such as the Hough transform, Scale-Invariant Feature Transform (SIFT), Haar

cascade, and Histogram of Oriented Gradients (HOG) will be explained briefly, as these techniques

have been widely used for object detection tasks. Keeping in mind that these techniques exist

among many others, those were chosen due to their prevalence in the research corpus and their

comparison with deep learning, as in [8]. Their working principles will be discussed, as well as

their capabilities, drawbacks and how they might be able to contribute and be applicable to more

complex scenarios.

2.2.1 Hough transform

The Hough transform is a feature extraction technique used for detecting simple shapes, such

as lines, circles, and ellipses in an image. It transforms the image into a parameter space where

the parameters represent the properties of the shape to be detected. In the case of line detection,

the parameter space consists of two dimensions: the line’s slope and intercept. Each point in the

image that belongs to an edge contributes to the parameter space by voting for all the lines that

pass through it. The lines with the most votes are considered the detected lines.

Although the Hough transform has been widely used for detecting straight lines in images, it

may not be effective for recognizing more complex objects, such as traffic lights and the lights

inside them, as these, as a set, are more complex than the capabilities of said model. Still, it seems

promising that, for the traffic lights for trams explored in this dissertation, it could be used to

classify just the lights, as the ones for trams are simple lines on black backgrounds, in conjunction

with a NN that narrows the scope by setting the given traffic light area. In [10], the authors manage

to use a modified version of Hough Transform where the number of voting pixels is reduced in

order to better the performance in curved lines. This is done with the goal of detecting lane

markings, with their method matching or outperforming other state-of-the-art ones in detection

rate but also outperforming "most of the state-of-the-art lane detection methods in computation

time". Further research, like the one in [11] also applies Hough transform to detect lines in varied

scenarios, from city skylines to shelves in supermarkets, going as far as to create a new dataset

to test their technique. This technique consists of a using CNNs as a basis for a "deep Hough

transform (DHT) that converts the deep representations from the spatial domain to the parametric

domain", detecting those lines, and reversing the transformation, achieving detection on the spatial

domain.
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2.2.2 Scale-Invariant feature transform

The SIFT [12] is an algorithm that extracts and describes local features in images. SIFT operates

in four main steps: first, scale-space extrema detection is performed by constructing a scale-space

representation of the image using a series of blurred versions at different scales. Then, at each

scale, the algorithm identifies local extrema as potential keypoints, which correspond to areas of

high contrast and distinctive features; Third, object keypoints are refined by comparing to a thresh-

old; Orientation assignment is performed consecutively to achieve invariance to image rotation,

by assigning an orientation to each keypoint; Finally, a keypoint descriptor is created, by getting a

histogram of the neighbours of a keypoint, where steps are taken to improve performance against

changes in illumination. This technique is particularly robust to changes in scale, rotation, and

illumination, making it suitable for matching and recognizing objects across different images. De-

spite its success in various object recognition tasks, due to its computational complexity, SIFT

might not be the best choice for detecting traffic lights in real-time applications, such as tram

Traffic Light Recognition (TLR). Furthermore, SIFT may not perform well in the presence of

occlusions or when the object’s appearance changes significantly, as it relies on matching local

features. An implementation of such techniques is present in [13].

2.2.3 Haar cascade

Haar Cascade [14] is a machine learning-based object detection algorithm that focuses on detect-

ing objects in images or video streams. Its name derives from the use of Haar-like features, which

consist of rectangular features used to classify image regions. This algorithm works by train-

ing a cascade classifier with positive and negative samples of the target object. Positive samples

represent instances of the object, while negative samples are regions without the object. During

training, the algorithm learns to distinguish between positive and negative samples by evaluating

different Haar-like features and their respective weights. The object detection process consists of

sliding a detection window over the image and evaluating the cascade of classifiers at each posi-

tion. This technique excels in speed, both in training and detection, and high robustness to changes

in lighting, position and clutter [15]. While Haar cascade has been successfully applied to detect

faces and other simple objects, it may not be suitable for detecting objects like traffic lights and

the lights inside them, as it would be challenging to avoid edge cases that have similar features to

traffic lights, detailed in Chapter 4. Additionally, it may not perform well in situations with highly

varying illumination or occlusion due to the lower adaptability of the features learned in this algo-

rithm. This technique is demonstrated in [15], where TLR is achieved in real-time and on 1080p

images by using a similar technique that sequentially applies filters, creating key-regions, of which

some turn out to be traffic lights that are then classified by a Support Vector Machine (SVM).

2.2.4 Histogram of oriented gradients

The HOG [16] is a feature descriptor used for object detection in computer vision. It involves

computing the gradient magnitude and orientation at each pixel in the image and then dividing
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the image into small cells. A histogram of gradient orientations is computed for each cell, and

the histograms are concatenated to form the final descriptor. Detection using HOG might excel

in detecting traffic light outer boxes and content that appears straight ahead with significant speed

but, due to distortions of the image or variations in traffic light content, it may struggle with

variations in position, such as in curves, and situations where the traffic lights differ in the details

inside them. HOG has been widely used for detecting objects, such as pedestrians and vehicles,

and could be adapted to recognize tram traffic lights. However, its performance may be affected

by the presence of occlusions, changing lighting conditions, or significant changes in the object’s

appearance. In [17], HOG principles are applied by taking regions of interest and detecting the

traffic signals inside them, followed by classification using an SVM. Results were promising,

achieving high precision and recall but limited in adaptability to new data, as the dataset used was

limited in variability in camera hardware and weather conditions.

2.2.5 Traditional techniques overview

Techniques like the ones just mentioned can be used independently or merged with others to

increase the accuracy of object detection in a way that progressively filters bad results, this being

visible in Table 2.1. Despite this, they all share similar disadvantages, all of which make them

unfeasible to use without any combination with the techniques that will be explored in this chapter.
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Technique Advantages Disadvantages References
Hough Transform - Effective for detecting

simple shapes like lines,

circles, and ellipses.

- Limited effectiveness in

recognizing complex ob-

jects.

[10], [11]

SIFT - Robust to changes in

scale, rotation, and illumi-

nation.

- Computational com-

plexity for real-time

applications. - Perfor-

mance degradation in the

presence of occlusions

and major appearance

changes.

[13]

Haar Cascade - Fast training and detec-

tion. - Robust to changes

in lighting, position, and

clutter.

- Difficulty in distinguish-

ing edge cases similar

to the target object. -

Performance degradation

in varying illumination or

occlusion.

[15]

HOG - Effective for detecting

objects with significant

speed and straight-ahead

appearance.

- Difficulty in handling

variations in position and

detailed differences in the

target object. - Per-

formance degradation in

the presence of occlu-

sions, changing lighting

conditions, or appearance

changes.

[17]

Table 2.1: Summary of traditional feature extraction techniques

2.3 Neural networks: components and working principles

Having explored traditional techniques and knowing their advantages, disadvantages and use

cases, deep learning is now explored in this section. NNs fall under the modern techniques cate-

gory and, as such will be explored due to their prevalence in outperforming classical techniques[8].

2.3.1 Basic understanding

As a subset of machine learning algorithms, NN are used in many different applications, such as

image recognition, natural language processing and predictive analytics, as they offer great ana-

lytical capacity. They have become widely used as their capabilities grew, in parallel with archi-

tectural improvements and computing advances. Artificial neurons are their base component and
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these connect themselves in multiple interconnected layers to form NN, each serving a particular

purpose in the network’s learning process.

NN are highly dependent on data in terms of size, congruence with the desired situation and

consistent labelling. This means that a model can become handicapped if the amount of data is

insufficient, has inadequate labelling or if it has been trained in a biased way. Also, the opposite

can also occur due to the same causes. The model may start over-fitting the data, as seen in Figure

2.1, making it so it finds patterns or relationships that exist but are not relevant or simply don’t

work to achieve our intended output, making it incapable of reaching said output in new situations.

(a) Over-fitting behaviour on train data (b) Over-fitting behaviour on test data

Figure 2.1: Example of over-fitting, on a given dataset (adapted from [18]).

These NN are generally comprised of input, middle and output layers, depicted in Figure 2.2.

The input layer receives the data that is to be analyzed as input, which is then processed by the

hidden layers, where the gross of the computation occurs, deriving features and relationships
between data points from altering features of these layers. It is usually said that the middle layers

and the specific relationships they acquire when active are a "black-box", as we humans find it

difficult comprehend the relationship between so many parameters and neurons, their dimension-

ality and also their non-linearity. This does not mean that there is no way to comprehend and

manipulate the network, as several key performance indicators and hyper-parameters exist to let

us understand its behaviour on a larger scale and push it in the right direction.

Figure 2.2: Example of a fully connected network (adapted from [19]).
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2.3.2 Components

NN, at their core, rely on the concept of neurons, which are inspired by the biological neurons in

the human brain. These artificial neurons play a crucial role in the learning processes of NN. A

neuron receives inputs from other artificial neurons or input data. It then computes a weighted sum

of these inputs, considering the strength of the connections between neurons. Additionally, each

neuron has a bias value, which introduces an offset and impacts when the neuron activates. The

combination of the weighted sum and the bias value forms the neuron’s output. After undergoing

an activation function, the output of a neuron is then passed on to the next layer of neurons in the

network. The activation function introduces non-linearity into the network, enabling it to learn a

broader range of patterns from the input data. Common activation functions include the sigmoid

function and the ReLU [20] function or variations thereof.

In more advanced NN architectures, additional components are often considered, enabling

NNs to effectively process and learn from complex datasets. Two such components are dropout

and weight decay. Dropout refers to the probability of a neuron being disabled during the train-

ing process of the network. This technique has been shown to improve network performance, as

demonstrated in studies such as [21] and [22]. Weight decay, on the other hand, involves the

introduction of additional factors that influence the weights of the connections between neurons.

This regularization technique helps prevent over-fitting and can contribute to better network per-

formance [23], in which the authors "empirically demonstrate the effectiveness of AdaDecay", an

adaptive weight decay technique, "in comparison to the state-of-the-art optimization algorithms

using popular benchmark datasets: MNIST, Fashion-MNIST, and CIFAR-10". Most of these as-

pects can be seen and are represented in Figure 2.3.

Figure 2.3: Analogy of a biological and artificial neuron and its components (adapted from [24]).

The neurons that are in Figure 2.3 combine with other neurons to form input, hidden and

output layers. Depending on the task at hand, the output form can appear in many forms, from

simple classes (as confidence scores of each class) to bounding boxes for objects or value predic-

tion. In this way representing relationships between data points, managing to accurately classify,

describe and identify objects and patterns (as will be seen in Chapter 3) and apply them to new

situations. This is done by the forward propagation process (also known as inference), which can

be followed by back-propagation, which will be explained in the following sections.
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2.3.3 Losses in neural networks

Loss functions play a crucial role in training NN by quantifying the discrepancy between predicted

outputs and the ground truth. This section will delve into the concept of losses, exploring what

they are, how they function, and their purpose in the training process. Additionally, the focus will

be on the usage of class, object, and generalized Intersection over Union (IoU) for losses, which

are commonly employed in object detection tasks.

At its core, a loss function measures the dissimilarity between the predicted output of a NN

and the ground truth or desired output. It assigns a numerical value, referred to as the loss, based on

how well the network’s predictions align with the ground truth. By minimizing this, the network

aims to improve its predictive capabilities and optimize itself by changing its’ parameters. In the

context of object detection, where the goal is to identify and localize objects within an image,

different types of losses are employed. These losses capture various aspects of the detection task

and guide the network to learn appropriate representations classification and segmentation areas.

To achieve this, class loss, object loss, and Generalized Intersection over Union (GIoU) loss are

commonly utilized.

Class loss deals with the accurate classification of objects by penalizing incorrect class pre-

dictions. It is typically computed using a classification loss function like categorical cross-entropy

[25]. This loss measures the discrepancy between the predicted class probabilities and the true

class labels. By optimizing the class loss, the network learns to assign the correct class labels to

detected objects, enhancing its ability to recognize different object categories.

Object loss deals with the localization accuracy of objects within the image. It quantifies the

disparity between the predicted bounding box coordinates (such as the coordinates of the top-left

and bottom-right corners) and the ground truth box coordinates. Regression-based loss function,

like Mean Squared Error (MSE), are commly employed to calculate the object loss. The network

aims to improve its ability to precisely locate objects by minimizing this loss.

GIoU loss is a popular choice for evaluating the localization performance of object detection

models. It utilizes the concept of IoU (Equation Equation 1), which measures the overlap between

predicted and ground truth bounding boxes, depicted in Figure 2.4. The GIoU loss builds upon

IoU by incorporating additional terms that consider the enclosing regions of the boxes. This loss

function encourages tight bounding box predictions that better align with the ground truth and

penalizes imprecise or incomplete localization.

IoU =
Area_o f _Intersection

Area_o f _Union
(Equation 1)

In summary, losses are fundamental components of NN that quantify the discrepancy between

predicted outputs and desired targets. They guide the training process by measuring how well the

network is performing and allowing for optimization through Stochastic Gradient Descent (SGD)

[27] or other techniques. By utilizing these different types of losses in an object detection frame-

work, NN can effectively learn to classify and segment objects in images. The combination of
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Figure 2.4: Representation of Intersection over Union (adapted from [26]).

class loss, object loss, and GIoU loss enables the network to simultaneously optimize for accurate

classification, precise object segmentation, and improved bounding box predictions. By mini-

mizing these losses, the network learns to make more accurate and reliable detections, contributing

to the overall success of the object detection system.

2.3.4 Back-propagation

Regardless of the type of layer, activation function or architecture, a NN will always use back-

propagation in its learning process. This resembles a negative feedback loop, in which after the

model tries to output the answer to our problem, the training algorithm goes back and, according to

the losses calculated, adjusts the weights and biases, sequentially in a backwards order through

the layers. Thus, the goal is to reduce the error in the output and converge with the combination

of all the model parameters that give us a solution, that is, the best performance.

Usually, this tuning happens in the form of computing the gradient of the loss function through-

out the different layers from the last to the first one. The most common forms of computing this

gradient are based in SGD, with derivatives adding memory optimization (mini-batch) or momen-

tum. These can have a positive impact [28], where the assumption of "smaller batch sizes yield

lower loss" is backed by the results. All of their basic working principles are represented in Figure

2.5, in which back-propagation enables us to use an iterative process to slowly overcome the local

minimum of optimization and arrive at the so-called global minimum. This calculation is done

by the chain rule principle, which allows the algorithm to continuously derive the contributions of

each neuron to the error at the end. These methods have their drawbacks, such as getting stuck at

local minimums and high memory and compute cost, and can be replaced by others, depending on

our use-case. A comparison between algorithms [29] was done where multiple ones are applied to

different datasets and tasks (CNNs and vision being one of them), and it is found that ADAM [30]

seems to be the best and more versatile.

Another critical factor affecting the back-propagation process is the learning rate. This deter-

mines the step size taken during gradient descent. Controlling it determines how quickly or slowly

a model converges towards the optimal weights, that is, the global minimum of optimization, as

represented in Figure 2.6. A lower learning rate may require more iterations to reach the opti-

mum solution but may offer greater precision. Contrarily, a higher learning rate can speed up the

process but risks overshooting the optimal solution, scaling the weight updates.
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Figure 2.5: Figure representing a local (left) and global (right) (adapted from [31]).

Figure 2.6: Figure exemplifying impact of learning rate. Smaller learning rate on the left and
higher learning rate on the right, adapted from [31].

The whole process of back-propagation happens after the calculation of the loss values, upon

which the weights update in accordance with our chosen method, e.g. SGD, with the ultimate goal

of minimizing said loss value.

2.3.5 Hyper-parameters and model tuning

Hyper-parameters are parameters that have an impact in training of NN. As they are set before

training and, although there are best practices regarding their values in certain models, they always

require some fine-tuning by changing their values, retraining the network and comparing perfor-

mance indicators. When fine-tuning these parameters, one has to analyze the loss function, the

error and the KPIs, as well as their progression through training and alter their values. Here, the

focus will be on learning rate, batch-size, epochs, regularization and network architecture.

