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Preface to ”Markov and Semi-markov Chains,

Processes, Systems and Emerging Related Fields”

The evolution of the theory and applications of Markov chains has continued for over a century

since 1907 when A. Markov stated the fundamental notion. Since then, it has evolved into one of

the most important areas of stochastic processes and its applications have an immense diversity in

various scientific fields. Miscellaneous generalizations and/or specializations have also given rise to

emerging related fields and even support technologies such as artificial intelligence, or foster critical

research in genetics. The present volume includes the papers published in the Journal of Mathematics

in the Special Issue entitled “Markov and Semi-Markov chains, processes, systems and emerging

related fields”. The motivation was to assemble a collection of papers by well-known researchers in

the field, aiming to provide advanced theoretical and applicable material for discussion, application

and further research. In this respect, the volume covers a broad range of theory and applications on

Markov and Semi-Markov systems, as well as the related stochastic processes. All papers underwent

the peer-review process according to the standards of the Journal of Mathematics in the section of

Probability and Statistics during the period from January to August 2021. A complete list of all

articles, a short description, and useful introductory information about their particular research area

can be found in the editorial of the book. Acknowledgments for this Special Issue and volume are due

to many people, including the Chief Editors, the Editorial Board, the Authors, the Editorial Manager

and Editorial stuff and are provided in detail in the editorial of the Special Issue.

Panagiotis-Christos Vassiliou, Andreas C. Georgiou

Editors
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Probability resembles the ancient Roman God Janus since, like Janus, probability
also has a face with two different sides, which correspond to the metaphorical gateways
and transitions between the past and the future. Probability can be seen as a limbo state
between abstractness and concreteness. This inherent duality renders one side the closest
possible to a branch of pure mathematics, derived from certain axioms in classical areas of
algebra.

Nonetheless, with its other side, probability is, indeed, an applied or applicable math-
ematics discipline, most commonly known as applied probability, although, in our opinion,
the common distinction between pure and applied mathematics is, all too often, merely
artificial and, at times, fuzzy. This side, without being less demanding in mathematical or
stochastic terms, gives birth to valuable models for studying everyday phenomena of the
real world. Stochastic processes are, by now, well established as an extension of probability
theory. In the area of stochastic processes, Markov and semi-Markov processes play a vital
role as an independent area of study, generating important and novel applications and new
mathematical results.

The special issue with the title Markov and Semi-Markov Chains, Processes, Systems,
and Emerging Related Fields includes fourteen articles published in the journal of “Mathe-
matics” in the section of “Probability and Statistics”, in the period from January–August
2021. The authors of this issue acted as Academic Editors to all the papers except their own
papers for which the Editorial Board appointed Academic Editors that were unknown to
the authors and became known after the publication and after they agreed to their names
being published. We hope that this volume provides opportunities for future research
ideas and that the interested reader will discover these paths between the lines and the
mathematical formulas of the published papers.

The Guest Editors would like to thank the Chief Editors and the Editorial Board of
the Journal of Mathematics for their invitation to edit the present volume. We cordially
thank the authors for contributing to the publication of the volume by submitting their
significant research articles and addressing all comments and suggestions with diligence
and enthusiasm. We also pay our respects to the anonymous reviewers of the volume since,
without their valuable assistance, this venture could have not been completed.

We would also like to express our gratitude to the Editorial Manager, Dr. Syna Mu, for
his continuous efforts to facilitate the workflow of this issue, for the excellent collaboration
with the Guest Editors, and for arranging for the partial funding of the publication of
the present volume. The Guest Editors would also like to thank the Professors Andras
Telecs and Alexander Zeifman for acting as Academic Editors for our own contributed
articles. Last, but not least, many thanks are due to the numerous Editorial Assistants who
successfully undertook the tedious tasks of managing the large number of submissions in
the present volume.

We now proceed to a brief presentation of the articles by categorizing them in three
sub-areas and also provide the reader with some useful references that might introduce

Mathematics 2021, 9, 2490. https://doi.org/10.3390/math9192490 https://www.mdpi.com/journal/mathematics
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them easily to the mathematical background of the papers. The order of the sub-areas
(sections) generally follows the title of the special issue, and the articles within each section
are sorted by the dates of publication.

(i) Markov Chains, Processes, and Markov Systems.
Markov processes are stochastic processes that exhibit the Markov property, while

Markov Chains are their discrete time and discrete state space counterpart. That is, the prob-
abilistic dependence on the past is only through the present state, which contains all the nec-
essary information for the evolution of the process. Useful introductory texts on homoge-
neous and non-homogeneous Markov chains and processes are [1–3] and ([4], Chapter 3).
For Markov Chains on general state space, an excellent reference is [5]. For Markov systems
or Open Markov models, which are generalizations of the Markov chain, an introductory
review paper is [6]. We now provide a brief description of the articles of the special issue
that could be included in this category:

(i1) Geometric Ergodicity of the Random Walk Metropolis with Position-Dependent Proposal
Covariance, by Samuel Livingston [7]. In this paper, the ergodic behaviour of a Markov
Chain Monte Carlo (MCMC) method is analysed and specifically the Metropolis–Hastings
method. MCMC methods are used for estimating the expectations of a probability measure
π(.), which need not be normalized. This is done by sampling a Markov chain, which
has asymptotic distribution π(.), and computing the empirical averages. It is vital for the
quality of the estimators to have conditions on π(.) that will produce in a Markov chain,
which will converge asymptotically at a geometric rate. In the present work with proposal
N
(

x, hG(x)−1
)

a Metropolis–Hastings algorithm is studied where x is its current state
and the ergodicity properties are investigated. It is shown that appropriate selections of
G(x) severely influence the ergodicity properties in comparison to the respective Random
Walk Metropolis.

(i2) Non-Homogeneous Markov Set Systems, by P.-C.G. Vassiliou [8]. The class of stochas-
tic processes defined as Non-Homogeneous Markov systems are, in effect, a generalization
of a Markov chain. This provides a general framework for the many stochastic models used
to model populations of different kinds of entities with a large diversity. In the present
study, for the first time, the basic parameters of a NHMS are in intervals and not point
estimates. It is proven that, under certain conditions of convexity of the intervals, the set
of the relative expected population structure of memberships is compact and convex. A
series of theorems are provided and proved on the asymptotic behaviour and the limit set
of the expected relative population structure. Finally, an application for a geriatric and
stroke patients in a hospital is presented, and, through which, solutions are provided for
the problems that are usually surface in such applications.

(i3) Period-Life of a Branching Process with Migration and Continuous Time, by Prysyazh-
nyk, K., Bazylevych, I., Mitkvova, L. and Ivanochko, I. [9]. Branching processes are a
common tool for the mathematical representation of real processes, such as chemical, bio-
logical, demographic, and so on. The reason is that BP can easily describe the population
dynamics of entities under different contexts (from physics and chemistry to biology and
information technology). There exists a large number of variants of of BPs, and, in this
article, the authors investigate the Markov branching process model with migration in
continuous time.

The distribution of the period-life is the length of the time interval between the moment
when the process is initiated by a positive number of particles and the moment when there
are no individuals in the population for the first time. The form of the differential equation
and the probability generating function of the random process that describes the behaviour
of the process within its period-life is presented. In addition, the limit theorem for the
period-life of the subcritical and critical BPMCT was found.

(i4) Optimizing a Multi-State Cold-Standby System With Multiple Vacations in the Repair
and Loss of Units, by Ruiz-Castro, J.E. [10]. This article focuses on redundant systems and
preventive maintenance as fundamental pylons in ensuring systems reliability, minimizing
failures, and reducing costs. In particular, the author studies a complex multi-state system
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subject to multiple events such as several types of internally or externally induced failures.
The analysis takes into account the loss of units due to non-repairable failures, and it is
assumed that the system can still operate with one less unit. There is also a repair person
whose behaviour is determined by the number of units within the repair facility and the
vacation policy applied. This system is is modelled via Markovian Arrival Processes with
marked arrivals. The author presents the stationary distributions and multiple measures
related to system and financial performance.

(i5) Using Markov Models to Characterize and Predict Process Target Compliance, by
McClean, S. [11]. A general phase-type Markov model is presented to predict the pro-
cess target compliance. The Markov model has several absorbing states with different
targets and Poisson arrivals. Several theoretical results are provided, and several close
analytic formulas are founded, which provide useful characterizations and predictions in
a sufficient lead time of various target compliance. The results are illustrated using data
from a stroke patient unit, where there are multiple discharge destinations for patients,
namely death, private nursing home, or the patient’s own home, where different discharge
destinations may require disparate targets. Key performance indicators are also established,
which are important and common place in health care, business, and industrial processes.

(i6) Open Markov Type Population Models: From Discrete to Continuous Time, by Esquivel,
M.L., Krasii, N.P. and Guerreiro, G.R. [12]. The study of homogeneous open Markov
population models in discrete and continuous time and discrete state space has a long and
important history of seventy five years. Over the last forty years, attention has been shifted
to the study of non-homogeneous Markov systems or equivalently to non-homogeneous
open Markov population models in discrete and continuous time and discrete state space.
Lately, there are also studies of non-homogeneous Markov systems in discrete time and
general state space. The main contribution of the present work are to extend the results
on open Markov chains in discrete time to some continuous time processes of Markov
type using different methods of associating a continuous process to an observed process in
discrete time.

(i7) Partial Diffusion Markov Model of Heterogeneous TCP Link: Optimization With Incom-
plete Information, by Borisov, A., Bosov, A., Miller, G., and Sokolov, I. [13]. This paper deals
with an old acquaintance that still is an object of perpetual investigation and evolution: the
Transmission Control Protocol (TCP). The authors present a new mathematical model of
TCP using partially observable controllable Markov jump process (MJP) in a finite state
space. The observations of the stochastic dynamic system are formed by low-frequency
counting processes of packet losses and timeouts and a high-frequency compound Poisson
process of packet acknowledgements.

In this respect, the entire information transmission process is considered as a stochastic
control problem with incomplete information. The first aim of the paper is to present
of a new mathematical model of the TCP link operation based on the heterogeneous
(wired/wireless) channel, and the second aim is the presentation of a new TCP prototype
version based on the solution of the optimal MJP state control under complete information
as well as the solution to the optimal MJP state filtering given the diffusion and counting
observations. The performance of the proposed model is demonstrated with numerical
experiments.

(i8) Evaluating the Efficiency of Off-Ball Screens in Elite Basketball Teams via Second-Order
Markov Modelling, by Stavropoulos, N., Papadopoulou, A.A., and Kolias, P. [14]. This
paper falls in the area of sport oriented stochastic modelling, including sports performance
analytics and mathematical optimization. The systematic use of performance indicators
in the strategy orientation of sports teams has been the subject of extended research in
recent years, and basketball is not an exception. The authors employ second-order, partially
non-homogeneous, Markov models to gain insight into the behaviours and interactions
of the players using the screens and the final attempt of the shots on the weak side. More
specifically, they develop a second-order Markov modelling framework to evaluate the
characteristics of off-ball screens that affect the finishing move and the outcome of the
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offensive movement. In addition, they examine how time, expressed either as the quarter
of play or as the time clock (0–24 s), could influence the transition probabilities from screens
and finishing moves to outcomes.The authors used a sample of 1170 possessions of the
FIBA Basketball Champions League 2018–2019, and the particular variables of interest
were the type of screen on the weak side, the finishing move, and the outcome of the
shot. The proposed model provides useful information for coaches who can use it in
both individual and group training programs as a part of their strategic planning for
performance improvement.

(ii) Semi-Markov Chains, Processes, and Semi-Markov Systems.
Semi-Markov chains are generalizations of Markov chains where the time of transition

from each state to another is now a random variable. The same applies for semi-Markov
processes, except that now the time is continuous. A very good text on Semi-Markov
chains and processes for the interested reader is [15]. For semi-Markov systems or open
semi-Markov models, which are, again, generalizations of Markov chains, the first paper
that introduced them was [16], and this is a good place to start. We provide below a brief
description of the articles that could be categorized in this section:

(ii1) Discrete Time Hybrid Semi-Markov Models in Manpower Planning, by Verbeken, B.
and Guerry, M-A. [17]. The present work is on non-homogeneous semi-Markov systems
and, in particular, their traditional roots on manpower planning. Non-homogeneous semi-
Markov systems have found important applications in a large variety of areas, such as
biological phenomena, ecological modelling, DNA analysis, credit risk in mathematical
finance, reliability and survival analysis, disability insurance problems, and wind tornado
problems. The paper argues that, in a semi-Markov model for manpower problems,
there is an advantage in considering some of the transitions as being purely in a Markov
model. That is, the joint distribution in these states is a constant. There is also a section
where solutions are provided for the problems that surface when applying such models to
manpower systems.

(ii2) On State Occupancies, First Passage Times and Duration in Non-Homogeneous Semi-
Markov Chains, by Georgiou, A.C., Papadopoulou, A.A., Kolias, P., Palikrousis, H., and
Farmakioti, E. [18]. A basic aspect of Semi-Markov processes (SMC) is the utilization of
general sojourn time distributions. This paper offers insights for three classes of relevant
probabilities of a semi-Markov process and, more specifically, on the first passage time,
the occupancy and the duration probabilities. The paper provides closed forms for the
three classes of probabilities using the basic parameters of the process and initiating from
the recursive relations of the aforementioned probabilities. The analytical results are
accompanied with illustrations on the human genome DNA strands, which are often
studied using Markovian models. There exist several algorithmic approaches analysing
the occupancy and appearance of words in DNA sequences; however, the results suggest
that the proposed modelling framework can be also used to investigate the structure of
genome sequences.

(ii3) Sequential Interval Reliability for Discrete-Time Homogeneous Semi-Markov Repairable
Systems, by Barbu, V.S., D’Amico, G. Gkelsinis, T. [19]. This is another paper of the special
issue concerned with reliability indicators; however, this one is dedicated to semi-Markov
systems. The authors introduce a new reliability measure, namely the sequential interval
reliability (SIR), for homogeneous semi-Markov repairable systems in discrete time. This
measure generalises the notion of interval reliability, and takes into account the dependence
on what is called the final backward.

As mentioned by the authors, interval reliability was first introduced and studied
for continuous-time semi-Markov systems. This measure computes the probability that a
system is in a working state during a sequence of non-overlapping intervals, and this is
important in applications where a system performs during consequent time periods, in the
cases of extreme events over several time periods, in electricity consumption where certain
thresholds are exceeded, or in financial modelling and relevant credit scoring models. The
article introduces the sequential interval reliability measure from both aspects: transient
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analysis, providing a recurrence formula and its asymptotic result as time tends to infinity.
The paper includes a numerical example.

(iii) Related Stochastic Processes.
The subject of introduction in the theory of stochastic processes is well established,

and there are many useful introductory or advanced texts that could help any interested
reader. Any text with a medium mathematical level will suffice as a first useful tool for
the articles that follow. Nevertheless, as a first course in stochastic processes, the book [20]
may well serve the purpose. For the more advanced reader, the books [21–23] are excellent
and may well suffice for further reading.

We provide a brief description of the articles that could be categorized in this section:
(iii1) Tails of the Moments for Sums with Dominatedly Varying Random Summands, by

Dirma, M., Paukstys, S., and Siaulys, J. [24] This paper investigates the asymptotic be-
haviour of tails of the moments for randomly weighted sums with possibly dependent
dominatedly varying summands. The findings improve and generalise other related results
of the relevant literature. For example, the authors achieve sharper asymptotic bounds
under pairwise quasi-asymptotic independence structure. In addition, the relaxation of the
exponent condition allows for the possibility to be any fixed non-negative real number. In
the case of randomly weighted sums, the boundedness condition on the random weights is
substituted by the less restrictive moments condition. The authors illustrate and conform
their asymptotic results with a Monte Carlo simulation with three specific cases of random
sums from disjoint sub-classes of dominatedly varying distributions.

(iii2) Particle Filtering: A Priori Estimation of Observational Errors of a State-Space Model
with Linear Observation Equation, by Lykou, R. and Tsaklidis, G. [25] This is the first of two
papers related to observational errors of Particle Filtering. Particle Filter (PF) methodol-
ogy that deals with the estimation of latent variables of stochastic processes taking into
consideration noisy observations generated by the latent variables. The paper focuses on
state-space models with linear observation equations and provides an estimation of the
errors of missing observations (in cases of missing data) aiming at the approximation of
weights under a Missing At Random (MAR) assumption.

In this article, the observational errors are estimated prior to the upcoming obser-
vations. This action is added to the basic algorithm of the filter as a new step for the
acquisition of the state estimations. As mentioned above, this intervention is mainly useful
in the presence of missing data problems, as well as in sample tracking for impoverishment
issues. The linearity assumption permits sequential replacements of missing values with
equal quantities of known distributions. The contribution of the a priori estimation step
to the study of impoverishment phenomena is also exhibited through Markov System
(MS) framework. A simulation example is provided, highlighting the advantages of the
proposed algorithm to existing approaches.

(iii3) State Space Modeling with Non-Negativity Constraints Using Quadratic Forms, by
Theodosiadou, O. and Tsaklidis, G. [26] This article is the second on state space modelling
methods. It proposes a method in state space modelling representation, which deals
with hidden components that are subject to non-negativity constraints. It is known that
state space models are used for the estimation of hidden random variables when noisy
observations are available; however, if the state vector is subject to constraints, the standard
Kalman filtering algorithm can no longer be used since it assumes linearity.

The proposed model’s state equation describing the dynamic evolution of the hidden
states vector is expressed through non-negative definite quadratic forms and, in fact,
represents a non-negative valued Markovian stochastic process of order one. The proposed
method provides a constrained optimization problem for which stationary points are
derived and conditions for feasibility are provided. The proposed methodology exhibits a
lower computational load when compared to other nonlinear filtering methods.
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Abstract: We consider a Metropolis–Hastings method with proposal N (x, hG(x)−1), where x is
the current state, and study its ergodicity properties. We show that suitable choices of G(x) can
change these ergodicity properties compared to the Random Walk Metropolis case N (x, hΣ), either
for better or worse. We find that if the proposal variance is allowed to grow unboundedly in the tails
of the distribution then geometric ergodicity can be established when the target distribution for the
algorithm has tails that are heavier than exponential, in contrast to the Random Walk Metropolis
case, but that the growth rate must be carefully controlled to prevent the rejection rate approaching
unity. We also illustrate that a judicious choice of G(x) can result in a geometrically ergodic chain
when probability concentrates on an ever narrower ridge in the tails, something that is again not true
for the Random Walk Metropolis.

Keywords: Monte Carlo; MCMC; Markov chains; computational statistics; bayesian inference

1. Introduction

Markov chain Monte Carlo (MCMC) methods are techniques for estimating expecta-
tions with respect to some probability measure π(·), which need not be normalised. This is
done by sampling a Markov chain which has limiting distribution π(·), and computing
empirical averages. A popular form of MCMC is the Metropolis–Hastings algorithm [1,2],
where at each time step a ‘proposed’ move is drawn from some candidate distribution,
and then accepted with some probability, otherwise the chain stays at the current point. In-
terest lies in finding choices of candidate distribution that will produce sensible estimators
for expectations with respect to π(·).

The quality of these estimators can be assessed in many different ways, but a common
approach is to understand conditions on π(·) that will result in a chain which converges
to its limiting distribution at a geometric rate. If such a rate can be established, then a Central
Limit Theorem will exist for expectations of functionals with finite second absolute moment
under π(·) if the chain is reversible.

A simple yet often effective choice is a symmetric candidate distribution centred
at the current point in the chain (with a fixed variance), resulting in the Random Walk
Metropolis (RWM) (e.g., [3]). The convergence properties of a chain produced by the RWM
are well-studied. In one dimension, essentially convergence is geometric if π(x) decays
at an exponential or faster rate in the tails [4], while in higher dimensions an additional
curvature condition is required [5]. Slower rates of convergence have also been established
in the case of heavier tails [6].

Recently, some MCMC methods were proposed which generalise the RWM, whereby
proposals are still centred at the current point x and symmetric, but the variance changes
with x [7–11]. An extension to infinite-dimensional Hilbert spaces is also suggested in
Reference [12]. The motivation is that the chain can become more ‘local’, perhaps making
larger jumps when out in the tails, or mimicking the local dependence structure of π(·)
to propose more intelligent moves. Designing MCMC methods of this nature is particu-
larly relevant for modern Bayesian inference problems, where posterior distributions are
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often high dimensional and exhibit nonlinear correlations [13]. We term this approach
the Position-dependent Random Walk Metropolis (PDRWM), although technically this is a
misnomer, since proposals are no longer random walks. Other choices of candidate dis-
tribution designed with distributions that exhibit nonlinear correlations were introduced
in Reference [13]. Although powerful, these require derivative information for log π(x),
something which can be unavailable in modern inference problems (e.g., [14]). We note
that no such information is required for the PDRWM, as shown by the particular cases sug-
gested in References [7–11]. However, there are relations between the approaches, to the
extent that understanding how the properties of the PDRWM differ from the standard
RWM should also aid understanding of the methods introduced in Reference [13].

In this article, we consider the convergence rate of a Markov chain generated by the
PDRWM to its limiting distribution. Our main interest lies in whether this generalisation
can change these ergodicity properties compared to the standard RWM with fixed covariance.
We focus on the case in which the candidate distribution is Gaussian, and illustrate that such
changes can occur in several different ways, either for better or worse. Our aim is not to give
a complete characterisation of the approach, but rather to illustrate the possibilities through
carefully chosen examples, which are known to be indicative of more general behaviour.

In Section 2 necessary concepts about Markov chains are briefly reviewed, before the
PDRWM is introduced in Section 3. Some results in the one-dimensional case are given in
Section 4, before a higher-dimensional model problem is examined in Section 5. Throughout
π(·) denotes a probability measure (we use the terms probability measure and distribution
synonymously), and π(x) its density with respect to Lebesgue measure dx.

Since an early version of this work appeared online, some contributions to the lit-
erature were made that are worthy of mention. A Markov kernel constructed as a state-
dependent mixture is introduced in Reference [15] and its properties are studied in some
cases that are similar in spirit to the model problem of Section 5. An algorithm called
Directional Metropolis–Hastings, which encompasses a specific instance of the PDRWM, is
introduced and studied in Reference [16], and a modification of the same idea is used to
develop the Hop kernel within the Hug and Hop algorithm of Reference [17]. Kamatani
considers an algorithm designed for the infinite-dimensional setting in Reference [18] of a
similar design to that discussed in Reference [12] and studies the ergodicity properties.

2. Markov Chains and Geometric Ergodicity

We will work on the Borel space (X , B), with X ⊂ Rd for some d ≥ 1, so that each
Xt ∈ X for a discrete-time Markov chain {Xt}t≥0 with time-homogeneous transition
kernel P : X × B → [0, 1], where P(x, A) = P[Xi+1 ∈ A|Xi = x] and Pn(x, A) is defined
similarly for Xi+n. All chains we consider will have invariant distribution π(·), and be both
π-irreducible and aperiodic, meaning π(·) is the limiting distribution from π-almost any
starting point [19]. We use | · | to denote the Euclidean norm.

In Markov chain Monte Carlo the objective is to construct estimators of Eπ [ f ], for some
f : X → R, by computing

f̂n =
1
n

n

∑
i=1

f (Xi), Xi ∼ Pi(x0, ·).

If π(·) is the limiting distribution for the chain then P will be ergodic, meaning f̂n
a.s.−→

Eπ [ f ] from π-almost any starting point. For finite n the quality of f̂n intuitively depends
on how quickly Pn(x, ·) approaches π(·). We call the chain geometrically ergodic if

‖Pn(x, ·)− π(·)‖TV ≤ M(x)ρn, (1)

from π-almost any x ∈ X , for some M > 0 and ρ < 1, where ‖μ(·) − ν(·)‖TV :=
supA∈B |μ(A)− ν(B)| is the total variation distance between distributions μ(·) and ν(·) [19].
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For π-reversible Markov chains geometric ergodicity implies that if Eπ [ f 2] < ∞
for some f : X → R, then

√
n
(

f̂n −Eπ [ f ]
)

d−→ N (0, v(P, f )), (2)

for some asymptotic variance v(P, f ) [20]. Equation (2) enables the construction of asymp-
totic confidence intervals for f̂n.

In practice, geometric ergodicity does not guarantee that f̂n will be a sensible estimator,
as M(x) can be arbitrarily large if the chain is initialised far from the typical set under π(·),
and ρ may be very close to 1. However, chains which are not geometrically ergodic can
often either get ‘stuck’ for a long time in low-probability regions or fail to explore the entire
distribution adequately, sometimes in ways that are difficult to diagnose using standard
MCMC diagnostics.

Establishing Geometric Ergodicity

It is shown in Chapter 15 of Reference [21] that Equation (1) is equivalent to the con-
dition that there exists a Lyapunov function V : X → [1, ∞) and some λ < 1, b < ∞ such
that

PV(x) ≤ λV(x) + bIC(x), (3)

where PV(x) :=
∫

V(y)P(x, dy). The set C ⊂ X must be small, meaning that for some
m ∈ N, ε > 0 and probability measure ν(·)

Pm(x, A) ≥ εν(A), (4)

for any x ∈ C and A ∈ B. Equations (3) and (4) are referred to as drift and minorisation
conditions. Intuitively, C can be thought of as the centre of the space, and Equation (3)
ensures that some one dimensional projection of {Xt}t≥0 drifts towards C at a geometric
rate when outside. In fact, Equation (3) is sufficient for the return time distribution to C to
have geometric tails [21]. Once in C, (4) ensures that with some probability the chain forgets
its past and hence regenerates. This regeneration allows the chain to couple with another
initialised from π(·), giving a bound on the total variation distance through the coupling
inequality (e.g., [19]). More intuition is given in Reference [22].

Transition kernels considered here will be of the Metropolis–Hastings type, given by

P(x, dy) = α(x, y)Q(x, dy) + r(x)δx(dy), (5)

where Q(x, dy) = q(y|x)dy is some candidate kernel, α is called the acceptance rate and
r(x) = 1 −

∫
α(x, y)Q(x, dy). Here we choose

α(x, y) = 1 ∧ π(y)q(x|y)
π(x)q(y|x) , (6)

where a ∧ b denotes the minimum of a and b. This choice implies that P satisfies detailed
balance for π(·) [23], and hence the chain is π-reversible (note that other choices for α can
result in non-reversible chains, see Reference[24] for details).

Roberts and Tweedie [5], following on from Reference[21], introduced the following
regularity conditions.

Theorem 1. (Roberts and Tweedie). Suppose that π(x) is bounded away from 0 and ∞ on compact
sets, and there exists δq > 0 and εq > 0 such that for every x

|x − y| ≤ δq ⇒ q(y|x) ≥ εq.

Then the chain with kernel (5) is μLeb-irreducible and aperiodic, and every nonempty compact
set is small.
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For the choices of Q considered in this article these conditions hold, and we will
restrict ourselves to forms of π(x) for which the same is true (apart from a specific case in
Section 5). Under Theorem 1 then (1) only holds if a Lyapunov function V : X → [1, ∞]
with Eπ [V] < ∞ exists such that

lim sup
|x|→∞

PV(x)
V(x)

< 1. (7)

when P is of the Metropolis–Hastings type, (7) can be written

lim sup
|x|→∞

∫ [V(y)
V(x)

− 1
]

α(x, y)Q(x, dy) < 0. (8)

In this case, a simple criterion for lack of geometric ergodicity is

lim sup
|x|→∞

r(x) = 1. (9)

Intuitively this implies that the chain is likely to get ‘stuck’ in the tails of a distribution
for large periods.

Jarner and Tweedie [25] introduce a necessary condition for geometric ergodicity
through a tightness condition.

Theorem 2. (Jarner and Tweedie). If for any ε > 0 there is a δ > 0 such that for all x ∈ X

P(x, Bδ(x)) > 1 − ε,

where Bδ(x) := {y ∈ X : d(x, y) < δ}, then a necessary condition for P to produce a geometrically
ergodic chain is that for some s > 0 ∫

es|x|π(dx) < ∞.

The result highlights that when π(·) is heavy-tailed the chain must be able to make
very large moves and still be capable of returning to the centre quickly for (1) to hold.

3. Position-Dependent Random Walk Metropolis

In the RWM, Q(x, dy) = q(y − x)dy with q(y − x) = q(x − y), meaning (6) reduces
to α(x, y) = 1 ∧ π(y)/π(x). A common choice is Q(x, ·) = N (x, hΣ), with Σ chosen to
mimic the global covariance structure of π(·) [3]. Various results exist concerning the
optimal choice of h in a given setting (e.g., [26]). It is straightforward to see that Theorem 2
holds here, so that the tails of π(x) must be uniformly exponential or lighter for geometric
ergodicity. In one dimension this is in fact a sufficient condition [4], while for higher
dimensions additional conditions are required [5]. We return to this case in Section 5.

In the PDRWM Q(x, ·) = N (x, hG(x)−1), so (6) becomes

α(x, y) = 1 ∧ π(y)|G(y)| 1
2

π(x)|G(x)| 1
2

exp
(
−1

2
(x − y)T [G(y)− G(x)](x − y)

)
.

The motivation for designing such an algorithm is that proposals are more able to
reflect the local dependence structure of π(·). In some cases this dependence may vary
greatly in different parts of the state-space, making a global choice of Σ ineffective [9].

Readers familiar with differential geometry will recognise the volume element
|G(x)|1/2dx and the linear approximations to the distance between x and y taken at each
point through G(x) and G(y) if X is viewed as a Riemannian manifold with metric G.
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We do not explore these observations further here, but the interested reader is referred
to Reference [27] for more discussion.

The choice of G(x) is an obvious question. In fact, specific variants of this method
have appeared on many occasions in the literature, some of which we now summarise.

1. Tempered Langevin diffusions [8] G(x) = π(x)I. The authors highlight that the diffu-

sion with dynamics dXt = π− 1
2 (Xt)dWt has invariant distribution π(·), motivating

the choice. The method was shown to perform well for a bi-modal π(x), as larger
jumps are proposed in the low density region between the two modes.

2. State-dependent Metropolis [7] G(x) = (1 + |x|)−b. Here the intuition is simply
that b > 0 means larger jumps will be made in the tails. In one dimension the authors
compare the expected squared jumping distance E[(Xi+1 − Xi)

2] empirically for
chains exploring a N (0, 1) target distribution, choosing b adaptively, and found
b ≈ 1.6 to be optimal.

3. Regional adaptive Metropolis–Hastings [7,11]. G(x)−1 = ∑m
i=1 I(x ∈ Xi)Σi. In this case

the state-space is partitioned into X1 ∪ ... ∪ Xm, and a different proposal covariance Σi
is learned adaptively in each region 1 ≤ i ≤ m. An extension which allows for some
errors in choosing an appropriate partition is discussed in [11]

4. Localised Random Walk Metropolis [10]. G(x)−1 = ∑m
k=1 q̌θ(k|x)Σk. Here q̌θ(k|x) are

weights based on approximating π(x) with some mixture of Normal/Student’s t
distributions, using the approach suggested in Reference [28]. At each iteration of the
algorithm a mixture component k is sampled from q̌θ(·|x), and the covariance Σk is
used for the proposal Q(x, dy).

5. Kernel adaptive Metropolis–Hastings [9]. G(x)−1 = γ2 I + ν2Mx HMT
x , where Mx =

2[∇xk(z1, x), ..., ∇xk(zn, x)] for some kernel function k and n past samples {z1, ..., zn},
H = I − (1/n)1n×n is a centering matrix (the n × n matrix 1n×n has 1 as each element),
and γ, ν are tuning parameters. The approach is based on performing nonlinear prin-
cipal components analysis on past samples from the chain to learn a local covariance.
Illustrative examples for the case of a Gaussian kernel show that Mx HMT

x acts as a
weighted empirical covariance of samples z, with larger weights given to the zi which
are closer to x [9].

The latter cases also motivate any choice of the form

G(x)−1 =
n

∑
i=1

w(x, zi)(zi − x)T(zi − x)

for some past samples {z1, ..., zn} and weight function w : X × X → [0, ∞) with
∑i w(x, zi) = 1 that decays as |x − zi| grows, which would also mimic the local curvature
of π(·) (taking care to appropriately regularise and diminish adaptation so as to preserve
ergodicity, as outlined in Reference [10]).

Some of the above schemes are examples of adaptive MCMC, in which a candidate
from among a family of Markov kernels {Pθ : θ ∈ Θ} is selected by learning the parameter
θ ∈ Θ during the simulation [10]. Additional conditions on the adaptation process (i.e., the
manner in which θ is learned) are required to establish ergodicity results for the resulting
stochastic processes. We consider the decisions on how to learn θ appropriately to be a
separate problem and beyond the scope of the present work, and instead focus attention
on establishing geometric ergodicity of the base kernels Pθ for any fixed θ ∈ Θ. We note
that this is typically a pre-requisite for establishing convergence properties of any adaptive
MCMC method [10].

4. Results in One Dimension

Here we consider two different general scenarios as |x| → ∞, i) G(x) is bounded above
and below, and ii) G(x) → 0 at some specified rate. Of course there is also the possibility
that G(x) → ∞, though intuitively this would result in chains that spend a long time in
the tails of a distribution, so we do not consider it (if G(x) → ∞ then chains will in fact
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exhibit the negligible moves property studied in Reference [29]). Proofs to Propositions in
Sections 4 and 5 can be found in Appendix A.

We begin with a result that emphasizes that a growing variance is a necessary require-
ment for geometric ergodicity in the heavy-tailed case.

Proposition 1. If G(x) ≥ σ−2 for some σ−2 > 0, then unless
∫

eη|x|π(dx) < ∞ for some η > 0
the PDRWM cannot produce a geometrically ergodic Markov chain.

The above is a simple extension of a result that is well-known in the RWM case.
Essentially the tails of the distribution should be exponential or lighter to ensure fast
convergence. This motivates consideration of three different types of behaviour for the tails
of π(·).

Assumption 1. The density π(x) satisfies one of the following tail conditions for all y, x ∈ X
such that |y| > |x| > t, for some finite t > 0.

1. π(y)/π(x) ≤ exp{−a(|y| − |x|)} for some a > 0
2. π(y)/π(x) ≤ exp{−a(|y|β − |x|β)} for some a > 0 and β ∈ (0, 1)
3. π(y)/π(x) ≤ (|x|/|y|)p for some p > 1.

Naturally Assumption 1 implies 2 and Assumption 2 implies 3. If Assumption 1 is not
satisfied then π(·) is generally called heavy-tailed. When π(x) satisfies Assumption 2 or 3
but not 1, then the RWM typically fails to produce a geometrically ergodic chain [4]. We
show in the sequel, however, that this is not always the case for the PDRWM. We assume
the below assumptions for G(x) to hold throughout this section.

Assumption 2. The function G : X → (0, ∞) is bounded above by some σ−2
b < ∞ for all x ∈ X ,

and bounded below for all x ∈ X with |x| < t, for some t > 0.

The heavy-tailed case is known to be a challenging scenario, but the RWM will produce
a geometrically ergodic Markov chain if π(x) is log-concave. Next we extend this result
to the case of sub-quadratic variance growth in the tails.

Proposition 2. If ∃r < ∞ such that G(x) ∝ |x|−γ whenever |x| > r, then the PDRWM will
produce a geometrically ergodic chain in both of the following cases:

1. π(x) satisfies Assumption 1 and γ ∈ [0, 2)
2. π(x) satisfies Assumption 2 for some β ∈ (0, 1) and γ ∈ (2(1 − β), 2)

The second part of Proposition 2 is not true for the RWM, for which Assumption 2
alone is not sufficient for geometric ergodicity [4].

We do not provide a complete proof that the PDRWM will not produce a geometrically
ergodic chain when only Assumption 3 holds and G(x) ∝ |x|−γ for some γ < 2, but do
show informally that this will be the case. Assuming that in the tails π(x) ∝ |x|−p for some
p > 1 then for large x

α(x, x + cxγ/2) = 1 ∧
(

x
x + cxγ/2

)p+γ/2
exp
(
− c2xγ

2h

[
1

(x + cxγ/2)γ
− 1

xγ

])
. (10)

The first expression on the right hand side converges to 1 as x → ∞, which is akin to
the case of fixed proposal covariance. The second term will be larger than one for c > 0 and
less than one for c < 0. So the algorithm will exhibit the same ‘random walk in the tails’
behaviour which is often characteristic of the RWM in this scenario, meaning that the
acceptance rate fails to enforce a geometric drift back into the centre of the space.

When γ = 2 the above intuition will not necessarily hold, as the terms in Equation (10)
will be roughly constant with x. When only Assumption 3 holds, it is, therefore, tempting
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to make the choice G(x) = x−2 for |x| > r. Informally we can see that such behaviour may
lead to a favourable algorithm if a small enough h is chosen. For any fixed x > r a typical
proposal will now take the form y = (1+ ξ

√
h)x, where ξ ∼ N(0, 1). It therefore holds that

y = eξ
√

hx + r(x, h, ξ), (11)

where for any fixed x and ξ the term r(x, h, ξ)/
√

h → 0 as h → 0. The first term on the
right-hand side of Equation (11) corresponds to the proposal of the multiplicative Random
Walk Metropolis, which is known to be geometrically ergodic under Assumption 3 (e.g., [3]),
as this equates to taking a logarithmic transformation of x, which ‘lightens’ the tails of the
target density to the point where it becomes log-concave. So in practice we can expect good
performance from this choice of G(x). The above intuition does not, however, provide
enough to establish geometric ergodicity, as the final term on the right-hand side of (11)
grows unboundedly with x for any fixed choice of h. The difference between the acceptance
rates of the multiplicative Random Walk Metropolis and the PDRWM with G(x) = x−2

will be the exponential term in Equation (10). This will instead become polynomial by
letting the proposal noise ξ follow a distribution with polynomial tails (e.g., student’s t),
which is known to be a favourable strategy for the RWM when only Assumption 3 holds [6].
One can see that if the heaviness of the proposal distribution is carefully chosen then the
acceptance rate may well enforce a geometric drift into the centre of the space, though for
brevity we restrict attention to Gaussian proposals in this article.

The final result of this section provides a note of warning that lack of care in choosing
G(x) can have severe consequences for the method.

Proposition 3. If G(x)x2 → 0 as |x| → ∞, then the PDRWM will not produce a geometrically
ergodic Markov chain.

The intuition for this result is straightforward when explained. In the tails, typically
|y − x| will be the same order of magnitude as

√
G(x)−1, meaning |y − x|/|x| grows

arbitrarily large as |x| grows. As such, proposals will ‘overshoot’ the typical set of the
distribution, sending the sampler further out into the tails, and will therefore almost always
be rejected. The result can be related superficially to a lack of geometric ergodicity for
Metropolis–Hastings algorithms in which the proposal mean is comprised of the current
state translated by a drift function (often based in ∇ log π(x)) when this drift function
grows faster than linearly with |x| (e.g., [30,31]).

5. A Higher-Dimensional Case Study

An easy criticism of the above analysis is that the one-dimensional scenario is some-
times not indicative of the more general behaviour of a method. We note, however, that
typically the geometric convergence properties of Metropolis–Hastings algorithms do
carry over somewhat naturally to more than one dimension when π(·) is suitably regular
(e.g., [5,32]). Because of this we expect that the growth conditions specified above could be
supplanted onto the determinant of G(x) when the dimension is greater than one (leaving
the details of this argument for future work).

A key difference in the higher-dimensional setting is that G(x) now dictates both
the size and direction of proposals. In the case G(x)−1 = Σ, some additional regularity
conditions on π(x) are required for geometric ergodicity in more than one dimension,
outlined in References [5,32]. An example is also given in Reference [5] of the simple
two-dimensional density π(x, y) ∝ exp(−x2 − y2 − x2y2), which fails to meet these criteria.
The difficult models are those for which probability concentrates on a ridge in the tails,
which becomes ever narrower as |x| increases. In this instance, proposals from the RWM
are less and less likely to be accepted as |x| grows. Another well-known example of this
phenomenon is the funnel distribution introduced in Reference [33].
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To explore the behaviour of the PDRWM in this setting, we design a model problem,
the staircase distribution, with density

s(x) ∝ 3−�x2�IR(x), R := {y ∈ R2; y2 ≥ 1, |y1| ≤ 31−�y2�}, (12)

where �z� denotes the integer part of z > 0. Graphically the density is a sequence of cuboids
on the upper-half plane of R2 (starting at y2 = 1), each centred on the vertical axis, with each
successive cuboid one third of the width and height of the previous. The density resembles
an ever narrowing staircase, as shown in Figure 1.

Figure 1. The staircase distribution, with density given by Equation (12).

We denote by QR the proposal kernel associated with the Random Walk Metropolis
algorithm with fixed covariance hΣ. In fact, the specific choice of h and Σ does not matter
provided that the result is positive-definite. For the PDRWM we denote by QP the proposal
kernel with covariance matrix

hG(x)−1 =

(
3−2�x2� 0

0 1

)
,

which will naturally adapt the scale of the first coordinate to the width of the ridge.

Proposition 4. The Metropolis–Hastings algorithm with proposal QR does not produce a geomet-
rically ergodic Markov chain when π(x) = s(x).

The design of the PDRWM proposal kernel QP in this instance is such that the proposal
covariance reduces at the same rate as the width of the stairs, therefore naturally adapting
the proposal to the width of the ridge on which the density concentrates. This state-
dependent adaptation results in a geometrically ergodic chain, as shown in the below result.

Proposition 5. The Metropolis–Hastings algorithm with proposal QP produces a geometrically
ergodic Markov chain when π(x) = s(x).

6. Discussion

In this paper we have analysed the ergodic behaviour of a Metropolis–Hastings
method with proposal kernel Q(x, ·) = N (x, hG(x)−1). In one dimension we have char-
acterised the behaviour in terms of growth conditions on G(x)−1 and tail conditions on
the target distribution, and in higher dimensions a carefully constructed model problem
is discussed. The fundamental question of interest was whether generalising an existing
Metropolis–Hastings method by allowing the proposal covariance to change with position

14
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can alter the ergodicity properties of the sampler. We can confirm that this is indeed
possible, either for the better or worse, depending on the choice of covariance. The take
home points for practitioners are (i) lack of sufficient care in the design of G(x) can have
severe consequences (as in Proposition 3), and (ii) careful choice of G(x) can have much
more beneficial ones, perhaps the most surprising of which are in the higher-dimensional
setting, as shown in Section 5.

We feel that such results can also offer insight into similar generalisations of different
Metropolis–Hastings algorithms (e.g., [13,34]). For example, it seems intuitive that any
method in which the variance grows at a faster than quadratic rate in the tails is unlikely
to produce a geometrically ergodic chain. There are connections between the PDRWM
and some extensions of the Metropolis-adjusted Langevin algorithm [34], the ergodicity
properties of which are discussed in Reference [35]. The key difference between the
schemes is the inclusion of the drift term G(x)−1∇ log π(x)/2 in the latter. It is this term
which in the main governs the behaviour of the sampler, which is why the behaviour of
the PDRWM is different to this scheme. Markov processes are also used in a wide variety
of application areas beyond the design of Metropolis–Hastings algorithms (e.g., [36]),
and we hope that some of the results established in the present work prove to be beneficial
in some of these other settings.

We can apply these results to the specific variants discussed in Section 3. Provided
that sensible choices of regions/weights are made and that an adaptation scheme which
obeys the diminishing adaptation criterion is employed, the Regional adaptive Metropolis–
Hastings, Locally weighted Metropolis and Kernel-adaptive Metropolis–Hastings samplers
should all satisfy G(x) → Σ as |x| → ∞, meaning they can be expected to inherit the
ergodicity properties of the standard RWM (the behaviour in the centre of the space,
however, will likely be different). In the State-dependent Metropolis method provided
b < 2 the sampler should also behave reasonably. Whether or not a large enough value
of b would be found by a particular adaptation rule is not entirely clear, and this could
be an interesting direction of further study. The Tempered Langevin diffusion scheme,
however, will fail to produce a geometrically ergodic Markov chain whenever the tails
of π(x) are lighter than that of a Cauchy distribution. To allow reasonable tail exploration
when this is the case, two pragmatic options would be to upper bound G(x)−1 manually
or use this scheme in conjunction with another, as there is evidence that the sampler can
perform favourably when exploring the centre of a distribution [8]. None of the specific
variants discussed here are able to mimic the local curvature of the π(x) in the tails, so
as to enjoy the favourable behaviour exemplified in Proposition 5. This is possible using
Hessian information as in Reference [13], but should also be possible in some cases using
appropriate surrogates.
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Appendix A. Proofs

Proof of Proposition 1. In this case, for any choice of ε > 0 there is a δ > 0 such that
Q(x, Bδ(x)) > 1 − ε. Noting that P(x, Bδ(x)) ≥ Q(x, Bδ(x)) when P is of Metropolis–
Hastings type, Theorem 2 can be applied directly.
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Proof of Proposition 2. For the log-concave case, take V(x) = es|x| for some s > 0, and let
BA denote the integral (8) over the set A. We first break up X into (−∞, 0] ∪ (0, x − cx

γ
2 ] ∪

(x − cx
γ
2 , x + cx

γ
2 ] ∪ (x + cx

γ
2 , x + cxγ] ∪ (x + cxγ, ∞) for some x > 0 and fixed constant

c ∈ (0, ∞), and show that the integral is strictly negative on at least one of these sets,
and can be made arbitrarily small as x → ∞ on all others. The −∞ case is analogous from
the tail conditions on π(x). From the conditions we can choose x > r and therefore write
G(x)−1 = ηxγ for some fixed η < ∞.

On (−∞, 0], we have

B(−∞,0] = e−sx
∫ 0

−∞
es|y|α(x, y)Q(x, dy)−

∫ 0

−∞
α(x, y)Q(x, dy),

≤ e−sx
∫ ∞

0
esyQ(−x, dy).

The integral is now proportional to the moment generating function of a truncated
Gaussian distribution (see Appendix B), so is given by

e−sx+hηxγs2/2
[
1 − Φ

(
x1−γ/2/

√
hη −

√
hηsxγ/2

)]
.

A simple bound on the error function is
√

2πxΦc(x) < e−x2/2 [37], so setting ϑ =
x1−γ/2/

√
hη −

√
hηsxγ/2 we have

B(−∞,0] ≤
1√
2π

exp
(
−2sx +

hηs2

2
xγ − 1

2

(
1

hη
x2−γ − 2sx + hηs2xγ

)
+ log ϑ

)
,

=
1√
2π

exp
(
−sx − 1

2hη
x2−γ + log ϑ

)
.

which → 0 as x → ∞, so can be made arbitrarily small.
On (0, x − cxγ/2], note that es(|y|−|x|) − 1 is clearly negative throughout this region

provided that c < x1−γ/2, which can be enforced by choosing x large enough for any given
c < ∞. So the integral is straightforwardly bounded as B(0,x−cxγ/2] ≤ 0 for all x ∈ X .

On (x − cxγ/2, x + cxγ/2], provided x − cxγ/2 > r then for any y in this region we can
either upper or lower bound α(x, y) with the expression

exp
(
−a(y − x) +

γ

2
log
∣∣∣∣ xy
∣∣∣∣− 1

2hη

[
(x − y)2y−γ − (x − y)2x−γ

])
.

A Taylor expansion of y−γ about x gives

y−γ = x−γ − γx−γ−1(y − x) + γ(γ + 1)x−γ−2(y − x)2 + ...

and multiplying by (y − x)2 gives

(y − x)2y−γ =
(y − x)2

xγ
− γ

(y − x)3

xγ+1 + γ(γ + 1)
(y − x)4

xγ+2 + ...

If |y − x| = cxγ/2 then this is:

c2xγ

xγ
− γ

c3x3γ/2

xγ+1 + γ(γ + 1)
c4x2γ

xγ+2 + ...

As γ < 2 then 3γ/2 < γ + 1, and similarly for successive terms, meaning each gets
smaller as |x| → ∞. So we have for large x, y ∈ (x − cxγ/2, x + cxγ/2) and any δ > 0

(y − x)2y−γ ≥ (y − x)2

xγ
− γ

(y − x)3

xγ+1 − 2hηδ. (A1)
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So we can analyse how the acceptance rate behaves. First note that for fixed ε > 0

α(x, x + ε) ≤ exp
(
−aε +

γ

2
log
∣∣∣∣ x
x + ε

∣∣∣∣+ 1
2h

γ
ε3

xγ+1 + δ

)
→ exp(−aε + δ),

recalling that δ can be made arbitrarily small. In fact, it holds that the e−aε term will be
dominant for any ε for which ε3/xγ+1 → 0, i.e., any ε = o(xγ+1/3). If γ < 2 then ε = cxγ/2

satisfies this condition. So for any y > x in this region we can choose an x such that

α(x, y) ≤ exp(−a(y − x) + δx),

where δx → 0 as x → ∞. Similarly we have (for any fixed ε > 0)

α(x, x − ε) ≥ exp
(

aε +
γ

2
log
∣∣∣∣ x
x − ε

∣∣∣∣− 1
2h

γ
ε3

xγ+1 − δ

)
→ exp(aε − δ).

So by a similar argument we have α(x, y) > 1 here when x → ∞. Combining gives

B(x−cxγ/2,x+cxγ/2] ≤
∫ cxγ/2

0

[
e(s−a)z+δx − e−az+δx + e−sz − 1

]
qx(dz),

where qx(·) denotes a zero mean Gaussian distribution with the same variance as Q(x, ·).
Using the change of variables z′ = z/(hηxγ/2) we can write the above integral

∫ c
hη

0

[
e(s−a)hηxγ/2z′+δx − e−ahηxγ/2z+δx + e−shηxγ/2z′ − 1

]
μ(dz)

where μ(·) denotes a Gaussian distribution with zero mean and variance one. Provided
s < a, then by dominated convergence as x → ∞ this asymptotes to

−
∫ c

hη

0
μ(dz) = −1

2
erf

(
c√
2hη

)
< 0,

where erf(z) := (2/
√

π)
∫ z

0 e−t2
dt is the Gaussian error function.

On (x + cxγ/2, x + cxγ] we can upper bound the acceptance rate as

α(x, y) ≤ π(y)
π(x)

exp
(

1
2

log
|G(y)|
|G(x)| +

G(x)
2h

(x − y)2
)

If y ≥ x and x > x0 we have

α(x, y) ≤ exp
(
−a(|y| − |x|) + 1

2hη

(x − y)2

xγ

)
.

For |y − x| = cx� this becomes

α(x, y) ≤ exp
(
−acx� +

c2

2hη
x2�−γ

)
So provided γ > � the first term inside the exponential will dominate the second for

large enough x. In the equality case we have

α(x, y) ≤ exp
((

c2

2hη
− a
)

cxγ

)
,
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so provided we choose c such that a > c2/(2hη) then the acceptance rate will also decay
exponentially. Because of this we have

B(x+cxγ/2,x+cxγ ] ≤
∫ x+cxγ

x+cxγ/2
es(y−x)α(x, y)Q(x, dy),

≤ e(c
2/(2hη)+s−a)cxγ/2

Q(x, (x + cxγ/2, x + cxγ]),

so provided a > c2/(2hη) + s then this term can be made arbitrarily small.
On (x + cxγ, ∞) using the same properties of truncated Gaussians we have

B(x+cxγ ,∞) ≤ e−sx
∫ ∞

x+cxγ
esyQ(x, dy),

= es2hηxγ/2Φc

((
c√
hη

−
√

hηs

)
xγ

)
,

which can be made arbitrarily small provided that s is chosen to be small enough using the
same simple bound on Φc as for the case of B(−∞,0].

Combining gives that the integral (8) is bounded above by −erf(c/
√

2h2η2)/2, which
is strictly less than zero as c, h and η are all positive. This completes the proof under
Assumption 1.

Under Assumption 2 the proof is similar. Take V(x) = es|x|β , and divide X up into the
same regions. Outside of (x − cxγ/2, x + cxγ/2] the same arguments show that the integral
can be made arbitrarily small. On this set, note that in the tails

(x + cx�)β − xβ = βcx�+β−1 +
β(β − 1)

2
c2x2�+β−2 + ...

For y − x = cx�, then for � < 1 − β this becomes negligible. So in this case we further
divide the typical set into (x, x + cx1−β]∪ (x + cx1−β, x + cxγ/2). On (x − cx1−β, x + cx1−β)
the integral is bounded above by e−c1 Q(x, (x − cx1−β, x + cx1−β)) → 0, for some suitably
chosen c1 > 0. On (x − cxγ/2, x − cx1−β] ∪ (x + cx1−β, x + cxγ/2] then for y > x we have
α(x, y) ≤ e−c2(yβ−xβ), so we can use the same argument as in the the log-concave case to
show that the integral will be strictly negative in the limit.

Proof of Proposition 3. First note that in this case for any g : R → (0, ∞) such that as
|x| → ∞ it holds that g(x)/|x| → ∞ but g(x)

√
G(x) → 0, then

Q(x, {x − g(x), x + g(x)}) = Φ
(

g(x)
√

G(x)
)

− Φ
(
−g(x)

√
G(x)

)
→ 0

as |x| → ∞. The chain therefore has the property that P({|Xi+1| > g(Xi)/2} ∪ {Xi+1 =
Xi}) can be made arbitrarily close to 1 as |Xi| grows, which leads to two possible behaviours.
If the form of π(·) enforces such large jumps to be rejected then r(x) → 1 and lack of
geometric ergodicity follows from (9). If this is not the case then the chain will be transient
(this can be made rigorous using a standard Borel–Cantelli argument, see e.g., the proof of
Theorem 12.2.2 on p. 299 of [21]).

Proof of Proposition 4. It is sufficient to construct a sequence of points xp ∈ R2 such that
|xp| → ∞ as p → ∞, and show that r(xp) → 1 in the same limit, then apply (9). Take
xp = (0, p) for p ∈ N. In this case

r(xp) = 1 −
∫

α(xp, y)QR(xp, dy)

Note that for every ε > 0 there is a δ < ∞ such that Q(xp, Bc
δ(xp)) < ε for all

xp, where Bδ(x) := {y ∈ R2 : |y − x| ≤ δ}. The set A(xp, δ) := Bδ(xp) ∩ R denotes
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the possible values of y ∈ Bδ(x) for which the acceptance rate is non-zero. Note that
A(xp, δ) ⊂ S(xp, δ) := {y ∈ Bδ(xp) : |y1| ≤ 31−�p−δ�}, which is simply a strip that can
be made arbitrarily narrow for any fixed δ by taking p large enough. Combining these
ideas gives ∫

α(xp, y)QR(xp, dy) ≤
∫

A(xp ,δ)
α(xp, y)QR(xp, dy) + ε

≤ QR(xp, S(xp, δ)) + ε.

Both of the quantities on the last line can be made arbitrarily small by choosing p
suitably large. Thus, r(xp) → 1 as |xp| → ∞, as required.

Proof of Proposition 5. First note that infx∈R QP(x, R) is bounded away from zero, unlike
in the case of QR, owing to the design of QP. The acceptance rate here simplifies, since for
any y ∈ R

s(y)|G(y)| 1
2

s(x)|G(x)| 1
2
= 1,

meaning only the expression exp
(
− 1

2 (y − x)T [G(y)− G(x)](y − x)
)

needs to be consid-
ered. In this case the expression is simply

exp
(
−1

2
(32�y2� − 32�x2�)(y1 − x1)

2
)

.

Provided that x1 �= y1, then when 1 ≤ �y2� < �x2� this expression is strictly greater
than 1, whereas in the reverse case it is strictly less than one. The resulting Metropolis–
Hastings kernel P using proposal kernel QP will therefore satisfy

∫
y2P(x, dy) < x2 for large

enough x2, and hence geometric ergodicity follows by taking the Lyapunov function
V(x) = es|x2| (which can be used here since the domain of x1 is compact) and following an
identical argument to that given on pages 404–405 of Reference [21] for the case of the proof
of geometric ergodicity of the random walk on the half-line model for suitably small s > 0,
taking the small set C := [0, 1]× [1, r] for suitably large r < ∞ and ν(·) =

∫
· s(x)dx.

Appendix B. Needed Facts about Truncated Gaussian Distributions

Here we collect some elementary facts used in the article. For more detail see e.g., [38].
If X follows a truncated Gaussian distribution N T

[a,b](μ, σ2) then it has density

f (x) =
1

σZa,b
φ

(
x − μ

σ

)
I[a,b](x),

where φ(x) = e−x2/2/
√

2π, Φ(x) =
∫ x
−∞ φ(y)dy and Za,b = Φ((b − μ)/σ)− Φ((a − μ)/σ).

Defining B = (b − μ)/σ and A = (a − μ)/σ, we have

E[X] = μ +
φ(A)− φ(B)

Za,b
σ

and

E[etX ] = eμt+σ2t2/2
[

Φ(B − σt)− Φ(A − σt)
Za,b

]
.

In the special case b = ∞, a = 0 this becomes eμt+σ2t2/2Φ(σt)/Za,b.

References

1. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing
machines. J. Chem. Phys. 1953, 21, 1087–1092. [CrossRef]

2. Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109.
[CrossRef]

19



Mathematics 2021, 9, 341

3. Sherlock, C.; Fearnhead, P.; Roberts, G.O. The random walk Metropolis: Linking theory and practice through a case study.
Stat. Sci. 2010, 25, 172–190. [CrossRef]

4. Mengersen, K.L.; Tweedie, R.L. Rates of convergence of the Hastings and Metropolis algorithms. Ann. Stat. 1996, 24, 101–121.
[CrossRef]

5. Roberts, G.O.; Tweedie, R.L. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis
algorithms. Biometrika 1996, 83, 95–110. [CrossRef]

6. Jarner, S.F.; Roberts, G.O. Convergence of Heavy-tailed Monte Carlo Markov Chain Algorithms. Scand. J. Stat. 2007, 34, 781–815.
[CrossRef]

7. Roberts, G.O.; Rosenthal, J.S. Examples of adaptive MCMC. J. Comput. Graph. Stat. 2009, 18, 349–367. [CrossRef]
8. Roberts, G.O.; Stramer, O. Langevin diffusions and Metropolis–Hastings algorithms. Methodol. Comput. Appl. Probab. 2002,

4, 337–357. [CrossRef]
9. Sejdinovic, D.; Strathmann, H.; Garcia, M.L.; Andrieu, C.; Gretton, A. Kernel Adaptive Metropolis-Hastings. In Proceedings of

the 31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014; Xing, E.P., Jebara, T., Eds.; PMLR: Beijing,
China, 2014; Volume 32, pp. 1665–1673.

10. Andrieu, C.; Thoms, J. A tutorial on adaptive MCMC. Stat. Comput. 2008, 18, 343–373. [CrossRef]
11. Craiu, R.V.; Rosenthal, J.; Yang, C. Learn from thy neighbor: Parallel-chain and regional adaptive MCMC. J. Am. Stat. Assoc. 2009,

104, 1454–1466. [CrossRef]
12. Rudolf, D.; Sprungk, B. On a generalization of the preconditioned Crank–Nicolson Metropolis algorithm. Found. Comput. Math.

2018, 18, 309–343. [CrossRef]
13. Girolami, M.; Calderhead, B. Riemann manifold langevin and hamiltonian monte carlo methods. J. R. Stat. Soc. Ser. B Stat.

Methodol. 2011, 73, 123–214. [CrossRef]
14. Brooks, S.; Gelman, A.; Jones, G.; Meng, X.L. Handbook of Markov Chain Monte Carlo; CRC Press: Boca Raton, FL, USA, 2011.
15. Maire, F.; Vandekerkhove, P. On Markov chain Monte Carlo for sparse and filamentary distributions. arXiv 2018, arXiv:1806.09000.
16. Mallik, A.; Jones, G.L. Directional Metropolis-Hastings. arXiv 2017, arXiv:1710.09759.
17. Ludkin, M.; Sherlock, C. Hug and Hop: A discrete-time, non-reversible Markov chain Monte Carlo algorithm. arXiv 2019,

arXiv:1907.13570.
18. Kamatani, K. Ergodicity of Markov chain Monte Carlo with reversible proposal. J. Appl. Probab. 2017, 638–654. [CrossRef]
19. Roberts, G.O.; Rosenthal, J.S. General state space Markov chains and MCMC algorithms. Probab. Surv. 2004, 1, 20–71. [CrossRef]
20. Roberts, G.O.; Rosenthal, J.S. Geometric ergodicity and hybrid Markov chains. Electron. Comm. Probab. 1997, 2, 13–25. [CrossRef]
21. Meyn, S.P.; Tweedie, R.L. Markov Chains and Stochastic Stability; Cambridge University Press: Cambridge, UK, 2009.
22. Jones, G.L.; Hobert, J.P. Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Stat. Sci. 2001,

16, 312–334. [CrossRef]
23. Tierney, L. Markov chains for exploring posterior distributions. Annal. Stat. 1994, 22, 1701–1728. [CrossRef]
24. Bierkens, J. Non-reversible Metropolis–Hastings. Stat. Comput. 2016, 26, 1213–1228. [CrossRef]
25. Jarner, S.F.; Tweedie, R.L. Necessary conditions for geometric and polynomial ergodicity of random-walk-type Markov chains.

Bernoulli 2003, 9, 559–578. [CrossRef]
26. Roberts, G.O.; Rosenthal, J.S. Optimal scaling for various Metropolis-Hastings algorithms. Stat. Sci. 2001, 16, 351–367. [CrossRef]
27. Livingstone, S.; Girolami, M. Information-geometric Markov chain Monte Carlo methods using diffusions. Entropy 2014,

16, 3074–3102. [CrossRef]
28. Andrieu, C.; Moulines, É. On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 2006,

16, 1462–1505. [CrossRef]
29. Livingstone, S.; Faulkner, M.F.; Roberts, G.O. Kinetic energy choice in Hamiltonian/hybrid Monte Carlo. Biometrika 2019,

106, 303–319. [CrossRef]
30. Roberts, G.O.; Tweedie, R.L. Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli

1996, 2, 341–363. [CrossRef]
31. Livingstone, S.; Betancourt, M.; Byrne, S.; Girolami, M. On the geometric ergodicity of Hamiltonian Monte Carlo. Bernoulli 2019,

25, 3109–3138. [CrossRef]
32. Jarner, S.F.; Hansen, E. Geometric ergodicity of Metropolis algorithms. Stoch. Process. Their Appl. 2000, 85, 341–361. [CrossRef]
33. Neal, R.M. Slice sampling. Annal. Stat. 2003, 705–741. [CrossRef]
34. Xifara, T.; Sherlock, C.; Livingstone, S.; Byrne, S.; Girolami, M. Langevin diffusions and the Metropolis-adjusted Langevin

algorithm. Stat. Probab. Lett. 2014, 91, 14–19. [CrossRef]
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Abstract: A more realistic way to describe a model is the use of intervals which contain the required
values of the parameters. In practice we estimate the parameters from a set of data and it is natural
that they will be in confidence intervals. In the present study, we study Non-Homogeneous Markov
Systems (NHMS) processes for which the required basic parameters are in intervals. We call such
processes Non-Homogeneous Markov Set Systems (NHMSS). First we study the set of the relative
expected population structure of memberships and we prove that under certain conditions of
convexity of the intervals of the parameters the set is compact and convex. Next, we establish
that if the NHMSS starts with two different initial distributions sets and allocation probability sets
under certain conditions, asymptotically the two expected relative population structures coincide
geometrically fast. We continue proving a series of theorems on the asymptotic behavior of the
expected relative population structure of a NHMSS and the properties of their limit set. Finally, we
present an application for geriatric and stroke patients in a hospital and through it we solve problems
that surface in an application.
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1. Introduction

The class of stochastic processes called Non-Homogeneous Markov Systems (NHMS)
was first defined in [1] The class of NHMS provided a general framework for many applied
probabilities models used to model populations of a wide diversity of entities. The primary
motive was to provide a general framework for a wide class of stochastic models in social
processes ([2]). They also include as special cases non-homogeneous Markov chain models
in manpower systems such as [3–5]. The literature on NHMS has flourished since then to a
large extent and presently exist a large volume of theoretical results as well a variety of
applications. In Section 2 of the present we provide a definition and a concise description
of a NHMS. As we will discuss in Section 2, it is important for the reader to have in mind
that actually the well-known non-homogeneous Markov chain is a special case of a NHMS.

In many stochastic processes and so naturally in Markov chains and specifically in
non-homogenous Markov chains and NHMS, the values of the various parameters are
assumed to be exact while in practice these are estimated from the data. Therefore, actually
the values of the parameters is more realistic to be viewed as being contained in intervals
with the desired probability confidence. This approach has been used in systems of linear
equations and in this case the solutions are given as the set of all possible solutions. Two
books have been written on this topic by [6,7]. For the analogous problem for differential
equations a book was written by [8]. For homogeneous Markov chains with this approach
a book was written see [9].

In Section 3 of the present we will now add some additional assumptions on a NHMS
in our way to define a non-homogeneous Markov set system (NHMSS). In this way now
a NHMSS will be a NHMS whose basic parameters will be assumed to be in compact
convex intervals.

The NHMSS is a stochastic system which has a population of members which increases
at every point in time. I addition the initial members need not to be the same entities at
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different time points since there is wastage from the system. The members of the population
move among the different states, exit from the system (population) and new members are
coming into the population (system) as replacements or to expand the system. In the case
of non-homogeneous Markov set chains we have only one particle in the population, which
never leaves the system and no procedure to replace this particle exists. Mathematically
now the NHMSS has more elements in the one step in time equation with more parameters
introduced in the stochastic difference equation. As the equation is applied recursively we
end up with series of components which interact together with more parameters being
in an interval. Hence, the problems to be solved are a lot harder, and new strategies and
tools must be used, than the simple case of the Markov set chain. The introduction of the
concept of a membership is crucial in dealing with the different individual members as time
progress. The tool of Minkowski sum of vectors and its properties for convex combination
of compact sets will play a vital role which was not needed in the case of Markov set chains.
One of the hard problems which we encounter which does not exist in the Markov set
chains is finding the range of infinite series. The Hausdorff metric for compact sets and the
coefficient of ergodicity together with properties of appropriate norms introduced and the
manipulation of infinite series will help to provide the following:

In Section 4, we establish in the form of a theorem, using the Minkowski sum of two
sets, under which conditions in a NHMSS the set of all possible expected relative population
structures at a certain point in time is a convex set. Also, we establish a Theorem where we
provide conditions under which the set of all expected relative population structures at a
certain point in time is a convex polygon.

In Section 5 we study the asymptotic behavior of an NHMSS, a problem that has
been of central importance for homogeneous Markov chains, non-homogeneous Markov
chains, NHMS and homogeneous Markov set chains. In Theorem 4, with the use of the
coefficient of ergodicity and the Hausdorff metric we prove the following: Let that in an
NHMSS the sets of initial structures are different but compact and convex; also, the sets
of allocation probabilities of the memberships are different but convex and compact; the
inherent non-homogeneous Markov set chain is common; then the Hausdorff metric of
the two different sets of all possible expected relative structures asymptotically goes to
zero geometrically fast. This is equivalent with concluding that the two sets asymptotically
coincide geometrically fast. In Theorem 5 we prove that in an NHMSS if the total population
of memberships converges in a finite number geometrically fast, and the sets of initial
structures and allocation probabilities of memberships are compact and convex, then the set
of all possible expected relative population structure converges to a limit set geometrically
fast. These two theorems have important consequences for a NHMS process also. The first
is Theorem 6 which relaxes important assumptions of the basic asymptotic theorem for
NHMS which is provided as Theorem 7. The second labeled as Theorem 8 answers a novel
question for NHMS, i.e., provides conditions under which two different NHMS, with the
same number of states and population, but different initial states and different allocation
probabilities of memberships if they have the same transition probabilities sequence of
memberships, they converge in the same relative population structure geometrically fast.

In Section 6 we study properties of the limit set of expected relative population
structures. In Theorem 10 we prove the first property, that under some mild conditions the
limit set of the expected relative population structures of an NHMSS remains invariant if
any selected transition probability matrix of the inherent non-homogeneous Markov chain
from the respective interval is multiplied by it from the right. We also prove that the limit
set is the only set with this property if the interval of selection of transition probabilities
of the inherent non-homogeneous Markov chain is product scrambling. In Theorem 11
the second property is established, i.e., let two different NHMSS in the sense that they
have different sets of selecting initial distributions, different sets of selecting allocation
probabilities and different intervals of selecting the transition probabilities of the inherent
non-homogeneous Markov chains. What they have in common is that their respective
intervals are uniformly scrambling with a common bound and they have the same total
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population of memberships. We prove that the Hausdorff metric of the limit sets of the
expected relative population structures of the two NHMSS is bounded by the multiplication
of a function of the Hausdorff metric of the two tight intervals of selection of the stochastic
matrices of the inherent non-homogeneous Markov set chains and the bound of their
uniform coefficients of ergodicity.

In Section 7 we present a representative application for geriatric and stroke patients
in a hospital. Through this application we provide solutions in problems arising in an
application by providing respective Lemmas and a general Algorithm with computational
geometry procedures which are applicable to any population system.

2. The Non-Homogeneous Markov System

Consider a population which has T(t) memberships at time t. These memberships
could be held by any kind of entities, i.e., human beings, animals, T-cells in a biological
entity, fish in an organized area in the sea, cars on a highway etc. We assume that T(t) is
known for every t, for example in a hospital the memberships are the beds for patients
and from the management of the hospital’s planning the number of beds are known. Let
that the population is stratified into classes which we call states and let that there are a
finite number of states, i.e., the state space is S ={1, 2, . . . , k}. We assume that the evolution
of the population is in discrete time, i.e., t = 1, 2, ... and we call the vector of random
variables N(t) = [N1(t), N2(t), . . . , Nk(t)] where Ni(t) is the number of memberships in
state i at time t, the population structure of the NHMS. Define by q(t) = N(t)/T(t) to be the
relative population structure. At every time instant t = 1, 2, ..., we have internal transitions of
members among the states in S with probabilities which we collect in the k × k matrix P(t);
we have wastage from all the states with probabilities which we collect in the 1 × k vector
pk+1(t) = [p1,k+1(t), p2,k+1(t), . . . , pk,k+1(t)]; finally, we have recruitment or allocation
probabilities of replacements or new entrants in the various states at time t which we
collect in the 1 × k stochastic vector p0(t) = [p01(t), p02(t), . . . , p0k(t)]. We assume that the
system is expanding, i.e., ΔT(t) = T(t)− T(t − 1) ≥ 0. During the time interval (t − 1, t]
a member of the system in state i either moves internally to another state j of the system
with probability pij(t) or leave the system and his membership remains at the exit of the
system. New entrants to the system are of two types, those to replace leavers and those
needed to be added in the system to meet the target of T(t) total memberships. The new
entrant gets his membership at the entrance and he is being allocated or recruited at state j
with probability p0j(t). Hence, the probability of movement of a membership from state
i to state j at time t is qij(t) = pij(t) + p0j(t)pi,k+1(t). We collect these probabilities in the
k × k matrix Q(t) = P(t) + p�

k+1(t)p0(t) which apparently is a stochastic matrix. We call
the Markov chain defined by the sequence of matrices {Q(t)}∞

t=0 the imbedded or inherent
non-homogeneous Markov chain of the NHMS.

It is of interest the expected relative population structure. Let Xt be the random variable
representing the state that a membership of the system is at time t. Define by

q(s, t) = [q1(s, t), q2(s, t), . . . , q2(s, t)],

where
qj(s, t) = P[Xt = j | q(s)] for s ≤ t, (1)

then from ([10] p. 140) we get that

E[q(s, t)] = a(t − 1)E[q(t − 1)]Q(t) + b(t − 1)p0(t), (2)

where

a(t − 1) =
T(t − 1)

T(t)
and b(t − 1) =

T(t)− T(t − 1)
T(t)

, (3)

25



Mathematics 2021, 9, 471

from which we get that

E[q(0, t)] =
T(0)
T(t)

q(0)Q(0, t)+

1
T(t)

t

∑
τ=1

ΔT(τ)p0(τ)Q(τ, t), (4)

where Q(s, t) = Q(s + 1)Q(s + 2) . . . Q(t) for (s ≤ t). We set Q(s, t) = I the identity
matrix for s ≥ t. Please note that we set q(s, t) = 0 for s > t. We call any such process as
described above a Non-homogeneous Markov process in discrete time and discrete state space.
It is important for the reader to realize that the well-known ordinary Markov chain is a
very special case of a NHMS with T(t) = 1, p0(t) = 0, pk+1(t) = 0 and Q(t) = P.

As we mentioned in the Introduction the stochastic process NHMS was first introduced
in [1] as a discrete time, discrete state space stochastic process with motives which have
their roots in actual applications in manpower systems see for example [1,2,11], and also
the review papers [12,13]. Since then, a large literature on theoretical developments
on many aspects of a NHMS were published which also included the developments
in [14,15] of NHMS’s in a general state space. In [16] there appeared the link between
the theory of NHMS and martingale theory. Lately, also another area of large interest
has been the Law of Large Numbers in NHMS ([17]) which has its roots as a motive the
study of Laws of Large numbers on homogeneous Markov chains by Markov himself.
Also, many applications in areas with great diversity have also appeared in the literature.
For example we could selectively refer to some of them. Let as start with [18–20] which are
applications in the evolution of the HIV virus on the T-cells of the human body; population
consisting with patients with asthma was studied in [21]; reliability studies were presented
in [22]; applications in biomedical research appeared in [23,24]; various applications for
human populations [25–29]; interesting application to consumption credit [30] infections of
populations [31]; a very interesting application in DNA and web navigation [32]; interesting
ecological applications [33]; results in Physical Chemistry [34]. Finally, there are a large
number of publications by the research school of Prof McClean in hospital systems which
are large manpower systems [35–39].

3. Non-Homogeneous Markov Set System

In Section 2 we defined the NHMS process and we will now define for the first time
ever the non-homogeneous Markov set system. So far in the well developed theory of
NHMS’s the various perimeters are assumed to be exact while in practice they are naturally
estimated by the data. Therefore, it is more realistic to be viewed as being contained in
intervals with the desired probability confidence. In summary as we will see bellow a
NHMSS is a NHMS for which its parameters are defined in intervals. In addition the study
of NHMSS provides a new area of theoretical research with different mathematical tools in
many instances than the corresponding theory of NHMS and a potential to be applied in
other stochastic processes.

The practical advantages of NHMSS’s are rather apparent since the assumptions on
the parameters are less restrictive. The assumption of the parameters being in appropriate
intervals absorbs in a way the errors of point estimates which increase their variability.
In addition it provides the tools to study NHMS’s whose parameters will be in “desired”
intervals which increases considerably the control of the system since we could choose poli-
cies of the systems in intervals with desired outcomes for the expected relative population
structures or to avoid trouble some situations.

We will start with the definition of an interval for a stochastic vector following [9]
who first defined Markov set chains. Denote by Mn(R) or simply Mn the set of all n × n
matrices with elements from the field R.
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Definition 1. Let SM1n the set of all 1 × n stochastic vectors. Also let λ and μ be non-negative
1 × n vectors with λ ≤ μ componentwise. Then define the corresponding interval in SM1n by

[λ, μ] = {p : p ∈ SM1,n with λ ≤ p ≤ μ},

where λ,μ are chosen such that [λ, μ] �= ∅.

Example 1. It is sometimes helpful to view mathematics geometrically. Let SM1,3 the set of all 1× 3
stochastic vectors, then it is easy to see that this is the convex hull of the vectors e1 =

(
1 0 0

)
,

e2 =
(
0 1 0

)
and e3 =

(
0 0 1

)
in R3. Now, all the non-negative vectors x such that

λ ≤ x ≤ μ are within and the surface of a rectangle the coordinates of which are determined
by λ, μ. The interval [λ, μ] will be the intersection of the two above described spaces. We can
visualize this more easily if we consider the triangle e1e2e3 in R2. Let λ =

(
0.1 0.2 0.3

)
and

μ =
(
0.5 0.7 0.8

)
then the interval [λ, μ] could be easily designed in the following way. Draw

two parallel lines to the line e2e3 at the points λ1 = 0.1 and μ1 = 0.5; also draw two parallel lines
to the line e1e3 at the points λ2 = 0.2 and μ2 = 0.7; finally draw two parallel lines to the line
e1e2 at the points λ3 = 0.3 and μ3 = 0.8. Then the interval [λ, μ] is the common area between
these lines.

Tight intervals are important in what follows:

Definition 2. Let [λ, μ] be an interval, then if

λi = min
x∈[λ,μ]

xi and μi = max
x∈[λ,μ]

xi,

then λi, μi are called tight, respectively. If λi, μi are tight for all i, then the interval [λ, μ] is
called tight.

Intervals can be tested for tightness using the following Lemma ([9]). Also, with the
use of this Lemma an interval which is not tight, we can tighten it up using an algorithm
without actually changing it. That is the new interval, the tightened one will contain the
same stochastic vectors.

Lemma 1. ([9]). Let [λ, μ] be an interval. Then for each coordinate i

(i) λi is tight if and only if λi + ∑
k �=i

μk ≥ 1.

(ii) μi is tight if and only if μi + ∑
k �=i

λk ≥ 1.

We now need the following definition of when in a tight interval a vector is called free.

Definition 3. Let [λ, μ] be a tight interval and p ∈ [λ, μ]. Then if λi < pi < μi for some
coordinate i, then the coordinate pi in p is called free.

Tight intervals and convex sets are well linked and play an important role in the
preservation of many properties. In this respect, the following Lemma is very useful.

Lemma 2. ([9]). Let [λ, μ] be a tight an interval . Then [λ, μ] is a convex polytope. A vector
p ∈ [λ, μ] is a vertex of [λ, μ] if and only if p has at most one free component.

We will now extend the definition of an interval of a vector to an interval of a matrix
and to a tight interval of a matrix.
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Definition 4. Let SMn the set of all 1 × n stochastic matrices. Also let Λ and M be non-negative
n × n matrices with Λ ≤ M componentwise. Then define the corresponding interval in SMn by

[Λ, M] = {P : P ∈ SMn with Λ ≤ P ≤ M},

where Λ, M are chosen such that [Λ, M] �= ∅.

We now proceed to define a tight interval of matrices:

Definition 5. Let [Λ, M] be an interval of matrices. If

λij = min
P∈[Λ,M]

pij and μij = max
P∈[Λ,M]

pij,

for all i and j, then [Λ, M] is called tight.

The interval [Λ, M] can be constructed also by rows, i.e.,

[Λ, M] =

{
P : pi ∈ [λi, μi] for all i, with pi, λi, μi

being the rows of the respective matrices P, Λ, M

}
.

In what follows we will define a non-homogeneous Markov set system. We will keep
the entire notation introduced in Section 2 for a NHMS and we will build on that.

Let [M] =
[
Q̌, Q̂

]
be an interval of k × k stochastic matrices with Q̌ ≤ Q(t) ≤ Q̂ for

every t ∈ N which is tight, i.e.,

[M] =
{

Q(t) : is an k × k stochastic matrix with Q̌ ≤ Q(t) ≤ Q̂
}

with
q̌ij = min

Q(t)∈[Q̌,Q̂]
qij(t) for every t ∈ N,

q̂ij = max
Q(t)∈[Q̌,Q̂]

qij(t) for every t ∈ N,

and the notation
[
Q̌, Q̂

]
will be taken to imply that

[
Q̌, Q̂

]
�= ∅.

We will make now the following basic assumptions:

Assumption 1. Let that the imbedded non-homogeneous Markov chain of the NHMS has all its
probability matrices in [M].

We call [M] the probability transition matrix set (PTMS) of the imbedded non-homogeneous
Markov chain.

Now define by [
M2
]
= {Q(0)Q(1) : Q(0), Q(1) ∈ [M]},

. . .

. . .

. . .

[Mn] = {Q(0)Q(1)...Q(n − 1) : Q(0), . . . , Q(n − 1) ∈ [M]}.

We call the sequence {[Mn]}∞
n=1 the inherent or imbedded non-homogeneous Markov set

chain.
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Assumption 2. Let [S0] be the set of 1 × k stochastic vectors from which the initial distribution
q(0) is chosen.

[S0] = [q̌0, q̂0] = {q(0) : is a stochastic vector with q(0) ∈ [S0]}.

Assumption 3. Let [R0] be the set of 1 × k stochastic vectors from which the allocation probabilities
p0(t) are being selected. That is

[R0] = [p̌0, p̂0] = {p0(t) : is a stochastic vector with p0(t) ∈ [R0] for every t}.

We call a NHMS whose parameters are assumed to be in intervals as in Assumptions 1–3 a
Non-homogeneous Markov Set System (NHMSS).

Note that it is apparent by now that Markov set chains that were initiated by [9,40–43]
are special cases of a NHMSS.

4. The Set of the Expected Relative Population Structures of a NHMSS

In geometry the Minkowski sum (also known as dilation) of two sets of position
vectors A and B in Euclidean space is formed by adding each vector in A to each vector in
B. That is

A+B ={a + b : a ∈ A, b ∈ B}.

Example 2. If we have two sets A and B consisting of three position vectors (informally, three
points) representing the vertices of two triangles in R2 with coordinates

A ={(1, 0), (0, 1), (0, −1)} and B ={(0, 0), (1, 1), (1, −1)},

then their Minkowski sum is

A+B ={(1, 0), (2, 1), (2, −1), (0, 1), (1, 2), (0, −1), (1, −2)},

which comprises the vertices of a hexagon.

For Minkowski addition, the zero set containing only the zero vector 0, is an identity
element for every subset V of a vector space, i.e., V+{0} = V.

The empty set is important in Minkowski addition because the empty set annihilates
every other subset for every subset V of a vector space, its sum with the empty set is empty,
i.e., V+∅ = ∅.

We are now in a position to state the following Lemma ([44])

Lemma 3. IfV is a convex set then μV+�V is also a convex set and furthermore μV+�V =(μ + λ)V
for every λ, μ > 0. Conversely, if this "distributive property" holds for all non-negative real numbers λ, μ > 0
then the set is convex.

Remark 1. For two convex polygons V1 and V2 in the plane with m and n vertices, their
Minkowski sum is a convex polygon with at most m + n vertices and may be computed in time
O(m + n) by a very simple procedure.

We need the following sets for the Lemma that follows

Rng(q) = {y : y = qQ for some Q ∈ [M] and any q ∈ SM1,n}.

Also

Rng(S) = ∪q∈SRng(q) = {y : y = qQ for some Q ∈ [M] and some q ∈ S}.
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Lemma 4. Let an NHMSS with T(t) ≥ 0 and finite and which is expanding (ΔT(t) ≥ 0). Also
let [S0] the set from which the initial distribution of memberships is drawn, [R0] the set from which
the allocation probabilities in the various states are chosen at every time step and finally let [M] the
set to which all the transition probability matrices of the inherent Markov chain of memberships
belong. Then the set Rngt(S0,R0) of all possible expected relative population structures at time t is
given by

Rngt(S0,R0) = {E[q(0, t)] : E[q(0, t)] ∈ T(0)
T(t)

∪q(0)∈[S0] q(0)
[
Mt] (5)

+
1

T(t)

t

∑
τ=1

ΔT(τ) ∪p0(τ)∈[R0] p0(τ)
[
Mt−τ

]
},

with
[
M0] = [M] and

[
M−1] = {I}.

Proof. Following the relevant proofs that lead to Equations (2.1), (2.2) and (3.4) in [10] or
Equations (2) and (4) in the present, we could easily prove (5).

We will need the following Lemma from ([9] p. 39):

Lemma 5. In a non-homogeneous Markov set chain let the set of initial distributions [S0] be convex
and let [M] be a tight interval from which the transition probability sequence of matrices is being
selected. Then the set [St] of all possible probability distributions at the various states at time t is a
convex set.

In the next theorem we show under which conditions the set of all possible expected
relative population structures in a NHMSS is a convex set.

Theorem 1. Let an NHMSS with T(t) finite and which is expanding (ΔT(t) ≥ 0). If [S0], [R0]
are convex sets and [M] a tight interval then the set of all possible expected relative population
structures is a convex set.

Proof. Define {E[q̊(0, t)]} be the set of all possible expected relative structures of the initial
memberships then from Lemma 4 we have

{E[q̊(0, t)]} = {E[q̊(0, t)] : E[q̊(0, t)] ∈ T(0)
T(t)

∪q(0)∈[S0] q(0)
[
Mt]}, (6)

since T(0)
T(t) ≥ 0, [S0] is a convex set and [M] a tight interval, from Lemma 4 and 5 we get

that {E[q̊(0, t)]} is a convex set. Also, the set

{E[rτ ]} = {E[rτ ] : E[rτ ] ∈ ΔT(τ) ∪p(τ)∈[R0] p0(τ)
[
Mt−τ

]
},

is the set of all possible expected structures of new memberships at time t which entered in
the system at time τ. Now, since the system is expanding, i.e., ΔT(τ) ≥ 0, [R0] is a convex
set and [M] a tight interval, then with the same reasoning as in (6), we get that {E[rτ ]} is a
convex set. Also, from Remark 1 we get that the Minkowski sum of sets

1
T(t)

t

∑
τ=1

{E[rτ ]},

is a convex set. Hence, since the two sets in the right-hand side of Equation (5) are convex
and then according to Remark 1 their Minkowski sum Rngt(S0,R0) is a convex set.

We will now borrow the following Theorem from ([9] p. 40).
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Theorem 2. In a non-homogeneous Markov set chain let the set of initial distributions [S0] be a
convex polytope and let [M] be a tight interval from which the transition probability sequence of
matrices is being selected. Then the set [St] of all possible probability distributions at the various
states at time t is a convex polytope with vertices of the form EiEi1 ...Eik for some vertices Ei of [S0]
and some vertices Eij of [M].

In the next theorem we show under which conditions the set of all possible expected
relative population structures in a NHMSS is a convex polytope.

Theorem 3. Let an NHMSS with T(t) finite and which is expanding (ΔT(t) ≥ 0). If [S0], [R0]
are convex polytopes and [M] a tight interval then the set of all possible expected relative population
structures is a convex polytope.

Proof. The proof follows the steps of the proof of Theorem 1 using Theorem 2.

5. Asymptotic Behavior of NHMSS

The problem of asymptotic behavior has been one of central importance for, homoge-
neous Markov chains, non-homogeneous Markov chains, NHMS, and non-homogeneous
Markov set chains. In the present section we will prove a series of theorems with which we
establish the asymptotic behavior of NHMSS.

Since Markov himself and his student Dobrushin the coefficient of ergodicity T (Q)

of a k × k stochastic matrix Q =
{

qij
}k

i,j=1, has been a fundamental tool in the study of
Markov chains. We have

T (Q) =
1
2

max
ij

k

∑
l=1

∣∣∣qil − qjl

∣∣∣, (7)

thus 0 ≤ T (Q) ≤ 1. We clarify in here that if T (Q) < 1 the stochastic matrix Q is called
scrambling. Scrambling matrices are regular, but not all regular matrices are scrambling.
Yet if Q is a regular stochastic matrix then some power of Q, say Qn is scrambling. We
define by

T̄ ([M]) = max
Q∈[Q̌,Q̂]

T (Q), (8)

if T̄ ([M]) < 1 we say that [M] is uniformly scrambling. More on uniform scrambling and
the interpretation of the coefficient of ergodicity of a matrix A ∈ Rn×n as a matrix norm
when the norm is restricted to a specified subspace could be found, in [45]. For explicit
forms for ergodicity coefficients and properties see also [46,47]. In what follows we will
use the following norm for a matrix A ∈ Mn(R)

‖A‖ = max
i

k

∑
j=1

∣∣aij
∣∣

We will use the concept of T̄ ([M]) < 1 to study asymptotic behavior in a NHMSS. It
is important to note that if we consider as

([
MC], ‖.‖

)
the space of non-empty compact

subsets of ([M], ‖.‖) then
([
MC], ‖.‖

)
is a metric space ([48]). This space can be topologized

using the Hausdorff metric d(., .) defined by

d(S1,S2) = max{δ(S1,S2), δ(S2,S1)}, (9)

where
δ(S1,S2) = max

Q1∈S1
min

Q2∈S2
‖Q1 − Q2‖ and S1,S2 ∈

[
MC
]
, (10)

From [48] we get also that
([
MC], d(., .)

)
is a metric space.

We will need the following Lemmas
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Lemma 6 ([49]). The following statements are equivalent:

(i) Sequence {ΔT(t)}∞
t=0 converges to zero with geometrical rate;

(ii) Sequence {T(t)}∞
t=0 converges to T with geometrical rate,

Lemma 7 ([50] p. 541). Suppose that {
ΔT(t)
T(t)

}∞

t=0

converges to zero as t → ∞ geometrically fast with T(t) ≥ T(t − 1). Then {T(t)}∞
t=0 converges

geometrically fast.

Remark 2. The restriction

lim
t→∞

ΔT(t)
T(t)

= 0,

is a general assumption with the physical interpretation that the proportional growth rate vanishes
in the limit. This assumption allows limt→∞T(t) = ∞.

We will now study what happens asymptotically to the two sets of the expected
relative population structures when the initial structures belong to two different sets as
well as the allocation probabilities in the respective cases.

Theorem 4. Let an NHMSS for which [M] is a tight interval which is uniformly scrambling.
Assume that {

ΔT(t)
T(t)

}∞

t=0
converges to zero geometrically fast.

Also, assume that [S], [R0] are compact and convex. Let S1,S2 ⊆
[
SC] and R1,R2 ⊆[

RC
0
]

then
d(Rngt(S1,R1), Rngt(S2,R2)) →t→∞ 0 geometrically fast.

Proof. From (5) we get that

Rngt(S1,R1) = {E[q(0, t)] : E[q(0, t)] ∈ T(0)
T(t)

∪q(0)∈[S1]
q(0)

[
Mt]+ (11)

1
T(t)

t

∑
τ=1

ΔT(τ) ∪p0(τ)∈[R1]
p0(τ)

[
Mt−τ

]
},

and from (11) if we replace q(0) with q̄(0), [S1] with [S2]; p0(τ) with p̄0(τ); [R1] with [R2]
and E[q(0, t)] with E[q̄(0, t)] we get Rngt(S2,R2). Since[S1], [R1] are compact and [M] is a
tight interval, it is not difficult to show that Rngt(S1,R1) is compact. The same applies for
Rngt(S2,R2) since [S2], [R2] are also compact. Hence, we may take their Hausdorff metric.
Now, we have that

δ(Rngt(S1,R1), Rngt(S2,R2)) (12)

= max
q(0)∈[S1],p0(τ)∈[R1],

Q(t)∈[M] for all τ,t

min
q̄(0)∈[S2],p̄0(τ)∈[R2]

Q̄(t)∈[M] for all τ,t

‖E[q(0, t)]−E[q̄(0, t)]‖.

by continuity of
f (E[q̄(0, t)]) = min‖E[q(0, t)]−E[q̄(0, t)]‖
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then for some q∗(0) ∈ [S1], p∗
0(τ) ∈ [R1] for every τ ∈ [1, t], Q∗(t) ∈ [M] for every t ∈ [0, t]

and by denoting with

E[q∗(0, t)] =
T(0)
T(t)

q∗(0)Q∗(0, t) +
1

T(t)

t

∑
τ=1

ΔT(τ)p∗
0(τ)Q

∗(τ, t), (13)

we get
δ(Rngt(S1,R1), Rngt(S2,R2)) = (14)

min
q̄(0)∈[S2],p̄0(τ)∈[R2]

Q̄(t)∈[M] for all τ,t

‖E[q∗(0, t)]−E[q̄(0, t)]‖

≤ ‖E[q∗(0, t)]−E[q̄∗(0, t)]‖,

where E[q̄∗(0, t)] is given by (13) if we replace q∗(0) with any q̄∗(0) ∈ [S2], p∗
0(τ) with any

p̄∗
0(τ) ∈ [R2] for every τ ∈ [1, t]. Now, from (13) and (14) we get that

δ(Rngt(S1,R1), Rngt(S2,R2)) ≤ T(0)
T(t)

‖[q∗(0)− q̄∗(0)]Q∗(0, t)‖

+
1

T(t)

t

∑
τ=1

ΔT(τ)‖p∗
0(τ)Q

∗(τ, t)− p̄∗
0(τ)Q

∗(τ, t)‖

≤ T(0)
T(t)

T (Q∗(0, t))‖[q∗(0)− q̄∗(0)]‖

+
1

T(t)

t

∑
τ=1

ΔT(τ)T (Q∗(τ, t))‖p∗
0(τ)− p̄∗

0(τ)‖

(since [M] is uniformly scrambling T̃ = max
Q∗(t)∈ [M]

T (Q∗(t)) < 1)

≤ T(0)
T(t)

T̃ t‖[q∗(0)− q̄∗(0)]‖

+
1

T(t)

t

∑
τ=1

ΔT(τ)T̃ t−τ‖p∗
0(τ)− p̄∗

0(τ)‖

≤ T(0)
T(t)

T̃ tδ(S1,S2) +
1

T(t)

t

∑
τ=1

ΔT(τ)T̃ t−τδ(R1,R2). (15)

Since
{

ΔT(t)
T(t)

}∞

t=0
converges to zero geometrically fast, from Lemmas 6 and 7 we get

that there are c1, c2 > 0 and 0 < b1, b2 < 1 such that∣∣∣∣ 1
T(t)

− 1
T

∣∣∣∣ ≤ c1bt
1 and

∣∣∣∣ΔT(t)
T(t)

∣∣∣∣ ≤ c2bt
2. (16)

From (15), (16) we get that

δ(Rngt(S1,R1), Rngt(S2,R2)) ≤ T(0)
(

1
T
+ c1bt

1

)
T̃ tδ(S1,S2)

+δ(R1,R2)

(
1
T
+ c1bt

1

) t

∑
τ=1

c2bτ
2 T̃ t−τ ,

(assuming T̃ <b2)

≤ T(0)
(

1
T
+ c1bt

1

)
T̃ tδ(S1,S2) + δ(R1,R2)

(
1
T
+ c1bt

1

)
c2bt−1

2

t

∑
τ=1

( T̃
b2

)t−τ
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≤ T(0)
(

1
T
+ c1bt

1

)
T̃ tδ(S1,S2) + δ(R1,R2)

(
1
T
+ c1bt

1

)
c2bt−1

2

(
1 − T̃

b2

)−1

. (17)

From (17) we conclude that δ(Rngt(S1,R1), Rngt(S2,R2)) converges to zero geomet-
rically fast. Similarly, we get the same conclusion if T̃ >b2.

Now, in a similar way we may prove that δ(Rngt(S2,R2), Rngt(S1,R1)) converges to
zero geometrically fast. Thus, we arrive at the desired conclusion.

We will now establish under what conditions the convergence to the limiting set in a
NHMSS is geometrically fast.

Theorem 5. Let an NHMSS for which [M] is a tight interval which is uniformly scrambling.
Assume that {

ΔT(t)
T(t)

}∞

t=0
converges to zero geometrically fast.

Also, let that [S], [R0] are compact and convex. Then we have that

d(Rngt(S,R0), Rng∞(S,R0) → 0, geometrically fast. (18)

Proof. We will first show that

Rng(Rngt(S,R0)) = Rngt+1(S,R0). (19)

By the evaluation of the function Rng(., .) given in Lemma 4 we get that

Rng(Rngt(S,R0)) =
T(t)

T(t + 1)
∪E[q(0,t)]∈Rngt(S,R0) E[q(0, t)][M]

+
1

T(t + 1)
ΔT(t + 1) ∪p0(t)∈[R0] p0(t) =

T(t)
T(t + 1)

T(0)
T(t)

∪q(0)∈[S] q(0)
[
Mt][M]+

T(t)
T(t + 1)

1
T(t)

t

∑
τ=1

ΔT(τ) ∪p0(τ)∈[R0] p0(τ)
[
Mt−τ

]
[M]

+
1

T(t + 1)
ΔT(t + 1) ∪p0(t)∈[R0] p0(t)

=
T(0)

T(t + 1)
∪q(0)∈[S] q(0)

[
Mt+1

]
+

1
T(t + 1)

t+1

∑
τ=1

ΔT(τ) ∪p0(τ)∈[R0] p0(τ)
[
Mt−τ+1

]
= Rngt+1(S,R0).

Now, we will show that

Rngt(Rng∞(S,R0)) = Rng∞(S,R0). (20)

Assume that E[q(∞)] is an element of Rng∞(S,R0) then from Lemma 4 we get that

Rng(Rng∞(S,R0)) =
T
T

∪E[q(∞)]∈Rng∞(S,R0) E[q(∞)][M]+

1
T
(T − T) ∪p0(∞)∈[R0] p0(∞) = Rng∞(S,R0)[M] = Rng∞(S,R0), (21)

where the last equality will be proved in Theorem 10. From (21) we recursively get (20).
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Since the conditions of Theorem 4 hold in the present theorem we get that

d(Rngt(S1,R1), Rngt(S2,R2)) → 0 geometrically fast. (22)

Now, in (22) replace Rngt(S1,R1) with Rngt(Rng∞(S,R0)) and Rngt(S2,R2) with
Rngt(S,R0), then we get that

d(Rngt(Rng∞(S,R0)), Rngt(S,R0)) → 0, geometrically fast. (23)

From (20), (23) we arrive at

d(Rngt(S,R0), Rng∞(S,R0) → 0, geometrically fast.

The above Theorems 4 and 5 have an important consequence since it provides a
generalization, by relaxing important assumptions, of the basic asymptotic theory for an
NHMS. The theorem is the following and could be proved by just following the analogous
steps as in the proofs of Theorems 4 and 5 and Theorem 3.3 in [11]:

Theorem 6. Consider an NHMS and assume that{
ΔT(t)
T(t)

}∞

t=0
converges geometrically fast.

Let {Q(t)}∞
t=0 be the sequence of transition matrices and {p0(t)}∞

t=0 be the sequence of
allocation probabilities. If supt T̃ (Q(t)) < 1 then

lim
t→∞

E(q(0, t)) = q(∞) geometrically fast,

where q(∞) is the row of the stable matrix Q(∞) = limt→∞ Q(0, t).

The basic asymptotic theorem for an NHMS and which has been used in many papers
to provide further results is:

Theorem 7. Let an NHMS and let that (a) limt→∞‖Q(t)− Q‖ = 0 and Q a regular stochastic
matrix; (b) limt→∞‖p0(t)− p0‖ = 0;and (c) limt→∞[ΔT(t)/T(t)] = 0. Then

lim
t→∞

‖E(q(0, t))− q(∞)‖ = 0

where q(∞) is the row of the stable matrix Q(∞) = limt→∞ Qt.

Theorem 7 has been used extensively in the theory of NHMS to produce further results
see for example [10–12,17,51], and the relaxation of the necessary conditions in Theorem 6
is apparent.

Another consequence is that Theorem 4 provides conditions under which two different
NHMS, with the same number of states and population, but different initial states and dif-
ferent allocation probabilities of memberships if they have the same transition probabilities
sequence of memberships (PTMS of the embedded Markov chains), they converge in the
same expected relative population structure geometrically fast. This is stated in detail in
the following theorem which could be proved by just following the analogous steps as in
the proof of Theorems 4 and 5.
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Theorem 8. Let two NHMS a and b which have the same number of states, a common sequence
of transition probability matrices of memberships {Q(t)}∞

t=0 and the same total population of
memberships. Assume that{

ΔT(t)
T(t)

}∞

t=0
converges geometrically fast.

Let qa(0) and qb(0) be their initial relative population structures respectively, and {pa(t)}∞
t=0

and {pb(t)}∞
t=0 their sequences of allocation probabilities. If supt T̃ (Q(t)) < 1 then

lim
t→∞

E(qa(0, t)) = lim
t→∞

E(qb(0, t)) = q(∞) geometrically fast,

where q(∞) is the row of the stable matrix Q(∞) = limt→∞ Q(0, t).

6. Properties of the Limit Set

In the present section we establish some important properties of the limit set Rng∞(S,R0).
We start with the following definition:

Definition 6. Let n be an integer such that T (Q1Q2...Qn) < 1 for all Q1, Q2, ..., Qn ∈ [M].
Then [M] is said to be product scrambling and n its scrambling integer.

We will make use of the following Theorem 3.3 in [9]:

Theorem 9. ([9]). Let x, y be non-compact subsets of SM1,n. Then using the Hausdorff metric
we have

d(xM, yM) ≤ T (M)d(x, y).

We will now establish with a Theorem some important properties of the limit set.

Theorem 10. Consider an NHMSS for which [M] is an interval which is uniformly scrambling.
Assume that T(t) ≥ T(t − 1) > 0 for all t = 1, 2, ... and{

ΔT(t)
T(t)

}∞

t=0
converges to zero geometrically fast.

Also, assume that [S0], [R0] are compact and convex. Then if we define by

Rng∞(S0,R0) = lim
t→∞

Rngt(S0,R0) = ∩∞
t=1Rngt(S0,R0),

the limit set Rng∞(S0,R0) satisfies

Rng∞(S0,R0) = Rng∞(S0,R0)[M].

If in addition [M] is product scrambling with integer n then it is the unique set that has
this property.

Proof. For the first part of the Theorem 10 since Rng∞(S0,R0) is compact, it is sufficient to
show that

d(Rng∞(S0,R0), Rng∞(S0,R0)[M]) = 0.

In this respect
δ(Rng∞(S0,R0), Rng∞(S0,R0)[M]) =

max
q(0)∈[S0],
p0(τ)∈[R0]

Q(t)∈[M] for all τ,t

min
q(0)∈[S0],
p0(τ)∈[R0]

Q(t)∈[M] for all τ,t

∥∥∥∥ lim
t→∞

{E[q(0, t + 1)]} − lim
t→∞

{E[q(0, t)]}[M]

∥∥∥∥,
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where

{E[q(0, t + 1)]} = ∪q(0)∈[S0]
T(0)

T(t + 1)
q(0)

[
Mt+1

]
+

1
T(t + 1)

t+1

∑
τ=1

ΔT(τ) ∪p0(τ)∈[R0] p0(τ)
[
Mt−τ+1

]
.

Now there exists a q∗(0) ∈ [S0], Q∗(t) ∈ [M] for t ∈ [0, t], p0(τ) ∈ [R0] for τ ∈ [1, t],
i.e.,

E[q(0, t + 1)] =
T(0)

T(t + 1)
q∗(0)Q∗(0, t + 1)+

1
T(t + 1)

t+1

∑
τ=1

ΔT(τ)p∗
0(τ)Q

∗(τ, t + 1),

such that
δ(Rng∞(S0,R0), Rng∞(S0,R0)[M]) =

min
q(0)∈[S0],p0(τ)∈[R0],

Q(t)∈[M] for all τ,t

∥∥∥∥ lim
t→∞

E[q∗(0, t + 1)]− lim
t→∞

{E[q(0, t)]}[M]

∥∥∥∥. (24)

Now, for any values of the parameters of E[q(0, t)] that does not maximize it, the dif-
ference above is still greater or equal than the ones which minimize E[q(0, t)]. Thus, we
are free to choose the parameters q∗(0) ∈ [S0], Q∗(0, t) ∈

[
Mt] and p∗

0(τ) ∈ [R0] for every
τ ∈ [0, t]. With the same reasoning we could choose Q∗(t) in the place of [M]. Thus, we
get that

δ(Rng∞(S0,R0), Rng∞(S0,R0)[M]) =

≤ lim
t→∞

∥∥∥∥ T(0)
T(t + 1)

q∗(0)Q∗(0, t + 1)− T(0)
T(t)

q∗(0)Q∗(0, t + 1)
∥∥∥∥

+ lim
t→∞

‖ 1
T(t + 1)

t+1

∑
τ=1

ΔT(τ)p∗
0(τ)Q

∗(τ, t + 1)−

1
T(t)

t

∑
τ=1

ΔT(τ)p∗
0(τ)Q

∗(τ, t + 1)‖

≤ lim
t→∞

∣∣∣∣ T(0)
T(t + 1)

− T(0)
T(t)

∣∣∣∣‖q∗(0)‖1‖Q∗(0, t + 1)‖+

lim
t→∞

∣∣∣∣ 1
T(t + 1)

− 1
T(t)

∣∣∣∣
∥∥∥∥∥ t

∑
τ=1

ΔT(τ)p∗
0(τ)Q

∗(τ, t + 1)

∥∥∥∥∥
+ lim

t→∞

∣∣∣∣ ΔT(t)
T(t + 1)

∣∣∣∣‖p∗
0(t)‖. (25)

Since [M] is uniformly scrambling we have that T̄ =maxt∈NT (Q∗(t)) < 1 and thus
‖Q∗(τ, t)‖ < T̄ t−τ and∥∥∥∥∥ t

∑
τ=1

ΔT(τ)p∗
0(τ)Q

∗(τ, t + 1)

∥∥∥∥∥ ≤
t

∑
τ=1

ΔT(τ)T̄ t−τ+1,

which goes to zero as t → ∞ . Hence

δ(Rng∞(S0,R0), Rng∞(S0,R0)[M]) = 0.

In a similar way we could prove that

δ(Rng∞(S0,R0)[M], Rng∞(S0,R0)) = 0,
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which lead us to the conclusion

d(Rng∞(S0,R0)[M], Rng∞(S0,R0)) = 0.

For the second part of the theorem in addition we have that [M] is product scrambling
with index n. Assume that there is a second Rng∗

∞(S0,R0) which is compact for which

Rng∗
∞(S0,R0)[M] = Rng∗

∞(S0,R0).

Then we get that

d(Rng∗
∞(S0,R0), Rng∞(S0,R0)) = d(Rng∗

∞(S0,R0)[Mn], Rng∞(S0,R0)[Mn])

≤ (by Theorem 9 )

≤ T [Mn]d(Rng∗
∞(S0,R0), Rng∞(S0,R0)),

and since T [Mn] < 1 we get

d(Rng∗
∞(S0,R0), Rng∞(S0,R0)) = 0

from which we conclude that Rng∗
∞(S0,R0) and Rng∞(S0,R0) are the same set.

We will now establish an interesting result, that under certain conditions if we have
two different inherent Markov set chains for two NHMSS, then the Hausdorff metric of
the two sets of all possible expected relative structures of the NHMSS is less than the
multiplication of a function of the common bound of the two uniform coefficients of
ergodicity of the two intervals and the Hausdorff metric of the two intervals. We will need
the following Lemma from ([9] p. 70), or [52].

Lemma 8. Let q(0), q̃(0) be stochastic vectors and Q(t) ∈ [M];Q̃(t) ∈
[
M̃
]

for t = 1, 2, ... for
T (M) ≤ T <1 and T

(
M̃
)
≤ T <1. Then∥∥q(0)Q(1, t)− q̃(0)Q̃(1, t)

∥∥ ≤ T t‖q(0)− q̃(0)‖1 +
(
T t−1 + ... + 1

)
D

where D = maxn
∥∥Q(n)− Q̃(n)

∥∥.

Theorem 11. Let two NHMSS with inherent Markov set chains with two different tight intervals
[M] and

[
M̃
]

which have a common bound, i.e., T (M) ≤ T <1 and T
(
M̃
)
≤ T <1. Let that

for the first NHMSS we have q(0) ∈ [S1] and p0(τ) ∈ [R1] for τ = 1, . . . , t where [S1], [R1] are
convex and compact. For the second NHMSS we assume that q̃(0) ∈ [S2] and p̃0(τ) ∈ [R2] for
τ = 1, . . . , t where [S2], [R2] are convex and compact. Let that the two NHMSS have common total
population of memberships {T(t)}∞

t=0which is known. Assume that T(t) ≥ T(t − 1) > 0 and{
ΔT(t)
T(t)

}∞

t=0
converges to zero geometrically fast.

Denote by Rngt(S1,R1,M) the set of all possible expected relative population structures for
the first NHMSS and Rngt

(
S2,R2, M̃

)
for the second one, respectively. Then the Hausdorff metric

of the two limit sets of expected relative population structures is bounded by

d
(

Rng∞(S1,R1,M), Rng∞
(
S2,R2, M̃

))
≤ (1 − T )−1d

(
M, M̃

)
.

Proof. From Lemma 4 we get that

Rngt(S1,R1,M) = {E[q(0, t)] : E[q(0, t)] ∈ T(0)
T(t)

∪q(0)∈[S1]
q(0)

[
Mt]+
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+
1

T(t)

t

∑
τ=1

ΔT(τ) ∪p0(τ)∈[R1]
p0(τ)

[
Mt−τ

]
}, (26)

and an analogous description is valid for the set Rngt
(
S2,R2, M̃

)
. Since [S1], [R1], [S2], [R2]

are convex and compact and [M] and
[
M̃
]

are tight intervals from Theorem 1 we get that
the sets Rngt(S1,R1,M) and Rngt

(
S2,R2, M̃

)
are convex and compact, hence there is a

meaning to get their Hausdorff metric

d
(

Rngt(S1,R1,M), Rngt
(
S2,R2, M̃

))
=

max {δ
(

Rngt(S1,R1,M), Rngt
(
S2,R2, M̃

))
, (27)

δ
(

Rngt
(
S2,R2, M̃

)
, Rngt(S1,R1,M)

)
}.

Now, we have that

δ
(

Rngt(S1,R1,M), Rngt
(
S2,R2, M̃

))
=

max
q(0)∈[S1],p0(τ)∈[R1],

Q(t)∈[M] for all τ,t

min
q̃(0)∈[S2],p̃0(τ)∈[R2],

Q̃(t)∈[M̃] for all τ,t

‖E[q(0, t)]−E[q̃(0, t)]‖. (28)

There exists some q∗(0) ∈ [S1], p∗
0(τ) for every τ ∈ [1, t], Q∗(t) ∈ [M] for every

t ∈ [0, t] which determines a E[q∗(0, t)]; also for any q̃∗(0) ∈ [S2], any p̃∗
0(τ) for every

τ ∈ [1, t], and finally any Q̃∗
(t) ∈

[
M̃
]

for every t ∈ [0, t] which determines a E[q̃∗(0, t)]
for which we have

δ
(

Rngt(S1,R1,M), Rngt
(
S2,R2, M̃

))
≤ ‖E[q∗(0, t)]−E[q̃∗(0, t)]‖

≤ T(0)
T(t)

∥∥q∗(0)Q∗(0, t)− q̃∗(0)Q̄∗
(0, t)

∥∥ (29)

+
1

T(t)

t

∑
τ=1

ΔT(τ)
∥∥∥p∗

0(τ)Q
∗(τ, t)− p̃∗

0(τ)Q̃
∗
(τ, t)

∥∥∥.

Using Lemma 8 we get that

T(0)
T(t)

∥∥∥q∗(0)Q∗(0, t)− q̃∗(0)Q̃∗
(0, t)

∥∥∥ ≤

T(0)
T(t)

T t‖q∗(0)− q̃∗(0)‖+ T(0)
T(t)

∥∥∥T t−1 + ... + 1
∥∥∥max

t

∥∥∥Q∗(t)− Q̃∗
(t)
∥∥∥

≤ T(0)
T(t)

T tδ(S1,S2) +
T(0)
T(t)

∥∥∥T t−1 + ... + 1
∥∥∥δ
(
M, M̃

)
. (30)

Similarly, we have

1
T(t)

t

∑
τ=1

ΔT(τ)
∥∥∥p∗

0(τ)Q
∗(τ, t)− p̃∗

0(τ)Q̃
∗
(τ, t)

∥∥∥
≤ 1

T(t)

t

∑
τ=1

ΔT(τ)δ(R1,R2)T t−τ+

1
T(t)

t

∑
τ=1

ΔT(τ)
(
T t−1 + ... + 1

)
δ
(
M, M̃

)
. (31)

From (29), (30) and (31) as t → ∞ we get that

δ
(

Rng∞(S1,R1,M), Rng∞
(
S2,R2, M̃

))
≤ (1 − T )−1δ

(
M, M̃

)
, (32)
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since

lim
t→∞

1
T(t)

t

∑
τ=1

ΔT(τ)
(
T t−1 + ... + 1

)
δ
(
M, M̃

)
= lim

t→∞

1
T(t)

δ
(
M, M̃

) t

∑
τ=1

ΔT(τ)
t−1

∑
k=τ

T t−k ≤

lim
t→∞

1
T(t)

(1 − T )−1δ
(
M, M̃

) t

∑
τ=1

ΔT(τ) =
[

1 − T(0)
T

]
(1 − T )−1δ

(
M, M̃

)
,

also

lim
t→∞

T(0)
T(t)

T tδ(S1,S2) + lim
t→∞

T(0)
T(t)

∥∥∥T t−1 + ... + 1
∥∥∥1δ
(
M, M̃

)
=

T(0)
T

(1 − T )−1δ
(
M, M̃

)
and finally

lim
t→∞

1
T(t)

t

∑
τ=1

ΔT(τ)δ(R1,R2)T t−τ+1 = 0,

as we have seen in the proof of Theorem 8. Similarly, as we proved (32) we could prove
that

δ
(

Rng∞
(
S2,R2, M̃

)
, Rng∞(S1,R1,M)

)
≤ (1 − T )−1δ

(
M̃,M

)
. (33)

From (32) and (33) we arrive at the conclusion of the Theorem.

7. An Illustrative Representative Example

In the present section we present an illustrative representative example to a Geriatric
and Stroke Patients system and through it we will present the methodology in terms of
computational geometry algorithms needed for an application to any population system.
The NHMS model used is a general Coxian phase type model, special forms of which
has been used by the school of research by McClean and her co-authors [38,53–59]. We
distinguish three states which are called hospital pathways. For the system of Geriatric
and Stroke Patients these stages are labeled as “Acute Care”, the “Rehabilitative” and the
“Long Stay”. From each stay we have movements outside the hospital due to discharge or
death. Also, geriatric patients may be thought of as progressing through stages of acute
care, rehabilitation and long-stay care, where most patients are eventually rehabilitated
and discharged. Geriatric medical services are an important asset in the care of elderly and
their quality is certainly an indication of the level of civilization in a society. At the same
time their funding could be easily reduced due to political pressure on savings in health
care expenditure.

It is apparent that the number of pathways could be increased as much as it is needed
to accommodate any important characteristics of any patients systems. However, there is
no need to consider in here a larger number of states due to the restriction of space. Also,
the internal movements in a population of patients could be of any number to accommodate
any important characteristics.

Consider a hospital which starts with T(0) = 400 patients and in a very short time
reaches its full capacity of 435 patients, i.e., T(1) = 420, T(2) = 430, T(3) = 435. As-
sume three hospital pathways and let that the initial relative population structure be any
stochastic vector which lies in the set

S0 = {[0 0 0], [1 1 1]}.

The physical meaning of selecting S0 as above is that the initial relative structure
could be any stochastic vector, i.e., S0 contains all possible initial structures. For example
q(0) =

[
0.2 0.3 0.5

]
means that 20% of the patients are in pathway 1, 30% are in

pathway 2, and 50% are in pathway 3. Now, there are some initial structures which
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might not be acceptable for the management of the hospital, such as for example let say
q(0) =

[
0 0 1.0

]
. In this case in the initial design of the hospital measures should be

taken that such a situation will be avoided in cooperation with other nearby hospitals.
Then S0 could be chosen to be

S0 = {[0 0 0], [0.1 1 0.9]}.

This is a convex set which excludes the initial relative structure q(0) =
[
0 0 1.0

]
.

However, it also needs to be tight . How to make it tight is explained below with the use of
the Algorithm 1. Naturally, we could exclude more than one relative structure from the
chosen initial relative structure but the procedure will be the same.

Most new patients enter the system in hospital pathway one, either by taking an
empty place or as a virtual replacement of a discharged patient. Hence, let R0 be the convex
set from which allocation probabilities are drawn and let it be the interval

R0 = {[0.5 0.2 0.1], [0.7 0.4 0.1]}.

The set of stochastic vectors of allocation probabilities that are in the above interval
is a convex set with vertices r1 = [0.7 0.2 0.1] and r2 = [0.5 0.4 0.1]. How to find the
vertices will be explained below. The physical meaning of the above interval is that any
stochastic vector that belongs in the interval R0 is a candidate to represent a registration
policy for the hospital. Naturally, we can restrict our interval R0 to an interval which will
contain the desired recruitment policies of the hospital management and find in this way
using the results of the present paper the consequences of these policies. The recruitment
vectors are the best control variables for human populations ([2]), as are the hospitals in
this case. Methods of control by recruitment could be found in [50,60–62]. However, the
interval R0 needs to be tight and how to make it tight is explained below with the use of
the Algorithm 1.

Now, by observing past data it is not difficult to determine an interval of matrices
[M] =

[
Q̌, Q̂

]
where all stochastic transition matrices of the movements of memberships

lie. Please note that the fact that the matrices Q̌, Q̂ are not necessarily stochastic matrices
makes this task easy. We need that [M] =

[
Q̌, Q̂

]
should be tight. In order to test that

interval [M] is tight we use Lemma 1 and Definition 5
We chose [M] to be

Q̌ =

⎛⎝0.5 0.2 0.1
0.2 0.6 0.2
0.3 0.2 0.3

⎞⎠ and Q̂ =

⎛⎝0.7 0.4 0.1
0.2 0.6 0.2
0.5 0.5 0.3

⎞⎠,

in order that [M] is tight every row should be tight hence using Lemma 1 we could see
that the interval is tight. Hence, the stochastic matrices that belong to [M] is a convex
polytope and we need to find its vertices. The same applies for S0 and R0 which are tight,
and we need to find the vertices of the convex polytope on which all stochastic vectors of
the interval lie.

Applying Lemma 1 we find that the set S0 is tight and applying Algorithm 1 we get
that S0 is convex with vertices υ1 = (1 0 0), υ2 = (0 1 0) and υ3 = (0 0 1). The physical
meaning of the set S0 in here is that at the start of our study at time 0 we allow that
the hospital could have any relative population structure. Applying Lemma 1 we find
that the set R0 is tight and applying Algorithm 1 we get that R0 is convex with vertices
r1 = (0.7 0.2 0.1), r2 = (0.5 0.4 0.1).
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Algorithm 1 ([9]) Finding the vertices of a tight interval [p, q].
For each i = 1, 2, 3 construct the vectors:

For i = 1 and the vector p

[p1 p2 p3] , [p1 p2 q3] , [p1 q2 p3] , [p1 q2 q3],

replace p1 with p̃1 such that the above vectors will become stochastic.
If any of the four resulting stochastic vectors

[ p̃1 p2 p3] , [ p̃1 p2 q3] , [ p̃1 q2 p3] , [ p̃1 q2 q3],

belongs in the interval [p, q] then it is a vertex.
Do the same for the vector q.
END.

To find the vertices of the convex set of stochastic matrices that belong to the tight
interval [M] we apply Algorithm 1 for each row vector in

[
Q̌, Q̂

]
and we find that the

vertices are

V1 =

⎛⎝0.7 0.2 0.1
0.2 0.6 0.2
0.5 0.2 0.3

⎞⎠ , V2 =

⎛⎝0.7 0.2 0.1
0.2 0.6 0.2
0.3 0.4 0.3

⎞⎠,

V3 =

⎛⎝0.5 0.4 0.1
0.2 0.6 0.2
0.5 0.2 0.3

⎞⎠ , V4 =

⎛⎝0.5 0.4 0.1
0.2 0.6 0.2
0.3 0.4 0.3

⎞⎠.

Now we compute all the row vectors υiV j for i = 1, 2, 3 and j = 1, 2, 3, 4 :(
0.7 0.2 0.1

)
,
(
0.7 0.2 0.1

)
,
(
0.5 0.4 0.1

)
,
(
0.5 0.4 0.1

)
,(

0.2 0.6 0.2
)
,
(
0.2 0.6 0.2

)
,
(
0.2 0.6 0.2

)
,
(
0.2 0.6 0.2

)
(
0.5 0.2 0.3

)
,
(
0.3 0.4 0.5

)
,
(
0.5 0.2 0.3

)
,
(
0.3 0.4 0.3

)
.

These 12 stochastic vectors belong to a convex set, hence using any of the computa-
tional geometry methods in [61] we find that the vertices of the convex hull of these vectors
are

ω1 =
(
0.7 0.2 0.1

)
, ω2 =

(
0.5 0.4 0.1

)
, ω1 =

(
0.2 0.6 0.2

)
,

ω4 =
(
0.5 0.2 0.3

)
, ω5 =

(
0.3 0.4 0.3

)
.

Hence

Rng1(S0,R0) =
T(0)
T(1)

conv{ω1, ω2, ω3, ω4, ω5}+

1
T(1)

[T(1)− T(0)]conv{r1, r2},

from which we get that Rng1(S0,R0) is the convex set with vertices given by the above
Minkowski sum thus(

0.7 0.2 0.1
)
,
(
0.51 0.39 0.1

)
,
(
0.22 0.58 0.2

)
,
(
0.51 0.2 0.29

)
,(

0.32 0.39 0.29
)
,
(
0.69 0.21 0.1

)
,
(
0.5 0.4 0.1

)
,(

0.21 0.59 0.2
)
,
(
0.5 0.21 0.29

)
,
(
0.31 0.4 0.29

)
,(

0.51 0.2 0.29
)
.

Taking into account the rounding errors done with all the multiplications and additions
we compute the vertices with one decimal point of accuracy and we get that Rng1(S0,R0)
is the convex hull of the vertices
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(
0.7 0.2 0.1

)
,
(
0.5 0.4 0.1

)
,
(
0.2 0.6 0.2

)
,
(
0.5 0.2 0.3

)
,

and
(
0.3 0.4 0.3

)
.

This result verifies Theorem 1. With now the vertices of the convex set Rng1(S0,R0)
we repeat the previous process to find Rng2(S0,R0).

Now, in this way at every point in time we have the convex compact space Rngt(S0,R0)
of all possible expected population structures. If any of these are problematic in some way
then apparently the hospital has a lead time to adapt new policies and an instrument to
visualize their consequences.

To verify that a tight interval of transition probability matrices is uniformly scram-
bling we need a sufficient condition as a criterion. This is given in the following easily
proved Lemma.

Lemma 9. Let [M] =
[
Q̌, Q̂

]
then [M] is uniformly scrambling if the following holds T

(
Q̂− Q̌

)
< 1.

Let [M] be the interval of the application we are working so far, then it is easy to check
that T

(
Q̂ − Q̌

)
< 1 and hence any stochastic matrix selected from [M] will be scrambling.

We select as Q(1), Q(2), Q(3), Q(4) the four vertices of the convex set of stochastic matrices
in [M] and as Q(6), Q(7) any convex combination of them. We also select as q(0) =(
0.5 0.25 0.25

)
and as vectors of allocation probabilities we select p0(1) =

(
0.6 0.3 0.1

)
and p0(2) =

(
0.5 0.4 0.1

)
which both belong to R0. Then we compute

E[q(0, 1)] =
(
0.5 0.3 0.2

)
E[q(0, 2)] =

(
0.48 0.36 0.16

)
E[q(0, 3)] =

(
0.4 0.43 0.17

)
E[q(0, 4)] =

(
0.34 0.48 0.18

)
E[q(0, 5)] =

(
0.35 0.46 0.19

)
E[q(∞)] =

(
0.4 0.4 0.2

)
.

Hence the expected relative population structure converges in six steps, that is
geometrically fast which verifies Theorem 6. Also, it is easy to see that

E[q(∞)]V1 =
(
0.4 0.4 0.2

)⎛⎝0.7 0.2 0.1
0.2 0.6 0.2
0.5 0.2 0.3

⎞⎠ =
(
0.4 0.4 0.2

)
,

and the same happens with all the vertices of [M] which was proved in Theorem 10.
The hospital now has beforehand knowledge with a good lead time where its policies

and tendencies of the hospital system will converge in terms of relative expected population
structure. Hence it is able to decide if this is a desirable situation; to find out if it can cope
with the resources available in doctors, nurses and medical material; if its medical facilities
are adequate; it can also have an estimate of the cost of the system see [62,63].

Consider now that the previous NHMS is system a and let b be a second NHMS
with initial population structure q(0) =

(
0.6 0.2 0.2

)
; allocation probabilities p0(1) =(

0.5 0.4 0.1
)

and p0(2) =
(
0.7 0.2 0.1

)
and the remaining parameters the same. Then

the asymptotically relative population structure is again E[q(∞)] =
(
0.4 0.4 0.2

)
which

verifies Theorem 8. The physical meaning of the previous result is that when the hospital is at
full capacity for some time, then with different initial structures and allocation probabilities
the expected relative population structure remains unchanged under the condition that the
maximum ergodicity coefficient of the transition probability matrices is less than one.

To be able to use for the benefit of the hospital the last theorem, that is Theorem 11,
we need a way to find a numerical value that will replace d

(
M, M̃

)
. The following Lemma,

which is not difficult to be proved, provides a solution to the problem.
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Lemma 10. Let M, M̃ be two tight intervals of transition probability matrices for the memberships.
Let V1, V2, . . . , Vm be the vertices of the convex set M, and U1, U2, . . . , Un be the vertices of the
convex set M̃. Then

δ
(
M, M̃

)
= ‖a∗

1V1 + a∗
2V2 + ... + a∗

mVm − [b∗
1U1 + b∗

2U2 + ... + b∗
nUn]‖,

where a∗
1, a∗

2, . . . , a∗
m is the solution of the optimization problem

max[a1V1 + a2V2 + ... + amV m] with

a1 + a2 + ... + am = 1, a1 ≥ 0, a2 ≥ 0, . . . , am ≥ 0.
and b∗

1 ,b∗
2 ,..., b∗

n is the solution of the optimization problem

min[b1U1 + b2U2 + ... + bnUn] with

b1 + b2 + ... + bn = 1, b1 ≥ 0, b2 ≥ 0, . . . , bm ≥ 0.

In what follows we summarize in Algorithm 2 for convenience of the interest readers the
previous steps which are necessary for using the present results in any population system.

Algorithm 2

Use Lemma 1 to check that [S0] is tight.
Apply Algorithm 1 to find the vertices of the convex set [S0] :

υ1, υ2, . . . , υs.

Use Lemma 1 to check that [R0] is tight.
Apply Algorithm 1 to find the vertices of the convex set [R0] :

r1, r2, . . . , rπ .

Use Lemma 1 to check that each row in
[
Q̌, Q̂

]
is tight. If yes then [M] is tight.

Apply Algorithm 1 for each row vector in
[
Q̌, Q̂

]
to find the vertices of [M] :

V1, V2, . . . , V m.

Compute all the raw vectors

υiV j for all i = 1, 2, . . . , s; j = 1, 2, . . . , m.

Use any of the computational geometry methods in [64].
to find the vertices of the convex hull of the vectors υiV j for all i = 1, 2, . . . , s; j = 1, 2, . . . , m.

Let that
ω1, ω2, . . . , ων,

the vertices found. Compute using properties of the Minkowski sum of vectors

Rng1(S0,R0) =
T(0)
T(1)

conv{ω1, ω2, ω3, ω4, ω5}+

1
T(1)

[T(1)− T(0)]conv{r1, r2}.

Repeat the process until Rng∞(S0,R0) geometrically fast, i.e., in 6 to 8 steps.
Use Lemma 9 to verify that [M] =

[
Q̌, Q̂

]
is uniformly scrambling, i.e., T

(
Q̂ − Q̌

)
< 1.

Use Lemma 10 to find bounds for

δ
(
M, M̃

)
< μ and δ

(
M̃,M

)
< μ̃.

Set
d
(
M, M̃

)
< max(μ, μ̃).
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8. Conclusions

The concept of the non-homogeneous Markov set system was introduced which is
a NHMS with its parameters in an interval. It was established under which conditions
in a NHMSS the set of all possible expected relative population structures at a certain
point in time is a convex set and a convex polygon. Then it was founded that if in an
NHMSS the sets of initial structures are different but compact and convex; also, the sets
of allocation probabilities of the memberships are different but convex and compact; the
inherent non-homogeneous Markov set chain is common; then the Hausdorff metric of
the two different sets of all possible expected relative structures asymptotically goes to
zero geometrically fast, i.e., asymptotically they coincide geometrically fast. Then we
established that in an NHMSS if the total population of memberships converge in a finite
number geometrically fast, and the sets of initial structures and allocation probabilities
of memberships are compact and convex, then the set of all possible expected relative
population structure converge to a limit set geometrically fast. Then it was proved that
these results generalize certain well-known results for NHMS’s. Then it was proved that
under some mild conditions the limit set of the expected relative population structures of
an NHMSS remains invariant if any selected transition probability matrix of the inherent
non-homogeneous Markov chain from the respective interval is multiplied by it from the
right. It was also proved that the limit set is the only set with this property if the interval
of selection of transition probabilities of the inherent non-homogeneous Markov chain
is product scrambling. Finally it was assumed that two different NHMSS in the sense
that they have different sets of selecting initial distributions, different sets of selecting
allocation probabilities and different intervals of selecting the transition probabilities of
the inherent non-homogeneous Markov chains, while they have in common that their
respective intervals are uniformly scrambling with a common bound and they have the
same total population of memberships. Then it was proved that the Hausdorff metric of
the limit sets of the expected relative population structures of the two NHMSS is bounded
by the multiplication of a function of the Hausdorff metric of the two tight intervals of
selection of the stochastic matrices of the inherent non-homogeneous Markov set chains
and the bound of their uniform coefficients of ergodicity.
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Abstract: The homogeneous branching process with migration and continuous time is considered.
We investigated the distribution of the period-life τ, i.e., the length of the time interval between the
moment when the process is initiated by a positive number of particles and the moment when there
are no individuals in the population for the first time. The probability generating function of the
random process, which describes the behavior of the process within the period-life, was obtained. The
boundary theorem for the period-life of the subcritical or critical branching process with migration
was found.
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1. Introduction

Branching processes (BPs) are often used as mathematical models of different real pro-
cesses, in particular, chemical [1], biological [2], genetic [3], demographic [4], technical [5]
and others. In addition, BPs can describe the population dynamics of particles of different
natures, in particular, they can be photons, electrons, neutrons, protons, atoms, molecules,
cells, microorganisms, plants, animals, individuals, prices, information, etc. This list can be
continued. Thus, a BP is quite widely used in various sciences. Since third party factors
often exist, there is a need to study different modifications of this process. Among them are
BPs with immigration, emigration, or a combination of two processes, namely processes
with migration for the case of discrete or continuous time.

The theory of Non-Homogeneous Markov systems first introduced in [6]. The case
of the Non-Homogeneous Markov systems in continuous time in its latest results exist in
Dimitriou and Georgiou [7].

For the first time, the term period-life (PL) τ for the Galton–Watson BP and the Markov
BP with immigration was considered by Zubkov A.M. in [8]. He obtained asymptotic
formulas for the distribution tails as a function of the PL and found the necessary and
sufficient conditions for the process to obtain zero for the corresponding Markov chain.
Vatutin V.A. [9] continued the study of PL for the critical case and obtained a limit theorem
on the behavior of the process at τ > t and provided that the beginning of the PL T = 0.
PL for a critical BP with random migration and discrete time were studied by Yanev
N.M. and Mitov K.V. [10]. The distribution PL of the BP with immigration in a limited
environment and its behavior in the PL was investigated by Boyko R.V. [11]. Formanov Sh.
K., Yasin M.T. [12] obtained boundary theorems for the PL of critical BP Galton–Watson
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with migration. The case of the Bellman–Harris BP with immigration was studied in [13,14].
The distribution of the PL for the subcritical and critical BP with immigration in a random
environment was studied in the works [15,16]. However, the asymptotic properties of the
PL of the branching process with migration and continuous time (BPMCT) have not been
considered to date.

The case of a BPMCT is considered in [17–21]. Chen A. Y. and Renshaw E. [17] have
considered a case of the process in which large immigration, i.e., the sum of immigration
rates, is infinite; excessively high population levels are avoided by allowing the carrying
capacity of the system to be controlled by mass emigration. Rahimov I. and Al-Sabah
W.S. [18] have investigated a family of independent, equally distributed with a continuous
time Markov BP. The migration was determined as follows: the particles first immigrate
and stay in the population for some time, and then emigrate. Srivastava O. P. and Gupta
S. [19] have considered a branching process in which the migration and the emigration
of the particle occur independently of each other and with the same probability. Pakes
A. G [20] has studied the process of when a batch of immigrants arrive in a region at
event times of a renewal process and the individuals grow according to a Bellman–Harris
branching process. Tribal emigration allows the possibility that all descendants of a group
of immigrants collectively leave the region at some instant. Balabaev I. S. [21] considered
the Khan–Nagaev process [22] as a nested BP.

In this article, we consider a more general model of the BPMCT [23]. Immigration,
emigration, and evolution occur at random moments in time are determined by the intensity
of the transition probabilities.

The purpose of this work is to study the PL of the BPMCT and find the distribution of
the PL and the boundary distribution in the case of the subcritical or critical process. This
model can be used to model real processes, including biological and demographic, which
allow migration processes with continuous time.

The structure of this article is as follows. The first part contains a brief overview of PL
that studies different types of BP. Then comes a model of the process with migration and
continuous time. In the next section, we find the form of the differential equation and the
generating function for the random process, which describes the behavior of the process
within the PL. The boundary theorem for PL of the subcritical and critical processes is
given below. The section of the conclusion emphasizes the obtained results.

2. Description of a Branching Process Model with Migration and Continuous Time

Consider a Markov BP with one type of particles and migration μ(t), t ∈ [0, ∞). Let
μ(t) denote the number of particles at time t ∈ [0, ∞).

We suppose that at time t = 0, the process starts with one particle in the system:

μ(0) = 1. (1)

The process μ(t), t ∈ [0, ∞) then Δt → 0 is given by the transition probabilities:
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P{μ(t + Δt) = j|μ(t) = i} =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + q0Δt + o(Δt), i = j = 0;
qjΔt + o(Δt), i = 0, j = 1, 2, ...;

(p0 +
m
∑

l=1
rl)Δt + o(Δt), i = 1, j = 0;

1 + (q0 + r0 + p1)Δt + o(Δt), i = 1, j = 1;
(pj + qj−1)Δt + o(Δt), i = 1, j = 2, ...;
m
∑
l=i

rlΔt + o(Δt) 1 < i ≤ m, j = 0;

(p0 + r1)Δt + o(Δt), i = 2, 3, ..., j = i − 1;
ri−jΔt + o(Δt), i = 2, 3, ..., j < i − 1;
1 + (q0 + r0 + ip1)Δt + o(Δt), i = 2, 3, ..., i = j;
(ipj−i+1 + qj−i)Δt + o(Δt), i = 2, 3, ..., i < j;
o(Δt), in other cases,

(2)

where m is a fixed integer, and pk, qk, rn satisfy the conditions:

pk ≥ 0, k �= 1, p1 < 0,
∞

∑
k=0

pk = 0,

qk ≥ 0, k �= 0, q0 < 0,
∞

∑
k=0

qk = 0,

rn ≥ 0, n = 1, m, r0 < 0,
m

∑
k=0

rk = 0.

We note that pk (k = 0, 1, ...) is the intensity of the reproduction particle, qk (k = 0, 1, ...)
is the intensity of immigration, and rn (n = 0, m) is the intensity of emigration.

We introduce the following notation:

f (s) =
∞

∑
n=0

pnsn, |s| ≤ 1, s ∈ C,

g(s) =
∞

∑
n=0

qnsn, |s| ≤ 1, s ∈ C,

r(s) =
m

∑
n=0

rns−n, 0 < |s| ≤ 1.

We let F̂(t, s) be the probability generating functions (PGFs) of a BP with continuous
time (without migration) ([24], page 24).

3. Results

In this section, we find a differential equation for the PGF and PGF random process,
which describes the behavior of the process within the PL of the BPMCT.

The method of PGF is widely used in the study of processes with continuous time,
because in some cases, it can be found in the form of its generation, and then the corre-
sponding probabilities of the process are calculated. The PGF of the process will uniquely
determine the distribution of the process and the limiting behavior of the process.

3.1. PGF of the Random Process, Which Describes the Behavior of the Process within the PL

Definition 1. [8] τ is the PL of a BP within which immigration begins at the moment T and
has length τ if P{μ(T + τ) = 0} = P{μ(T − Δt) = 0} = 0 and P{μ(t) = 0} > 0 for all
t ∈ [T, T + τ) (the trajectories of the process are assumed to be continuous from the right).
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Let:
u(t) = P{τ > t},

and define a random process ν(t), which describes the behavior of the process within
the PL:

ν(t) =
{

μ(t), t ≤ τ,
0, t > τ,

obviously that:
ν(0) = μ(0).

We define a PGF for ν(t):

N(t, s) =
∞

∑
k=0

P{ν(t) = k}sk.

Theorem 1. Let τ be the PL of the BPMCT, then:
1. The PGF N(t, s) satisfies the differential equation:

∂N(t, s)
∂t

=
∂N(t, s)

∂s
f (s) + N(t, s)(g(s) + r(s))

− (g(s) + r(s))P{ν(t) = 0}+
m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − sn−k), (3)

with the initial condition:

N(0, s) =
q0 − g(s)

q0
. (4)

2. The PGF for ν(t) has the form:

N(t, s) = V
(

t +
s∫

0

du
f (u)

)
e

t∫
0
(g(F̂(u,s))+r(F̂(u,s)))du

−
t∫

0

P{ν(t) = 0}
(

g(F̂(t − x, s)) + r(F̂(t − x, s))
)

e

t−x∫
0
(g(F̂(u,s))+r(F̂(u,s)))du

dx

+

t∫
0

m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − F̂n−k(t − x, s))e

t−x∫
0
(g(F̂(u,s))+r(F̂(u,s)))du

dx, (5)

where V(·) is some continuous-differentiated function that satisfies:⎧⎨⎩ V
( s∫

0

du
f (u)

)
= q0−g(s)

q0
,

V(∞) = 1.
(6)

Proof of Theorem 1. We prove the first part of the theorem.
Consider:

∞

∑
k=0

P{ν(t + Δt) = k|ν(t) = n}sk.

For n = 0:
∞

∑
k=0

P{ν(t + Δt) = k|ν(t) = 0}sk = 1s0 = 1.
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If n = 1 then:

∞

∑
k=0

P{ν(t + Δt) = k|ν(t) = 1}sk =
∞

∑
k=0

P{μ(t + Δt) = k|μ(t) = 1}sk

= s + ( f (s) + g(s)s +
m

∑
k=1

rk + r0s)Δt + o(Δt).

In case 1 < n ≤ m:

∞

∑
k=0

P{ν(t + Δt) = k|ν(t) = n}sk =
∞

∑
k=0

P{μ(t + Δt) = k|μ(t) = n}sk

= sn +
(
nsn−1 f (s) + sng(s) + sn

n−1

∑
k=0

rks−k +
m

∑
k=n

rk
)
Δt + o(Δt).

For n > m:

∞

∑
k=0

P{ν(t + Δt) = k|ν(t) = n}sk =
∞

∑
k=0

P{μ(t + Δt) = k|μ(t) = n}sk

= sn +
(
nsn−1 f (s)t + sng(s) + snr(s)

)
Δt + o(Δt).

Hence, we obtain the following:

∞

∑
k=0

P{ν(t + Δt) = k|ν(t) = n}sk

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, n = 0;

s + ( f (s) + g(s)s +
m
∑

k=1
rk + r0s)Δt + o(Δt), n = 1;

sn +
(
nsn−1 f (s) + sn(g(s) +

n−1
∑

k=0
rks−k) +

m
∑

k=n
rk
)
Δt + o(Δt), 1 < n ≤ m;

sn +
(
nsn−1 f (s) + sn(g(s) + r(s))

)
Δt + o(Δt), n > m.

Consider the PGF N(t, s).
Let T be the beginning of the PL of the process μ(t), then:

N(0, s) =
∞

∑
k=0

P{ν(0) = k}sk

=
∞

∑
k=0

P{μ(T) = k|μ(T − Δt) = 0, μ(0) > 0}sk

= lim
Δt→0

∞

∑
k=1

(qkΔt + o(Δt))sk

∞
∑

k=1
qkΔt + o(Δt)

=
∞

∑
k=1

qksk

−q0
=

q0 − g(s)
q0

.

Since it is the initial condition, we obtain (4).
Thus, we derive:

N(t + Δt, s) =
∞

∑
k=0

∞

∑
n=0

P{ν(t + Δt) = k|ν(t) = n}P{ν(t) = n}sk = P{ν(t) = 0}

+
m

∑
n=1

P{ν(t) = n}
(

sn + (nsn−1 f (s) + sng(s) + sn
n−1

∑
k=0

rks−k +
m

∑
k=n

rk)Δt + o(Δt)
)
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+
∞

∑
n=m+1

P{ν(t) = n}
(

sn + nsn−1 f (s)Δt + sng(s)Δt + snr(s)Δt + o(Δt)
)

=
∞

∑
n=0

P{ν(t) = n}sn +
∞

∑
n=1

P{ν(t) = n}nsn−1 f (s)Δt +
∞

∑
n=1

P{ν(t) = n}g(s)snΔt

+
m

∑
n=1

P{ν(t) = n}
(
r(s)sn +

m

∑
k=n

rk(1 − sn−k)
)
Δt + o(Δt)

= N(t, s) +
∂N(t, s)

∂s
f (s)Δt + N(t, s)g(s)Δt − g(s)P{ν(t) = 0}Δt

+N(t, s)r(s)Δt − r(s)P{ν(t) = 0}Δt +
m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − sn−k)Δt + o(Δt)

= N(t, s) +
(

∂N(t, s)
∂s

f (s) + N(t, s)(g(s) + r(s))− (g(s) + r(s))P{ν(t) = 0}

+
m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − sn−k)

)
Δt + o(Δt).

Consider N(t+Δt,s)−N(t,s)
Δt and directing Δt → 0 , we obtain (5).

We turn to the second part of the theorem. In proving the second part, we will use the
notation g(s) + r(s) = γ(s).

Consider the equation of the characteristics:

dt = − ds
f (s)

=
dN(t, s)

(N(t, s)− P{ν(t) = 0})γ(s) +
m
∑

n=1
P{ν(t) = n}

m
∑

k=n
rk(1 − sn−k)

.

The first integral of this equation:

C1 = t +
s∫

0

du
f (u)

.

We obtain the second integral of this equation:

dt =
dN(t, s)

(N(t, s)− P{ν(t) = 0})γ(s) +
m
∑

n=1
P{ν(t) = n}

m
∑

k=n
rk(1 − sn−k)

,

and rewrite it in the form:

∂N(t, s)
∂t

= (N(t, s)− P{ν(t) = 0})γ(s) +
m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − sn−k).

We find the solution of the corresponding homogeneous equation:

N(t, s) = C2e

t∫
0

γ(F̂(u,s))du
.

Using the method of the variation of constants, we obtain a partial solution of the
corresponding inhomogeneous equation:

N(t, s) = −
t∫

0

P{ν(t) = 0}γ(F̂(t − x, s))e

t−x∫
0

γ(F̂(u,s))du
dx
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+

t∫
0

m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − F̂n−k(t − x, s))e

t−x∫
0

γ(F̂(u,s))du
dx.

Thus, the general solution of the inhomogeneous equation will take the form:

N(t, s) = C2e

t∫
0

γ(F̂(u,s))du
−

t∫
0

P{ν(t) = 0}γ(F̂(t − x, s))e

t−x∫
0

γ(F̂(u,s))du
dx

+

t∫
0

m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − F̂n−k(t − x, s))e

t−x∫
0

γ(F̂(u,s))du
dx.

Hence, the second integral of the equation:

C2 = N(t, s)e
−

t∫
0

γ(F̂(u,s))du
+

t∫
0

P{ν(t) = 0}γ(F̂(t − x, s))e

t−x∫
0

γ(F̂(u,s))du
dxe

−
t∫

0
γ(F̂(u,s))du

−
t∫

0

m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − F̂n−k(t − x, s))e

t−x∫
0

γ(F̂(u,s))du
dxe

−
t∫

0
γ(F̂(u,s))du

.

According to ([25] page 97), we obtain:

V
(

t +
s∫

0

du
f (u)

)
= N(t, s)e

−
t∫

0
γ(F̂(u,s))du

+

t∫
0

P{ν(t) = 0}γ(F̂(t − x, s))e

t−x∫
0

γ(F̂(u,s))du
dxe

−
t∫

0
γ(F̂(u,s))du

−
t∫

0

m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − F̂n−k(t − x, s))e

t−x∫
0

γ(F̂(u,s))du
dxe

−
t∫

0
γ(F̂(u,s))du

,

where V(·) is some continuous-differentiated function.
Thus, we obtain a PGF:

N(t, s) = V
(

t +
s∫

0

du
f (u)

)
e

t∫
0

γ(F̂(u,s))du

−
t∫

0

P{ν(t) = 0}γ(F̂(t − x, s))e

t−x∫
0

γ(F̂(u,s))du
dx

+

t∫
0

m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − F̂n−k(t − x, s))e

t−x∫
0

γ(F̂(u,s))du
dx.

From the initial condition, we obtain:

V
( s∫

0

du
f (u)

)
=

q0 − g(s)
q0

.
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When s = 1, then:

N(t, 1) = V
(

t +
1∫

0

du
f (u)

)
e

t∫
0

γ(F̂(u,1))du

−
t∫

0

P{ν(t) = 0}γ(F̂(t − x, 1))e

t−x∫
0

γ(F̂(u,1))du
dx

+

t∫
0

m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − F̂n−k(t − x, 1))e

t−x∫
0

γ(F̂(u,1))du
dx.

From ([24], p. 69), it is known that:

1∫
0

du
f (u)

= ∞,

then V(∞) = 1. Thus, we obtain (6).
Considering [9], and g(s) + r(s) = γ(s) we obtain (5), where V(·) is some continuous-

differentiated function that satisfies (6).