The learning rate, as seen in 2.5, determines how heavily the model adjusts its weights in

response to errors during training. This can be adjusted before or in the middle of training. By

tuning the learning rate, a balance between training speed and accuracy can be achieved. Changing
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the learning rate throughout the training can also be done, as this allows the network to first

generalize the more important features more broadly, such as the shape of traffic lights or the

contrast with the background, and find a set of features that correspond to a global minimum.

Sequentially, a lower learning rate stops it from losing the previously gained knowledge.

Batch-size also impacts performance, both in training and in final performance. This param-

eter determines the number of samples that are processed in each training iteration. Using a

smaller batch size (also called mini-batch) may lead to faster convergence due to more frequent

weight updates, but it also introduces noise in the gradient estimates. This noise can sometimes

be beneficial, as it helps the model escape local minima. On the other hand, a larger batch size

provides more accurate gradient estimates by averaging over a larger number of samples, which

can lead to more stable and smooth convergence. Using a mini-batch is more dispersed in the

research landscape, as it tends to fit better into classification scenarios, as seen in [32]. Available

memory is also a significant consideration when choosing a batch size, as they usually have to fit

entirely inside the available memory.

An epoch is a complete pass of the entire training dataset through the network. So, adjusting

the number of epochs will have an impact on the NN’s performance. Increasing the number of

epochs may allow the model to learn more complex relationships in the data, but it may also lead

to over-fitting.

Regularization coefficients are hyper-parameters that are used to prevent over-fitting. It in-

volves adding an additional term to the loss function during training, typically in the form of a

penalty on the model’s weights or parameters. L1 regularization (which encourages sparsity in

the weights) and L2 regularization (which encourages smaller weights overall) are two common

techniques that can be used to penalize large weights in the network, encouraging the model to

find simpler solutions that generalize better. Dropout, which was also already mentioned, can

positively affect the network, preventing over-fitting, by setting nodes to zero at each iterating of

training, as well as the chosen optimizer, wich will also affect the performance of the network, as

it defines how the weights of the network are calculated and changed.

Finally, the network architecture can be tuned to improve the performance of a NN. This

includes the number of layers, the number of neurons per layer, and the type of activation function

used, as well as other variations, like skip connections from [33], which tend to improve perfor-

mance and are especially important for object detection purposes. A more complex architecture

may be able to learn more complex relationships in the data. The architecture of a network also

has to be adjusted to the specific application as, taking as an example this dissertation’s objective,

one should not choose an architecture which cannot detect in real-time. This means changing the

number of parameters, layers, neurons and even other techniques like introducing different con-

volutional layers that reduce computational cost without much loss in performance, as in [34], or

compression techniques like in [35] and [36].

An overview of these hyper-parameters and how they affect the network is found at Table

2.2. All the parameters contribute, in their own way, to network’s performance. This density of

parameters and combinations must be accompanied by informed reasoning about the impact of
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each one to ensure that the model has not just found a local minimum of optimization and not the

global one.

Parameter Definition Impact
Learning Rate Determines the magnitude of change of

each parameter at each training itera-
tion.

Requires balancing high and low values throughout
training.

Batch Size Number of samples processed in each
training iteration.

Requires a balance between speed, hardware capa-
bility, and training time.

Number of Epochs Number of times the dataset is com-
pletely used for training.

Requires determining the correct number to avoid
over-fitting the dataset.

Regularization Additional changes to how weights are
updated.

L1, L2 and dropout might prevent over-fitting.

Table 2.2: Summary of hyper-parameters and their impact on the network.

Finding the exact combination of hyper-parameters to get the maximum performance from

the network is virtually impossible due to finite resources, but this doesn’t mean users are com-

pletely blindsided when finding a close enough combination. Metrics, like the ones in 2.3.6, can

be extracted from the network that point us in the general direction of optimization, as well as pre-

viously explored changes by other researchers. Both need caution to ensure they are interpreted

correctly. This is demonstrated in both [37] and [38], with the former focusing more on architec-

tural features (filter size, input image size and the number of neurons and layers) and the latter on

learning rate, batch normalization and initialization methods. Optimizing these parameters will

lead to better performance and lower loss values in scenarios like the one in Figure 2.7.

These optimizations can be achieved by either manual tuning, which can become overwhelm-

ing depending on the number of possible combinations of hyper-parameters, or automatically,

where one programs an algorithm to push the network (by tuning hyper-parameters) to better per-

formance, as is demonstrated in [39], where auto-tuning agents were used to adjust parameters

(one per hyper-parameter, independently of each other) to improve accuracy in the MNIST[40]

dataset.

Figure 2.7: Image depicting loss values decreasing throughout the epochs of training (adapted
from [41]).
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2.3.6 Key performance indicators

Given the background knowledge given on NNs, ranging from architecture to components and

optimization, it is crucial to discuss the KPIs used to evaluate these networks. These KPIs help to

measure the performance of NNs in various tasks. Some of the most commonly used metrics for

evaluating NNs are precision, recall, F1 score, and Area Under The Receiver Operating Charac-

teristics Curve (AUC-ROC). Each of these offering an unique perspective on model performance,

it is essential to consider them collectively to gain a comprehensive understanding of a model’s

capabilities, being careful not to rely solely on just the most common ones, which can turn our

analysis of the network into a reductive one. Most of these KPIs interact with the confusion matrix,

represented in Figure 2.8.

Figure 2.8: Example of a confusion matrix, used for the calculation of KPIs (adapted from [42]).

To perfectly understand the following KPIs and Figure 2.8 these concepts must be defined:

• True positive is an instance that was predicted as positive and whose ground truth is posi-

tive.

• False positive is an instance that was predicted as positive but is actually negative.

• True negative is an instance that was predicted as negative and whose ground truth is actu-

ally negative.

• False negative is an instance that was predicted as positive and whose ground truth is posi-

tive.

Precision represents the proportion of true positive instances among those predicted as pos-

itive. It quantifies the rate of positive predictions, indicating how reliable the model is when it

identifies a sample as belonging to a certain class. Calculating precision happens per the equation

in Equation 2. A higher precision indicates fewer false positives, which means the model is less

likely to misclassify negative instances as positive.

Precision =
True_Positives

True_Positives+FalsePositives
(Equation 2)
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On the other hand, recall, calculated according to Equation 3, measures the proportion of true

positive instances among the actual positive instances in the dataset. It measures the ability to

identify the ground-truth instances. A higher recall indicates fewer false negatives, implying that

the model is less likely to miss existent ground truths.

Recall =
True_Positives

True_Positives+FalseNegatives
(Equation 3)

F1 score, an aggregate mean of precision and recall, provides a single metric that balances the

trade-off between these two above-mentioned KPIs. The F1 score is particularly useful when both

false positives and false negatives are equally important, and it, as with the previous two, ranges

from 0 to 1, with higher values indicating better performance. Though the F1 score offers a more

balanced evaluation, it still assumes equal importance for precision and recall, which may only

sometimes be the case in specific applications.

These last three KPIs are widely used but vary in importance depending on our objective

when deploying a model for classification and detection. The example usually given is that of the

medical field, in which false positives and false negatives can have significant repercussions, the

former in expensive treatments and the latter in late detection of diseases. Still, to give an example

more in tune with the objective of this thesis, such as if we are deploying a model for ADAS. Then

the detection of a traffic light can be seen as more important than a highly correct performance in

classification, leading to acceptable lower precision and recall. When this happens, if the driver

is alerted sooner than he would see the traffic light, he can then classify it and take appropriate

precautions. However, if deploying a fully automated system, feeding the network bad data may

lead to accidents. So the model must make sure it only provides accurate data to the autonomous

system. Other situations may arise when analyzing these KPIs, e.g. when precision is high, and

recall is low, this may mean that the model is performing well in specific scenarios but may not

have enough confidence to try to predict something in situations the user would have wanted it to.

Mean Average Precision (mAP) is a crucial metric that combines precision and recall across

multiple class labels. To calculate mAP, precision and recall are computed for each class individ-

ually, and then the average precision is obtained by calculating the area under the precision-recall

curve for that class. The mAP is the mean of these average precision values across all classes.

Hence, the mAP metric provides a comprehensive assessment of the model’s performance, taking

into account both the accuracy of object detection and the ability to correctly classify different

object categories.

The AUC-ROC measures the performance of a NN across all possible classification thresholds.

It plots the true positive rate (recall) against the false positive rate and computes the area under

the curve. A model with perfect classification would have an AUC-ROC of 1, while a random

classifier would have an AUC-ROC of 0.5. The AUC-ROC is particularly useful for evaluating

models with imbalanced datasets, as it is less sensitive to class imbalance than accuracy.

Other additional metrics include top-1 and top-5 scores, which check if the target (ground



Theoretical concepts 18

truth) equals our top prediction or if it is in the top 5, respectively. Top-1 and top-5 scores have de-

creased in relevance in narrower scenarios, where few classes mean the desired class is frequently

in the top 1 or top 5, like in [43]. Still, they can be used is wider multi-class implementations [44]

and [45]. All these metrics are available at a glance in Table 2.3.

KPI Calculation Usefulness
Precision True Positives

True Positives + False Positives Measures the reliability of the
model is when it identifies a
sample as belonging to a certain
class.

Recall True Positives
True Positives + False Negatives Measures the ability to correctly

identify positive instances, par-
ticularly important when mini-
mizing false negatives.

F1 Score Harmonic mean of Preci-
sion and Recall

Provides a balanced metric that
considers the trade-off between
Precision and Recall, useful
when both false positives and
false negatives are equally im-
portant.

Mean Average Precision Average Precision across
multiple classes

Evaluates the overall perfor-
mance of the model in object de-
tection tasks, combining preci-
sion and recall across different
object categories.

AUC-ROC Area under the ROC
curve

Measures the overall perfor-
mance of a model across all pos-
sible classification thresholds,
useful for evaluating models
with imbalanced datasets.

Top-1 Score Check if the target is the
top prediction

Evaluates if the ground truth
matches the model’s top predic-
tion, indicating the model’s ac-
curacy in its top choice.

Top-5 Score Check if the target is
within the top 5 predic-
tions

Evaluates if the ground truth
is among the top 5 predictions
of the model, indicating the
model’s performance within its
top choices.

Table 2.3: Summary of Evaluation Metrics for CNNs
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2.4 Convolutional neural networks

CNNs are a subset of deep learning NN that are created specifically to process data that has a

grid-like topology, specializing in a range of image and video processing tasks, such as object

classification and segmentation. They vary in their depth and strategies, but their core consists of

layers, each manipulating the input data in a particular way. The convolutional layer, pooling layer,

and fully connected layer, depicted in Figure 2.9, are CNNs’ three main building blocks [46]. They

have evolved from small parameters, small models with low performance, to high performance,

real-time or not, capable and adaptable models. They take advantage of matrix multiplication

to extract features in a manner more suited to visual data. Although matrix multiplication is

computationally demanding, it is well suited to the paralellization of work that is a signature of

graphics processing units.

Figure 2.9: Example of a fully convolutional neural network (adapted from [47]).

2.4.1 Architecture

CNNs are specifically designed to process and analyze data with a grid-like structure, such as

images. CNNs employ convolutional layers that utilize filters (also known as a kernel), as a

learnable parameter to extract relevant features, like edges, lines, and shapes, from the input data.

The key operation in this process is the convolution operation, which is represented in Figure

2.10. It involves taking a filter and sliding it across the input image, performing element-wise

multiplication between the filter and the corresponding image pixels, while generating a feature

map, representing the source image’s highlights and specific patterns. In order to capture all of the

features in the input image, multiple filters can be used to create various feature maps. The size

of the filters is one of the main ways in which one can increase or decrease the size of the model,

as well as determine which kind of information (contextual or specific) one wants to recover in a

specific layer. These operations when done in close succession, lead to the formation of a hierarchy

of features, from simpler and more generalized ones to more complex ones, which all culminate

in a detection.

In the overall architecture of a CNN pooling layers might coexist with convolutional layers.

This shrinks the size of the feature maps that the convolutional layer produces, making it eas-

ier to analyze, by reducing dimensionality and the compute necessary to perform forward and

back passes. This is accomplished by performing operations like max or average pooling on

small windows of the feature maps, overlapping a kernel with the image and extracting only the

maximum or average values. The operation done by these layers is also called sub-sampling or
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Figure 2.10: Representation of a CNNs’ convolution (adapted from [48]).

down-sampling. Throughout the years the research into the impact of the type of pooling led to

the spread of max pooling, as seen in Figure 2.11 , in most architectures, as it tends to perform

better. This is demonstrated in [49], where the authors found that max pooling had a spread in

performance that was comparable to much more complex techniques, and was slightly better than

average pooling, when tested on the MNIST[40] and CIFAR[50] datasets.

Figure 2.11: Example of a max pooling layer with a size of 2 (adapted from [51]).

For most layers, a stride greater than 1 can also be specified, increasing the down-sampling

rate by "skipping" pixels when overlapping the kernel with the image. This reduces the data’s

dimensionality and helps avoid over-fitting. The size of the filter can, when in conjunction with

the stride, also reduce dimensionality, by skipping parts of the input where the kernel does not

fit. These previous two techniques may lead to losing information on the border of the input,

so padding may be added, as zero padding, to increase the size of the input and maintain the

dimensions of the output.

The network’s final output is produced by the fully connected layer. A prediction or classifi-

cation is made for the input image using the output from the preceding layers. Typically, a softmax

function that creates a probability distribution over the potential classes comes after this layer.

Another important consideration, especially in one of the models that will be explored later

(Section 2.4.3.1) is batch normalization. This consists of a technique designed to improve the

training of deep NN by addressing the issue of internal covariate shift, as is discussed in [52],

which occurs when the distribution of inputs to a given layer changes during training due to updates

in the previous layers’ parameters. This used to be dealt with by lower learning rates and more

careful parameter initialization (which led to longer training). This happens by normalizing the

inputs to each layer, by subtracting the mean of the current batch from each activation, followed
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by dividing by the standard deviation. The research done in [52] results in the acceleration of

the training process. The normalization of inputs reduces the internal covariate shift, resulting in a

more stable network during training. This allows for the utilization of higher learning rates without

the risk of gradients exploding or vanishing, leading to faster convergence. Another significant

advantage of batch normalization is the enhancement of a network’s generalization performance.

Normalizing the inputs introduces a form of regularization, helping to prevent over-fitting. During

the training process, normalization parameters are estimated using the statistics of the current mini-

batch, adding some noise to the process. These noise functions act as a regularizers, making the

model more robust to small perturbations in the input data. Consequently, the CNN becomes less

sensitive to specific patterns in the training data, improving its ability to generalize to new, unseen

data.

2.4.2 Transfer learning in CNNs

Having analyzed the architecture of a CNN and before continuing to specific models, it is impor-

tant to establish how important the knowledge of another implementation can be. For a given task

using the same architecture, the previously acquired knowledge will help reduce the computational

cost and required dataset size. This concept is the core of transfer learning approaches, as was the

case in [53]. This survey shows transfer learning being a means of improving performance when

the given dataset is small.

In transfer learning, higher-level features (like the object’s shape and size), can be transferred

to the new task, while the more specific features can be extrapolated to the new classes, by adjust-

ing the weights of the said NN. For example, the task of car TLR shares similar characteristics
with tram TLR, namely light casing and light position on the streets. So the main segmentation

and signal position can be directly transferred, while the light signals’ meaning can be adapted.

Furthermore, transfer learning helps overcome the problem of over-fitting, especially when the

dataset is small. The pre-trained models act as powerful feature extractors that generalize well to

unseen data. By fine-tuning the model on our specific task, the learned features can be adjusted to

better align with our targets. This is demonstrated in [54], where an analysis on impact of using

transfer learning on different sizes of datasets is done, finding that deploying transfer learning

greatly reduced the need for more data, as the comparison model (one trained from scratch on the

same dataset) quickly over-fitted and had worse results.
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2.4.3 Models for object detection

Identifying an object not only comprises understanding of the overall image but also estimate the

objects and their locations contained within [55]. The best methods for not only this dissertation’s

specific application but also for most that need generalized feature extraction, are using CNNs

and deep learning. Up until this point the focus has been on the fundamental underlying building

blocks to a successful object detection model. However, putting it all together and managing to

actually train, validate and deploy a model is a complex task. It requires an understanding of the

overall architecture of actual models, such as the input, the backbone, architecture idiosyncrasies,

output layers and parameters. In this section the focus will be on describing actual models that

have been proven to work so that real world knowledge can accompany the background knowledge

that was mentioned in the previous sections of this chapter. These models will focus on two main

model categories, just as it can be seen in [56] and in Figure 2.12: single-stage detectors and two

staged detectors.