3.2. The Limit Theorem for PL of the Subcritical and Critical BPMCT

Let ξ(t) be BP (without migration) with continuous time ([24], page 24), then we
obtain the following result:

Theorem 2. Let Mξ(t) ≤ 0, then:
lim
t→∞

u(t) = 0. (7)

Proof of Theorem 2. Consider:

u(t) = P{τ > t} = P{ν(t) > 0} = 1 − N(t, 0)

= 1 − V
(

t +
0∫

0

du
f (u)

)
e

t∫
0
(g(F̂(u,0))+r(F̂(u,0)))du

+

t∫
0

P{ν(t) = 0}
(

g(F̂(t − x, 0)) + r(F̂(t − x, 0))
)

e

t−x∫
0
(g(F̂(u,0))+r(F̂(u,0)))du

dx

−
t∫

0

m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − F̂n−k(t − x, 0))e

t−x∫
0
(g(F̂(u,0))+r(F̂(u,0)))du

dx

= 1 − V
(

t
)

e

t∫
0
(g(ρ(t))+r(ρ(t)))du

+

t∫
0

P{ν(t) = 0}
(

g(ρ(t − x)) + r(ρ(t − x))
)

e

t−x∫
0
(g(ρ(u))+r(ρ(u)))du

dx

−
t∫

0

m

∑
n=1

P{ν(t) = n}
m

∑
k=n

rk(1 − ρ(t − x))n−ke

t−x∫
0
(g(ρ(u))+r(ρ(u)))du

dx,
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where ρ(t) = P{ξ(t) = 0}.
In the case of the subcritical and critical process ξ(t), the probability of degeneration

is 1 and lim
t→∞

P{ξ(t) = 0} = q. Hence, we obtain (7).

4. Conclusions

This article investigates a more general model of the BPMCT than in [17–21]. The
form of the differential equation and the PGF for the random process ν(t), which describes
the behavior of the process within the PL, was determined. The boundary theorem for the
PL of the subcritical and critical BPMCT has been proven.

This model of the development process can be used to describe the popularization of
countries or species in the external territory or to predict epidemics. One of our next works
will be to describe the development of the COVID-19 pandemic through an extensive
migration process.
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Abstract: A complex multi-state redundant system with preventive maintenance subject to multiple
events is considered. The online unit can undergo several types of failure: both internal and those
provoked by external shocks. Multiple degradation levels are assumed as both internal and external.
Degradation levels are observed by random inspections and, if they are major, the unit goes to a
repair facility where preventive maintenance is carried out. This repair facility is composed of a single
repairperson governed by a multiple vacation policy. This policy is set up according to the operational
number of units. Two types of task can be performed by the repairperson, corrective repair and
preventive maintenance. The times embedded in the system are phase type distributed and the
model is built by using Markovian Arrival Processes with marked arrivals. Multiple performance
measures besides the transient and stationary distribution are worked out through matrix-analytic
methods. This methodology enables us to express the main results and the global development in
a matrix-algorithmic form. To optimize the model, costs and rewards are included. A numerical
example shows the versatility of the model.

Keywords: reliability; redundant systems; preventive maintenance; multiple vacations

1. Introduction

Redundant systems and preventive maintenance are of fundamental importance
in ensuring reliability, preventing system failures and reducing costs. These questions,
therefore, are of considerable research interest.

The occurrence of total, unexpected system failure can provoke severe damage and
major financial loss. To avoid such an outcome, various reliability-enhancing methods
can be applied, chief among which are redundancy and preventive maintenance. In this
respect, cold, hot and warm redundant standby and k-out-of-n systems have been proposed.
Among researchers who have addressed these questions, Levitin et al. [1] considered an
optimal standby element sequencing problem (SESP) for 1-out-of-N: G heterogeneous
warm-standby systems, while Zhai et al. [2] constructed a multi-value decision diagram
with which to analyse a demand-based warm standby system. In related papers, Cha
et al. [3] considered preventive maintenance for items operating in a random environment
subjected to a shock Poisson process, Levitin et al. [4] evaluated the probability of mission
success given an arbitrary redundancy level, and Osaki et al. [5] analysed the behaviour of
a two-unit standby redundant system.

Preventive maintenance enhances system reliability and performance, reduces costs,
for both repairable and non-repairable systems, and decreases the probability of sudden
equipment failure. Various maintenance systems were studied by [6,7] who developed a
new model for the hybrid preventive maintenance of systems with partially observable
degradation. Levitin et al. (2021) [8] modelled the (time-consuming) procedure of task
transfer, in an event transition-based reliability analysis of standby systems in which
preventive replacements are performed according to a predetermined schedule. The aim of
this approach is to optimise preventive replacement scheduling and hence to maximise
reliability. In another approach to this situation, Yang et al. [9] discussed a preventive
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maintenance policy for a single-unit system subject to failure by internal deterioration
and/or sudden shock, according to a non-homogeneous Poisson process whereby the
process of internal failure is partitioned into two stages.

Complex systems that have a finite number of performance levels and various failure
modes, each producing different effects on system performance, are termed multi-state
systems (MSS). This concept was first discussed by [10] and has since been developed
extensively. For example, Levitin et al. [11] described various MSS measures and considered
problems of MSS optimisation, and Lisnianski et al. [12] conducted a comprehensive
analysis of the question.

One of the main problems encountered with multi-state complex models is the exis-
tence of intractable expressions for their modelling and/or of difficulties in their interpreta-
tion. In this respect, matrix-analytic methods are a valuable means of analysing complex
systems, preserving the Markovian structure and obtaining manageable results. This ap-
proach is usually based on two elements—phase-type distributions (PHD) and Markovian
arrival processes (MAP)—which enable the results to be expressed and complex systems
modelled in an algorithmic, computational form. PHD were first introduced and detailed
by [13]. MAP is a counting process in which PH distributions play an important role. This
method was described by [14] and comprehensively reviewed by [15,16]. A special case
is that of the MAP with marked arrivals (MMAP), which enables us to count different
types of arrival. Moreover, the arrival probabilities of events, for the discrete case, can
be customised for different situations. MAP and MMAP theory were further developed
by [16].

Many multi-state reliability systems, over time, are subject to events such as repairable
or non-repairable failure, inspections or external shocks. These systems can be modelled
using appropriate Markov processes, i.e., PHD and MAP ([17,18]). In parallel, unitary
complex systems subject to multiple events have been discussed by [19,20]. Matrix algo-
rithmic methods have also been used to model multi-state complex redundant systems.
Ruiz-Castro (2020) [21] developed a k-out-of-n: G system, in which the units are subject to
repairable and/or non-repairable failure and receive random inspections. In this system,
the potential loss of units is included; thus, when a non-repairable failure occurs, the
unit is removed and the system continues to be operational. In the context of complex
models, a repair facility with a single repairperson is usually assumed. Thus, Ruiz-Castro
et al. [22,23] analyse redundant complex systems with a general number of repairpersons
and the potential loss of units, determining the optimum number of repairpersons in
each case.

In brief, redundancy and preventive maintenance are incorporated into complex
systems in order to enhance their reliability, and must also be included in the modelling
of such systems. In theory, a unit is repaired either immediately after failure if the system
is unitary or when the element in next in line in the repair facility queue. However, this
might not be the case in a real scenario. For example, a failed unit might not be repaired
immediately in a small or medium-sized firm that cannot afford to employ a full-time
repairperson. Furthermore, when there is no failed unit to be attended to in the repair
facility, what should a repairperson do? Instead of remaining idle during this period, the
repairperson may take a ‘vacation’ and/or use the time to do other work, thus optimising
resources and reducing costs. A repairperson is on vacation when absent from the repair
facility, whether or not it is empty. The economic implications of this situation should be
considered, taking into account that the vacation policy applied might impact both on
performance and also on economic rewards/costs. In studies of this question, two time
points are of particular importance: the start and end times of the vacation. Moreover, the
services provided may be exhaustive or non-exhaustive. In the first case, the repairperson
cannot be on vacation when the repair facility is not empty, but in the second, even if an
item has been sent to the repair facility, the repairperson may be on vacation. Another
possibility that must be considered is that of interruption, i.e., the repairperson may take
a vacation while a unit is being repaired. The vacation end time determines when the
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repairperson resumes work. Finally, depending on the maintenance system adopted, the
vacation may occupy a single period of time or multiple periods.

Vacation policies have been considered in queuing theory and in reliability analysis,
among other areas. Thus, Doshi [24] provided a wide-ranging analysis of vacation system
models and Ke et al. [25] examined the application of two vacation policies (one single
and the other multiple) in a repairable system. Zaiming et al. [26] developed a reliability
system with multiple, but finite, vacation periods and Wu et al. [27] analysed the reliability
of a two-unit cold standby system with a single repairperson, entitled to take a vacation.

Vacation periods have also been considered for systems governed by a Markov model.
In this respect, Shrivastava et al. [28] presented the case of an exhaustive vacation policy,
whereby the repairperson could only take a vacation when the repair facility was empty.
Under the Markovian modelling described by [29], the repairperson could take a vacation
if there were no failed units in need of repair, but had to return as soon as any unit failed. In
another approach, Zhang et al. [30] modelled a k-out-of-n system with a single repairperson,
assuming a phase-type distribution for the vacation time and an exponential distribution
for the lifetime of the units. In this system, the repairperson could take a vacation whenever
there was no failed component in the system. On return, the repairperson might or might
not encounter failed components waiting for repair. In the second case, the repairperson
would remain within the repair facility, idle, until a failed component arrived. Finally,
Ruiz-Castro et al. [31] modelled a multi-state complex system subject to multiple events
and where preventive maintenance was applied. In this case, the repairperson had various
duties and, moreover, was entitled to take a vacation.

In the present study, we model a cold standby system with the potential loss of units.
The system evolves in discrete time; the online unit is multi-state and subject to internal
failure, repairable or otherwise, to external shocks with diverse consequences, and to
random inspection. When a non-repairable failure occurs, the faulty unit is removed and
the system continues working with one unit less. An external shock may provoke any
of the following consequences: degraded system performance, a repairable failure of the
online unit or its total (non-repairable) failure. Damage to the internal performance of the
online unit may be minor or major. During system inspection, the internal status of the
online unit is observed. If major damage is present, the faulty unit is sent to the repair
facility for preventive maintenance. According to the case presented, the repairperson
may perform corrective repair or preventive maintenance. The complexity of the system is
determined as follows. In modelling the system, the vacation policy employed in the repair
facility is determined by the number of operational units included. A general number
R of operational units is considered. If the repairperson returns from a vacation period
and there are fewer than R operational units, the repairperson must then remain in the
facility. Otherwise, a new vacation period begins. As the system is subject to a loss of
units, when there are fewer than R units in the system, the repairperson must remain in the
facility while this situation persists. The times embedded are PH distributed and a MMAP
is constructed to model the system. In modelling this system, the following measures are
calculated: availability, reliability and expected times (in both transient and stationary
regimes). Rewards and costs are incorporated, and a numerical optimisation is performed
to determine the optimum threshold R and to decide whether preventive maintenance is
profitable or not.

The rest of this paper is organised as follows. In Section 2, we describe the system to
be modelled, after which we present the corresponding MMAP in Section 3. In Section 4,
we detail the measures applied to the transient and stationary regimes, and calculate the
transient and stationary distributions. The latter is obtained both algorithmically and
computationally. The system costs, rewards and associated measures are then derived in
Section 5. Taking advantage of the favourable properties of PHD and MMAP, the study
findings are obtained in a matrix algorithmic form. Section 6 presents a numerical example,
including an optimisation exercise. Finally, the main conclusions drawn are summarised in
Section 7.
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2. Assumptions of the System: The State Space

A cold standby system composed of n units is initially assumed. One unit is online
and the others are waiting on standby without degrading. The online unit is multi-state,
where the internal performance is partitioned into major and minor states. It is subject to
multiple events. This can suffer internal failures, repairable or not, and external shocks.
Each external shock can provoke three different consequences: total failure (non-repairable),
modification in the internal behaviour or an internal repairable or non-repairable failure.
When a repairable failure occurs, the unit goes to the repair facility for corrective repair. The
corrective repair time distribution is PH. The repair facility is composed of one repairperson
who can take vacations. As it has been mentioned above, the internal performance of the
online unit is partitioned into major and minor states. A major state is a state from where
the online unit has a greater risk of suffering a failure. To avoid serious damage and major
financial losses random inspections are carried out. The inspector observes the online
unit and if this one is operational in major damage, the unit goes to the repair facility for
preventive maintenance. Preventive maintenance time is also PH distributed. When the
online unit undergoes a failure, one cold standby occupies the online place, if any. The new
online unit will start executing from the initial distribution of the internal performance,
because after repairing or preventive maintenance the unit is as good as new. The system
is also subject to loss of units. After a non-repairable failure the unit is removed and the
system continues working until there are no units in the system. If only one unit is in the
system and a non-repairable failure occurs, the system is restarted.

One repairperson can be in the repair facility who can develop two different tasks:
corrective repair and preventive maintenance. To optimise the system, the repairperson is
allowed to take vacations, for a random duration, according to certain criteria.

Initially, all units are operational and the repairperson is on vacation. After returning,
a new vacation begins if there are R or more operational units in the system. Equivalently,
if there are k − R + 1 = N or more failed units needing to be repaired, where k is the number
of units in the system, k = 1,..., n, the repairperson must remain in the repair facility.

After finishing a repair, the repairperson begins a new period of vacation if R units
are then operational. As the system can lose units, the repairperson must always remain in
the facility (or interrupt the vacation to return) when fewer than R units are in the system.

The following Section “The Assumptions” specifies the assumptions of the system.

The Assumptions

The system follows the following assumptions.
Assumption 1. The internal performance time is PH distributed with representation

(α, T), and with order m (number of internal stages). The internal failure probability de-
pends on the states. The column vectors T0

r and T0
nr contains the probabilities of repairable

and non-repairable failures, respectively.
Assumption 2. The internal performance of the online unit is multi-state where the n1

first units are minor and the rest are major according to damage.
Assumption 3. The external events occur according to a PH-renewal process where

the time between two consecutive shocks is a PH distribution with representation (γ, L),
with order t.

Assumption 4. An external shock can provoke a total non-repairable failure of the
online unit with a probability equal to ω0.

Assumption 5. After an external shock the internal performance state can undergo a
modification. This modification between any two internal states occurs according to the
transition probability matrix W. The column vectors W0

r and W0
nr contains the probabilities

of repairable and non-repairable failures respectively provoked by an external shock.
Assumption 6. The time between two consecutive random inspections is PH dis-

tributed with representation (η, M), with order ε.
Assumption 7. The vacation time is distributed following a PH distribution with

representation (v, V), with order υ.
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Assumption 8. The corrective repair time is PH distributed with representation
(β1, S1), with order z1.

Assumption 9. The preventive maintenance time is PH distributed with representation
(β2, S2), with order z2.

The behaviour of the system is shown in Figure 1, for inspection and repairable failure,
Figure 2 for non-repairable failure, and Figure 3 for the vacation policy.

Figure 1. Internal repairable failure and inspection in the system.

Figure 2. Non-repairable failure in the system.
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Figure 3. Vacation policy in the system.

3. Modelling the System. The Markovian Arrival Process with Marked Arrivals

The system is governed by a Markov process vector in discrete time. In this section
the state space is described and, to model the proposed complex system, the behaviour of
the online unit and of the repair facility is developed separately.

3.1. The State-Space

The state-space is composed of macro-states and it is denoted by S =
{

Un, Un−1, . . . , U1},
where Uk contains the phases when there are k units in the system. In turn, these macro-
states are partitioned as follows

Uk =
{

Ek,v
0 , Ek,v

1 , . . . , Ek,v
N−1, Ek,v

N , Ek,v
N+1, . . . , Ek,v

k , Ek,nv
N , Ek,nv

N+1, . . . , , Ek,nv
k

}
; k ≥ R

Uk =
{

Ek,nv
0 , Ek,nv

1 , . . . , Ek,nv
k

}
; k ≥ R

where Ek,x
s contains the phases when there are k units in the system and s of them are in

the repair facility and the superscript x indicates if the repairperson in on vacation (v) or
not (nv). Initially the repairperson begins to operate the first time that he comes back from
vacation and the system has at least N = k − R + 1 units in the repair facility. He remains
working until N − 1 units are in the repair facility. At this moment the repairperson goes
on vacation. In any case, the order of the units in the repair facility has to be saved in
memory, and there are two types of repair, corrective and preventive maintenance. For this
reason, the macro-state Ek,x

s is composed of the first level of macro-states Ek,x
i1,...,is .

These macro-states contain the phases when there are k units in the system, with s
of them in the repair facility, and the type of repair is given by the ordered sequence i1,
. . . , is. The values of il are equal to 1 or 2 if the unit is in corrective repair or preventive
maintenance, respectively.

When the number of units in the system is R – 1 units, then the repairperson occupies
his place work immediately. The inspection time is restarted each time that one unit
occupies the online place.

• For k = 1, . . . , R − 1
Ek,nv

0 = {(k, 0; i, j, u); i = 1, . . . , m, j = 1, . . . , t, u = 1, . . . , ε}
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Ek,nv
s =

{
Ek,nv

i1,...,is ; il = 1, 2; l = 1, . . . , s
}

for s = 1, . . . , k where

Ek,nv
i1,...,is =

{
(k, s; i, j, u, r); i = 1, . . . , m, j = 1, . . . , t, u = 1, . . . , ε, r = 1, . . . , zi1

}
for s < k

Ek,nv
i1,...,ik

=
{
(k, k; j, r); j = 1, . . . , t, u = 1, . . . , ε, r = 1, . . . , zi1

}
• For k = N, . . . , n

Ek,v
0 = {(k, 0; i, j, u, v); i = 1, . . . , m, j = 1, . . . , t, u = 1, . . . , ε, v = 1, . . . , υ}

Ek,v
s =

{
Ek,v

i1,...,is ; il = 1, 2; l = 1, . . . , s
}

for s = 1, . . . , k where

Ek,v
i1,...,is = {(k, s; i, j, u, v); i = 1, . . . , m, j = 1, . . . , t, u = 1, . . . , ε, v = 1, . . . , υ} for s < k

Ek,v
i1,...,ik

= {(k, k; j, u, v); j = 1, . . . , t, u = 1, . . . , ε, v = 1, . . . , υ}
Ek,nv

s =
{

Ek,nv
i1,...,is ; il = 1, 2; l = 1, . . . , s

}
for s = N, . . . , k where

Ek,nv
i1,...,is =

{
(k, s; i, j, u, r); i = 1, . . . , m, j = 1, . . . , t, u = 1, . . . , ε, r = 1, . . . , zi1

}
for s < k

Ek,nv
i1,...,ik

=
{
(k, k; j, u, r); j = 1, . . . , t, u = 1, . . . , ε, r = 1, . . . , zi1

}
The phase (k, s; i, j, u, m, r) indicates that there are k units in the system, with s in the

repair facility; the internal performance of the online unit is in state i, the external shock
time is in state j, the cumulative damage caused by external shocks is given by u, m is the
current phase of the inspection time and r is the corrective repair/preventive maintenance
phase for the unit currently being attended to in the repair facility. If the repairperson is
taking a vacation, the phase is indicated by v.

The order of these macro-states is as follows:

o
Ek,nv

0
= m · t · ε; s < k, o

Ek,nv
s

= m · t · ε · (z1 + z2)2s−1; s = k, o
Ek,nv

k
= t · (z1 + z2)2k−1

o
Ek,v

0
= m · t · ε; s < k, o

Ek,v
s

= m · t · ε · 2s; s = k, o
Ek,v

k
= t · 2k−1

3.2. Modelling the Online Unit

The online unit can undergo different types of event at any time. These are noted and
defined as:

A: Internal repairable failure
B: Major revision
C: Non-repairable failure
O: No events
Two of them are described below, and the rest are given in Appendix A.
The elements of auxiliary matrices U1 and U2 are defined as

U1(i, j) =
{

1 ; i = j; i = 1, . . . , n1
0 ; otherwise

; U2(i, j) =
{

1 ; i = j; i = n1 + 1, . . . , n
0 ; otherwise

Throughout this work the symbol ⊗ denotes the Kronecker product and, given a
matrix A, we denote this as A0 to the column vector A0 = e − Ae, e being a column vector
of units with appropriate order.

3.3. No Events at a Certain Time (O)

We assume that the online unit is operational and at this time it continues working.
This occurs because of different situations:

• The internal performance continues in the same phase or changes to another, equally
operational state. There is no external shock (T ⊗ L), and no inspection takes place
(M). The matrix that governs this transition for the online unit is given by T ⊗ L ⊗ M.
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• The online undergoes an external shock but total failure does not occur (L0γ
(
1 −ω0)).

This external shock might modify the internal performance but does not produce internal
failure (TW). No inspection takes place (M). The matrix is

(
TW ⊗ L0γ

(
1 −ω0))⊗ M.

• An inspection takes place and the time preceding the next one begins (M0η). The
inspector observes that the online unit does not need preventive maintenance and no
external shock occurs (U1T ⊗ L). The matrix is U1T ⊗ L ⊗ M0η.

• An inspection takes place and the time preceding the next one begins (M0η). One ex-
ternal shock also takes place without total failure (L0γ

(
1 −ω0)). This shock provokes

a change in the internal performance without failure and the inspection observes
minor damage (U1TW). This matrix is

(
U1TW ⊗ L0γ

(
1 −ω0))⊗ M0η.

Therefore, the matrix that governs this transition for the online unit is given by

HO =
(

T ⊗ L + TW ⊗ L0γ
(

1 −ω0
))

⊗M+
(

U1T ⊗ L + U1TW ⊗ L0γ
(

1 −ω0
))

⊗M0η

3.4. Non-Repairable Failure (C)

The online unit is assumed to be operational and at the next time point a non-repairable
failure occurs, because:

• An internal non-repairable failure occurs with no external shock, T0
nrα⊗ L.

• An external shock occurs, but does not provoke total failure. This shock provokes a
non-repairable internal failure or, irrespective of the shock, the online unit may experi-
ence a non-repairable internal failure. The matrix is

(
T0

nr + TW0
nr

)
α⊗ L0γ

(
1 −ω0).

• An external shock provokes total failure. In this case the internal behaviour is irrele-
vant. The matrix is eα⊗ L0γω0.

This transition is independent of the inspection time. After the online unit experiences
a non-repairable failure, the online place is occupied by a substitute, identical unit. Then,
the matrix is given by

HC =
[
T0

nrα⊗ L +
(

T0
nr + TW0

nr

)
α⊗ L0γ

(
1 −ω0

)
+ eα⊗ L0γω0

]
⊗ eη.

If only one unit is operational and online (i.e., all others are under repair), this unit
experiences a non-repairable failure and no repair occurs, no immediate substitution can
be made and therefore the system does not restart. The matrix is given by

H′
C =

[
T0

nr ⊗ L +
(

T0
nr + TW0

nr

)
⊗ L0γ

(
1 −ω0

)
+ e ⊗ L0γω0

]
⊗ e

3.5. The Markovian Arrival Process with Marked Arrivals (MMAP)

The behaviour of the system is governed by a MMAP. The representation of this
MMAP is given from the types of event shown below:

A: Internal repairable failure (default without D)
B: Major revision (default without D)
C: Non-repairable failure (default without D)
D: The repairperson resumes to work (default without A, B, C)
AD: Internal repairable failure and the repairperson resumes work
BD: Major revision and the repairperson resumes work
CD: Non-repairable failure and the repairperson resumes work
NS: New system
O: No events
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The representation of the MMAP is
(
DO, DA, DB, DC, DD, DAD, DBD, DCD, DNS).

The transition probability matrix associated to the embedded Markov chain from the
MMAP is given by D = ∑

Y
DY.

Two matrices DY are described in the next section. The rest are given in Appendix B.

The Matrices DA and DB

The matrices DA and DB govern the transition when a repairable failure or a major
inspection takes place, respectively. These matrices are composed of matrix blocks that
contain the transitions between macro-states Uk. This is a diagonal matrix block given
that the number of units in the system does not change in this transition. The matrix DY

k
contains the transition probabilities when there are k units in the system and the event Y
occurs for Y = A or B and k = 1, . . . , n. Then,

Y
n

Y
n

Y Y
n

Y

−

−=   for Y = A, B. 

These blocks are composed of further blocks.

• If the number of units is less than R−1, the repairperson is always in his workplace.
Then, for k = 1, . . . , R−1

k nv k nv k nv k nv k nv
k k

k nv Y k nv

k nv Y k nv Y k nv
Y
k

k vn Y k nv Y k nv
k k k k k
k nv
k

E E E E E

E
E

E
E

−

− − − −

= . 

The block DY,k,nv
i,j contains the transition, when there are k units in the system, from

i units in the repair facility to j (a type event Y occurs) and the repairperson is in his
workplace. For instance, the cases DA,k,nv

01 and DB,k,nv
01 (transition Ek,nv

0 → Ek,nv
1 for type A

and B respectively) are analyzed.
In both cases, there are k units in the system and none of these is in the repair facility

(all operational). The online unit goes to the repair facility if it undergoes an internal
repairable failure (HA) or a major inspection (HB). In both cases a new unit will occupy
the online place if the number of units in the system is greater than one. If the event is a
repairable failure, then the unit will begin the repair given that the repairperson is not on
vacation (β1). If the event is a major inspection, the initial distribution for the preventive
maintenance would be β2.

• If the number of units is greater or equal than R, the repairperson can be on vaca-
tion or not. If the repairperson returns and there are less than R operational units
then he remains at his workplace. Given that these events A and B occur when a
repairable or major inspection occurs (without returning to work) then, for k = R,
. . . , n (N = k − R + 1, the limit of the number of units in the repair facility for the
repairperson to remain):
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β
β

k v k v k v k v k v k v k v k nv k nv k nv k nv k nv
N N N k k N N N k k

k v

k v

k v
N
k v
N
k v
N

Y
k

k v
k
k v
k
k nv
N

N

E E E E E E E E E E E E

E
E

E
E
E

E
E
E
E

− + − + + −

−

+

−

+

=

Y k v

Y k v
N N

Y k v
N N

Y k v
k k

Y k nv Y k nv
N N N N

k nv Y k nv Y k nv
N N N N

k nv Y k nv Y k nv
k k k k k
k nv
k

E
E

−

+

−

+

+ + + +

− − − −

This matrix is partitioned into two great matrix blocks depending on the transition
between macro states; continues on vacation and continues in the repair facility.

The block DY,k,v
i,j contains the transition, when there are k units in the system, from i

units in the repair facility to j (type Y) and the repairperson continues on vacation. For
instance, the cases DA,k,v

01 and DB,k,v
01 correspond to the transition Ek,v

0 → Ek,v
1 for type A

and B, respectively.
These matrices are for k = 1, . . . , n and R > 1
DA,k,nv

01 =
((

I{k>1}HA + I{k=1}H′
A

)
⊗β1, 0

)
; DB,k,nv

01 =
(

0,
(

I{k>1}HB + I{k=1}H′
B

)
⊗β2

)
.

The rest of matrices for this matrix block are as follows.

DA,k,nv
1,1 =

(
HA ⊗ S0

1 ⊗β1 0

HA ⊗ S0
2 ⊗β1 0

)
; DB,k,nv

1,1 =

(
0 HB ⊗ S0

1 ⊗β2
0 HB ⊗ S0

2 ⊗β2

)
For r = 2, . . . , k−1

DA,k,nv
r,r =

⎛⎜⎜⎜⎜⎜⎜⎝
I2r−2 ⊗

(
HA ⊗ S0

1 ⊗β1, 0
)

0

0 I2r−2 ⊗
(

HA ⊗ S0
1 ⊗β2, 0

)
I2r−2 ⊗

(
HA ⊗ S0

2 ⊗β1, 0
)

0

0 I2r−2 ⊗
(

HA ⊗ S0
2 ⊗β2, 0

)

⎞⎟⎟⎟⎟⎟⎟⎠

DB,k,nv
r,r =

⎛⎜⎜⎜⎜⎜⎜⎝
I2r−2 ⊗

(
0, HB ⊗ S0

1 ⊗β1

)
0

0 I2r−2 ⊗
(

0, HB ⊗ S0
1 ⊗β2

)
I2r−2 ⊗

(
0, HB ⊗ S0

2 ⊗β1

)
0

0 I2r−2 ⊗
(

0, HB ⊗ S0
2 ⊗β2

)

⎞⎟⎟⎟⎟⎟⎟⎠
For r = max{1, k − R + 1}, . . . , k − 1

DA,k,nv
r,r+1 =

⎛⎝ I2r−1 ⊗
((

I{r<k−1}HA + I{r=k−1}H′
A

)
⊗ S1, 0

)
0

0 I2r−1 ⊗
((

I{r<k−1}HA + I{r=k−1}H′
A

)
⊗ S2, 0

) ⎞⎠
DB,k,nv

r,r+1 =

⎛⎝ I2r−1 ⊗
(

0,
(

I{r<k−1}HB + I{r=k−1}H′
B

)
⊗ S1

)
0

0 I2r−1 ⊗
(

0,
(

I{r<k−1}HA + I{r=k−1}H′
A

)
⊗ S2

) ⎞⎠
For r = 1, . . . , k−1 and k ≥ R
DA,k,v

0,1 =
(

HA ⊗
(

V + I{k≥R+1}V0ν
)

, 0
)

; DB,k,v
0,1 =

(
0, HB ⊗

(
V + I{k≥R+1}V0ν

))
DA,k,v

r,r+1 = I2r ⊗
((

I{r<k−1}HA + I{r=k−1}H′
A

)
⊗
(

V + I{r<N−1}V0ν
)

, 0
)

DB,k,v
r,r+1 = I2r ⊗

(
0,
(

I{r<k−1}HB + I{r=k−1}H′
B

)
⊗
(

V + I{r<N−1}V0ν
))

.
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4. Measures

Multiple interesting measures in transient and stationary regime can be worked out
and are described in this section.

4.1. The Transient and the Stationary Distribution

The transient distribution is determined by the initial distribution and the transition
probability matrix of the vector Markov process given in Section 3.3.

Initially the online unit is new and the inspection time begins. Then, the initial
distribution of the Markov process is φ = [α ⊗ γst ⊗ η, 0] where γst is the stationary
distribution of the phase-type renewal process with transition probability matrix L + L0γ.

Therefore, γst = [1, 0]
[
e
∣∣∣(L + L0γ− I

)∗ ]−1
.

The probability of occupying the macro-state Ek,a
s at time ν is worked out by matrix

blocks as pν
Ek,a

s
= (φDν)Ik,a

s
where Ik,a

s indicates the range for the corresponding states.

Evidently, pν is the transient distribution at time ν.
To calculate the stationary distribution in a matrix-algorithmic form, we have par-

titioned the matrix D for the transitions between the macro-states Uj into the following
blocks,

D =

⎛⎜⎜⎜⎜⎜⎝
Dn,n Dn,n−1 0 . . . 0 0

0 Dn−1,n−1 Dn−1,n−2 . . . 0 0
...

...
. . . . . .

...
...

0 0 . . . . . . D22 D21
D1n 0 . . . . . . . . . D11

⎞⎟⎟⎟⎟⎟⎠
where

Dii = DO
i + DA

i + DB
i + DD

i + DAD
i + DBD

i ; i = 1, . . . , n
Di,i−1 = DC

i + DCD
i ; i = 2, . . . , n

D1,n = DNS
1 .

The stationary distribution π verifies the balance equations πD = π and the normal-
ization equation πe = 1. This vector is partitioned into the macro-states Uj, j units in the
system, then, π = {πn,πn−1, . . . ,π1} for the macro-states Un, . . . , U1, respectively.

The solution of this matrix system is πj = π1Rj; j = 2, . . . , n, being Rj = Rj+1Gj+1,j =

G1nGn,n−1 · · · Gj+1,j; j = 2, . . . , n−1, Rn = G1,n and Gij = Dij
(
I − Djj

)−1 for (i, j) ∈
{(1, n), (n, n − 1), (n − 1, n − 2), . . . , (3, 2)}

The transition probability vector for the macro-state U1 can be worked out from the
normalization condition and one balanced equation as

π1 = (1, 0)

(
e +

n

∑
j=2

Rje

∣∣∣∣∣(I − D11 − R2D21)
∗
)−1

,

where * is the corresponding matrix without the first column.
From the stationary distribution and considering the macro-states, multiple propor-

tional time measures can be defined:

• Proportional time that the system has k units: πUk .
• Proportional time that the repairperson is in the workplace:

π

ϒnv =
R−1
∑

k=1

k
∑

s=0
πEk,nv

s
e +

n
∑

k=R

k
∑

s=k−R+1
πEk,nv

s
e.

• Proportional time that the repairperson is on vacation:

π

ϒv = 1 −

π

ϒnv
• Proportional time that the repairperson is working:

π

ϒw =
R−1
∑

k=1

k
∑

s=1
πEk,nv

s
e +

n
∑

k=R

k
∑

s=k−R+1
πEk,nv

s
e
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• Proportional time that the repairperson is idle:

π

ϒi =

π

ϒnv −

π

ϒw.

4.2. Availability and Mean Times

It is interesting to calculate the availability of the system, the mean time in each macro-
state and the mean operational time. This has been summed up in Table 1 in both regimes,
transient and stationary.

Table 1. Availability and mean times in transient and stationary regime.

Transient Regime
(up to Time ν)

Stationary Regime

Availability A(ν) = 1 −
n
∑

k=R

(
pν

Ek,v
k

· e + pν
Ek,nv

k
· e

)
−

R−1
∑

k=1
pν

Ek,nv
k

· e

A = 1 −
n
∑

k=R

(
π

Ek,v
k

· e + π
Ek,nv

k
· e

)
−

R−1
∑

k=1
π

Ek,nv
k

· e

Mean time in Ek,v
s ; Ek,nv

s ψk,s(ν) =
ν

∑
m=0

(
pm

Ek,v
s

· e + pm
Ek,nv

s
· e
)

ψk,s = π
Ek,v

s
· e + π

Ek,nv
s

· e

Mean time in Ek
ψk(ν) =

k
∑

s=0
ψk,s(ν) ψk =

k
∑

s=0
ψk,s

Mean operational time μop(ν) =
K
∑

k=1

k−1
∑

s=0
ψk,s(ν) μop =

K
∑

k=1

k−1
∑

s=0
ψk,s

4.3. Time up to First Time That the System Is Replaced

A system composed of n units is replaced by a new and identical one when all units
undergo a non-repairable failure. The time up to this event is phase-type distributed with
representation (φ, D′) where D′ = DO + DA + DB + DC + DD + DAD + DBD + DCD.

4.4. Expected Number of Events

The expected number of events up to time ν is determined using the Markovian
Arrival Process with Marked arrivals developed in Section 3.3. If the event considered is
denoted by Y then the corresponding expected number of events is given by

ΛY(ν) =
ν

∑
u=1

pu−1DYe,

For Y = A, B, C, D, AD, BD, CD, NS. This value in stationary regime is ΛY = πDYe.
Another mean number of events can be calculated as follows.

4.5. Mean Number of Repairable Failures

A repairable failure can occur when the repairperson resumes work or not at the same

time. Then, the mean number up to time ν is Λrep(ν) =
ν

∑
u=1

pu−1(DA + DAD)e and in

stationary regime it is Λrep = π
(
DA + DAD)e.

4.6. Mean Number of Major Inspections

Analogously to the repairable case, a major inspection can occur when the repairperson
occupies the workplace or not at the same time. Then, it is in transient regime Λmi(ν) =
ν

∑
u=1

pu−1(DB + DBD)e and in the stationary case it is Λmi = π
(
DB + DBD)e.
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4.7. Mean Number of Non-Repairable Failures (No Provoking System Failure)

The mean number of non-repairable failures up to time ν is

Λnr(ν) =
ν

∑
u=1

pu−1
(

DC + DCD
)

e.

This value in the stationary case is Λnr = π
(
DC + DCD)e.

4.8. Mean Number of Times That the Repairperson Resumes to Work

The mean number that the repairperson resumes and remains in his workplace up to
a certain time is given by

Λrejoined(ν) =
ν

∑
u=1

pu−1
(

DD + DAD + DBD + DCD
)

e

In the stationary case this is Λrejoined = π
(
DD + DAD + DBD + DCD)e.

4.9. Mean Number of Times That the Repairperson Resumes and Begins a New Period of Vacation

The mean number that the repairperson resumes and begins a new period of vacation
up to a certain time is given by

Λr−b(ν) =
ν

∑
u=1

pu−1Qe.

where Q is a matrix described in Appendix C. In the stationary case it is Λr−b = πQe.

4.10. Mean Number of New Systems

When the system is composed of only one unit and a non-repairable failure occurs,
the system is restarted with n new units. The mean number of new systems up to time ν is

ΛNS(ν) =
ν

∑
u=1

pu−1DNSe.

This measure in stationary case is ΛNS = πDNSe.

5. Rewards and Costs

To analyze the effectiveness of the model from an economic point of view, costs and
rewards have been taken into account. A net profit vector associated to the state-space is
built. Previously, multiple values are introduced:

B: Gross profit per unit of time if the system is operational.
c0: expected cost per unit of time depending on the operational phase while the system

is operational.
cr1: expected corrective repair cost per unit of time depending on the repair phase.
cr2: expected preventive maintenance cost per unit of time for a unit that was
observed with major damage depending on the preventive maintenance phase.
H: repairperson cost per unit of time while the repairperson in idle.
C: loss per unit of time while the system is not operational
G: fixed cost associated to each return of the repairperson (independently of if he
stays or not).
fcr: fixed cost each time that the online unit undergoes a repairable failure from the
online unit.
fmi: fixed cost each time that the online unit undergoes a major inspection.
fnu: cost for a new unit (n·fnu cost of a new system).
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5.1. Net Profit Vector

When the system occupies a determined state, a net profit value is produced. Costs
and rewards from the online unit and the cost provoked by the repairperson have been
taken into account to build the net profit vector.

5.1.1. Online Unit

If only the online unit is considered when the system visits the macro-state Ek,nv
s , a net

reward for the phases of this macro-state is worked out. The profit net vector for the online
unit if the repairperson is in his workplace (Ek,nv

s ) is for k = 1, . . . , n,

nrk,nv
s =

⎧⎪⎨⎪⎩
Bemtε − c0 ⊗ etε ; s = 0
Bemtε2s−1(z1+z2)

− c0 ⊗ etε2s−1(z1+z2)
; s = 1, . . . , k − 1

−C · et2s−1(z1+z2)
; s = k.

This can be expressed for any number of units in the repair facility as the following

column vector nrk,nv
Total =

(
nrk,nv

0
′
; . . . ; nrk,nv

k
′)′

.
If the number of units in the repair facility is N or more, then the repairperson remains

at his workplace without vacation. In this case we define nrk,nv
f romN =

(
nrk,nv

N
′
; . . . ; nrk,nv

k
′)′

.
For cased when the repairperson is on vacation, the profit net vector for the online

unit for the macro-state Ek,v
s is

nrk,v
s =

⎧⎨⎩
Bemtευ − c0 ⊗ etευ ; s = 0
Bemtευ2s − c0 ⊗ etευ2s ; s = 1, . . . , k − 1
−C · etυ2s ; s = k.

For any number of units in the repair facility the column vector nrk,v
Total =

(
nrk,v

0
′
; . . . ; nrk,v

k
′)′

is defined.
Then, if the total state space is considered then the net reward, according to the state

visited, for the online unit is

nr =
(

nrn,v
Total

′; nrn,nv
f romN

′; nrn−1,v
Total

′
; nrn−1,nv

f romN
′
; . . . ; nrN,v

Total
′
; nrN,nv

f romN
′
; nrN−1,nv

Total
′
; nrN−1,nv

Total
′
; . . . ; nr1,nv

Total
′)′

5.1.2. Repair Facility

If only the repair facility is considered, when the system visits the macro-states Ek,nv
s ,

a cost vector for the phases of the corresponding macro-state, for k = 1, . . . , n is

nck,nv
s =

⎧⎨⎩
H · emtε ; s = 0

e
t(mε)

I{s<k} ⊗
(

e2s−1 ⊗ cr1
e2s−1 ⊗ cr2

)
; s = 1, . . . , k.

For any number of units in the repair facility, the following column vectors are defined,

nck,nv
Total =

(
nck,nv

0
′
; . . . ; nck,nv

k
′)′

, nck,nv
f romN =

(
nck,nv

N
′
; . . . ; nck,nv

k
′)′

For any k and s while the repairperson is on vacation the cost of the repair facility is
zero, then the following column vector is defined for this case as nck,v

s = 0
(mε)

I{s<k} tυ2s . For

any number of units in the repair facility it is defined as nck,v
Total =

(
nck,v

0
′
; . . . ; nck,v

k
′)′

.
Then, the cost vector associated to the state space due to repair is given by

nc =
(

ncn,v ′; ncn,nv
f romN

′; ncn−1,v ′; ncn−1,nv
f romN

′
; . . . ; ncN,v ′; ncN,nv

f romN
′
; ncN−1,nv

Total
′
; ncN−1,nv

Total
′
; . . . ; nc1,nv

Total
′)′
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Therefore, the net profit vector corresponding to the online unit and the repair facility
for the global state space is given by

c = nr − nc =

⎛⎜⎜⎜⎝
cn

cn−1

...
c1

⎞⎟⎟⎟⎠,

where
ck =

(
nrk,nv

Total
′ − nck,nv

Total
′)′

for k = 1, . . . , R − 1,

ck =
(

nrk,v ′ − nck,v ′
; nck,nv

f romN
′ − nck,nv

f romN
′)′

for k = R, . . . , n.

5.2. Expected Net Profits and Total Net Profit

Net reward measures are worked out, in transient and stationary regimes, to analyze
the effectiveness of the system from an economic point of view.

5.2.1. Expected Net Profit from the Online Unit Up to Time ν

The expected net profit up to time ν by considering only the online unit is

Φν
w =

ν

∑
m=0

pm · nr.

In stationary regime this is given by Φw_s = π · nr.

5.2.2. Expected Cost from Corrective Repair and Preventive Maintenance

The expected cost because of corrective repair and preventive maintenance up to time
ν is calculated. This is respectively

Φν
cr =

ν

∑
m=0

pm · mccr and Φν
pm =

ν

∑
m=0

pm · mcpm

where mccr is the vector nc with cr2 = 0z2 and mcpm is the vector nc with cr1 = 0z1 , being
0a a column vector of 0s with order a.

If the stationary regime is considered, then

Φcr_s = π · mccr and Φpm_s = π · mcpm

5.2.3. Total Net Profit

If costs, fixed costs and profits are considered, the total net profit up to time ν is

Φν = Φν
w − Φν

cr − Φν
pm −

(
1 + ΛNS(ν)

)
· n · f nu − Λrep(ν) · f cr − Λmi(ν) · f mi − Λr−b(ν) · G

In the stationary case this is

Φ = Φw − Φcr − Φpm −
(

1 + ΛNS
)

· n · f nu − Λrep · f cr − Λmi · f mi − Λr−b · G.

6. A Numerical Example

The system modelled in this paper can be applied to real-world engineering problems.
It would be interesting to examine whether or not preventive maintenance is profitable
and to determine the optimum distribution for vacation time and hence the corresponding
value of R.
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6.1. The System

We assume a standby system composed of four units initially as described in this
work. Each unit is composed of four performance internal states where the first two are
considered minor damage and the last two as major damage. The transition probability
matrix for wearing out time is given by

T =

⎛⎜⎜⎝
0.96 0.03 0 0

0 0.97 0.01 0
0 0 0.85 0.06
0 0 0 0.6

⎞⎟⎟⎠.,

Beginning in the initial state (α = (1, 0, 0, 0)). From each state, only a transition to
failure or to next performance level state can occur. The transition probability to repairable
and non-repairable failure depending on the performance state are given by the column

vectors T0
r =

⎛⎜⎜⎝
0.008
0.016
0.072
0.32

⎞⎟⎟⎠ and T0
nr =

⎛⎜⎜⎝
0.002
0.004
0.018
0.080

⎞⎟⎟⎠ respectively.

The online unit is subject to external shocks. The time between two consecutive
external shocks follows a phase-type distribution with representation (γ, L) being γ = (1, 0)

and L =

(
0.9 0.05
0 0.5

)
.

The mean time between two consecutive accidental external failures is equal to 11
units of time.

Each time that the system suffers an external shock the internal performance can be
modified by producing a repairable or non-repairable failure. The matrix that governs the
changes into the operational states is

W =

⎛⎜⎜⎝
0.2 0.1 0.3 0.1
0 0.1 0.3 0.1
0 0 0.3 0.1
0 0 0 0.1

⎞⎟⎟⎠

and the change to a repairable and non-repairable is W0
r =

⎛⎜⎜⎝
0.3
0.4
0.5
0.6

⎞⎟⎟⎠ and W0
nr =

⎛⎜⎜⎝
0

0.1
0.1
0.3

⎞⎟⎟⎠
respectively.

When an external shock occurs, a total failure can also be produced with a probability
equal to ω0 = 0.2.

Inspections occur randomly where the inter-inspection time is phase-type distributed
with representation (η, M) being

η = (1, 0), M =

(
0.85 0.1
0.45 0.4

)
.

When a unit undergoes a repairable failure or inspection observes major damage, this
goes to the repair facility. Therefore, two types of tasks can be developed by the repairper-
son, corrective repair and preventive maintenance. Both are phase-type distributed with
representation for the corrective repair time,
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β1 = (1, 0, 0) and S1 =

⎛⎝ 0.2 0.4 0.3
0.2 0.2 0.5
0.3 0.2 0.3

⎞⎠
and for the preventive maintenance time,

β2 = (1, 0, 0) and S2 =

⎛⎝ 0.2 0.3 0.1
0.1 0.1 0.4
0.2 0.2 0.2

⎞⎠.

The mean corrective repair time is 7.3810 units of time and for the preventive mainte-
nance case this is equal to 2.5 units of time.

6.2. Costs and Rewards

Different costs and rewards have been considered as described in Section 5. We
assume a gross profit while the system is operational, equal to B = 60. This is also the loss
per unit of time while the system is not operational, C = 60. The online unit has a cost while
it is operational depending on the operational phase. This vector is c0 = (5, 12, 30, 40)′.
The repairperson can be on vacation or in his workplace. Each time that the repairperson
returns on his vacation a cost equal to G = 20 is produced. While the repairperson is idle, a
cost equal to H = 15 is produced.

The online unit can undergo a repairable failure. In this case, the unit goes to the
repair facility for corrective repair. A fixed cost is considered for each failure equal to fcr =
10. Once in corrective repair, a cost depending on the state is given by cr1 = (18,18,18)′.

When inspection observes major damage, the unit also goes to the repair facility for
preventive maintenance. A fixed cost is produced, fmi = 5. Once in the repair facility
the cost will depend on the preventive maintenance state. This is given by the vector
cr2 = (15.5, 15.5, 15.5)′. Finally, when all units undergo a non-repairable failure the system
is re-started. It has a cost per unit equal to fnu = 100.

6.3. Optimization Analysis

The repairperson can take a vacation, for a random duration, and inspections may take
place at random intervals. This circumstance raises two interesting questions. Firstly, if a
distribution class is assumed for the duration of the vacation, from an economic standpoint
what is the optimum distribution and the optimum value of R (i.e., the limit value of the
number of operational units needed to require the repairperson to remain in the facility
on returning from vacation) from an economic standpoint? Secondly, is it profitable to
perform preventive maintenance?

To answer these questions, we consider two classes of distributions, the geometric
distribution and the Erlang distribution, from which optimum values for R and the other
parameters can be determined.

6.3.1. The Geometric Distribution Case

We assume that the vacation time of the repairperson is distributed geometrically with
parameter p. Then, the p.m.f. is P{X = n} = pn−1(1 − p); n = 0, 1, 2, . . .

The stationary net profit depending on p for the system with and without preventive
maintenance is shown in Figure 4. This has been worked out from Section 5.2. We can see
that, when the geometric distribution is considered, the optimum value is reached for the
preventive maintenance case with p = 0.8 and R = 3. In this case, and in the stationary case,
the net profit per unit of time would be equal to 22.0571.
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Figure 4. Stationary net profit depending on p and R (with preventive maintenance, continuous line;
without preventive maintenance, dashed line).

6.3.2. The Generalized Erlang Distribution Case

Analogously to the geometric case, we assume now that the vacation time is dis-
tributed as a Generalized Erlang distribution with parameter shape equal to 2. This
distribution can be expressed as a phase-type with representation (v, V) being

v = (1, 0); V =

(
p1 1 − p1
0 p2

)
.

Figures 5 and 6 show the stationary net profit depending on the parameters p1 and p2
and R for the case without preventive maintenance and with preventive maintenance, re-
spectively.

Figure 5. Stationary net profit for the system without preventive maintenance depending on R and
the parameters of the vacation distribution.
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Figure 6. Stationary net profit for the system with preventive maintenance depending on R and the
parameters of the vacation distribution.

We can see that, when the generalized Erlang distribution is considered for the vaca-
tion time, the optimum value is reached for the preventive maintenance case with p1 = p2 =
0.67 and R = 3. In this case, a stationary case, the net profit per unit of time would be equal
to 22.4364.

6.4. The Optimum System with the Generalized Erlang Distribution

In section above we have worked out the optimum system. It is given when the
generalized Erlang distribution is considered with parameters (2, 0.67, 0.67) and R = 3. In
this section the performance measures of this system are analysed.

Firstly, the time up to first time that the system is replaced (all units undergo a non-
repairable failure), described in Section 4.3, has been analysed. The reliability function is
plotted in Figure 7. Two cases are shown, with and without inspection.

Figure 7. Reliability function of the time up to a new system (with inspection, continuous line;
without inspection, dashed line).
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From the corresponding phase-type distribution, the mean time up to a new system
has been calculated in both cases. Thus, the mean time up to replacing the system for the
case without inspection is 167.7631 u.t., and with inspection 172.5269 u.t.

Multiple measures have been achieved for this system with and without inspection.
These measures are described in Section 4. Table 2 shows the stationary distribution for
macro-states Uk, k units in the system. They can be interpreted as the proportional time
that the system is in these macro-states.

Table 2. Proportional time in macro-state Uk.

πU1 πU2 πU3 πU4

Without inspection 0.3043 0.2411 0.2306 0.2240
With inspection 0.3057 0.2410 0.2299 0.2234

Performance measures are developed for the optimum system with and without
inspection following Section 4. Table 3 shows the results.

Table 3. Performance measures for the optimum system (without inspection between parentheses).

Υnv Υv Υw Υi Λrep Λmi ΛNS Φ A

0.6806
(0.6826)

0.3194
(0.3174)

0.3139
(0.3187)

0.3667
(0.3639)

0.0409
(0.0432) 0.0049 0.0058

(0.0059)
22.4364
(21.2077)

0.8772
(0.8752)

The proportional time that the repairperson is on vacation is 0.3194. This fact is
of interest for the total cost. Therefore, the repairperson is in his workplace for 0.6806
proportion of time and working for 0.3139 proportion of time. Then, the 46.12% of the time
that the repairperson is in his workplace, he is working. The remaining time he is idle.

Regarding the mean number of events per unit of time we can observe that this is
0.0409 for repairable failures, 0.0049 for major inspection and 0.0058 for new systems. Thus,
for each 10,000 units of time 58 new systems are expected to be re-started. The availability
is also worked out. For 87.72% of the time the system is operational, a 0.23% increase than
the without inspection case. Really this is low but the difference between both net profits is
important, 5.79% maximum for the case with preventive maintenance.

7. Conclusions

Matrix analysis methods can be used to model a complex discrete cold standby system
subject to multiple events. This method facilitates the algorithmic and computational
development of multi-state complex systems. In the case in question, the online unit
within the system is subject to wear and external shocks and may undergo periodic or
random inspection. The repair facility is composed of a single repairperson, who may take
a vacation (absence) from the repair facility. This repairperson may perform corrective
repair and/or preventive maintenance.

The system described is not the standard one in which units are replaced when they
undergo a non-repairable failure. In the present study, the analysis takes account of the loss
of units following the occurrence of a non-repairable failure. When such a failure occurs,
the system continues working with one less unit. This outcome often occurs in practice,
and is reflected in the study method presented.

The (indeterminate) number of units within the repair facility and the vacation policy
applied determine the behaviour of the repairperson. The vacation time begins when the
number of operational units exceeds a given value, and the repairperson will remain in
place, without taking a vacation, if the number of operational units in the system is below
a pre-determined value.

78



Mathematics 2021, 9, 913

The system is modelled in an algorithmic and computational form by means of a
Markovian Arrival Process with marked arrivals. Matrix-analytic methods are used to
obtain the stationary distributions, and multiple measures are derived using a matrix.
These measures are related to system performance and financial results.

The method presented in this paper enables us to analyse optimization problems in
multi-state complex systems. A numerical example of such an optimization is presented.
The results obtained show whether preventive maintenance is profitable and reveal the
optimum number of operational units, hence determining the appropriate policy for the
repairperson’s vacation times.
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Appendix A. Transition Probability Matrix Blocks for the Online Unit Depending on

Type of Event

HO =
(
T ⊗ L + TW ⊗ L0γ

(
1 −ω0))⊗ M +

(
U1T ⊗ L + U1TW ⊗ L0γ

(
1 −ω0))⊗ M0η

HA = T0
rα⊗ L ⊗ eη+

(
T0

r + TW0
r

)
α⊗ L0γ

(
1 −ω0)⊗ eη

H′
A = T0

r ⊗ L ⊗ e +
(

T0
r + TW0

r

)
⊗ L0γ

(
1 −ω0)⊗ e.

HB =
[
U2
(
e − T0)α⊗ L + U2T

(
e − W0

)
α⊗ L0γ

(
1 −ω0)]⊗ M0η

H′
B =

[
U2
(
e − T0)⊗ L + U2T

(
e − W0

)
⊗ L0γ

(
1 −ω0)]⊗ M0

HC =
[
T0

nrα⊗ L +
(

T0
nr + TW0

nr

)
α⊗ L0γ

(
1 −ω0)+ eα⊗ L0γω0

]
⊗ eη.

H′
C =

[
T0

nr ⊗ L +
(

T0
nr + TW0

nr

)
⊗ L0γ

(
1 −ω0)+ e ⊗ L0γω0

]
⊗ e

Appendix B

Appendix B.1. Matrices for the Markovian Arrival Process Depending on the Type of Event

The matrices DA and DB are developed in the text. The rest are given below.

Appendix B.2. The Matrix DO

The matrix DO contains the transitions when a none-event occurs. This matrix is
composed of blocks according to the transitions between the macro-states Uk for k = 1,
. . . ,n. It is given by

DO =

⎛⎜⎜⎜⎜⎜⎝
DO

n
DO

n−1
DO

n−2
. . .

DO
1

⎞⎟⎟⎟⎟⎟⎠.

Therefore, for the different macro-states, this is given by:

• For k = 1, . . . , R−1
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k nv k nv k nv k nv k nv
k k

O k nvk nv

O k nv O k nvk nv
O
k

O k nv O k nvk vn
k k k kk

O k nv O k nvk nv
k k k kk

E E E E E

E
E

E
E

−

− − − −−

−

=

• For k = R, . . . , n

k v k v k v k v k v k v k v k nv k nv k nv k nv k nv
N N N k k N N N k k

k v

k v

k v
N
k v
N
k v
N

O
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E E E E E E E E E E E E

E
E

E
E
E

− + − + + −

−

+

=

O k v
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O k v
N N
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N N
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N N N NN
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N N N NN
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k kk

E
E
E
E

E
E

− −

+ +

− −−

−

+ + ++

− − − −−

−
O k nv O k nv

k k  

with
θ = α⊗

(
L + L0γ

)
⊗ η,

DO,k,v
N,N−1 =

⎛⎝ I2N−1 ⊗
(

I{k=N}θ+ I{k �=N}HO

)
⊗ S0

1 ⊗ υ

I2N−1 ⊗
(

I{k=N}θ+ I{k �=N}HO

)
⊗ S0

2 ⊗ υ

⎞⎠
DO,k,v

r,r = I2r ⊗
(

I{r<k}HO + I{r=k}
(
L + L0γ

))
⊗
(

V + I{r<N}V0υ
)

, r = 0, . . . , k

DO,k,nv
00 = HO

For r =1, . . . , k

DO,k,nv
r,r =

⎛⎝ I2r−1 ⊗
(

I{r<k}HO + I{r=k}
(
L + L0γ

))
⊗ S1 0

0 I2r−1 ⊗
(

I{r<k}HO + I{r=k}
(
L + L0γ

))
⊗ S2

⎞⎠
DO,k,nv

10 =

⎛⎝ (
I{k>1}HO + I{k=1}θ

)
⊗ S0

1(
I{k>1}HO + I{k=1}θ

)
⊗ S0

2

⎞⎠
For r = 2, . . . , k

DO,k,nv
r,r−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
I2r−2 ⊗

(
I{r<k}HO + I{r=k}θ

)
⊗ S0

1 ⊗β1 0

0 I2r−2 ⊗
(

I{r<k}HO + I{r=k}θ
)

⊗ S0
1 ⊗β2

I2r−2 ⊗
(

I{r<k}HO + I{r=k}θ
)

⊗ S0
2 ⊗β1 0

0 I2r−2 ⊗
(

I{r<k}HO + I{r=k}θ
)

⊗ S0
2 ⊗β2

⎞⎟⎟⎟⎟⎟⎟⎠
Appendix B.3. The Matrix DD

The matrix DD contains the transitions when the repairperson resumes work without
any other event. The structure of this matrix is
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D
n

D
n

D D
R

−

=

• For k = R, . . . , n

k v k v k v k v k v k v k v k nv k nv k nv k nv
N N N k k N N k k

k v

k v

k v
N
k v
N
k v
N

Y
k

k v
k
k v
k
k nv
N
k nv
N

k nv
k

E E E E E E E E E E E
E
E

E
E
E

E
E
E
E

E

− + − + −

−

+

−

+

−

=

Y k nv
N N

Y k nv
N N

Y k nv
k k

Y k nv
k k

k nv
kE

+ +

− −

 

For r = N, . . . , k

DD,k,nv
r,r =

⎛⎝ I2r−1 ⊗
(

I{r=k}
(
L + L0γ

)
+ I{r<k}HO

)
⊗ V0 ⊗β1 0

0 I2r−1 ⊗
(

I{r=k}
(
L + L0γ

)
+ I{r<k}HO

)
⊗ V0 ⊗β2

⎞⎠
Appendix B.4. The Matrix DAD and DBD

The matrices DAD and DBD contain the transitions when the repairperson resumes
work and at same time a repairable failure or major inspection occur. In this case, for Y =
AD, BD we have

DY =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DY
n

DY
n−1

. . .
DY

R
0

. . .
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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• For k = R, . . . , n

k v k v k v k v k v k v k v k nv k nv k nv k nv
N N N k k N N k k

k v

k v

k v
N
k v
N
k v
N

Y
k

k v
k
k v
k
k nv
N
k nv
N

k nv
k
k nv
k

E E E E E E E E E E E
E
E

E
E
E

E
E
E
E

E
E

− + − + −

−

+

−

+

−

=

Y k nv
N N

Y k nv
N N

Y k nv
k k

−

+

−

 

• For r = N−1, . . . , k−1

FAD,k,nv
r,r+1 =

⎛⎝ I2r−1 ⊗
((

I{r=k−1}H′
A + I{r<k−1}HA

)
⊗ V0 ⊗β1, 0

)
0

0 I2r−1 ⊗
((

I{r=k−1}H′
A + I{r<k−1}HA

)
⊗ V0 ⊗β2, 0

) ⎞⎠
FBD,k,nv

r,r+1 =

⎛⎝ I2r−1 ⊗
(

0,
(

I{r=k−1}H′
B + I{r<k−1}HB

)
⊗ V0 ⊗β1

)
0

0 I2r−1 ⊗
(

0,
(

I{r=k−1}H′
B + I{r<k−1}HB

)
⊗ V0 ⊗β2

) ⎞⎠
Appendix B.5. The Matrix DC

The matrix DC contains the transitions when only a non-repairable failure occurs. In
this case the matrix is

DC =

⎛⎜⎜⎜⎜⎜⎜⎝

0 DC
n

0 DC
n−1

0
. . .
. . . DC

2
0 0

⎞⎟⎟⎟⎟⎟⎟⎠.

• For k = 2, . . . , R−1 and k �= R ≥ 3

DC
k =

Ek,nv
0

Ek,nv
1
...

Ek,vn
k−1

Ek,nv
k

⎛⎜⎜⎜⎜⎜⎜⎝

Ek−1,nv
0 Ek−1,nv

1 . . . Ek−1,nv
k−2 Ek−1,nv

k−1
DC,k,nv

00
DC,k,nv

10 DC,k,nv
11
. . . . . .

DC,k,nv
k−1,k−2 DC,k,nv

k−1,k−1
0

⎞⎟⎟⎟⎟⎟⎟⎠
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• For k = R ≥ 2

k nv k nv k nv k nv
k k

k v

k v

k v
k

C k v
k k

C k nv C k nvk nv
N

C k nvk nv

C k nv C k nvk nv
k k k kk

k nv
k

E E E E
E
E

E
E
E
E

E
E

− − − −
− −

−

=

− − − −−

=

• For k = R+1, . . . , n with R ≤ n−1

k v k v k v k v k v k v k v k nv k nv k nv k nv
N N N k k N N k k

k v

k v

k v
N
k v
N
k v
N

C
k

k

E E E E E E E E E E E

E
E

E
E
E

E

− − − − − − − − − − −
− + − − − − −

−

+

−

=

C k v

C k v

C k v
N N

C k v
N N

C k v
N N

k v C k v
k k

k v
k
k nv C k nv C k nv
N N N N N
k nv C k nv C k nv
N N N N N

k nv C k nv C k nv
k k k k k
k nv
k

E
E
E

E
E

− −

+ +

− −

−

+ + + +

− − − − −

For r = 0, . . . , k−1, DC,k,v
r,r = I2r ⊗

(
I{r=k−1}H′

C + I{r<k−1}HC

)
⊗
(

V + I{r<N−1}V0υ
)

,

DC,k,nv
00 = HC;

For r = 1, . . . , k−1;

DC,k,nv
r,r =

⎛⎝ I2r−1 ⊗
(

I{r=k−1}H′
C + I{r<k−1}HC

)
⊗ S1 0

0 I2r−1 ⊗
(

I{r=k−1}H′
C + I{r<k−1}HC

)
⊗ S2

⎞⎠
DC,k,nv

10 =

(
HC ⊗ S0

1
HC ⊗ S0

2

)

For r = 2, . . . , k−1, DC,k,nv
r,r−1 =

⎛⎜⎜⎝
I2r−2 ⊗ HC ⊗ S0

1 ⊗β1 0

0 I2r−2 ⊗ HC ⊗ S0
1 ⊗β2

I2r−2 ⊗ HC ⊗ S0
2 ⊗β1 0

0 I2r−2 ⊗ HC ⊗ S0
2 ⊗β2

⎞⎟⎟⎠
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Appendix B.6. The Matrix DCD

The matrix DCD contains the transitions when a non-repairable failure occurs and the
repairperson resumes his work. In this case the matrix is

DCD =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 DCD
n

. . . . . .
0 DCD

R
0 0

. . . . . .
0 0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
• For k = R

k nv k nv k nv k nv
k k

k v CD k nv

k v CD k nv

k v CD k nv
k k k

CD k v
k k

k nv
N
k nv

k nv
k
k nv
k

E E E E

E
E

E
E
E
E

E
E

− − − −
− −

− − −

=

−

=

The matrix blocks for the case k = R are DCD,k,nv
00 = HC ⊗ e

For r = 1, . . . , k−1

DCD,k,nv
r,r =

⎛⎝ I2r−1 ⊗
(

I{r=k−1}H′
C + I{r<k−1}HC

)
⊗ e ⊗β1 0

0 I2r−1 ⊗
(

I{r=k−1}H′
C + I{r<k−1}HC

)
⊗ e ⊗β2

⎞⎠
• For k = R+1, . . . , n and R ≤ n−1

k v k v k v k v k v k v k nv k nv k nv k nv k nv
N N N k k N N k k

k v

k v

k v
N
k v
N
k v
N

CD
k

k v
k
k v
k
k nv
N
k nv
N

k nv
k

E E E E E E E E E E E
E
E

E
E
E

E
E
E
E

E
E

− − − − − − − − − − −
− + − − − − −

−

+

−

+

−

=

CD k nv
N N

CD k nv
N N

CD k nv
k k

k nv
k

− −

− −
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• The matrix blocks for the case k = R+1, . . . , n are
For r = N−1, . . . , k−1

DCD,k,nv
r,r =

⎛⎝ I2r−1 ⊗
(

I{r<k−1}HC + I{r=k−1}H′
C

)
⊗ V0 ⊗β1 0

0 I2r−1 ⊗
(

I{r<k−1}HC + I{r=k−1}H′
C

)
⊗ V0 ⊗β2

⎞⎠
Appendix B.7. The Matrix DNS

The matrix DNS contains the transitions when a failure provokes the system to be
restarted. Obviously, in this case the system is composed of only one unit. When this one is
broken, a new system with n units re-starts. When this occurs, the vacation time begins
again. The structure of the matrix is

NS

NS

=  

• If R = 1

n v n v n v n v n v n v n nv n nv n nv n nv n nv
N N N k k N N k k

v NS v
NS

v

nv

E E E E E E E E E E E

E
E
E

− + − − + − −

=

with DNS,1,v
00 = HC ⊗ eυv.

• If R > 1

n v n v n v n v n v n v n nv n nv n nv n nv n nv
N N N k n n

NS nv NS v

nv

E E E E E E E E E E E

E
E

− + −

=

with DNS,1,v
00 = HC ⊗ v.

Appendix C

To calculate the expected times that the repairperson returns to the workplace, in-
dependently of whether he remains or begins another period of vacation, the following
matrix Q is defined. This matrix is built analogously to the matrix D, but any return is
considered. Therefore, the matrix Q is the addition of the following matrices

Q = DO
r−b + DA

r−b + DB
r−b + DC

r−b + DD + DAD + DBD + DCD + DNS
r−b.

The matrices DD, DAD, DBD, DCD are described in Appendix B. The other matrices
have the same structure for the corresponding event given in Appendix B. These matrices
are of zeros, excepting the following blocks.

• For r = 0, . . . , k−R and k ≥ R
DO,k,v

r,r = I2r ⊗ HO ⊗ V0υ
• For r = 1, . . . , k−R−1 and k ≥ R+2

DA,k,v
0,1 =

(
HA ⊗ V0ν, 0

)
; DB,k,v

0,1 =
(
0, HB ⊗ V0ν

)
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DA,k,v
r,r+1 = I2r ⊗

(
HA ⊗ V0ν, 0

)
DB,k,v

r,r+1 = I2r ⊗
(
0, HB ⊗ V0ν

)
.

• For r = 0, . . . , k−R−1 and k ≥ R+1
DC,k,v

r,r = I2r ⊗ HC ⊗ V0υ

• If R = 1,
DNS,1,v

00 = HC ⊗ V0v
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Abstract: Processes are everywhere, covering disparate fields such as business, industry, telecom-
munications, and healthcare. They have previously been analyzed and modelled with the aim of
improving understanding and efficiency as well as predicting future events and outcomes. In recent
years, process mining has appeared with the aim of uncovering, observing, and improving processes,
often based on data obtained from logs. This typically requires task identification, predicting future
pathways, or identifying anomalies. We here concentrate on using Markov processes to assess com-
pliance with completion targets or, inversely, we can determine appropriate targets for satisfactory
performance. Previous work is extended to processes where there are a number of possible exit
options, with potentially different target completion times. In particular, we look at distributions of
the number of patients failing to meet targets, through time. The formulae are illustrated using data
from a stroke patient unit, where there are multiple discharge destinations for patients, namely death,
private nursing home, or the patient’s own home, where different discharge destinations may require
disparate targets. Key performance indicators (KPIs) of this sort are commonplace in healthcare,
business, and industrial processes. Markov models, or their extensions, have an important role to
play in this work where the approach can be extended to include more expressive assumptions, with
the aim of assessing compliance in complex scenarios.

Keywords: process mining; process modelling; phase-type models; process target compliance

1. Introduction

Processes are widespread, encompassing disparate areas such as business, production,
telecommunications, and healthcare. They have previously been analyzed and modelled
with the aim of improving understanding and efficiency as well as predicting future events
and outcomes. With the burgeoning capability of IT systems to collect, process, store, and
exchange data, and the upsurge of suitable technologies for Big Data, recently, process
mining has appeared, providing a bridge between data mining and process modelling [1].
Process mining provides an opportunity and framework for service design and improve-
ment, as well as a scientific rationale for decision-making. In general, we consider processes
comprising several tasks each with start and end times and associated durations. A process
instance completes these tasks according to the logic and rules prevailing in the real-world
setting. The process data features mainly consist of data such as duration, customer id, etc.,
and are held in log files. Hence, such log files provide an automated time-stamped record
of tasks performed during the execution of a given process.

Consequently, process mining may include discovering the tasks and trajectories that
comprise the process, predicting trajectories, or identifying anomalies. Such activities can
employ traditional methods for data mining such as classification, clustering, regression, as-
sociation rules, sequence mining, or deep learning. However, model-based approaches can
also provide opportunities for incorporating structural process knowledge into the analysis,
thereby facilitating improved understanding and prediction. As such, process mining can
be employed in diverse areas, such as manufacturing [2], telecommunications [3], financial
processing, and healthcare [4].
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A mathematical model is often used as a simplified version of a process, where
simulation uses the model to imitate the behaviour of the process, without interfering
with the actual process [5]. Correctness, conformance, and performance are some of the
most important problems for complex processes, where models have often been used to
resolve such issues. Performance analysis typically focuses on the dynamic behaviour of
the process, based on metrics such as response time, uptime, or output. Our emphasis here
is on measuring if a process meets its targets. For example, a business process might have
order completion targets to meet, and an accident and emergency department could have
discharge targets, while service-level agreements (SLAs) are commonly used to characterize
cloud performance targets.

(Stochastic) process algebras have been implemented in formal languages to describe
a system model. For example, Petri nets [6] were introduced by Carl Adam Petri in 1962 to
characterize and analyze concurrent systems. They are based on mathematical specification
alongside a mathematical theory for interpretation and analysis. For example, Petri nets
have been used for workflow modelling [7]. In addition, stochastic Petri nets [8], including
queueing Petri nets, have been developed.

A Markov model is a type of probabilistic process model that can describe such systems
where it is assumed that the Markov property is followed, i.e., future states only depend
on present states, and not additionally on previous ones. This enables both individual
probabilistic predictive modelling [9] and group forecasting for individuals moving through
a process [10]. Higher-order Markov models may alternatively be employed if the Markov
assumption is not appropriate. In addition, continuous-time Markov chains (CTMCs)
are commonly used where the Markov property translates into exponentially distributed
durations. Such models can be used to find “interesting” (in)frequent pathways [11].

In this paper, we extend our previous initial work on using Markov models to predict
process target compliance [12]. Several formulae are obtained and used for a process
concerning stroke patient pathways achieving targets for the duration of hospitalization
and subsequent discharge to different types of community care. In what follows, we
formulate the problem for a general phase-type Markov model, where previously we
focus on Coxian models. We also extend the work to situations where there are multiple
absorbing (discharge) states and also for groups of individuals (e.g., patients) moving
through the system towards discharge targets.

2. Background

Markov models have been used to represent various types of process applications,
including call centres [13], sensor networks [14], telecommunications [15], production
modelling [16] and healthcare [10]. Phase-type models are a special case of a Markov
model where there are transient states (or phases) and, typically, a single absorbing state
where generally the interest is in duration of stay in the set of transient states. In healthcare,
we typically have some hospital states followed by one, or more, absorbing states in the
community. These models can be used to predict individual patient movements or to
predict future resource requirements or costs for groups of patients [17]. They facilitate
conceptualization of flows, e.g., for hospital patients, through testing, diagnosis, treatment,
and rehabilitation. Such phase-type distributions (PHDs) can be utilized to describe
duration in a group of states where the PHD represents the time from admission to the
transient states until absorption into the absorbing state. In particular, Coxian phase-type
distributions (C-PHDs) are a useful special case where a process always starts in the first
transient state and can never return to a state once it has left it. Transition from a transient
state to the absorbing state is also allowed (Figure 1). Such PHDs provide a simple model
for a key performance indicator (KPI) such as length of stay in the transient states, e.g.,
duration of a particular activity, or from order placement to delivery. Parameter estimation
for PHDs is also typically straightforward [9]. In general, phase-type models (PHDs) are
well suited to a range of situations, including healthcare [18–21], community care [22],
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accident and emergency [23], and activity recognition [24]. They are also understandable
as we can conceptualize a patient or customer as moving through the phases.

 
Figure 1. A k state patient Coxian phase-type distribution.

In addition, PHDs have the following advantages: (i) their mathematical simplicity;
(ii) parsimonious parameterization; (iii) flexibility in terms of fitting different shapes of dis-
tribution; and (iv) ease of migration to more complex settings, either using a mathematical
or simulation approach.

In the current paper, as in our previous work, e.g., [25,26], we include covariates,
or additional features, into the model by allowing the initial and transition probabilities
to depend explicitly on these covariates. The specific functional form of these covariate
models will be described in the next section.

3. Phase-Type Models

3.1. The Basic Phase-Type Model

As in [5,12], we use here a phase-type Markov process model. This representation of a
process by a Markov, or more specifically, a phase-type model allows us to incorporate vari-
ability into process tasks, thus facilitating implementation and adaptation. As discussed,
the phase-type model provides a useful way of describing process duration and also has
other advantages, such as computational efficiency.

We begin by defining k transient phases S1, . . . , Sk, with phase Sk+1 being the only
absorbing state. Writing the initial vector as: α = (α1, . . . αk), where αi is the probability of
entry to phase Si for i = 1, . . . , k, we obtain the probability density function (p.d.f.) of the
distribution of duration until transition to the absorbing state as:

f (x) = α exp (Tx)tA, (1)

where T = {tij} is the k × k generator matrix for the transition rates between the transient
states and i = 1, . . . , k, j = 1, . . . , k. Here, tA is the column vector of transition rates from
the transient states to the absorbing state and tA = −T1 where 1 is a column vector of 1’s,
pointing to the fact that the row sums of the generator matrix are zero.

Integrating the p.d.f., we obtain the cumulative distribution function (c.d.f.) as

FX(y; α, T) = 1 − α exp (Ty)1; y ≥ 0. (2)

which describes the probability of meeting a given duration target y for length of stay in
the transient states. Similarly, the probability of missing a duration target y is given by

Fx(y; α, T) = α exp (Ty)1; y ≥ 0. (3)

We note that the inverse problem of ascertaining an appropriate duration target, given
a required percentage compliance, can be obtained from Equation (3) by solving to find
y for a given F. Here F can be a service-level agreement in a management or industrial
context. So, for example, we may require that 95% of tasks are completed within a given
target duration in the transient states. Although we cannot solve Equation (3) explicitly for
y, we can a use a numerical solution, such as Newton–Raphson, where the estimate of y is
given at the (n + 1)th iteration by

yn+1 = yn − F(yn)/F′(yn), (4)
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where F′(yn) = α exp(Tyn)T1.
In this way, we can not only characterize the relative likelihoods of compliance and

non-compliance with a target but also consider the most likely state trajectories. Using
the approach of [26], we determine the conditional probability of meeting (or otherwise) a
target of duration y given that an amount of time d has already passed. This probability is
given by

FX|X>d(y; α, T) = 1 − α exp (Ty)1
α exp (Td)1

; y ≥ d, (5)

which represents the probability of meeting a given target y. Also, the probability of
missing a target y is given by

FX|X>d(y; α, T) =
α exp (Ty)1
α exp (Td)1

; y ≥ d. (6)

In a similar manner, conditional means can be calculated by integrating the conditional
densities, as previously discussed in McClean et al. [12].

3.2. Multiple Absorbing States with Different Targets

To date, we have assumed that the target for absorption will be the same, irrespective
of the initial state. While this may be the case in many situations, it is clearly not always
the case. For example, for stroke patients, as we will discuss in our case study, the three
initial states are (1) haemorrhagic stroke, (2) cerebral infarction stroke, and (3) transitory
ischaemic attack (TIA). However, in this example, the anticipated length of stay in hospital
depends on the type of stroke, with haemorrhagic stroke being more severe than cerebral
infarction and cerebral infarction being more severe than TIA. In addition, the expected
length of stay will vary with the discharge destination, with more severe strokes leading to
destinations which require community settings which provide more support for the patient.
This observation underpins our model, where we assume that the patients progress from
one transient state (phase) to another less severe one. It is therefore likely that, for such
situations, the individual targets will differ across initial phases. So, for the stroke patient
example, we might expect the target for haemorrhagic patients to be greater than that of
cerebral infarction patients and the target for cerebral infarction patients should be larger
than that for TIA patients, corresponding to greater stroke severity generally requiring
longer hospitalization.

Previously, we extended this model to incorporate the occurrence of multiple absorb-
ing states into the phase-type model [26], as follows.

The infinitesimal generator matrix Q is given by

Q(x) =

(
T(x) tA(x)
0AT 0AA

)
. (7)

Here T = {tij} is a k × k matrix of transition rates between the k transient states, given by

T(x) =

⎛⎜⎝ −Λ1(x) · · · λ1k(x)
...

. . .
...

0 · · · −Λk(x)

⎞⎟⎠, (8)

where Λi(x) = ∑k
j=2 λij(x) + ∑m

j=1 μij(x).
Here we allow the transition rates to depend on covariates x = {xi}; for example, for

stroke patients these could be age and gender, where the μij(x) terms represent transition
rates from transient state Si to absorbing state Sj for i = 1, . . . , k and j = 1, . . . , m, and
m represents the number of absorbing states. The k × m matrix tA is then given by
tA = {μij(x)}.
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Finally, 0AT and 0AA are zero matrices of suitable dimensions and 0 is a zero column
vector. These elements satisfy the conditions tii < 0 for I = 1, . . . , k and tij ≥ 0 for i = 1,
. . . , k; for j = 1, . . . m. Also, T and tA satisfy tA1m = −T1k where 1m is an m-dimensional
column vector of ones.

In a similar way to Equation (1) we obtain f (t) = {fi(t)} where fi(t) is the unconditional
(degenerate) p.d.f. of the time spent in the transient states prior to discharge to absorbing
state Sk+i for i = 1, . . . , m, and

f(t) = α exp (Tt)tA (9)

The probability of meeting target τi for absorbing state Sk+i is therefore given by

Mi(τi; α, T) =
∫ τi

0
α exp(Ty)tA Iidy; y ≥ 0, i = 1, . . . , m, (10)

where Ii is an m-dimensional column vector with 1 in the ith position and zeros elsewhere;
tA Ii is therefore the ith column of tA.

Integrating this expression, we obtain

Mi(τi; α, T) =
{

α exp(Tτi)T
−1tA Ii − α T−1tA Ii

}
= α (I − exp(Tτi))

(
−T−1)tA Ii i = 1, . . . , m.

(11)

Here, when the targets are equal across all absorbing states, i.e., τi = τ ∀ i, the total
probability of meeting the target is ∑m

i=1 Mi(τ; α, T) = α exp (Tτ)1, as for Equation (3).
We note that these formulae, for the probability of meeting targets when there are

multiple “risks”, are related to those used in epidemiology for cumulative incidence,
e.g., [27].

We can also obtain the conditional probability of meeting the target τi for the absorbing
state Sk+i, given eventual absorption is to this state, which is given by

Li(τi; α, T) =
{

α (I − exp(Tτi))
(
−T−1

)
tA Ii

}
/
{

α
(
−T−1

)
tA Ii

}
i = 1, . . . , m. (12)

This expression is useful in terms of allowing us to determine the profile of different
groups of patients characterized by their final destination and quantifying how likely
they are to meet the given possible targets with regard to duration in the transient states.
While our previous expressions are more geared towards making and meeting targets for
individuals, Equation (12) allows us to move towards thinking about cohorts of individuals
meeting overall targets for the system of transient states. For example, in the stroke patient
situation we explore below, the performance of a stroke unit in terms of meeting hospital
targets can be measured in terms of the different discharge destinations (absorbing states),
namely death, private nursing home and own homes. Mathematically, this is achieved
through the entry vector α, which here represents an overall probability distribution
across the different types of stroke. We now focus further on such population models for
setting targets.

3.3. Poisson Arrivals

So far, we have considered individual movements through the transient states, with
eventual absorption into one of a number of possible exit states. Our focus here has thus
been on providing expressions for target achievement. However, for such processes, there
is often an interest in characterizing the movements of a number of individuals moving
through the system in parallel where, for example, we may want to characterize and/or
predict the numbers of individuals attaining a target in a given time interval. As such, our
focus now shifts to a Markov system; for further details of such systems and a discussion
of various possible extensions, see, for example, [28].

We consider a situation where new arrivals to the Markov process occur according
to a Poisson process, rate ω where we have an initial probability vector α, k transient
states, and one absorbing state, as before. We are interested in determining the probability
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distribution of the number of individuals arriving in time interval (0, ∞) who fail to meet a
fixed target d.

Let M(t) be the number of individuals who arrive in (0, t) according to a Poisson
process, rateω, and fail to comply. Each of these individuals fails to comply with probability
Φ where Φ = α exp{Td} 1k, using Equation (3). Then, the distribution of N(t), the total
number of arrivals in (0, d), is Poisson (ωd) and the distribution of M(d) is a compound
distribution, consisting of a binomial choice from a Poisson number of failures.

The probability generating function (p.g.f.) of a r.v. N~Poisson(ωt) is given by EN[zN]
= G(z) = exp(ωd (z − 1)), and the p.g.f. of a random variable (r.v.) M~Binomial (N, p)
is EM[zM] = G(z) = (q + pz)M, where q = 1 − p. The p.g.f. of the required compound
distribution is therefore

HM(z) = EN

[
EM

[
zM
∣∣∣N]] = G(F(z)) = exp{ ω d ((1 − Φ) + Φz)− 1)} = exp{ ω d Φ(z − 1)}. (13)

So, the number of failures who comply with target d from individuals arriving in (0, t)
is a Poisson with mean (and variance):

ωt α exp{Td} 1k. (14)

Similarly to the situation considered previously, where we have m absorbing states, we
again have a compound distribution of a Poisson (arrival) rateω and a binomial (transition
to absorbing state i after duration di). Then, integrating Equation (12) we obtain the result
that the number of individuals arriving in (0, t) who meet target di for absorbing state Sk+i
is a Poisson with mean (and variance):

ωt
{

α (I − exp(Tτi))
(
−T−1

)
tA Ii

}
, (15)

where Ii is an m-dimensional column vector with 1 in the ith position, as before.
Based on this result, we can understand and predict the variability of numbers of

individuals moving through the transient states in terms of their likelihood of meeting
targets. The mathematical development in this section suggests that such variability is
likely to be high and increase with time. This further highlights the importance of setting
achievable targets.

4. Results

4.1. The Stroke Care Case Study

In practice, it is often the case that a number of absorbing states are possible, with
possibly different targets. Previously, we have discussed phase-type models which contain
multiple absorbing states [5,26]. We now apply our model to such a situation involving
stroke patients using data spreading over 5 years. Here, we have described a phase-type
model with four transient states corresponding to different types of stroke with contrasting
severity and related admission probabilities for differing stroke severity. The data contain
three types of stroke: haemorrhagic (the most severe, caused by bleeding in the brain),
cerebral infarction (less severe, due to blood clots), and transient ischaemic attack or TIA
(the least severe, a minor stroke caused by a small clot). Following hospitalization, there are
three possible discharge destinations: (1) following the patient’s death, (2) with a discharge
to a private nursing home, and (3) with a discharge to the patient’s own home. These
different situations can be described by defining the exit matrix tA as

tA =

⎛⎜⎜⎝
μ1 ν1 ρ1
μ2 ν2 ρ2
μ3 ν3 ρ3
μ4 ν4 ρ4

⎞⎟⎟⎠ (16)
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For this special case of tA, each column relates to a different hospital discharge event,
while the rows correspond to the transient phases of hospitalization [26].

In this study, data were collected over a 5-year period, on admission date, discharge
date, diagnosis on admission, and discharge destination, alongside other covariates, such
as age on admission and gender. The transition rates of the model may depend upon the
age and stroke type of the patient, or may not depend on age [5]. We note in passing that the
Poisson admission assumption was previously tested using chi-square and Kolmogorov–
Smirnov tests and shown to be acceptable for our Belfast City Hospital stroke patient
data [5].

So far, we have not discussed the possibility of covariates playing a significant role
in the Markov model. However, as is often the case, for the stroke patient case we have
additional covariates, namely age and gender. In our previous work, we determined that
while gender does not have a significant effect, age does and has therefore been included
in the model, as follows. Other covariates were not available for this dataset but, in general,
the results of tests or diagnostics might be relevant covariates.

For i = 1, 2, let λi(x) be the transition intensity from phase Si to phase Si+1 for a patient
of age x, where λi(x) = exp(γi + βi x). Also, p(x) is the probability that a TIA patient aged
x enters phase S4 upon admission to hospital, representing the least severe type of stroke.
Consequently, a more severe TIA patient starts in phase S3 with probability 1 − p(x). We
assume that p(x) = exp{−exp(θ0 + θ1 x)}. The exponential functions here used in modelling
λi(x) and (x) are standard representations, which constrain the probability values to the
required ranges. Such functions are found in the literature for log link and complementary
log–log link functions for generalized linear models, e.g., [29]. As seen in Figure 2, it is
assumed that μ4 = ν4 = 0, representing the fact that patients with a minor TIA (S4) are
always discharged to their own home. Similarly, for the other transitions from the transient
phases (S1, S2, and S3) to each absorbing state, we assume that ν1 = p1 = 0. We note that
transitions absent in Figure 2, and corresponding zero parameters, have been found by
statistical testing based on likelihood ratio tests; for further details, see [26].

Figure 2. Stroke care transition diagram.

4.2. Findings

The following findings are based on model parameter values as described in [26].
These were estimated using a 5-year retrospective dataset consisting of 1985 patients.
Figure 3 presents the cumulative probability of discharge from hospital by age for (a) haem-
orrhagic stroke, (b) cerebral infarction, and (c) TIA. The 95% compliance is also presented
in these plots to make it easier to evaluate the compliance target, in days, for a commonly
used compliance probability. In all three plots, we can see that the older the patient, the
longer the stay in hospital and the less likely patients are to comply with a given target, as
expected. Here, we see that, for a given compliance probability, the haemorrhagic patients
typically spend much longer in hospital and, similarly, TIA patients spend much shorter
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periods in hospitals, so a lower target would be appropriate for them. This is as we would
anticipate, with more serious, or more infirm, patients staying longer in hospital. Patients
with cerebral infarction are intermediate, in this regard, as we would expect.

 
(a) (b) 

 
(c) 

Figure 3. Cumulative probability of discharge from hospital by age for (a) haemorrhagic stroke, (b) cerebral infarction, and
(c) TIA.

In Figure 4 we present the duration of stay in hospital by age for compliance with
different targets for (a) haemorrhagic stroke, (b) cerebral infarction, and (c) TIA. We see
from the plots that, as before, the more serious the stroke, the longer the patients need
to be allocated to reach a given target, as prolonged rehabilitation is needed for such
patients to move through the different treatment and recovery phases before discharge.
Moreover, as the targets become more severe, they become increasingly harder to achieve,
for all patients.

96



Mathematics 2021, 9, 1187

 
(a) (b) 

 
(c) 

Figure 4. Duration of stay in hospital by age for compliance with different targets for (a) haemorrhagic stroke, (b) cerebral
infarction, and (c) TIA.

In Figure 4 we present the duration of stay in hospital by age for compliance with
different targets for (a) haemorrhagic stroke, (b) cerebral infarction, and (c) TIA. We see
from the plots that, as before, the more serious the stroke, the longer the patients need to
be given to reach a given target, as a longer period of rehabilitation is required for these
patients to move through the treatment and recovery phases prior to discharge. Also, as the
targets become more severe, they become increasingly harder to achieve, for all patients.

Figure 5 presents cumulative conditional probability of discharge from hospital by
age conditional on eventual discharge to (a) death, (b) private nursing home, and (c) own
home. We note that the admission vector here is across the population of stroke patients
from all types of stroke, as we are thinking in terms of setting targets for the stroke unit
rather than individual patients, as before. As we can see, these profiles are quite different
across discharge distributions, highlighting the importance of different targets for private
nursing homes and own homes. We have presented the graph for deaths in hospital as
well for interest, although a target would be inappropriate here. Looking at the plots, we
see that the longest durations are for patients who are discharged to their own home. The
shortest are those who die in hospital, while those discharged to private nursing home
are intermediate. This is reasonable as the patients who die in hospital are mainly very
ill when they are admitted, while patients who are discharged to private nursing home
are also quite ill and need a lot of rehabilitation before discharge. The patients who die
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do not display much variation between age groups, while older patients discharged to
their home require longer periods in hospital than younger such patients, as they probably
require more rehabilitation than younger patients. It is interesting that this age effect is
reversed in patients discharged to private nursing homes, possibly because more time is
spent trying unsuccessfully to rehabilitate them to a stage when they might manage at
home, with a package.

 
(a) (b) 

 

(c) 

Figure 5. Cumulative conditional probability of discharge from hospital by age conditional on eventual discharge to
(a) death, (b) private nursing home, and (c) own home.

5. Discussion

In our stroke patient example, Markov models can be used to describe the stroke
patient care system using well-known clinical pathways, which integrate hospital and
community services to provide ways of characterizing services, evaluating planned trans-
formations, and predicting resourcing needs for future situations. Our previous paper [26]
developed approaches to utilize routinely available discharge data to characterize patient
admission patterns, movements through care, and release to suitable destinations. Such an
approach can assist performance modelling, bed occupancy analysis, capacity planning,
and patient destination prediction across different sectors of the patient care system. By
using such an approach, we can compare different options and identify optimal policies.
We note that stroke patient care provides an important paradigm example for healthcare
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processes generally, as there are numerous other specialties that encompass hospital and
community services. Overall consumption of hospital resources and compliance with
related targets are KPIs for healthcare services, and tools are thus needed to assess the
effect of policies and their impact on patient hospitalization targets.

6. Conclusions

This paper described how process mining can provide suitable data from suitable
datasets to populate phase-type models, which can then be used to quantify compliance
with process targets or identify suitable targets given a required compliance percentage We
described an example that uses phase-type models to describe stroke patient hospitalization
and discharge, where there are multiple discharge destinations. Based on this use-case,
various options have been investigated, with an emphasis on measuring target compliance;
such performance indicators are frequently used in healthcare settings as well as in business
and industrial environments. Multiple absorbing states quite commonly occur in such
application domains. For example, there is an extensive literature on using Markov
models for breast cancer patients where multiple absorbing states may come from different
outcomes or using stratification to represent different characteristics of the patients [30].

Our current approach is part of initial efforts towards developing integrated process
models, with the aim of supporting integrated management, planning, and resourcing. An
important aspect of extending our framework, as described, is that it allows us to find the
probability distribution of target compliance for multiple absorbing states and use Poisson
processes to model arrivals; costs can also be associated with various parts of the system.

The approach is likely to be pertinent to business processes generally where phase-type
models should have an important role to play.
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Abstract: We address the problem of finding a natural continuous time Markov type process—in
open populations—that best captures the information provided by an open Markov chain in discrete
time which is usually the sole possible observation from data. Given the open discrete time Markov
chain, we single out two main approaches: In the first one, we consider a calibration procedure
of a continuous time Markov process using a transition matrix of a discrete time Markov chain
and we show that, when the discrete time transition matrix is embeddable in a continuous time one,
the calibration problem has optimal solutions. In the second approach, we consider semi-Markov
processes—and open Markov schemes—and we propose a direct extension from the discrete time
theory to the continuous time one by using a known structure representation result for semi-Markov
processes that decomposes the process as a sum of terms given by the products of the random
variables of a discrete time Markov chain by time functions built from an adequate increasing
sequence of stopping times.

Keywords: Markov chains; open population Markov chain models; Semi-Markov processes

1. Introduction

After the first works introducing homogeneous open Markov population models in [1]
followed by those in [2] and then in [3], further expanded by several authors and exposed
in [4] and then in [5], the study of open populations in a finite state space in discrete time
with a Markov chain structure became well established.

Following the pioneering work of Gani, introducing in [6] what now is known as Cyclic
Open Markov population models, there were further extensions in [7], for non-homogeneous
Markov chains and then, for cyclic non-homogeneous Markov systems or equivalently
for non-homogeneous open Markov population processes, by the authors of [8,9]. Let
us stress that continuous time non-homogeneous Markov systems have been studied
lately in [10]. Furthermore, the recent work in [11] develops an approach to open Markov
chains in discrete time—allowing a particle physics interpretation—for which there is a
state space of the Markov chain—where distributions are studied by means of moment
generating functions—there is an exit reservoir, which is tantamount to a cemetery state
and, there is an incoming flow of particles, defined as a stochastic process in discrete time
whose properties—e.g., stationarity—condition the distribution law of the particles in the
state space.

Discrete time non-homogeneous semi-Markov systems or equivalently open semi-
Markov population models were introduced and studied in [12,13]. The study of open
populations in a finite state space in continuous time and governed by Markov laws,
has already been carried in [14] and the references therein, and extensions to a general
state space have been given in [15–17]. The continuous time framework has also been
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addressed, for instance, in [18–20], for the case of semi-Markov processes and for non-
homogeneous semi-Markov systems [21]. We may also refer a framework of open Markov
chains with finite state space—see in [22] and references therein—that has already seen
applications in Actuarial or Financial problems—as, for instance, in [23,24]—but also in
population dynamics (see [25]). The weaker formalism open Markov schemes, in discrete
time—developed in [26]—allows for influxes of new elements in the population to be given
as general time series models.

Another example was motivated by the study of a continuous time non homogeneous
Markov chain model for Long Term Care, based on an estimated Markov chain transition
matrix with a finite state space, in [27], by means of a method for calibrating the intensities
on the continuous time Markov chain using the discrete time transition matrix in the
context of usual existence theorems for ordinary differential equations (ODE); this method
will be considered, in Section 3.2, in the more general context of Caratheodory existence
theorems for ODE.

The main contribution of the present work is to extend results on open Markov chains
in discrete time to some continuous time process of Markov type using different methods
of associating a continuous process to an observed process in discrete time. One of these
methods—presented in Sections 3.2 and 3.3—is by calibration of the transition intensities.
Another method considered for open Markov schemes—in Section 4.2 and also, briefly, for
some particular cases, in Section 4.3—is to exploit a natural representation of the continuous
time Markov type process, in Formula (2) of Section 2.

2. From Discrete Time to Continuous Time via a Structural Approach

We present the main ideas on a structural representation for continuous time process of
Markov type that are crucial to our approach. The structure of continuous time processes—
for instance, Markov, semi-Markov, and Markov type schemes processes—allows us to
consider a fairly general representation formula—Formula (2)—decoupling the continuous
time process as a discrete time process and a sequence of time functions depending on the
sequence of the jump stopping times.

Consider a complete probability space (Ω, F ,�), a continuous time stochastic process
(Yt)t≥0 defined on this probability space and � = (Ft)t≥0 the natural filtration associated
to this process, that is, such that Ft := σ(Ys : s ≤ t) is the algebra-σ generated by the
variables of the process until time t. Consider also a sequence of random variables (Zn)n≥0
taking values in a finite state space Θ = {θ1, θ2, . . . , θr}, the sequence being adapted to the
filtration � and 0 ≡ τ0 < τ1 < τ2 < · · · < τn < · · · an increasing sequence of �-stopping
times, denoted by T , satisfying the following hypothesis:

Hypothesis 1. Almost surely, limn→+∞ τn = +∞ and, for any T ∈ �+ and almost all ω ∈ Ω:

#{k ≥ 1 : τk(ω) ≤ T} < +∞. (1)

This hypothesis means that in every compact time interval [0, T], for almost all ω ∈ Ω,
there is only a finite number of stopping times realizations τk(ω) in this interval.

Hypothesis 2. The continuous time process (Yt)t≥0 admits a representation given, for t ≥ 0, by

Yt =
+∞

∑
n=0

Zn1I[τn ,τn+1[
(t), (2)

that is, a hypothesis on the structure of the continuous time process (Yt)t≥0.

It is well known—see in [28] (pp. 367–379) and in [29] (pp. 317–320)—that if (Zn)n≥0
is a Markov chain and the time intervals (τn+1 − τn)n≥0 are Exponentially distributed then
(Yt)t≥0 can be taken to be a continuous time homogeneous Markov chain. If (Zn)n≥0 is a
Markov chain and the time intervals (τn+1 − τn)n≥0 have a distribution that can depend
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on the present state as well as on the one visited next then (Yt)t≥0 can be taken to be a
semi-Markov process (see in [30] (pp. 261–262) and in [31] (pp. 295–299), for brief refer-
ences). In the case of a semi-Markov processes, a nice result of Ronald Pyke (see in [32]
(p. 1236)), reproduced ahead in Theorem A7, guarantees that when the state space is finite
the process is regular implying that almost all paths of such a semi-Markov process are
step-functions over [0,+∞[ and so, the paths satisfy Formula (1). In another important
case (see Theorems A5 and A6 ahead, or [30] (pp. 262–266) and [31] (pp. 195–244)), ade-
quate hypothesis on the distribution of the stopping times and on the sequence (Zn)n≥0
implies that (Yt)t≥0 will be a non homogeneous Markov chain process in continuous time,
whose trajectories are step functions also satisfying Formula (1). The representation in
Formula (2), thus covers the cases of homogeneous and non homogeneous Markov pro-
cesses in continuous time as well as semi-Markov processes, providing a desired connection
between a continuous time process and a discrete one that is a component of the former.
We observe that there is a practical justification for Hypothesis 1, namely, the identifiability
of the process; as can be read in [33] (p. 3): “. . . Actually, in real systems the transition from one
observable state into another takes some time.” Being so, the existence of accumulation points
in a compact interval would preclude estimation procedures for instance of the distribution
of the sequence (τn+1 − τn)n≥1.

3. From Discrete to Continuous Time Markov Chains: A Calibration Approach

In this section, we consider a calibration approach in order to determine a set of
probability densities that best approaches a sequence of discrete time transition matrices
with respect to a quadratic loss function. We then show that embeddable stochastic matrices,
according to Definition 1, are solutions of the calibration problem. For the reader’s con-
venience, we recall in the first appendix the most important results on continuous time
Markov chains with finite state space that are relevant for our study with emphasis on the
crucial non-accumulation property of the jump times of a continuous time Markov chain
(see Theorem A6 ahead). We will start by recalling the main information on embeddable
chains. We then present one of the main contributions of this work, that is, a general result
on the optimization problem of calibration and its relations with embeddable properties of
discrete time Markov chains.

3.1. The Embedding of a Discrete Time Markov Chain in a Continuous One

The embedding of the discrete time Markov chain in a continuous one following the
guidelines, for instance, in [34–40], can be considered as a method to connect a discrete
time process with a continuous one. For notations on non-homogeneous continuous time
Markov chains see Section 3.2.

Definition 1 (Embeddable stochastic matrix (see [38])). A stochastic matrix R is said to be
embeddable if there exists a time tR > 0 and a family of stochastic matrices P(s, t) continuously
defined in the set of times {(s, t) ∈ �2 : 0 ≤ s ≤ t ≤ tR} such that⎧⎪⎨⎪⎩

P(s, t) = P(s, u)P(u, t) 0 ≤ s ≤ u ≤ t ≤ tR

P(s, s) = I 0 ≤ s ≤ tR.
P(0, tR) = R.

(3)

We observe that by Theorem A2 ahead, the condition in Formulas (3) is tantamount
to the definition of a continuous time Markov chain with transition probabilities given
by P(s, t).

Remark 1 (Intrinsic time for embeddable chains). Goodman in [41]—aiming at a more general
result for the Kolmogorov differential equations—showed that with the change of time given by
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ϕ(u) := − log det P(0, u)—which amounts to a change in the matrix coefficients of P(s, t)—we
have that

tR = − log det R. (4)

This remarkable representation for the embedding time tR will be useful for a result in
Section 3.2 devoted to the calibration approach. It has also been used for estimation in [42] (p. 330).

See the work in [35] for a definition similar to Definition 1 and for a summary of many
important results on this subject. The characterization of an embeddable stochastic matrix
in a form useful for practical purposes was recently achieved in [43]. More useful results
were obtained in [44]. The connections between this kind of embedding and the other
approaches, for the association of a discrete time Markov chain and a continuous time
process, deserve further study.

3.2. Continuous Time Markov Chains Calibration with a Discrete Time Markov Transition Matrix

The calibration of transition intensities of a non homogeneous Markov chain, with a
discrete time Markov chain transition matrix estimated from data, was proposed in [27].
In this section, we establish a general formulation of the existence a unicity result that
subsumes the approach and we establish a connection with the embedding approach of
Section 3.1. Notation and needed essential results on non-homogeneous Markov processes
in continuous time were recalled in Appendix A.

The procedure for calibration of intensities consists in finding the intensities of a non
homogeneous continuous time Markov chain using a probability transition matrix of a
discrete time Markov chain and a given loss function—having as arguments the transition
probabilities of the continuous time Markov chain and some function of the transition
matrix of the discrete time Markov chain—in such a way that the loss function is minimized.

Previously to the consideration of the theorem on the calibration of intensities we
discuss some motivation for this approach. It may happen that a phenomena that could be
dealt—due to its characteristics—with a continuous time Markov chain model can only be
observed at regularly spaced time intervals. This is the case of the periodic assessments
of the healthcare status of patients that can change at any time but are only object of
a comprehensive evaluation on, say, a weekly basis. With the data originated by these
observations we can only determine transition probabilities—for a defined period, say, a
week—and, most importantly we cannot determine the time stamps for the patient status
change. The question naturally poses itself: is it possible to associate—in some canonical
way—to an estimated discrete time Markov chain transition matrix a process in continuous
time that encompasses the discrete time process? First steps in this direction are provided
by Theorem 1 that we now present and the following Theorems 2 and 3.

We formulate Theorem 1 in the context of Caratheodory’s general existence theory of
solutions of ordinary differential equations that we briefly recall. One reason for this choice
is that according to [41] (p. 169) and we quote: “. . .This fact gives further evidence in support
of the view that Caratheodory equations occupy a natural place in the theory of non-stationary
Markov chains.” Another reason is the fact that Caratheodory existence theory is particularly
suited for regime switching models and these models are the object of Theorem 3 ahead.
Following the work in [45] (pp. 41–44), we consider the definition of an extended solution

for a Cauchy problem of a differential equation,

Y ′(t) = f (t, Y(t)), Y(0) = ξ, (5)

or formulated in an equivalent form,

Y(t) = ξ +
∫ t

0
f (s, Y(s))ds, (6)

for f (t, y) : I × D → �
r a non-necessarily continuous function, with I ⊂ [0,+∞[ and

D ⊂ �
r, to be an absolutely continuous function Y(t) (see [46], pp. 144–150) such that

104



Mathematics 2021, 9, 1496

f (t, Y(t)) ∈ D for t ∈ I and Formula (5) is verified for all t ∈ I possibly with the exception
of a set of null Lebesgue measure. The well-known Caratheodory’s existence theorem
(see in [45], p. 43) ensures the existence of an extended solution with a given initial
condition—given in a neighborhood of the initial time—under the conditions that f (t, y) is
measurable in the variable t, for fixed y, and continuous in the variable y, for fixed t, and
moreover that there exists a Lebesgue integrable function m(t), defined on a neighborhood
of the initial time, let us say I, such that | f (t, y)| ≤ m(t) for (t, y) ∈ I × D. The question
of unicity of the solution is dealt, usually, either directly using Theorem 18.4.13 in [47]
(p. 337) or using Osgood’s uniqueness theorem—as exposed, for instance, in [48] (p. 58) or
in [49] (pp. 149–151)—to conclude that the extended solution—that with Caratheodory’s
theorem we know to exist—is unique in the sense that two solutions may only differ on a
set of Lebesgue measure equal to zero. For our purposes we need an existence and unicity
theorem for ordinary differential equations with solutions depending continuously on a
parameter such as the general result of Theorem 4.2 in [45] (p. 53) with an omitted proof
that follows for a lengthy previous exposition of related matters. For completeness we
now establish a result that is suited to our purposes as it deals with the particular type of
Kolmogorov equations for continuous time Markov chains.

Theorem 1 (Calibration of intensities with Caratheodory’s type ODE existence theorem
hypothesis). Let, for 1 ≤ n ≤ N, Rτn =

[
r(τn)

ij

]
i,j=1,...,r

be the generic element of a sequence of

numerical transition matrices taken at sequence of increasing dates (τn)1≤n≤N. Consider a set of
intensities Q(t, λ) = [q(u, i, j, λ)]i,j=1,...,r—with λ ∈ Λ ⊂ �d being a parameter and Λ being a
compact set—satisfying the following conditions:

1. For every fixed λ the functions q(u, i, j, λ) are measurable as functions of u.
2. For every fixed u the functions q(u, i, j, λ) are continuous as functions of λ.
3. There exists a locally integrable function M : [0,+∞[ �→ [0,+∞[, such that for all λ ∈ Λ,

i ∈ I , u ∈ [0,+∞[ and 0 ≤ s ≤ t, the following conditions are verified:

− q(u, i, i, λ) ≤ M(u) and
∫ t

s
M(u)du < +∞. (7)

Then, we have

1. There exists P(s, t, λ) = [p(s, i, t, j, λ)]i,j=1,...,r a probability transition matrix, with entries
absolutely continuous in s and t, such that conditions in Definition A2, the Chapman–
Kolmogorov equations in Theorem A1 and Theorem A3 are verified.

2. For each fixed s0, consider the loss function

O(s0, λ) := ∑
i,j=1,...,r

N

∑
n=1

(
p(s0, i, τn, j, λ)− r(τn)

ij

)2
. (8)

Then, for the optimization problem infλ∈Λ O(s0, λ) there exists λ0 ∈ Λ such that

O(s0, λ0) = min
λ∈Λ

O(s0, λ), (9)

the unique minimum being attained at possibly several points λ0 ∈ Λ.

Proof. We will prove, simultaneously, the existence of the probability transition matrix,
the unicity in the extended solution sense and the continuous dependence of the parameter
λ ∈ Λ following the lines of the proof of the result denominated Hostinsky’s representation
(see in [29], pp. 348–349). As we suppose that Λ is compact, the continuity of P(s0, t, λ), as
a function of λ ∈ Λ for every fixed t, will be enough to establish the second thesis.
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We want to determine an extended solution of the Kolmogorov forward equation
given in Formula (A11), that is an extended solution of⎧⎨⎩

P′
t(s0, t, λ) = P(s0, t, λ)Q(t, λ)

P(t, t) = I,
(10)

an equation which, as seen in Formula (A12), can be read in integral form as,

P(s0, t, λ) = I +
∫
[s0,t]

P(s0, s, λ)Q(s, λ)ds. (11)

As previously said, we will now follow the general idea of successive approximations
in the proof of the Picard–Lindelöf theorem for proving existence and unicity of solutions
of ordinary differential equations for the forward Kolmogorov equation. By replacing
P(s0, s, λ) in the right-hand member of Equation (11) by this right-hand member we get,

P(s0, t, λ) = I +
∫
[s0,t]

Q(s, λ)ds +
∫
[s0,t]

∫
[s0,t1]

P(s0, t2, λ)Q(t1, λ)Q(t2, λ)dt2dt1

and, by induction, we obtain

P(s0, t, λ) = I +
∫
[s0,t]

Q(s, λ)ds +

+
k

∑
n=2

∫
[s0,t]

∫
[t1,t]

· · ·
∫
[tn−1,t]

Q(t1, λ)Q(t2, λ) · · · Q(tn, λ)dtn · · · dt1 +

+
∫
[s0,t]

∫
[t1,t]

· · ·
∫
[tk−1,t]

P(s0, tk, λ)Q(t1, λ)Q(t2, λ) · · · Q(tk, λ)dtk · · · dt1.

Now, considering the function M(t) in the third hypothesis stated above about the
intensity matrix, we have that, by Lemma A1 (see also Lemma 8.4.1 in [29], p. 348), since
M(t) is integrable over any compact set, considering the (i, j) component of the r × r matrix,
we have that∣∣∣∣∣

[∫
[s0,t]

∫
[t1,t]

· · ·
∫
[tk−1,t]

P(s0, tk, λ)Q(t1, λ)Q(t2, λ) · · · Q(tk, λ)dtk · · · dt1

]
ij

∣∣∣∣∣ ≤
≤ rk

∫
[s0,t]

∫
[t1,t]

· · ·
∫
[tk−1,t]

M(t1)M(t2) · · · M(tk)dtk · · · dt1 =

=

(
r
∫
[s0,t] M(s)ds

)k

k!
.

Finally, as

lim
k→+∞

(
r
∫
[s0,t] M(s)ds

)k

k!
= 0,

we have that the series for which the sum represents P(x, t, λ), that is,

P(s0, t, λ) = I +
+∞

∑
n=1

(∫
[s0,t]

∫
[t1,t]

· · ·
∫
[tn−1,t]

Q(t1, λ)Q(t2, λ) · · · Q(tn, λ)dtn · · · dt1

)
,

is a series—of absolutely continuous functions of the variable t which are also continuous
as functions of the parameter λ ∈ Λ—converging normally and so the sum is an absolutely
continuous function of the variable t and continuous function of the parameter λ. With
a similar reasoning applied to the backward Kolmogorov equation we also have that
P(s, t0, λ) is absolutely continuous in the variable s and, obviously, continuous as a function
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of the parameter λ ∈ Λ. We observe that it was stated in [41], pp. 166–167 (with a reference
to a proof in [50] and proved also in [51]), that the separate absolute continuity of P(s, t, λ)
in the variables s and t ensures the uniqueness of the solution.

Remark 2 (An alternative path for the existence result). We observe that, for every fixed value
of the parameter λ, by a direct application of Caratheodory’s existence theorem to the forward
and backward Kolmogorov equations in Theorem A3, we obtain a probability transition matrix
P(s, t, λ) = [p(s, i, t, j, λ)]i,j=1,...,r, such that conditions in Definition A2 and the Chapman–
Kolmogorov equations in Theorem A1 are verified, that in addition has entries absolutely continuous
in s and t and such that Kolmogorov’s equations are satisfied almost everywhere. With this
approach the continuous dependence of the probability transition matrix on the parameter λ requires
further proof.

Remark 3 (On the parametrized intensities and transition probabilities). In a first application
to Long-Term Care of a simpler version of Theorem 1 presented in [27], we chose as intensities a
parametrized family—of Gompertz–Makeham type (see, for instance, in [52], p. 62)—with a three
dimensional parameter. We observe that, in its actual formulation, Theorem 1 contemplates the
case of a set of intensities—and of associated transition probabilities—not necessarily with the same
functional form with varying parameters but merely with a finite set of different functional forms
indexed by the parameters.

Remark 4 (Only one transition matrix observation). In the case where we only have one
estimated transition matrix R, we can consider the sequence of n step transition matrices given by
the n fold product of the matrix R by itself. This situation will be addressed in Theorem 2 ahead, in
the case of homogeneous Markov chains and in Theorem 3 for the non-homogeneous case.

We also observe that in the case of a multidimensional parameter set Λ—say r1—and even in
a reasonable state space of the discrete time Markov chain—say with r2 states—the optimization
problem of Formula (8) may require adequate algorithms to be solved as the number of variables
is of the order of r1 × r2 × (r2 − 1). In [27] we opted for a modified grid search coupled with the
numerical solutions of the Kolmogorov equations in order to recover the transition probabilities of
the continuous time Markov chain.

Remark 5 (On the unicity of the solution of the calibration problem). The unicity in law
of the solution of the calibration problem deserves discussion. If there are several minimizers of
the calibration problem, to each of these minimizers corresponds an intensity and to each intensity
a, possible, different law for the stopping times of the continuous time Markov chain, as these
laws are determined by the intensities (see Remark A2). The existence of criteria allowing to
identify a distribution of inter-arrival times that stochastically dominates all other solutions is an
open problem.

We can establish a connection between the approach in Section 3.1 and Theorem 1
on calibration above, showing first—in Theorem 2—that, if a matrix is embeddable in a
homogeneous continuous time Markov chain—with intensities depending continuously
on a parameter—for a fixed value of the parameter, then this continuous time Markov
chain solves the calibration problem in an optimum way. We recall that the continuous
time Markov chain is homogeneous if, for all 0 ≤ s, t the transition probabilities satisfy

P(s, s + t) = P(0, t),

and that the intensities matrix is constant as a function of time (see [41] (pp. 165–166) for
definitions in this context).

Theorem 2 (Discrete chains embeddable in homogeneous continuous chains can be op-
timally calibrated). Suppose that the matrix R is embeddable and let tR and the transition
probabilities P(s, t, λ1) satisfy Definition 1 in the case of a homogeneous continuous time Markov
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chain for some family of intensities Q(λ1) where λ1 ∈ Λ is a given parameter. Then, with
τn := ntR for n ≥ 1 and Rτn := R(n)—the n fold product of the matrix R by itself—we have that
the optimization problem, infλ∈Λ O(λ) with respect to the loss function given by Formula (8) has
an optimal solution P(s, t, λ1) such that

O(λ1) = min
λ∈Λ

O(λ) = 0.

Proof. It is enough to observe that by Formulas (3) in Definition 1 we have, as
τ2 − τ1 = τ1,

P(0, τ2, λ1) = P(0, τ1, λ1)P(τ1, τ2, λ1) = P(0, τ1, λ1)P(0, τ2 − τ1, λ1) =

= P(0, τ1, λ1)P(0, τ1, λ1) = R(2) = Rτ2 ,

and, by induction, that P(0, τn, λ1) = Rτn and so in Formula (8) we have that
O(λ1) = 0.

Remark 6 (On the skeletons of a homogeneous continuous time Markov chain). Another
possible way to extend results from discrete time to continuous time is the approach of skeletons
of Kingman and other authors (see [53,54], for instance). As we are more interested in non-
homogeneous continuous time Markov chains we do not pursue this approach in the present work.

We now address the case of non homogeneous Markov chain. In Theorem 3, we show
that if every element of a sequence, with no gaps, of matrix powers of a discrete time
Markov chain is embeddable then there is a regime switching process of Markov type that
solves optimally the calibration problem.

Theorem 3 (Discrete power-embeddable discrete chains can be optimally calibrated). Suppose
that all the powers R(n) =

[
r(n)ij

]
i,j=1,...,r

, for 1 ≤ n ≤ N, of a discrete time Markov chain transition

matrix R are embeddable and let Pn(s, t, λn) be the transition probabilities of the embedding
continuous time Markov chain for R(n) given in their intrinsic time—defined in Remark 1—in such
a way that the respective embedding times verifies tR(n) = −n log det R (according to Formula (4)).
We suppose that the intensities Qn(t, λn) for each of the transition probabilities Pn(s, t, λn) depend
on parameters λn ∈ Λ, possibly different but all in a common parameter set Λ. With the convention
tR(0) = 0, and

λ(t) := λn, tR(n−1) ≤ t ≤ tR(n) ,

let P̃(s, t, λ(t)) be defined by

P̃(s, t, λ(t)) := Pn(s, t, λn), 0 = tR(0) ≤ s ≤ tR(n) , tR(n−1) ≤ t ≤ tR(n) , s ≤ t, (12)

and thus satisfying P̃(0, tR(n) , λ(t)) = Pn(0, tR(n) , λn) = R(n). Then, we have that the optimiza-
tion problem, infλ∈Λ O(λ) with respect to the loss function given by

O(λ) := ∑
i,j=1,...,r

N

∑
n=1

(
P̃(0, tR(n) , λ(t))ij − r(n)ij

)2
, (13)

has an optimal solution P̃(s, t, λ(t)) such that

O(λ(t)) = min
λ∈Λ

O(λ) = 0.

Proof. We observe that the definition in Formula (12) is coherent—see Figure 1—and then
it is a simple verification with the definitions proposed.

108



Mathematics 2021, 9, 1496

Remark 7 (An associated regime switching process). The function P̃(s, t, λ(t)) defined in
Formula (12) was obtained by superimposing different transition probabilities for different Markov
chains in continuous time. A natural question is to determine if there is—based on these different
transitions probabilities—a regime switching Markov chain in continuous time that bears some
connection with P̃(s, t, λ(t)). From a brief analysis of Figure 1 we can guess the natural definition
of a regime switching Markov chain based on the probabilities Pn(s, t, λn). Let

P(s, t, λ(t)) := Pn(s, t, λn), tR(n−1) ≤ s ≤ t ≤ tR(n) . (14)

Formula (14) has the following interpretation. For each 1 ≤ n ≤ N, consider continuous
time Markov chain processes (Xn

t )t∈[t
R(n−1) ,t

R(n) ]
with transition probabilities Pn(s, t, λn) defined

in the domains Rn := {(s, t) ∈ �2 : tR(n−1) ≤ s ≤ t ≤ tR(n)} with the convention tR(0) = 0. The
regime switching process (Yt)t∈[0,t

R(n) ]
is such that (compare with Formula (2)):

Yt = Xn
t , t ∈ [tR(n−1) , tR(n) ],

that is, the process (Yt)t∈[0,t
R(n) ]

is obtained by gluing together (Xn
t )t∈[t

R(n−1) ,t
R(n) ]

, the paths of the
processes which are bona fide continuous time Markov processes in each of their—non-random—time
intervals [tR(n−1) , tR(n) ]. It is clear that P(s, t, λ(t)) can be interpreted as a transition probability
only when restricted to some domain Rn and that, in general, it will not be a transition probability
in the whole interval [0, tR(N) ].

Figure 1. A representation of P̃(s, t, λ(t)) in Formula (12) for the first three initial times.

Remark 8. The regime switching process defined in Remark 7 deserves further study. We may,
nevertheless, define transition probabilities P̂(s, t, λ(t)) for tR(k−1) ≤ s ≤ tR(k) ≤ t ≤ tR(k+1)—
with properties to be thoroughly investigated—by considering

P̂(s, t, λ(t)) := Pk(s, tR(k) , λk) · Pk+1(tR(k) , t, λk+1).

3.3. Conclusions on the Relations between Embeddable Matrices, Calibration, and Open Markov
Chain Models

From Theorems 1–3, the following conclusions can be drawn. Given a discrete time
Markov transition matrix,

• if the matrix is embeddable—according to Definition 1 of Section 3.1—there is an unique
in law homogeneous Markov chain in continuous time that solves the calibration
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problem optimally; the unicity is a consequence of Remark A2 that shows that the laws
of the stopping times (τn)n≥0 in the representation of Formula (A13) only depend on
the intensities and these are uniquely determined whenever the discrete time Markov
chain is embeddable.

• if the matrix is power-embeddable—that is, if all the matrices of a finite sequence with no
gaps of powers of the matrix are embeddable—then there is an unique regime switch-
ing continuous time non-homogeneous Markov chain—in the sense of Remark 7—that
solves the calibration problem optimally. In this case, the unicity has a justification
similar to the previously referred case, that is, the laws of the stopping times only
depends on the intensities and these are determined by the fact that the matrix is
power-embeddable.

As a consequence, for our purposes, it appears of fundamental importance to deter-
mine if a discrete time Markov chain transition matrix is embeddable and to determine—if
possible, explicitly—the embedding continuous time Markov chain. Regarding this prob-
lem the results in [43,55] deserve further consideration.

Remark 9 (Aplying Theorems 1–3). Suppose that discrete time Markov chain transition matrix,
of a Markov chain process (Zn)n≥1 is embeddable in a continuous time Markov chain (Xt)t≥0. We
have, for this continuous time process and for a determined sequence of stopping times (τn)n≥1, the
representation given in Formula (A13) of Theorem A5, that is,

Xt =
+∞

∑
n=0

Xτn 1I[τn ,τn+1[
(t).

Now, as the Theorems referred to may consider that the process (Zn)n≥1 is suitably approximated
by (Xt)t≥0, we can also consider that the continuous time process defined by

X̃t :=
+∞

∑
n=0

Zτn 1I[τn ,τn+1[
(t), (15)

is an approximation of (Zn)n≥1 in continuous time. For processes with a structural representation
similar to the one of the process (X̃t)t≥0 we propose in Section 4.3 a method to extend from discrete
to continuous time the open populations methodology.

4. More on Open Continuous Time Processes from Discrete Ones

In this section, we discuss an extension of the formalism of open Markov chains to the
case of semi-Markov processes (sMp) and other continuous time processes, namely, the
open Markov chain schemes introduced in [26]. For the reader’s convenience we present
in Appendix B a short summary on sMp and in the next Section 4.1 a review of the main
results on the open Markov chain formalism for discrete time. Finally, we propose the
second main contribution of this work, that is, an extension of the open Markov chain
formalism in discrete time to continuous time in the case of sMp. We also briefly refer
the case of open Markov schemes that, in some particular instances, can be dealt as the
sMp case.

4.1. Open Markov Chain Modeling in Discrete Time: A Short Review

We now detail and comment the results that will be used in this paper on discrete
time open Markov chains. The study of open Markov chain models we will present next
relies on results and notations that were introduced in [56], further developed in [22] and
that we reproduce next, for the readers convenience. We will suppose that, in general, the
transition matrix of the Markov chain model may be written in the following form:

P =

[
K U1
0 V

]
(16)
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where K is a k × k transition matrix between transient states, U1 a k × (r − k) matrix of
transitions between the transient and the recurrent states, and V a (r − k)× (r − k) matrix
of transitions between the recurrent states. A straightforward computation then shows that

P(n) =

[
K(n) Un

0 V(n)

]
, n ∈ N

with Un = Un−1V + K(n−1)U1 = ∑n−1
i=0 K(i) U1 V(n−1−i). We write the vector of the initial

classification, for a time period i, as

c
ᵀ
i =

[
t
ᵀ
i

∣∣rᵀi ], i ∈ N (17)

with ti the vector of the initial allocation probabilities for the transient states and ri the
vector of the initial allocation probabilities for the recurrent states. We suppose that at each
epoch i ≥ 0 there is an influx of new elements in the classes of the population—population
that has its evolution governed by the Markov chain transition matrix—that is, a Poisson
distributed with parameter λi. It is a consequence of the randomized sampling principle
(see [57], pp. 216–217) that, if the incoming populations are distributed by the classes
according with the multinomial distribution, then the sub-populations in the transient
classes have independent Poisson distributions, with parameters given by the product of
the Poisson parameter by the probability of the incoming new member being affected to
the given class. With Formulas (16) and (17), we now notice that the vector of the Poisson
parameters, for the population sizes in each state at an integer time N, may be written as

λ++ᵀ
N =

[
N

∑
i=1

λit
ᵀ
i K(N−i)

∣∣∣∣∣ N

∑
i=1

λi

(
t
ᵀ
i UN−i + r

ᵀ
i V(N−i)

)]
. (18)

We observe that the first block corresponds to the transient states and the second
block, the one in the right-hand side, corresponds to the recurrent states. From now on, as
a first restricting hypothesis, we will also suppose that the transition matrix of the transient
states, K, is diagonalizable and so

K =
k

∑
j=1

ηjαjβ
ᵀ
j ,

with (ηj)j∈{1,...,k} the eigenvalues, (αj)j∈{1,...,k} the left eigenvectors and (βj)j∈{1,...,k} the
right eigenvectors of matrix K. We observe that j ∈ {1, . . . , k} corresponds to a transient
state if and only if | ηj |< 1. We may write the powers of K as

K(n) =
k

∑
j=1

ηn
j αjβ

ᵀ
j , (19)

and so, as a consequence of (18), for the vector of the Poisson parameters corresponding
only to the transient states, λ+ᵀ

N , we have

λ+ᵀ
N =

N

∑
i=1

λi t
ᵀ
i K(N−i) =

k

∑
j=1

N

∑
i=1

λi ηN−i
j t

ᵀ
i αjβ

ᵀ
j . (20)

The main result describing the asymptotic behaviour, established in [22], is the following.

Theorem 4 (Asymptotic behavior of Poisson parameters of an open Markov chain with
Poisson distributed influxes). Let a Markov chain driven system have a diagonalizable transition
matrix between the transient states K = ∑k

j=1 ηjαjβ
ᵀ
j , written in its spectral decomposition

form. Suppose the system to be fed by Poisson inputs with intensities (λi)i∈N and such that the
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vector of initial classification of the inputs in the transient states converges to a fixed value, that
is, limi→+∞ t

ᵀ
i = t

ᵀ
∞ �= 0. Then, with λ+ᵀ

n the vector of Poisson parameters of the transient
sub-populations, at date n ∈ N, we have the following:

1. If limn→+∞ λn = λ ∈ R+, then

λ+
∞ = lim

n→+∞
λ+ᵀ

n =
k

∑
j=1

λ

1 − ηj
t
ᵀ
∞αjβ

ᵀ
j . (21)

2. If limn→+∞ λn = +∞ and there exists a constant C > 0 such that

max
1≤i≤n

∣∣∣∣λi − λi+1

λn

∣∣∣∣ ≤ C

then

lim
n→+∞

λ+ᵀ
n

λn
=

k

∑
j=1

1
1 − ηj

t
ᵀ
∞αjβ

ᵀ
j . (22)

Remark 10. We observe that proportions in the Markov chain transient classes, on both statements
of the Theorem 4, only depend on the eigenvalues ηj, j = 1, . . . , k. In fact, whenever using
Formula (21) to compute proportions these proportions do not depend on the value of λ as we
have that

k

∑
j=1

λ

1 − ηj
t
ᵀ
∞αjβ

ᵀ
j = λ

[
t
ᵀ
∞ ·
(

k

∑
j=1

1
1 − ηj

αjβ
ᵀ
j

)]
,

and the term in the right-hand side multiplying λ is a vector with the dimension equal to the number
of transient classes k, which is equal to the dimension of the square matrix K. As so, when computing
proportions, by normalizing this vector with the sum of its components, λ �= 0 disappears.

4.2. Open sMP from Discrete time Open Markov Chains

Let us suppose that the successive Poisson distributions of the influx of new members
in the population are independent of the random time at which the influx of new members
in the population occurs. For the notations used, see Appendix B. Consider a sMp given by
the representation in Formula (A17), that is,

Yt =
+∞

∑
n=0

Zn1I[τn ,τn+1[
(t),

in which (Zn)n≥0 is the embedded Markov chain and (τn)n≥0 are the jump times of the
process. We now propose a method to extend the known method to study open Markov
chains in discrete time to sMps.

(1) In applications we usually consider that we have the influx of new members in the
population being modeled by Poisson random variables that at each time t has a
parameter λ(t). Being so, Formula (20) may be rewritten as

λ+ᵀ
N =

i:ti≤N

∑
i=1

λ(ti) t
ᵀ
i K(N−i) =

k

∑
j=1

i:ti≤N

∑
i=1

λ(ti) ηN−i
j t

ᵀ
i αjβ

ᵀ
j , (23)

where usually we can take ti = i, as in a discrete time Markov chain, the actual time
stamp is irrelevant as we only consider the sequence of epochs i ≥ 0.

(2) In a sMp the only difference we have with respect to a discrete time Markov chain is
that the dates τi corresponding to each epoch i are random; altogether, the structure of
the changes in the sub-populations in the transient states is governed by the transition
matrix of the Markov chain. In a sMp, the only possible observable changes are
those that occur at the random times where it jumps; as so, we will suppose that the
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influxes of the new members of the population only occur at these random times.
As a consequence, we should have that the vector parameter of the Poisson parameters,
in the transient classes, is random since it depends on the random times in each we
consider influxes and so, Formula (23) becomes

λ+ᵀ
N (ω) =

i:τi(ω)≤N

∑
i=1

λ(τi(ω)) t
ᵀ
i K(N−i) =

k

∑
j=1

i:τi(ω)≤N

∑
i=1

λ(τi(ω)) ηN−i
j t

ᵀ
i αjβ

ᵀ
j . (24)

(3) The parameters of interest will be the expected values of the random variables
λ+ᵀ

N (ω)—with the correspondent asymptotic behavior of these expected values when
N grows indefinitely—and these expected values can be computed whenever the joint
laws of (τ0, τ1, . . . , τi) are known, for i ≥ 0. In fact, we observe that by Formula (24)
we have

�

[
λ+ᵀ

N |τ1, . . . τi . . .
]
= �

[
k

∑
j=1

i:τi≤N

∑
i=1

λ(τi) ηN−i
j t

ᵀ
i αjβ

ᵀ
j |τ1, . . . τi . . .

]
=

=
k

∑
j=1

i:τi≤N

∑
i=1

λ(τi) ηN−i
j t

ᵀ
i αjβ

ᵀ
j .

This formula has two consequences. The first one is that given an arbitrary strictly
increasing sequence of dates 0 = t0 < t1 < · · · < ti < . . . we have

�

[
λ+ᵀ

N |τ1 = t1, . . . τi = ti . . .
]
=

k

∑
j=1

i:ti≤N

∑
i=1

λ(ti) ηN−i
j t

ᵀ
i αjβ

ᵀ
j ,

thus justifying the assumption that given the strictly increasing of non accumulating
stopping times dates (τ1 = t1, . . . τi = ti . . . ) we can proceed as with the usual open
Markov chain model in discrete time. The second consequence deserving mention is
that in order to compute the expected value of the vector parameters of the transient
classes sub-populations, while preserving the Poisson distribution of the influx new
members, we compute

�

[
λ+ᵀ

N

]
= �

[
�

[
λ+ᵀ

N |τ1, . . . τi . . .
]]

= �

[
k

∑
j=1

i:τi≤N

∑
i=1

λ(τi) ηN−i
j t

ᵀ
i αjβ

ᵀ
j

]
,

using the joint laws of (τ1, . . . , τi) for i ≥ 0, laws we will suppose to be given.

Theorem 6, in the following, is one possible extension of the open Markov chain
formalism to the sMp case taking as a starting point a discrete time Markov chain. To prove
this result we will need Theorem 5—a generalization of Lebesgue dominated convergence
theorem with varying measures—that we quote from Theorem 3.5 in [58] (p. 390).

Theorem 5 (Lebesgue dominated convergence theorem with varying measures). Consider
(X, B(X)) a locally compact, separable topological space endowed with its Borel σ-algebra. Suppose
that the sequence of probability measures (μn)n≥1—each one of them defined in (X, B(X))—
converges weakly to μ on (X, B(X)) and that the sequence of measurable functions ( fn)n≥1
converges continuously to f . Suppose additionally that, for some sequence of measurable functions
( fn)n≥1 defined on X:

1. For all t ∈ X and n ≥ 1, we have that | fn(t)| ≤ gn(t).
2. With the function g defined on X by

g(t) := inf
(tn)n≥1 , limn→+∞ tn=t

{
lim inf
n→+∞

gn(tn)

}
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we have that
lim sup
n→+∞

∫
gn(t)dμn(t) ≤

∫
g(t)dμ(t) < +∞.

Then, we have
lim

n→+∞

∫
fn(t)dμn(t) =

∫
f (t)dμ(t) < +∞.

As said, we will suppose that we only observe the influx of the new members of
the population into the sMp classes at the random times where it jumps—but, of course,
accounting the state before the jump and the state after the jump—which is a hypothesis
that makes sense under the perspective that we usually observe trajectories of the process.
We then have the following extension of Theorem 4 to the case of sMp.

Theorem 6 (On the stability of open sMp transient states). Let a sMp given by the representa-
tion in Formula (A17), that is,

Yt =
+∞

∑
n=0

Zn1I[τn ,τn+1[
(t),

in which (Zn)n≥0 is the embedded Markov chain and (τi)i≥0 are the jump times of the process. For
the embedded Markov chain (Zn)n≥0, consider the notations of Section 4.2 and of Theorem 4 in this
subsection. Suppose that the influx of new members in the population is modeled by Poisson random
variables that at each time t ∈ [0,+∞[ have a parameter λ(t), with λ a continuous function.
Suppose, furthermore, that the following hypothesis are verified.

1. The stopping times (τi)i≥0 are integrable, that is, �[τi] < +∞ for all i ≥ 1.
2. There exists λ∞ > 0 such that, for every sequence of positive real numbers (ti)i≥1 such that

limi→+∞ ti = +∞ we have
lim

i→+∞
λ(ti) = λ∞ (25)

Then, we have that the asymptotic behavior of the expected value vector of parameters of
Poisson distributed sub-populations in the transient classes of an open sMp, submitted to a Poisson
influx of new members at the jump times of the sMp, is given by

lim
N→+∞

�

[
λ+ᵀ

N

]
= lim

N→+∞
�

[
k

∑
j=1

i:τi≤N

∑
i=1

λ(τi) ηN−i
j t

ᵀ
i αjβ

ᵀ
j

]
=

k

∑
j=1

λ∞

1 − ηj
t
ᵀ
∞αjβ

ᵀ
j . (26)

Proof. For each n ≥ 1, let F(τ1,...,τn) be the joint distribution function of (τ1, . . . , τn). We
want to compute the following limit of expectations:

lim
N→+∞

�

[
λ+ᵀ

N

]
= lim

N→+∞
�

[
λ+ᵀ

N , τ1 < · · · < τi ≤ N
]
=

= lim
N→+∞

∫
0<t1<···<ti≤N

λ+ᵀ
N dF(τ1,...,τn)(t1, . . . , tn) =

= lim
N→+∞

∫
0<t1<···<ti≤N

(
k

∑
j=1

i:ti≤N

∑
i=1

λ(ti) ηN−i
j t

ᵀ
i αjβ

ᵀ
j

)
dF(τ1,...,τn)(t1, . . . , tn),

(27)

and we observe that by Theorem 4 and by the first hypothesis, for every sequence of
positive real numbers (ti)i≥1 such that limi→+∞ ti = +∞ and t1 < t2 < · · · < ti < . . . , we
have that

lim
N→+∞

(
k

∑
j=1

i:ti≤N

∑
i=1

λ(ti) ηN−i
j t

ᵀ
i αjβ

ᵀ
j

)
=

k

∑
j=1

λ∞

1 − ηj
t
ᵀ
∞αjβ

ᵀ
j . (28)

The limit in the last term of Formula (27) requires a result of Lebesgue convergence
theorem type but with varying measures. For the purpose of applying Theorem 5, we
introduce the adequate context and notations and then we will apply the referred theorem.
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Consider the space X = [0,+∞[ℵ0 defined to be the space of infinite sequences of numbers
in [0,+∞[, that is,

X = {t = (t1, . . . , ti, . . . ) : ∀i ≥ 1, ti ∈ [0,+∞[}.

Recall that with the metric d given by

∀t = (t1, . . . , ti, . . . ), t′ = (t′1, . . . , t′i, . . . ) ∈ X, d(t, t′) :=
+∞

∑
i=1

min(1,
∣∣ti − t′1

∣∣)
2i ,

X is a metric space, locally compact, separable and complete (see, for instance, in [59],
pp. 9–10). We will consider X = [0,+∞[ℵ0 endowed with the Borel σ-algebra B(X) gener-
ated by the family P f given by

P f =
{

Ai1 × Ai2 × · · · × Aip : p ≥ 1, Ai1 ∈ B([0,+∞[)
}

,

with B([0,+∞[) the Borel σ-algebra of [0,+∞[. We now take (τi)i≥0 the sequence of the
jump times of the process represented in Formula (A17). First, we define the sequence of
measures (μn)n≥1 where for each n ≥ 1 we have that μn is defined on the measurable space
([0,+∞[n, B([0,+∞[n)) by considering, for A1 × A2 × · · · An with Ai ∈ B([0,+∞[), that

μn(A1 × A2 × · · · An) = �[τ1 ∈ A1, . . . , τn ∈ An] =
∫

t1∈A1,...,tn∈An

dF(τ1,...,τn)(t1, . . . , tn). (29)

Being so, μn is the probability joint law of (τ1, . . . , τn) and the last integral in the
last term of Formula (27) is exactly an integration with respect to the measure μn. As a
consequence of Formula (29), the sequence (μn)n≥1 verifies the compatibility conditions
of Kolmogorov extension theorem (see [60], p. 46) and so there is a probability measure
μ, defined on (X, B(X)), having as finite dimensional distributions the measures of the
sequence (μn)n≥1.

Now, for each n ≥ 1, we can consider μ̃n the extension of μn to the measurable space
(X, B(X)) in the following way:

∀A ∈ B(X) μ̃n(A) =
∫
{t=(t1,...,ti ,... )∈A : t1,...,tn∈[0,+∞[}

dF(τ1,...,τn)(t1, . . . , tn). (30)

In fact, with this definition the restriction of μ̃n to B([0,+∞[n) is exactly μn. An important
observation is the following. Consider A := Ai1 × Ai2 × · · · × Aip ∈ P f . Then, for m ≥ ip
we have that

μ̃m(A) =
∫
{t=(t1,...,ti ,... )∈A : t1,...,tm∈[0,+∞[}

dF(τ1,...,τm)(t1, . . . , tm) =

=
∫
{t=(t1,...,ti ,... )∈A : t1,...,tip ∈[0,+∞[}

dF(τ1,...,τip )
(t1, . . . , tip) =

= μ̃ip(A) = μip(A) = μ(A),

(31)

thus showing that for every A ∈ P f the sequence (μ̃m(A))m≥1 converges to μ(A). Now, by
Theorem 2.2 in [59] (p. 17), as P f is a π-system and every open set in the metric space (X, d)
is a countable union of elements of P f , we have that the sequence (μ̃m)m≥1 converges
weakly to μ. In order to apply Theorem 5 to compute the limit, we may consider two
approaches to deal with the fact that λ+ᵀ

N is a vector of finite dimension k. Either we
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proceed component wise or we consider norms. Let us follow the second path. Define, for
integer N, and some constant M,

fN(t) = fN(t1, . . . , ti, . . . ) :=
i:ti≤N

∑
i=1

λ(ti) ηN−i
j t

ᵀ
i αjβ

ᵀ
j ,

and also,

gN(t) ≡ g :=

∥∥∥∥∥ k

∑
j=1

λ∞

1 − ηj
t
ᵀ
∞αjβ

ᵀ
j

∥∥∥∥∥+ M,

in such a way that ‖ fN(t)‖ ≤ g; such choice of M is possible as a consequence of
Formula (28). We can verify that the sequence ( fN)N≥1 converges continuously to a
function f by using Theorem 4.1.1 in [22] (p. 373). In fact, let us consider a sequence
(tN)n≥1 converging to some (t∞ = (t∞

1 , . . . , t∞
i , . . . ) in the metric space (X, d). With

(tN = (tN
1 , . . . , tN

i , . . . ) we surely have that limN→+∞ tN
i = t∞

i for all i ≥ 1. As a conse-
quence of the continuity of λ and of Theorem 4.1.1 in [22] (p. 373), we have that

lim
N→+∞

fN(tN) = lim
N→+∞

i:tN
i ≤N

∑
i=1

λ(tN
i ) ηN−i

j t
ᵀ
i αjβ

ᵀ
j =

k

∑
j=1

λ(limi→+∞ t∞
i )

1 − ηj
t
ᵀ
∞αjβ

ᵀ
j =: f (t∞).

It is clear now that the sequences ( fN)N≥1, (gN)t≥1 and (μ̃n)n≥1 satisfy together with
μ the hypothesis of Theorem 5 and so the announced result in Formula (25) follows.

Remark 11 (Alternative proof for the weak convergence of the sequence (μ̃n)n≥1). There
is another proof the weak convergence of the sequence (μ̃m)m≥1 to μ that we now present. We
proceed by showing that the sequence (μ̃n)n≥1 is relatively compact—as a consequence of Prohorov
theorem (see [59], pp. 59–63)—because, as we will show next, this sequence is tight. Let an arbitrary
0 < ε < 1 be given and consider a sequence of positive numbers (ξi)i≥1 such that, by Tchebychev
inequality and using the fact that the stopping times τi have finite integrals,

�[τi > ξi] ≤
�[τi]

ξi
,

in such a way that
+∞

∑
i=1

�[τi]

ξi
< ε.

Now consider the Borel set Kε = ∏+∞
i=1 [0, ξi] ⊂ X which is compact by Tychonov theorem.

We now have that

μ̃n(Kε) =
∫
{t=(t1,...,ti ,... )∈Kε :t1,...,tn∈[0,+∞[}

dF(τ1,...,τn)(t1, . . . , tn) =

=
∫

∏n
i=1[0,ξi ]

dF(τ1,...,τn)(t1, . . . , tn) =

= �

[
(τ1, . . . , τn) ∈

n

∏
i=1

[0, ξi]

]
= �

[
n⋂

i=1

{τi ≤ ξi}
]
= 1 −�

[
n⋃

i=1

{τi > ξi}
]

≥

≥ 1 −
n

∑
i=1

�[τi]

ξi
≥ 1 −

+∞

∑
i=1

�[τi]

ξi
≥ 1 − ε,

thus showing that the sequence of probability measures (μ̃n)n≥1 is tight in the measurable space
(X, B(X)). As said, by Prokhorov’s theorem, this implies that the sequence (μ̃n)n≥1 is relatively
compact, that is, for every subsequence of (μ̃n)n≥1, there exists a further subsequence and a
probability measure such that this subsequence converges weakly to the said probability measure.
Now, as, by construction, the probability measure μ has, as finite dimensional distributions the
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probability measures (μ̃n)n≥1 we can say that for n ≥ 1, the finite dimensional distributions of
μ̃n converge weakly to the finite dimensional distributions of μ. As a consequence, following the
observation in [59] (p. 58), the sequence (μ̃n)n≥1 converges weakly to μ.

Remark 12 (Applying Theorem 6). If we manage to estimate a discrete time Markov chain
transition matrix and if we manage to fit some function f —such that limt→+∞ f (t) = λ∞—to the
number of new incoming members in the population at a set of non accumulating non-evenly spaced
dates (as done with a statistical procedure in [22] or, with a simple fitting in [25]) then, Theorem 6
allows us to get the asymptotic expected number of elements in the transient classes of a sMp having
as embedded Markov chain the estimated one.

4.3. Open Continuous Time Processes from Open Markov Schemes

We may follow the approach of open Markov schemes in [26] and define a process
in continuous time after getting a process in random discrete times describing, at least
on average, the evolution of the elements in each transient class. Let us briefly recall the
main idea. A population model is driven by a Markov chain defined by a sequence of
initial distributions given, for n ≥ 1, by (qn)ᵀ = (qn

1 , qn
2 , . . . , qn

r�) and a transition matrix
P = [pij], 1 ≤ i, j ≤ r . After the first transition, the new values of the proportions in all
states, after one transition, can be recovered from Pᵀq = (qᵀP)ᵀ and, after n transitions,
by (P(n))ᵀq = (qᵀP(n))ᵀ. We want to account for the evolution of the expected number of
elements in each class supposing that, at each random date τk, a random number Xτk of
new elements enters the population. Just after the second cohort enters the population, a
first transition occurs in the first cohort driven by the Markov chain law and so on and so
forth. Table 1 summarizes this accounting process in which, at each step k, we distribute
multinomially the new random arrivals Xτk according to the probability vector qk and the
elements in each class are redistributed according to the Markov chain transition matrix P.

Table 1. Accounting of n Markov cohorts each with an initial distribution.

Date τ1 τ2 . . . τn−1 τn

τ1 �[Xτ1 ](q
1)ᵀ �[Xτ1 ](q

1)ᵀP . . . �[Xτ1 ](q
1)ᵀP(n−2)

�[Xτ1 ](q
1)ᵀP(n−1)

τ2 – �[Xτ2 ](q
2)ᵀ . . . �[Xτ2 ](q

2)ᵀP(n−3)
�[Xτ2 ](q

2)ᵀP(n−2)

. . . . . . . . . . . . . . . . . .
τn – – – – �[Xτn ](q

n)ᵀ

At date τk, if we suppose that each new set of individuals in the population, a cohort,
evolves independently from any one of the already existing sets of individuals but, ac-
cordingly, to the same Markov chain model, we may recover the total expected number of
elements in each class at date τk by computing the sum:

Kn =
n

∑
k=1
�[Xτk ](q

k)ᵀ P(n−k). (32)

Each vector component corresponds precisely to the expected number of elements in
each class. In order to further study the properties of (Kn)n≥1, given the properties of a
stochastic process� = (Xτk )k≥1, we will randomize formula (32) by considering, instead,
for n ≥ 1:

Kn =
n

∑
k=1

Xτk (q
k)ᵀ P(n−k), (33)

and we observe that in any case �[K] = Kn. It is known that if the vector of classification
probabilities is constant ck = c and if the� is an ARMA, ARIMA, or SARIMA process, then
the populations in each of the transient classes can be described by a sum of a deterministic
trend, plus an ARMA process plus an evanescent process, that is a centered process (Yk)k≥1

such that limk→+∞�
[
|Yk|2

]
= 0 (see Theorems 3.1 and 3.2 in [26]).
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The step process in continuous time naturally associated with the discrete time one
would be then defined by for t ≥ 0 by

Kt :=
+∞

∑
n=0

Kn1I[τn ,τn+1[
(t) =

+∞

∑
n=0

(
n

∑
k=1

Xτk (q
k)ᵀ P(n−k)

)
1I[τn ,τn+1[

(t).

In order to study this process we will have to take advantage of the properties of X and of
the family of stopping times (τk)k≥0. It should be noticed that if the process� = (Xt)t≥0
is Poisson distributed and the laws of the sequence (τk)k≥0 are known and it possible to
determine the expected value of Kt for t ≥ 0 with a result similar to Theorem 6.