Figure 2.12: Image depicting different types of detectors (adapted from [56]).

Single-stage detectors, as You Only Look Once (YOLO), in [57], operate by directly predict-

ing the class labels and bounding box coordinates in a single forward pass of the network. These

detectors are known for their high computational efficiency and real-time performance, making

them suitable for applications that require low-latency processing, but also making them less ac-

curate.

Two-stage detectors, such as the Region Based Convolutional Neural Network (R-CNN) of

[58] and its variants, work in a hierarchical manner. Initially, they generate a set of region propos-

als that potentially contain objects, often using techniques like selective search [59] or objectness

[60] . After this, these proposals are passed through a classification and bounding box regression

network to produce the final object detection. These detectors generally exhibit better accuracy
and are more robust when dealing with varying object scales and occlusions. However, they tend

to lose to single-stage detectors in speed. In [56], a well-detailed analysis of different backbones

is shown, which tend to be more densely connected and deeper in two-staged detectors, as well as

their performance relative to each other.

Now, a detailed explanation will be given on models of each of these different categories, pro-

viding a profound look into not only how they function but also how they perform in standardized

tests. Later, their performance will be shown in more individualized and specialized cases.
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2.4.3.1 YOLO

Going into our first example of the architecture of a CNN-based object detection model (single-

shot), YOLO is a family of models that prioritize speed and real-time performance, introduced

in [57]. YOLO, seen in Figure 2.13, divides the input image into a grid and assigns a number of

bounding boxes, confidence scores for those boxes, and class probabilities to each grid cell, pre-

dicting object locations and classes in a single forward pass. The first version of YOLO, YOLOv1,

achieved real-time detection with a mAP of 63.4% on the PASCAL VOC 2007 [61] dataset, at a

speed of 45 Frames Per Second (FPS), which although was only on par with other state-of-the-art

techniques’ speed, it managed to achieve this while at least doubling the speed of detection for all

models comparable in mAP.

Figure 2.13: Depiction of how YOLO works. Adapted from [57].

After YOLO had been proven to be a very good detector for real-time applications, as seen

in [57], numerous iterations on its model came to be in the following years, trying to improve

accuracy and speed in standardized challenges and datasets. So, the focus will now be on the main

thread of iterations on YOLO, but many more have been done for specialized applications, altering

its’ architecture, backbone, parameters, etc.

YOLOv2 [62] introduced several improvements over YOLOv1, such as the adoption of anchor

boxes, more specifically the ones resulting from a clustering algorithm in the MS COCO[63] and

PASCAL VOC[61] datasets, for better bounding box prediction. A higher resolution input image

was also used and batch normalization was also incorporated. These enhancements resulted in

better performance, achieving a mAP of 76.8% on PASCAL VOC[61] and a speed of 67 FPS.

As for YOLOv3 [33], it further refined the architecture by employing a deeper and wider

network with shortcut connection, inspired by the Darknet-53 [64] backbone. Additionally,

YOLOv3 adopted a multi-scale detection approach, predicting objects at three different scales to
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better detect objects of varying sizes. This version reached a mAP of 57.9% on the MS COCO[63]

dataset while maintaining real-time processing capabilities, as seen in Figure 2.14.

Figure 2.14: Depiction of how YOLO performs in the COCO [63]. Adapted from [57].

When dealing with the output of YOLOv3 models, the output takes the form a large number

of predictions with different values, from the confidence score of each class, to the coordinates of

the bounding boxes. These outputs commonly come in the form of large lists containing this infor-

mation and, therefore, have to be filtered based on at least two parameters: confidence threshold

and IoU threshold. The confidence threshold works by eliminating the variables with confidence

score below a certain pre-defined value. The IoU threshold is used in conjunction with non-max

suppression to combine bounding boxes that do not meet a certain threshold. A visual represen-

tation of this process can be observed in the image provided in the Figure 2.15. The outputs after

filtering can then be displayed (in a test scenario), used for loss calculation (in training) or for KPI

calculation.

Figure 2.15: Example of Non Max Suppression (adapted from [65]).

YOLOv4 [66], incorporated a wide range of advancements in object detection, such as the in-

corporation of other architectures architectures into itself, as well as data augmentation techniques

like the mosaic technique, which joins 4 training images so that "4 different contexts are mixed".

YOLOv4 also made use of the Bag of Freebies and Bag of Specials concepts, which contributed
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to its improved performance. With these optimizations, YOLOv4 achieved a mAP of 65.7% on

the MS COCO[63] dataset while maintaining real-time processing at 62 FPS.

Throughout its various versions, the YOLO family of models has consistently demonstrated

the ability to balance high performance with real-time processing capabilities, making it a popular

choice for many object detection tasks.

2.4.3.2 R-CNNs

The initial proposal for R-CNN family of models is proposed in [58], introducing the R-CNN

network, seen in Figure 2.16. This network solves a previous implementation of Region of In-

terest (RoI) that used simple methods to identify regions on which to run a CNN and perform

object detection, and thus try to reduce computation complexity. This same previous method

simply could not do this efficiently and suggested too many RoIs, with tremendous computational

complexity. As, such, in [58], there are only up to 2000 regions on which said object detection are

applied.

In the feature extraction component, each region proposal is wrapped to a fixed size and passed

through a pre-trained CNN, typically AlexNet, to extract a fixed-length feature vector. The CNNs

final fully connected layer is removed, and the output from the second-to-last layer is used as

the feature representation for each region proposal. This feature extraction step helps capture the

discriminative information necessary for accurate object recognition.

Figure 2.16: Depictions of the workings of R-CNN (adapted from [58]).

The final component of R-CNN involves training a set of linear SVMs for classification. For

each object class, a one-versus-all linear SVM is trained using the extracted feature vectors. The

SVMs are responsible for determining the class labels for the region proposals, as well as refining

the bounding box coordinates using bounding box regression. The final object detections are

obtained by combining the class labels and refined bounding box coordinates.

R-CNNs, at the time of its’ introduction, achieved performance of 53.7 % mAP on the PAS-

CAL VOC 2010 [61] dataset, outperforming the previous state-of-the-art methods by a significant

margin. However, R-CNNs main drawback is its computational complexity, primarily due to the

need to process thousands of region proposals for each image, making it unsuitable for real-time

applications.
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Subsequent developments in the R-CNN family, such as Fast R-CNN [67] and Faster R-CNN

[68], have sought to address these efficiency concerns while maintaining or improving the high de-

tection accuracy achieved by the original R-CNN. After this first implementation [67] improved

on the previous proposal mentioned above by modifying the feature extraction process. Instead

of processing each region proposal individually, Fast CNN applies the CNN to the entire input

image, generating a feature map from which region proposal features are extracted using a tech-

nique called RoI pooling. This change reduces the number of CNN computations required and

significantly improves processing speed, exemplified in Figure 2.17. Furthermore, Fast R-CNN

replaces the linear SVMs used in R-CNN with a softmax classifier and incorporates bounding box

regression directly into the network, streamlining the training process.

Figure 2.17: Training time and testing time of R-CNN and Fast R-CNN (adapted from [69]).

2.5 Datasets

As a critical factor contributing to the success of object detection using CNNs the availability of

large, diverse datasets, as these are key when training a model. These datasets enable CNNs to

learn the complex, high-dimensional patterns and variations present in real-world diverse scenar-

ios, resulting in improved performance and generalization capabilities. However, acquiring large

and varied datasets can be challenging, particularly for specific applications where data availability

may be limited or difficult to obtain, such as TLR in trams. It is important to note that, depending

on the application, or even if transfer learning is being done, the size of the dataset and their vari-

ability may not need to be as profound, still, it needs to be adequate for the task and it is safer to

use a larger one.

In the case of tram TLR (this serves as an example of creating a dataset for a visual task) using

a CNN, gathering a sufficiently diverse dataset poses unique challenges. Firstly, tram systems

across different cities or countries may exhibit variations in their traffic light designs, colors, and

configurations, requiring a dataset that captures these differences. Additionally environmental

factors, such as lighting conditions, weather, and occlusions, must be considered to ensure that the

CNN can perform well under various circumstances. Assembling a dataset that covers all these

aspects is time-consuming and expensive, as it may involve collecting images from multiple tram

systems and multiple weather conditions, therefore spanning multiple days or times of the year.
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This variability impacts the time to create a dataset, with a great contributing factor for this being

the labelling process.

As examples of datasets that fit into the rules and take into account precautions to mitigate the

above mentioned problems, LISA [70], MS COCO[63] and CIFAR-10 [50] stand out as widely

used.

2.5.1 Data augmentation

Data augmentation (exemplified in Figure 2.18) may become an essential technique for the train-

ing process of CNNs, particularly if the available dataset is limited in size and or diversity. Data
augmentation involves applying transformations to the original images in the dataset, generating

new samples that capture different perspectives or variations of the original data. The transforma-

tions can be applied in such a way as to enhance the dataset in meaningful ways for the context

of the model and objective at hand, this could, to give an example, materialize itself in changing

the color values of an image to simulate different weather situations. This, as with the underlying

structure and choices made for the non-augmented dataset, must be done so as to be relatable to

the deployment situation. These transformations include rotation, scaling, flipping, translation,

shearing, and adjusting brightness, contrast, or color.

Figure 2.18: Image depicting data augmentation (adapted from [71])

This may help with the dependency of CNNs large datasets, helping to avoid over-fitting. As an

example, when data augmentation is applied to TLR, it can help simulate various environmental
conditions and situations that may, or may not, be present in the original dataset. For example,

applying transformations that simulate different lighting conditions, camera angles, and occlusions

can better prepare the CNN to handle real-world variations in camera hardware, weather conditions

or location. Applying this correctly can mitigate, at the root of the problem, cases of over-fitting

and lack of data to extract features, just like the authors of [72] found.

Some types of data augmentation include:

• Color Augmentation: In this the value channels of an image are manipulated so as to

simulate change in weather, lighting conditions or color variants.
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• Spatial Augmentation: This augmentation applies transformations like rotation, scaling,

translation, flipping and distortion to an image, with the objective of simulating situations

like different camera positions or point-of-view changes.

• Noise: This augmentation introduces noise to the image, reducing the quality of its’ data.

• Image occlusion: Patches in the image are occluded, simulating occlusion situations.



Chapter 3

Bibliographical Review

After delving into the theoretical concepts needed to have an understanding of this project, the

attention can now be shifted towards practical applications within the railway domain, or those

that have relevant features to the objective of this dissertation.

The main focus in this chapter will be on the state-of-the-art solutions on different topics.

Initially, car-centric implementations will be analyzed. Particularly those that have similar prob-

lems and/or objectives will be considered, since they are very comparable to the environment in

which railway applications operate. Lastly, this chapter will explore the existing railway and pub-
lic transport applications relevant for this dissertation and their contributions will be weighed and

explained.

3.1 Car-centric implementations and their feasibility

Having explored less specific and more variable models in Section 2.4.3, the focus shifts to the

state-of-the-art implementations in car-centric situations. This exploration results from the com-

monalities that these implementations share with tram traffic light recognition tasks due to the

inherent similarities between the two types of traffic lights and situations. Car-centric implemen-

tations relate to railway applications as both serve the same fundamental objective: controlling

and guiding vehicular movement through similar environments and conditions (active and passive

participators, varying weather, different lighting conditions, hardware variability, etc). As such,

and having established that implementations for car scenarios would be relevant for possible.

3.1.1 Traffic sign and light detection

Firstly, it is important to introduce some of the datasets where implementations of different models

can be tested and trained. Datasets like the German Traffic Sign Recognition Benchmark (GTSRB)

[73], on which comparisons of the performance of many models, and even against humans them-

selves, can be found at [74]. This dataset consists of more than 50000 images with 43 classes of

varying traffic signs. Aside from this, the Tsinghua-Tencent.100K[75] dataset, with over 100000

images and 117 classes, and the LISA traffic light dataset[70] seem to be the more specialized

29
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ones. However, it is worth noting that larger datasets like MS COCO[63] also contain images of

traffic signs and lights, but they are not recommended for highly specialized implementations of

Traffic Sign Detection (TSD) as their focus is not exclusively on these elements.

In [9] classical Machine Learning (ML) techniques can achieve interesting results in TSD

and Traffic Sign Recognition (TSR), with the authors going from simple to advanced techniques

and finding a sequence of steps that are usually found in most applications: pre-processing, fol-

lowed by feature extraction, detection of the objects and the post-processing. Regarding the

pre-processing step, which usually consists of hardware-specific geometric corrections, colour

corrections or image enhancements (e.g. sharpness, contrast or noise), [17] stands out as an ex-

ample of lateral thinking in their approach to this step, when the authors use the Lightness;Green-

Magenta;Blue-Yellow (LAB) colour space, in which the second channel corresponds to a spectrum

of green to red values of a pixel, to aid in their detection and classification step. Although the au-

thors achieve lacklustre results when compared to more advanced and deep learning techniques,

they still find good performance in their specific use case, in spite of having some dataset draw-

backs and lacking applicability to new scenarios. Still on classic ML models for TSD, [76] for

SVMs, [13] for SIFT, [15] for Haar cascades and [77] for principal component analysis are all

still relevant, managing to either fulfil their roles as classifiers or by supporting other models, as

add-ons, to improve their performance. Moving on to deep learning, in [9], a clear distinction was

found in accuracy and speed when comparing deep learning methods (with or without classical

ML ones attached) to solely classical ML ones. The former had a distinct advantage, achieving

much better performance, due to their ability to generalize and better feature extraction. Continu-

ing, in [78], the authors once again corroborate the advantages of NNs, as they affirm that they are

superior in TSD, when compared to traditional methods, like HOG or SIFT.

In [79], a survey directed at TLR is conducted, in which the colour spaces used by authors in

TLR tasks are explored, from Red;Green;Blue (RGB) to Hue;Saturation;Value (HSV), LAB and

Brightness;Blue Projection; Red Projection (YUV), and it is found that normalized RGB over-

comes illumination variations more easily. Following this, the analysis progresses to the physical

details of the light lamps. Here it is detailed that properties like shape, aspect ratio, texture, posi-

tioning in space (above the street), orientation (mostly vertical) and size can be used to apply rules

that exclude false detections. With this knowledge the authors highlight the implementations that

managed to succeed in this task, acknowledging traditional techniques while also emphasizing

the integration of a priori knowledge, as in [80], where Global Positioning System (GPS) infor-

mation was used to improve RoI choice, when the distance is below 100 meters. This resulted

in a performance increase when compared to the baseline RoI algorithm, with a more significant

improvement in dusk scenarios than in afternoon ones.

Shifting the focus to CNN, but remaining in TSD, in [81] the authors choose to use a CNN

for their detection model, while using the GTSRB [73] benchmark. This is a broad classification

problem, spanning 43 classes of images with resolutions ranging from 15x15 to 250x250 pixels.

The authors’ model managed to be comparable to other already evaluated models, reaching above

99% top-1 accuracy. Importantly, they were also able to demonstrate that their network is resilient
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to the degradation of the test dataset due to fading and rotation, with a performance drop of less

than 2% even for the most intensive deteriorations.

Furthermore, [66] uses an implementation of YOLOv4, more specifically in[82], where the

cross-layer connections were enhanced by focusing more on high and low-level features through-

out the convolutional layers. This focus led to improved feature extraction capabilities, yield-

ing a 1% increase in mAP on the Tsinghua-Tencent.100K[75] dataset compared to the original

YOLOv4. This was achieved at 31.25 FPS, a frame rate that the authors deemed capable of real-

time detection.

In [83], multiple CNN based architectures are compared, focusing on LENET-5[84], IDSIA[85]

model, URV[86] model, a CNN with asymmetric kernels and a CNN with 8 layers as the focus of

the classification problem. The dataset, designed to complement the GTSRB[73], contains rural

and urban environments, at daytime and sunset, and was collected across several European coun-

tries. An extensive data analysis was conducted to determine the types of signals present, their

categories, and whether they were shared between countries or country-specific. Performance was

measured on both datasets, and the KPI indicated not only above 80 %accuracy for all models, but

also that they all ran in real-time (on the scale of milliseconds).

When advancing to more complex models, implementations such as those described in [87]

become noteworthy. In this study, an average accuracy of over 90% was achieved, a statistic made

even more impressive by the fact that this average was calculated based on the model’s ability to

detect signs at speeds ranging from 80 to 120 km/h.

Thus, it can be concluded that effective models exist for the detection of car traffic objects.

Even though these models do not specifically target the objects of interest in our study, similar ones

are examined. These implementations, therefore, reinforce the viability of using deep learning

models for our task of tram traffic light detection.

3.2 Existing research on railways and public Transport

Research on rail infrastructure represents a significant and relevant part of state-of-the-art tech-

niques relevant for future work. These techniques involve similar scenarios, including environment

characteristics, object and obstacle detection, as well as active participant detection. Particularly

relevant are sign and light detection, which more directly align with our current objectives.

3.2.1 Rail maintenance and obstacle detection

Rail maintenance represents an important part of state-of-the-art techniques, specifically in the

realm of object and obstacle detection. These implementations are mainly within maintenance

scenarios and, as such, include, as an example, implementations limited to only nighttime.

The authors of [88] used RailSEM19[89], a public dataset for train management comprising

8500 unique images taken from the perspective of rail vehicles, such as trains and trams. To create

the dataset, sensors were integrated into housings mounted on the front profile of a locomotive,
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with vibration isolation mechanisms minimizing image quality disruption due to vibrations. The

test length spanned 120 km on the Serbian part of the Pan-European Corridor X, with an average

speed of 34 km/h and a total runtime of 3.5 hours. Additional runs were conducted to augment the

dataset. For AI-based obstacle detection, the image processing incorporated object detection using

YOLOv3[33] and distance estimation. This model was trained on the COCO[63] dataset which

contains 3500 images of trains but lacks many distant objects. The authors then applied transfer

learning to categorize objects relevant to the RailSEM19[89] dataset and enhance the algorithm’s

ability to detect distant objects. In the evaluation phase, the algorithm reliably identified objects.

However, errors in bounding box prediction led to an increase in distance estimation errors, as

smaller variances in input reliability and accuracy become more pronounced in the output of the

distance estimation algorithm.

In [90], the authors choose a thermal imaging framework to detect, locate and classify anoma-

lies in railways during nighttime scenarios. To achieve this goal, a dataset was created using

nighttime footage and attaching external lights to aid the camera. The paper also mentions the

usage of high-speed frame acquisition to avoid motion blur, which could result in loss of detail,

and ensured high resolution to capture detail even in small objects. The detection model was de-

signed in two stages. Firstly, a frame is classified as abnormal. Then, the anomaly location module

outputs a probability map indicating the location of the obstacle. In this way, the model is able to

perform anomaly detection, even of objects it had not seen in training while operating at around

100 FPS.

Additionally, the survey by [91] provides a comprehensive review of state-of-the-art tech-

niques for on-board detection of obstacles on and near rail tracks, aiming to improve railway

safety. Despite the importance of railways as a primary mode of land transport, research and de-

velopment in this field have been less intense compared to road transport. The paper analyzes three

essential aspects of vision-based onboard estimation: rail track extraction, detection of obstacles

on rail tracks, and estimation of distances between onboard cameras and detected obstacles. Eval-

uation tests are examined and grouped into two categories: evaluations based on images/videos

available on the internet and evaluations on real-world images/videos.

Moreover, [43] uses an implementation of a R-CNN model, with a focus on improving relia-

bility by performing a fusion of data from multiple sensors: cameras (with long and short focus),

Laser Imaging, Detection, and Ranging (LIDAR) and millimetre wave radar. The model aims to

detect 11 different classes: person, rail, box, sign, billboard, power distribution box, schoolbag,

paperboard, signal, platform, and helmet, having structural information (common length, width

and height values) for each. With this, the authors manage to outperform implementations such as

those mentioned in subsection 2.4.3.2 or 2.4.3.1 in mAP, while being outperformed in inference

time.

In their work, [92] uses an improved version of the YOLOv4[66] algorithm, improving obsta-

cle and pedestrian detection compared to previous methods. One-stage detectors were chosen for

this study because of their faster processing, despite being less accurate than two-stage detectors.

The algorithm divides each image into SxS grids, where a grid detects the target whose centre falls
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into the cell. Each grid cell outputs B boundary boxes, the area of the object, and the probability

of it belonging to a class. The backbone architecture used is DarkNet-53[64] and cosine annealing

decay is used for learning rate adjustment. K-means clustering is used to enhance predictions,

making it easier to identify lights. Data augmentation techniques including flipping, rotation,

translation, scaling, contrast change, pooling, and altering brightness in the RGB channels have

also been applied to artificially enlarge the dataset. To prevent over-fitting due to limited data,

transfer learning from the COCO[63] and KITTI[93] datasets was utilized. The first stage of train-

ing involved freezing pre-training parameters, which were then unfrozen in the second stage. This

algorithm improved mAP by 2.33% (with other increases across all KPIs of 2.3.6) while adding

only less than 10% in inference time. Still, where the model differentiated itself from the other

implementations such as YOLO [33] and models from the R-CNN [58] family was when noise

was introduced to the test. In this situation, the lead in performance in mAP doubled.

In [94], the authors discuss how Intelligent Transportation Systems (ITS)s have experienced

rapid development, with computer-vision perception units serving as their key components. They

also affirm that detecting various objects enables train drivers to identify obstacles in time to

prevent collisions. While the Single-Shot Detector (SSD) can detect objects of different sizes

using multi-scale feature maps in real-time, its feature map lacks high-level semantic information,

limiting its ability to detect small objects and making it unsuitable for multi-scale railway object

detection. To achieve high accuracy and real-time railway object detection, the authors propose a

receptive Feature Enhanced Single Shot Detector (FE-SSD). Researchers have explored various

approaches for detecting obstacles in railways, and the FE-SSD aims to balance accuracy and

real-time performance. By incorporating features like enhancing convolutional layers with former

feature maps, associating the scales of anchors with the map location (and then filtering them)

bettering the remaining anchors. This model demonstrates high real-time performance and the

highest detection mAP among the five detectors tested. Although FB-Net exhibited the fastest

real-time performance, its accuracy was lower than the FE-SSD.

Another notable implementation is [95] where challenges such as high computational costs and

difficulty in detecting small obstacles are addressed by implementing a CNN-based algorithm with

a residual module for improved accuracy and simplified training, as well as a feature extraction

network capable of detecting both large and small obstacles. The proposed method consists of two

parts: feature extraction and feature fusion. Using a NN-based extraction architecture with a

residual block, the network becomes easier to train as layers deepen. Then, convolution layers are

added, to obtain high-level feature maps. Subsequently, the researchers choose six different scales

of feature maps for feature fusion to enhance the precision of obstacle detection.

3.2.2 Traffic sign and light classification and segmentation in Railroads

Regarding the state-of-the-art for Traffic Light Segmentation (TLS) and Traffic Light Classifica-

tion (TLC), in [96], a YOLOv5 implementation is trained to detect railway traffic lights, though

these are colour coded and represent green and red lights (meaning go and stop). The images used

for this training were collected from two cameras, one at the end and one at the head of the train.
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These were filtered to cut down the size of the footage to around 3000 images, of which 1600 were

labelled and used to verify the ability of YOLOv5 to effectively detect railway traffic lights. This

resulted in precision and recall values above 94% in all scenarios at 100 FPS.

In [97], an older iteration of YOLO, YOLOv4, is used to try to detect a variety of signals

(blue, white and red) as well as pedestrians. This resulted in 93.5% mAP and an improvement of

about 6% when compared to an YOLOv3 implementation overall and almost 18% for pedestrians.

It is worth noting, particularly in the context of this review, the achievement of 97.38% Average

Precision (AP) with a YOLOv3 implementation in the detection of white lights, although these are

just a subset of the entire range of signals detected in the study.

In [98], the focus is narrowed to pedestrians, specifically, safe passage in crossings. The

dataset for this study is collected from cameras at fixed locations in crossings, where the RoIs are

determined a priori to reduce computational demand. Results from detection are compiled into a

state that has the capability to determine whether or not a pedestrian passage is safe. This model

achieved results in the 90th percentile in precision and recall for both safe and unsafe passage

states.

Last but not least, for sign recognition [99] deals with Australian rail scenarios, in which small

signs are detected with close to 20% less accuracy than the large signs, with medium and large

signs being detected with above 79% accuracy by the Faster-R-CNN model. The authors also

specify the resolution of the images as one of the main drawbacks of their implementations.

To conclude, the research that is most relevant to our work supports the usage of deep learning

methods to detect tram traffic lights.



Chapter 4

YOLOv3 Based Detection and
Classification

In Chapter 2 and Chapter 3, the focus was on the background knowledge needed for this work, and

the state of the art of said knowledge, that is, the available implementations. Now, in this chapter,

we start to explore the procedures, techniques and difficulties, as well as their implementation

in applying an open-source YOLOv3 model to the task of detecting and classifying tram traffic

lights. The dataset, the model implementation, KPIs and the training done on said model will be

explored, with a focus on how the model was improved and what had to be changed to apply it

to the use-case of this project. The aim of this chapter, as explained in Chapter 1, is to optimize

as many of the variables mentioned above, so as to end up with an implementation capable of

segmenting and classifying tram traffic lights.

4.1 The dataset

When compared to other areas of research, the lack of publicly available datasets for lights in

railway scenarios is clear (Chapter 3). Although railway datasets exist, they don’t seem appropriate

for this project, as they fall under the detection of signs and not lights. Therefore, there was a need

to create a tailored dataset.

4.1.1 Choosing the dataset

This section aims to explain how the main problems mentioned before were overcome, by focusing

on the following objectives:

• Finding a repository with available data suitable for the needs of this project.

• Choosing from the physical locations of the available data (e.g. Berlin, Munich and Krakow),

that which had length, diversity and quality.

• Determining the guidelines for how data would be labelled.

35
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• Analyzing the created dataset for edge cases so as to make sure it could be easily readjusted

for other implementations.

Having outlined these objectives, it was determined that the dataset had to be created from

internet data, posted by a third party, and labelled by us. Still, interest in urban planning and

public transit is rather small when compared with car infrastructure. This, therefore, meant that

options were limited in choosing a group of videos that was not just a one-off recording of a

single tram line in a small city, but one that not only had a lot of lines and footage, with a mix of

environments and variables that could ensure the dataset would be usable even if small. Note that

small repositories of smaller cities do have merit and usefulness, as they can be used to supplement

the main dataset or test the performance of the model to ensure that it does not over-fit to a specific

camera, environment, weather, etc if they share the same tram traffic lights that the chosen dataset.

When searching the internet for footage with these constraints, while there is a considerable

amount of regional train footage from the driver’s perspective, options for tram are limited. Still,

a good candidate was a series of videos from a YouTube channel [100] that had multiple lines in

multiple cities in Germany, with the initial dataset being composed of 6 lines from Berlin. As

such, the data was labelled from these videos, focusing on mainly labelling the tram traffic lights

individually and as a group, which will be explained in the following section.

4.1.2 The environments in the dataset and German tram traffic lights

This section will look closer at the dataset used to train the YOLOv3 model, exploring their specific

German traffic lights. By doing, this the drawbacks and the advantages of this dataset can be

detailed and explained.

Firstly, the focus should be on the types of tram light signals encompassed in the German

legislation [5], so that the following dataset can be correctly interpreted. So, after consulting the

available lights, it was found that those that pertain to tram movement, and the ones that will be

the focus of the detection model, are the F0, F1, F2, F3, F4 and F5, as seen in Figure 4.1.

These lights take the following meanings:

• F0 should be interpreted as the equivalent of a red traffic light in cars, as such, the tram

should stop before the light and at a safe distance.

• F1 is the equivalent of a green light for a car, meaning the conductor can proceed.

• F2 is interpreted as being allowed to proceed to the right.

• F3 lights should be interpreted as ride released only to the left.

• F4 means the driver should stop, the equivalent of the yellow car traffic light.

• F5 means the driver should proceed carefully.

After searching for available data on the aforementioned traffic lights and deciding to use the

YouTube playlist [100], it is possible to draw from the videos the following key points:
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(a) F0 (b) F1 (c) F2 (d) F3 (e) F4 (f) F5

Figure 4.1: Tram traffic light signs according to German law [5].

• This playlist included instances of all the signs (except F5, which was very rarely present in

the tram routes).

• F0 and F1 were the more prevalent signs, followed by F2, F3, F4 and F5, in this order.

• Different types of environments present in the playlist, those being suburban, urban, dedi-

cated tram lanes and coexistence in car traffic lanes and intersections (seen in Figure 4.2).

(a) (b)

Figure 4.2: Images depicting an urban, and a suburban environment of the dataset, a) and b),
respectively.

This ultimately converged in a dataset of about 8000 images, of which around 2000 were

labelled, which amounts to a 20% ratio of labelled to unlabelled images. In terms of dataset

content, being Berlin a major city with dense yet sprawl signals, traffic light recurrence does not

match other smaller cities. This can be a source of bias to the model.

Going into more detail on the instances of the various tram traffic lights, it is possible to

see that F0 appears the most (1473 labels), with F1 having 36.85% of this value. The lower F1

frequency relates to the tram being in movement whenever a F1 light is encountered, being thus

captured for less time. The opposite occurs for F0, which has significantly more instances where

the tram is stopped. Additionally, these two lights together accounted for 96.64% of all the labels.

This means that for the rest of the lights, only 24, 23 and 24 images were labelled, respectively.

Note that F5 had no appearances in this dataset. All these ratios would be roughly maintained

even if more data was added to the dataset (unless specific efforts were made otherwise), as the

other lines in the playlist share similar characteristics.
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The frames were labelled at intervals of 1 second, that is every 25 FPS for these specific

videos, due to the time constraints. These chosen frames were always saved and added to the

dataset, independently of if they had a label or not. The time interval of 1 second was chosen

based on the specific implementation, in which there is no tracking or temporal cohesion, and the

segmentation and classification are done on a frame-by-frame basis. As such, it is not expected big

impact on the model’s performance when deployed, even in higher FPS scenarios (e.g. a camera as

the source). Therefore, this specific dataset seems to be representative of real-world scenarios, at

least in Berlin where the lines do not intersect or diverge regularly. Thus, diversifying the dataset

scenarios is one suggestion for future work improvements

It should be mentioned that two instances of the same dataset were done, one in which, due

to the aim of compatibility with Continental’s tools, the whole casing of the tram traffic light was

labelled, and another where only the light was labelled. An example of this can be seen in Figure

4.3. The former labelling process was used for training because it was closer to other resources

inside Continental.

(a)

(b)

Figure 4.3: Different of labels used when creating the dataset, with a) represents the labelling of
only the lights and b) the labelling of the whole casing.
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Having collected an apt dataset for the work of this dissertation, some existing properties

of the said dataset were still lacking: the amount of information within the images was not the

best. Firstly, images were downloaded from a YouTube playlist, meaning they were already com-

pressed, making it hard to interpret parts of the image. Then, 720p was the maximum resolution

available. Nonetheless, the recordings were still relatively clear, even if there were still some room

for improvement.

The limitations manifested themselves in terms of dynamic range and resolution. More

specifically, these limitations meant that areas under shadow and at a distance lacked informa-

tion. Overcoming these limitations was a significant concern, as it would enhance the system’s

reliability in testing and improve its ability to extract information from parts of the image with

sub-par information or to perform when encountering new situations. Some limitations can even

contribute to new edge cases. Therefore, the dataset had to be enhanced in terms of zooming,

translation, rotation, scaling, and colour representation (hue, saturation, and value), to miti-

gate the limitations. Through testing, various transformation values were explored, and the most

optimal ones were identified during training.