5. Conclusions

In this work, we studied several ways to associate, to an open Markov chain process
in discrete time—which is often the sole accessible fruit of observation—a continuous time
Markov or semi-Markov process that bears some natural relation with the discrete time
process. Furthermore, we expect that association to allow the extension of the study of
open populations from the discrete to the continuous time model. For that purpose, we
consider three approaches: the first, for the continuous time Markov chains; the second, for
the semi Markov case; and the third, for the open Markov schemes (see in [26]). For the
semi-Markov case, under the hypothesis that we only observe the influx of new individuals
in the population at the times of the random jumps, in the main result we determine the
expected value of the vector of parameters of the conditional Poisson distributions in
the transient classes when the influx of new members is Poisson distributed. The third
approach, dealing with open Markov schemes is similar to the second one whenever we
consider a similar context hypothesis, that is, distributed incoming new members of the
population with known distributions and observation of this influx of new individuals
at the times of the random jumps. In the case of the first approach, that is, for the case
of Markov chain in continuous time, we propose a calibration procedure for which the
embeddable Markov chains provide optimal solutions. In this case also, the study of open
populations models relies on the main result proved for the semi-Markov case approach.
Future work encompasses applications to real data and the determination of criteria to
assess the quality of the association of the continuous model to the observed discrete
time model.
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Appendix A. Some Essential Results on Continuous Time Markov Chains

In this exposition of the most relevant results pertinent to our purposes, we follow
mainly the references [29–31]. As this exposition is a mere reminder of needed notions and
results, the proofs are omitted unless the result is essential for our purposes.
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Definition A1 (Continuous time Markov chain). Let I be some finite set; for instance,
Θ = {θ1, θ2, . . . , θr} of Section 2. A stochastic process (Xt)t≥0 is a continuous time Markov
chain with state space I if and only if the following Markov property is verified, namely, for all
i0, i1, . . . in ∈ I and 0 = t0 < t1 < · · · < tn < · · · we have that

�
[
Xtn = in|Xtn−1 = in−1, . . . Xt1 = i1, Xt0 = i0

]
=

= �
[
Xtn = in|Xtn−1 = in−1

]
.

We observe that by force of the Markov property in Definition A1 the law of a continu-
ous time Markov chain depends only on the following transition probabilities. Let I be the
identity matrix with dimension #I the Kronecker’s delta be given by

δ
j
i =

{
0 i �= j
1 i = j.

Definition A2 (Transition probabilities). Let I be the state space of (Xt)t≥0 a continuous time
Markov chain. The transition probabilities are defined by

∀i, j ∈ I , s < t, p(s, i, t, j) = �[Xt = j|Xs = i] and p(t, i, t, j) = δ
j
i .

Let L(�#I ) be the space of square matrices with coefficients in �. The transition probability
matrix function P : �+ ×�+ �→ L(�#I ) is defined by

∀i, j ∈ I , s < t, P(s, t) = [p(s, i, t, j)]i,j∈I and P(t, t) = I. (A1)

Transition probabilities of Markov processes in general satisfy a very important func-
tional equation that results from the Markov property.

Theorem A1 (Chapman-Kolmogorov equations). Consider a NH-CT-MC as given in Definition A1.
Let P its transition probability matrix function as given in Definition A2. We then have

∀s, u, t, 0 ≤ s < u < t, P(s, t) = P(s, u)P(u, t) (A2)

As an application of the celebrated existence theorem of Kolmogorov (in the form
exposed in [61], pp. 8–10) we have that, under a set of natural hypothesis, there exists a
NH-CT-MC such as the one in Definition A1.

Theorem A2 (On the existence of NH-CT-MC). Let p0 be an initial probability over I . Consider
a matrix valued function P : �+ ×�+ �→ L(�#I ) denoted by P(s, t) = [p(s, i, t, j)]i,j∈I and
satisfying Formulas (A3) and (A4) below, that is,

1. For all s < t and for all i ∈ I
∑
j∈I

p(s, i, t, j) = 1. (A3)

2. Formula (A2) in Theorem A1, namely,

∀s, u, t, s < u < t, P(s, t) = P(s, u)P(u, t). (A4)

Define, for all i0, i1, . . . in ∈ I and 0 = t0 < t1 < · · · < tn < · · · , the function

νt0,t1,...,tn(i0, i1, . . . , in) =

= p0(i0)p(t0, i0, t1, i1)p(t1, i1, t2, i2) · · · p(tn−1, in−1, tn, in),
(A5)
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and extend this definition to all possible t0, t1, . . . , tn, . . . by considering, with the adequate ordering
permutation σ of {0, 1, 2, . . . , #I} such that we have tσ(0) < tσ(1) < . . . ,< tσ(n),

νtσ(0) ,tσ(1) ,...,tσ(n) (i0, i1, . . . , in) = νt0,t1,...tn(iσ−1(0), iσ−1(1), . . . , iσ−1(n)). (A6)

Then, (νt0,t1,...,tn)t0,1,...,tn ,n≥1 is a family of probability measures satisfying the compatibility
conditions of Kolmogorov existence theorem and so, there exists � a probability measure over
the canonical probability space (Ω, A)—with Ω = I�+ and A = P(I)�+—such that if the
stochastic process (Xt)t≥0 is denoted by

∀ω = (it)t≥0 ∈ Ω, Xt(ω) = it,

then,
∀i, j ∈ I , s < t, p(s, i, t, j) = �[Xt = j|Xs = i] and p(t, i, t, j) = δ

j
i , (A7)

that is, (Xt)t≥0 has P(s, t) = [p(s, i, t, j)]i,j∈I—together with P(t, t) = I—as its transition
probabilities.

A natural and useful way of defining transition probabilities is by means of the
transition intensities that act like differential coefficients of transition probability functions.

Definition A3 (Transition intensities). Let L(�#I ) be the space of square matrices with coeffi-
cients in�. A function Q : � �→ L(�#I ) denoted by

Q(t) = [q(t, i, j)]i,j∈I ,

is a transition intensity iff for almost all t ≥ 0 it verifies

(i) ∀i ∈ I , t ≥ 0, q(t, i, i) ≤ 0;
(ii) ∀i ∈ I , t ≥ 0, q(t, i, j)− q(t, i, i) ≥ 0;
(iii) ∀i ∈ I ∑j∈I q(t, i, j) = 0.

There is a way to write differential equations—the Kolmogorov backward and forward
equations—useful for recovering the transition probability matrix from the intensities
matrix and to study important properties of these transition probabilities.

Theorem A3 (Backward and Forward Kolmogorov equations). Suppose that P(s, t) is con-
tinuous at s, that is,

lim
t↓0

P(0, t) = I and lim
t↓s

P(s, t) = lim
t↑s

P(t, s) = I. (A8)

If there exists Q such that

Q(t) = lim
k+h→0+ ,k≡0∨h≡0

P(t − k, t + h)− I
k + h

= lim
h↓0,h>0

P(t, t + h)− I
h

=

= lim
k↓0,k>0

P(t − k, t)− I
k

,
(A9)

then we have the backward Kolmogorov (matrix) equation:

∂

∂s
P(s, t) = −Q(s)P(s, t), P(s, s) = I, (A10)

and the forward Kolmogorov (matrix) equation:

∂

∂t
P(s, t) = P(s, t)Q(s), P(t, t) = I. (A11)
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Remark A1. The general theory of Markov processes shows that the condition that P(s, t) is
continuous in both s and t is sufficient to ensure the existence of the matrix intensities Q given in
Formulas (A9) (see [31], p. 232). By means of a change of time Goodman (see [41]) proved that
the existence of solutions of Kolmogorov equations is amenable to an application of Caratheodory’s
existence theorem for differential equations.

Given transition intensities satisfying an integrability condition there are transition
probabilities uniquely associated with these transition intensities.

Theorem A4 (Transition probabilities from intensities). Let Q be a transition intensity as in
Definition A3 such that Theorem A3 holds. Then, we have that

P(s, t) = I +
∫ t

s
Q(u)P(u, t)du and P(s, t) = I +

∫ t

s
P(s, u)Q(u)du. (A12)

The existence of a NH-CT-MC can also be guaranteed by a constructive procedure
that we now present and that is most useful for simulation.

Remark A2 (Constructive definition). Given a transition intensity Q define

p�(t, i, j) =

⎧⎨⎩ 1−δ
j
i

−q(t,i,i) q(t, i, j) q(t, i, i) �= 0

δ
j
i q(t, i, i) = 0.

1. Let X0 = i, according to some initial distribution on I ; the sequence (τn)n≥0 is defined by
induction as follows; τ0 ≡ 0.

2. τ1 time of first jump with Exponential distribution function:

Fτ1(t) = �[τ1 ≤ t] = 1 − exp
(∫ t

0
q(u, i, i)du

)
,

and
�[Xs1 = j|τ1 = s1, X0 = i] = p�(s1, i, j),

and so Xt = i for 0 ≡ τ0 ≤ t < τ1. We note that this distribution of the stopping time
is mandatory as a consequence of a general result on the distribution of sojourn times of a
continuous time Markov chain (see Theorem 2.3.15 in [31], p. 221).

3. Given that τ1 = s1 and Xs1 = j, τ2 time of the second jump with Exponential distribu-
tion function

Fτ2|τ1=s1
(t) = �[τ2 ≤ t | τ1 = s1] = 1 − exp

(∫ t

0
q(u + s1, j, j)du

)
and

�[Xs2 = k|τ1 = s1, X0 = i, τ2 = s2, Xs1 = j] = p�(s1 + s2, j, k),

and so Xt = j for τ1 ≤ t < τ2.

The following result ensures that the preceding construction yields the desired result.

Theorem A5 (The continuous time Markov chain). Let the intensities satisfy condition given
by Formula (A12) in Theorem A4. Then, given the times (τ0)n≥1, we have that with the sequence
(Yn)n≥1 defined by Yn = Xτn , the process defined by:

Xt =
+∞

∑
n=0

Yn1I[τn ,τn+1[
(t) =

+∞

∑
n=0

Xτn 1I[τn ,τn+1[
(t) (A13)
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is a continuous time Markov chain with transition probabilities P given by Definition A2 and
transition intensities Q given by Definition A3 and Theorem A3.

Proof. This theorem is stated and proved, in the general case of Markov continuous time
Markov processes in [31] (p. 229).

Lemma A1. Let q : �+ �→ � a measurable function integrable over every bounded interval of
�+. Then, we have that

∫ t

s

∫ t

s1

· · ·
∫ t

sn−1

q(s1)q(s2) . . . q(sn)dsn . . . ds2ds1 =

(∫ t
s q(u)du

)n

n!
,

for all 0 ≤ s ≤ t, n ≥ 1.

Proof. Let us observe that, for n = 2, we have that(∫ t

s
q(u)du

)2
=
∫ t

s

∫ t

s
q(v)q(u)dudv =

=
∫ t

s

∫ t

s
1I{u≤v}q(v)q(u)dudv +

∫ t

s

∫ t

s
1I{v≤u}q(v)q(u)dudv.

By induction we have for all n ≥ 1, and for every permutation σ ∈ Sn(∫ t

s
q(u)du

)n
=

= ∑
σ∈Sn

∫ t

s
· · ·
∫ t

s
1I{uσ(1)≤uσ(2)≤···≤uσ(n)}q(u1) . . . q(u1)dun . . . du1 =

= n!
∫ t

s
· · ·
∫ t

s
1I{u1≤u2≤···≤un}q(u1) . . . q(u1)dun . . . du1 =

=
∫ t

s

∫ t

u1

· · ·
∫ t

un−1

q(u1)q(u2) . . . q(un)dun . . . du2du1,

as all the integrals in the sum are equal by the symmetry of the integrand function, and
then, by Fubini theorem.

Remark A3 (On a fundamental condition). The condition on q stated in Lemma A1 and
reformulated in Formula (7) is the key to the proof of important results. In fact we have that this
condition is sufficient to ensure that the associated Markov process has no discontinuities of the
second type (see [31], p. 227) and, most important for the goals in this work, that the trajectories of
the associated Markov process are step functions, that is, any trajectory has only a finite number
of jumps in any compact subinterval of [0,+∞[; we will detail this last part of the remark in
Theorem A6.

Under the perspective of our main motivation the following result is crucial.

Theorem A6 (The non accumulation property of the jump times of a Markov chain). Let the
intensities satisfy condition given by the statement of Lemma A1. Then, given the times (τn)n≥1,
we have that:

�

[
+∞

∑
n=1

τn = +∞

]
= 1, (A14)

and so the trajectories of the process are step functions.
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Proof. Property in Formula (A14) has non immediate proof. We present a proof based on
a result in [62] (p. 160), stating that the condition given by:

lim
h↓0

sup
t,i

∑
j �=i

p(t, i, t + h, j) = 0, (A15)

guarantees that the process has a stochastic equivalent that is a step process, meaning
that for any trajectory ω the set of jumps of this trajectory has no limit points in the
interval [0, ζ(ω)[, with ζ(ω) being the end date of the trajectory. This result is based on
a thorough analysis (see [62], pp. 149–159) of the conditions for a Markov process not to
have discontinuities of the second type, meaning that the right-hand side and left-hand
side limits exists for every date point and every trajectory. Now, with,

q(t) := max
1≤i≤#I

|q(t, i, i)|,

by virtue of the condition on q in Lemma A1—that is reformulated more precisely in
Formula (7) of the statement in Theorem 1—we have that:

p(t, i, t + h, j) ≤
+∞

∑
k=1

(
#I
∫ t+h

t q(u)du
)k

k!
.

Therefore, for almost all t ∈ [0, T],

lim
h↓0

sup
t,i

∑
j �=i

p(t, i, t + h, j) = (#I − 1) lim
h↓0

sup
t

+∞

∑
k=0

(
#I ·

∫ t+h
t q(u)du

)k

k!
=

= (#I − 1) lim
h↓0

sup
t

+∞

∑
k=0

(
h · #I · 1

h

∫ t+h
t q(u)du

)k

k!
= 0,

as the series is uniformly convergent and for almost all t ∈ [0, T],

lim
h↓0

1
h

∫ t+h

t
q(u)du = q(t),

by Lebesgue’s differentiation theorem.

Remark A4 (Negative properties). The following negative properties suggest the alternative
calibration approach that we propose in Section 3.2. Given(Xτn)n≥0, the successive states occupied
by the process, we observe that

• the times (τn)n≥1 are not independent;
• the sequence (Yn)n≥1 defined by Yn = Xτn is not a Markov chain.

Appendix B. Semi-Markov Processes: A Short Review

For the reader’s convenience we present a short summary of the most important results
semi-Markov processes (sMp), needed in this work, following [63] (pp. 189–200). The main
foundational references for the theory of sMp are [32,64,65]. Important developments can
be read in [33,66,67]. Among the many works with relevance for applications we refer, for
instance, [68–73]. Let us consider a complete probability space (Ω, F ,�). The approach
of Markov and semi-Markov processes via kernels if fruitful and so we are lead to the
following definitions and results for what we will now follow, mainly, the works in [67]
(pp. 7–15) and in [33]. Consider a general measurable state space (Θ, A(Θ)). The σ-algebra
A(Θ) may be seen as the observable sets of the state space of the process Θ.
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Definition A4 (Semi-Markov transition kernel). A map Q : Θ × A(Θ)× [0,+∞[→ [0, 1]
such that (x, B, t) �→ Q(x, B, t) is a semi-Markov transition kernel if it satisfies the follow-
ing properties.

(i) Q(x, ·, t) is measurable with respect to A(Θ) × B([0,+∞[) with B([0,+∞[) the Borel
σ-algebra of [0,+∞[.

(ii) For fixed t > 0, Q(·, ·, t) : Θ × A(Θ) → [0, 1] is a semistochastic kernel, that is,

(ii.1)For fixed θ ∈ Θ and t > 0, the map Q(θ, ·, t) : A(Θ) → [0, 1] is a measure and we
have Q(θ, Θ, t) ≤ 1; if Q(θ, Θ, t) = 1 we have that Q(·, ·, t) is a stochastic kernel.

(ii.2)For a fixed T ∈ Θ we have that Q(·, T, t) : Θ → [0, 1] is measurable with respect to
A(Θ).

(iii) For fixed (θ, T) ∈ Θ × A(Θ) we have that the function Q(θ, T, t) : [0,+∞[→ [0, 1] is a
nondecreasing function, continuous from the right and such that Q(θ, T, 0) = 0.

(iv) P(·, ·) : Θ × A(Θ) → [0, 1] defined to be: P(·, ·) = Q(·, ·,+∞) = limt→+∞ Q(·, ·, t) is a
stochastic kernel.

(v) For any θ ∈ Θ we have that the function defined for t ∈ [0,+∞[ by Fθ(t) := Q(θ, Θ, t) is a
probability distribution function.

Now, consider Q a semi-Markov transition kernel, a continuous time stochastic process
(Yt)t≥0 defined on this probability space and � = (Ft)t≥0 the natural filtration associated
to this process, i.e., Ft := σ(Ys : s ≤ t) is the algebra-σ generated by the variables of the
process until time t. We now consider a sequence of random variables (Zn)n≥0—taking
values in a state space Θ, that for our purposes will, in general, be finite state space
Θ = {θ1, θ2, . . . , θr} and sometimes an infinite one Θ = {θ1, θ2, . . . , θr, . . . }—the sequence
being adapted to the filtration �. We consider also 0 ≡ τ0 < τ1 < τ2 < · · · < τn < · · · an
increasing sequence of �-stopping times, denoted by T and Δn := τn − τn−1 for n ≥ 1.

Definition A5 (Markov renewal process). A two dimensional discrete time process (Zn, Δn)n≥0
with state space Θ × [0,+∞[ verifying,

�
[
Zn+1 = θj, Δn ≤ t|Z0, . . . , Zn, Δ1, Δ2, . . . , Δn

]
= �

[
Zn+1 = θj, Δn ≤ t|Zn

]
,

for all θj ∈ Θ, t ≥ 0 and almost surely that is, an homogeneous two dimensional Markov Chain, is
a Markov renewal process if its transition probabilities are given by:

Q(θ, T, t) = �[Zn+1 ∈ T, Δn ≤ t|Zn = θ].

Remark A5 (Markov chains and Markov renewal processes). The transition probabilities of a
Markov renewal process do not depend on the second component; as so, a Markov renewal process
is a process of different type of a two dimensional Markov chain process. The first component of a
Markov renewal process is a Markov chain, denoted the embedded Markov chain, with transition
probabilities given by:

P(θ, T) = Q(θ, T,+∞) = lim
t→+∞

Q(θ, T, t) = �[Zn+1 ∈ T|Zn = θ].

Definition A6 (Markov renewal times). The Markov renewal times of the Markov renewal
process (τn)n≥0 are defined by

τn =
n

∑
k=1

Δk,

and the probability distribution functions Fθ of the Markov renewal times depend on the states of
the embedded Markov chain, as, by definition we have

Fθ(t) := Q(θ, Θ, t) = �[Δn ≤ t|Zn = θ].
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Proposition A1. Consider a general measurable state space (Θ, A(Θ)). Let Q be a semi-Markov
transition kernel and P the associated stochastic kernel according to Definition A4. Then, there
exists a function Fθ(γ, t) such that:

Q(θ, T, t) =
∫

T
Fθ(γ, t)P(θ, dγ). (A16)

Proof. As we have for θ ∈ Θ and T ∈ A(Θ)) that P(θ, T) = Q(θ, T,+∞), we may
conclude that Q(θ, T,+∞) ≤ P(θ, T) and so, the measure Q(θ, ·,+∞) is absolutely contin-
uous with respect to the probability measure P(θ, ·) on (Θ, A(Θ)) and so, by the Radon–
Nicodym theorem, there exists a density Fθ(γ, t) verifying Formula (A16).

Remark A6 (Semi-Markov kernel for discrete space state). In the case of a discrete state space,
say Θ = {θ1, θ2, . . . , θr, . . . }, we may consider A(Θ) = P(Θ) the maximal σ-algebra of all the
subsets of Θ) and, with this condition, a semi-Markov kernel Q is defined by a matrix function
Q = [q(i, j, t)]i,j≥1,t≥0 such that

(i) For i, j ≥ 1 fixed the function q(i, j, ·) : [0,+∞[→ [0, 1] is nondecreasing.
(ii) For i ≥ 1 fixed the function Fi(t) := ∑j≥1 q(i, j, t) is a probability distribution function.
(iii) The matrix P = [p(i, j)]i,j≥1,t≥0 with p(i, j) := q(i, j,+∞) = limt→+∞ q(i, j, t) is a stochas-

tic matrix.

Definition A7 (Semi-Markov process). The process (Yt)t≥0 is a semi-Markov process if:

(i) The process admits a representation given, for t ≥ 0, by

Yt =
+∞

∑
n=0

Zn1I[τn ,τn+1[
(t). (A17)

(ii) For n ≥ 0 we have that Zn = Yτn .
(iii) The process (Zn, τn)n≥0 is a Markov renewal process (Mrp), that is, it verifies

�
[
Zn+1 = θj, τn+1 − τn ≤ t|Z0, . . . , Zn, τ1, τ2, . . . .τn

]
=

= �
[
Zn+1 = θj, τn+1 − τn ≤ t|Zn

]
,

(A18)

for all θj ∈ Θ, t ≥ 0 and almost surely—as it is a conditional expectation.

Proposition A2 (The sMp as a Markov chain). The process (Zn, τn)n≥0 is a Markov chain with
state space Θ × [0,+∞[ and with semi-Markov transition kernel given by:

q(i, j, t) := �
[
Zn+1 = θj, τn+1 − τn ≤ t|Zn = θi

]
. (A19)

Proposition A3 (The embedded Markov chain of the Mrp). The process (Zn)n≥0 is a Markov
chain with state space Θ with transition probabilities given by:

p(i, j) := q(i, j,+∞) = �
[
Zn+1 = θj|Zn = θi

]
, (A20)

and is denoted as the embedded Markov chain of the Mrp.

Proposition A4 (The conditional distribution function of the time between two successive
jumps). Let Q = [q(i, j, t)]i,j∈{1,2,...r},t≥0 be the semi-Markov kernel as in Proposition A20. Let
the times between successive jumps be Δn := τn − τn−1 have the conditional distribution function
of the time between two successive jumps be given by

Fij(t) := �
[
Δn ≤ t|Zn = θi, Zn+1 = θj

]
. (A21)
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Then, the semi-Markov kernel verifies,

q(i, j, t) := �
[
Zn+1 = θj, Δn ≤ t|Zn = θi

]
= p(i, j)Fij(t), (A22)

with p(i, j) as defined in Proposition A3.

Proof. It is a consequence of Proposition A1.

Remark A7 (Homogeneous Markov chains as semi Markov processes). Let (Xt)t≥0 be a
homogeneous Markov chain in continuous time with state space Θ = {θ1, θ2, . . . , θr, . . . } and
with—time independent—transition intensities given by Q(t) = [q(i, j)]i,j≥1 (see Definition A3).
Then, by the well known results on homogeneous Markov chains (see [29] pp. 317, 318) and by the
representation given by Formula (A22), we have that

q(t, i, j) =

{ q(i,j)
−q(i,i)

(
1 − eq(i,i)t

)
i �= j,

0 i = j or q(i, i) = 0 ,
(A23)

is the semi Markov kernel of a sMp. Being so, comparing Formula (A23) with Formulas (A21)
and (A22), we can see that the main difference between a sMp and a continuous time Markov
process is the fact that in the sMp case the conditional distribution function of the time between two
successive jumps depend not only on the initial state of the jump but also on the final state, while in
the homogeneous Markov chain case the dependence is only on the initial state of the jump.

Definition A8 (The sojourn time distribution in a state). The sojourn time distribution in
the state θi ∈ Θ = {θ1, θ2, . . . , θr, . . . }, is defined by:

Hi(t) :=
+∞

∑
j=1

q(i, j, t) =
+∞

∑
j=1

p(i, j)Fij(t). (A24)

Its mean value represent the mean sojourn time in state θi of the sMP (Yt)t≥0.

Definition A9 (Regular sMp). A sMP (Yt)t≥0 is regular, with N(t) the number of jumps of the
process in the time interval ]0, t] given by:

N(t) := sup{n ≥ 0 : τn ≤ t}, (A25)

defined for t > 0 verifies for all θi ∈ Θ,

�i[N(t) < +∞] := �[N(t) < +∞|Z0 = θi] = 1. (A26)

Proposition A5 (Jumps times of a regular sMp do not have accumulation points). Let the
sMP (Yt)t≥0 be regular. Then, almost surely, limn→+∞ τn = +∞ and, for any T ∈ �+ and
almost all ω ∈ Ω:

#{k ≥ 1 : τk(ω) ≤ T} < +∞. (A27)

This means that in every compact time interval [0, T], for almost all ω ∈ Ω there is only a finite
number of times τk(ω) in this interval.

The following fundamental theorem ensures that for sMp with finite state space the
sequence of stopping times do not accumulate in a compact interval.

Theorem A7 (A sufficient condition for regularity of a sMp). Let α > 0 and β > 0 be
constants such that or every state θi the sojourn time distribution in this state Hi(t) defined in
Definition A8 verifies:

Hi(α) < 1 − β.
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Then, the sMp is regular. In particular, any sMp with a finite state space is regular.

Proof. See in [74] (p. 88).

Remark A8 (On the estimation of sMp). The estimation of sMp is dealt, for instance, in [75,76].
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Abstract: The paper presents a new mathematical model of TCP (Transmission Control Protocol)
link functioning in a heterogeneous (wired/wireless) channel. It represents a controllable, partially
observable stochastic dynamic system. The system state describes the status of the modeled TCP
link and expresses it via an unobservable controllable MJP (Markov jump process) with finite-state
space. Observations are formed by low-frequency counting processes of packet losses and timeouts
and a high-frequency compound Poisson process of packet acknowledgments. The information
transmission through the TCP-equipped channel is considered a stochastic control problem with
incomplete information. The main idea to solve it is to impose the separation principle on the
problem. The paper proposes a mathematical framework and algorithmic support to implement
the solution. It includes a solution to the stochastic control problem with complete information, a
diffusion approximation of the high-frequency observations, a solution to the MJP state filtering
problem given the observations with multiplicative noises, and a numerical scheme of the filtering
algorithm. The paper also contains the results of a comparative study of the proposed state-based
congestion control algorithm with the contemporary TCP versions: Illinois, CUBIC, Compound, and
BBR (Bottleneck Bandwidth and RTT).

Keywords: controllable Markov jump processes; compound Poisson processes; diffusion limits;
stochastic control problem with incomplete information; novel queuing models in applications

1. Introduction

Despite its age of almost 50 years, the Transmission Control Protocol (TCP) [1] is still
an object of permanent modernization and improvement, and this evolution represents a
natural perpetual process. The root of this development lies in incessant challenges caused
by a wide variety of computer networks, impetuous progress in the communication devices
design, and strengthening of requirements to the information transmission [2–4]. Mean-
while, guaranteeing data transfer independent of the hardware platform is the key task of
the TCP algorithm; both the stable functioning and effective use of the available channel
bandwidth are also the performance characteristics of each specific version of TCP. The
congestion control algorithms are responsible for the implementation of all these functions.
They use two characteristics as the control actions. The basic one is the congestion window
size (cwnd), i.e., the number of packets sent without acknowledgment. A less influential
one is the retransmission timeout, i.e., some waiting time for the acknowledgment of the
successful packet reception, which excess is treated by the congestion control algorithm as
a packet loss.

When most channels were wire channels and had a relatively small capacity and
queue waiting time “Additive Increase–Multiple Decrease” (AIMD) congestion control rule
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demonstrated good performance. This presumed a linear growth of the cwnd between two
successive packet losses when the cwnd abruptly decreased in a jump-like manner. The
effectiveness of this strategy for such channels was transparent. First, the small channel
capacity gave a chance to reach a bandwidth limit linearly without losses for a rather short
time. Second, wired hops were so reliable that the fact of a sudden packet loss presumed
congestion at some “bottleneck” almost surely. Therefore, the loss indicated the necessity to
reduce the sending rate. This simple reason was a base to develop such loss-based versions
of TCP as Tahoe, New Reno, etc. [5].

In the case of the “long fat” channels (ones with huge capacity and long queue waiting
times), AIMD-based versions of TCP turned out to be ineffective: they underused the
channel bandwidth significantly. In the case of the channels with high capacity, the linear
growth does not allow for the congestion window to quickly achieve values close to the
available bandwidth. Plus, a loss of at least one packet decreases the data transferring
speed even more. In addition, if a channel includes a wireless hop, facts of single packet
losses are not an explicit congestion indicator. The round-trip time (RTT) parameter starts to
play a remarkable role in the congestion control algorithm, and this brings to the variety of
the TCP versions: delay-sensitive, hybrid loss-delay, bandwidth estimation-based, etc. [2].
All the modifications make the congestion control algorithm more tolerant to packet losses:
after each loss, it decreases cwnd not multiplicative but more sparingly. At the same
time, the cwnd growth speed is more aggressive to reach the channel bandwidth faster.
The bandwidth value is unknown but estimated given all past statistics of the channel
functioning. The algorithm probes more or less gentle cwnd enlargement to give a chance
to use all channel resources. Hence, the typical cwnd curve between two packet losses
demonstrates a concave [6] or mixed concave-convex character [7].

The ubiquitous application of wireless technologies in computer networks is a chal-
lenge to TCP protocol performance and claims its subsequent enhancement. Jitter and
periodical signal fading in the wireless channel hops are extra sources of uncertainty of
the channel real throughput. These physical phenomena affect both the new mathematical
models of the channel functioning and the congestion control algorithms.

Mathematical models of computer network traffic are also developed intensively.
With no goal to present a comprehensive overview of these models, we only mention their
major classes

• Markov and hidden Markov models [8–11],
• queuing systems [12,13],
• models, based on the fluid or diffusion approximation of jump processes [14–16],
• network calculus models [17–19],
• models involving selfsimilar processes [20–22],
• concurrent models and games [23–25], etc.

Generally speaking, a prospective mathematical model of a channel should satisfy the
conditions below.

1. A model should describe the data transferring process adequately.
2. A model should represent a trade-off between a complicated object with many pa-

rameters, their uncertainty along with the uncertainty introduced by the external
disturbances, and simplicity.

3. A model should operate with the same collection of statistical information as the one
available in the real channel.

4. A model should provide a possibility to simulate the collection of recent “concurrent”
versions of TCP.

5. The chosen model presumes the presence of the developed mathematical framework
for the solution to the complex of all the analysis, estimation/identification and
optimization/control problems. Availability of both the theoretical solution to the
problems above and their efficient numerical realization is strongly encouraged.
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The aim of the paper is two-fold. First, this is a presentation of a new mathematical
model of the TCP link functioning based on the heterogeneous (wired/wireless) channel.
It represents a controllable, partially observable stochastic dynamic system. The system
state describes the status of the modeled TCP link and expresses it via the controllable
Markov jump process (MJP) with a finite-state space. This space can be chosen arbitrarily
depending on the desired detailing of the link description. Below in this paper, we consider
four possible channel states:

• e1: the channel is idle,
• e2: the channel is loaded moderately,
• e3: congestion in the wired segment,
• e4: signal fading in the wireless hop.

Looking rather simple, this model admits successful description of such a problematic
link phenomenon as congestion in a channel “bottleneck” and the carrier radio signal fading.

The observations included into the model correspond to those available to a TCP
control algorithm on the sending side. Two observable processes describe the flow of
packet losses and the flow of timeouts. They are represented by controllable Cox processes
with intensity that depends both on the control and unobserved link state. The third
observation is a flow of the acknowledgments concerning the successful packet reception
on the receiving node. The flow is expressed in terms of a compound Poisson processes (CPP).
Its first component represents a counting process of acknowledgment reception moments,
and the second one registers corresponding individual values of the Round-Trip Time (RTT).

In the paper, we control the TCP varying the cwnd value only; however, the proposed
model allows other control parameters, e.g., RTO (retransmission timeout). We also demon-
strate how the proposed mathematical model can describe various contemporary versions
of the TCP: Illinois, CUBIC, BBR, and Compound.

The second aim of the paper is presentation of a new TCP prototype version. Its
mathematical background is both the solution to the optimal MJP state control under
complete information, and the solution to the optimal MJP state filtering given the diffusion
and counting observations. The performance of the proposed prototype is demonstrated
on the complex of the numerical experiments.

The paper is organized as follows. Section 2 contains a detailed description of the TCP
link mathematical model in terms of the controllable stochastic observation system, along
with the optimization problem of data transmission through this link.

One can enhance the use of the channel resources in terms of the optimal stochastic
control with incomplete information. However, this approach promises complications
during its realization: starting from the proof of the optimal solution existence and conclud-
ing by bulky numerical algorithms of its realization. Hence, we propose a rather simple
suboptimal solution to the problem along with its effective numerical implementation.

To develop the TCP prototype, we need a substantial mathematical framework, which
is introduced in Section 3:

• Section 3.1 contains the solution to the optimal MJP control problem with instant
geometric control constraints and complete information [26],

• Section 3.2 introduces a diffusion approximation for the high-frequency CPP describ-
ing the packet acknowledgment flow [27],

• Section 3.3 presents a solution to the optimal MJP state filtering problem given both
counting and diffusion observations with state-dependent noise [28],

• Section 3.4 contains a numerical algorithm for the optimal filtering realization [28].

In general, the articles [26–28] represent a formal, detailed mathematical background
of all applied inferences presented in this paper. We use it in Section 4 to develop a
new congestion control algorithm as follows. At the first stage, we calculate a high-
precision channel state estimate based on the available observations discretized by time.
At the second stage, we apply a separation principle: the obtained filtering estimate
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replaces the actual MJP state during the process of the optimal control synthesis with the
complete information.

The aim of Section 5 is two-fold. First, it demonstrates the potential of the proposed
mathematical model to describe various versions of the TCP: classic AIMD congestion
control scheme and TCP Illinois (Section 5.1), TCP CUBIC (Section 5.2), TCP Compound
(Section 5.3), TCP BBR (Section 5.4).

Second, the section contains the comparison of the proposed state-based TCP with
versions mentioned above: Section 5.5 highlights some details of the numerical realization
of the proposed TCP version, and Section 5.6 represents the summary of the performed
numerical experiments. Section 6 contains concluding remarks.

2. Problem of Optimal Data Transmission through TCP Channel

On the canonical Wiener-Poisson space with filtration (Ω,F,P, {Ft}) [29,30] we con-
sider the following controllable stochastic system, describing the TCP link functioning

Xt = X0 +
∫ t

0
A(us)Xsds + αt, (1)

Yt =
∫ t

0
B(us)Xsds + βt, (2)

Zt =
∫ t

0
C(us)Xsds + γt, (3)

{(τn, Vn)}n∈N. (4)

Here the TCP link state Xt is a controllable finite-state MJP with values in the set
SN � {e1, ..., en} formed by unit coordinate vectors of the Euclidean space RN . The initial
value X0 has a known distribution π, A(u) = ‖Aij(u)‖i,j=1,N is a controllable transition
intensity matrix and αt is a Ft-adapted martingale with the quadratic characteristic [31]

〈α, α〉t =
∫ t

0

(
diag(A(us)Xs)− A(us)diag(Xs)− diag(Xs)A�(us)

)
ds.

The link state is unobservable, and the complex of observations (Yt, Zt, {(τn, Vt)})
includes three components.

• Yt is a counting process (flow) of packet losses described by its martingale representa-
tion (2): βt is an Ft-adapted martingale with the quadratic characteristic

〈β, β〉t =
∫ t

0
B(us)Xsds,

B(u) � row(B1(u), . . . , BN(u)) represents the collection of the loss intensities of the
flow given the conditions Xt = en, n = 1, N.

• Zt is a counting process (flow) of packet timeouts described by its martingale repre-
sentation (3): γt is an Ft-adapted martingale with the quadratic characteristic

〈γ, γ〉t =
∫ t

0
C(us)Xsds,

C(u) � row(C1(u), . . . , CN(u)) represents the collection of the timeout intensities of
the flow given the conditions Xt = en, n = 1, N.

• {(τn, Vt)} is a flow of successful packet acknowledgments: here τn stands for the time
instant of the n-th acknowledgment arrival and Vt does for the specific RTT of the
n-th acknowledgment. It represents controllable compound Poisson process (CPP) with
the intensity driven by the Markov state Xt: the predictable measure generated by
{(τn, Vt)} conditioned by the MJP state X takes the form
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μp(ω, dt, dv) = λ(ut)diag(Xt−)Λ(ut, v)dtdv.

Here λ(ut) � row(λ1(ut), . . . , λN(ut)) is a vector-valued function with continuous
positive components, its nth component represent conditional intensity of acknowl-
edgment arrivals given Xt = en; Λ(ut, v) � col(Λ1(ut, v), . . . , ΛN(ut, v)) is a vector-
valued function with continuous components, its nth component represent conditional
probability density function (pdf) with respect to v given Xt = en for each fixed ut.

All martingale terms in the processes X, Y, Z and (τ, V) are strongly orthogonal.
The control ut represents a current size of the congestion window, i.e., portion of

packets which can be instantly transmitted. The set of admissible control contains all Ot-
predictable processes (Ot � σ{Ys, Zs, (τn, Vn) : s, τn ∈ [0, t]} stands for a natural filtration
induced by all observations available up to the moment t) with the geometric constraint:

us ∈ U � [u, u] ⊂ R+ P-a.s. for all s � 0. (5)

The intensity of acknowledgment arrivals is much more than all the state transition,
packet loss and timeout ones:

min
n,u

λn(u) " max
n,u

(|An(u)|, Bn(u), Cn(u)).

The performance criterion

J(U) � E

{
ψXT +

∫ T

0
(φ(us)− usξ)Xsds

}
→ max

U
(6)

represents an average profit for the transmitted information, which should be maxi-
mized. Here

• ψ � row(ψ1, . . . , ψN) is a vector of conditional gains given the terminal state XT ,
• φ(us) � row(φ1(us), . . . , φN(us)) includes strictly concave components, which repre-

sent conditional instant gains for the transmitted information given the current link
state Xs,

• ξ � row(ξ1, . . . , ξN) is a vector of specific transmission expenses per information unit
in each link state.

The problem under consideration is challenging. First, in general, optimal control
problems of stochastic jump processes with incomplete information are rather compli-
cated [31–34]. Their proper statement and solution depends on the answer to several
auxiliary questions/problems: the martingale one [35], the one of strong solution existence
and uniqueness and the one of measurable control selection (see [36] and references within).
Without positive answers to the questions, we cannot use the martingale theory [35,37] to
express optimal control in terms of either variation inequalities (dynamic programming
equation as the preferable outcome) or stochastic maximum principle. Please note that
negative answers presumes only impossibility to use the mathematical tools mentioned
above. Apparently, the control problem can be modified slightly to provide its solution
existence which can be found involving other still undiscovered frameworks.

Second, both the dynamic programming equation and stochastic maximum principle
have forward-backward form which complicates synthesis of the optimal control in the
explicit form. The authors of [36] have solved the analogous problem of the MJP state
(1) control observing the flow of packet losses (2) only. The theoretical optimal solution
has been characterized both via the dynamic programming equation and the maximum
principle. At the same time, the authors have presented a numerical realization of the
obtained result only for the case when the transition intensity matrix of the MJP is inde-
pendent of the control (i.e., the state is uncontrollable), and control affects the intensity
of the losses only. Despite the restrictive conditions the obtained practical results have
looked rather prospective: the optimal policy has demonstrated piecewise concave nature
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similar to the modern versions of TCP: Illinois [6], CUBIC without probe phase [38,39],
Compound [40,41] etc.

Third, the essential weak points of the optimal control implementation are its poor
robustness relating to the imprecise knowledge of the control system characteristics and
small perturbations of the synthesized control to its performance. This means that either
control system parameters slightly misspecified towards its unknown nominal, or “instru-
mental errors” in control caused by imperfection of its numerical realization could nullify
gain of the sophisticated optimal control in comparison with a stable suboptimal algorithm.

Fourth, the flow of packet acknowledgments has high intensity and hence leads to a
high-frequency control, which is resource intensive.

Keeping in mind all arguments above we avoid the direct solution to the optimal
stochastic control problem (6) of the MJP (1) state given the observations (2), (3) and (4)
including the martingale problem and the ones of the solution existence and uniqueness.
Instead of this we use solutions to a complex of adjacent problems and propose a suboptimal
control algorithm of high performance.

3. Mathematical Background

As a basis of the proposed suboptimal control algorithm, we use the following ar-
guments and mathematical results. We derive the algorithm basing on the following
mathematical results and reasons.

1. The solution to the optimal stochastic control of the MJP (1) state with the complete
information does exist and can be defined as a solution to the equation of dynamic
programming [26].

2. The high frequency allows us to approximate the observable controlled CPP (4) by a
drifting Brownian motion [42] with the parameters modulated by the MJP state [27].
We can describe the distribution of the diffusion approximation via some moment
characteristics only, and this fact leads to robustness of the subsequent state filtering
algorithm towards the imprecise knowledge of the specific distribution of compound
Poisson process jumps.

3. The conversion of high-frequency acknowledgment flow to a diffusion process gives a
possibility to use the solution to the optimal MJP (1) state filtering problem given the
“diffusion” and counting observations [43]. This is extension of the Wonham filter [44]
to the case of the diffusion observations with state-dependent noises. Under rather
mild identifiability conditions the optimal filtering estimate coincides with the exact
MJP state.

4. The dynamic programming equation corresponding to the control problem with
complete information mentioned at item 1, represents the system of ordinary differen-
tial equations with well-developed methods of numerical solution. By contrast, the
equations of the generalized Wonham filter [43] require design of special numerical
procedures similar to [28].

5. To complete the control synthesis, we postulate a separation principle. This means we
put the state filtering estimate mentioned at items 3, 4 into the control strategy defined
at item 1.

3.1. Optimal Control Strategy with Complete Information

Let us consider the controllable MJP (1) which should be optimized with respect
to the optimality criterion (6) where the set U of all admissible controls U includes all
Ot-predictable processes with the geometric constraint (5).

Let us define the Bellman function V(t, x) : [0, T]× SN → R:

B(t, x) � sup
U∈U

E

{
ψXT +

∫ T

t
(φ(us)− usξ(s))Xsds

∣∣∣Xt = x
}

. (7)
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Obviously, the function B(t, x) can be presented in the form B(t, x) = η�(t)x, where
η(t) � col(η1(t), . . . , ηN(t)) = col(B(t, e1), . . . , B(t, eN)) is a vector-valued function.

Theorem 1. The assertions below are true [26].

1. The function η(t) is the unique solution to the Cauchy problem⎧⎪⎨⎪⎩ η̇n(t) = max
u∈U

[
N

∑
j=1

Ajn(u)η j(t) + ξn(u)

]
, n = 1, N, 0 � t < T,

ηn(T) = ψn, n = 1, N.

(8)

2. There exists a Borel function ût(x) : [0, T]× SN → U, such that

ût(x) ∈ Argmax
u∈U

[
N

∑
n=1

(
N

∑
j=1

Ajn(u)η j(t) + ξn(u)

)
xn

]
(9)

for any (t, s) ∈ [0, T]× SN.
3. The random process Ût � ût(Xt−) is an optimal control strategy for the problem (1), (6).
4. The optimal value of criterion (6) has the form maxU∈U J(U) = J(Û) = η�(0)π; moreover,

supremum in (7) is attained for any (t, x) ∈ [0, T]× SN at the strategy {Ûs, s ∈ [t, T]}.

The theorem establishes the base of the practical control realization. Indeed, all
variants of possible optimal controls (9) can be calculated and stored in advance via
solution to (8), before the control synthesis. The synthesis itself represents the selection of
suitable control from the set of possible ones using the “current” MJP state Xt−.

3.2. Diffusion Approximation of High-Frequency Counting Observations

Use of the “genuine” acknowledgments flow (4) to synthesize the control leads to
discontinuous one with high frequency. Its calculation may be resource intensive: each new-
coming acknowledgment triggers the control recalculation algorithm. The contemporary
TCP versions are exactly like this, but they are relatively simple, so not too “costly”.

Once we consider (4) discretized by time with some appropriate time increment, we
can see the probability distribution of the observation increments look like mixtures of
some Gaussians due to the central limit theorem for renewal-reward processes (CLTRRP). In
this subsection we answer two questions. First, we determine characteristics of these mix-
tures. Second, we form recommendations how to choose time increment value to provide
appropriate closeness of the real discretized observation distribution to the theoretical
mixture above.

First, to perceive the nature of diffusion approximation, we investigate the CPPs with
a fixed control u ∈ U. We consider a collection of the CPPs {(τ j

n, Vj
n)} n∈N,j=1,N,

u∈U
with the

predictable measures {μ
j
p(dt, dv)} s>0,

u∈U
:

μ
j
p(dt, dv) � λj(u)Λj(u, v)dsdv.

Probabilistically they correspond to initial CPP {(τn, Vn)} staying in the “single mode”:
Xt ≡ ej and a fixed control value ut ≡ u. Each CPP generates a stochastic measure

μj(ω, dt, dv) � ∑
n∈N

δ
(τ

j
n(ω),Vj

n(ω))
(dt, dv).

Keeping in mind the specific form of the predictable measures μ
j
p, we can compute

the moment characteristics for one jump of the CPPs:
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mj
τ � E

{
τ

j
1

}
=

1
λj(u)

, mj
V � E

{
Vj

1

}
=
∫
R

vΛj(u, v)dv, (10)

σ
j
τ �

√
var(τ j

1) =
1

λj(u)
, σ

j
V �

√
var(Vj

1) =

√∫
R

v2Λj(u, v)dv −
(

mj
V

)2
,

κ j � cov(τ j
1, Vj

1) = 0.

We investigate the asymptotic behavior of the distribution of the two-dimensional
random process

Θj
t �

⎡⎢⎣
∫
[0,t]×R

μj(ds, dv)∫
[0,t]×R

vμj(ds, dv)

⎤⎥⎦ =

⎡⎢⎣ ∑
n∈N

I(t − τ
j
n)

∑
n∈N

VnI(t − τ
j
n)

⎤⎥⎦ (11)

when t → ∞. The first component represents the total number of acknowledgments
received at the sender over the time interval [0, t], the second component, in turn, stands for
the corresponding cumulative RTT value. The author of [42] proved a version of CLTRRP:

1√
λj(u)t

(
Θj

t −
[

λj(u)t
mj

Vλj(u)t

])
Law−→ N

([
0
0

]
,

[
1 mj

V
mj

V (mj
V)

2 + (σ
j
V)

2

])
(12)

as t → ∞. In other words, for rather huge t

1√
t
Θj

t # N
([

(λj(u))
3
2
√

t
mj

V(λ
j(u))

3
2
√

t

]
,

[
λj(u) λj(u)mj

V

λj(u)mj
V λj(u)

[
(mj

V)
2 + (σ

j
V)

2
] ]).

Let us complicate the model, mixing the CPPs {(τ j
n, Vj

n)} n∈N,j=1,N,
u∈U

above with probabil-

ities π = col(π1, . . . , πN) [
τn
Vn

]
=

N

∑
j=1

Xj
0

[
τ

j
n

Vj
n

]
. (13)

Here X0 � col(X1
0, . . . , XN

0 ) ∈ SN is an F0-measurable random vector, independent of
{(τ j

n, Vj
n)} n∈N,j=1,N,

u∈U
; X0 ∼ π0. It is easy to verify that the predictable measure generated by

{(τn, Vn)}, conditioned by X0, takes the form

μp(ω, dt, dv) = λ(ut)diag(X0)Λ(ut, v)dtdv.

Please note that the mixed CPP (13) represents a specific case of the observations (4)
with “single mode” MJP X: A(u) ≡ 0, X0 ∼ π.

Making inferences as above we can conclude that for rather huge t

1√
t

⎡⎢⎣ ∑
k∈N

I(t − τk)

∑
k∈N

VkI(t − Vk)

⎤⎥⎦
#

N

∑
j=1

π jN
([

(λj(u))
3
2
√

t
mj

V(λ
j(u))

3
2
√

t

]
,

[
λj(u) λj(u)mj

V

λj(u)mj
V λj(u)

[
(mj

V)
2 + (σ

j
V)

2
] ]).

(14)

Therefore, given some MJP state Xs distribution (conditional or unconditional) at
the time instant s and a constant control uq ≡ u ∈ U, q ∈ [s, s + h) we assume that the
cumulative observation increment over the interval [s, s + h) is distributed approximately
in the following way
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1√
h

⎡⎢⎣ ∑
k∈N

I(t − τk)I(τk − s)

∑
k∈N

VkI(t − τk)I(τk − s)

⎤⎥⎦
#

N

∑
j=1

X̂j
sN
([

(λj(u))
3
2
√

t
mj

V(λ
j(u))

3
2
√

t

]
,

[
λj(u) λj(u)mj

V

λj(u)mj
V λj(u)

[
(mj

V)
2 + (σ

j
V)

2
] ]).

(15)

By analogy with (15) for the cumulative process, corresponding to the acknowledg-
ment flow (4)

Qt �

⎡⎢⎣ ∑
k∈N

I(t − τk)

∑
k∈N

VkI(t − τk)

⎤⎥⎦ (16)

we propose the following approximate diffusion model

Qt =
∫ t

0
D(us)Xsds +

∫ t

0

N

∑
n=1

e�n XsE
1
2
n (us)dWs, (17)

where

D(u) �
[

(λ1(u))
3
2 (λ2(u))

3
2 . . . (λN(u))

3
2

m1
V(λ

1(u))
3
2 m2

V(λ
2(u))

3
2 . . . mN

V (λN(u))
3
2

]
,

En(u) �
[

λn(u) λn(u)mu,n
V

λn(u)mu,n
V λn(u)

(
(mu,n

V )2 + (σu,n
V )2) ]

Model (17) gives a chance both to solve the MJP state filtering problem given the dif-
fusion and counting observations and develop corresponding algorithms of the numerical
solution to the filtering problem.

By contrast with weak convergence in (12), any convergence in (15) is absent. First,
the right-hand side (RHS) of (15) contains the mathematical expectation which is increas-
ing function of t. Second, we determine (15) under hypothesis that the MJP state X
remains unchanged over the discretization interval: Xq ≡ Xs, q ∈ [s, s + t). In the gen-
eral case, the probability of MJP state transition increases to 1 when the interval length t
increases infinitely.

Use of the time-discretized observations (4) at the first stage of the control synthesis–
MJP state filtering–presumes calculation of likelihood ratios for the single Gaussian modes
and their mixtures. Therefore, the filtering performance depends on both the “theoretical”
pdf (15) and the closeness of real distribution of the observation increments to (15).

We form recommendations for appropriate choice of the time interval for discretiza-
tion of (4). On the one hand, the length should provide the appropriate performance of
the diffusion approximation (15), when there is no MJP state transitions over the time
interval. On the other hand, the interval length should be small enough to guarantee small
probability of those state transitions.

In the CLT the closeness of the limit distribution and the pre-limit one is described
by the Berry–Esseen inequality in terms of either the uniform metric or the total variation
one [45–47]. By contrast, we are interested in closeness of the corresponding PDFs, and the
appropriated results are valid for the case of the “classic” CLT, not for CLTRRP.

We propose some heuristic technique choose the discretization interval length, basing
on a performance criterion of the distribution approximation.

We refer to the “single mode” processes Θj
t and construct the processes

Θj
h �

(√
Θj,1

h

)+ 1

σ
j
V

(
Θj,2

h − mj
VΘj,1

h

)
. (18)
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From the definition one can conclude that Θj
h represents the normalized sum of the

random number of independent equally distributed normalized random summands. We
investigate closedness of its distribution to the standard Gaussian one depending on time h.

Below in the filtering algorithm we operate with various likelihood ratios calculated
via the pdfs, hence we need to characterize a distance between the pre-limit pdf and its
limit one. The precise distance is difficult to calculate, and we must turn to some upper
bound of this quantity.

Let μ(dx) be some positive measure on (R, B(R)), and there exist both the pdf dPa
dμ of

the pre-limit distribution and the limit one dP�
dμ . Then the relative approximation error takes

the form

Δ(x) �

∣∣∣ dPa
dμ − dP�

dμ

∣∣∣
dP�
dμ

(x),

and its average ∫
Δ(x)

dP�
dμ

(x)μ(dx) = Var(Pa, P�)

coincides with the total variation distance (TVD) between Pa and P�.
We use the notation Pj(x, h) � P

{
Θj

h � x
}

for the pre-limit distribution function,

Pj
n(x) stands for the distribution function of the normalized sum of n independent equally

distributed normalized random summands with the pdf Λj(u), and Φ(x) �
∫ x
−∞

1√
2π

e−
z2
2 dz

does for the distribution function of the standard Gaussian random value. From the total
probability formula, it follows that

Pj(x, h) = e−λj(u)h

(
I(x) + ∑

n∈N

(λj(u)h)n

n!
Pj

n(x)

)
, (19)

where I(x) is the Heaviside function.

Proposition 1. For λj(u)h � 3+
√

13
2 an approximate upper bound of Var(Pj, Φ) can be written as

Jj(h) = e−λj(u)h

⎛⎜⎜⎝2 + C1

⎛⎜⎜⎝2Φ(−3) +

⎛⎜⎜⎝ 1√
1 − 3√

λj(u)h

+
1√

1 + 3√
λj(u)h

⎞⎟⎟⎠
⎞⎟⎟⎠
⎞⎟⎟⎠, (20)

where C1 = C1(Λj(u, ·)) is some parameter.

Proof. From (19) and the results of [48] (Theorem 1.1) and [49] (Theorem 2.6) the following
inequalities are true

Var(Pj, Φ) � e−λj(u)h
(

2 + ∑n∈N
(λj(u)h)2

n! Var(Pj
n, Φ)

)
� e−λj(u)h

(
2 + C1 ∑n∈N

(λj(u)h)2
√

nn!

)
, (21)

where C1 = C1(Λj(u, ·)) is some parameter (see [48,49] for details).
Under the Proposition conditions the approximation of the Poisson distribution by

the Gaussian one is valid
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∑
n∈N

(λj(u)h)2
√

nn!
≈
∫ ∞

1

1√
x

1√
2πλj(u)h

e

(x − λj(u)h)2

2λj(u)h dx

� 2Φ(−3) +

λj(u)h+3
√

λj(u)h∫
λj(u)h−3

√
λj(u)h

(ax + b)
1√
x

1√
2πλj(u)h

e

(x − λj(u)h)2

2λj(u)h dx,

(22)
where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a �
√

λj(u)h−3
√

λj(u)h−
√

λj(u)h+3
√

λj(u)h

6
√

λj(u)h
√

(λj(u)h)2−9λj(u)h
,

b � 1√
λj(u)h−3

√
λj(u)h

− λj(u)h−3
√

λj(u)h−
√

λj(u)h−9

6
√

λj(u)h+3
√

λj(u)h
.

(23)

Coefficients a and b above correspond to a piecewise linear majorant for y(x) = 1√
x

over the interval [1,+∞) (see Figure 1).
We can calculate the last integral analytically

∑
n∈N

(λj(u)h)2
√

nn!
� 2Φ(−3) + (1 − 2Φ(−3))(aλj(u)h + b) � 2Φ(−3) + aλj(u)h + b

= 2Φ(−3) +
1

2
√

λj(u)h

⎛⎜⎜⎜⎜⎜⎝ 1√√√√√1−
3√

λj(u)h

+ 1√√√√√1+
3√

λj(u)h

⎞⎟⎟⎟⎟⎟⎠.
(24)

Using the RHS of (24) in (21) we obtain the approximate upper bound (20). This ends the sketch
of the proof of the Proposition.

To characterize the distance between the Qt (16) increment distribution and its dif-
fusion approximation (17) we should take into account the chance of the MJP transition
during the discretization interval. Let us suppose Xu

t = ej, then, taking into account (20),
the upper bound of Var(Pu, Φ|Xt = ej) can be obtained by the total probability formula:

Var(P, Φ|Xt = ej) � J j(u, h) �

� e(Ajj(u)−λj(u))h

⎛⎜⎜⎜⎜⎜⎝2 + C1

⎛⎜⎜⎜⎜⎜⎝2Φ(−3) +

⎛⎜⎜⎜⎜⎜⎝ 1√√√√√1−
3√

λj(u)h

+ 1√√√√√1+
3√

λj(u)h

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠+ 2
(

1 − eAjj(u)h
)

.
(25)

The second summand in (25) answers the chance the MJP can leave the state ej during

the time interval with probability 1 − eAjj(u)h, and the multiplier 2 is the upper bound of
the TVD for any distributions.

To take into account the statistical uncertainty of the current state Xu
t , we must consider

the following averaged criterion:

J(u, p1, . . . , pN , h) �
N

∑
j=1

pjJ j(u, h), (26)

which describes the guaranteeing estimate of distribution distance for the case of the fixed
control u ∈ U and Xu

t ∼ col(p1, . . . , pN).
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From the practical point of view, the “rational” value of the time increment h can be
chosen following to the one of policies:

1. Numerical analysis of the values J j(u, h) for various (j, u, h) for the choice of an
appropriate value for h.

2. Solution to the individual minimax problems

J j(u, h) → min
h:λj(u)h� 3+

√
13

2 , u∈U
max
u∈U

, j = 1, N

with subsequent choice of the maximal h from the set of the individual solutions.
3. Solution to the general minimax problem

J(u, p1, . . . , pN , h)) → min
h:λj(u)h� 3+

√
13

2 , u∈U, j=1,N
max
u∈U,

(p1,...,pN )∈Π

.

In this paper, we use the first policy as the most economical one.

j( ) −
√

j( ) j( ) j( ) +
√

j( )

=

= +

= √

= √
j( )

{
− ( − j( ) )2

j( )

}

Figure 1. The function y = 1√
x and its piecewise linear majorant against the Gaussian.

3.3. Optimal Filtering of MJP State Given Counting and Diffusion Observations

In this section, we investigate MJP state (1) filtering problem given counting (2), (3)
and diffusion observations (17). Without loss of generality to simplify the presentation and
subsequent analysis of the solution to the MJP filtering problem we must introduce below
the additional assumptions.

1. The control ut represents an observable nonrandom cádlág-process.
2. The noises in Qt are uniformly nondegenerate [50], i.e., min

1�n�N,
u∈U

En(u) > αI for some α > 0.

3. The processes Kij(ut) � I{0}(Ei(ut) − Ej(ut)), i, j = 1, N has a finite local varia-
tion (here and below 0 stands for a zero matrix of appropriate dimensionality);
K(ut) � ‖Kij(ut)‖i,j=1,N is the corresponding N × N-dimensional matrix-valued function.
The optimal filtering problem is to find a Conditional Mathematical Expectation (CME)
X̂u

t � E{Xu
t |Ot+}, where Ot � σ{Ys, Zs, Qs, s ∈ [0, t]} is a natural flow of σ-algebras

generated by the observations (2), (3) and (17).

The noise intensity in the observations (17) depends on the estimated state X, and this
fact prevents to apply the known results of the optimal nonlinear filtering [37]. To overcome
this obstacle, we use a special transformation of available diffusion observations [28]. Here
we present a sketch of this transformation.
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The Ito rule gives a possibility to obtain the observable quadratic characteristics of Q:

〈Q, Q〉t =
∫ t

0

N

∑
n=1

e�n XsEn(us)ds. (27)

We use the normalized diffusion observations

Qt �
∫ t

0

(
d〈Q, Q〉s

ds

)− 1
2
dQs. (28)

as the first block component of the transformed observations. The model of this process is
the following

Qt =
∫ t

0
D(us)Xsds + Ws, (29)

where D(u) � ∑N
n=1 E− 1

2
n (u)D(u)diag en, and Wt is a standard Wiener process of appro-

priate dimensionality.
The quadratic characteristics 〈Q, Q〉 contains essential statistical information which

should be included in the estimation algorithm. This process is a linear transformation of
the estimated MJP state.

It is easy to verify that

F(ut, Xt) �
d〈Q, Q〉s

ds

∣∣∣
s=t+

=
N

∑
n=1

e�n XtEn(ut),

however, result of the direct derivation is a matrix-valued function with the excess dimen-
sionality. All its statistical information is included in the complete preimage of F:

F = F(u, x) F−1
−−→ {en ∈ SN : En(u) = F}.

In [28] we explain in detail how to reduce the “rough” process F to the N-dimensional
“compressed” process Ht, which has the model

Ht = L(ut)Xt, (30)

where L(ut) is an N × N-dimensional matrix-valued function with cádlág components; its
rows are orthogonal and contains 0 or 1 only.

One can rewrite the process Ht as a cumulative sum of the jumps occurred at some
nonrandom (or Ot-predictable) moments τ (the term HD

t ) and one, which accumulates
jumps at the random (totally inaccessible) moments (the term HR

t ):

Ht = L(u0)X0 + ∑
τ�t

ΔL(uτ)Xτ︸ ︷︷ ︸
�HD

t

+
∫ t

0
L(us)dXs︸ ︷︷ ︸
�HR

t

.

The process HD
t represents the second block component of the transformed diffusion

observations. To obtain the third component we must express HR
t through the equivalent

complex of the counting processes Gt = col(G1
t , . . . , GN

t ):

Gt �
∫ t

0
(I − diag Hs−)dHs − HD

t .

The components of the process have the following properties.

1. Each component Gn
t has the martingale representation

Gn
t =

∫ t

0
1Γn(us)Xsds +

∫ t

0
(1 − Ln(us)Xs−)Ln(us)dαu

s , (31)
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where αu
t is the martingale from the state representation (1), Ln(u) � e�n L(u) and

Γn(u) � diag(Ln(u))Λ�(u)(I − diag(Ln(u))).

2. [Gn, Gm]t ≡ 0 for any n �= m, and 〈Gn, Gn〉t =
∫ t

0 1Γn(us)Xsds.

Below we present a stochastic system for the CME X̂t along with its properties.

Proposition 2. The following assertions are true.

1. The CME X̂ is the unique strong solution to the stochastic system

X̂t =
(
(HD

0 )�L(u0)π0

)+
diag(HD

0 )L(u0)π0 +
∫ t

0
Λ�(us)X̂sds +

∫ t

0
k̂sD�

(us)dωs

+
N

∑
n=1

∫ t

0

(
Γn(us)− 1Γn(us)X̂s− I

)
X̂s−
(

1Γn(us)X̂s−
)+

dνn
s

+
∫ t

0
k̂sB�(us)(B(us)X̂s−)+dβ̂s +

∫ t

0
k̂sC�(us)(C(us)X̂s−)+dγ̂s

+ ∑
τ�t

((
(ΔHD

τ )�ΔL(uτ)X̂τ−
)+

diag(ΔHD
τ )L(uτ)− I

)
X̂τ−,

(32)

where
k̂t � diag X̂t − X̂t(X̂t)� = E

{
(X̂t − Xt)(X̂t − Xt)�|Ot+

}
,

ωt �
∫ t

0
(dQs − D(us)X̂sds),

νn
t �

∫ t

0
(dGn

s − 1Γn(us)X̂s−ds), n = 1, N,

β̂t �
∫ t

0
(dYs − B(us)X̂s−ds),

γ̂t �
∫ t

0
(dZs − C(us)X̂s−ds).

2. The estimate of the maximum a posteriori probability (MAP) X̃t = en: n ∈ Argmax
1�m�N

e�m X̂t

minimizes the L1-criterion, i.e., X̃t ∈ Argmin
Xt

E
{
‖Xt − Xt‖1

}
.

3. If En(u) �= Em(u) for any n �= m almost everywhere on [0, t], then X̂t = Xt P-a.s.

The validity of items 1 and 3 in Proposition 2 can be proved by complete analogy
with [28] (Theorem 1, Corollary 1), meanwhile the one of item 2 is proved in [51].

The theoretical assertions above are also meaningful from the practical point of view
for subsequent design of the suboptimal control of MJP state under incomplete information.
First, the CME X̂t represents a solution to some closed finite-dimensional stochastic system,
by contrast with the general case of the optimal filtering problem [37]. Second, the paths of
the CME X̂t usually are piecewise continuous functions with values in Π, meanwhile the
MJP X state trajectories are P-a.s. piecewise constant functions with values in SN . Therefore,
we cannot directly substitute the state X by its estimate X̂, imposing the separation principle
to this control problem. The CME X̂ can be easily transformed into the MAP estimate
X̃ with the paths with the same properties as the ones of X. Assertion 2 of Proposition
indicates that the proposed MAP estimate is also L1-optimal. Third, if the observation
system satisfies the identifiability conditions (see Assertion 3 of Proposition) then the MJP
state can be restored exactly given the indirect noisy observations. This crucial property
gives a chance to reduce the initial control problem with incomplete information to the one
with complete information. Obviously, any numerical realization of the filtering estimate
leads to some approximation errors, nevertheless Assertion 3 allows one to hope that the
small filtering errors cause acceptable control performance.

At the same time, results of Proposition 2 are difficult for the direct application. First,
due to the approximation of the acknowledgment flow (4) by the diffusion model (17), the
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former one is valid and can be effectively applied only for the observation increments over
the time interval of significant length (see Section 3.2). Second, the process Ht, playing
the key role in the estimation, is not observable directly, and represents a result of some
stochastic limit passage since it is based on the quadratic characteristic 〈Q, Q〉. Due to the
boundedness from below of the diffusion observation time increment, direct calculation
of Ht looks impossible. In the next subsection, basing on the time-discretized diffusion
observations we present a special numerical algorithm of the nonlinear filtering together
with its performance characteristics.

3.4. Numerical Realization of Filtering Algorithm

To construct the numerical algorithm of the MJP state filtering given the combination
of both the diffusion and counting observations we consider a time-invariant version of
the observation system (1), (3), (2), (17) given the observations discretized by time with the
time increment h > 0 (tr � rh, r ∈ N):

Xt = X0 +
∫ t

0
AXsds + αt, (33)

Yr =
∫ tr

tr−1

BXsds + (βtr−1 − βtr ), (34)

Zr =
∫ tr

tr−1

CXsds + (γtr−1 − γtr−1), (35)

Qr =
∫ tr

tr−1

DXsds +
∫ tr

tr−1

N

∑
n=1

e�n XsE
1
2
n dWs, (36)

and Or � σ{Yn, Zn, Qn, n � r} is a natural filtration generated by the discretized observations.
An assumption that coefficients A, B, C, D and E are constant, is not too restrictive in

practice because below we will construct the MJP control which will be constant during the
time discretization intervals. Please note that the discretized observations Yr, Zr and Qr
are conditionally independent given FX

tr
∨Or−1 due to the properties of the Wiener-Poisson

canonical space and the result of [50] (Lemma 7.5). Specifically, the distribution of Yr, Zr

and Qr depends on the random vector ηr = col(η1
r , . . . , ηN

r ) =
∫ tr

tr−1
Xsds is a random

vector composed of the occupation times of the state X in each state en during the interval
[tr−1, tr]. Then

• conditional distribution of Yr given FX
tr

∨ Or−1 is the Poisson one with the parame-
ter Bηr,

• conditional distribution of Zr given FX
tr

∨ Or−1 is the Poisson one with the parame-
ter Cηr,

• conditional distribution of Qr given FX
tr

∨ Or−1 is the Gaussian one with the mean
Dηr and covariance matrix ∑N

n=1 ηn
r En.

Below in the presentation we use the following notations:

• A � maxn=1,N |Ann|;
• D � {u = col(u1, . . . , uN) : un � 0, ∑N

n=1 un = h} is an (N − 1)-dimensional simplex
in the space RM; D is a distribution support of the vector υr;

• Π � {π = col(π1, . . . , πN) : πn � 0, ∑N
n=1 πn = 1} is a “probabilistic simplex”

formed by the possible values of π;
• NX

r is a random number of the state Xt transitions, occurred on the interval [tr−1, tr],
• ρk,�,q(du) is a conditional distribution of the vector X�

tr
I{q}(NX

r )υr given Xtr−1 = ek,
i.e., for any G ∈ B(RM) the following equality is true:

E
{

IG(υr)I{q}(NX
r )X�

tr |Xtr−1 = ek

}
=
∫
G

ρk,�,q(du);
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• ‖α‖2
K � α�Kα, 〈α, β〉K � α�Kβ;

• N (q, m, K) � (2π)−M/2det−1/2K exp
{
− 1

2‖y − m)‖2
K−1

}
is an M-dimensional Gaus-

sian probability density function (pdf) with the expectation m and nondegenerate co-
variance matrix K;

• P(n, a) � e−a an

n!
is a Poisson distribution with the parameter a;

• Υk,j,s(y, z, q) �
∫
D

P(y, Bv)P(z, Cv)N (q, Dv,
N

∑
i=1

viEi)ρ
k,j,s(dv).

Below is an assertion introducing the calculation algorithm of the MJP state given the
discretized observations X̂r � E{Xtr |Or}.

Proposition 3. The filtering estimate X̂r can be calculated be the following recursive algorithm

X̂ j
r =

N

∑
n1=1

X̂ n1
r

∞

∑
s1=0

Υn1,j,s1(Yr, Zr, Qr)

N

∑
n2,j2=1

X̂ n2
r

∞

∑
s2=0

Υn2,j2,s2(Yr, Zr, Qr)

, j = 1, N, (37)

and initial condition
X̂0 = π0. (38)

Proof of Proposition 3 can be performed similarly to [28] (Lemma 3).
To construct a numerically realizable algorithm we must restrict the sums both in the

numerator and denominator of (37)

X j
r(S) =

N

∑
n1=1

X n1
r

S

∑
s1=0

Υn1,j,s1(Yr, Zr, Qr)

N

∑
n2,j2=1

X n2
r

S

∑
s2=0

Υn2,j2,s2(Yr, Zr, Qr)

, j = 1, N, (39)

and obtain the analytical approximation of the Sth order.
We present some summands Υ of the low order s:

Υk,j,0(y, z, q) = δkjeAkkhP(y, Bkh)P(y, Ckh)N (q, hDk, hEk),

Υk,j,1(y, z, q) = (1 − δkj)AjkeAjjh

×
∫ h

0
e(Akk−Ajj)vP(y, Bkv + Bj(h − v))P(z, Ckv + Cj(h − v))

× N (q, vDk + (h − v)Dj, vEk + (h − v)Ej)dv,

Υk,j,2(y, z, q)

= ∑
i:i �=k,i �=j

Aik Ajie
Ajjh

∫ h

0

∫ h−vk

0
e(Akk−Aii)vk+(Aii−Ajj)vjP(y, Bkvi + Bivi + Bj(h − vk − vj))

× P(z, Ckvi + Civi + Cj(h − vk − vj))

× N (q, vkDk + viDi + (h − vk − vi)Dj, vkEk + viEi + (h − vk − vi)Ej)dvidvk,

where Dk is the kth column of the matrix D. Other summands are also determined by
the total probability formula and have complicated form. Obviously, the integrals above
cannot be calculated analytically, and we approximate them by some integral sums
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Υ̃k,j,s(y, z, q) �
L

∑
�

P(y, Bv�)P(z, Cv�)N (q, Dv�,
N

∑
i=1

vi
�Ei)�

kj
� , (40)

where {v�}�=1,L ⊂ D is a collection of points, and {�
kj
� }�=1,L are corresponding weights,

such that ∑N
j=1 ∑L

�=1 �
kj
� � 1. Therefore, we calculate the filtering estimate by the recursion

X̃ j
r (S) =

N

∑
n1=1

X̃ n1
r

S

∑
s1=0

Υn1,j,s1(Yr, Zr, Qr)

N

∑
n2,j2=1

X̃ n2
r

S

∑
s2=0

Υn2,j2,s2(Yr, Zr, Qr)

, j = 1, N, (41)

and refer it as the numerical approximation of the Sth order, corresponding to a chosen numerical
integration scheme.

Let us fix a time instant t, and consider the asymptotic performance of approximation (41)
as h → 0. The performance index is supπ∈Π Eπ

{
‖X̃r − X̂r‖1

}
, i.e., an average of the L1-

norm of the filtering error calculated at the step r for the worst initial distribution of
the MJP.

Proposition 4. If the condition

max
k=1,N,(y,z)∈Z2

+

N

∑
j=1

∫
R2

∣∣∣∣∣ S

∑
s=0

Υ̃n1,j,s1(y, z, q)− Υn1,j,s1(y, z, q)

∣∣∣∣∣dq < δ,

holds, then for small enough h

sup
π∈Π

Eπ

{
‖X̃t/h − X̂t/h‖1

}
� 2t

(
2A

(Ah)S

(S + 1)!
+

δ

h

)
. (42)

Proof of Proposition 4 can be performed similarly to [28] (Lemma 4, Theorem 2). The
first term in (42) characterizes the error of the analytical approximation: formula (39) takes
into account at most S possible state transitions occurred during the time discretization
interval [tr−1, tr]. The second term in (42) describes an impact of numerical integration
error to the overall performance of the filtering approximation. We can deduce that the
effective choice of the integration scheme should provide the equal contribution of both
summands in (42).

For the numerical study we choose the analytical approximation of the 1st order
realized by the middle-point scheme:

Υ̃k,j,0(y, z, q) = Υk,j,0(y, z, q),

Υ̃k,j,1(y, z, q) = (1 − δkj)Ajke
h
2 (Ajj+Ajj)hP(y, h

2 (Bk + Bj))P(z, h
2 (C

k + Cj))N (q, h
2 (Dk + Dj), h

2 (Ek + Ej)).

4. State-Based Modification of TCP

In this section, we describe a TCP channel mathematical model we later use for
simulation of some modern TCP versions and their comparison with the state-based
optimal control policy. The model we use here is in general following the one of [52].
The main distinctive characteristic of this model is the channel state allocation: we use
three states to describe the wire channel condition and add one extra state to cover the
issues of the wireless connection. This allocation presents a reasonable trade-off between a
comprehensive connection state model taking into account all possible features (including
the data flows from every channel user, the current packet distribution in all the channel
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hops and buffers’ queues, and signal quality in the wireless channel segment) and the
feasibility of the mathematical modeling.

Thus, we suppose that the link state from a sender to a receiver is described by a
controllable MJP Xt (1) with four possible states:

• e1 is assigned for low channel load,
• e2 is for moderate load,
• e3 is for wired segment congestion,
• e4 is for signal fading in the wireless segment.

The intensity matrix A(u) = ‖Aij(u)‖i,j=1,4 is defined based on the following assump-
tions: the link has a single bottleneck device, which remains the same during the whole
transmission, this bottleneck device uses Random Early Detection (RED) queuing disci-
pline [53], its buffer capacity is Q, and the RED threshold of guaranteed packet rejection is
W ′′ (W ′′ � Q).

We also assume that the wireless connection quality does not dependent on the data
flow, hence the intensities A·4 and A4· corresponding to the transitions from/into the state
e4 are independent of the control us. Furthermore, the direct transitions between the e1 and
e3 without passing through the e2 are assumed impossible, i.e., A13 = A31 ≡ 0.

The controllable components of A(ut) have the form

A21(ut) =

⎧⎨⎩ A21
0 + C21

Ubdp − ut
, if ut < Ubdp,

A, otherwise;
A12(ut) = A12

0 + C12 max(Ubdp − ut, 0);

A32(ut) =

⎧⎨⎩ A32
0 + C32

W ′′ − ut
, if ut < W ′′,

A, otherwise;
A23(ut) = A23

0 + C23 max(W ′′ − ut, 0),

where Ubdp is the control, which corresponds to the bandwidth-delay product (BDP), in
other words—the maximum window size yielding throughput equal to channel bandwidth.
The constant A is a level of intensity which guarantees the state transition during the
forthcoming RTT.

The dependence of Aji(ut) on control ut is straightforward. In the state e1, the number
of packets in the link is less than Ubdp; and in the state e2 the “bottleneck” buffer begins to
fill. The inverse proportionality of A21(ut) on ut and guaranteeing intensity A provides the
increasing probability of e1 → e2 transition as ut approaches to Ubdp and guarantees the
transition when the threshold Ubdp is reached. The constant additive term A21

0 stands for a
chance of the e1 → e2 transition under low control values u < Ubdp, which are probable
due to the external flows. When ut decreases to levels less than Ubdp, the probability of
backward transition e2 → e1 increases linearly due to the constant flow processing rate. The
transition intensities e2 � e3 act the same way, but with a different threshold, namely W ′′.

The conditional intensities of the acknowledgment arrivals λj(u) depend on the
control u and, according to (10), are inversely proportional to the average time between the
acknowledgment arrivals:

λj(u) =
1

mj
τ(u)

.

We assume that if no packets are lost, then during each RTT cycle, the sender receives
back the acknowledgments for all the packets currently being sent into the network; hence
we assume that the following relation is valid:

mj
τ(u) =

mj
V(u)
u

.
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The average RTT for each state mj
V(u) is assumed to be a sum of the following components:

• constant propagation delay, δ0,

• average queuing delay caused by external data, flows mj
V, ext,

• average queuing delay caused by the data flow under control, u · mj
V, sel f .

Summing up the assumptions, we have the following relation for the conditional
intensity of the acknowledgment arrivals:

λj(u) =
u

δ0 + mj
V, ext + umj

V, sel f

. (43)

The counting processes for loss (2) and timeouts (3) can now be defined as thinned
versions of the acknowledgment flow with following conditional intensities:

Bj(u) = Bj
0 + λj(u)Pl(u),

Cj(u) = λj(u)Pj
to.

(44)

Here Pj
to denotes the conditional probabilities of a timeout in the corresponding states.

For the states e1,2,3, which are related to the wired part of the link, we assume that the
only cause for a timeout is a temporary communication hardware fault; and hence the
probabilities for these states are constant and equal to each other: P1

to = P2
to = P3

to. In the
state e4, the timeouts follow the wireless carrier signal fading; hence the probability of a
timeout P4

to is different but still independent of the control u.
The packet loss conditional probabilities, on the contrary, are the functions of the

control u. If the control value is less than the RED threshold u < W ′′, then

P1
l (u) = P0, P2

l (u) = P0 + max
(

Ut − W ′

W ′′ − W ′ (P1 − P0), 0
)

, P3
l (u) = 1, P4

l (Ut) = P4
l ,

where P0 is the probability of a packet loss in the wired segment during its propagation
through the media, W ′ is the lower RED threshold (W ′ < W ′′). If the threshold of guar-
anteed packet loss is exceeded, then the loss is inevitable, thus Pj(u) = 1 for any j, if
u ≥ W ′′.

To conclude the definition of the loss and timeout intensities, it remains to mention
that the additive terms Bj

0 in the loss intensity B(u) stand for the losses caused by the
external flows.

5. Comparative Study with Modern Versions of TCP

We have completely described the observation system (1)–(4) and its parameters’
dependence on the control u. Let Ot � {Ys, Zs, Qs, 0 � s � t} be the natural filtration
generated by the observations available up to the moment t. Generally speaking, any
Ot-predictable nonnegative control Ut is admissible to (1)–(4).

In this section, we present the control processes, which describe the modern versions
of TCP in terms of the presented model of channel state and observations. We also present
here a state-based TCP control modification, which is based on the optimal state filtering
and optimal control strategy. The section will be concluded by a comparative analysis of
the TCP versions’ performance.

In what follows we will assume that the constant values Ubdp, W ′′, δ0 and mj
V, sel f are

selected so as to comply with the link of C = 100 Mbps capacity, propagation delay of
δ0 = 0.1 s, bottleneck queue limit of Q = 100 packets, and MSS = 1000 bytes:

Ubdp =
106 C δ0

8 MSS
= 1250, W ′′ = Ubdp + Q = 1350, mj

V, sel f =
8 MSS
106 C

= 8 · 10−5.
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5.1. AIMD Scheme and TCP Illinois

In [52] we presented an AIMD type control ut policy, which remains the same for the
present channel model:⎧⎪⎪⎨⎪⎪⎩

ut = u0 +
∫ t

0
I[W,Wth

t )(us−)
us−
rs−

ds +
∫ t

0
I[Wth

t ,+∞)(us−)
αs

rs−
ds −

∫ t

0
βsus−dYs +

∫ t

0
(W − us−)dZs,

Wth
t = Wth

0 +
∫ t

0

(
1
2

us− − Wth
s−

)
dYs,

(45)

where

• IS(u) is an indicator function equal to one, if u ∈ S, and zero otherwise,
• W is the minimal window size,
• Wth

t is a threshold actuating congestion avoidance phase,
• rt is the exponential smoothing estimate of RTT,
• αt and βt are Ot-predictable coefficients of additive increase and multiplicative decrease.

The first term in (45) describes the slow start mode, the second and the third stand for
the linear increase and the multiplicative decrease in the congestion avoidance phase, and
the fourth provides the window rollback to the minimal value W and return to the slow
start mode when a timeout event occurs.

In the case αt ≡ 1 and βt ≡ 0.5 Equation (45) represents the New Reno algorithm. The
Illinois concave control policy is defined by convex αt and increasing linear βt functions of

the average queuing delay da =
4
∑

j=1
(mj

V, ext + umj
V, sel f )e

T
j Xt:

αt(da) =

{
αmax if da � d1

κ1
κ2 + da

otherwise,

βt(da) =

⎧⎨⎩
βmin if da � d2
κ3 + κ4da if d2 < da < d3
βmax otherwise,

(46)

The parameters κi and di and other details of the Illinois control scheme can be found
in [6]. It should be noted that the most important parameters are the maximum and
minimum additive increase and multiplicative decrease coefficients, which for the standard
implementation are set to [αmin, αmax] = [0.3, 10], [βmin, βmax] = [0.125, 0.5]. In Figure 2,
we present the simulation results for the Illinois TCP control policy for these standard
parameters. The upper plot presents the channel parameters’ dynamics, including RTT
(in red), losses (black triangles), and timeouts (red crosses). The filling color indicates
the channel states: white for idle, green for moderate load, red for congestion in the
wired segment, and grey for the wireless segment signal fading. The lower plot shows
the control dynamics and the critical thresholds: Ubdp, which corresponds to the channel
bandwidth-delay product and buffer overflow low bound Ubdp + W ′′.

One can notice that by processing only the RTT information, the algorithm succeeds in
the determination of the Ubdp and becomes much more prudent once the bottleneck buffer
starts to fill. This results in long periods of relatively high transmission rates without buffer
overflows and rare losses. Nevertheless, during the intervals, when the channel is idle,
the control values growth speed is insufficient, which results in underuse of the channel
resources and, in the end, in lower average transmission rate.
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Figure 2. TCP channel simulation example for Illinois control algorithm.

5.2. TCP CUBIC

In contrast with TCP Illinois, this version of TCP does not rely on RTT observations
most of the time. Instead, it considers the control value, at which a loss occurred last time,

Wmax
t =

t∫
0

(us− − Wmax
s− ) dYs,

as the highest network use control and tends to form a plateau in the close region to this
point. To that end, it keeps counting the time since the last loss or timeout,

Tloss
t = t −

t∫
0

t dYs −
t∫

0

t dZs,

and sets the control according to a cubic function of Tloss
t forming two regions: a concave

region to reach the last maximum control value of Wmax
t , and then a convex region of

network probing, where the control growth speed becomes higher as the time without loss
increases. Upon the loss event, the control is reduced according to a constant multiplicative
decrease coefficient β, and when a timeout occurs, the control is reset to a minimal window
size W. Summing up, the TCP CUBIC control can be represented as follows:

u(t) = Wmax
t + C

(
Tloss

t −
(

Wmax
t (1 − β)

C

) 1
3
)3

−
t∫

0

βus−dYs +
∫ t

0
(W − us−) dZs, (47)

where C is a constant fixed to determine the aggressiveness of control growth: with higher
C values (for example, C = 4.0), CUBIC tends to be more aggressive, which can be quite
useful in high BDP networks.

In Figure 3, we present the simulation results for the TCP CUBIC control with multi-
plicative decrease coefficient β = 0.9 and scale constant C = 4.0. It should be noted that
this simulation is based on a more precise model of the protocol described in [38] and takes
into account such details as TCP-friendly region and fast convergence heuristics. These
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details were not reflected in Equation (47) to avoid unnecessary complications. As in the
previous Figure, the upper plot presents the channel dynamics (RTT, losses, timeouts, and
state), and the lower plot shows the dynamics of the control.

One can see that TCP CUBIC manages to keep the control close to the desired Ubdp
value, allowing fast recovery after losses. At the same time, the probing phase, which is
symmetrical to the recovery phase, is too aggressive, and the average throughput would
benefit from longer “plateau” periods. Another advantage, which must be mentioned, is
the ability to adjust to dramatic changes in the media: in contrast with TCP Illinois, the
CUBIC protocol keeps the control at low values throughout the whole period of wireless
signal degradation, which results in fewer losses.
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Figure 3. TCP channel simulation example for CUBIC control algorithm.

5.3. TCP Compound

The TCP Compound algorithm tries to benefit both from the loss-based and congestion-
based approach. To that end, the authors enhance the standard AIMD congestion avoidance
scheme with an additional component, which allows faster growth on an idle channel when
standard AIMD control underuses the resources [40]. When the congestion is detected, the
window is adjusted to avoid packet losses. To estimate the congestion, the TCP Compound
scheme compares the estimated number of backlogged packets (bottleneck queue size) dt
with a known threshold value γ. The estimate of the queue size is computed as follows:

dt = ut

(
1 − Vmin

t
Vt

)
,

where Vt is current, and Vmin
t is a minimum registered RTT value.

The entire TCP Compound control scheme can be represented by the following expression:

ut = u0 +
∫ t

0
I[W,Wth

t )(us−)
us−
rs−

ds

+
∫ t

0
I[Wth

t ,+∞)(us−)
(

I[0,γ)(ds−)uκ
t

α

rs−
− I[γ,+∞)(ds−)ζds−

)
ds

−
∫ t

0
βus−dYs +

∫ t

0
(W − us−)dZs,

(48)
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where

• I[W,Wth
t )(us−) is the slow start indicator,

• I[0,γ)(ds−) is the congestion indicators,
• α, β, κ, ζ are tunable protocol parameters.

In (48), the first term describes the slow start mode, the second term reflects the growth
phase and correction upon congestion detection, the third stands for the multiplicative
decrease, and the fourth provides the window rollback and return to the slow start mode
when a timeout event occurs.

In Figure 4, we present the simulation results for the TCP Compound protocol with
standard parameter values: α = β = 0.125, κ = 0.75, ζ = 1.0. The backlog estimate
threshold value for congestion indication is set to γ = 80. The upper plot presents the
channel dynamics (RTT, losses, timeouts, and state), and the lower plot shows the dynamics
of the control (in black) and the estimated backlog size dt (in blue). The figure illustrates
the correction of the control when the backlog size estimate reaches the threshold and high
control values when the bottleneck buffer queue is assumed empty. It should be noted
that TCP Compound, such as the Illinois version, fails to quickly adapt to the wireless
signal degradation, demonstrating high instability and a big number of losses during this
channel state.
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Figure 4. TCP channel simulation example for Compound control algorithm.

5.4. TCP BBR

The TCP BBR algorithm is purely delay-based [54]. It is designed with the idea of
maintaining the total data in the channel equal to the BDP. At this load, a connection runs
with the highest throughput and lowest delay. The BDP value is estimated as a product of
RTprop—round-trip propagation time and BtlBw—bottleneck bandwidth or delivery rate.
An estimate for the propagation time is the minimum registered RTT over a long time:

RTpropt = min{RTTs}, s ∈ [t − WR, t],

where WR typically varies from tens of seconds to minutes. To estimate the delivery rate,
BBR calculates the ratio of the portion of data delivered to the time elapsed from the
delivery start. Since this ratio is calculated for every acknowledgment received, it is natural
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to take the data “inflight” at the moment the packet was sent as a portion and the RTT of
this acknowledgment as the time elapsed from the delivery start. The estimated delivery
rate then is a maximum of such ratios taken over a period WB equal to 6–10 RTTs:

BtlBwt = max
{

u(t − RTTt)

RTTt

}
, s ∈ [t − WB, t].

The main problem of this approach is that the propagation time and the delivery
rate cannot be observed at the same time. Indeed, the bottleneck buffer must be empty
to observe RTT values close to the propagation time and, to observe the capacity of the
channel, it must be overfilled. This problem is solved by two modes of the steady-state
regime: ProbeBW and ProbeRTT. In ProbeBW, the algorithm cycles through eight phases
with the following pacing gain values: pt = (5/4, 3/4, 1, 1, 1, 1, 1, 1). The length of each
phase is equal to the current estimate of the propagation time RTpropt. Thus, the capacity
of the channel is achieved by a periodical increase of the sending rate followed by a rollback
for the queue drain. ProbRTT is turned on when the value of RTpropt is not updated for a
long time. In this mode, the transmission barely stops for a short time to fully drain the
queue. Simulation experiments show that in the present model, the last mode is redundant
since BBR manages to maintain a very precise estimate of the propagation delay spending
the whole time in ProbBW mode. Plus, we excluded from consideration the Startup and
Drain modes since they are usually very short.

Thus, finally, the BBR control is defined as follows:

ut = RTpropt · BtlBwt · pT
t e[(t/RTpropt)% 8 + 1], (49)

where e[k] ∈ R8 is a vector with unity on k-th place and zeros on all others, and % is the
modulo operator.

In Figure 5, we present the simulation results for the TCP BBR protocol. The upper
plot presents the channel dynamics (RTT, losses, timeouts, and state), and the lower plot
shows the dynamics of the control (in black) and the estimate of the BDP control equal to
RTpropt · BtlBwt (in blue). One can notice that this estimate is quite precise, nevertheless,
the channel is congested almost the whole time. This means that the BBR algorithm is too
aggressive for the channel at hand parameters: the bottleneck buffer size is not enough to
accommodate the periodical 25% sending rate increase.
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Figure 5. TCP channel simulation example for BBR control algorithm.

154



Mathematics 2021, 9, 1632

5.5. State-Based TCP

To obtain the state-based TCP control strategy, the optimization problem (6) needs to be
solved for some predefined gains (instantaneous and terminal) and transmission expenses.

It is natural to bind the transmission expense function ξ = (ξ1, . . . , ξ4)T with the
intensity of losses, which we aim to minimize, hence set

ξ j(u) = kjBj(u), (50)

where k1, . . . , k4 are coefficients, which reflect the gravity of losses in particular chan-
nel states.

We take the same instantaneous gain, as in [36]:

φj(u) = − aj

mj
V(u) u

= − aj

δ0 + mj
V, ext + umj

V, sel f

, (51)

where a1, . . . , a4 are coefficients, which define the utility of the traffic, depending on the
channel state.

Analyzing the behavior of the TCP versions described earlier in the present paper,
we may conclude that the most beneficial in terms of the throughput and losses is the
state e2 (moderate load). Hence, it is natural to design the state-based version with the
goal of spending most of the time in this state. Terminal gains ψj, satisfying the condition
max{ψj} = ψ2, would reflect this idea.

In Figure 6 (left), we present a solution to the problem (6) with transmission expenses and
instantaneous gains given by (50)–(51) with k = (10−4, 10, 102, 1)T and a = (100, 100, 1, 100)T .
The terminal gains are ψ = −106 · (2, 1, 2, 4)T , and the right bound of the observation
interval is set to a rather small value of the propagation delay T = δ0 = 0.1 so that the
impact of the terminal gains on the criterion would be more valuable. The controls for the
states e1 (idle), e2 (moderate load), e3 (congestion), e4 (wireless signal fading) are given in
grey, green, red, and black colors, respectively.

One can observe that the optimal control we obtained is almost constant. This is a
very useful property in terms of the scalability of the results. Indeed, the control strategy
equal to the mean of the optimal controls

ut =
1
T

T∫
0

us ds, (52)

does not depend on the interval, where the original optimization problem (6) was defined.
In Figure 6 (right), we present three plots, which illustrate the behavior of state

occupation probabilities of the channel Xt with constant controls (52) given three different
initial states: X0 = e1, X0 = e2, X0 = e3. The color scheme is the same: grey, green, red, and
black lines show the occupation probabilities for respectively e1, e2, e3, e4 states. With solid
lines, we show the probabilities obtained as a result of the Kolmogorov equation solution,
and with dotted lines, we show the same probabilities obtained through the Monte-Carlo
sampling (with 1000 trajectories). One can see that even on a bigger time interval (T = 5 s),
the goal of the state-based control is achieved: from any given initial condition, the channel
manages to revert to (or maintain) the most favorable state e2.

In Figure 7, we present the simulation results for the state-based control policy. The
upper plot presents the channel dynamics (RTT, losses, timeouts, and state), and the lower
plot shows the optimal channel estimate X̂t in the form of a stack plot: the height of
the white/green/red/grey area at a certain point of time corresponds to the conditional
probability of state idle/moderate load/congestion/wireless signal fading. This plot
demonstrates that the quality of the estimates is good and that the hidden channel state
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may be adequately revealed based on the available information. In the lower plot of
Figure 7, we also show the dynamic of the control

ût = uT
t X̂t,

where ut is given by (52). One can see that even on a larger interval, the main property of
the proposed control strategy remains: the channel spends most of the time in the state e2,
which results in better throughput and fewer losses.

bdp

bdp +
′′

i t i t

Figure 6. State-based control (left) and state occupation probabilities for three initial states: X0 = e1, X0 = e2, X0 = e3

(right).
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Figure 7. TCP channel simulation example for state-based control algorithm.

5.6. Comparison

To compare the performance of the TCP control schemes discussed above, we use
statistical modeling. The performance metrics, namely the average throughput (a measure
of bandwidth usage effectiveness) and the loss percentage (a measure of predisposition
to congestions, which affect other users), are calculated on samples long enough to make
the variance negligible. This way is preferable in comparison with taking the average on
a bunch of short-term samples since it diminishes the effect of transient phases: initial
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probing for available channel characteristics, which is implemented differently but is an
essential part of all TCP protocol versions.

On samples of 106 seconds, we compare the state-based control with TCP Illinois, CU-
BIC, Compound, and BBR versions. To make the comparison fairer, we variate, where
available, the parameters of TCP control algorithms to achieve better performance. For
TCP Cubic, we take three values of multiplicative decrease coefficient β ∈ {0.7, 0.8, 0.9};
for TCP Compound, we consider nine values of the backlog estimate threshold
γ ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}. Other parameters of the protocol are the same as they
were defined in Sections 5.2 and 5.3 since they have little or negative effect on the performance.

For the state-based version described in Section 5.5, one can tune the protocol be-
havior by choosing different optimization criteria (6). Nevertheless, since, in our case,
the optimal control is constant, instead of the variation of the coefficients of the transmis-
sion expenses (50) and instantaneous gain (51), we can directly manipulate these constant
values assigned for the channel states. The experiments show that changing controls for
states e1, e2, e3, which correspond to the wired part of the transmission channel, makes the
performance worse. At the same time, the variation of the control for the state e4 (wireless
signal fading) can bring value; hence we consider four cases: u4

t ∈ {20, 50, 100, 200}.
The simulation results are summarized in Figure 8, where we present the average

throughput and loss percentage and are detailed in Table 1, where one can also find the
control algorithm parameters and state occupation times.

One can immediately observe the same occupation time value for the state e4, which
is an indirect indicator of the sufficiency of the chosen simulation sample length: since the
transition to and from the state of wireless signal fading does not depend on the control
values, the limit probability for the corresponding state should be the same.

The highest occupation time for the state e2 of moderate channel load is demonstrated
by the state-based control. In addition, it can be confirmed that this allows this control
algorithm to demonstrate better performance: for the case of u4

t = 20, the losses are
minimal, and the average throughput is second best. It should be noted that the best
throughput value demonstrated by the BBR protocol is only possible at the cost of huge
losses. This is a characteristic feature of this control algorithm on shallow buffers [55]:
it is too aggressive for a channel with chosen characteristics, and a small buffer cannot
accommodate frequent 25% speed jumps.

The last thing, which is worth mentioning, is the ability of the state-based protocol to
be tuned specifically for the cases of wireless channel issues. Depending on the application,
it may try to maintain the maximal possible transmission rate at a cost of huge losses, or,
vice versa, drop the speed and wait for the connection to restore to the full speed.
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Figure 8. Performance of TCP control versions.
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Table 1. Performance metrics.

Protocol Parameter Throughput % loss e1 e2 e3 e4

Illinois 63.97 0.011 15.3% 37.7% 24.8% 22.2%

CUBIC β = 0.7 59.85 0.005 25.7% 31.2% 20.9% 22.2%
CUBIC β = 0.8 63.99 0.006 17.7% 30.8% 29.3% 22.2%
CUBIC β = 0.9 68.74 0.007 8.9% 24.2% 44.7% 22.2%

Compound γ = 10 61.81 0.021 14.3% 42.6% 20.9% 22.2%
Compound γ = 20 65.63 0.019 10.7% 43.4% 23.7% 22.2%
Compound γ = 30 66.61 0.019 9.6% 39.9% 28.3% 22.2%
Compound γ = 40 67.02 0.021 9.0% 31.1% 37.7% 22.2%
Compound γ = 50 68.08 0.022 8.5% 26.8% 42.5% 22.2%
Compound γ = 60 68.63 0.022 8.3% 24.1% 45.4% 22.2%
Compound γ = 70 68.68 0.023 8.3% 22.8% 46.7% 22.2%
Compound γ = 80 68.76 0.024 8.3% 22.9% 46.6% 22.2%
Compound γ = 90 68.77 0.024 8.3% 22.8% 46.7% 22.2%

BBR 88.65 1.219 0.7% 8.2% 68.9% 22.2%

State-based u4
t = 20 76.15 0.004 1.9% 74.2% 1.7% 22.2%

State-based u4
t = 50 76.68 0.007 1.8% 74.3% 1.7% 22.2%

State-based u4
t = 100 77.64 0.012 1.7% 74.4% 1.7% 22.2%

State-based u4
t = 200 79.29 0.022 1.6% 74.5% 1.7% 22.2%

6. Conclusions

The class of controllable Markov jump processes equipped by the stochastic analysis
framework represents an effective tool for the description of a TCP governed communica-
tion connection. The hidden channel state is described by a Markov jump process with a
finite-state space, characterizing both the current channel load and physical “health status”.
The state equation admits both to include various types of existing congestion control
algorithms (Illinois, CUBIC, Compound, BBR, etc.) and to incorporate some novelties.

The available observations represent the Markov jump processes, namely the Cox
processes of the packet losses and timeouts and compound Poisson processes of the packet
reception acknowledgments.

The available mathematical framework admits designing the complete technological
chain of the TCP congestion control optimization, namely:

• to describe properly the congestion control problem as the stochastic control one,
• to solve the problem above in the case of complete information under the admissible

controls with geometric constraints,
• to simplify the mathematical model of available observations, replacing the high-

frequency packet acknowledgments flow by its diffusion limit,
• to solve the connection state filtering by the available observations and obtain high-

precision state estimates,
• to design effective numerical algorithms for the filtering and control problems solution,
• to apply the separation principle and the loop of congestion control synthesis, using

the connection state estimates instead of their exact values.

The result of this optimization represents the proposed state-based version of TCP.
The paper contains a comparative analysis of the proposed algorithm against the other
contemporary TCP versions and demonstrates its advantages.

The potential of the controllable Markov jump processes for the description of the
transport and applied layer communication protocols is far from being exhausted. In
perspective, one can use it both for the enhancement of the existing protocols (see, e.g.,
multi-path TCP [56]) and for the development of new ones (see, e.g., “TCP-free” protocols
such as QUIC [57]).
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In conclusion, we should also note that the mathematical potential of Markov chains/
Markov jump processes allows designing complete technological chains “mathematical
model-properly formulated mathematical problem-theoretical solution-efficient numerical
algorithm” to solve many applied problems of the analysis, estimation, and control in
such areas as biology [58–60], epidemiology [61–63], inventory control [64], mathematical
finance [65], insurance [66,67], etc.
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Abbreviations

The following abbreviations are used in this manuscript:
BBR Bottleneck Bandwidth and RTT
BDP bandwidth-delay product
CLTRRP central limit theorem
CLTRRP central limit theorem for renewal-reward processes
CME conditional mathematical expectation
CPP compound Poisson process
cwnd congestion window size
MAP maximum a posteriori probability
MJP Markov jump process
pdf probability density function
RHS right-hand side
RTO retransmission timeout
RTT round-trip time
TCP Transmission Control Protocol
TVD the total variation distance
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Abstract: In basketball, the offensive movements on both strong and weak sides and tactical behavior
play major roles in the effectiveness of a team’s offense. In the literature, studies are mostly focused
on offensive actions, such as ball screens on the strong side. In the present paper, for the first time a
second-order Markov model is defined to evaluate players’ interactions on the weak side, particularly
for exploring the effectiveness of tactical structures and off-ball screens regarding the final outcome.
The sample consisted of 1170 possessions of the FIBA Basketball Champions League 2018–2019. The
variables of interest were the type of screen on the weak side, the finishing move, and the outcome of
the shot. The model incorporates partial non-homogeneity according to the time of the execution
(0–24′′) and the quarter of playtime, and it is conditioned on the off-ball screen type. Regarding the
overall performance, the results indicated that the outcome of each possession was influenced not
only by the type of the executed shot, but also by the specific type of screen that took place earlier on
the weak side of the offense. Thus, the proposed model could operate as an advisory tool for the
coach’s strategic plans.

Keywords: basketball; Markov chain; second order; off-ball screens; performance

1. Introduction

Basketball is a team sport that is constantly evolving due to the changes in regulations,
the faster pace, the increasing physical abilities of the players, and the upgrading of training
methods. Offensive movements and players’ tactical cooperation play major roles in both
individual and team performance concerning offense [1,2]. The most frequent offensive
movement between two players on the strong side is the ball screen. Ball screens are
important coordinated movements used in offense, providing enhanced strategy on the
court [3]. During the action of ball screen, one player is the screener, who blocks the
defensive movements of the opponents from an appropriate area, and the other is the ball
handler, who creates opportunities by either passing to the screener-cutter (roll or pop out
to the basket) or becoming the cutter by executing a shot himself [4,5]. Previous studies
have indicated that the effectiveness of the screen is affected by time-related characteristics,
such as the offense’s remaining time, the type of screen and the area of execution [1]. In
addition, coordinated movements on the weak side are also extremely important for the
overall offensive performance of each team. According to previous findings, the most
common offensive tactics used on the weak side are the off-ball screens [6]. The continuous
movements and screen types on the weak side are crucial factors in allowing advantageous
positions while executing the shots. Previous results in NCAA basketball league have
shown that the winning teams had approximately 11 off-ball screens less than the losing
teams [7].

Statistical and stochastic modelling has already been applied to model performance in
basketball. The most common approach is to apply linear or generalized linear regression
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models to box-score data, while considering each individual player’s statistics and overall
team statistics [8]. Furthermore, researchers have applied quantile regression methods,
which can provide more specific descriptions of the relationships between key performance
indicators and the outcome of a basketball game compared to multiple regression [9]. These
approaches lack the detail of the evolution of the match, as they mainly focus on overall
performance. Other studies have used discriminant analysis to obtain the most dominant
factors that could potentially lead a team to victory in both the Basketball World Cup and
domestic leagues [10–12]. Play-by-play data have more recently been included in basketball
research and expanded the traditional use of summary statistics of tournaments. Such data
can be used for more detailed illustrations of the evolution of basketball matches [13].

Markov models are useful for modelling play-by-play data, as they effectively describe
the evolution of future successive possession by each of the two competing teams. One
of the earliest attempts was the application of a Markov chain with state space consisting
of the team that had the possession, how the possession was taken, and the points scored
during the previous possession. This model could derive the progression of the basketball
match over time [14]. In NCAA, a combination of logistic regression and Markov modelling
has been used to evaluate the rankings of the teams and predict the final standings of
the tournament [15]. Furthermore, researchers have applied a Markov model to simulate
a basketball match in the NBA and forecast the outcome of the match and the points
scored, based on the transition matrix [13]. This model captured the non-homogeneity of
a basketball match, which was mainly observed in the first and last minutes of playtime,
and provided a more detailed state space, including time, the difference in points and
characteristics of the teams. Basketball formations also play a crucial role in the overall
performance of a team, as different positions exhibit different characteristics and should
optimally cooperate with the rest of the team. Markov chain modelling has been used
to compare the offensive and defensive performances of different formations, and the
performance of these formations over time [16]. Finally, Markov chains have been used as
modelling tools in various other domains, such as manpower planning, finance, healthcare,
biology, and others [17–28].

The class of high-order Markov chains is an essential stochastic tool, which fits more
adequately when the phenomena under investigation incorporate longer dependencies.
One of the earliest studies with high-order Markov chains applied them in manpower
systems, and they presented a considerably better fit compared to first-order Markov
models [29]. A major problem of high-order Markov chains is the great number of the
parameters that must be estimated, which increases geometrically according to the order
of the model. Raftery, in 1985, was the first to propose a high-order Markov model,
called the mixture transition distribution (MTD) model, where each transition probability
is a weighted linear combination of the previous transition probabilities [30]. In this
formulation, one can estimate a smaller number of parameters by solving a linear system,
as in the well-known Yule–Walker system of equations found in time-series analysis.
The limiting distribution of high-order Markov chains was studied in [31]. Ching and
his colleagues extended Raftery’s model by introducing variability into the transition
probability matrices, and proved that, given some mild conditions, the proposed model
has a stationary distribution [32]. More recently, in the field of the mixture transition
probability models for high-order Markov chains, the G-inhomogeneous Markov system
was introduced, and its asymptotic behavior, under assumptions easily met in practice, was
studied [33]. Applications of high-order Markov chains can be found in various domains,
such as DNA analysis [34,35], analysis of wind speed [36], and manpower planning [29].

To our knowledge, there exist limited studies concerning basketball screens on the
weak side of the court and their influences on a game’s outcome. The purpose of the
present study was to develop a second-order Markov modelling framework that would
evaluate the characteristics of off-ball screens that positively affect the finishing move and
the outcome of the offensive movement, thus improving the performance of the team.
Apart from the overall performance, the aim of the current paper is to examine how time,
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expressed either as the quarter of play or as the time clock (0–24 s), could influence the
transition probabilities from screens and finishing moves to outcomes. Section 2 presents
the main methodological tools adopted in this paper. More specifically, Section 2.1 presents
the theoretical background and definitions of high-order Markov chains. Section 2.2
presents the description of the data and the measured variables, embeds the second-order
Markov theory in the basketball context, where the state space and the basic parameters of
the Markov modelling are provided. Section 3 provides the results of the analysis. Section 4
discusses the obtained results from a basketball viewpoint and finally, the conclusions are
provided in Section 5.

2. Modelling Framework

2.1. Second-Order Markov Modelling

A first-order Markov chain {Xn}, n = 0, 1, . . . , with state space V = {1, 2, . . . , m} is a
discrete stochastic process, in which the transition to the next state is governed only by the
current state of the process and it is independent of the past states. This property, called
Markovian, could be written as

P(Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j|Xn = i) = pij(n),

where i, j, i0, . . . , in−1 ∈ V and
m
∑

i=1
pij(n) = 1, pij(n) ≥ 0. The matrix P(n), which contains

the probabilities pij(n) is called the transition probability matrix. If the probabilities pij(n)
are independent of time, i.e., pij(n) = pij, ∀ n ∈ N, then the Markov chain is called
time homogeneous. If we consider a first-order Markov chain, then the k-order Markov chain
(Xn) with state space S = {1, 2, . . . , M}, where the states of S are k-tuples of the elements
of V, is a discrete stochastic process, for which the k-order Markovian property holds:

P(Xn+1 = j|Xn = i, . . . , X0 = i0) = P(Xn+1 = j|Xn = i, . . . , Xn−k+1 = in−k+1),

and the number of states is equal to M = (m − 1)mk. In general, the transition probability
matrix of the high-order Markov chain will contain many zero cells, as it is impossible to
transition to states where the past observations do not overlap. To present the transition
probabilities in a more elegant way, we can use the reduced transition probability matrix,
which contains only the non-zero probabilities [37]. For example, the reduced transition
probability matrix for a second-order Markov chain with state space S = {1, 2} is presented
in Table 1. Note that in a second-order Markov chain, the subscript of the probabilities
contain three states, where the first two refer to past states and the last one to the next state.

Table 1. Transition probability matrix of a second-order two-state Markov chain in reduced form.

Xt

Xt−2 Xt−1 1 2

1 1 p111 p112
2 1 p211 p212
1 2 p121 p122
2 2 p221 p222

By using this technique, we can transform any Markov chain of order n to a first-order
model, by appropriately changing the state space and keeping all the n-tuples. The high-
order Markov chains are, in general, more efficient as they acquire memory and can capture
longer dependencies compared to the first order; however, the number of parameters
increases with geometric growth with respect to the order. This leads to computational
problems while estimating all the parameters. Some alternative specifications of the n-
order model have been proposed, which reduce the set of parameters by applying linear
dependencies between the n-step probabilities [30]. These MTD models are, in general,
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more practical to estimate, however the assumption of dependent transition probabilities
may not be necessary, especially when we are dealing with short-term correlations. In the
basketball context, the outcome of each possession could be influenced by two preceding
events, namely, the type of screen on the weak side of the court and the finishing action.
Thus, a second-order Markov chain could be more feasible for estimation, as the number
of varying parameters is reasonable for direct estimations of the transition probabilities.
Hence, the model could examine the relationship between those past movements and the
final outcome of the offense. In this scenario, the transition probabilities pkij(n) denote
the probability that the Markov chain will transition to state j, while currently it is at state
i at time n and the previous state was k. With inclusion of the second-order transition
probabilities, we can arrange the non-homogeneous second-order transition matrix P(n),
which is the basic parameter of the process. The maximum likelihood estimates (MLE) for
the transition probabilities of a second-order Markov chain are given by

p̂kij(n) =
N(k, i(n) → j)

∑x∈M N(k, i(n) → x)
,

where N(k, i(n) → j) denotes the number of transitions from the pair (k, i) to state j, starting
from the position n. Please note that if we assume that the transition probabilities are time-
invariant, that is P(n) = P, then the MLE estimates for the transition probabilities are
given by

p̂kij =
N(k, i → j)

∑x∈M N(k, i → x)
,

where (k, i → j) denotes the number of transitions from the pair (k, i) to state j.

2.2. Basketball Modelling

In the context of basketball, assume that {Xn} is a discrete first-order Markov chain
that denotes the current event taking place during the offense. The events that happen
are the screen type (TS), the finishing move type (TF) and the outcome (O). Hence, the
process takes values in the three-dimensional state space, which is V = {TS, TF, O}. For
example, consider the scenario where a team obtains possession and screens outside the
paint with a staggered screen and the player that gets the ball shoots from inside the paint
with a lay-up and scores a 2-pt shot; then, the associated transitions of this scenario will be,
“Staggered screen outside the paint, 0, 0 → 0, Lay-up, 0 → 0,0, Successful 2-pt shot”.

To model the successive events during each offense, we have used a sample of 1170
possessions by 16 competing teams of the FIBA Basketball Champions League 2018–2019.
The recordings of the possessions were made using the “SportScout” video-analysis soft-
ware. The possessions were observed by three assistant coaches, with at least 5 years of
experience in professional basketball. Cohen’s kappa (κ) correlation coefficient was used to
assess the inter-rater reliability. The values obtained displayed a high degree of agreement
(κmin = 0.91). For each possession, the events were recorded, as well as the time of the shot
clock (T) and the quarter of playtime (Q1–Q4). The levels of each of the recorded variables
are presented in Table 2. The possible outcomes consisted of successful and unsuccessful 2-
and 3-pt shots and possession change, which includes turnovers, steals, blocks, offensive
fouls, and the violation of the 24 s duration of offense.

The screen types were defined using standard basketball terminology. More specifi-
cally, two consecutive screens for a player, in the same direction away from the ball were
defined as a staggered screen. A flare screen was defined as a screen set at the elbow of the
free throw line where the player fades out on the weak side. Screen the screener occurs
when an offensive player sets a screen and, at the same time, receives a screen from a
teammate. To pass on the side and set a screen for a player in the opposite direction was
described as a screen away. Down screen is a screen where an offensive player sets himself
in a position away from the ball. Back screen occurs when an offensive player stands
behind the defensive player with his back toward the basket. Single- and double-staggered
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screens were combined into one category, as well as the single- and double- high-cross
screens. Examples of screen types under consideration are presented in Figure 1.

Table 2. Recorded variables, levels, and coding indices.

Variables Levels Level Coding

Type of screen (TS) Staggered screen TS1
Flare screen TS2
Screen the screener TS3
Back screen TS4
Down screen TS5
High cross screen TS6
Screen away TS7

Type of finishing move (TF) Dunk TF1
Lay-up TF2
2-pt shot TF3
3-pt shot TF4
None TF5

Outcome (O) Successful 2-pt shot O1
Missed 2-pt shot O2
Successful 3-pt shot O3
Missed 3-pt shot O4
Possession change O5

Time (T) 0–8 s T1
8–24 s T2

Quarter (Q) First Quarter Q1
Second Quarter Q2
Third Quarter Q3
Fourth Quarter Q4

Figure 1. Execution of indicative offensive screens, back screens (top left), staggered screens
(top right), flare screens (bottom left) and screen away (bottom right).

We shall note here that not all transitions were observed, for example if the finishing
move was a middle-range shot (2-pt), the only possible outcomes would be either a suc-
cessful or unsuccessful 2-pt shot. For the first-order Markov chain, the possible transitions
between states are presented in Table 3. Apparently, the Markov chain exhibits periodic
behavior with period d = 3, as each screen is always followed by a finishing move and each
finishing move is only followed by the outcome of the possession.
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Table 3. Possible transitions between the states in the first-order Markov chain.

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TF1 TF2 TF3 TF4 TF5 O1 O2 O3 O4 O5

TS1 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS2 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS3 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS4 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS5 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS6 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS7 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TF1 0 0 0 0 0 0 0 0 0 0 0 0 X X 0 0 X

TF2 0 0 0 0 0 0 0 0 0 0 0 0 X X 0 0 X

TF3 0 0 0 0 0 0 0 0 0 0 0 0 X X 0 0 X

TF4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X

TF5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X

O1 X X X X X X X 0 0 0 0 0 0 0 0 0 0

O2 X X X X X X X 0 0 0 0 0 0 0 0 0 0

O3 X X X X X X X 0 0 0 0 0 0 0 0 0 0

O4 X X X X X X X 0 0 0 0 0 0 0 0 0 0

O5 X X X X X X X 0 0 0 0 0 0 0 0 0 0

TS: Type of screen, TF: Type of finishing move, O: Outcome, X: Non-zero probability.

It is of interest to examine whether the process {Xn} incorporates memory, i.e., a
higher-order Markov model would provide a more adequate fit. In relation to basketball,
a coach may assume that the outcome of a possession does not only depend on the type
of the executed shot, but on the previous characteristics of the phase, such as the type of
screen, as it could probably alter the evolution of the possession and provide more space
and freedom for a well-executed shot. Hence, we would like to test the null hypothesis
that the process is of order r = 1 versus the alternative hypothesis, r = 2. For testing this
hypothesis, we used the likelihood ratio test (LRT). The likelihood ratio (LR) is given by

LR = −2(LL1 − LL2),

where LL1 and LL2 denote the log-likelihood of models of order 1 and order 2, respectively.
The log-likelihood ratio is an essential tool for the comparison of two competing Markov
models [38] and can be used to evaluate well-known goodness-of-fit metrics, such as the
AIC and BIC [39]. The likelihood ratio asymptotically follows a chi-squared distribution
with degrees of freedom (df) equal to the difference of degrees of freedom of the two
models, thus it can provide a p-value that can lead to the rejection of the null hypothesis,
if it is smaller than a predefined cut-off value α (commonly α is set to 0.05). Adopting
the notations of a previous work, where the authors assessed the order of a Markov chain
applied in DNA sequences [40], one can formulate the likelihood ratio for two competing
Markov models by

LR = −2

(
∑

a2,a3

na2,a3 log
(

na2,a3

na2

)
− ∑

a1,a2,a3

na1,a2,a3 log
(

na1,a2,a3

na1a2

))
,

where

na1,a2,a3 =
n−2

∑
k=1

I(Xk = a1, Xk+1 = a2, Xk+2 = a3),
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na2,a3 =
n−1

∑
k=1

I(Xk = a2, Xk+1 = a3),

denote the number of observed triplets and pairs of a1, a2, a3 ε S, respectively. Also, we note
that the ratios

na2,a3
na2

and
na1,a2,a3

na1a2
are the empirical estimators of the transition probabilities,

e.g., p̂a2,a3 and p̂a1,a2,a3 , respectively. The LR could be simplified as

LR = −2

(
∑

a2,a3

na2,a3 log( p̂a2,a3)− ∑
a1,a2,a3

na1,a2,a3 log( p̂a1,a2,a3)

)
.

In general, a Markov chain of order r with state space S has (|S| − 1)|S|r varying
parameters. However, in our case, the number of varying parameters would be less, since
in the basketball context the transition probability matrix prohibited some transitions. For
example, when the offensive player shoots a 3-pt shot, the possible transitions would not
include any other outcome, apart from a successful or missed 3-pt shot. More specifically,
the numbers of estimated transition probabilities were 82 and 354 for the first- and second-
order Markov chain, respectively. The likelihood ratio value was calculated equal to
395.242, which resulted in p < 0.001, therefore the likelihood ratio test indicated to reject
the null hypothesis, in favor of r = 2.

The results of the significant relationships between the three components (screen
type, finishing move and outcome) lead to establishing a model that includes second-
order dependencies, therefore a second-order Markov chain is proposed to study the
effect of screen type and finishing move on the outcome of the possession. The state
space S = {(TS, TF), (TF, O), (O, TS)} of the second-order Markov chain consists of the
ordered pairs of events that belong in the state-space V of the first-order Markov chain. The
transition probabilities are presented in Table 4, in reduced form. Several considerations
were made regarding the time, as a parameter that influences the frequency of specific
off-ball screens and outcomes. First, the off-ball screen possessions were designated into
two categories, 0–8 s and 8–24 s, according to the shot clock time at the time of the finishing
move. For each subsample, the transition probabilities were estimated and the asymptotic
probability vectors were also estimated. Second, we differentiated the offensive movements
between the first three quarters and the last quarter of the game, where in the last quarter,
as the pace of the game increases, the losing team can make a comeback.

Table 4. Transition probability matrix of the second-order Markov chain in reduced form.

O (Xt)

TS (Xt−2) TF (Xt−1) O1 O2 . . . O5

TS1 TF1 pTS1 TF1 O1 pTS1 TF1 O2 . . . pTS1 TF1 O5
TS2 TF1 pTS2 TF1 O1 pTS2 TF1 O2 . . . pTS2 TF1 O5
TS3 TF1 pTS3 TF1 O1 pTS3 TF1 O2 . . . pTS3 TF1 O5
TS4 TF1 pTS4 TF1 O1 pTS4 TF1 O2 . . . pTS4 TF1 O5
TS5 TF1 pTS5 TF1 O1 pTS5 TF1 O2 . . . pTS5 TF1 O5
TS6 TF1 pTS6 TF1 O1 pTS6 TF1 O2 . . . pTS6 TF1 O5
TS7 TF1 pTS7 TF1 O1 pTS7 TF1 O2 . . . pTS7 TF1 O5
TS1 TF2 pTS1 TF2 O1 pTS1 TF2 O2 . . . pTS1 TF2 O5
TS2 TF2 pTS2 TF2 O1 pTS2 TF2 O2 . . . pTS2 TF2 O5
TS3 TF2 pTS3 TF2 O1 pTS3 TF2 O2 . . . pTS3 TF2 O5
TS4 TF2 pTS4 TF2 O1 pTS4 TF2 O2 . . . pTS4 TF2 O5
TS5 TF2 pTS5 TF2 O1 pTS5 TF2 O2 . . . pTS5 TF2 O5
TS6 TF2 pTS6 TF2 O1 pTS6 TF2 O2 . . . pTS6 TF2 O5
TS7 TF2 pTS7 TF2 O1 pTS7 TF2 O2 . . . pTS7 TF2 O5

...
...

...
... . . . ...

TS1 TF5 pTS1 TF5 O1 pTS1 TF5 O2 . . . pTS1 TF5 O5
TS2 TF5 pTS2 TF5 O1 pTS2 TF5 O2 . . . pTS2 TF5 O5
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Table 4. Cont.

O (Xt)

TS (Xt−2) TF (Xt−1) O1 O2 . . . O5

TS3 TF5 pTS3 TF5 O1 pTS3 TF5 O2 . . . pTS3 TF5 O5
TS4 TF5 pTS4 TF5 O1 pTS4 TF5 O2 . . . pTS4 TF5 O5
TS5 TF5 pTS5 TF5 O1 pTS5 TF5 O2 . . . pTS5 TF5 O5
TS6 TF5 pTS6 TF5 O1 pTS6 TF5 O2 . . . pTS6 TF5 O5
TS7 TF5 pTS7 TF5 O1 pTS7 TF5 O2 . . . pTS7 TF5 O5

3. Results

3.1. Overall Performance

The screens with the highest frequency were staggered screens (41%), followed by flare
screens (15%). Furthermore, offensive players decided to execute their offense by using 3-pt
shots (57%), followed by making use of 2-pt shots (22%); conversely, the lay-up frequency
appeared lower (10%). The estimated transition probabilities of the first-order Markov chain
showed that, on average, the probability of a successful outcome was less when compared
to a missed attempt. Except for dunks, where the success was assured, 2-pt shots showed
the highest probability of success (p = 0.48), followed by 3-pt shots (p = 0.41) and lay-ups
(p = 0.35). Lay-ups also showed the highest probability of a possession change, caused by a
block, turnover, or foul (p = 0.27). Table 5 presents the second-order transition probabilities
between finishing moves and successful 2- or 3-point shots, conditional on screen type.
Schematically, Figure 2 visualizes the relationship between the pairs: screen type/finishing
move and screen type/outcome. Lay-ups were mainly enhanced by back screens, as it was
found that the succession of back screens and lay-ups results in 0.78 probability of scoring
a 2-pt shot. Most 2-pt shots were successfully executed, when the preceding off-ball screen
was flare, staggered or down screen. Concerning 3-pt shots, the two types of screens where
the outcome was optimal, were the high-cross and screen the screener.

Table 5. Overall transition probability estimates between finishing moves and screens to successful shots.

Screen Type (Xt−2) Finishing Move (Xt−1) Successful Shot (Xt)

Staggered Lay-up 0.27
Flare 1 Lay-up 0.17
Screen the screener Lay-up 0.44
Back screen Lay-up 0.78
Down screen Lay-up 0.45
High cross Lay-up 0.47
Screen away Lay-up 0.15
Staggered 2-pt shot 0.51
Flare 1 2-pt shot 0.56
Screen the screener 2-pt shot 0.30
Back screen 2-pt shot 0.47
Down screen 2-pt shot 0.50
High cross 2-pt shot 0.39
Screen away 2-pt shot 0.48
Staggered 3-pt shot 0.41
Flare 1 3-pt shot 0.34
Flare 2 3-pt shot 0.33
Screen the screener 3-pt shot 0.52
Back screen 3-pt shot 0.29
Down screen 3-pt shot 0.42
High cross 3-pt shot 0.67
Screen away 3-pt shot 0.40

1: inside the paint, 2: perimeter area.
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Figure 2. Heatmap of the relationship between screen type/finishing move and screen type/outcome.

3.2. Time Comparison

Table 6 presents the transition probabilities of the second-order Markov chain, that
were estimated separately for the outcomes that took place in the first eight seconds of the
possession and the last sixteen seconds of the possession. Screen the screener enhanced
both 2- and 3-pt shots during the 0–8 s compared to the last seconds of the possession.
High-cross screens were effectively beneficial for 3-pt shots during the interval 0–8 s,
on the other hand screen-away was associated with well-executed 3-pt shots in the last
seconds of the possession. Table 7 presents the comparison of the successful outcomes
between the first to third and fourth quarters of playtime. In general, in the last quarter,
the efficiency of the most frequently used screens was elevated, as the probabilities to
successfully execute a shot were greater compared to the first three quarters. Flare screens
inside the perimeter area and high-cross screen in the last quarter, according to our data,
guaranteed the outcome of a 2- and 3-pt shots, respectively.

Table 6. Transition probabilities between finishing moves and screens to successful shots.

Successful Outcome (Xt)

Screen Type (Xt−2) Finishing Move (Xt−1) T1 T2

Down screen Lay-up 0.50 0.43
Staggered 2-pt shot 0.58 0.47
Flare 2-pt shot 0.33 0.50
Screen the screener 2-pt shot 1.00 0.67
Back screen 2-pt shot 0.36 0.56
Down screen 2-pt shot 0.66 0.47
Screen away 2-pt shot 0.55 0.42
Staggered 3-pt shot 0.56 0.38
Flare 1 3-pt shot 0.35 0.33
Screen the screener 3-pt shot 0.77 0.36
Down screen 3-pt shot 0.52 0.37
High cross 3-pt shot 1.00 0.66
Screen away 3-pt shot 0.17 0.44

1: inside the paint.

The asymptotic probabilities of the most-used pairs of screens/finishing moves and
finishing moves/outcomes are presented in Table 8. Regarding screens and finishing moves,
the most frequent pairs in the court were staggered screens followed by 3-pt shots and flare
screens with 3-pt shots. Concerning finishing moves and outcomes, most 3-pt shots were
unsuccessful, while the successful and missed 2-pt shots had the same frequency.
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Table 7. Comparison of the probability estimates between finishing moves and screens to successful
outcomes in the first three vs. last quarter.

Successful Outcome (Xt)

Screen Type (Xt−2) Finishing Move (Xt−1) Q1–Q3 Q4

Staggered Lay-up 0.30 0.20
Down screen Lay-up 0.20 0.50
Staggered 2-pt shot 0.52 0.40
Flare 1 2-pt shot 0.33 1.00
Down screen 2-pt shot 0.30 0.50
Staggered 3-pt shot 0.38 0.59
Flare 1 3-pt shot 0.37 0.14
Screen the screener 3-pt shot 0.52 0.50
Back screen 3-pt shot 0.20 0.50
Down screen 3-pt shot 0.37 0.58
High cross 3-pt shot 0.63 1.00
Screen away 3-pt shot 0.34 0.69

1: inside the paint.

Table 8. Asymptotic probabilities of frequent screens, finishing moves and outcomes.

TF-O p TS-TF p

TF4-O4 0.33 TS1-TF4 0.24
TF4-O3 0.23 TS2-TF4 0.09
TF3-O1 0.11 TS7-TS4 0.08
TF3-O2 0.11 TS1-TF3 0.08
TF5-O5 0.05 TS5-TF4 0.07
TF2-O1 0.04 TS6-TF4 0.04
TF2-O2 0.04
TF2-O5 0.03
TF4-O5 0.01
TF1-O1 0.01

Probabilities lower than 0.01 were excluded.

4. Discussion

The aim of the present study is to develop a second-order Markov modelling frame-
work that would evaluate the efficiency of off-ball screens that positively affect the finishing
move and the outcome. Relevant literature regarding the strong side of the offense have
indicated that screens on the strong side were beneficial for the offense [41]; however,
limited studies were conducted concerning the weak side. The outcome of every action
in the basketball context depends on several factors, such as the type of defense, the
characteristics of the players involved, the scoreboard, and the finishing moves and the
screen types on the strong and weak side. The present paper, focusing on offensive actions,
attempts to investigate the decision taken by the players on the weak side of the offense.
While executing weak side offensive movements, it was found that the two screens that
had the highest frequency were staggered screens, followed by flare screens. This occurs
because in the first type of screen, there are two consecutive screens in the same direction
for a teammate away from the ball. A stagger screen creates more space and allows the
cutter to rub the defensive player on the first or second screen for a middle range or 3-pt
shot. Conversely, flare screens create clear out situations on the perimeter for a 2-pt or 3-pt
shot. According to [42], which undertook an analysis of basketball at the Olympic Games,
the findings showed that the successful or unsuccessful 2-pt or 3-pt shots are the most
important indicators for winning teams.

Our findings also revealed that the players, during off-ball screens, decide to execute
their offense more by using 3-pt shots, followed by making use of a middle-range 2-pt shot;
conversely, the lay-up option was not frequent. This is in line with [10], in which research at
the World Cup 2019 pointed out that winning teams were more successful on their 3-pt shot
attempts, on equally competitive teams. Regarding the effectiveness in the variations of
executing the off-ball screens and finishing the offense, greater success is observed in using
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back screens and lay-ups, followed by flare screens and 2-pt shot; whereas the combination
of high-cross screens and 3-pt shots was advantageous. Back screens are movements that
take place on the “back” of the defensive player while playing defense on the weak side
area. Offensive players, executing this type of screen use back door movements to receive
the ball for a lay-up. However, although the combination of back screens and lay-ups
lead to higher probability of successfully executing the offense, only a few instances of
the above actions were observed in the court. Furthermore, flare screen is a collaboration
in which the screener sets up a screen at the corner of the free-throw line and the cutter,
instead of moving towards the basket, takes the screen and fades out to open space, away
from the ball, for a middle-range shot. Moreover, a cross screen appears when a player cuts
to the opposite side of the floor to set a screen for a teammate. Predominantly, this happens
at the top of the key and gets a player who was on the strong side of the floor open for a
quick 3-pt shot. For the execution of this screen, the coach can use two power forwards
players, and additionally, a guard one with a center. The results agree with [16], which
presented those different formations wherein the players achieved different effectiveness
while leading to a basket.

The present study, by applying a second-order Markov model, demonstrated interest-
ing findings, which confirmed that the offense is influenced by specific screens on the weak
side of the court. Using staggered screens, it was shown that when the players executed
2-pt shots, they were led to more successful outcomes. This type of screen can be used
inside the paint, where the cutter can go into the corner for a 3-pt shot, whenever the
attacking player can go out on different sides of the perimeter for a 3-pt shot. The flare
screen, executed either inside or outside the perimeter area, provided equal results with
regards to successful 3-pt shots. The above combinations could be interpreted by the arrival
of American players in European basketball, indicating that the European basketball has
become more unrestrained, such as the NBA. Finally, the Markovian model also predicted
that a successful offensive combination is a down screen followed by the execution of a 2-pt
shot. The latter combination is probably explained by the fact that the attacks take place
inside the paint, as the down screen is made to release mainly the taller players and make
a flash movement towards the ball, leading to a better position while leading to a basket.

Concerning the shot clock, the results indicated that specific screen types, such as
screen the screener and high-cross, that occur rapidly before the set-play of the offense
at the top of the key area during the transition game led to more successful offensive
movements in the first 8 s of the possession. On the other hand, during the interval 8–24 s
of the offense, the players achieved greater mobility, thus they used screen away to provide
the perimeter shooter with an optimal area to execute the 3-pt shot. This result confirms
previous findings, which showed that defenders have more fatigue during the last seconds
of the offense, thus the resulting offensive screen could be successful [43]. The results in
the last quarter, showed that 3-pt shots were positively influenced by high-cross, staggered,
screen away, back, and down screens. This can be explained by the fact that in the last
minutes of playtime, the players using the aforementioned screens aim to optimize their
final score. Previous studies suggested that possession effectiveness was found to be
elevated by using different tactical strategies during the last minutes of playtime [41]. On
the contrary, in the first three quarters, staggered screens, which consist of two consecutive
screens from different offensive players, provided the opportunity to a teammate to receive
the ball for an easy lay-up or 2-pt shot. In general, in the last quarter, the efficiency of the
most frequently-used screens was elevated, as the probabilities to successfully execute a
shot were greater, compared to the first three quarters.

5. Conclusions

In the recent years, the study of performance indicators and their use in the strategy
of basketball teams to maximize performance has been the subject of extended research.
Via second-order Markov modelling, this paper provided insights into the behaviors and
interactions of the players using the screens, and the final attempt of the shots on the
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weak side. In conclusion, attacks away from the ball are movements without prior verbal
signals in which players must perform a specific screen with great speed and accuracy. It
is worth noting that this study provides useful information for coaches who may have
the opportunity to use it in training programs aimed at the individual improvement of
players, and also to improve and maximize the team’s offense. We suggest further research
that could bring about advances in play, including the area of execution or screen, as a
covariate that would influence the outcome of the offense, the cutting movements, or the
characteristics of the line-ups on the weak side of the offensive team. In addition, a semi-
Markov model could provide a more detailed picture of the offense, incorporating sojourn
times between offensive movements, if appropriate data were available. By knowing
the strengths and weaknesses of the attack, the coach can have a complete picture of the
offense on both sides and adjust the preparation for the next movement to succeed in a
basketball game.
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Abstract: Discrete time Markov models are used in a wide variety of social sciences. However, these
models possess the memoryless property, which makes them less suitable for certain applications.
Semi-Markov models allow for more flexible sojourn time distributions, which can accommodate
for duration of stay effects. An overview of differences and possible obstacles regarding the use of
Markov and semi-Markov models in manpower planning was first given by Valliant and Milkovich
(1977). We further elaborate on their insights and introduce hybrid semi-Markov models for open
systems with transition-dependent sojourn time distributions. Hybrid semi-Markov models aim to
reduce model complexity in terms of the number of parameters to be estimated by only taking into
account duration of stay effects for those transitions for which it is useful. Prediction equations for
the stock vector are derived and discussed. Furthermore, the insights are illustrated and discussed
based on a real world personnel dataset. The hybrid semi-Markov model is compared with the
Markov and the semi-Markov models by diverse model selection criteria.

Keywords: semi-Markov model; Markov model; hybrid semi-Markov model; manpower planning

1. Introduction

Manpower planning is a key aspect of modern human resources management. The
principal aim of manpower planning is the development of plans dealing with future
human resource requirements. In this way, an effective manpower planning policy can
avoid future shortages and excesses of staff members. Such an imbalance between the
actual and the required staff is highly undesirable because it would lead to higher costs
and/or less profits. Since manpower planning itself is concerned with the description and
prediction of large groups of employees, whose behaviour can be unpredictable at the
individual level, it is only natural to study aggregated data, where statistical patterns may
appear. So, it is no surprise that the use of mathematical models for manpower planning
can be traced back to at least 1779 when Rowe used a career-modeling plan in the Royal
Marines [1].

Since the 1960s and the dawn of the computer age, such models have become an
essential tool for the modern manager. Pioneering work concerning mathematical ap-
proaches for manpower planning was carried out by Vajda [2,3] and Bartholomew [4,5],
whereas Almond and Young [6] were the first to study a real world application of an open
homogeneous Markov chain model. Since then, various other manpower planning model
approaches have been considered. In the work of Vassiliou [7], the non-homogeneous
Markov system was introduced. This idea was expanded upon by Vasilliou et al. [8]. Other
work regarding non-homogeneous discrete time (semi-)Markov models includes the works
of Papadopoulou [9] and Dimitriou et al. [10] as well as continuous time (semi-)Markov
models by McClean et al. [11,12], Papadopoulou et al. [13] and Mehlmann [14]. It is impor-
tant to remark that the scope of those models is not limited to humans [7], as is the case in
manpower planning, but that it can be any biological being or object. Some examples of

Mathematics 2021, 9, 1681. https://doi.org/10.3390/math9141681 https://www.mdpi.com/journal/mathematics

177



Mathematics 2021, 9, 1681

other populations modeled by this class of stochastic processes [15] include ecological mod-
eling [16] and biological Markov population models [17] and financial applications [18]. It
is remarkable that, until recently, discrete time homogeneous semi-Markov models were
somewhat neglected in manpower planning.

One of the assumptions of a Markov model is that the length of time a person stays in
a state Si before going to another state Sj only depends on the state Si itself. Moreover, the
waiting time distribution, often called the sojourn time distribution, exhibits the memory-
less property. Which means that it does not account for possible duration of stay effects. In
this case, the sojourn time distribution is in fact a geometric distribution. However, in prac-
tice those assumptions may pose an unrealistic limitation. An alternative model that may
solve those problems is a semi-Markov model, which can be viewed as a natural extension
of a Markov model. In recent years, the use of discrete time semi-Markov models became
more and more popular in various fields such as reliability and survival analysis [19],
DNA analysis [20,21], disability insurance [22], credit risk [23–26], and wind speed and
tornado modeling [27,28]. Moreover, insights regarding discrete time semi-Markov models
contribute to the use of continuous time semi-Markov models [29].

Markov models and semi-Markov models both have advantages: Markov models
are less complex and more transparent. In the manpower planning context, for example,
this makes a classical Markov model easier to interpret and understand for a manager.
Semi-Markov models, on the other hand, allow capturing duration of stay effects due to
their more general sojourn distributions. This provides motivation to build hybrid models
that incorporate the best of both approaches. In the previous work of Guédon, so-called
hidden hybrid semi-Markov chains are presented that combine Markovian states with
semi-Markovian states [30]. Since it is possible that, for a particular state, some of the
transitions are Markovian while other transitions are semi-Markovian [22], the present
paper introduces the concepts of Markovian transitions and semi-Markovian transitions. In
this way, Markovian and semi-Markovian transitions are a further refinement of Markovian
and semi-Markovian states.

Furthermore, both Markov and semi-Markov models require longitudinal data for
their parameter estimation. In practice, however, longitudinal data are often left trun-
cated or right censored, which may lead to estimation problems [31], especially in a
semi-Markovian context, where more general sojourn time distributions are allowed. Previ-
ous works [11,32] suggest alternative approaches [23,33] to deal with this drawback, such
as restricting the analyses to the items for which there is complete information, artificially
truncating the data or using adapted formulas for the estimation of the parameters.

In this paper, we discuss the advantages and disadvantages of Markov and semi-
Markov manpower planning models in Section 2. In Section 3, we present the so-called
hybrid semi-Markov model, which uses a mix of Markov (geometric) and more general
(Weibull) sojourn time distributions, offering some advantages: the hybrid semi-Markov
model allows for capturing duration of stay effects where useful and reduces the number
of parameters to estimate, where possible. In this way, the hybrid semi-Markov model
enables one to improve on the semi-Markov model in case the amount of available data is
limited. Finally, in Section 4, we use a real world personnel dataset to illustrate our insights.
The hybrid semi-Markov model is compared with the Markov model as well as with the
semi-Markov model based on several criteria.

2. Markov and Semi-Markov Manpower Planning Models

To model a manpower system, one has to account for three different types of flows:
the incoming flows (recruitments), the internal flows between the different personnel cate-
gories and the outgoing flows (wastage). We consider G + 1 states, given by G personnel
categories and one absorbing state W, corresponding to the wastage. First of all, the classi-
cal Markov model [4] will be discussed; afterwards, a semi-Markov model for manpower
planning based on [19] will be proposed. An interesting reference regarding (semi-)Markov
processes is [34]. The discussion on the classical Markov model (in Section 2.1) and the
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semi-Markov model (in Section 2.2) contributes in defining the new hybrid semi-Markov
model in Section 3.

2.1. Markov Model

All models in this section are Markov processes and generalizations thereof, such
as semi-Markov processes. However, all models have their limitations and are subjected
to restrictions. In this setting, one of the assumptions we make is the so-called Markov
property, which states that the probability of reaching a future state is independent of the
past states and only depends on the present state. For a second-order Markov chain, this
probability of entering a state at time t + 1 also depends on the state at time t − 1. To assess
the Markov property, we will use Equation (1) below, which tests a first-order against a
second-order Markov chain. The use of a classical Markov model without meeting the
first-order assumption may lead to false conclusions and incorrect analysis results. An
extensive discussion about the often overlooked need to check for the Markov property
can be found in [35]. For a given stochastic process {Xt}t with G + 1 states {S1, · · · , SG+1}
and data over a time horizon [0, T], we will use the following χ2 goodness of fit test to
verify the first-order assumption, as described in [35,36],

χ2
e = ∑

i∈G
∑
j∈G

∑
l∈G

nij
( p̂ijl − p̂jl)

2

p̂jl
(1)

with index set G = {1, 2, · · · , G, G + 1} and nij = ∑T−1
t=0 ∑m

k=0 nij(t, k) , where nij(t, k) is the
number of persons that are at time t in the state Si with grade seniority k and at time t+ 1 in
state Sj and m is the maximal grade seniority observed in the database. p̂jl is the maximum
likelihood estimator of the transition probability pjl with Nj(t) = ∑i∈G ∑m

k=0 nij(t − 1, k)
being the number of persons in state Sj at time t , where p̂ijl is the maximum likelihood
estimator of the transition probability pijl and where nijl(t, k) is the number of persons that
are at time t in the state Si with grade seniority k at time t + 1 in the state Sj and at time
t + 2 in the state Sl :

p̂jl =
∑T−1

t=0 ∑m
k=0 njl(t, k)

∑T−1
t=0 Nj(t)

. (2)

pjl = Pr(Xt = Sl |Xt−1 = Sj) (3)

p̂ijl =
∑T−2

t=0 ∑m
k=0 nijl(t, k)

∑T−2
t=0 ∑m

k=0 nij(t, k)
. (4)

pijl = Pr(Xt+2 = Sl |Xt+1 = Sj, Xt = Si) (5)

Only non-zero p̂jl are taken into account for computing χ2
e . Under the assumption that

the Markov property is satisfied, i.e., that we are looking for a Markov chain of order 1, the
test statistic χ2

e has a χ2-distribution with (G + 1)3 degrees of freedom. If this assumption
holds, we can proceed with the classical Markov approach, in which transition probabilities
are assumed to be equal for individuals within a category.

The use of time homogeneous Markov chains in manpower planning is well-known
(see, for example, [4]) . Given the G states corresponding to different personnel categories
S1, · · · , SG and a wastage state W = SG+1, one can define a Markov process {Xt}t on
those states with transition probabilities pjl that can be estimated by Equation (2). If we
denote the stock vector at time t by N(t) = (N1(t), N2(t), · · · , NG(t), W(t)), and write
R(t) = (R1(t), R2(t), · · · , RG(t), 0) for the recruitment vector at time t, then we obtain the
prediction equation [4] for the stocks at time t + 1 :

N(t + 1) = N(t) · P + R(t + 1), (6)
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where P is the matrix with elements p̂jl .
Due to their simplicity, time homogeneous Markov chain models are used in a wide

variety of domains and applications. As there are relatively few parameters to estimate in
a time homogeneous Markov chain model, they are not too data demanding. However, on
the other hand, they cannot be used to account for duration of stay effects and they are less
flexible due to the so-called memoryless property, which implies that their sojourn time
distributions are geometrical distributed by construction. This shortcoming is accounted
for in semi-Markov models.

2.2. Semi-Markov Model

Again, consider a system with a finite number of states {S1, · · · , SG, SG+1} and let us
denote the set of indices by G = {1, 2, · · · , G, G + 1}. Furthermore, let Tn and Jn denote,
respectively, the time of the n-th transition and the state occupied after the n-th transition.
A semi-Markov process is equivalent to a Markov renewal process [37] and is completely
determined by an initial distribution δ = (δ1, · · · δG, δG+1) and a discrete semi-Markov
kernel q = (qij(k) : i, j ∈ G, k ∈ N) where

qij(k) = Pr(Jn+1 = Sj, Tn+1 − Tn = k | Jn = Si). (7)

It can be shown that {Jn}n itself is a Markov chain via

p∞
ij = Pr(Jn+1 = Sj | Jn = Si), (8)

i.e., p∞
ij is the probability, starting from Si, that the next state will eventually be Sj, regardless

of the duration time. We write P∞ = (p∞
ij : i, j ∈ G) for the associated transition matrix.

This allows for the following decomposition:

qij(k) = p∞
ij fij(k) (9)

where f = ( fij(k) : i, j ∈ G, k ∈ N) consists of the sojourn time distributions, conditioned
by the next state to be visited:

fij(k) = Pr(Tn+1 − Tn = k | Jn = Si, Jn+1 = Sj) (10)

A few remarks are in order at this point. First of all, only actual transitions are
accounted for, in the sense that transitions to the same state are prohibited, so that p∞

ii = 0
for every i ∈ G. Furthermore, instantaneous transitions are not allowed either: the chain
has to spend at least one unit of time in a state, which corresponds to fij(0) = qij(0) = 0
for every i, j ∈ G.

The main difference in regard to the Markov chain model is the fact that the sojourn
time distributions f can be any discrete distribution, incorporating the possible duration of
stay effects. Note that a Markov chain with transition matrix P = (pij : i, j ∈ G) itself can
be viewed as a semi-Markov chain with geometrically distributed sojourn times for which

qij(k) =

{
pij pk−1

ii if i �= j and k ∈ N0

0 elsewhere.
(11)

In order to use this framework for a manpower planning model, one starts in the
same way as in the case of a Markov chain model with dividing the population in G + 1
states and determining the corresponding stock vector N(t). In contrast with the Markov
chain model, we incorporate the grade seniority of the employees in our model. Instead
of a vector N(t) consisting of the total number of people in each personnel category at
time t, every entry of N(t) corresponds to a vector of a certain length m containing the
number of employees with seniority l, with 1 ≤ l ≤ m. This disaggregation of the entries
of N(t) results in a matrix, whose columns will be denoted by N(t, k) as in Figure 1. So,
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the first column, N(t, 0), corresponds to the employees with grade seniority 0 at time t,
the second column, N(t, 1), corresponds to the employees with grade seniority 1 at time t,
... up to the m + 1-th column that corresponds to the employees with grade seniority m
at time t , where m is the maximal grade seniority observed in the database. We will call
this matrix the seniority based stock matrix. Note that Ni(t, k) corresponds to the number
of employees in state Si with grade seniority k at time t and that ∑m

k=0 Ni(t, k) = Ni(t) for
each i ∈ G and every t ∈ N. The vectors N(t, k) enable the expression of the prediction
equation for the stock vector as in Theorem 2. An equivalent approach is presented in [8],
where the semi-Markov system is transformed into a Markov system. While the present
paper considers a separate vector N(t, k) for each grade seniority k, in [8], this information
is gathered into one vector.