Therefore, the images need to be of sufficient quality for our vision system to detect the traffic

light signs at a long or adequate distance. Such a dataset would also be acceptable for training

a NN. This brings us to another important consideration: as we did not use any dataset from

Continental, different camera properties that could be adapted to better fit our needs were not

modifiable. For example, more resolution, a wider field of view or a greater dynamic range. Some

images of our dataset, as in Figure 4.4, lacked detail, especially in areas of high or low brightness

and distant traffic lights. This resulted in detections that would be easier for a human, due to all

the sub-context we can derive from the scene, but challenging for a NN. Nonetheless, instances

where this happened, were labelled so as to give the network a chance to learn these scenarios.

(a) (b)

Figure 4.4: Examples of the lack of detail in an image present in the dataset.

Lastly, another limitation encountered was the lack of lower visibility and diverse weather

conditions in the dataset. The playlist used for training mainly consisted of recordings captured

in similar weather conditions, with good weather conditions being the main focus. Although

nighttime videos were considered, they had to be obtained from a location in Poland, which could
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have disrupted the dataset and affected the results, due to the fact that only the F0 and F1 signals

are shared between the two countries, and they might even be used in different circumstances.

Considering the project’s goal, which primarily aimed to aid in tram driving, focusing on good

weather conditions was sufficient as proof of concept for Continental. This would enable them to

deploy the model with Continental’s camera and a dataset that provides a wider range of variability,

ensuring accurate performance in various situations.

4.2 The model, transfer learning and pipelines

The focus of this section will be the usability and implementation aspects of the YOLOv3 model

that was chosen to be deployed. It is crucial to explore the factors that influence its performance,

including inputs, outputs, and their treatment, as well as their impact on the model’s function-

ality. Additionally, we will discuss the significance of hyper-parameters, transfer learning, and

the model’s suitability for the specific use case of detecting tram traffic lights using a CNN. We

will specifically outline the KPIs used to assess the model’s performance, which will be further

discussed in the subsequent chapter in order to evaluate the model’s usability in real-world applica-

tions. Throughout this analysis, we will relate these factors to the model’s architecture, explaining

how and why they influence the model’s behaviour, both in theory and based on our empirical

observations.

4.2.1 The original implementation: dataset and transfer learning

Before delving into the performance, architecture, and pipeline of our developed model, let’s es-

tablish a baseline to gauge our desired performance. To achieve this, there was the need to consider

the previous state of the model used in this project and its implementation, which can be accessed

at Github [101]. Therefore, understanding the original implementation, its’ advantages and disad-

vantages allows us to justify the utilization of transfer learning in our specific implementation. It

is exactly this that will be now explored.

As discussed in Chapter 3, most CNN implementations in driving scenarios focus on car-

centric situations. Hence, due to the similarities in environments and conditions, it is reasonable

to assume that such implementations would serve as a good starting point for transfer learning.

Namely, the environments are similar, especially when trams do not have a dedicated pathway and

share the street with cars and active traffic participants. Strengthening this point is the signalling

type, using lights, which brings with it obvious similarities, with the exception of colour, in casing

size and shape, as well as with the meaning of the lights. The main ones are stop and go, which

translate easily into the positioning in the light casing and the meaning of said lights. This is

apparent in Figure 4.5.

This means that, given the same model, trying to train a network from scratch, when compared

to training on top of all the specialization and features of an already existing model, is an option

that should, and was, explored. Exploring this meant that the computational requirements, both in

terms of time (by the number of epochs) and model size were reduced, as the training needed to
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(a) (b)

Figure 4.5: Similarities between car and tram-designed traffic lights. In a) a "stop" sign is repre-
sented and in b) a "go" sign is represented.

reach certain KPIs thresholds was lower. Another advantage given by this approach is the lower-

ing of the dataset requirements, as training the model to adapt to our situations and environment

is lessened, mitigating some of the drawbacks of our dataset. So, knowing that car-centric imple-

mentations could be used as a starting point to "jump-start" training and reduce the computational

and dataset requirements to achieve our objective, searching for an open-source implementation

that had this very same purpose started. On searching for said implementation, and after reviewing

a number of state-of-the-art implementations in Chapter 3, algorithms like YOLO [33] were the

most abundant, clearly due to its widespread reach not only in terms of performance (applicable to

a wide range of detection problems) but also in terms of its availability. The latter means that given

that, as YOLOs’ source code and backbone are widely known and open-source, they have been the

base of many projects, some of which might have fitted our needs. One specific implementation

was chosen, the reason being its’ well-structured code, information available on GitHub [101],

application (car traffic lights) and performance, in inference speed, and KPIs.

Now that the advantages of transfer learning have been established, by detailing the kinds

of models used and the reasoning behind using them, we proceed to define the actual baseline

performance, which refers to the performance of the previous model and its implementation. The

creation of the previous dataset will be briefly discussed, similarly to how our own was presented,

and how it compares to ours. Additionally, we will explore the performance and its potential

for transfer learning to our own implementation. Specific quantitative information regarding the

performance of transfer learning will be reserved for the next chapter.

Beginning with the dataset used in the car-centric implementation, called LISA Traffic Light

Dataset [70], in spite of some variations, such as the colour and geometric shape of the traffic

lights when compared to tram scenarios, common idiosyncrasies and edge cases, as discussed in

the previous sub-chapter, still exist. These will be enumerated in Chapter 6. Although the dataset,

location, weather, and camera variables differ, the implementation of a similar detection problem

for traffic lights would benefit from leveraging the knowledge gained from car-centric scenarios.
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It is also worth noting that the original implementation for car traffic lights was significantly

bigger than the current implementation in this project, spanning around 18000 images, all of them

labelled, and that seems to have had an impact on our performance, as will be discussed in Chapter

5. Alongside the fact that the dataset used in the previous model contained a larger number of im-

ages and annotations, we also note that it had higher quality in terms of camera clarity, resolution,

and dynamic range.

Another noteworthy aspect of the previous dataset that could prove beneficial in future im-

plementations, depending on the real-world context and deployment, is the inclusion of diverse

weather scenarios and patterns, as demonstrated in Figure 4.6. The previous dataset contains not

only footage captured in optimal lighting conditions but also footage captured during the afternoon

when visibility is significantly reduced, posing challenges related to dynamic range. Additionally,

their dataset includes examples of bright light coming from behind or near the traffic light signs,

further enhancing its advantages, as well as a significant portion of nighttime images and labels.

(a) (b)

(c)

Figure 4.6: Different weather scenarios of the LISA [70] dataset. In a) an example of bright
light shining behind the car traffic light. In b) an example of normal lighting conditions. In c) an
example of nighttime conditions.

Leveraging this dataset, the previous model was trained for 65 epochs using a specific combi-

nation of parameters. The achieved performance was commendable, in terms of precision, accu-

racy, and F1 score. One notable improvement was the absence of high-frequency noise detections

that appear for very brief periods and in a limited number of frames, lacking temporal coherence
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across frames. These noise detections do not align with our desired targets and were one of the

major hurdles that had to be overcome with the process of transfer learning. Usually, this noise

also lines up with edge cases of Figure 5.11. All signs of this performance on only 65 epochs point

to this being due to the vastness of their dataset.

These findings culminated in a final validation evaluation of 76% precision, 91% recall and

89% mAP when deploying the model, as the average of the last 10 epochs. However, it is crucial

to acknowledge that these results were measured in the validation splits of the training dataset

and may not be fully representative of real-world testing environments. This criticism is valid, as

the validation images share similar characteristics with the training images used, as is usual with

training and validation splits.

Regarding other important aspects of this open-source model implementation such as data

augmentation, hyper-parameter tuning, image scaling and resizing. These were present in this

implementation and contributed to the choice of this specific algorithm for training, as crucial and

valuable time was saved by not having to develop these tools but only refine them to achieve the

objectives proposed.

All that was detailed in this section points to this being a good starting point for transfer

learning, as the model accurately detects traffic lights that share similar features with the targets

determined for this project as well as avoiding edge cases that were not only evident from the

initial analysis of the dataset, as explained in Chapter 3, but also in avoiding edge cases that were

discovered when doing transfer learning. As such we proceeded with training from the last epoch

of the original implementation, that is, the weights provided by the best-performing model were

used as the initial weights in our training.

4.2.2 Traffic light recognition pipeline

With the decision to do transfer learning and the dataset source ready, work began on the construc-

tion of the pipeline, with the aim of labelling, transforming, augmenting and feeding the images

to the training process, receiving them on the output, treating the images, detections and analysing

and manipulating the data so as be able to derive conclusions and meaningful information and

improving the models performance on this new task, that of recognizing tram traffic lights.

The implementation chosen as a base for this project had already the structure and ability not

only to train, but also to detect targets in images and, although it did not have all the statistics, data

analysis and features that were deemed necessary for this project, working on top of it enabled a

narrower focus on the training so as to achieve the best performance. Additionally, it also included

the ability to modify the output data to fit our needs and draw our own conclusions. As shown in

Figure 4.7, the pipeline already had the foundation to be able to do the work of this project, but to

do it effectively with our dataset, some parts needed to be added and modifications needed to be

made to best inform the user on how to proceed with the next training. For this, the implementation

of open-source libraries like Pytorch [102] and OpenCV [103], in Python, that enable not only the
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usage of accelerated computing (on an RTX 3060 with 12Gigabytes (GB) of memory)1) when

training and detecting, bringing down the estimate of training time from close to 8 hours per

epoch to 4 to 8 minutes per epoch depending on the resolution chosen for the training, but also

facilitating the treatment and handling of data. Still, and even if there was a learning curve due

to not having worked in Python before, its’ structure and the vastness of resources and libraries

served as an accelerator not only in modifying the required parts but also in understanding the

model and its’ inner workings.
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Figure 4.7: Overview of the main pipeline relevant to this project.

4.2.2.1 Labelling and dataset manipulation

Starting at the beginning of the pipeline, this section of the overall pipeline is in accordance with

Figure 4.7 and deals with the labelling used, the tool, guidelines for it as well as the transformations

1https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3060-3060ti/
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done to the data and its’ input for any training or detection that is to be done.

The starting point for the whole pipeline is, therefore, some source of video data, which is

in this case, as explained in the dataset section 4.1, videos from YouTube that record the cock-

pit/driver view on Berlin tram lines in Germany. With the data present in our local machine,

a small script was developed to separate the videos into frames, frames which all followed the

nomenclature present in Figure 4.8.

Filename_ f rame_number.extension

Figure 4.8: The nomenclature of the images and labels created in this dataset.

This was done so as to avoid conflicts and to be able to easily follow specific frames that

contain important information, i.e. edge cases, or even just "simple" frames, when, as it would

inevitably happen, some part of the pipeline was not yet understood.

The frames mentioned above serve as the basis for labelling, using the LabelMe [104] tool,

which in this case was specifically installed using the python package manager pip so as to facil-

itate the usage of the tool. This tool is quite well-known and used in other projects, as it allows

the user to label quickly and easily, even though it doesn’t have more advanced features, such

as automatic labelling targets. This tool was used due to time constraints on images that were

collected every 25 frames, or every second when dealing with these specific YouTube videos of

25 FPS, resulting in the aforementioned 1800 labelled images, of a total of 8000 for training and

validation.

This specific tool, LabelMe [104], outputs only .json files, with the same name as the image

where the annotation was done, and a very specific and consistent structure. This structure consists

of several keys inside a dictionary, the most important of which is the "shapes" key. This "shapes"

key has within itself the information of all the bounding boxes that were annotated in the image

inside "points" in the format seen in Figure 4.9.

[X_top_le f t Y _top_le f t] [X_bottom_right Y _bottom_right]

Figure 4.9: The format in which bounding boxes are saved as they are saved in a label file.

Alongside this information exist the "label" key that indicates the specific label associated with

that bounding box. An example of the information inside a specific .json file can be seen in Figure

4.10.

When using this tool to label all the images, specific guidelines were followed, these included:

• Drawing the bounding box around the perimeter of the casing of the tram traffic light, so as

to not include the background too much which could have negatively impacted the perfor-

mance.
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Figure 4.10: Example of a .json file containing the details of a label from LabelMe [104].

• Labelling the signal from the moment it was clear to the labeller that an object was a tram

traffic light, even if this meant small labels of faraway traffic lights. This helped further the

goal of this project by detecting lights from farther away, which could result in an earlier

warning for the driver, even if this might have resulted in less confidence in some detections

that included smaller bounding boxes and objects.

Having the data labelled and when being in possession of all the label files and corresponding

images, in order to advance to the input pipeline of the model, the LabelMe labels must first be

converted into a format that can be received by the training or detecting algorithm. This means not

only prepping the images and labels by moving them to the required directory, but also converting

the bounding box and label name format of the LabelMe [104], that is, as previously mentioned,

the coordinates of the top left and bottom right corner, into the specific format that removes all un-

necessary information and leaves only the label name converted to a number, such as transforming

F0 into 0, F1 into 1, and so on; and the coordinates of the centre of the bounding box, followed

by the respective width and height of said bounding box. All these values, except the label, are

expressed as relative to the width and height of the image, so using a bounding box with centre

exactly in the centre of the image and label zero results in these contents of the text file appearing

as in Figure 4.11.

0 0.5 0.5
box_width

image_width
box_height

image_height

Figure 4.11: The translated format that is accepted by the input pipeline and is saved in a text file.

This information is converted and saved with one label and bounding box per line in the file.

As with the .json files and frames (images), the naming convention mentioned in the beginning

of this section is maintained, but this time the lines that contain the bounding boxes and labels

translated from the LabelMe [104] annotation are stored in a text file in a specific directory that

includes folders both from images and for labels.
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The previous steps enable us to feed the data into the model, and this might be enough if the

goal is to detect and compare detections with the ground truth (the labels that were translated in the

previous step), but this in itself is not enough if training is the objective. To train this model, as is

usually done in deep learning, a validation/train split must be done so that data can be extracted of

how the model performed throughout the training process, using a certain number of images from

the dataset to validate the performance at the end of each epoch. With this specific model not only

does one have the ability to choose the percentage of images for training and validation, but the

ability to choose what percentage of images for training and testing are unlabelled was also added.

This introduces the ability to reduce the training time, without completely ignoring unlabelled

images, ensuring, even if to a lower degree, that the model knows and learns what it shouldn’t

detect, by being exposed to scenarios where no labels exist. When looking in detail at the script that

does the aforementioned functions, we learn that the script actually creates and modifies files that

can be manipulated and have an impact on the model. The script creates "train.txt" and "val.txt"

files, which contain the paths to the images to be used in training and validation, respectively.

Note that to reach the corresponding label files to each image, it is as easy as changing the last

directory from "images" to "labels" and the extension from that of an image to that of a text file

since the images and labels share the same name/nomenclature. Additional files are also used,

such as files that have the paths to the previously mentioned ones, corresponding to files with

a ".data" extension, as well as files (with the extension ".names") containing the names that are

to be used and that need to be compatible with the order chosen to translate the LabelMe [104]

annotations into the model labels, as previously mentioned.

For most of the training, although other configurations were explored, this resulted in the usage

of 15% of all the images being used for validation, with the rest used for training. In addition to

this, a completely different tram line, that is, a different video, was used to test the models not

only after finishing training but also at the end of each epoch, ensuring that the progress of the

model can be measured and accompanied throughout training and giving even more data points

for consideration when changing hyper-parameters.

4.2.2.2 Model input pipeline

Advancing now to the input of images and labels to the model, the process by which images

are read, augmented, resized, scaled and fed into the model will be explored, with the focus on

providing a holistic understanding of not only the "life" of a single image, and corresponding label,

when being loaded for detection or training but also how the dataset and data loader are created

and used to train and detect.

The first step in this input pipeline, more specifically in the "pre-processing" stage of the

figure, is loading the images into the dataloader. This is achieved by first creating the dataset

object, which is an instance of the LoadImagesAndLabels class. This class has all the necessary

functions and inherent variables that allow for all the processes we have talked about before.

When calling the constructor of this class the arguments given are: the path that comes from the

".data" files, mentioned before as containing the paths for the images for training and validation
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and the location of the .names file, as well as batch size and some other less relevant parameters,

we can image by image and label by label, or in batches if the batch size is higher than 1, build

the dataset, by storing the training image paths and load the labels it into memory (the option to

cache images can be activated as an argument when running the script). Secondly, we create the

dataloader object, from the torch library [102], through the dataset object created previously, this

dataloader is what will allow the algorithm to iterate through batches, getting the images of each

batch and applying the necessary transformations required by the pre-processing, before sending

them through the rest of the pipeline. So as to collect more information during training, leading

to more informed decision-making, the functionality of repeating the aforementioned dataset and

dataloader creation step for a testing dataset was introduced. This led to the ability to analyze

the data of how the model performs as it trains and improves its’ detection and classification

capabilities.

Now that these steps were given that these objects are created, then, at each batch in each

epoch, the algorithm can get the images present in the specific batch start by loading and caching

the image, as is common with the OpenCV library, as a Blue;Green;Red (BGR) image, and then

resizing it according to the input size we choose when running the script, this might mean down-

sampling or up-sampling, although down-sampling is more common due to the increase in com-

pute cost with higher images. Right after this, then another conversion on the labels is done,

re-scaling them and transforming them into the format of Figure 4.12.

X_top_le f t Y _top_le f t X_bottom_right Y _bottom_right

Figure 4.12: The original format that is accepted by YOLO and is saved in a text file.

Lastly, all the colour and space transformations are done, with these being controlled in inten-

sity by the parameters that are present and modifiable in the source code. The image is converted

to RGB and its’ values are scaled so that their values are converted from [0;255] into [0;1], this

being a common technique and transformation when dealing with CNNs, as detailed in Chapter

2. Before entering the model the image object is also transformed into a tensor, so that the model

can correctly use it.

4.3 Training and reasoning

This section will delve into the various modifications implemented throughout the model’s pro-

gression. Beginning by training from scratch, that is without any pre-trained weights, which set

a baseline for performance by training from scratch. We then advanced to exploring involved

transfer learning. From there, the sequence of parameter research iteration leading to the final

version of the model will be explored. Note that specific performance metrics will not be pro-

vided in this chapter, as their purpose is to shed light on the decision-making process concerning

hyper-parameters and other adjustments.
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It is worth highlighting that additional features were incorporated to facilitate informed decision-

making. Despite the model already possessing fundamental capabilities for extracting loss values

and key performance indicators (such as precision, recall, mean average precision and F1 score),

the tracking of these metrics throughout training, specifically with the testing of the model at

the end of each epoch, was enhanced. Moreover, post-training analysis encompassing graphical

resources was introduced to aid in comprehending and interpreting the model’s behaviour.

4.3.1 Tunable hyper-parameters

Before discussing how the model was trained throughout the duration of this project, first, we

will outline the various modifiable hyper-parameters and their impact on the model. These hyper-

parameters can be adjusted to fine-tune the training process and optimize the model’s performance.

When executing the training script or a detection script, the model can receive several param-

eters as arguments. Although there are more arguments available, we will focus on the ones that

were specifically altered during training: the configuration file, epochs, and image size. An exam-

ple command showcasing these arguments can be observed in Figure 4.13. Additionally, there is

python train.py −−data data/tra f f ic.data −−batch 2 −−c f g

< con f ig_ f older > / < con f iguration_ f ile > .c f g −−epochs 70 −−img− size 32

−− resume −−weights < weights_ f older > / < weights > .pt −− < name >

Figure 4.13: Example of a command that runs the training script, with the necessary arguments.

a dictionary within the code containing several hyper-parameters that can be modified. The Table

4.1 illustrates these parameters, which include initial learning rates, final learning rate, and the

intensity of augmentation in colour space and spatial augmentation.
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Parameter Value Description
GIoU 3.54 Giou loss gain
Cls 2.805 Class loss gain
Cls_pw 1 Class BCEloss
Obj 64.3 Object loss gain
IoU_t 0.3 iou threshold
Lr0 0.003 Initial learning rate
Lrf 0.00005 Final learning rate
Momentum 0.937 SGD momentum
Weight decay 0.0005 Weight decay
Fl_gamma 0 Focal loss gamma
HSV_H 0.1 Hue augmentation
HSV_S 0.678 Saturation augmentation
HSV_V 0.4 Value augmentation
Degrees 0 Rotational augmentation
Translate 0.05 Translation augmentation
Scale 0.05 Scaling augmentation
Shear 0.641 Shear augmentation

Table 4.1: Table with values of the learning rate throughout training.
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Let’s now explore each of these hyper-parameters and their relationship with the model:

• The configuration file encompasses crucial model settings, such as the number and types of

layers and their interactions. For our training purposes, an essential aspect of this file is the

definition of anchors used by the YOLOv3 Model for prediction.

• The number of epochs, as explained in Chapter 2, refers to the number of times the model

iterates over the entire dataset during training.

• Image size corresponds to the dimensions of the input image provided to the model. The

dataset images may have different resolutions, but they are resized to fit the chosen resolu-

tion specified by this argument.

• The initial and final learning rates determine the starting and ending values of the learning

rate during training. The behaviour of the learning rate throughout training plays a signifi-

cant role and must be set by the user.

• The intensity of colour space augmentations controls the degree to which pixel values in

the image can be altered positively or negatively before entering the model. A higher inten-

sity value implies a larger range of saturation changes, as an example within the saturation

channel.

• Spatial augmentations are similar but pertain to spatial transformations. The rotation pa-

rameter sets the degree range for image rotation, the translate parameter determines the

interval for shifting the image horizontally or vertically, and the scale parameter controls

zooming and cropping of the image. The shear parameter can distort the images based on

the specified values during training.

By adjusting these hyper-parameters, influence on the behaviour and performance of the

model is obtained, enabling us to achieve the desired results in training.

4.3.2 Training iterations

Firstly, and as a baseline for what the training could achieve by itself with a dataset the likes of

ours, the network was trained from scratch, that it without training with the original implementa-

tion’s weights as a starting point. Note that this and the following 3 implementations employed

the recommended parameters by the original implementation, with the learning rate taking the

values of Figure 4.14. This shape maintained itself in the following training, being adapted only

to accommodate the number of additional epochs.

Immediately after the previous training, the decision to employ transfer learning was solidi-

fied, making it possible to assess the potential benefits it could bring to the model. Initially, the

aim was to determine the extent to which the original parameters could guide us without making

any modifications. In other words, we sought to investigate how far the most basic parameter, the
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Figure 4.14: Values of the learning rate throughout training.

number of epochs, could influence performance. Our objective was to evaluate the model’s capac-

ity to acquire the distinctive features of tram traffic lights instead of car traffic lights and to assess

the point at which knowledge transfer would reach a plateau, indicating diminishing returns.

To accomplish this, training started by using the original model’s parameters employed in the

previous implementation, maintaining the learning rates, that is, starting and finishing on the same

value used during the training of the previous weights. As such, the first training was performed

for 25 epochs, as it represented half of the duration of the original implementation’ training. This

duration was considered a reasonable initial estimate, as excessively prolonged training might lead

to over-fitting.

After the training for 25 epochs with the original parameters was performed, it was thought

that the network needed more time to acquire the capabilities necessary to start detecting tram

traffic lights. Therefore, it seemed reasonable to proceed to training for longer epochs, in this

case, 30 additional epochs. Note that on this last training of 55 epochs, the learning rate took the

values on Figure 4.15, keeping them for all other iterations of training, except if otherwise stated.

Admittedly, this approach might not be the most efficient, due to only having explored 2

lengths of training, but it served as our baseline to establish a starting point and allowed us to

reach a point where training was optimised, but did not take so long as to hamper the number of

parameters being researched. Additionally, all training iterations after this one used this learning

rate, except if otherwise stated.

After having a baseline established, and considering the needs of our dataset, changes to hyper-

parameters would hone in on a crucial aspect of data augmentation, particularly in terms of spatial

transformations.

With this in mind, all the available space transformations were enabled, including rotation,

translation, scaling, and shear. Despite having suggested values, with those specific spatial aug-

mentation values being multiplied by zero to nullify their impact in the original implementation,
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Figure 4.15: Values of the learning rate throughout transfer learning training.

the original author chose not to suggest using these. Still, it appeared to be beneficial to incorporate

these transformations within the training process.

The underlying rationale behind this training approach was to simulate a broader range of

scenarios for the network to encounter during the detection of traffic lights, by feeding the network

training images like those in Figure 4.16. By exposing the model to varied situations, such as

curves or unconventional positions, and even detection at longer distances, by simulating situations

like ones in which the tram is in an inclined plane, or when curving and encountering a tram traffic

light at an angle.

Specific augmentation research into each of the 4 parameters activated in this training was

not pursued, as other parameters appeared more promising. This was due to the fact that our

tram traffic lights appear in similar physical positions to ours, and the already existing parameters

should already have been studied as the best for the previous implementation.

Moving forward, our exploration delved into colour space augmentation, which involved ma-

nipulating the intensities of various channels within the HSV colour space utilized to augment the

images. Although the original author had this specific augmentation technique enabled, optimizing

the values of these augmentations for our specific scenario could be beneficial.

The purpose behind this augmentation was to equip the network with enhanced capabilities in

detecting edge cases. For instance, by altering the hue, saturation, and value values, we aimed to

address challenges like reflections, which often posed difficulties for accurate detection. Through

modifications in hue, the network could potentially perform better in different lighting scenarios,

adapting to varying times of day and weather conditions. Similarly, adjustments in value could

tackle issues related to dark or crushed areas, as in the edge case linked to tree branches. It might

also help mitigate the prominence or intensity of reflections. Finally, adjustments in saturation

might help the network decouple from the detection of car traffic lights in at least two ways: the

first involves green traffic lights, which sometimes can appear whitish at longer distances, where

enhancing saturation might help; the second one is the lowering of saturation, that might help the
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(a) (b)

Figure 4.16: Examples of images fed to the network with spatial augmentations. Both a) and b)
have had augmentations applied.

network focus more on contrasting and extracting knowledge from the shapes of the car traffic

lights, as they would appear grey/white just like tram traffic lights.

While doing this augmentation, it is worth noting that increasing the value of, e.g., the satu-

ration parameter does not mean that all images will be more saturated, it means that the interval

of intensity transformation of the saturation of an image widens. Examples of the application

of colour augmentation can be seen in Figure 4.17. To determine the optimal levels of intensity

(a) (b)

Figure 4.17: Examples of images augmented in the HSV colour space.

variation, we explored different values across all the parameters. Specifically, we experimented

with values such as 0.2, 0.3 and 0.4, simultaneously, across all three parameters. By assessing the

performance under each variation, we sought to identify the intensity level that yielded the most

favourable results. Another possibility was also tested, where the original parameters were tested,
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specifically: 0.678 in saturation, 0.1 in hue and 0.4 in value.

Continuing with our exploration of data set augmentation, an interesting observation was made

regarding the original implementation’s augmentations in the domain of rotation. It appeared that

the bounding box failed to accurately encompass the traffic lights, contradicting our established

labelling guidelines, by encompassing too much of the background. Take a look at Figure 4.18

to get a visual understanding of this behaviour. Specifically, this discrepancy was noticed when

rotation was applied.

(a) (b)

Figure 4.18: Comparison of the label on an image with rotation, in a), and one without, in b).

Given this issue, the next study would focus on the potential impact of excluding rotation

in our training process, as it had been activated alongside other spatial transformations thus far.

This test allowed us to assess whether rotation played a negative or positive role in the model’s

performance.

Entering now the later stages of model training, we once again study a crucial aspect of train-

ing: the learning rate. Upon closer examination, it was suspected that the values being utilized

might not be ideal. Some investigation led to the conclusion that these values, even though they

were the recommended ones might be hindering the model. As such, keeping the learning rate

progression close to the original was thought to be a good trade-off between the maintenance of

the original knowledge and the need to acquire new knowledge, that is context specific features.

With this being established, the decision was made to start the training with a higher learning rate

and start decreasing it only slightly in the first 10 epochs (following more of a cosine shape). In

Figure 4.19 a provide a visual representation of the learning rate’s trajectory throughout the train-

ing is provided, allowing for a meaningful comparison between the values employed in both the

original implementation, in Figure 4.15, and our training, knowing that in the latter the best values

for hyper-parameter found until now have been employed.

After going through changes in the training hyper-parameters, now something linked to Chap-

ter 2 would be explored, more specifically, the YOLO model configuration. So, clustering algo-
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Figure 4.19: Learning rate of this specific iteration of training.

rithms were thought to be a good fit for our objective, having been used by multiple researchers

when dealing with YOLO [62], we employed a K-means algorithm on our dataset’s labels. The

goal being to extract the top nine bounding box clusters centroids that capture the idiosyncrasies

of our traffic light scenarios. These extracted sizes, available in Figure 4.20, were then integrated

into the model’s configuration, effectively equipping the model with a solid reference point for its

predictions.

This change had the potential to have a meaningful impact on performance, by grounding

the model’s predictions in sizes that truly represent the real-world situations the cameras of our

dataset encountered. The expectation was that this change would manifest itself in several key

areas: enhanced detection capabilities at longer distances, a reduced incidence of flickering edge

cases, and greater precision in sizing the detected traffic lights, which would better the filtering by

IoU. With this, this iteration aimed to not only elevate performance but also fortify our detection

in accordance with our labelling guidelines, and, as such, hoped to see a surge in the quality and

reliability of our detection outputs.

Yet again, additional changes to better adaptability to our targets were made, this time, another

alteration regarding the learning rate. In this new strategy, the learning rates decreased exponen-

tially like in Figure 4.21, starting from a lower initial value compared to the previous training.

The rationale behind this strategy was, once again, to guide the optimization process in a way

that would enable the model to escape the local minimum (for car traffic lights) quickly in the

beginning. Sequentially, rapidly decreasing it to focus on the optimization to tram traffic lights,

by letting the model train for more time at a low-value learning rate.

By following this adjusted learning rate, the ultimate goal was that the model would gradually

depart from its initial optimization landscape, avoiding stagnation, and progress towards a more

favourable region of the parameter space that aligned with the characteristics of tram traffic lights.

This approach, if successful, would enable the model to escape the limitations imposed by the

previous optimization landscape and converge towards a global minimum or a highly promising
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Figure 4.20: Clusters used to modify the configuration file of the YOLOv3 model.

Figure 4.21: Figure depicting values of exponentially decreasing learning rate throughout training.

solution for detecting tram traffic lights.

In this final iteration of training, the best parameters discovered until now were combined.

Using these optimised parameters meant going back to the clustering iteration’s parameters, now

adding to it one more thing: resolution. This conclusion was reached after going through multiple

rounds of training and noticing a persistent weakness in the model’s performance when it came

to detecting tram traffic lights that were slightly distorted due to speed or ones present at great

distances. For instance, it could aid in distinguishing between F0 signs and F1 signs, which often

appear indistinguishable in lower-resolution (680p) footage, particularly when they are located at

a distance. As such, the new increased resolution took the value of 1024p.

Beyond addressing the previously mentioned cases, the overall expectation was that increasing

the resolution would lead to improvements across the board. By providing the model with a

higher level of detail and overall more information. It was easy to anticipate that the model’s



YOLOv3 Based Detection and Classification 58

overall detection capabilities would also increase. Note that increasing resolution has a significant

training time and computational weight, leading to longer training times, with 1024p being a good

trade-off between higher resolution and not as high a training time increase.

Lastly, in order to provide a comprehensive overview of the training iterations conducted, a

table summarizing the various parameter modifications made throughout the process was com-

piled. Table 4.2, serves as a valuable resource for understanding the changes implemented and

the reasoning behind them.

Nr. Changes Parameters Reasoning

1
No changes to
original parameters

Original Parameters
Test how much the model would achieve without
changes.