N(t)=

N(t, 0)

=

N(t, 1)
= ... N(t, m-1)

=

N(t, m)

=

N1(t) →

N2(t) →

...

NG(t) →

NG+1(t) →

N1(t,0)

N2(t,0)

...

NG(t,0)

NG+1(t,0)

N1(t,1)

N2(t,1)

...

NG(t,1)

NG+1(t,1)

...

...

...

...

...

N1(t,m-1)

N2(t,m-1)

...

NG(t,m-1)

NG+1(t,m-1)

N1(t,m)

N2(t,m)

...

NG(t,m)

NG+1(t,m)

Figure 1. The seniority based stock matrix, consisting of columns N(t, k).

Now, we can estimate a discrete semi-Markov kernel q using the maximum likelihood
estimator [19]:

q̂ij(k) =
∑T−1

t=0 nij(t, k)
ni

(12)

where ni = ∑j �=i ∑T−1
t=0 ∑m

k=0 nji(t, k), i.e., the total number of visits to state i. Furthermore,
we can use this q to calculate the grade seniority transition matrices P(k) = (Pij(k) : i, j ∈
G), the one-step ahead transition matrix for group members with grade seniority k, is
defined by:

Pij(k) = Pr(Jn+1 = j, Tn+1 − Tn = k | Jn = i, Tn+1 − Tn > k − 1) (13)

In practice, P(k) can be calculated in the following way.

Theorem 1. For all k such that ∑h∈G ∑k−1
m=0 qih(m) �= 1 we have

Pij(k) =
qij(k)

1 − ∑h∈G ∑k−1
m=0 qih(m)

(14)
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Proof.

Pij(k) = Pr(Jn+1 = j, Tn+1 − Tn = k | Jn = i, Tn+1 − Tn > k − 1)

=
Pr(Jn+1 = j, Tn+1 − Tn = k | Jn = i)

Pr(Tn+1 − Tn > k − 1 | Jn = i)

=
Pr(Jn+1 = j, Tn+1 − Tn = k | Jn = i)
1 − Pr(Tn+1 − Tn ≤ k − 1 | Jn = i)

=
qij(k)

1 − ∑h∈G ∑k−1
m=0 qih(m)

Combining all of the above, we arrive at:

Theorem 2. For a semi-Markov system, the prediction equation for the stock vector at time t + 1
is as follows:

N(t + 1) =
m

∑
k=0

(
N(t, k) · P(k)

)
+ R(t + 1), (15)

where N(t, k) is the stock vector of people with grade seniority k at time t, R(t+ 1) is the recruitment
vector at time t + 1, P(k) is the one-step ahead transition matrix for people with grade seniority k
and m is the maximum of all grade seniorities.

At first glance, it would seem that the semi-Markov model is a preferable model due
to its more flexible sojourn time distributions and its greater generality. However, to build
a semi-Markov model, one has to estimate more parameters, such that a sufficiently long
time series of data may be necessary to avoid problems with overfitting [38]. This may
limit the utility of semi-Markov modeling in manpower planning as a data horizon of, for
example, less than ten years may be insufficient for the realization of some transitions and
so for the required data for estimating the semi-Markov kernel q.

3. Hybrid Semi-Markov Model

In Section 2.2, we note that a Markov chain with transition matrix
P = (pij : i, j ∈ G) can be viewed as a semi-Markov chain, i.e., a semi-Markov chain
can be considered as an extension of a Markov chain, where more general and flexible
sojourn time distributions are allowed. However, in practice, it can be difficult to decide
which approach is more adequate to model the manpower system in question. Due to its
greater generality, the semi-Markov chain may look as the most preferable model at first
sight. However, in practice, the data requirements to result in accurate parameter estimates
may limit the utility of semi-Markov models in manpower planning [38]. For these reasons,
the presented hybrid semi-Markov model examines, for each pair of states (Si, Sj), whether
the transition from Si to Sj can be considered as a Markov transition or should be modeled
as a semi-Markov transition. In order to make an adequate choice for a particular transition
from Si to Sj between a Markov and a semi-Markov approach, one can use a technique
which was introduced in [22] and which is briefly discussed below.

The semi-Markov hypothesis is tested at the level of the sojourn time distributions
fij. A transition from Si to Sj can be considered Markovian if its corresponding sojourn
time fij is geometrically distributed. Under the geometrical hypothesis, the equality
fij(2) = fij(1)(1 − fij(1)) holds and a significant deviation of fij(1)(1 − fij(1)) − fij(2)
from zero has to be seen as evidence to the contrary, i.e., evidence in favor of a (more
general) sojourn time distribution. The test statistic, as introduced in [22], is given by:

Ŝij =

√nij( f̂ij(1) ∗ (1 − f̂ij(1))− f̂ij(2))√
f̂ij(1)(1 − f̂ij(1))2(2 − f̂ij(1))

(16)
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where nij = ∑T−1
t=0 ∑m

k=0 nij(t, k) denotes the observed total number of transitions from Si to
Sj and where f̂ij(k) is the maximum likelihood estimator of the probability fij(k) (see [19]):

f̂ij(k) =
∑T−1

t=0 nij(t, k)
nij

. (17)

Under the geometrical hypothesis H0, the test statistic Ŝij is asymptotically normally
distributed.

Note that for a system with G + 1 states, this test has to be run (G + 1) ∗ G times
as this test permits us to make a decision about the sojourn time distribution for each fij
individually, which allows for a so-called hybrid semi-Markov model—a semi-Markov
model that incorporates the sojourn time distributions of the classical Markov model
for those pairs (Si, Sj) where geometric sojourn time distributions may be assumed and
that enables the use of more general sojourn time distributions for those pairs (Si, Sj)
where necessary. This approach can be seen as a further generalization of techniques used
in [22,39], where the same criterion was used to make a decision about the sojourn time
distributions at the level of the states instead of the transitions. Since the sojourn time
distribution is determined per pair (Si, Sj), and hence for each possible transition, the
hybrid semi-Markov model is based on transition-dependent sojourn time distributions.
In this way, we can construct a model that unites the best of the Markovian and (pure)
semi-Markovian worlds, as we will only have to estimate extra parameters of the sojourn
time distributions if those parameters might improve the goodness of fit.

Previous studies concerning semi-Markov models often used the discrete Weibull
distribution [19] whenever the geometrical hypothesis is rejected. The choice for the
discrete Weibull distribution is motivated by the fact that the discrete Weibull distribution
can be viewed as a more flexible generalization of the geometric distribution [40]:

CMF dweibull(k, α, β) = 1 − α(k+1)β
(18)

CMF geometric(k, p) = 1 − (1 − p)(k+1) (19)

so geometric(k, p) = dweibull(k, 1 − p, 1).
Note that, in the semi-Markov setting, the prediction equation of the stock vector

(Equation (15)) is nothing more than a generalization of the prediction equation of the stock
vector in the Markov setting (Equation (1)), as in the latter case the P(k) are equal for all
k. So, to arrive at the prediction equation for the stock vector of the hybrid semi-Markov
model, one can recycle Equation (15), where Pij(k) will be dependent on k due to the
sojourn time distributions associated with the (Si, Sj) for which the Markov hypothesis
does not hold.

A procedure to decide on whether to use a Markov model, a semi-Markov model or a
hybrid semi-Markov model is graphically represented in Figure 2.
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Divide the personnel
in G states

{S1, · · · SG} and add
a wastage state SG+1

Does the hy-
pothesis of an

order 1 against an
order 2 Markov

chain hold?
Equation (1)

Use a Markov
chain approach

Estimate the
empirical sojourn
time distributions

Test for each tuple
(Si, Sj): does

the geometrical
hypothesis hold?

Equation (16)

Estimate qij as
a Geometric
distribution

Estimate qij
as a Weibull
distribution

Group all qij
in the hybrid
semi-Markov

kernel q = (qij(k))

Calculate the one-
step ahead transi-
tion matrices P(k)

Equation (14)

Calculate the seniority
based stock matrices
N(t, k) (See Figure 1)

Calculate the one-step
ahead stock prediction

Equation (15)

Estimate the recruit-
ment vector R(t + 1)

yes

no

no yes

Figure 2. Decision flowchart for the hybrid semi-Markov model.
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4. Application

4.1. Data Handling

The subject of this research is modeling (a subsystem of) the academic staff of the Vrije
Universiteit Brussel (VUB). An anonymized personnel database including the career paths
of all academic staff at the VUB between 1999 and 2013 was at our disposal for this study.
The aim is to estimate the number of teaching staff in the various grades for the near future.
In our study, we have chosen to avoid left censoring issues: since the analyzed data contain
only a limited number of data lines where left censoring is involved, we did not take into
account the first observed state of an employee in case it was subjected to left censoring.
We corrected for right censoring in computing the estimations of the parameters [41].

After extensive data cleansing, we obtained the career paths of 1585 relevant employ-
ees. Only data from 1999 to 2012 were included to avoid look-ahead bias as we aim to
estimate the number of teaching staff in 2013. Concerning the division of the personnel in
G states, we opted for the common hierarchical academic ranking structure in Belgium as
in Table 1.

Table 1. Personnel categories in our manpower system.

State

S1 Doctor-assistent (lecturer with a PhD)
S2 Docent (assistent professor)
S3 Hoofddocent (associate professor)
S4 Hoogleraar (full professor)

Furthermore, we included an additional state, state S5, which corresponds to wastage
in our system. Contrary to most applications in the literature, we did not consider the
wastage state to be an absorbing state as it regularly happens during academic careers
that people who leave their universities are employed again later on. This happens in
our dataset for 371 cases. The observed transitions between the states in our system are
visualized in Figure 3.

S1 S2 S3 S4

S5

Figure 3. Graph of the states and state transitions.

First of all, the Markov property (Equation (1)) was assessed. Defining the level of
significance at α = 0.05, the null hypothesis states that the Markov property is met. As we
consider five states in our subsystem, it follows that the test statistic χ2

e has a χ2-distribution
with 53 degrees of freedom under the null hypothesis. We obtained χ2

e = 4984.911, which
means that we reject the zero hypothesis at the significance level α = 0.05. These find-
ings let us conclude that the whole system, consisting of five states, does not satisfy the
Markov property.
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4.2. Parameter Estimation and Modeling

We now use the same data as in the previous section to estimate the empirical sojourn
time distributions f̂ij according to Equation (17) with the aid of the R package SMM [41]
and apply the test statistic Ŝij (Equation (16)) to each tuple of states (Si, Sj). The results are
summarized in Table 2.

Table 2. Values of test statistic Ŝij.

S1 S2 S3 S4 S5

S1 / 0.12 −0.00 0 −3.76
S2 0.49 / 0.83 0 −1.22
S3 0.17 0.09 / −1.87 −1.68
S4 0 0 0 / −1.10
S5 2.05 1.12 0.08 0 /

Under the geometrical hypothesis H0, these test statistics Ŝij are asymptotically nor-
mally distributed. At a significance level of α = 0.05, we reject the null hypothesis if and
only if |Ŝij| > 1.96. This means we have to reject the geometrical hypothesis for the sojourn
time distributions f15 and f51. Using the R package SMM [41], we estimated all fijs as
parametric distributions: f15 and f51 as Weibull distributions and the other fijs as geometric
distributions. We now consider three different models:

• M, a classical Markov model as in Section 2.1;
• SMW, a semi-Markov model as in Section 2.2, where all fijs are Weibull distributions;
• HSM, the hybrid semi-Markov model as in Section 3 with the fijs as described above.

4.3. Comparison of the Different Models

We used Equation (15) to predict the stock vector in 2013 starting from the stock vector
in 2012 for the three models mentioned above, as a first indication of the performance of
those models. We took the factual recruitment vector for R(t + 1). The forecasts, including
the standard deviations [42], are summarized in Table 3.

Table 3. Model predictions of the stock vector in 2013. The standard deviations are within brackets.

Model Predictions

M SMW HSM Actual Stocks in 2013

S1 235.32 ( 8.01) 191.54 (8.85) 206.22 (8.45) 229
S2 292.77 (7.81) 246.68 (9.81) 298.07 (8.05) 304
S3 97.06 (4.65) 96.94 (6.56) 97.28 (4.68) 96
S4 58.84 (2.86) 64.34 (4.79) 58.89 (2.86) 64

It is immediately obvious, looking at Table 3, that the SMW model is the worst
predictor of the stock vector for the first two personnel categories in the setting above. Other
prediction results are more similar. In what follows, M, SMW and HSM are compared
based on several model selection criteria such as AIC and BIC. Afterwards, we used the
likelihood ratio test statistic to state a final model preference [43].

First, we analyzed the goodness of fit of our different models using the AIC and BIC
according to the formulas below [44],

AIC = 2 n − 2 l(Mi)

BIC = n ln(κ)− 2 l(Mi)
(20)
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where n corresponds to the number of estimated parameters in the model Mi, l(Mi) is
the log-likelihood function for Mi and κ corresponds to the total number of observations,
which is the number of observed transitions in our case.

We obtained the following values for the log-likelihood function:

l(M) = −3723.73,

l(SMW) = −3912.79,

l(HSM) = −3682.55

It is immediately apparent from the equations above that SMW is an unfeasible model,
as it has the most parameters but the worst fit of our three models. We now proceed to
calculate the AIC and BIC of the three models in question. The results are summarized in
Table 4.

Table 4. AIC and BIC values.

Selection Criteria

AIC BIC

M 7487 7624
SMW 7906 8179
HSM 7409 7559

The hybrid semi-Markov model HSM has the lowest BIC and AIC values, which
means that it outperforms both the semi-Markov model SMW and the Markov model M

with regard to the goodness of fit. Furthermore it is remarkable that the semi-Markov
model SMW turns out to be the model with the worst fit of the three models concerning
the AIC, BIC or even the values of the log-likelihood function itself. This may sound
counter-intuitive at first as this model is the most flexible model of the three. We theorize
that this is probably due to the more demanding data requirements needed to estimate a
higher amount of parameters, which can lead to problems with overfitting.

At last, in order to make a final choice between the models above, one can assess the
goodness of fit between the Markov model M and the hybrid semi-Markov model HSM

by means of the likelihood ratio test for nested models as M ⊂ HSM [44]. For two nested
statistical models M1 ⊂ M2, the likelihood ratio test statistic is given by:

λLR = −2[l(M1)− l(M2)] (21)

where l(M1) and l(M2) are the values of the log-likelihood function for M1 and M2,
respectively. This test statistic is, under the zero hypothesis, i.e., that the more simple
model is in fact the true model, asymptotically χ2 distributed with d degrees of freedom,
where d is the number of additional parameters in the more complex model.

We now proceed to use the likelihood ratio test to assess the goodness of fit between
the two remaining models of interest: M and HSM. We arrive at the following value for
the test statistic λLR.

λLR = 82.36 (22)

As HSM adds two additional parameters to M, it follows that the test statistic λLR has
a χ2-distribution with two degrees of freedom under the null hypothesis. We obtained
λLR = 82.36, which means that we reject the zero hypothesis at the significance level
α = 0.05 in favor of the alternative hypothesis, i.e., that HSM is the better model, which is
consistent with the AIC and BIC values in Table 4. Hence, for illustrative purposes, our
three models can be ranked according to their goodness of fit as HSM, M and finally SMW.
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5. Conclusions

In this paper, we use a discrete time semi-Markov framework to model an open
manpower system. At first sight, such a model might appear to be the preferable model as
it is not only a more flexible model in nature but also enables us to account for duration of
stay effects. However, such a model does not always show to be superior in an empirical
context due to the fact that more parameters have to be estimated, which necessitates the
availability of a vast amount of data and which may lead to overfitting in the absence
of enough data. Therefore, we introduce a hybrid semi-Markov model, that is a semi-
Markov model in which Markov sojourn time distributions are used for those transitions
(Si, Sj) where it is not useful to account for duration of stay effects and in which Weibull
distributed sojourn times are used for those transitions (Si, Sj) where the geometrical
hypothesis does not hold. Hence, the hybrid semi-Markov model takes the duration of stay
effect into account only for those transitions where it can contribute to the improvement of
the goodness of fit. In this way, the hybrid semi-Markov combines the best of both worlds
by capturing duration of stay effects where useful and reduces the number of parameters
to estimate, where possible. Finally we used a real world personnel dataset to illustrate our
insights and made a comparison between the Markov model, the semi-Markov model and
the hybrid semi-Markov model.

The authors view the use of this specific dataset as one of the most important limita-
tions of this research, as alternative or richer databases may exhibit other characteristics
which could lead to other model choices. In addition, future research may focus on the
use of other non-Weibull distributions or might explore the possibilities of a hybrid semi-
Markov model in a non-homogeneous context.
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Abstract: Semi-Markov processes generalize the Markov chains framework by utilizing abstract
sojourn time distributions. They are widely known for offering enhanced accuracy in modeling
stochastic phenomena. The aim of this paper is to provide closed analytic forms for three types of
probabilities which describe attributes of considerable research interest in semi-Markov modeling:
(a) the number of transitions to a state through time (Occupancy), (b) the number of transitions or the
amount of time required to observe the first passage to a state (First passage time) and (c) the number
of transitions or the amount of time required after a state is entered before the first real transition is
made to another state (Duration). The non-homogeneous in time recursive relations of the above
probabilities are developed and a description of the corresponding geometric transforms is produced.
By applying appropriate properties, the closed analytic forms of the above probabilities are provided.
Finally, data from human DNA sequences are used to illustrate the theoretical results of the paper.

Keywords: semi-Markov modeling; occupancy; first passage time; duration; non-homogeneity;
DNA sequences

1. Introduction

Human populations can be divided into categories (states and classes) taking into
account some of their basic characteristics, such as place of residence, social class or rank
in a hierarchy system. People usually move from a category to another category in a
probabilistic manner and a person’s history contains a sequence of sojourn times in the
various categories and a set of transitions that have taken place. These are the basic
parameters that construct a semi-Markov chain (SMC), according to which a mathematical
model can be developed for the study of those systems [1,2]. These systems do not
necessarily have to include humans, instead, they can describe any potential system
characterized by and composed of historical observations, such as stay times in situations
as well as transitions from one category to another. If, for the study of a population
system, we reside on a Markov chain, we assume that the probability of transition from
one category in another does not depend on the length of stay. Nonetheless, this time
dependence is, in some cases, desirable to include in the process since it provides additional
useful information. In this case, the transitions of such a system are not merely described
by a typical Markov chain procedure and Semi-Markov models are introduced as the
stochastic tools that provide a more rigorous framework accommodating a greater variety
of applied probability models [3–5]. Various applications of semi-Markov processes include
manpower planning, credit risk, word sequencing and DNA analysis [6–14].

In addition to semi-Markov processes, the non-homogeneous semi-Markov system
(NHSMS) was defined, introducing a class of broader stochastic models [15,16] that provide
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a more general framework to describe the complex semantics of the system involved. Semi-
Markov systems, which deploy a number of Markov chains evolving in parallel, are
mostly applied in manpower planning, where the most important issues pertain to the
evolution, control and asymptotic behavior [17–19]. In the last two decades, there has
been an extended body of literature regarding the theory and results about NHMS [20–29].
The dynamic characteristics of the semi-Markov systems influence the number of times
the chain occupies a state, of how long it takes to leave a state as well as the probability
of first passage to a state. Therefore, in order to accompany the basic parameters of the
semi-Markov chain and to enhance the modeling framework, additional attributes of
critical interest are the occupancy, first passage time and duration probabilities, which are
described as follows

1. Occupancy probabilities. These probabilities describe the distribution of the random
variables that define the number of times the SMC has visited a specific state during
an arbitrary time interval.

2. First passage time probabilities. These are the probabilities that describe the transition
from a state to a different state for the first time. The properties of the first passage
time probabilities have been investigated for Markov processes and some specific
types of semi-Markov processes [30–35]. Details for the first passage time probabilities
have been also presented for various stochastic processes [36].

3. Duration probabilities. These probabilities describe the distribution of random variables
that define the time needed for the SMC to transfer to a different state.

DNA sequences are usually studied using probabilistic models, as nucleotide appear-
ances are inter-correlated and attempts to use Markov models to model them have been
reported [10,37]. One of the earliest studies applied a Markov model on the nucleotide
alphabet {A, C, G, T} to estimate the transition probability matrix and the number of dou-
blets and triplets [38]. Several statistics have been proposed to test the dependency order
of the sequence, e.g., the Markov order, such as the phi-divergent statistics and conditional
mutual information [39–41]. More advances in the subject include hidden-Markov models
that are able to model different regions of DNA sequences [42]. Word occurrences are also
of interest in DNA analysis [43]. Previous studies have examined the distribution, moments
and properties of successive word occurrences [44,45]. Papadopoulou has provided some
examples of semi-Markov models on modeling biological sequences [46]. Furthermore,
algorithmic applications for estimating the first passage time probabilities in genomic
sequences have been reported [47].

The aim of this study is to provide insight on the actual mechanism of the recursive
relations of the probabilities mentioned above. Section 2 presents the basic parameters
of a SMC, the interval transition probabilities and the entrance probabilities. Section 3
presents the main results of the paper, that is, the closed analytic solutions for the occupancy,
duration and first passage time probabilities. The final section applies these theoretical
results to human genome DNA strands. For the first illustration, the aim is to find the
corresponding probabilities between nucleotide words and their symmetric complements
by using the analytic form of the first passage time probabilities. Finally, for the second
illustration, the frequency of the dinucleotide GC is examined for two distinct DNA
sequences, using the occupancy probabilities.

2. Basic Framework

We can consider the semi-Markov chain {Xt}t≥1 with state space S = {1, 2, . . . , N} as
a discrete stochastic process in which the successive states are defined by the transition
probability matrix and the sojourn time in each state is described by a random variable
conditioned on the current and the next state to be transitioned into. Thus, during the
transition times, the process is equivalent to a Markov process. We call this Markovian
process the embedded process. Let transition probabilities pij(t) be the probability of a SMC
provided that it entered state i during its last transition at time t to transition to state j
in the next transition. The transition probabilities should satisfy the same equations of a

192



Mathematics 2021, 9, 1745

Markovian process, that is, pij ≥ 0, ∀i, j ∈ S and ∑N
j=1 pij = 1, ∀i ∈ S. When the process

enters state i at time t, we assume that this state determines the next transition to state
j, which occurs according to the transition probabilities. However, before making the
transition from state i to state j and after the next state j is selected, the chain holds in
state i for time τij. The sojourn time τij is a positive random variable with density function
hij(·), which is called the function of sojourn time to transition from state i to state j. Thus,
Prob[τij = m] = hij(m), for m = 1, 2, .., and i, j ∈ S. We assume that the mean values of
the distributions of sojourn times are finite and hij(0) = 0. In matrix notation, the basic
parameters of the semi-Markov chain are the sequence of transition matrices {P(t)}∞

t=0
and the sequence of sojourn time matrices {H(m)}∞

m=1. The probabilities of the waiting
times wi(t, m) are defined as follows:

wi(t, m) =
N

∑
j=1

pij(t)hij(m) = Prob[τi = m|t],

where τi is the holding time of the SMC in state i. The core matrix of the SMC connects the
transition probabilities and the sojourn times and it is defined as follows:

C(t, m) = {cij(t, m)}ij∈S = P(t) ◦ H(m).

The operator {◦} denotes the element-wise product of matrices (Hadamard product).
Using the core matrix, we define qij(k|t, n), which is the joint probability that the SMC
will be in state j at time t + n and that it has made k transitions during the time interval
(t, t + n], given that at time t the process has entered state i. In order to calculate the
probability qi,j(k|t, n), we distinguish two cases. First, we consider that during the time
interval (t, t + n] the number of transitions is zero. Then, in order for the process at time
t + n to be in state j, given that no transitions were made, it must be that the states i, j
are the same. Secondly, assume that the SMC makes the first transition to state r at time
t + m, 0 < m < n. Then, in the time interval (t, t + m], we have one transition to state r
and, in the remaining time interval (t + m, t + n], we have the remaining k − 1 transitions,
with a final transition to state j. Thus, the resulting formula is as follows:

qij(k|t, n) = δijδ(k)>wi(t, n) +
N

∑
r=1

n

∑
m=0

cir(t, m)qrj(k − 1|t + m, n − m).

where >wi(t, n) = ∑∞
k=n+1 wi(t, k) indicates the survival function of wi(t, n) and δ(k) = 1

if k is zero, otherwise it is zero. If we are not interested in counting the number of transitions
up to the final state j, we can deduce the following recursive relationship.

qij(t, n) = δ>ij wi(t, n) +
N

∑
r=1

n

∑
m=0

cir(t, m)qrj(t + m, n − m).

We also define the quantity ei,j(k|t, n), which is the probability that the SMC enters
state j at time t + n and the total number of transitions in the time interval (t, t + n] is k,
given that the SMC has entered state i at the initial position. Here, we can distinguish
two cases. First, we assume that the number of transitions in the time interval (t, t + n]
is zero. Then, to enter in state j at time t + n, the states i and j must be the same since
state i was entered at the initial time. For the second case, suppose that the SMC at time
t + m, 0 < m < n makes its first transition to state r. Then, at the time interval (t, t + m] we
have a transition to state r and, at the time interval (t + m, t + n], we have the remaining
k − 1 transitions, with the final transition to state j. These facts result in the following
recursive relationship.

eij(k|t, n) = δijδ(n)δ(k) +
N

∑
r=1

n

∑
m=0

cir(t, m)erj(k − 1|t + m, n − m).
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If we are not interested in the number of transitions up to the final state j, we can
reduce the recursive relationship to the quantity eij(t, n), which are the probabilities that
the SMC will enter state j at time n, provided that, at the initial position at time t, the SMC
has entered state i. The equation for calculating the probabilities eij(t, n) is given by
the following.

eij(t, n) = δijδ(n) +
N

∑
r=1

n

∑
m=0

cir(t, m)erj(t + m, n − m).

The interval transition probabilities and entrance probabilities are connected by the
following relationship.

qij(k|t, n) =
n

∑
m=0

eij(k|t, m)>wj(t + m, n − m).

3. Theoretical Results: Analytic Solutions of the Recursive Equations

3.1. First Passage Time

The first passage times provide a measure of how long it takes to reach a given state
from another. We can think of first passage times either in terms of transitions or of time or
both. Thus, let fij(k|t, n) be the probability that k transitions and time n will be required for
the first passage from state i to state j given that the SMC entered state i at time t. Applying
a probabilistic argument, we can provide the following recursive formula.

fij(k|t, n) =
N

∑
r �=j

n

∑
m=0

cir(t, m) frj(k − 1|t + m, n − m) + δ(k − 1)cij(t, n). (1)

The first term of equation (1) corresponds to the case where k > 1 and the SMC makes
a transition to some state r different from j at time t + m and then makes a first passage
from r to j in k − 1 transitions during the interval (t + m, n − m]. The term is summed
over all states and holding times that could describe the first transition. The second term
corresponds to the case where k = 1 and the process moves directly to state j at time
t + n. If we are not interested in counting the transitions, then the recursive formula of the
probabilities fij(t, n) is provided by the following.

fij(t, n) =
N

∑
r �=j

n

∑
m=0

cir(t, m) frj(t + m, n − m) + cij(t, n). (2)

Theorem 1. For each non-homogeneous SMC with discrete state space S = 1, 2, . . . , N, a sequence
of transition probability matrices {P(t)}∞

t=0 and a sequence of sojourn time matrices {H(m)}∞
m=1,

the probability matrices of first passage times F(k|t, n) = { fij(k|t, n)}i,j∈S are given by the
following relationships:

1. F(1|t, n) = C(t, n), for every n.
2. F(k|t, n) = 0, if k > n or k = 0.

3. F(k|t, n) = ∑n−k+1
m1=1 ∗ ∑n−k+2

m2=1+m1
∗ . . . ∗ ∑n−1

mk−1=1+mk−2
∏k−1

r=0
{B}

C(t + mk−r−1, mk−r − mk−r−1),
for each 1 < k ≤ n,

where B = U − I, U = {uij = 1}i,j∈S , I is the N × N identity matrix and

k−1

∏
r=0

{B}C(s + mk−r−1, mk−r − mk−r−1) =

= C(s, m1){C(s + m1, m2 − m1){. . . {C(s + mk−1, n − mk−1) ◦ B} ◦ B} . . .} ◦ B}.

Proof. Appendix A.1.
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3.2. Duration

Transitions of a SMC can be divided into two categories: virtual and real. The first
category refers to transitions made from one state to the same state, while the second
category refers to transitions from one state to a different state. Based on those two
categories, one can define the duration as the number of transitions or the time required
for the SMC to leave the initial state and to move to a different state, i.e., a real transition to
take place for the first time and not a virtual one. Therefore, it is of interest to study the
duration probability di(k|t, n) defined as the probability that the SMC moves for the first
time to a different state that the initial one after n time units and k transitions during the
interval (t, t + n], given that the process entered state i at time t. We note here that out of
the total k transitions in the above case, k − 1 transitions are virtual and one transition is
real. The duration probabilities for k ≤ n are provided by the following.

di(k|t, n) =
n

∑
m=0

cii(t, m)di(k − 1|t + m, n − m) + δ(k − 1)(wi(t, n)− cii(t, n)). (3)

In the case that k > n or k = 0, then di(k|t, n) = 0. The rationale of this relationship
can be deconstructed into two parts. In the first part, we can assume that the SMC has at
least one virtual intermediate transition, while it starts from state i at time t, holds at the
state i for m time units and finally transfers to state i again. At this point, the associated
probability is di(k − 1|t + m, n − m). In the second scenario, we assume that the SMC
makes no transition up to time t + n. Therefore, the chain holds at state i for exactly n time
units and then moves to a state j different than i. Thus, the duration defined in the present
measures how long it takes to leave a given state.

Theorem 2. For each non-homogeneous SMC with discrete state space S = 1, 2, . . . , N, a se-
quence of transition probability matrices {P(t)}∞

t=0 and a sequence of sojourn time matrices
{H(m)}∞

m=1, the duration probability matrices D(k|t, n) = diag{di(k|t, n)}i∈S are provided by
the following relationships:

1. D(1|t, n) = [W(t, n)− C(t, n) ◦ I], for every n.
2. D(k|t, n) = 0, if k > n or k = 0.
3. D(k|t, n) = ∑n−k+1

m1=1 ∗ ∑n−k+2
m2=1+m1

∗ . . . ∗ ∑n−1
mk−1=1+mk−2

(C(t, m1) ◦ I)(C(t + m1, m2 − m1) ◦ I)

. . . (C(t + mk−2, mk−1 − mk−2) ◦ I)(W(t + mk−1, n − mk−1)− C(t + mk−1, n − mk−1) ◦ I),
for each 1 < k ≤ n,

where W(t, n) = diag{wi(t, n)}i∈S.

Proof. Appendix A.2.

3.3. Occupancy

We define vij(t, n) to be the number of times the SMC makes transitions to a state
j in time interval of length equal to n, provided that in the initial time t the SMC had
entered state i. If the initial state is the same as j, that is when i = j, then the initial state is
not counted in vij(t, n). We call the quantity vij(t, n) as the occupancy measure of state j at
time t + n, provided that the SMC entered state i at time t. Clearly, the quantity vij(t, n)
is a discrete random variable. We define as ωij(·|t, n) the probability mass distribution
of vij(t, n), which is ωij(x|t, n) = Prob[vij(t, n) = x]. The recursive relationship of the
occupancy probabilities is given by the following:

ωij(x|t, n) =
N

∑
r=1
r �=j

n

∑
m=0

cir(t, m)ωrj(x|t + m, n − m)+

+
n

∑
m=0

cij(t, m)ωjj(x − 1|t + m, n − m) + δ(x)> wi(t, n),

(4)
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where i, j ∈ S, n = 0, 1, . . . , and x = 0, 1, . . ..

Assumption 1. In what follows, we assume that the embedded Markov chain is homogeneous,
i.e., {P(t)}∞

t=0 = P, for each t.

Considering the above assumption, one can use the double geometric transform of
the occupancy probabilities as follows.

ω
gg
ij (y|z) =

∞

∑
x=0

∞

∑
n=0

ωij(x|n)znyx.

Moreover, from the Equation (4), we can write the double geometric transform of the
occupancy probabilities as follows.

ω
gg
ij (y|z) =

N

∑
r=1

cg
ir(z)ω

gg
rj (y|z)− (1 − y)cg

ij(z)ω
gg
jj (y|z) +>wg

i (z).

In matrix notation, we can use the previous results to obtain the following [3]:

Ωgg(y|z) = 1
1 − z

U − 1 − y
1 − z

[I − Cg(z)]−1Cg(z)
(

yI + (1 − y)[I − Cg(z)]−1 ◦ I
)−1

,

where U is the unit matrix, Ωgg(y|z) =
{

ω
gg
ij (y|z)

}
i,j∈S

is the double geometric transform

of Ω(x|n) = {ωij(x|n)}i,j∈S and Cg(z) =
{

cg
ij(z)

}
i,j∈S

.

The occupancy probabilities are connected with the corresponding homogeneous first
passage time probabilities through the following relationship.

ωij(x|n) = δ(x)> fij(n) +
n

∑
m=0

fij(m)ωjj(x − 1|n − m).

Using the double geometric transform, we can present the occupancy probabilities in
matrix form according to the geometric transforms of the first passage time probabilities:

Ωgg(y|z) = >Fg(z) + yFg(z)
[
>Fg(z) ◦ I

]
[I − y(Fg(z) ◦ I)]−1,

which could be further simplified by using >f g
ij(z) =

1− f g
ij (z)

1−z (Appendix B.1) resulting in
matrix notation in (Appendix B.2).

Ωgg(y|z) = 1
1 − z

U − 1 − y
1 − z

Fg(z)[I − yFg(z) ◦ I]−1.

We now provide Theorem 3 and Lemma 1 that will be used to prove the main
Theorem 4 of the occupancy probabilities with respect to the core matrix.

Theorem 3. For a SMC with core matrix C(·), we have the following:

Ωg(z|n) = (z − 1)∑n−1
j=1

[
C(j) +

[
∑

j
i=2

(
C(i − 1) + ∑i−2

k=1 Si(k, mk)
)

C(j + 1 − i)
]
[Ωg(z|n − j)] ◦ I

]
+z
[
C(n) + ∑n

j=2

(
C(j − 1) + ∑

j−2
k=1 Sj(k, mk)

)
C(n + 1 − j)

]
+

+

[
∑n

j=2

(
C(j − 1) + ∑

j−2
k=1 Sj(k, mk)

)>
W(n + 1 − j) + >W(n)

]
,

where Si(k, mk) = ∑i−k
mk=2 ∑i−k+1

mk−1=1+mk
. . . . . . ∑i−1

m1=1+m2
∏k−1

r=−1 C(mk−r−1 − mk−r), ∀i, j ∈ S and n =

0, 1, 2, . . . Please note that the (j, r) element of Si(k, mk) is the probability of moving from state j to state r
after i − 1 time units and k intermediate transitions during the interval (t, t + i − 1] for every t due to the
time-homogeneity assumption.
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Proof. Appendix A.3.

Lemma 1. The product Ωg(z|n) ◦ I is equal to the following:

Ωg(z|n) ◦ I =− (z − 1)
n−1

∑
j=1

[[
j

∑
i=1

a−1
1i C(j + 1 − i)

]
◦ I

]
[Ωg(z|n − j) ◦ I]

− z
n

∑
j=1

[
a−1

1j C(n + 1 − j)
]
◦ I +

n

∑
j=1

[
−a−1>

1j W(n + 1 − j)
]
◦ I,

∀i, j ∈ S and n = 0, 1, 2, . . ., where
−a−1

1i = C(i − 1) + ∑i−2
k=1 Si(k, mk).

Proof. Appendix A.4.

We now provide Theorem 4, which describes the analytic solutions of the occupancy
probabilities. In order to facilitate the presentation and proof of Theorem 4, we begin with
some aggregate notation. Let the following be the case:

Aj = C(j) +
j

∑
i=2

(
C(i − 1) +

i−2

∑
k=1

Si(k, mk)

)
C(j + 1 − i),

Bn,j =

[
n−j

∑
w=2

[(
C(w − 1) +

w−2

∑
k=1

Sw(k, mk)

)
>W(n − j + 1 − w)

]
◦ I + >W(n − j)

]
◦ I,

Mu = −
[

C(u − 1) +
u−1

∑
i=2

(
C(i − 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u − i)

]
◦ I +

u−2

∑
k=1

(−1)k+1Ru(k, mk),

M′
u =

[
C(u − 1) +

u−1

∑
i=2

(
C(i − 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u − i)

]
◦ I,

M′′
u =

[
C(u − 1) +

u−1

∑
i=2

(
C(i − 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u − i)

]
◦ I +

[
u−2

∑
k=1

(k + 1)(−1)kRu(k, mk)

]
,

M′′′
u =

[
C(u − 1) +

u−1

∑
i=2

(
C(i − 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u − i)

]
◦ I −

[
u−2

∑
k=1

(k + 2)(−1)kRu(k, mk)

]
,

En =
n

∑
j=2

(
C(j − 1) +

j−2

∑
k=1

Sj(k, mk)

)
>W(n + 1 − j) +> W(n),

Fx,u = x(x − 1)
u−2

∑
k=x−3

[
x−4

∏
r=−1

(k − r)

]
(−1)(k−x+3)Ru(k, mk)− x

[
u−2

∑
k=x−2

[
x−3

∏
r=−1

(k − r)

]
(−1)(k−x+2)Ru(k, mk)

]
,

Gu,n,j = C(n − j + 1 − u) ◦ I +
n−j+1−u

∑
w=2

[(
C(w − 1) +

w−2

∑
k=1

Sw(k, mk)

)
C(n − j + 2 − u − w)

]
◦ I,

Hx,u = x
u−2

∑
k=x−2

[
x−3

∏
r=−1

(k − r)

]
(−1)k−(x−2)Ru(k, mk)−

u−2

∑
k=x−1

[
x−2

∏
r=−1

(k − r)

]
(−1)k−(x−1)Ru(k, mk),

Qu,n,j =
n−j+1−u

∑
w=2

[(
C(w − 1) +

w−2

∑
k=1

Sw(k, mk)

)
>W(n − j + 2 − u − w)

]
◦ I +

[
>W(n − j + 1 − u)

]
◦ I,

where
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Ru(k, mk) =
u−k

∑
mk=2

u−k+1

∑
mk−1=1+mk

. . .
u−1

∑
m1=1+m2

k−1

∏
r=−1

[
mk−r−1−mk−r

∑
i=1

(
−a−1

1i

)
C(mk−r−1 − mk−r + 1 − i)

]
◦ I,

Si(k, mk) =
i−k

∑
mk=2

i−k+1

∑
mk−1=1+mk

. . .
i−1

∑
m1=1+m2

k−1

∏
r=−1

C(mk−r−1 − mk−r),

and

−a−1
1i = C(i − 1) +

i−2

∑
k=1

Si(k, mk).

Theorem 4. For a SMC with core matrix C(·), by adopting the above notations, we have that
the following:

Ω(0|n) = −
n−1

∑
j=1

Aj

[
Bn,j +

n−j

∑
u=2

MuQu,n,j

]
+ En,

Ω(1|n) =
n−1

∑
j=1

Aj

[
Bn,j − G1,n,j −

n−j

∑
u=2

[
Mu + Gu,n,j

]
− 2

n−j

∑
u=2

M′′′
u Qu,n,j

]
,

Ω(2|n) =
n−1

∑
j=1

Aj

[
2G1,n,j +

n−j

∑
u=2

u−2

∑
k=1

[
(−2k − 4)(−1)kRu(k, mk)Gu,n,j

]
− 4

n−j

∑
u=2

M′
uGu,n,j

+2
n−j

∑
u=2

M′
uQu,n,j −

n−j

∑
u=2

u−2

∑
k=1

(k + 1)(k + 2)(−1)k−1Ru(k, mk)Qu,n,j

]
,

Ω(3|n) =
n−1

∑
j=1

Aj

[
6

n−j

∑
u=2

M′′
uGu,n,j − 3

n−j

∑
u=2

u−2

∑
k=1

k(k + 1)(−1)k+1Ru(k, mk)Gu,n,j

−
n−j

∑
u=2

(k − 1)k(k + 1)(−1)k−2Ru(k, mk)Qu,n,j + 3
n−j

∑
u=2

u−2

∑
k=1

k(k + 1)(−1)k−1Ru(k, mk)Qu,n,j

]
,

and

Ω(x|n) =
n−1

∑
j=1

[
Aj

n−j

∑
u=2

[
Fx,u + Gu,n,j + Hx,uQu,n,j

]]
, ∀ x ≥ 4.

Proof. Appendix A.5.

4. Illustration

In this section we will accompany the theoretical results of the paper with two appli-
cations related to DNA sequences. It is known that a DNA strand consists of a sequence of
adenine (A), guanine (G), cytosine (C) and thymine (T), which are the four nucleotides. We
assume that a DNA sequence could be described by a homogeneous discrete SMC {Xt}∞

t=0
with state space S = {w1, w2, . . . , wN}, where wi, i = 1, 2, . . . , N is a specific word that
is a combination of the letters of the DNA alphabet S = {A, C, G, T} with length l and t
denoting the position of the word inside the sequence.

4.1. Inverted Repeats

The main focus of the following approach is the appearance of specific words formed
from the alphabet A, C, G, T and their symmetric complements (inverted repeats). In-
verted repeats are commonly found in eukaryotic genomes [48]. The presence of inverted
repeats could form DNA cruciforms that have been shown to play an important role in the
regulation of natural processes involving DNA. The cruciform structures are important
for various biological processes, including replication, regulation of gene expression and
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nucleosome structure. They have also been implicated in the development of diseases
including cancer, Werner’s syndrome and others [49].

For each DNA word w, there exists a reversed complement of the word w′. For exam-
ple, the word w = ACG has the word w′ = CGT as an inverted repeat. The main question
that we will attempt to address by applying the analytic relationships derived earlier is the
following: Given that the SMC entered at the initial position in the word w, we want to
estimate the probability of the reversed complement word w′ appearing for the first time
after a certain range of letters n. We define the distance, d, between two words as the num-
ber of letters between the first letter of the initial word that has appeared and the first letter
of the following word that subsequently appears. For the sake of simplicity, we consider
only the scenario where d > l. The DNA sequence that was used for this illustration is
the first chromosome of the human genome consisting of 248,956,422 base-pairs that are
publicly available from the website of the National Center for Biotechnology Information
(NCBI) [50].

For the first illustration, three words of length l = 7 were chosen that have been
previously shown to exhibit different distances between them and their inverted comple-
ments [51]. The words were w1 = GGCTCAC, w2 = ATATATG and w3 = CCACAAT.
For each word, the state space of the SMC consisted of the word and its reversed comple-
ment, e.g., S = {wi, w′

i}. First, the basic parameters of the SMC were estimated, namely
the transition probability matrix and the sequence of sojourn times. The sojourn time was
defined as the distance, i.e., the number of nucleotides that occur between each word and
its inverted repeat. The transition matrix and the empirical distribution of the sojourn
times were estimated using the empirical estimators. The sequence of the core matrices
was calculated as the Hadamard product of the transition matrix with the sequence of
the sojourn time matrices. For each word w ∈ S, the first passage time probability was
calculated between the word w and its reversed complement w′ according to the proposed
analytic relationship (Theorem 1). For a maximum distance, (n = 1000), the highest first
passage time probabilities of the three words and their inverted repeats, along with the
corresponding distances are illustrated in Figure 1. Concretely, the first passage time
probabilities were calculated for the human Chromosome 1, aiming to estimate the most
probable distances between words and their symmetrical complements. More specifically,
as presented in Figure 1, we have noted that, for the first passage time probabilities, we
have argmax( fw1w′

1
) = 210, argmax( fw2w′

2
) = 10 and argmax( fw3w′

3
) = 132 approximating

the numerical results of previous studies with corresponding values for the arguments
210, 15 and 133 for the three words, respectively [51]. This highlights the fact that specific
DNA words exhibit different behaviors and the distance between them and their inverted
repeats demonstrates variability.

4.2. CpG Islands

Usually, in vertebrate DNA sequences, the dinucleotide CG occurs less frequently than
expected [52]. For the second illustration, we considered CpG islands, which are genomic
regions that contain an elevated number of the dinucleotide CG. The human genome
contains approximately 30 thousand CpG islands. The APRT gene is an example of a CpG
region and it was used for this analysis [53]. This gene provides instructions for making an
enzyme called adenine phosphoribosyltransferase (APRT). APRT contains approximately
2500 nucleotides and it had been shown to include an elevated amount of the dinucleotide
GC [54]. We modeled the sequence of this DNA region as a homogeneous SMC with state
space containing all the two-letter words from the DNA alphabet. The transition probability
matrix and the sojourn times were estimated using the empirical estimators. The occupancy
distribution ωGCGC(x|n) for a fixed length of n = 100 was calculated using the analytic
relationship from Theorem 4 in order to estimate the occupancy distribution of specific
words up to a specified sequence length. For comparison, we also applied the model to an
intron sequence of human’s phosphodiesterase gene (PDEA) [55]. The two sequences are
publicly available from the NCBI. The occupancy probabilities are presented in Figure 2 up
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to length n = 50. It is confirmed that the number of occupancies of the dinucleotide GC will
be greater in the CpG island compared to the intron sequence. As expected, the occupancy
probabilities applied on the two sequences indicated that the occurrences of GCs were
more frequent in the CpG sequence.

(a) w1 = GGCTCAC

(b) w2 = ATATATG

(c) w3 = CCACAAT
Figure 1. First passage time (FPT) probabilities for distance n ≤ 1000.
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Figure 2. Occupancy probabilities of APRT and PDEA genes.

5. Concluding Remarks

In this article, three classes of important probabilities of a semi-Markov process,
namely the first passage time, the occupancy and the duration probabilities were defined
and their closed analytic forms were proved by using the basic parameters of the process.
The study of the first passage time probability provides information regarding the distribu-
tion of the time elapsed to reach a state from another for the first time, either in terms of
transitions or time. The second category of duration probabilities provides information
about the distribution of the number of virtual transitions taking place before an actual
transition to a different state occurs. Finally, the third class of probabilities provides insight
information regarding the distribution of the number of times the SMC makes transitions
to some state in a time interval of a given length. We provided analytic forms on the actual
behavior of the recursive relations of the aforementioned probabilities and included these
results into specific propositions and theorems.

The analytical results were accompanied with two illustrations on human genome
DNA strands which are often studied using probabilistic modeling and, specifically, Marko-
vian models. Although, in the relevant literature, there exist several algorithmic approaches
analyzing the occupancy and appearance of words in DNA sequences, the results of the
illustration section strongly suggest that the proposed modeling framework could also be
used for the investigation of the structure of genome sequences.

Of course nothing comes without limitations and motivation for further research.
For example, additional research effort could aim towards high-order dependencies since
DNA sequences often show long-range correlations. This could result in a more coherent
modeling approach. Furthermore, additional parameters could be included in the model,
for example the length of sequence or specific mutations, resulting in more realistic rep-
resentations regarding the different structures of complex genome of humans and other
organisms. Finally, the proposed model could be applied in completely different contexts,
such as natural language processing, linguistics, text similarity and anomaly detection,
i.e., areas of machine learning that appear to be amongst the most popular areas in the last
decade in data science and stochastic modeling.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

The results for (1) and (2) are obvious. For the third part, we used the matrix notation
of the first passage time probabilities:

F(k|t, n) =
n−k+1

∑
m=1

C(t, m){F(k − 1|t + m, n − m) ◦ B}+ δ(k − 1)C(t, m),

with F(k|t, n) = 0 if k > n or k = 0. For k = 1 and m = mi we have shown the results for
the case where k > 1 can be proved by induction. Thus, we assume that this result holds
for k − 1 and we will show that it also holds for each k ≤ n. Here we note that the recursive
relationship of the first passage time probabilities could be reformulated as follows.

fij(k|t, n) =
n−k+1

∑
m1=1

∑
x1 �=j

cix1 (t, m1)

⎧⎨⎩ n−k+2

∑
m2=1+m1

∑
x2 �=j

cx1x2 (t + m1, m2 − m1)

⎫⎬⎭⎧⎨⎩. . .

⎧⎨⎩ n−1

∑
mk−1=1+mk−2

∑
xk−1 �=j

cxk−2xk−1 (t + mk−2, mk−1 − mk−2)cxk−1 j(t + mk−1, n − mk−1)

⎫⎬⎭
⎫⎬⎭ . . .

+ δ(k − 1)cij(t, n).

Using matrix notation, we can express the previous relationship as the following.

F(k|t, n) =
n−k+1

∑
m1=1

C(t, m1)

{
n−k+2

∑
m2=1+m1

C(t + m1, m2 − m1)

}
{

. . .

{
n−1

∑
mk−1=1+mk−2

C(t + mk−2, mk−1 − mk−2){C(t + mk−1, n − mk−1) ◦ B}
}

◦ B

}
. . . ◦ B

for 0 < k ≤ n.

The initial conditions are F(k|t, n) = 0 for k > n or k = 0 and F(1|t, n) = C(t, n).
By using the following notation:

n−k+1

∑
m1=1

{
n−k+2

∑
m2=1+m1

{
. . .

{
n−1

∑
mk−1=1+mk−2

=
n−k+1

∑
m1=1

∗
n−k+2

∑
m2=1+m1

∗ . . . ∗
n−1

∑
mk−1=1+mk−2

,

we obtain the following.

F(k|t, n) =
n−k+1

∑
m=1

C(t, m)

{{
n−m−k+2

∑
m1=1

∗
n−m−k+3

∑
m2=1+m1

∗ . . . ∗
n−m−1

∑
mk−2=1+mk−3

C(t, m1)

}}
{C(t + m1, m2 − m1){. . . {C(t + m + mk−2, n − m − mk−2) ◦ B} ◦ B} . . .} ◦ B.
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By the appropriate substitution of the time indices and by the definition of the follow-

ing operation ∏2
r=1

{B}
Ar = A1 ∗B A2 = A2(A1 ◦ B) for the matrices A1, A2, B, we obtain

the desired result.

Appendix A.2. Proof of Theorem 2

The results for (1) and (2) are obvious. For the third part, we used induction. By
using matrix notation on the recursive relationship, it holds that, for k = 2, we have
the following.

D(2|t, n) =
n−1

∑
m1=1

(C(t, m1) ◦ I)(W(t + m1, n − m1)− C(t + m1, n − m1) ◦ I)

Now assume that the relationship hold for k − 1, which is the following.

D(k − 1|t + m, n − m) =
n−m−k+2

∑
m1=1

∗
n−m−k+3

∑
m2=1+m1

∗ . . . ∗
n−m−1

∑
mk−2=1+mk−3

(C(t + m, m1) ◦ I)

(C(t + m + m1, m2 − m1) ◦ I) . . . (C(t + m + mk−3, mk−2 − mk−3) ◦ I)
(W(t + m + mk−2, n − m − mk−2)− C(t + m + mk−2, n − m − mk−2) ◦ I).

Therefore, the following obtains.

D(k|t, n) =
n−k+1

∑
m=1

∗
n−m−k+2

∑
m1=1

∗ . . . ∗
n−m−1

∑
mk−2=1+mk−3

(C(t + m, m1) ◦ I)

(C(t + m + m1, m2 − m1) ◦ I) . . . (C(t + m + mk−3, mk−2 − mk−3) ◦ I)
(W(t + m + mk−2, n − m − mk−2)− C(t + m + mk−2, n − m − mk−2) ◦ I).

By appropriately substituting the time indices with m′
0 = 0, m′

1 = m, m′
2 = m + m1,

. . . m′
i = m + mi−1,...,m′

k−1 = m + mk−2, i = 1, 2, . . . , k − 1, where 1 + mi−1 ≤ mi ≤
n − m − k + i + 1, we obtain the following:

D(k|t, n) =
n−k+1

∑
m′

1=1
∗

n−k+2
∑

m′
2=1+m′

1

∗ . . . ∗
n−1
∑

m′
k−1=1+m′

k−2

(
C
(
m′

1
)
◦ I
)(

C
(
m′

2 − m′
1
)
◦ I
)(

C
(
m′

3 − m′
2
)
◦ I
)

. . .
(

C
(

m′
k−1 − m′

k−2

)
◦ I
)(

W
(

n − m′
k−1

)
− C

(
n − m′

k−1

)
◦ I
)

,

which results in the stated relationship.

Appendix A.3. Proof of Theorem 3

Assuming homogeneity in time, Equation (4) is provided by the following:

ωij(x|n) =
N

∑
r=1
r �=j

n

∑
m=0

cir(m)ωrj(x|n − m)+

+
n

∑
m=0

cij(m)ωjj(x − 1|n − m) + δ(x)>wi(n),

(A1)

where i, j ∈ S, n = 0, 1, . . . and x = 0, 1, . . .. Equation (A1) can be written as follows.

ωij(x|n) =
N

∑
r=1

n

∑
m=0

cir(m)[ωrj(x|n − m)(1 − δrj) + ωrj(x − 1|n − m)δrj] + δ(x)>wi(n).

(A2)
Equation (A2) in matrix notation is the following.

Ω(x|n) =
n

∑
m=1

C(m)[Ω(x|n − m) ◦ (U − I) + Ω(x − 1|n − m) ◦ I] + δ(x)>W(n).
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By applying the geometric transform to the above, we obtain the following:

Ωg(z|n) =
n

∑
m=1

C(m)Ωg(z|n − m) + (z − 1)
n

∑
m=1

C(m)[Ωg(z|n − m) ◦ I] +> W(n),

with initial condition Ωg(z|0) = I. Following the methodology of Vassiliou and Pa-
padopoulou (1992), we derive the result of the Theorem 3. [15]

Appendix A.4. Proof of Lemma 1

By using the Hadamard product on Theorem 3, we have the following.

Ωg(z|n) ◦ I =− (z − 1)
n−1

∑
j=1

[[
j

∑
i=1

a−1
1i C(j + 1 − i)

]
[Ωg(z|n − j) ◦ I]

]
◦ I

− z
n

∑
j=1

[
a−1

1j C(n + 1 − j)
]
◦ I −

n

∑
j=1

[
a−1>

1j W(n + 1 − j)
]
◦ I.

By using the following property:

(A(B ◦ I)) ◦ I = (A ◦ I)(B ◦ I).

we obtain the following:

[[
j

∑
i=1

a−1
1i C(j + 1 − i)

]
[Ωg(z|n − j) ◦ I]

]
◦ I =

[[
j

∑
i=1

a−1
1i C(j + 1 − i)

]
◦ I

]
[Ωg(z|n − j) ◦ I].

which completes the proof.

Appendix A.5. Proof of Theorem 4
An early version of the proof of Theorem 4 can be found in [56]. We analytically

present here all necessary steps of the proof. Using the equations provided by the results
of Theorem 3 and by substituting Ωg(z|n) ◦ I with the result found in Lemma 1, we can
obtain the analytic relation for the geometric transforms of Ωg(z|n), which is as follows:

Ωg(z|n) = (z − 1)
n−1

∑
j=1

Aj

⎡⎣ zG1,n,j + z ∑
n−j
u=2

[
(z − 1)M′

u + ∑u−2
k=1 (z − 1)k+1Ru(k, mk)

]
Gu,n,j

+Q1,n,j + ∑
n−j
u=2

(
(z − 1)M′

u + ∑u−2
k=1 (z − 1)k+1Ru(k, mk)

)
Qu,n,j

⎤⎦+
+ zAn + En,

(A3)

where

Aj = C(j) +
j

∑
i=2

(
C(i − 1) +

i−2

∑
k=1

Si(k, mk)

)
C(j + 1 − i),

M′
u =

[
C(u − 1) +

u−1

∑
i=2

(
C(i − 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u − i)

]
◦ I,

En =
n

∑
j=2

(
C(j − 1) +

j−2

∑
k=1

Sj(k, mk)

)
>W(n + 1 − j) +> W(n),

Gu,n,j = C(n − j + 1 − u) ◦ I +
n−j+1−u

∑
w=2

[(
C(w − 1) +

w−2

∑
k=1

Sw(k, mk)

)
C(n − j + 2 − u − w)

]
◦ I,

Qu,n,j =
n−j+1−u

∑
w=2

[(
C(w − 1) +

w−2

∑
k=1

Sw(k, mk)

)
>W(n − j + 2 − u − w)

]
◦ I +

[
>W(n − j + 1 − u)

]
◦ I.

Then, by applying properties of the inverse geometric transforms by using the equa-
tion Ω(x|n) = 1

x!
d(x)

dzx Ωg(z|n)
∣∣∣
z=0

and by repeatedly taking the derivatives of Ωg(z|n) with
respect to z, we obtain the result of the Theorem 5 for x ≥ 1.
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Finally, for the special case where x = 0, by substituting z = 0 in expression (A3), we
obtain the following:

Ω(0|n) = −
n−1

∑
j=1

Aj

[
Bn,j +

n−j

∑
u=2

MuQu,n,j

]
+ En,

where the following results.

Bn,j =

[
n−j

∑
w=2

[(
C(w − 1) +

w−2

∑
k=1

Sw(k, mk)

)
>W(n − j + 1 − w)

]
◦ I +> W(n − j)

]
◦ I,

Mu = −
[

C(u − 1) +
u−1

∑
i=2

(
C(i − 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u − i)

]
◦ I +

u−2

∑
k=1

(−1)k+1Ru(k, mk).

Appendix B

Appendix B.1

>fij(n) = 1 − fij(n) ⇒> f g
ij(z) = ∑∞

n=0 >fij(n)zn = ∑∞
n=0
(
1 − fij(n)

)
zn =

= ∑∞
n=0 zn − ∑∞

n=0 fij(n)zn = 1
1−z − ∑∞

n=0
(
∑n

m=0 fij(m)
)
zn =

= 1
1−z − ∑∞

m=0 ∑∞
n−m=0 fij(m)zmzn−m = 1

1−z − f g
ij (z)
1−z =

1− f g
ij (z)

1−z .

Appendix B.2

ω
gg
ij (y|z) => f g

ij(z) + y f g
ij(z)

> f g
jj(z)(

1 − y f g
jj(z)

)
=

1 − f g
ij(z)

1 − z
+

y f g
ij(z)(

1 − y f g
jj(z)

) 1 − f g
jj(z)

1 − z

=

(
1 − f g

ij(z)
)(

1 − y f g
jj(z)

)
+ y f g

ij(z)
(

1 − f g
jj(z)

)
(1 − z)

(
1 − y f g

jj(z)
)

=
1 − y f g

jj(z)− f g
ij(z) + y f g

jj(z) f g
ij(z) + y f g

ij(z)− y f g
ij(z) f g

jj(z)

(1 − z)
(

1 − y f g
jj(z)

)
=

(
1 − y f g

jj(z)
)

− f g
ij(z) + y f g

ij(z)

(1 − z)
(

1 − y f g
jj(z)

)
=

(
1 − y f g

jj(z)
)

− (1 − y) f g
ij(z)

(1 − z)
(

1 − y f g
jj(z)

) .
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Abstract: In this paper, a new reliability measure, named sequential interval reliability, is introduced
for homogeneous semi-Markov repairable systems in discrete time. This measure is the probability
that the system is working in a given sequence of non-overlapping time intervals. Many reliability
measures are particular cases of this new reliability measure that we propose; this is the case for the
interval reliability, the reliability function and the availability function. A recurrent-type formula is
established for the calculation in the transient case and an asymptotic result determines its limiting
behaviour. The results are illustrated by means of a numerical example which illustrates the possible
application of the measure to real systems.

Keywords: semi-Markov; reliability; transient analysis; asymptotic analysis

1. Introduction

This paper is concerned with reliability indicators for semi-Markov systems. As it is
well known (see, e.g., [1–6]), semi-Markov processes represent an important modelling tool
for practical problems in reliability, survival analysis, financial mathematics, and manpower
planning, among other applied domains. The attractiveness of these processes comes from
the fact that the sojourn time in a state can be arbitrarily distributed, as compared to
Markov processes, where the sojourn time in a state is constrained to be geometrically or
exponentially distributed.

Several researchers have investigated the reliability measures of semi-Markov pro-
cesses. Examples of discrete-time semi-Markov processes with the associated reliability
measures and statistical topics can be found in, e.g., [7–10], who proposed a semi-Markov
chain usage model in discrete time and provided analytical formulas for the mean and vari-
ance of the single-use reliability of the system. The evaluation of reliability indicators for
continuous-time semi-Markov processes and statistical inference can be found in [11–15].
The readers interested in solving numerically continuous-time semi-Markov processes by
using discrete-time semi-Markov processes for solving continuous ones are referred to
[16–19].

In the present work, we propose a new measure for analysing the performance of
a system, called the sequential interval reliability (SIR). This generalises the notion of
interval reliability, as it is introduced in [20] for discrete-time semi-Markov processes and
further studied in [21,22]. In line with the work of [23], we are also interested in a general
definition that takes into account the dependence on what is called the final backward. It is
worth mentioning that interval reliability was first introduced and studied for continuous-
time semi-Markov systems in [24,25]. In those contributions, the interval reliability was
expressed in terms of a system of integral equation.

This measure computes the probability that a system is in a working state during a
sequence of non-overlapping intervals. This type of measure is of importance in several
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applications: in reliability, when a system has to perform during consequent time periods;
in extreme value theory, where we can be interested in the occurrence of an extreme event
during several time periods; in energy studies, where we are interested, for instance, in
the electricity consumption that is greater or below a certain threshold; and in financial
modelling, in order to create advanced credit scoring models, etc.

This article is structured as follows: in the next section, we introduce the basic semi-
Markov notions and notations and we also give the corresponding measures of reliabil-
ity. The main object of our study, namely sequential interval reliability, is introduced in
Section 3. Then, we first perform transient analysis, providing a recurrence formula for
computing the SIR. Second, we furnish an asymptotic result, as a time of interest that
extends to infinity. A numerical example is provided in Section 4, illustrating some aspects
of our theoretical work.

2. Discrete-Time Semi-Markov Processes and Reliability Measures

Let us consider a random system with finite state space E = {1, . . . , s}, s < ∞ and
let (Ω, A,P) be a probability space. We assume that the evolution in time of the system
is governed by a stochastic process Z = (Zk)k∈N, defined on (Ω, A,P) with values in E;
in other words, Zk gives the state of the system at time k. Let T = (Tn)n∈N, defined on
(Ω, A,P) with values in Z, be the successive time points when state changes in (Zk)k∈N
occur (the jump times) and let J = (Jn)n∈N, defined on (Ω, A,P) with values in E, be the
successively visited states at these time points. We denote by X = (Xn)n∈N∗ the successive
sojourn times in the visited states, i.e., Xn+1 = Sn+1 − Sn, n ∈ N. The relation between the
process Z and the process J of the successively visited states is given by Zk = JN(k), or,
equivalently, Jn = ZTn , n, k ∈ N, where:

N(k) := max{n ∈ N | Tn ≤ k} (1)

is the discrete-time counting process of the number of jumps in [0, k] ⊂ N.

Definition 1 (Semi-Markov chain SMC and Markov renewal chain MRC). If we have:

P(Jn+1 = j, Tn+1 − Tn = k|Jn = i, Jn−1, . . . , J0, Tn, . . . , T0) = P(Jn+1 = j, Tn+1 − Tn = k|Jn = i), (2)

then Z = (Zk)k is called a semi-Markov chain (SMC) and (J, T) = (Jn, Tn)n is called a Markov
renewal chain (MRC).

Throughout this paper, we assume that the MRC or SMC are homogeneous with
respect to the time in the sense that Equation (2) is independent of n. Thus, we will work
under the following assumption:

Assumption 1. The SMC (or, equivalently, the MRC) is assumed to be homogeneous in time.

It is clear that, if (J, T) is a MRC, then J = (Jn)n∈N is a Markov chain with state space
E, called the embedded Markov chain of the MRC (J, T) (or of the SMC Z).

Definition 2. For a semi-Markov chain, under Assumption 1, we define:

• The semi-Markov core matrix (qij(k))i,j∈E,k∈N, qij(k) = P(Jn+1 = j, Tn+1 − Tn = k|Jn =
i);

• The initial distribution (μi)i∈E, μi = P(J0 = i) = P(Z0 = i);
• The transition matrix (pij)i,j∈E of the embedded Markov chain J = (Jn)n, pij = P(Jn+1 =

j|Jn = i);
• The conditional sojourn time distribution ( fij(k))i,j∈E,k∈N, fij(k) = P(Tn+1 − Tn =

k|Jn = i, Jn+1 = j);
• The sojourn time distribution in a state (hi(k))i∈E,k∈N, hi(k) = P(Tn+1 − Tn = k|Jn =

i).
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Note that:

qij(k) = pij fij(k).

Remark 1. We would like to draw the attention to a specific terminological matter that we encoun-
tered in the literature of discrete-time semi-Markov processes with finite or countable state space
and that may lead to terminological confusion.

Some authors use the term “semi-Markov kernel” of discrete-time SM processes for P(Jn+1 =
j, Tn+1 − Tn = k|Jn = i) (see, e.g., [1,7,8,10,19,20,22]). Other authors use the term “semi-
Markov kernel” of discrete-time SM processes for P(Jn+1 = j, Tn+1 − Tn ≤ k|Jn = i) (see,
e.g., [21,23,26–28]), while the quantity P(Jn+1 = j, Tn+1 − Tn = k|Jn = i) can have several
names, for instance semi-Markov core matrix. In this article, we used this second terminology.

In the authors’ opinion, this terminological confusion stems from the following reasons:

1. On the one hand, when working in discrete time and calling P(Jn+1 = j, Tn+1 − Tn ≤
k|Jn = i), k ∈ N, the (discrete-time) semi-Markov kernel, this is achieved by using exactly
the same term as in continuous time, where P(Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i), t ∈ R
represents the (continuous-time) semi-Markov kernel.

2. On the other hand, when working in discrete time and calling P(Jn+1 = j, Tn+1 − Tn =
k|Jn = i), k ∈ N, the (discrete-time) semi-Markov kernel, this is done by analogy with
continuous time, since for a discrete-time finite/countable state-space, a Markov or sub-Markov
kernel is determined by the behaviour on singleton events (the probability mass function defines
the distribution).

In any case, all this discussion is only a matter of notational convenience.

Clearly, a semi-Markov chain is uniquely determined a.s. by an initial distribution
(μi)i∈E and a semi-Markov core matrix (qij(k))i,j∈E,k∈N or, equivalently, by an initial distribu-
tion (μi)i∈E, a Markov transition matrix (pij)i,j∈E and conditional sojourn time distributions
( fij(k))i,j∈E,k∈N.

Our work will be carried out under the following assumptions:

Assumption 2. Transitions to the same state are not allowed, i.e., pii ≡ 0 for all i ∈ E.

Assumption 3. There are no instantaneous transitions, i.e., qij(0) ≡ 0 for all i, j ∈ E.

Clearly, Assumption 2 is equivalent to qii(k) = 0 for all i ∈ E, k ∈ N, and Assumption 3
is equivalent to fij(0) ≡ 0 for all i, j ∈ E; note that this implies that T is a strictly increasing
sequence.

For the conditional sojourn time distribution and sojourn time distribution in a state,
one can consider the associated cumulative distribution functions defined by

Fij(k) := P(Tn+1 − Tn ≤ k|Jn = i, Jn+1 = j) =
k

∑
t=1

fij(t);

Hi(k) := P(Tn+1 − Tn ≤ k|Jn = i) =
k

∑
t=1

hi(t).

For any distribution function F(·), we can consider the associated survival/reliability
function defined by

F(k) := 1 − F(t).
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Consequently, we have:

Fij(k) := P(Tn+1 − Tn > k|Jn = i, Jn+1 = j) = 1 −
k

∑
t=0

fij(t) =
∞

∑
t=k+1

fij(t);

Hi(k) := P(Tn+1 − Tn > k|Jn = i) = 1 −
k

∑
t=0

hi(t) =
∞

∑
t=k+1

hi(t).

To investigate the reliability behaviour of a semi-Markov system, we split the space
E into two subsets: U for the up-states and D for the down-states, with E = U ∪ D and
E = U ∩ D = ∅. For simplicity, we consider U = {1, . . . , s1} and D = {s1 + 1, . . . , s}.

Two important reliability measures of a system are the reliability (or survival) function
at time k ∈ N, denoted by R(k), and the (instantaneous) availability function at time k ∈ N,
denoted by A(k), defined, respectively, by

R(k) := P(Z0 ∈ U, . . . , Zk ∈ U),

A(k) := P(Zk ∈ U).

If ever we condition on the initial state, we obtain the corresponding conditional
reliability (or survival) function at time k ∈ N given that {Z0 = i}, i ∈ U, denoted by
Ri(k), and the conditional (instantaneous) availability function at time k ∈ N given that
{Z0 = i}, i ∈ E, denoted by Ai(k), is defined, respectively, by

R(k) := P(Z0 ∈ U, . . . , Zk ∈ U | Z0 = i), i ∈ U,

A(k) := P(Zk ∈ U | Z0 = i), i ∈ E.

Let us now define the interval reliability, introduced in [20] as the probability that the
system is in up-states during a time interval.

Definition 3 (Interval reliability, conditional interval reliability, cf. [20]). For k, p ∈ N and
i ∈ E, the interval reliability IR(k, p) and conditional interval reliability IRi(k, p) given the event
{Z0 = i} are, respectively, defined by

IR(k, p) := P(Zl ∈ U, l ∈ [k, k + p]); (3)

IRi(k, p) := P(Zl ∈ U, l ∈ [k, k + p] | Z0 = i). (4)

For k, p ∈ N and i ∈ E, it is clear that we have the following properties of the interval
reliability and conditional interval reliability (cf. Proposition 1 and Remark 1 of [20]):

R(k + p) ≤ IR(k, p) ≤ A(k + p); (5)

IRi(0, p) = Ri(p); (6)

IRi(k, 0) = Ai(k). (7)

3. Sequential Interval Reliability

Let us consider a repairable system. In this section, we introduce a new reliability
measure that we will call sequential interval reliability. This will generalise the notion of
interval reliability presented before, in the sense that we are looking at the probability that
the system is in working mode during two or several non-overlapping intervals.

More precisely, let us consider t := (ti)i=1,...,N and p := (pi)i=1,...,N two time sequences
such that:

1. t1 > 0, ti < ti+1 for all i = 1, . . . , N − 1;
2. pi ≥ 0 for all i = 1, . . . , N;
3. ti + pi < ti+1 for all i = 1, . . . , N − 1.
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It is clear that, in this case, {[ti, ti + pi]}i=1,...,N is a sequence of non-overlapping real
intervals.

For a sequence t := (ti)i=1,...,N indexes k1, k2 ∈ N, k1 ≤ k2, we will also use the notation
tk1:k2 := (ti)i=k1,...,k2 .

Definition 4 (Sequential interval reliability). Let (Zk)k∈N be a discrete time semi-Markov system
and let t := (ti)i=1,...,N and p := (pi)i=1,...,N , N ∈ N∗, be two time sequences such that {[ti, ti +
pi]}i=1,...,N is a sequence of non-overlapping real intervals. We assume that Assumptions 1–3 hold true.

1. We define the sequential interval reliability, SIR(N)(t, p), as the probability that the system is
in the up-states U during the time intervals {[ti, ti + pi]}i=1,...,N, meaning that:

SIR(N)(t, p) := P(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N); (8)

2. For v ∈ N and k ∈ E, we define the conditional sequential interval reliability, SIR(N)
k (v; t, p),

as the conditional probability that the system is in the up-states U during the time intervals
{[ti, ti + pi]}i=1,...,N , given the event (k, v) := {Z0 = k, B0 = v} = {JN(0) = k, TN(0) =
−v}, meaning that:

SIR(N)
k (v; t, p) := P(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N | Z0 = k, B0 = v) (9)

= P(k,v)(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N),

where Bt := t − TN(t) is the backward time process associated to the semi-Markov process.

Note that we have the obvious relationship between the sequential interval reliability
and the conditional sequential interval reliability:

SIR(N)(t, p) = ∑
k∈E

μkSIR(N)
k (0; t, p). (10)

For notational convenience, we will set:

SIR(N)
k (t, p) := SIR(N)

k (0; t, p) = P(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N | Z0 = k).

Remark 2. Under the previous notation, we have:

1. If ti + pi = ti+1 − 1 for all i = 1, . . . , N − 1, and v = 0, then SIR(N)
k (0; t, p) = IR(t1, tN +

pN − t1);
2. If t1 = 0, ti + pi = ti+1 − 1 for all i = 1, . . . , N − 1, k ∈ U and v = 0, then SIR(N)

k (0; t, p) =
Rk(tN + pN);

3. If pi = 0 for all i = 1, . . . , N, and v = 0, then SIR(N)
k (0; t, p) = Pk(Zti ∈ U, i =

1, . . . , N) =: SA(N)
k (t); this function denoted by SA(N)

k (t) can be called the sequential
availability function;

4. If there exists a j ∈ {1, . . . , N} such that ti = 0 for i < j and th = tj for h ≥ j, pi = 0 for all

i = 1, . . . , N, and v = 0, then SIR(N)
k (0; t, p) = A(tj), the availability function is computed

in tj.