2
Activation of spatial
transformations

degrees=1.98;
translate=0.01;
scale=0.01;
shear=0.641

Better generalization to other scenarios
in which lights can appear (crooked, curves, etc)

3
colour space
augmentations
intensity

hue=[0.2;0.4];
saturation=[0.2;0.678];
hsv_v=[0.2;0.4];

Improving the ability to distinguish between car
and tram traffic lights (saturation), improving the
handling of reflections (value) and more time-of-day
scenarios (hue).

4
Rotation
deactivation

degrees=0
See if the bounding box not rotating with the image
had a negative impact.

5
Learning rate
increase

From Figure 4.15
to Figure 4.19

Applying the previous hypothesis of higher learning
rates in the beginning, this leading to better
convergence, to the shape of the original’s
implementation learning rate.

6
Apply K-means
to dataset’s labels

Model’s
configuration file
altered.

Improve detection at a distance and overall having
detections more adequate to our situations.

7
Changing learning
rate

From Figure 4.21
Allowing the model to learn more features specific
to tram traffic lights

8
Increasing
resolution to
1024p

img_size=1024p
Increasing Resolution might help the model extract
better features from more information across all
situations.

Table 4.2: Table comparing all the training iterations done to the model, their changes and the
reasoning behind them.

4.4 C++ package

After training the model, a section of the work done in this thesis focused on creating a package

in C++ which could run the model in Open Neural Network Exchange (ONNX)-runtime [105].

ONNX is an open-source platform for artificial intelligence implementations with partnerships

spanning many companies (e.g. NVIDIA [106] and AMD [107]). The core of ONNX operates by

allowing developers to move between frameworks at will. The frameworks encompassed include

Pytorch [102], TensorFlow [108] and many others. Allowing developers to switch between them

benefits development due to some being more applicable in certain situations than others. Models

can be exported from these frameworks into to a .onnx format and inference can be done using the
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onnx-runtime environment. Such an environment where a model can run was created in order to

allow our model to run in real-time. This meant creating an executable with CMAKE that included

all dependencies necessary to ease the use of said executable. This process involved recreating the

inference input pipeline, from loading images, to resizing them and changing them from RGB to

BGR. Then, after the images are processed, they are fed to the model and the output is filtered

according to a predefined confidence and IoU threshold, mimicking the process of the output

pipeline of the PyTorch [102] implementation. This process was done in such a way as to ease

integration into Continental’s tools, although this integration fell out of the scope of this project.



Chapter 5

Results and Discussion

This chapter delves into a thorough analysis and discussion of the results obtained from the im-

plementation of Chapter 4, which focused on the dataset, the training iterations and the reasoning

behind them, with the examination also encompassing numerical KPIs. By combining these ap-

proaches, the aim is to provide a complete understanding of the implications and veracity of our

reasoning, as well as the model’s performance and its ability to accurately detect and classify tram

traffic light signals in diverse scenarios.

5.1 Discussion of results

Firstly, it is important to mention that all tests conducted utilized the same set of parameters.

These parameters refer to the confidence threshold, which filters the model’s output based on the

confidence level of each prediction, and the IoU threshold.

Additionally, it’s worth noting that the visual analysis and KPI testing were performed using

the same video clip. This clip was selected from the same playlist that generated the dataset,

specifically from line M5 of the Berlin tram system. This line encompasses both suburban and

urban environments, featuring sections with both low and high interaction with active partici-

pants, as seen in Figure 5.1, in a) and b), respectively. Moreover, it includes both dedicated tram

lanes and sections where trams share the road with other vehicles. This selection allowed for a

comprehensive evaluation of the model’s performance across various scenarios and settings. A

final important note before analyzing the data is that, when graphs regarding the overall KPIs are

shown, these take into account all the classes, averaging their results. Classes that, due to their

low volume in the dataset and in real scenarios, have performance that is close to zero, are also

included. In these cases, the results are the byproduct of the amount of available data not being

sufficient for the model to be able to generalize for these lights.

5.1.1 Iteration 1: baseline.

When looking at the first training iteration (the first row of Table 4.2), with the original parameters

of the model, it was afterwards clear that simply learning the weights from scratch would not be

60
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(a)

(b)

Figure 5.1: Example of low and high interactivity scenarios, a) and b), respectively. Both images
are from the M5 Berlin line.

enough to provide acceptable results, furthering the cause of resorting to transfer learning. The

numerical KPI results were significantly lower than the ones of the original work, as the algorithm

did not perform adequately. Though, this might change if a larger and more robust dataset is used.

When analyzing Figure 5.2, it is evident that the loss values observed in the training, validation

and testing processes did not reach low enough levels, despite following the expected pattern of

descending order from high to low values. This observation is further supported by the fact that

the most represented signs in the dataset, namely F1 and F0, only achieved positive results for

F0 (the light with most instances in the dataset) in the testing and validation stages, reaching an

average precision of approximately 35%.

However, when considering the overall mean average precision, as depicted in c) of Figure

5.2, it is in accordance with our reasoning when, even after 65 epochs, results point to a value of

7%. This performance is considerably low and does not meet the desired objectives, meaning that

this specific iteration of the model cannot properly detect tram traffic lights. Consequently, it is

reasonable to conclude that continuing in this path, training for more epochs with our dataset and

the original parameters, would have a large computational expense and lead to lacklustre results,

thus limiting the ability for generalization. The former, when juxtaposed with the advantages of

transfer learning, led to the pursuit of the latter.

With the understanding that the current parameter configuration did not yield satisfactory re-

sults, it was decided to delve into transfer learning, as detailed in Chapter 4. Consequently, it was
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(a) (b)

(c)

Figure 5.2: KPIs retrieved when training from scratch (iteration 1).

opted to utilize the same parameters as the original implementation, now extending the training

process, adding epochs on top of the existing trained models’ weights.

As such, this attempt at doing transfer learning employed 25 epochs for training, using the

original implementation’s weights as the initialized weights, achieving the results seen in Ap-

pendix A.1.1. Consequentially, as these results showed potential to improve and training was not

too long (at around 1.5 hours), it was decided to prolong training for 30 additional epochs. The

outcome is visible in Figure 5.3.

In this iteration, a more optimistic output was noticed, as some KPIs continued to increase.

This resulted in a total of 55 epochs of training, that led to better levels in mAP. Additional KPIs

can be analyzed in Table 5.1.
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(a) (b)

(c)

Figure 5.3: KPIs from training with transfer learning for 55 epochs (iteration 1).

Precision (%) Recall(%) mAP (%) F1 (%)

Validation Training from
Scratch 12.789 7.6080 6.8270 9.5220

Transfer
Learning 27.820 32.340 26.409 29.720

Testing Training from
Scratch 9.0780 8.1380 6.9490 8.5560

Transfer
Learning 21.590 23.540 17.990 21.910

Table 5.1: Table comparing the KPIs of transfer learning for 55 epochs with training the network
from scratch (iteration 1).

When analyzing Table 5.1, a significant improvement can be found in all KPIs, with the most

comprehensive one, mAP, achieving an increase of 11 percentage points, finishing with 17.99%

mAP with a standard deviation of 0.00594. This enabled the conclusion that transfer learning

should be pursued throughout the remaining iterations, however not discarding the need for other

techniques to be applied, as the level of performance was still expected to increase and clear

candidates for parameter tuning were still existent (potentially improving the model).
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5.1.2 Iteration 2: spatial augmentation.

After determining that a new way of updating the learning rate did not bring any improvement, the

focus was redirected to the other hyper-parameters available. As stated in Table 4.2, spatial trans-

formations, concerning image augmentation, stood out as something that, when activated, could

improve the generalization performance. As such, these were employed with the suggested values,

while still keeping the other parameters equal, which until now meant the original parameters plus

training for 55 epochs with the previous implementation’s weights as a base.

This resulted in achieving an uptake across all KPIs, as seen in Table 5.2 and Figure 5.4.

(a) (b)

(c)

Figure 5.4: KPIs resulting from enabling space data augmentation (iteration 2).

When analyzing the graphs in Figure 5.4 it can be deduced that this change in results is mostly

due to the improved generalization capacity that is introduced when using images with much

more variability as training, achieving a significant rise in results. Still, when looking at the

overall mAP, in b), compared with the validation metric for mAP, the results start to diverge

between epochs number 20 and 30. This is due to the drawbacks of our dataset, specified in

Chapter 4, more precisely the lack of representation on F2 through to F5. This is the case since

the metric regarding overall mAP is the average of the mAP of all tram traffic light classes. Note

that similar discrepancies will appear in the future, as this drawback manifests itself throughout

training. Regarding b), one can observe an increase of 12.49 and 29.2 percentage points in F0 and

F1, respectively. All other classes’ mAP was zero or below 10 percentage points, which remains
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in every iteration, except if otherwise stated. The previous considerations reinforce the analysis

made for the dataset.

Precision (%) Recall(%) mAP (%) F1 (%)

Validation Transfer
Learning 11.383 7.768 0.05315 0.08992

Current
Iteration 32.080 47.799 45.030 38.020

Testing Transfer
Learning 21.590 23.540 17.990 21.910

Current
Iteration 40.820 32.180 28.590 29.430

Table 5.2: Table comparing the KPIs of transfer learning for 55 epochs with the KPIs from the
impact of enabling spatial augmentations (iteration 2).

Focusing in Table 5.2, a major increase in performance is noticeable, e.g. when looking at

mAP, of 10.6 percentage points, with the mAP result having 0.013 standard deviation. From

the last iteration to this one, this is, on average, a 2.65 point increase per parameter activated.

Nevertheless, this is only an average and, due to other areas being thought to be more promising,

more detailed training into the impact of each one did not materialize.

5.1.3 Iteration 3: colour augmentation.

Continuing with the rationale of Chapter 4, the next iteration focused on the realm of colour

augmentation. When analyzing this, the development of the KPIs will be approached, specifically

when they were all set to the same value and when the values were set to those of the previous

implementation, comparing the graphs of the worst and best result, as well as the progression of

the final results of each training.

Instead of the graphs usually displayed in the previous iterations, in Figure 5.5 the progression

between overall mAP and the AP of F0 and F1 lights throughout the different values of colour

parameters explored is displayed. For each set of HSV values explored, the remaining graphs are

present in A.3.
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(a) (b)

(c)

Figure 5.5: KPIs resulting comparing different values of colour augmentation (iteration 3).

The first iteration, which turned out to be the training’s second to worst, was when all colour

parameters were set to 0.4. This iteration was followed by one in the same terms but with a value

at 0.2, with 0.3 and the original colour parameters following sequentially. This statement pertains

to the average mAP, however, when looking at F0 and F1 lights, a deterioration of 1.4 percentage

points was visible in the former and an improvement of 6.1 percentage points in the latter.

Parameters Precision (%) Recall(%) mAP (%) F1 (%)
Validation HSV @ 0.2;0.2;0.2 23.850 42.580 33.860 28.370

HSV @ 0.3;0.3;0.3 47.289 62.310 57.179 71.870
HSV @ 0.4;0.4;0.4 14.210 11.010 8.5900 10.804
HSV @ 0.1;0.678;0.4 42.160 61.700 52.240 58.449

Testing HSV @ 0.2;0.2;0.2 21.170 27.570 23.460 23.840
HSV @ 0.3;0.3;0.3 26.639 32.960 26.530 28.999
HSV @ 0.4;0.4;0.4 12.640 11.140 8.2400 9.7680
HSV @ 0.1;0.678;0.4 32.600 35.039 28.690 31.980

Table 5.3: Comparison of the KPIs for the different colour augmentation parameters values (iter-
ation 3).

When analysing Table 5.3, the last combination of HSV values (0.1; 0.687;0.4) achieved the

best results from the values tested, improving 1 percentage point when compared with the previous

iteration. Therefore, it was decided to continue with these values in the next iterations. The fact
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that the best performance was achieved using default HSV values supports the hypothesis that

these values are transferable from the car traffic light implementation to tram traffic light detection.

Furthermore, some erratic behaviour was observed when the parameter was set to 0.4, which

is probably due to the high value of hue being too destructive to the ability to extract information

from the image. At the same time, an increasing trend seemed to appear when testing the parameter

values in the range of 0.2 to 0.3. These findings validated the hypothesis that higher values were

required to accurately simulate a wider range of scenarios, just not across all channels of the HSV

colour space.

Overall, as the training approach that yielded the best testing results incorporated a combi-

nation of parameter values used in the previous implementation, it is likely that these values had

already undergone research and refinement, particularly in the context of car traffic light recogni-

tion, proving to be transferable to our scenario.

5.1.4 Iteration 4: the impact of rotation.

Having examined the impact of colour augmentation on our performance, the influence of rotation

and its rationale is now considered, as previously discussed in Chapter 4. By analyzing the perfor-

mance graphs in Figure 5.6, a similar trend appears regarding mean average precision along the

55 epochs, i.e., it diverges around epochs 20 through 30. From a), a further 1.4 percentage points

deterioration can be derived in F0, contrasted with a further improvement of 1.6 percentage points

in F0.

When analyzing Table 5.4, a 0.479 percentage points increase is achieved in mAP (with 0.0036

standard deviation for mAP). It is challenging to determine conclusively whether this improve-

ment can be attributed to our hypothesis regarding the non-rotation of bounding boxes with the

image, thus adhering to the guidelines previously used for labelling. By carefully assessing the

results and considering the practical implications, it was deemed appropriate to update the rotation

parameters to those seen in this iteration. This approach ensures consistency and alignment with

the established guidelines, while still resulting in slight refinements in performance.

(a) (b)

Figure 5.6: KPIs from training with rotation disabled in the hyper-parameters (iteration 4).
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Iteration Precision (%) Recall(%) mAP (%) F1 (%)
Validation Iteration 3 42.160 61.700 52.240 58.449

This Iteration 32.799 52.940 46.109 38.309
Testing iteration 3 32.600 35.039 28.690 31.980

This Iteration 30.219 35.30 29.169 31.470
Table 5.4: Table comparing the best KPIs of iteration 3, with the ones resulting from disabling
rotation in space data augmentation (iteration 4).

5.1.5 Iteration 5: changing learning rate.

Continuing the exploration, the next step concerned the comparison between the previous scenario

and the application of a different learning rate, with the learning rate of the former being showcased

in Figure 4.15 and the new one taking the shape of Figure 4.19. This comparative analysis not only

yielded an improvement in overall mAP, from 29.169% to 30.5% (with 0.010 standard deviation),

but also demonstrated positive effects on other key performance indicators, as evident in the Table

5.5 and Figure 5.7. In a), the best improvement was seen in the testing of the last 3 iterations, that

is 3.3 and 6.61 percentage points in F0 and F1, respectively.

This outcome further strengthens the outlined hypothesis of employing a slightly higher learn-

ing rate during the initial stages of training, followed by a consistent decrease throughout the

remainder of the process. By adhering to this strategy, the targeted superior balance was achieved

between rapid initial learning of new tram traffic light features and fine-tuning for optimal perfor-

mance.

(a) (b)

Figure 5.7: KPIs from training with a new learning rate, seen in Figure 4.19 (iteration 5).

5.1.6 Iteration 6: applying clustering.

In this iteration, the model configuration was changed to use the bounding box sizes resulting

from K-means as anchors (seen in Figure 4.20). This modification was in line with the reasoning

in Chapter 4: a 4.1 percentage points increase in performance (with 0.0036 standard deviation in

mAP results), as demonstrated in Table 5.6 and Figure 5.8. This is one of the most significant
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Iteration Precision (%) Recall(%) mAP (%) F1 (%)
Validation Iteration 4 32.799 52.940 46.109 38.309

This Iteration 40.180 63.869 56.239 47.569
Testing Iteration 4 30.219 35.300 29.169 31.470

This Iteration 43.810 34.720 30.500 32.780
Table 5.5: Table comparing the best KPIs from iteration 4, with new ones from training with the
new learning rate of Figure 4.19 (iteration 5).

increases seen so far. Additionally, the third overall biggest improvement happens in the F0 and

F1 categories, totalling 4.9 percentage points for F0 and 7.1 percentage points for F1.

(a) (b)

Figure 5.8: KPIs from training with model clustering modifications of our labels (iteration 6).

Iteration Precision (%) Recall (%) mAP (%) F1 (%)
Validation Iteration 5 40.180 63.869 56.239 47.569

This Iteration 49.520 66.110 63.130 55.099
Testing Iteration 5 43.810 34.720 30.500 32.780

This Iteration 52.380 39.500 34.609 40.510
Table 5.6: Table comparing the KPIs of the impact of modifying the model with kmeans with the
iteration 5 (iteration 6).

When looking further into the increase of mAP seen in Table 5.6, the improvement is due

to not only the previously mentioned increase in testing F0 and F1, but also from the significant

impact clustering had in F2 and F3 tram traffic lights, which for the first time passed 10% mAP,

achieving 11.3% and 20.5%, respectively.

We can conclude that applying this step had the biggest impact on performance since the

activation of the 4 spatial augmentations, as was expected and explained in Chapter 4.
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5.1.7 Iteration 7: changing the learning rate.

The results from implementing the adjusted learning rate strategy indicate that it did not yield

the desired benefits. The decision to start with a higher initial learning rate and have it take

such a sharp decrease did not effectively preserve the knowledge from the previous model nor

facilitate the integration of tram traffic light features. Instead, this approach led to the destruction

of some of the previously acquired knowledge, rendering it ineffective in achieving the intended

improvements. This loss materialized itself as a 7.1 percentage point decrease in testing F0 mAP

and a major 18.4 point loss in F1, seen in Figure 5.9 a).

(a) (b)

Figure 5.9: KPIs from training the model with learning rate modifications, seen in Figure 4.21
(iteration 7).

In Table 5.7, the mAP of all classes also saw a sharp drop of 29.150 points in precision, 11.800

points in recall, 15.371 points in F1 and 10.859 points in mAP. Note that the value for standard

deviation in the mAP result was 0.00618.

Iteration Precision (%) Recall (%) mAP (%) F1 (%)
Validation Iteration 6 49.520 66.110 63.130 55.099

This Iteration 30.010 39.980 36.760 33.430
Testing Iteration 6 52.380 39.500 34.609 40.510

This Iteration 23.230 27.700 23.750 25.139
Table 5.7: Table comparing the KPIs of the impact of modifying learning rate from Figure 4.19 to
Figure 4.21 (iteration 7).

5.1.8 Iteration 8: resolution increase.

When it comes to increasing resolution, we expected to see a significant increase in performance

due to the higher degree and abundance of detail from which features can be extracted. Though

this did not materialize. Note that, as the last iteration did not improve results, the KPIs of this

iteration will be compared with the results from iteration 6.
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In Figure 5.10 we can see how the KPIs evolved throughout training and, when comparing

with the ones from Section 5.1.6, a significant head start starts to materialize itself in the initial

epochs of the iterations of Section 5.1.6, which is carried through until the last epochs. In testing

the F0 and F1 tram traffic lights an increased 10.6 percentage points for the former and decreased

13.7 for the latter is seen.

(a) (b)

Figure 5.10: Depiction of KPIs during training with an increase in resolution (iteration 8).

Contrasting with the results in Table 5.8, we can see that overall mAP results decreased from

34.609% to 28.220%, mainly due to the results from all other traffic lights decreasing back to 0

(with 0.0059 standard deviation for mAP results). This is somewhat in accordance with what we

expected, as, at least in F0 tram traffic lights, there was a noticeable increase which might be due

to these lights appearing in greater number and from greater distances.

Iteration Precision (%) Recall (%) mAP (%) F1 (%)
Validation Iteration 6 49.520 66.110 63.130 55.099

This Iteration 32.380 60.210 48.769 41.590
Testing Iteration 6 52.380 39.500 34.609 40.510

This Iteration 16.570 32.960 28.220 21.939
Table 5.8: Table comparing the KPIs of iteration 5, with those of training with a resolution of
1024p (iteration 8).

5.2 Overall conclusions from training results.

Having explored all the results of training iterations from Table 4.2, we conclude that the biggest

increase in performance was due to applying transfer learning. Other notable improvements in-

clude iterations 2, 6 and 3, with an over 4% improvement. Lastly, the model achieving the best

performance was that which resulted from iteration 6, having not only the best performance in

F0 and F1, but also in all other lights (except F5 which remained at 0 in all iterations). This

model combined the parameters including altered learning rates, clustering and colour and spatial

transformations (a full list can be seen in A.6). If a model were to be used or improved upon, it
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would be this one. Still, the results of iteration 8’s model also had performance near iterations 6’s,

although only in F0 and F1. Also, note that, when doing detection on the Python pipeline, the best

model (and all that ran at a resolution of 608p) took approximately 16 milliseconds to perform

inference in an image.

Additionally, edge cases were not totally eliminated, although their detection ratios improved

substantially from the worst to the best parameter combinations found in this thesis. Still, when

further exploring edge cases, during the analysis of the labelling process several edge cases were

identified in the dataset. These edge cases posed remained after training, resulting in problematic

detections, as shown in Figure 5.11. One common example was small pockets of light passing

through tree branches (that are often black crushed areas), which the model often confused with

the vertical or horizontal light of a traffic light for trams. Another identified edge case was the

reflection of lights on the metal housings of the traffic light signals, which created the appearance

of an F0 sign. Some of these edge cases could be influenced by the process of transfer learning,

e.g. white light shinning though trees. This could be explained by car traffic light detection

algorithm benefiting from the lights for cars being coloured ones, which in most situations is

captured differently from the mostly white light that shines through tree leaves and branches.

(a) (b) (c)

Figure 5.11: Examples of edge cases present in the dataset.

Overall it can be concluded that dataset limitations of tram traffic lights F2, F3, F4 and F5

were the main limitations, as all results point to them potentially being able to have better scores,

provided that the dataset possesses more instances.
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Conclusion

With the increasing automation in car-centric scenarios and the evolving situations they encounter,

it is crucial to extend the scope of research and development to encompass other modes of trans-

portation and their respective environments. By leveraging existing knowledge and transferring it

to new areas, advancements can be made more rapidly, enabling a safer and more comprehensive

driving experience.

In this dissertation, the primary objective was to demonstrate the detection of tram lights,

which ultimately was done through using a CNN based model. This served as proof of work,

showcasing the feasibility of applying existing techniques to a new and specific scenario. The

trained model could potentially be integrated into a decision-making system or a driver assistance

system, empowering Continental to determine whether further pursuit is warranted.

To facilitate this proof of concept, a dataset was developed, considering the scarcity of publicly

available data specifically tailored to tram traffic lights. This dataset added value to Continental as

it represents a valuable resource for training and testing in other tram-specific scenarios.

This dissertation achieved the goal that was determined in Chapter 1 and demonstrated the

potential of the developed model for detecting tram traffic lights, achieving results in the order of

52% precision, 39.5% recall and 34% mAP, though results from F0 and F1 were 61% and 85%

mAP, respectively. This points us to the possible improvement opportunities in the dataset, model

architecture and parameter combinations. These future enhancements would better the model’s

performance and robustness, enabling it to potentially be deployed in real-world scenarios with

even greater efficacy.

Given these results it is possible to confidently say that the initially posed questions have had

their answers found, that is: it is viable to use AI to detect tram traffic lights, although no publicly

available models already in use in this target situation (ensuring the need for transfer learning).

Regarding the drawbacks of said models, it is possible to point out the need for large and robust

datasets, as well as the models susceptibility to edge cases.

In conclusion, this dissertation exemplified the application of an existing technique to the

detection of tram lights, showcasing its viability and laying the groundwork for further advance-

ments. The created dataset and the trained model serve as valuable contributions to the field,

73
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supporting Continental’s research on enhanced safety and efficiency in tram transportation. By

continually improving upon this work, additional contributions could be done to the advancement

of a less developed area of transportation .

6.1 Future works

Upon reflection of the work conducted and the results achieved, it becomes evident that there are

areas for improvement in aligning our objectives with the outcomes. Specifically, our ability to

detect tram light signals labelled as F2, F3, F4, and F5 showed noticeably inferior performance

compared to our detection of F1 and F0 signals, with the worst one having fewer instances, F4

and F5 lights. To address these shortcomings and enhance the detection of these signs, it is crucial

to expand the dataset significantly, as discussed in detail in Chapter 4, gathering more instances

of all lights mentioned. This could be done by increasing our labelling pipeline, or even adjusting

it to fit into programs such as Roboflow [109], which enhance the labelling process by reducing

labeling time (introducing this program in training and deployment could also be beneficial). In

the future, the utilization of simulated digital twins and environments may significantly reduce

the reliance on manual collection of datasets for labelling and testing. These digital replicas can

accurately model real-world scenarios and generate diverse, high-quality data for training CNNs.

As a result, the creation of large, diverse, and well-annotated datasets becomes more efficient,

enabling CNNs to achieve improved performance and generalization capabilities across various

applications, including specialized domains like tram TLR.

Continuing with training iterations and exploring the impact of hyper-parameters on model

performance could also lead to further improvement. It would be worthwhile to investigate more

combinations, such as finding optimal values for color space augmentation and spatial augmenta-

tion. Additionally, parameters like learning rates, with variations throughout the training process

(e.g. halving the learning rate after a certain number of epochs), could also be explored for poten-

tial enhancement.

Another avenue for future research involves incorporating different models into the detection

pipeline. By utilizing more recent models with improved feature extraction capabilities and archi-

tectures, like newer versions of YOLO or even different NN architectures (e.g. transformers), we

may achieve better results in our detection tasks. Also, separating the classification and segmenta-

tion tasks within the model could allow the model to focus and perform better against some edge

cases.

Finally, integrating our model into Continental’s pipeline for possible utilization as input in an

ADAS decision-making system. Exploring this integration would not only provide insights into

the detection time and performance with their specific input data but also open up opportunities

for further investigation.

Overall, focusing on addressing the aforementioned limitations, optimizing hyper-parameters,

exploring newer models, and integrating the developed model into Continental’s pipeline for

ADAS decision-making represent important directions for future research.
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Appendix A

Extra Results

A.1 Iteration 1

A.1.1 Training for 25 epochs

Figure with F0 and F1 throughout training and validation for iteration 1 (25 epochs).

Graph depicting the evolution of learning rate throughout training for iteration 1 (25 epochs).
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Graph depicting the evolution of training, validation and testing losses for iteration 1 (25 epochs).

Validation and testing precision throughout training for iteration 1 (25 epochs).

Validation and testing recall throughout training for iteration 1 (25 epochs).
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Validation and testing mAP throughout training for iteration 1 (25 epochs).

Validation and testing F1 throughout training for iteration 1 (25 epochs).

A.1.2 Training for 55 epochs

Graph depicting the evolution of training, validation and testing losses (55 epochs).
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Validation and testing precision throughout training for iteration 1 (55 epochs).

Validation and testing recall throughout training for iteration 1 (55 epochs).

Validation and testing F1 throughout training for iteration 1 (55 epochs).
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A.2 Iteration 2

Graph depicting the evolution of learning rate throughout training for iteration 2.

Validation and testing precision throughout training for iteration 2.

Validation and testing recall throughout training for iteration 2.



Extra Results 88

Validation and testing F1 throughout training for iteration 2.

A.3 Iteration 3

A.3.1 Training with HSV=[0.2;0.2;0.2]

Figure with F0 and F1 throughout training and validation for iteration 3 (HSV @ 0.2;0.2;0.2).

Graph depicting the evolution of learning rate throughout training for iteration 3 (HSV @
0.2;0.2;0.2).
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Graph depicting the evolution of training, validation and testing losses for iteration 3 (HSV @
0.2;0.2;0.2).

Validation and testing precision throughout training for iteration 3 (HSV @ 0.2;0.2;0.2).

Validation and testing recall throughout training for iteration 3 (HSV @ 0.2;0.2;0.2).
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Validation and testing mAP throughout training for iteration 3 (HSV @ 0.2;0.2;0.2).

Validation and testing F1 throughout training for iteration 3 (HSV @ 0.2;0.2;0.2).

A.3.2 Training with HSV=[0.3;0.3;0.3]

Figure with F0 and F1 throughout training and validation for iteration 3 (HSV @ 0.3;0.3;0.3).
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Graph depicting the evolution of learning rate throughout training for iteration 3 (HSV @
0.3;0.3;0.3).

Graph depicting the evolution of training, validation and testing losses for iteration 3 (HSV @
0.3;0.3;0.3).

Validation and testing precision throughout training for iteration 3 (HSV @ 0.3;0.3;0.3).
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Validation and testing recall throughout training for iteration 3 (HSV @ 0.3;0.3;0.3).

Validation and testing mAP throughout training for iteration 3 (HSV @ 0.3;0.3;0.3).

Validation and testing F1 throughout training for iteration 3 (HSV @ 0.3;0.3;0.3).
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A.3.3 Training with HSV=[0.4;0.4;0.4]

Figure with F0 and F1 throughout training and validation for iteration 3 (HSV @ 0.4;0.4;0.4).

Graph depicting the evolution of learning rate throughout training for iteration 3 (HSV @
0.4;0.4;0.4).

Graph depicting the evolution of training, validation and testing losses for iteration 3 (HSV @
0.4;0.4;0.4).
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Validation and testing precision throughout training for iteration 3 (HSV @ 0.4;0.4;0.4).

Validation and testing recall throughout training for iteration 3 (HSV @ 0.4;0.4;0.4).

Validation and testing mAP throughout training for iteration 3 (HSV @ 0.4;0.4;0.4).
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Validation and testing F1 throughout training for iteration 3 (HSV @ 0.4;0.4;0.4).

A.3.4 Training with HSV=[0.1;0.678;0.6]

Figure with F0 and F1 throughout training and validation for iteration 3 (HSV @ 0.1;0.678;0.4).

Graph depicting the evolution of learning rate throughout training for iteration 3 (HSV @
0.1;0.678;0.4).
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Graph depicting the evolution of training, validation and testing losses for iteration 3 (HSV @
0.1;0.678;0.4).

Validation and testing precision throughout training for iteration 3 (HSV @ 0.1;0.678;0.4).

Validation and testing recall throughout training for iteration 3 (HSV @ 0.1;0.678;0.4).
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Validation and testing mAP throughout training for iteration 3 (HSV @ 0.1;0.678;0.4).

Validation and testing F1 throughout training for iteration 3 (HSV @ 0.1;0.678;0.4).

hfill

A.4 Iteration 4

Graph depicting the evolution of learning rate throughout training for iteration 4.
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Graph depicting the evolution of training, validation and testing losses for iteration 4.

Validation and testing precision throughout training for iteration 4.

Validation and testing recall throughout training for iteration 4.
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Validation and testing F1 throughout training for iteration 4.

A.5 Iteration 5

Graph depicting the evolution of learning rate throughout training for iteration 5.

Graph depicting the evolution of training, validation and testing losses for iteration 5.



Extra Results 100

Validation and testing precision throughout training for iteration 5.

Validation and testing recall throughout training for iteration 5.

Validation and testing F1 throughout training for iteration 5.
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A.6 Iteration 6

A.6.1 Parameters

Parameters used in the training of our best model. Note that clustering was also used, and is
available in Figure 4.20. Also, the learning rate is depicted in the figure below.

Graph depicting the evolution of learning rate throughout the training of the best model, other
parameters available in Figure above.
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A.6.2 KPIs

Graph depicting the evolution of training, validation and testing losses for iteration 6.

Validation and testing precision throughout training for iteration 6.

Validation and testing recall throughout training for iteration 6.
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Validation and testing F1 throughout training for iteration 6.

A.7 Iteration 7

Graph depicting the evolution of learning rate throughout training for iteration 7.

Graph depicting the evolution of training, validation and testing losses for iteration 7.



Extra Results 104

Validation and testing precision throughout training for iteration 7.

Validation and testing recall throughout training for iteration 7.

Validation and testing F1 throughout training for iteration 7.
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A.8 Iteration 8

Graph depicting the evolution of learning rate throughout training for iteration 8.

Graph depicting the evolution of training, validation and testing losses for iteration 8.

Validation and testing precision throughout training for iteration 8.
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Validation and testing recall throughout training for iteration 8.

Validation and testing mAP throughout training for iteration 8.

Validation and testing F1 throughout training for iteration 8.
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