3.1. Transient Analysis

We will now investigate the recursive formula for computing the sequential interval
reliability of a discrete-time semi-Markov system.

Proposition 1. Let (Zk)k∈N be a discrete time semi-Markov system, assuming Assumptions 1–3 hold
true and let t := (ti)i=1,...,N and p := (pi)i=1,...,N , N ∈ N∗, be two time sequences such that
{[ti, ti + pi]}i=1,...,N is a sequence of non-overlapping real intervals. Let v ∈ N be the value of the
backward process at time t = 0 and k ∈ E be the initial state. Then, the conditional sequential
interval reliability, SIR(N)

k (v; t, p), satisfies the following equation:

213



Mathematics 2021, 9, 1997

SIR(N)
k (v; t, p) = g(N)

k (v; t, p) + ∑
r∈E

t1

∑
θ=1

qkr(v + θ)

Hk(v)
SIR(N)

r (0; t − θ11:N , p), (11)

where 11:N is a vector of 1s of length N, and g(N)
k (v; t, p) is given by

g(N)
k (v; t, p) := �{k∈U}

[
Hk(tN + pN + v)

Hk(v)

+
t1+p1

∑
θ=t1+1

∑
r∈E

∑
m∈U

t1+p1−θ

∑
v′=0

qkr(v + θ)

Hk(v)
Rb

rm(v
′; t1 + p1 − θ)SIR(N−1)

m (v′; t2:N − 12:N(t1 + p1), p2:N)

+
N

∑
j=2

tj+pj

∑
θ=tj

∑
r∈E

qkr(v + θ)

Hk(v)
SIR(N−j+1)

r
(
0; (θ, tj+1:N − 1j+1:Nθ), (tj + pj − θ, pj+1:N)

)

+
N−1

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(v + θ)

Hk(v)
SIR(N−j)

r (0; tj+1:N − 1j+1:Nθ, pj+1:N)

⎤⎦, (12)

where �{k∈U} is the indicator function of the event {k ∈ U} and Rb
ij(v; k) is the reliability with

final backward defined by

Rb
ij(v; k) := P(Zs ∈ U, for all s ∈ {0, . . . , k − v}, Zk = j, Bk = v | Z0 = i, TN(0) = 0). (13)

Proof. Before proceeding with the proof, let us introduce the notation:

Z(t, p) :=
(
Zt1 , . . . , Zt1+p1 , . . . , Zt2 , . . . , Zt2+p2 , . . . , ZtN , . . . , ZtN+pN

)
.

From the definition of the SIR, it is clear that

SIR(N)
k (v; t, p) = P(k,v)

(
Z(t, p) ∈ UN+∑N

i=1 pi
)

. (14)

Let us consider now the r.v. T1 and observe that the events {T1 > tN + pN}, {T1 < t1},
{T1 ∈ ∪N

j=1[tj, tj + pj]} and {T1 ∈ ∪N−1
j=1 [tj + pj + 1, tj+1 − 1]} are mutually exclusive.

Consequently, we can write (14) as follows:

SIR(N)
k (v; t, p) = P(k,v)

(
Z(t, p) ∈ UN+∑N

i=1 pi , T1 > tN + pN

)
+P(k,v)

(
Z(t, p) ∈ UN+∑N

i=1 pi , T1 < t1

)
+ P(k,v)

(
Z(t, p) ∈ UN+∑N

i=1 pi , T1 ∈ ∪N
j=1[tj, tj + pj]

)
+P(k,v)

(
Z(t, p) ∈ UN+∑N

i=1 pi , T1 ∈ ∪N−1
j=1 [tj + pj + 1, tj+1 − 1

)
. (15)

We need to compute the four terms of the right-hand side of (15); let us denote them
by RT1, RT2, RT3 and RT4, respectively.

First, through a straightforward computation, we obtain

RT1 = �{k∈U}
Hk(tN + pN + v)

Hk(v)
. (16)

Second, using the double expectation formula and conditioning with respect to (J1, T1),
we immediately obtained the second term given by

RT2 = ∑
r∈E

t1−1

∑
θ=1

qkr(v + θ)

Hk(v)
SIR(N)

r (0; t − θ11:N , p). (17)

Third, using the double expectation formula, conditioning with respect to (J1, T1),
summing over all the possible values of T1 and splitting the computation according to the
interval to which T1 belongs, a quite long computation yields:
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RT3 = ∑
r∈E

qkr(v + t1)

Hk(v)
SIR(N)

r (0; t − t111:N , p)

+
t1+p1

∑
θ=t1+1

∑
r∈E

∑
m∈U

t1+p1−θ

∑
v′=0

qkr(v + θ)

Hk(v)
R f

rm(v′; t1 + p1 − θ)SIR(N−1)
m (v′; t2:N − 12:N(t1 + p1), p2:N)

+
N

∑
j=2

tj+pj

∑
θ=tj

∑
r∈E

qkr(v + θ)

Hk(v)
SIR(N−j+1)

r
(
0; (θ, tj+1:N − 1j+1:Nθ), (tj + pj − θ, pj+1:N)

)
. (18)

Furthermore, fourth, using the double expectation formula, conditioning with respect
to (J1, T1) and summing over all the possible values of T1, we obtain:

RT4 = �{k∈U}
N−1

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(v + θ)

Hk(v)
SIR(N−j)

r (0; tj+1:N − 1j+1:N θ, pj+1:N). (19)

Substituting these four terms in (15), we obtain the recurrence formula given in (11)
and (12).

If no initial backward is considered, taking v = 0 in Equation (11), we immediately
obtain the following recursive formula for the sequential interval reliability of a discrete-
time semi-Markov system, given the initial state.

Corollary 1. Let (Zk)k∈N be a discrete time semi-Markov system, assuming Assumptions 1–3
hold true and let t := (ti)i=1,...,N and p := (pi)i=1,...,N , N ∈ N∗, be two time sequences such that
{[ti, ti + pi]}i=1,...,N is a sequence of non-overlapping real intervals. Then, the sequential interval
reliability, SIR(N)(t, p), satisfies the following equation:

SIR(N)
k (t, p) = g(N)

k (t, p) + ∑
r∈E

t1

∑
θ=1

qkr(θ)SIR(N)
r (t − θ11:N , p), (20)

where we have set g(N)
k (t, p) := g(N)

k (0; t, p).

The next result provides a formula for computing the reliability with the final back-
ward Rb

ij(v; k) defined in Equation (13).

Lemma 1. For a discrete time semi-Markov system (Zk)k∈N, under Assumptions 1–3, let us define
the entrance probabilities eij(n), i, j ∈ E, n ∈ N by eij(n) = the probability that the system that
entered state i at time 0 will enter state j at time n. Under the previous notations, the reliability
with the final backward Rb

ij(v; k) defined in Equation (13) is given by

Rb
ij(v; k) = Hj(v)e

q̃
ij(k − v), (21)

where eq̃
ij(k − v) represents the entrance probabilities for the semi-Markov system (cf. [27]) associ-

ated with the semi-Markov core matrix:

q̃(k) =

⎛⎝ qUU(k) qUD(k) 1s−s1

01s1 0

⎞⎠, k ∈ N,

with qUU(k) and qUD(k) being the partitions of the matrix q(k) according to U × U and U × D.

Proof. First, it can be easily seen that:

Rb
ij(v; k) = Hj(v)P(Zk−v = j, Zk−v−1 �= j, Zs ∈ U, s = 0, 1, . . . , k − v | Z0 = i).
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Second, note that P(Zk−v = j, Zk−v−1 �= j, Zs ∈ U, s = 0, 1, . . . , k − v | Z0 = i), i, j ∈ E,
represent the entrance probabilities for the semi-Markov system associated to the semi-
Markov core matrix q̃(k). See also Proposition 5.1 of [1] for the use of the semi-Markov
system associated to the semi-Markov core matrix q̃(k) in reliability computation.

Third, in order to compute the entrance probabilities, one can use the recurrence
formulas (see [27]):

eij(n) = δijδ(n) +
s

∑
r=1

n

∑
m=1

pir fir(m)erj(n − m), (22)

where δij := 1 if i = j, δij := 0 if i �= j, δ(n) := 1 if n = 0, δ(n) = 0 if n �= 0.

Looking at the recurrence relationship given in Proposition 1 for computing the
conditional sequential interval reliability with initial backward SIR(N)

k (v; t, p), and taking
into account that, for N = 1, we obtain the interval reliability with the initial backward, and
see that we need a formula for computing the interval reliability with the initial backward,
denoted by IRk(v; t, p) and defined by

IRk(v; t, p) := P(Zl ∈ U, l ∈ [t, t + p] | Z0 = k, B0 = v). (23)

The next result provides a formula for computing this quantity.

Lemma 2. Under the previous notations, the interval reliability with initial backward IRk(v; t, p)
is given by

IRk(v; t, p) =
1

Hk(v)

[
Hk(v + t + p)�{k∈U} + ∑

j∈U

t+p

∑
θ=t

qkj(v + θ)Rj(t + p − θ)�{k∈U}

+ ∑
j∈E

t−1

∑
θ=1

qkj(v + θ)IRj(t − θ, p)

]
. (24)

Proof. The proof is a quite straightforward adaptation of a more general result presented
in [21].

The next result provides a series of inequalities between sequential interval reliability,
sequential availability, conditional reliability and conditional availability.

Proposition 2. Let (Zk)k∈N be a discrete time semi-Markov system, assuming Assumptions 1–3
hold true, and let k ∈ E and v ∈ N.

1. For any t1:N and p1:N , N ∈ N∗, such that {[ti, ti + pi]}i=1,...,N is a sequence of non-
overlapping real intervals, and for s ≤ N we have:

Rk(v, tN + pN) ≤ SIR(N)
k (v; t1:N , p1:N) ≤ SIR(N)

k (v; t1:s, p1:s) ≤ SA(N)
k (v; t1:N + p1:N)

≤ SA(s)
k (v; t1:s + p1:s) ≤ Ak(v; ts + ps). (25)

2. For any t1:N , a1:N and b1:N , N ∈ N∗, such that ai ≤ bi, i = 1, . . . , N, and {[ti, ti +
ai]}i=1,...,N and {[ti, ti + bi]}i=1,...,N are two sequences of non-overlapping real intervals,
then we have:

SIR(N)
k (v; t1:N , b1:N) ≤ SIR(N)

k (v; t1:N , a1:N). (26)
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3. For any t1:N , p1:N , x1:N , w1:N , N ∈ N∗, such that {[ti, ti + pi]}i=1,...,N and {[xi, xi +
wi]}i=1,...,N are two sequences of non-overlapping real intervals such that t1:N + p1:N =
x1:N + w1:N , and t1:N ≥ x1:N (element-wise), then we have:

SIR(N)
k (v; x1:N , w1:N) ≤ SIR(N)

k (v; t1:N , p1:N). (27)

Proof. For any k ∈ E and v ∈ N, let us define the set Ω(k,v) by

Ω(k,v) := {ω ∈ Ω | Z0(ω) = k, B0(ω) = v}.

The first point is obtained noticing that, for s ≤ N, we have:

{
ω ∈ Ω(k,v) | Zs ∈ U, ∀s = 1, . . . , tN + pN

}
⊆
{

ω ∈ Ω(k,v) | Z(t1:N , p1:N) ∈ UN+∑N
i=1 pi

}
⊆
{

ω ∈ Ω(k,v) | Z(t1:s, p1:s) ∈ Us+∑s
i=1 pi

}
⊆
{

ω ∈ Ω(k,v) | Z(t1:N + p1:N , 01:N) ∈ UN
}

⊆
{

ω ∈ Ω(k,v) | Z(t1:s + p1:s, 01:s) ∈ Us
}

⊆
{

ω ∈ Ω(k,v) | Zts+ps ∈ U
}

.

Applying the probability on this chain of inequalities and taking into account the
definitions of reliability, sequential reliability, availability and sequential availability, we
obtain the inequalities given in (25).

In order to prove the second point, we first observe that ai ≤ bi, i = 1, . . . , N, implies
that the two sequences of non-overlapping real intervals {[ti, ti + ai]}i=1,...,N and {[ti, ti +
bi]}i=1,...,N are such that [ti, ti + ai] ⊆ [ti, ti + bi], i = 1, . . . , N. Thus, we have:

{
ω ∈ Ω(k,v) | Z(t1:N , b1:N) ∈ UN+∑N

i=1 bi
}

⊆
{

ω ∈ Ω(k,v) | Z(t1:N , a1:N) ∈ UN+∑N
i=1 ai

}
,

which implies that SIR(N)
k (v; t1:N , b1:N) ≤ SIR(N)

k (v; t1:N , a1:N), so we obtain (26).
To prove the last point, since t1:N ≥ x1:N and t1:N + p1:N = x1:N + w1:N , we have that

[ti, ti + pi] ⊆ [xi, xi + wi], i = 1, . . . , N. Consequently, we have:

{
ω ∈ Ω(k,v) | Z(x1:N , w1:N) ∈ UN+∑N

i=1 wi
}

⊆
{

ω ∈ Ω(k,v) | Z(t1:N , p1:N) ∈ UN+∑N
i=1 pi

}
,

which implies that SIR(N)
k (v; x1:N , w1:N) ≤ SIR(N)

k (v; t1:N , p1:N), so we obtain (27).

3.2. Asymptotic Analysis

We can investigate the asymptotic analysis of sequential interval reliability
SIR(N)

k (v; t1:N , b1:N), by letting t1 tend towards infinity. The next result given in Theorem 1
answers this question.

Let t := (ti)i=1,...,N and p := (pi)i=1,...,N , N ∈ N∗, be two time sequences such that
{[ti, ti + pi]}i=1,...,andN is a sequence of non-overlapping real intervals. Let us denote by
li := ti − ti−1, i = 2, . . . , N.

Theorem 1. Let us consider an ergodic semi-Markov chain such that Assumptions 1–3 hold true
and the mean sojourn times mi in any state i are finite, mi < ∞, i ∈ E, where mi is the mean time
of the distribution (hi(k))k∈N, i ∈ E. Then, under the previous notations, we have:

lim
t1→∞

SIR(N)
k (v; t, p) = lim

t1→∞
SIR(N)(t, p) =

1
∑i∈E ν(i)mi

∑
j∈U

ν(j) ∑
t1≥0

g(N)
j (t, p), (28)

where (ν(i))i∈E represents the stationary distribution of the embedded Markov chain (Jn)n∈N.

Before giving the proof of this result, we first need some preliminary notions and results.
First, let us recall some definitions related to the matrix convolution product. Let us

denote by ME the set of real matrices on E × E and by ME(N) the set of matrix-valued
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functions defined on N, with values in ME. For A ∈ ME(N), we write A = (A(k); k ∈ N),
where, for k ∈ N fixed, A(k) = (Aij(k); i, j ∈ E) ∈ ME. Let I ∈ ME be the identity matrix
and 0 ∈ ME be the null matrix. Let us also define I := (I(k); k ∈ N) as the constant
matrix-valued function whose value for any nonnegative integer k is the identity matrix,
that is, I(k) := I for any k ∈ N. Similarly, we set 0 := (0(k); k ∈ N), with 0(k) := 0 for
any k ∈ N.

Let A, B ∈ ME(N) be two matrix-valued functions. The matrix convolution product
A ∗ B is the matrix-valued function C ∈ ME(N) defined by

Cij(k) := ∑
r∈E

k

∑
l=0

Air(k − l) Brj(l), i, j ∈ E, k ∈ N, (29)

or, in matrix form:

C(k) :=
k

∑
l=0

A(k − l)B(l), k ∈ N.

It can be easily checked whether the identity element for the matrix convolution
product in discrete time exists, and whether it is unique and given by δI = (dij(k); i, j ∈
E) ∈ ME(N) defined by

dij(k) :=

⎧⎨⎩ 1, if i = j and k = 0,

0, elsewhere,

or, in matrix form:

δI(k) :=

⎧⎨⎩ I, if k = 0,

0, elsewhere.

The power in the sense of convolution is straightforwardly defined using the previous
definition of the matrix convolution product given in (29). For A ∈ ME(N), a matrix-
valued function and n ∈ N, the n-fold convolution A(n) is the matrix-valued function
recursively defined by

A(0)
ij (k) := dij(k) =

⎧⎨⎩ 1, if i = j and k = 0,

0, elsewhere,

A(1)
ij (k) := Aij(k),

A(n)
ij (k) := ∑

r∈E

k

∑
l=0

Air(l) A(n−1)
rj (k − l), n ≥ 2, k ∈ N,

that is:
A(0) := δI, A(1) := A and A(n) := A ∗ A(n−1), n ≥ 2.

Second, let us introduce two sets of functions that will be useful for our study. Thus,
let us define:

A :=
{

f : {(t, p) ∈ NN ×NN | ti ≤ ti+1, i = 1, . . . , N − 1} → R
}

(30)

and, for l ∈ NN−1, p ∈ NN :

Bl,p :=
{

f̃ : N → R | f̃ (t1) = f̃ (t1; l, p)
}

, (31)
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where, by writing f̃ (t1; l, p), we mean that the function f̃ is a function of the variable t1,
while l, p are some parameters.

Let us consider a map between the two sets, Φ : A → Bl,p defined by

Φ( f (t, p)) := f̃ (t1; l, p), (32)

where li := ti − ti−1, i = 2, . . . , N.
The map Φ allows to represent a function f (t, p) ∈ A as an element of the set Bl,p,

that is to say as a parametric function of one variable, namely t1. One can easily check that
Φ is bijective and linear.

The last point before giving the proof of Theorem 1 will be to introduce a new matrix
convolution product, important for our framework, and to see the relationship with the
classical matrix convolution product.

Definition 5. Let A ∈ ME(N) be a matrix-valued function and let b = (b1, . . . , bs) be a vector-
valued function such that every component br ∈ A, r ∈ E. The matrix convolution product ∗ is
defined by

(A∗b)k(t, p) := ∑
r∈E

t1

∑
θ=1

Akr(θ)br(t − θ11:N , p),

or, in matrix form:

(A∗b)(t, p) :=
t1

∑
θ=1

A(θ)b(t − θ11:N , p).

The next result will give a relationship between this new introduced matrix convolu-
tion product (cf. Definition 5) and the classical one defined in (29).

Proposition 3. Let q ∈ ME(N) be a semi-Markov semi-Markov core matrix and let f =
( f1, . . . , fs) be a vector-valued function such that every component fr ∈ A, r ∈ E. Then:

Φ((q∗f)(t, p)) = (q ∗ f̃)(t1; l2:N , p).

Proof. From the additivity of the map Φ, we have:

Φ((q∗f)(t, p))k = ∑
r∈E

t1

∑
θ=1

Φ(qkr(θ) fr(t − θ11:N , p)) = ∑
r∈E

t1

∑
θ=1

qkr(θ) fr(t − θ11:N , p)

= ∑
r∈E

t1

∑
θ=1

qkr(θ) f̃r(t1 − θ; l2:N , p) = (q ∗ f̃)k(t1; l2:N , p).

Proof of Theorem 1. First of all, it is important to notice that we have:

lim
t1→∞

SIR(N)
k (v; t1:N , p1:N) = lim

t1→∞
SIR(N)(t1:N , p1:N),

provided that this limit exists. Consequently, since our interest now is in a limiting result,
in order to investigate the asymptotic behaviour of SIR(N)

k (v; t1:N , p1:N) as t1 goes to ∞
we can consider the initial backward v = 0. Thus, the expression of sequential interval
reliability that we will take into account in the next computations will be SIR(N)(t1:N , p1:N),
that is recurrently obtained through Relation (20).

The main idea of this proof is to consider SIR(N)
k as a function of the variable t1 and

also on other additional parameters; then, we will apply the Markov renewal theory (cf. [1])
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to this function of t1. Using Proposition 3 and applying the function Φ defined in (32) to
the left and right hand sides of Equation (20), we obtain:

S̃IR
(N)

(t1; l2:N , p) = g̃(t1; l2:N , p) + q ∗ S̃IR
(N)

(t1; l2:N , p), (33)

where S̃IR
(N)

:= Φ(SIR(N)) and g̃ := Φ(g).
It is clear that Equation (33) is an ordinary Markov renewal equation (MRE) in variable t1,

with parameters (l2:N , p). The solution of this MRE is well known (cf. [1]) and it is given by

S̃IR
(N)

(t1; l2:N , p) = (ψ ∗ g̃)(t1; l2:N , p), (34)

or element-wise, using Proposition 3:

S̃IR
(N)
k (t1; l2:N , p) = ∑

r∈E

t1

∑
θ=1

ψkr(θ)gr(t − θ11:N , p), (35)

where the matrix-valued function ψ = (ψ(k); k ∈ N) is given by

ψ(k) =
k

∑
n=0

q(n)(k), k ∈ N. (36)

Since S̃IR
(N)
k (t1; l2:N , p) = Φ(SIR(N)

k (t, p)) = SIR(N)
k (t, p), we obtain:

SIR(N)
k (t, p) = S̃IR

(N)
k (t1; l2:N , p) = ∑

r∈E

t1

∑
θ=1

ψkr(θ)gr(t − θ11:N , p). (37)

Consequently:

lim
t1→∞

SIR(N)(t, p) = lim
t1→∞

S̃IR
(N)
k (t1; l2:N , p).

Let us now compute the second limit using the key Markov renewal Theorem (cf. [1]).
First, we observe that:

g̃k(t1; l2:N , p) = gk(t, p) = P(k,0)(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N, T1 > t1)

≤ P(k,0)(Zl ∈ U, l ∈ [t1, t1 + p1], T1 > t1) = gk(t1, p1) ≤ Rk(t1 + p1).

Using this result, we have:

∑
t1≥0

| g̃k(t1; l2:N , p) |≤ ∑
t1≥0

Rk(t1 + p1) = E(k,0)(TD),

where TD is the lifetime of the system. Thus, we are under the hypotheses of the key
Markov renewal theorem and we obtain:

lim
t1→∞

SIR(N)(t, p) = lim
t1→∞

μψ ∗ g̃(t1; l2:N , p)

= ∑
i∈E

μi ∑
j∈U

1
μjj

∑
t1≥0

g(N)
j (t, p) =

1
∑i∈E ν(i)mi

∑
j∈U

ν(j) ∑
t1≥0

g(N)
j (t, p),

where μjj is the mean recurrence time to state j for the semi-Markov chain.

4. A Numerical Example

In this section, we will present a numerical example considering a semi-Markov model
that governs a repairable system. The setting is as follows: the state space is E = {1, 2, 3},
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the operational states are the first two, U = {1, 2}, and the non-working state is the last
one, D = {3}.

The transitions of the repairable semi-Markov model are given in the flowgraph
of Figure 1.

State 1

State 2State 3

f12 (.)

f21 (.)

f23(.)

f 31
(.)

Figure 1. Semi-Markov model.

The transition matrix p of the EMC J and the initial distribution μ are given by

p =

⎛⎜⎜⎜⎝
0 1 0

0.8 0 0.2

1 0 0

⎞⎟⎟⎟⎠, μ = (1, 0, 0).

Now, let Xij be the conditional sojourn time of the SMC Z in state i given that the next
state is j (j �= i). The conditional sojourn times are given as follows:

X12 ∼ Geometric(0.2),

X21 ∼ discrete Weibull(0.8, 1.2),

X23 ∼ discrete Weibull(0.6, 1.2),

X31 ∼ discrete Weibull(0.9, 1.2),

In the following figures, we investigate the semi-Markov repairable system in terms
of the proposed reliability measures studied in Section 3.

Figure 2 illustrates the conditional sequential interval reliability for two time intervals
moving equally through the time with the same length (one time unit). That is the probabil-
ity that the system will be operational in the time intervals (k, k + 1) and (k + 2, k + 3) for
k ∈ {1, 2, 3, 4, 5, 6, 7, 8}. We have to note that, as the time k passes, then the system tends to
converge to the asymptotic sequential interval reliability SIR(2)(0; t, p) = 0.6603, as given

in Theorem 1. Furthermore, the sequential interval reliability SIR(2)(0; (k, k + 2), (1, 1)) is
equal to the conditional one SIR(2)

1 (0; (k, k + 2), (1, 1)) due to the fact that the only possible
initial state is the first one. The point here is to study the probability of a system being
operational during different time periods with the same working duration and a fixed time
distance between them, equal to one time unit.

Then, Figure 3 examines the probability that the system is working during two time
periods, with same working duration (equal to one time unit) and increasing the time
distance between them. We considered the first interval to be fixed equal to (1, 2) and the
other moving apart with step 1 each time and be (k + 2, k + 3) for k ∈ {1, 2, 3, 4, 5, 6, 7, 8}.
It can be easily seen that the probability of the system will be still working in both time
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intervals and is a decreasing function of time k, which means that the two time intervals are
far enough apart for the system to be operational. Note that the probability of the system
starting from the non-working state 3 to be in the up-states is sufficiently small.

As in all the previous cases, the concept of the initial backward did not play a role in
the simulations (Figures 2 and 3), and in Figure 4, the sequential interval reliability with
the initial backward v = 10 is examined. The first time interval is considered as fixed,
(1, 2), and the other one is moving apart with step 1 each time and it is (k + 3, k + 4) for
k ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

From the point of view of real applications, the proposed reliability measures can
be applied to a huge variety of physical phenomena which they characterised from time
dependence. In the literature, a lot of research works are presented for modelling a variety
of such phenomena via semi-Markov processes, from financial [23] to power demand [29].
D’Amico et al. ([23,26]) proposed a semi-Markov model and associated reliability measures
for constructing a credit risk model that solves problems arising from the non-Markovianity
nature of the phenomenon. Further developments and recent contributions on this aspect
are provided in [28,30,31].

The characteristics of semi-Markov chains which allow for no-memoryless sojourn
time distributions, permit considering the duration problem in an effective way. Indeed, it
is possible to define and compute different probabilities of changing state, default probabil-
ities included, taking into account the permanence of time in a rating class. This aspect is
crucial in credit rating studies because the duration dependence of transition probabilities
naturally translates in many financial indicators, which change their values according to
the time elapsed in the last rating class, see, e.g., [32].
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Figure 2. Sequential interval reliability plot with equally moving intervals.
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Figure 3. Sequential interval reliability plot with intervals moving apart.
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Figure 4. Sequential interval reliability plot with the initial backward (v = 10) and intervals moving apart.

In the case of financial modelling (see, e.g., [33]), the presented results could be
applied in order to create advanced credit scoring models. A financial asset, similarly to
government bond, usually takes a “grade” based on the reliability of the country to pay
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the debt (also known as creditworthiness). These grades strongly affect the interest rates
of the country’s debt and they are clearly separated. Let us consider the following set of
states, from a simple point of view, as the ratings:

E = {A, B, C}.

If the country bond receives a rating in the set U = {A, B}, this means that it is
thought to be creditworthy and can borrow money from the markets with reasonable
interest rates. On the contrary, if the rating is within the set D = {C}, then the country
cannot borrow money from the markets due to very high interest rates caused from its
problems for repaying the debt. D’Amico et al. [23] proposed flexible reliability measures
based on semi-Markov processes for constructing a credit risk model that solves the
problems arising from the non-Markovianity nature of the phenomenon. Following that
work, the measures proposed in the present paper can be applied in the same way as
follows:

• The conditional sequential interval reliability with final backward SIR(N)
k (v; t, p)

gives the probability that the bond remains creditworthy in a sequence of different
time intervals {[ti, ti + pi]}i=1,...,N given its current rating and assuming a secondary
process Bt. This measure allows us to estimate the credit risk of the asset for different
time periods and at the same time by knowing the complete trajectory of the system
due to the backward process Bt.

• The sequential interval reliability SIR(N)(v; t, p) which gives the probability that
the bond remains creditworthy in a sequence of different time intervals {[ti, ti +
pi]}i=1,...,N without taking into account the current rating. To implement this measure,
we have to know the initial probability of the system being in each state.

It became clear that these measures have applications in a variety of stochastic phe-
nomena due to their flexibility and their ability to significantly extend our knowledge
about the process evolution. They can solve problems and provide answers for systems
that can shift from failure to operational states, from a probabilistic point of view. Finally,
they can be considered as generalisations of the classical measures of reliability for semi-
Markov processes.

5. Concluding Remarks

This paper presents a new reliability indicator, called sequential interval reliability
(SIR), which is evaluated for a discrete-time homogeneous semi-Markov repairable system.
This indicator includes as particular cases several functions that are frequently used in
reliability studies, such as the reliability and availability functions, as well as the interval
reliability function.

The paper contains new theoretical results on both the transient and the asymptotic
cases. More precisely, a recurrent-type equation is established for the calculation of the
SIR function in the transient case and a limit theorem establishes its asymptotic behaviour.
These results generalise corresponding known results for standard reliability indicators.
The possibility to apply our results to real systems is shown by implementing a numerical
example where the theoretical results are illustrated from a practical point of view. The
paper leaves unresolved several aspects among which an important role is played by the
application of the proposed indicator in different applied problems involving the use of
real data.
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Abstract: The asymptotic behaviour of the tail expectation E
(
(Sξ

n)
α
�{Sξ

n>x}

)
is investigated, where

exponent α is a nonnegative real number and Sξ
n = ξ1 + . . . + ξn is a sum of dominatedly varying and

not necessarily identically distributed random summands, following a specific dependence structure.
It turns out that the tail expectation of such a sum can be asymptotically bounded from above and
below by the sums of expectations E

(
ξα

i �{ξi>x}
)

with correcting constants. The obtained results are
extended to the case of randomly weighted sums, where collections of random weights and primary
random variables are independent. For illustration of the results obtained, some particular examples
are given, where dependence between random variables is modelled in copulas framework.

Keywords: tail expectation; asymptotic bound; quasi-asymptotic independence; heavy-tailed distri-
bution; dominated variation; copula

MSC: 91G05; 91G10; 60G70

1. Introduction

Let n ∈ N := {1, 2, . . .} and let us consider two collections of random variables
(r.v.s): heavy-tailed (see definition in Section 2) r.v.s {ξ1, . . . , ξn}, called primary r.v.s, and
nonnegative, non-degenerate at zero r.v.s {θ1, . . . , θn}, called random weights. In this paper,
we investigate the asymptotic behaviour of the sums of primary r.v.s

Sξ
n :=

n

∑
k=1

ξk = ξ1 + . . . + ξn, (1)

and their weighted counterparts, namely randomly weighted sums

Sθξ
n :=

n

∑
k=1

θkξk = θ1ξ1 + . . . + θnξn. (2)

Asymptotics of (1) and (2) have been studied extensively during recent years in the
literature of applied probability under various different assumptions about collections
{ξ1, . . . , ξn}, {θ1, . . . , θn} and their dependence structures. In particular, there are many
papers addressing the asymptotic behaviour of the tail probabilities

P
(

Sξ
n > x

)
and P

(
Sθξ

n > x
)

(3)

expressing them by the sums of tail probabilities of individual summands, i.e.,
∑n

k=1 P(ξk > x) and ∑n
k=1 P(θkξk > x), respectively (see, e.g., [1–11]). The main results

from the majority of the aforementioned papers are reviewed in detail in Section 3. In line
with the tail probabilities P

(
Sξ

n > x
)

and P
(

Sθξ
n > x

)
, asymptotics of the tail expectations
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E
(

Sξ
n�{Sξ

n>x}

)
and E

(
Sθξ

n �{Sθξ
n >x}

)
are investigated in the literature; however, the number

of papers is relatively scarce (see [6,7,12] and the references therein).
In this paper, inspired by the recent results by Leipus et al. [7], we are particularly

interested in the asymptotics of the tail expectations

E
((

Sξ
n

)α
�{Sξ

n>x}

)
and E

((
Sθξ

n

)α
�{Sθξ

n >x}

)
, (4)

where α is a nonnegative real number. We assume that r.v.s ξ1, . . . , ξn are not necessar-
ily identically distributed, belong to the class of dominatedly varying distributions (see
Section 2.2), a subclass of heavy-tailed distributions, and follow a specific dependence
structure, called pairwise quasi-asymptotic independence (see Section 2.3). We seek to
asymptotically bound the tail expectations (4) by the sums of individual tail expecta-
tions E

(
ξk

α
�{ξk>x}

)
and E

(
(θkξk)

α
�{θkξk>x}

)
, respectively, with some specific correcting

constants (see Theorems 3 and 4).
Although our paper is more of a theoretical kind, it is worth noting that sums of the

form (1) and, especially, (2) are often encountered in the practical applications of probability
in financial and actuarial context. One example stems from the so-called discrete time risk
model, in which primary r.v. ξk could correspond to the net losses (total claim amount
minus total premium income) of an insurance company during period (k − 1, k], calculated
at the moment k, and random weight θk could correspond to the stochastic discount factor,
from the moment k to the present moment 0, for all k = 1, . . . , n. In such a scenario, sum
Sθξ

n could be treated as the present value of a total discounted net loss of a company in the
time interval (0, n] (for more details, see, e.g., [5,8,10,13–16]).

Other insurance related application is based on the individual risk model [17]. Say
that an insurance company has a portfolio consisting of n policies. Then, we could interpret
Sθξ

n as the total claim amount incurred from the whole insurance portfolio. Here, θkξk,
k ∈ {1, . . . , n} would correspond to the claim amount from the kth policy. Since there is a
possibility that no claim will be incurred, θk is an indicatory Bernoulli r.v. which represents
the occurrence of the kth claim (θk = 1 if the claim has occurred and zero otherwise) and
r.v. ξk corresponds to the claim size of the kth policy given that the payment was made
(see [18] and Chapter 4 of [19] as well).

Tang and Yuan [15] considered an example related to the construction of investment
portfolio and capital allocation. Suppose that there are n distinct asset classes or lines
of business, from which the portfolio is formed. Then, r.v. ξk could correspond to the
loss incurred from the kth instrument. As for the role of random weights, there could be
different viewpoints: θk could be treated as a stochastic discount factor of the kth asset class
or, for instance, as a weight corresponding to the kth instrument in the portfolio. Then,
random sum Sθξ

n would correspond to the present value of total loss of a portfolio at the
present moment in the former case, and total weighted portfolio loss in the latter.

Highly related to the portfolio construction discussed above are various risk measures
quantifying the underlying risk of the portfolio—we list several of them below, which are
commonly encountered in the literature of risk management (see, e.g., [20,21]) and in which
the asymptotic results concerning tail probabilities and tail expectations could be useful:

• Value-at-Risk (VaR) at level q ∈ (0, 1):

VaRq

(
Sξ

n

)
= inf

{
x ∈ R | P

(
Sξ

n > x
)
� 1 − q

}
.

• Conditional tail expectation (CTE) at level q ∈ (0, 1):

CTEq

(
Sξ

n

)
= E

(
Sξ

n | Sξ
n > VaRq(S

ξ
n)
)

.

For the above risk measures, the asymptotic behaviour is mainly considered as
q ↑ 1. Nevertheless, as mentioned in [22]: “as the excessive prudence of the current reg-
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ulatory framework requires a confidence level close to 1, the notion of Extreme Value Theory
becomes appropriate”. In other words, q being close to 1 results in large VaRq

(
Sξ

n

)
values.

For more about the estimation of the aforementioned risk measures, see the works of
Yang et al. [12], Tang and Yuan [15], Asimit et al. [22], Hua and Joe [23] and Wang et al. [24]
(and the references therein).

The rest of the paper is structured as follows. In Section 2, we review the basic defini-
tions of the heavy-tailed distributions and introduce the reader to the specific dependence
structure used in this paper. In Section 3, we discuss the related results in literature. In
Section 4, our main results, which allow to asymptotically bound the tail expectations
(4), are presented and later proved in Section 5. Finally, as applications of our result, in
Section 6, we provide three different examples of random sums, for which dependence is
controlled via a copula, in a bivariate setting.

2. Definitions and Preliminaries

2.1. Notational Conventions

Before delving into more details, we briefly introduce the notations used throughout
the paper. All limiting relationships and asymptotic estimates, unless stated otherwise, are
understood as x approaches infinity. For two positive functions f and g, we write:

• f (x) � g(x) if lim sup f (x)
g(x) � 1

• f (x) = o(g(x)) if lim f (x)
g(x) = 0

• f (x) = O(g(x)) if lim sup f (x)
g(x) < ∞

• f (x) ∼ g(x) if lim f (x)
g(x) = 1

• f (x) % g(x) if 0 < lim inf f (x)
g(x) � lim sup f (x)

g(x) < ∞

For any r.v. X, by FX(x), we denote the distribution function (d.f.) of X, i.e., FX(x) =
P(X � x). By F(x), we denote the tail function of d.f. F, i.e., F(x) = 1 − F(x). By F∗n(x),
we write the n-fold convolution of a d.f. F. That is, if X1, . . . , Xn are independent copies of
X, then F∗n

X (x) = P(X1 + . . . + Xn � x), and F∗n
X (x) = P(X1 + . . . + Xn > x).

We say that r.v. X has an infinite right support if FX(x) > 0 for all x ∈ R. In addition,
we say that d.f. F is supported on R if F(x) > 0 for all x ∈ R. We write �A to denote the
indicator function of an event A. For any r.v. X, by X+ and X−, we denote its positive and
negative parts, respectively: X+ = max{X, 0}, X− = max{−X, 0}. For a given x ∈ R, by
�x�, we denote the integer part of x and, by x̂ = x − �x�, we denote the fractional part of x.

2.2. Heavy-Tailed Distributions

In this subsection, we recall the main classes of heavy-tailed distributions. At first,
we present the class of dominatedly varying distributions D, which is a central one in
this paper.

• A d.f. F supported onR is said to be dominatedly varying (belong to class D) if lim sup
x→∞

F(xy)
F(x)

<

∞ for any (for some) y ∈ (0, 1).

As noted in [25], Peter and Paul distribution is an example of a distribution belonging
to the class D. We say that r.v. X is distributed according to the generalised Peter and Paul
distribution with parameters (a, b), where b > 1, a ∈ (0, ∞), if its tail is characterised by
the following equality

FX(x) = (ba − 1) ∑
k�1, b k>x

b−ak.

Since FX(x) = (b−a)�logb x� for x � 1, we get that

lim sup
x→∞

FX(xy)
FX(x)

= lim sup
x→∞

(
b−a)�logb x+logb y�−�logb x� �

(
b−a)�logb y�−1.
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for any y ∈ (0, 1), implying FX ∈ D.
Class D is not the only subclass of heavy-tailed distributions. Below, we briefly recall

the other classes of heavy-tailed distributions and describe the relationships between them.

• A d.f. F is said to be heavy-tailed (belong to class H) if for any α > 0∫ ∞

−∞
eαxdF(x) = ∞.

• A d.f. F is said to be long tailed (belong to class L) if for any y > 0 F(x + y) ∼ F(x).
• A d.f. F supported on R is said to be subexponential (belong to class S) if F ∈ L and

F∗2(x) ∼ 2F(x).
• A d.f. F is said to be regularly varying with coefficient α � 0 (belong to class Rα) if for any

y > 0

lim
x→∞

F(xy)
F(x)

= y−α.

• A d.f. F is said to be consistently varying (belong to class C) if

lim
y↑1

lim sup
x→∞

F(xy)
F(x)

= 1.

The class of consistently varying distributions C is the largest subclass of a class D.
The following example of a distribution belonging to C \⋃α�0 Rα is given in [26]. Let Y

and N be independent r.v.s such that Y d
=U ([0, 1]) and N is geometric r.v. with parameter

p ∈ (0, 1), i.e., P(N = k) = (1 − p)pk for k = 0, 1, . . .). Then, r.v. ξ defined by

ξ = (1 + Y)2N (5)

belongs to the class C but not to the class
⋃

α�0 Rα. This fact can be derived from the
expression

Fξ(x) = (1 − p)

(
1 − p�log2 x�

1 − p
+

(
x

2�log2 x� − 1
)

p�log2 x�
)
�{x�1}. (6)

In summary, the interrelationships of the heavy-tailed distribution classes can be
expressed by the following relations

R :=
⋃

α�0
Rα � C � L ∩ D ∩ S � L � H; D � H; D �⊂ S .

Some of the above relationships follow directly from the definitions, while proofs of
the others can be found in, e.g., [25,27–30], ([31] Sections 6.1 and 6.2) and [32].

The classes C and D can be characterised by specific indices. We recall these important
indices. The first one is a so-called L-index, used in, e.g., [6,7,11,33,34]. The LF index for d.f.
F is

LF := lim
y↓1

lim inf
x→∞

F(xy)
F(x)

.

The second important index is the upper Matuszewska index introduced in [35]. In this
paper, we stick with the slightly different but equivalent formulation given in [36] and used
in many other articles (e.g., [2,6,8,11,34]). For a d.f. F, the upper Matuszewska index J+F is

J+F := inf
y>1

{
− 1

log y
log
{

lim inf
x→∞

F(xy)
F(x)

}}
.
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The aforementioned indices give important characterisations for dominatedly varying
and consistently varying d.f.s (see, e.g., [33], Proposition 1.1):

LF > 0 ⇔ F ∈ D ⇔ J+F < ∞; LF = 1 ⇔ F ∈ C.

For a r.v. ξ with d.f. Fξ , we write for brevity: Lξ = LFξ
and J+ξ = J+Fξ

. More information
on classes C and D can be found in Chapter 2 of [36] and the discussion in Section 3 of [27].

2.3. QAI Dependence Structure

We now introduce the main dependence assumption about r.v.s ξ1, . . . , ξn used in this
paper, so-called pairwise quasi-asymptotic independence, which is due to Chen and Yuen [2].

• R.v.s {ξ1, . . . , ξn} with infinite right supports are called pairwise quasi-asymptotically inde-
pendent (pQAI) if for any k, l ∈ {1, . . . , n}, k �= l,

lim
x→∞

P
(
ξ+k > x, ξ+l > x

)
P
(
ξ+k > x

)
+ P
(
ξ+l > x

) = lim
x→∞

P
(
ξ+k > x, ξ−

l > x
)

P
(
ξ+k > x

)
+ P
(
ξ+l > x

) = 0. (7)

Let us construct two examples of r.v.s possessing such a dependence structure using
copulas.

Example 1. Let {ξ1, . . . , ξn} be r.v.s with infinite right supports and corresponding marginal d.f.s
{F1, . . . , Fn}. Consider the Farlie–Gumbel–Morgenstein (FGM) copula:

Cϑ(u, v) = uv + ϑuv(1 − u)(1 − v), u, v ∈ [0, 1], ϑ ∈ [−1, 1].

Let r.v.s ξi, ξ j have a joint d.f. P
(
ξi � x1, ξ j � x2

)
= Cϑi (Fi(x1), Fj(x2)) with some

ϑi ∈ [−1, 1] if max{i, j} − min{i, j} = 1, min{i, j} = 2k − 1 for some k ∈ N and be inde-
pendent otherwise. Then, r.v.s {ξ1, . . . , ξn} are pQAI.

It follows from Sklar’s theorem (see [37,38] Theorem 2.3.3)) that for any given marginal
d.f.s F1, F2 and an arbitrary copula C(u1, u2), function F(x1, x2) := C(F1(x1), F2(x2))
is a bivariate d.f. with marginal d.f.s F1, F2. If ξi, ξ j, i, j = 1, . . . n are independent,
then obviously they are pQAI. If max{i, j} − min{i, j} = 1, min{i, j} = 2k − 1 for some
k ∈ N, then

P
(
ξi > x, ξ j > x

)
P(ξi > x) + P

(
ξ j > x

) =
1 − Fi(x)− Fj(x) + Cϑi

(
Fi(x), Fj(x)

)
Fi(x) + Fj(x)

=
Fi(x)Fj(x)

(
1 + ϑiFi(x)Fj(x)

)
Fi(x) + Fj(x)

� 2Fi(x). (8)

Similarly, by observing that

P
(

ξi > x, ξ−
j > x

)
� P
(

ξi > x, ξ−
j � x

)
= P
(
ξ j � −x

)
− P
(
ξi � x, ξ j � −x

)
for positive x, we get

P(ξi > x, ξ−
j > x)

P(ξi > x) + P
(
ξ j > x

) � Fj(−x)− Cϑi

(
Fi(x), Fj(−x)

)
Fi(x) + Fj(x)

=
Fi(x)Fj(−x)

(
1 − ϑiFi(x)Fj(−x)

)
Fi(x) + Fj(x)

� 2Fj(−x). (9)

Estimates (8) and (9) imply (7). Consequently, r.v.s {ξ1, . . . , ξn} in Example 1 are pQAI.

In a more general setting, one can consider n-dimensional (n � 2) Farley–Gumbel–
Morgenstein (FGM) distributions (for a detailed treatment on this type of distributions see,
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e.g., [39]). For r.v.s {ξ1, . . . , ξn} with corresponding marginal d.f.s {F1, . . . , Fn}, n-variate
FGM d.f. is defined as follows:

P(ξ1 � x1, . . . , ξn � xn) =
n

∏
i=1

Fi(xi)

(
1 + ∑

1�i<j�n
ϑijFi(xi)Fj(xj)

)
, (10)

where parameters ϑij, i, j ∈ {1, . . . , n} should satisfy the following condition

1 + ∑
1�i<j�n

εiε jϑij � 0, (11)

for all εi = − supx∈R{Fi(x)}\{0, 1} or εi = 1 − infx∈R{Fi(x)}\{0, 1} (see [39] Chapter 44,
Section 13). Necessary condition (11) is required for (10) to be a well defined d.f..

Note that, if we assume that random vector (ξ1, . . . , ξn) is distributed according to
(10) in our example, r.v.s ξ1, . . . , ξn are still pQAI, since bivariate marginal distributions of
random vectors (ξi, ξ j), i, j ∈ {1, . . . , n}, i < j are distributed according to a bivariate FGM
distribution with marginal d.f.s Fi, Fj and FGM copula. Indeed, from (10), we get

P
(
ξi � x1, ξ j � x2

)
= P
(
ξ1 � ∞, . . . , ξi � x1, . . . , ξ j � x2, . . . , ξn � ∞

)
= Fi(x1)Fj(x2)

(
1 + ϑijFi(x1)Fj(x2)

)
.

Example 2. Let ξ1, ξ2 be r.v.s with corresponding d.f.s F1, F2 and let random vector (ξ1, ξ2) have
a bivariate d.f. F(x1, x2) := Cϑ(F1(x1), F2(x2)), where Cϑ is the Ali–Michail–Haq copula [40]:

Cϑ(u, v) =
uv

1 − ϑ(1 − u)(1 − v)
, u, v ∈ [0, 1], ϑ ∈ (−1, 1).

Similarly to in Example 1, it can be shown that r.v.s ξ1, ξ2 are QAI.

Indeed, for positive x, we have

P(ξ1 > x, ξ2 > x)
P(ξ1 > x) + P(ξ2 > x)

=
1 − F1(x)− F2(x) + Cϑ(F1(x), F2(x))

F1(x) + F2(x)

=
F1(x)F2(x)

(
1 + ϑ

(
F2(x)− F1(x)

))
(F1(x) + F2(x))(1 − ϑF1(x)F2(x))

� 2F2(x)
1 − ϑF1(x)F2(x)

.

In the same fashion for positive x, we obtain

P(ξ1 > x, ξ−
2 > x)

P(ξ1 > x) + P(ξ2 > x)
� F2(−x)− Cϑ(F1(x), F2(−x))

F1(x) + F2(x)

=
F2(−x)F1(x)

(
1 − ϑF2(−x)

)
(F1(x) + F2(x))(1 − ϑF1(x)F2(−x))

� 2F2(−x)
1 − ϑF1(x)F2(−x)

.

The derived estimates imply that r.v.s ξ1 and ξ2 are QAI.

For more about copulas applications in problems related to modelling dependence
of heavy-tailed distributions, the reader may refer to the works of Albrechter et al. [41],
Asimit et al. [22], Fang et al. [42], Yang et al. [43] and Wang et al. [24] (and the references
therein). For a systematic treatment of copulas theory see, for instance, the work of
Nelsen [38]. In the next section, we recall briefly more similar dependence structures
between r.v.s and examine their relations to pQAI condition (7).

3. Related Results

In this section, we briefly review some of the related results found in the literature,
regarding the asymptotic behaviour of the tail probability and tail expectation of random
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sums in the form of either (1) or (2). Throughout the section, unless mentioned otherwise,
we assume that the collections of r.v.s {ξ1, . . . , ξn} and {θ1, . . . , θn} are independent.

3.1. Asymptotics of Tail Probabilities

There are many papers in which r.v.s ξ1, . . . , ξn are assumed to be independent
or identically distributed, see, for instance, the works of Tang and Tsitshiashivili [8],
Goovaertz et al. [5], Wang et al. [9] and Wang and Tang [10] (and the references therein). In
this subsection, however, we concentrate on the results in which such restrictive assump-
tions have been weakened.

We start with several results in which the exact asymptotic equivalence

P
(

Sξ
n > x

)
∼

n

∑
k=1

Fξk (x) (12)

was obtained.
Geluk and Tang [4] achieved (12) for distributions Fξk ∈ D ∩ S (see [4] Theorem 3.1).

It was assumed that r.v.s ξ1, . . . , ξn satisfy the so-called Assumption A (as in [4]), which was
referred to later as a strong quasi-asymptotic independence in other articles (e.g., [6,7,16,44]),
as well.

• R.v.s ξ1, . . . , ξn with infinite right supports are called pairwise strongly quasi-asymptotically
independent (pSQAI) if for any k, l ∈ {1, . . . n}, k �= l,

lim
min{xk ,xl}→∞

P(|ξk| > xk | ξl > xl) = 0.

Nearly at the same time, Chen and Yuen [2] achieved (12) (see [2] Theorem 3.1) in
the smaller class C, but this time the pSQAI condition was replaced by the similar pQAI
condition (see Section 2.3). We observe that pSQAI condition implies pQAI. Indeed, by
arbitrarily choosing ξk, ξl , 1 � k �= l � n, we get that

P(|ξk| > xk | ξl > xl) = P(ξ+k > xk | ξl > xl) + P(ξ−
k > xk | ξl > xl) → 0,

as min{xk, xl} → ∞. Thus, it follows that

lim
x→∞

P(ξ+k > x, ξ+l > x)
P(ξ+k > x) + P(ξ+l > x)

� lim
x→∞

P(ξk > x | ξl > x) = 0,

and, in the same way,

lim
x→∞

P(ξ−
k > x, ξ+l > x)

P(ξ+k > x) + P(ξ+l > x)
� lim

x→∞
P
(
ξ−

k > x | ξl > x
)
= 0.

Moreover, in the same article by Chen and Yuen, the results are extended to the case
of randomly weighted sums (see [2] Theorem 3.2), resulting in relation

P
(

Sθξ
n > x

)
∼

n

∑
k=1

Fθkξk (x)

under the following moment condition on random weights:

max{Eθ
p
1 . . . ,Eθ

p
n} < ∞ for some p > max{J+ξ1

, . . . , J+ξn
}. (13)

Later, inspired by the results of Chen and Yuen, Yi et al. [11] considered the tail
probability asymptotics of the randomly weighted sum Sθξ

n , when r.v.s ξ1, . . . , ξn belong to
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the class D and follow the same pQAI structure (see [11] Theorems 1 and 2). It was shown
that under (13) and additional tail assumption

lim
x→∞

Fξ−
k
(x)

Fξk (x)
= 0 for all k ∈ {1, . . . , n}, (14)

the following asymptotic bounds hold:

Lξ
n

n

∑
k=1

Fθkξk (x) � P
(

Sθξ
n > x

)
� 1

Lξ
n

n

∑
k=1

Fθkξk (x), (15)

where Lξ
n := min

{
Lξ1 , . . . , Lξn

}
. Cheng [3] managed to tighten the bounds in (15) (see [3]

Theorems 1.1 and 1.2) by putting the L-indices inside the sums and obtaining

n

∑
k=1

Lξk Fθkξk (x) � P
(

Sθξ
n > x

)
�

n

∑
k=1

1
Lξk

Fθkξk (x),

where Fξk ∈ D for all k ∈ {1, . . . , n}. The assumption (13) was substituted by a weaker
condition (see [3] Assumption C and Remark 1.1):

lim
x→∞

Fθkξk (x)
Fξk (x)

= 0 for all k ∈ {1, . . . , n}.

Moreover, instead of pQAI, two other dependence structures, namely pairwise tail
quasi-asymptotic independence (see [3] Assumption B) and pairwise asymptotic independence,
together with condition (14) (see [3] Assumption A) were considered.

• R.v.s ξ1, . . . , ξn with infinite right supports are called pairwise tail quasi-asyptotically inde-
pendent (pTQAI) if for any k, l = 1, . . . , n, k �= l,

lim
min{xk ,xl}→∞

P(ξ+k > xk, ξ+l > xl)

P(ξ+k > xk) + P(ξ+l > xl)
= lim

min{xk ,xl}→∞

P(ξ−
k > xk, ξ+l > xl)

P(ξ+k > xk) + P(ξ+l > xl)
= 0.

• R.v.s ξ1, . . . , ξn with infinite right supports are called pairwise asymptotically independent
(pAI) if for any k, l = 1, . . . , n, k �= l,

lim
x→∞

P(ξk > x, ξl > x)
P(ξk > x)

= lim
x→∞

P(ξk > x, ξl > x)
P(ξl > x)

= 0.

As noted in [3], implication pTQAI ⇒ pQAI follows trivially, by allowing xk and xl to
attain the same value x in the definition of pTQAI. It is easy to see that pAI implies pQAI if
r.v.s ξ1, . . . , ξn are nonnegative. Nonetheless, (14) is a sufficient condition for pAI ⇒ pQAI
to hold in the general case because, for any 1 � k �= l � n,

lim
x→∞

P(ξk > x, ξl
− > x)

P(ξk > x) + P(ξl > x)
� lim

x→∞

Fξl (−x)
Fξl (x)

= 0.

Quite recently, Jaunė et al. [6] reconsidered the asymptotic behaviour of tail probability
P
(

Sθξ
n > x

)
under the pQAI condition on r.v.s ξ1, . . . , ξn in the class D. The statement of

Lemma 1 from [6] extends mainly the results of Yi et al. [11], resulting in (15) under the
moment condition (13), but without the additional assumption (14).
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3.2. Asymptotics of Tail Expectations

Having reviewed the main results about the asymptotic behaviour of tail probabilities
(3), we now turn to the asymptotics of tail expectation of random sums Sξ

n and Sθξ
n which is

the main object of this paper. Tang and Yuan [15] obtained the relation

E
(

θ1ξ1�{Sθξ
n >x}

)
∼ E

(
θ1ξ1�{θ1ξ1>x}

)
for i.i.d. r.v.s ξ1, . . . , ξn from the class D ∩ S and random weights θ1, . . . , θn, satisfying
Eθ

pk
k < ∞, pk > J+ξk

, Fθkξk (x) = O(Fθ1ξ1(x)) for all k ∈ {1, . . . , n} (see [15] Theorem 4). It
was noted by Yang et al. [12] that, under additional condition Fθkξk (x) % Fθ1ξ1(x) for all
k ∈ {1, . . . , n}, relation

E
(

Sθξ
n �{Sθξ

n >x}

)
∼

n

∑
k=1

E
(

θkξk�{θkξk>x}
)

(16)

holds.
Jaunė et al. [6] later weakened the i.i.d. condition of the previous result, allowing

pQAI or pSQAI dependence structures among primary r.v.s ξ1, . . . , ξn, at the cost of exact
asymptotics in (16).

Now, we turn to the recent result by Leipus et al. [7], which inspired our investigation.
Before stating the relevant theorems, we note that, in [7], the new dependence structure
called Assumption B, regarding r.v.s ξ1, . . . , ξn, is used.

Assumption B. R.v.s ξ1, . . . , ξn have infinite right supports and, for all k, l = 1, . . . , n, k �= l
satisfy

lim
x→∞

sup
u�x

P
(
ξ+k > x | ξ+l > u

)
= lim

x→∞
sup
u�x

P
(
ξ−

k > x | ξ+l > u
)

= lim
x→∞

sup
u�x

P
(
ξ+k > x | ξ−

l > u
)
= 0.

Similarly, as in the case pSQAI ⇒ pQAI, we can show that assumption B implies the
pQAI condition because for any ξk, ξl , 1 � k �= l � n,

lim
x→∞

P(ξ+k > x, ξ+l > x)
P(ξ+k > x) + P(ξ+l > x)

� lim
x→∞

sup
u�x

P
(
ξ+k > x | ξ+l > u

)
= 0,

lim
x→∞

P(ξ−
k > x, ξ+l > x)

P(ξ+k > x) + P(ξ+l > x)
� lim

x→∞
sup
u�x

P
(
ξ−

k > x | ξ+l > u
)
= 0.

The following assertion is the main result in [7].

Theorem 1 (See [7] Theorem 4). Let ξ1, . . . , ξn be r.v.s satisfying assumption B such that
Fξ1 ∈ D, E|ξ1|m < ∞ for some m ∈ N and Fξk (x) % Fξ1(x), Fξ−

k
(x) = O

(
Fξ1(x)

)
, for all

k = 2, . . . , n. Then,

Lξ
n

n

∑
k=1

E
(

ξm
k �{ξk>x}

)
� E

((
Sξ

n

)m
�{Sξ

n>x}

)
� 1

Lξ
n

n

∑
k=1

E
(

ξm
k �{ξk>x}

)
.

Moreover, the results were extended to the general case of weighted sums. This time,
however, a quite restrictive assumption about random weights was made; namely, it was
supposed that random weights θ1, . . . , θn are bounded.

Theorem 2 (See [7] Theorem 5). Let ξ1, . . . , ξn be r.v.s satisfying assumption B such that
Fξ1 ∈ D, E|ξ1|m < ∞ for some m ∈ N. Let θ1, . . . , θn be nonnegative, non-degenerate at zero,
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bounded r.v.s, independent of θ1, . . . , θn. If Fθkξk (x) % Fθ1ξ1(x), Fθkξ−
k
(x) = O

(
Fθ1ξ1(x)

)
, for all

k = 2, . . . , n. Then,

Lξ
n

n

∑
k=1

E
(
(θkξk)

m
�{θkξk>x}

)
� E

((
Sθξ

n

)m
�{Sθξ

n >x}

)
� 1

Lξ
n

n

∑
k=1

E
(
(θkξk)

m
�{θkξk>x}

)
.

4. Main Results

In this section we present the main results of this paper. Theorem 3 states the asymp-
totic bounds for the tail expectation of a random sum Sξ

n and Theorem 4 is mainly a
generalisation to the case of randomly weighted sums Sθξ

n .
We note that Theorems 3 and 4 improve previous results in several ways. For instance,

compared to Theorems 1 and 2, we put individual L-indices inside the sums in (17) and (18),
thus obtaining more accurate asymptotic bounds. Moreover, we weaken the condition for
exponent, from being a nonnegative integer to any nonnegative real number. In addition,
assumption B considered in [7] is substituted by a weaker pQAI structure and random
weights θ1, . . . , θn need not to be bounded as in Theorem 2. In addition, it is worth noting
that, by setting α = 0 in Theorems 3 and 4, we obtain asymptotics for the tail probabilities
(3) (see Remark 2 as well), thus our results can be compared with those discussed in
Section 3.1.

Theorem 3. Let ξ1, . . . , ξn be pQAI real-valued r.v.s. If E|ξk|α < ∞, Fξk ∈ D for all k ∈
{1, . . . , n} and some α ∈ [0, ∞), then

n

∑
k=1

LξkE
(

ξα
k�{ξk>x}

)
� E

((
Sξ

n

)α
�{Sξ

n>x}

)
�

n

∑
k=1

1
Lξk

E
(

ξα
k�{ξk>x}

)
. (17)

Theorem 4. Let ξ1, . . . , ξn be pQAI real valued r.v.s, such that Fξk ∈ D for all k ∈ {1, . . . , n},
and let θ1, . . . , θn be arbitrarily dependent, nonnegative, non-degenerate at zero r.v.s with

max{Eθ
p
1 , . . . ,Eθ

p
n} < ∞ for some p > max{J+ξ1

, . . . , J+ξn
}.

If collections {ξ1, . . . , ξn} and {θ1, . . . , θn} are independent and E(θk|ξk|)α < ∞ for all
k ∈ {1, . . . , n} and some α ∈ [0, ∞), then

n

∑
k=1

LξkE
(
(θkξk)

α
�{θkξk>x}

)
� E

((
Sθξ

n

)α
�{Sθξ

n >x}

)
�

n

∑
k=1

1
Lξk

E
(
(θkξk)

α
�{θkξk>x}

)
. (18)

Remark 1. By narrowing the class D to the class C of consistently varying distributions (for which
the L-index is unit), we get the exact asymptotic equivalence in (18). That is, if Fξk ∈ C for all
k ∈ {1, . . . , n} and all other conditions of Theorem 4 hold, then

n

∑
k=1

E
(
(θkξk)

α
�{θkξk>x}

)
∼ E

((
Sθξ

n

)α
�{Sθξ

n >x}

)
.

Remark 2. When α = 0, from (18), we obtain asymptotic bounds for tail probabilities:

n

∑
k=1

Lξk Fθkξk (x) � P
(

Sθξ
n > x

)
�

n

∑
k=1

1
Lξk

Fθkξk (x). (19)
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Remark 3. Under the same conditions as in Theorem 4, we can obtain asymptotic bounds for the
conditional expectation E

((
Sθξ

n
)α | Sθξ

n > x
)

. Namely, combining (18) with (19) we obtain the
following asymptotic bounds:

∑n
k=1 LξkE((θkξk)

α
�{θkξk>x})

∑n
k=1

1
Lξk

Fθkξk (x)
� E

((
Sθξ

n

)α
| Sθξ

n > x
)

�
∑n

k=1
1

Lξk
E((θkξk)

α
�{θkξk>x})

∑n
k=1 Lξk Fθkξk (x)

. (20)

In addition, by using the min–max inequality (22), we can express (20) fully in conditional
expectations at the cost of tightness of the initial bounds:

min
1�k�n

{
L2

ξk
E((θkξk)

α | θkξk > x)
}
� E

((
Sθξ

n

)α
| Sθξ

n > x
)

� max
1�k�n

{
1

L2
ξk

E((θkξk)
α | θkξk > x)

}
.

5. Proofs of Main Results

To prove Theorem 3, we need some auxiliary assertions. The lemma below is proved
in [7].

Lemma 1. Let ξ be a real-valued r.v. If E(ξ+)α < ∞ for some α ∈ [0, ∞), then for all x � 0.

E(ξα
�{ξ>x}) = xαP(ξ > x) + α

∫ ∞

x
uα−1P(ξ > u)du.

The next lemma is crucial for the proof of Theorem 3.

Lemma 2. Let ξ1, . . . , ξn be pQAI real-valued r.v.s, such that Fξk ∈ D for all k ∈ {1, . . . , n}.
Then,

n

∑
k=1

Lξk Fξk (x) � P(Sξ
n > x) �

n

∑
k=1

1
Lξk

Fξk (x). (21)

Proof. The case n = 1 in (21) follows trivially from the definition of coefficient Lξ1 . Let
n � 2. First, let us consider the upper asymptotic bound in (21).

For an arbitrary δ ∈ (0, 1),

P(Sξ
n > x) �

n

∑
k=1

Fξk ((1 − δ)x) + P
(

Sξ
n > x,

n⋂
k=1

{ξk � (1 − δ)x}
)

=:
n

∑
k=1

Fξk ((1 − δ)x) +A(x, δ).

By observing that for all k ∈ {1, . . . , n}{
Sξ

n > x, ξk � (1 − δ)x
}

⊆
{

Sξ
n − ξk > δx

}
,

we can estimate the term A(x, δ) as follows:

A(x, δ) �
n

∑
k=1

P
(

ξk >
x
n

, Sξ
n − ξk > δx

)
�

n

∑
k=1

P

⎛⎝ξk >
x
n

,
n⋃

l=1,l �=k

{
ξl >

δx
n − 1

}⎞⎠
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�
n

∑
k=1

n

∑
l=1,l �=k

P(ξk > δ1x, ξl > δ1x),

where in the last inequality δ1 = δ1(δ) = min{1/n, δ/(n − 1)}.
Consequently,

P
(

Sξ
n > x

)
∑n

k=1
1

Lξk
Fξk (x)

� ∑n
k=1 Fξk ((1 − δ)x)

∑n
k=1

1
Lξk

Fξk (x)
+

∑n
k=1 ∑n

l=1,l �=k P(ξk > δ1x, ξl > δ1x)

∑n
k=1

1
Lξk

Fξk (x)

=: I1(x, δ) + I2(x, δ).

Using the min–max inequality,

min
{

a1

b1
, . . . ,

am

bm

}
� a1 + . . . + am

b1 + . . . + bm
� max

{
a1

b1
, . . . ,

am

bm

}
, (22)

provided that m ∈ N and ai � 0, bi > 0 for i = 1, . . . , m, we get

I1(x, δ) � max
1�k�n

{
Lξk

Fξk ((1 − δ)x)
Fξk (x)

}
.

Taking into account (22) and observing that

n

∑
k=1

n

∑
l=1,l �=k

(
Fξk (δ1x) + Fξl (δ1x)

)
� 2(n − 1)

n

∑
k=1

Fξk (δ1x),

we similarly obtain

I2(x, δ) =
∑n

k=1 ∑n
l=1,l �=k P(ξk > δ1x, ξl > δ1x)

∑n
k=1 ∑n

l=1,l �=k
(

Fξk (δ1x) + Fξl (δ1x)
)

× ∑n
k=1 ∑n

l=1,l �=k
(

Fξk (δ1x) + Fξl (δ1x)
)

∑n
k=1

1
Lξk

Fξk (x)

� max
1�k �=l�n

{
P(ξk > δ1x, ξl > δ1x)
Fξk (δ1x) + Fξl (δ1x)

}
× 2(n − 1) max

1�k�n

{
Lξk

Fξk (δ1x)
Fξk (x)

}
. (23)

The fact that Fξk ∈ D for all k ∈ {1, . . . , n} and condition of pQAI for r.v.s {ξ1, . . . , ξn}
implies:

lim sup
x→∞

I1(x, δ) � max
1�k�n

{
Lξk lim sup

x→∞

Fξk ((1 − δ)x)
Fξk (x)

}
, (24)

lim sup
x→∞

I2(x, δ) � 2(n − 1) max
1�k �=l�n

{
lim sup

x→∞

P(ξk > δ1x, ξl > δ1x)
Fξk (δ1x) + Fξl (δ1x)

}

× max
1�k�n

{
Lξk lim sup

x→∞

Fξk (δ1x)
Fξk (x)

}
= 0. (25)

Therefore, by letting δ ↓ 0, from estimates (24), (25) and definition of indices Lξk , we
get the upper bound in (21):

lim sup
x→∞

P(Sξ
n > x)

∑n
k=1

1
Lξk

Fξk (x)
� 1.
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Let us consider the lower asymptotic bound in (21). Again, choose arbitrary δ ∈ (0, 1).
By the Bonferroni inequality, for this δ, we get

P
(

Sξ
n > x

)
� P
(

Sξ
n > x,

n⋃
k=1

{ξk > (1 + δ)x}
)

�
n

∑
k=1

P
(

Sξ
n > x, ξk > (1 + δ)x

)
−

n

∑
k=1

n

∑
l=1,l �=k

P(ξk > (1 + δ)x, ξl > (1 + δ)x)

=: A1(x, δ)− A2(x, δ). (26)

For the first summand in (26), we obtain

A1(x, δ) �
n

∑
k=1

P
(

Sξ
n − ξk > −δx, ξk > (1 + δ)x

)
=

n

∑
k=1

Fξk ((1 + δ)x)−
n

∑
k=1

P
(

Sξ
n − ξk � −δx, ξk > (1 + δ)x

)
=: A11(x, δ)− A12(x, δ). (27)

For the second term in (27), we get

A12(x, δ) �
n

∑
k=1

P

⎛⎝ n⋃
l=1,l �=k

{
ξl � − δx

n − 1

}
, ξk > (1 + δ)x

⎞⎠
�

n

∑
k=1

n

∑
l=1,l �=k

P
(

ξk > (1 + δ)x, ξ−
l � δx

n − 1

)

�
n

∑
k=1

n

∑
l=1,l �=k

P
(
ξk > δ2x, ξ−

l > δ2x
)
, (28)

where δ2 = δ2(δ) = δ/2(n − 1) in the last inequality.
We have from (26), (27) and (28) that

P(Sξ
n > x)

∑n
k=1 Lξk Fξk (x)

� A11(x, δ)

∑n
k=1 Lξk Fξk (x)

− ∑n
k=1 ∑n

l=1,l �=k P
(
ξk > δ2x, ξ−

l � δ2x
)

∑n
k=1 Lξk Fξk (x)

− A2(x, δ)

∑n
k=1 Lξk Fξk (x)

=: J1(x, δ)− J2(x, δ)− J3(x, δ).

Now, we estimate each term Ji(x, δ), i ∈ {1, 2, 3}, separately. For the case i = 1, using
inequality (22), we get

J1(x, δ) � min
1�k�n

{
Fξk ((1 + δ)x)

Lξk Fξk (x)

}
.

For J2(x, δ), similarly to in the derivation of (23), we obtain

J2(x, δ) � 2(n − 1) max
1�k �=l�n

{
P
(
ξk > δ2x, ξ−

l > δ2x
)

Fξk (δ2x) + Fξl (δ2x)

}
max

1�k�n

{
Fξk (δ2x)
Lξk Fξk (x)

}
.
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Finally,

J3(x, δ) � 2(n − 1) max
1�k �=l�n

{
P(ξk > (1 + δ)x, ξl > (1 + δ)x)
Fξk ((1 + δ)x) + Fξl ((1 + δ)x)

}

× max
1�k�n

{
Fξk ((1 + δ)x)

Lξk Fξk (x)

}

� max
1�k�n

{
2(n − 1)

Lξk

}
max

1�k �=l�n

{
P(ξk > (1 + δ)x, ξl > (1 + δ)x)
Fξk ((1 + δ)x) + Fξl ((1 + δ)x)

}
.

From the fact that Fξk ∈ D for all k ∈ {1, . . . , n} and condition of pQAI for r.v.s
{ξ1, . . . , ξn}, we get the following estimates:

lim inf
x→∞

J1(x, δ) � min
1�k�n

{
1

Lξk

lim inf
x→∞

Fξk ((1 + δ)x)
Fξk (x)

}
, (29)

lim sup
x→∞

J2(x, δ) � 2(n − 1) max
1�k �=l�n

{
lim sup

x→∞

P
(
ξk > δ2x, ξ−

l > δ2x
)

Fξk (δ2x) + Fξl (δ2x)

}

× max
1�k�n

{
1

Lξk

lim sup
x→∞

Fξk (δ2x)
Fξk (x)

}
= 0, (30)

lim sup
x→∞

J3(x, δ) � max
1�k�n

{
2(n − 1)

Lξk

}
× max

1�k �=l�n

{
lim sup

x→∞

P(ξk > (1 + δ)x, ξl > (1 + δ)x)
Fξk ((1 + δ)x) + Fξl ((1 + δ)x)

}
= 0. (31)

Thus, letting δ ↓ 0 from the estimates (29), (30), (31) and definition of indices Lξk , we
obtain the lower asymptotic bound in (21):

lim sup
x→∞

P(Sξ
n > x)

∑n
k=1 Lξk Fξk (x)

� 1.

This finish the proof of Lemma 2.

Proof of Theorem 3. The special case, when α = 0, is covered by Lemma 2. Consider
α > 0. The case n = 1 follows trivially from the definition of index Lξ1 . Let n � 2. First,
observe that, by Lemma 1 and the min–max inequality (22), we have

E
((

Sξ
n
)α
�{Sξ

n>x}

)
∑n

k=1
1

Lξk
E
(

ξα
k�{ξk>x}

) =
xαP
(
Sξ

n > x
)
+ α
∫ ∞

x uα−1P
(
Sξ

n > u
)
du

∑n
k=1

1
Lξk

(
xαFξk (x) + α

∫ ∞
x uα−1Fξk (u)du

)
� max

⎧⎨⎩ P
(
Sξ

n > x
)

∑n
k=1

1
Lξk

Fξk (x)
,

∫ ∞
x uα−1P

(
Sξ

n > u
)
du∫ ∞

x uα−1 ∑n
k=1

1
Lξk

Fξk (u)du

⎫⎬⎭
=: max{C1(x), C2(x)}. (32)

By Lemma 2, we obtain lim sup
x→∞

C1(x) � 1, and, for the term C2(x), we have that

lim sup
x→∞

C2(x) = lim sup
x→∞

∫ ∞
x uα−1P

(
Sξ

n > u
)
du∫ ∞

x uα−1P
(
Sξ

n > u
)∑n

k=1
1

Lξk
Fξk

(u)

P
(

Sξ
n>u
) du
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� lim sup
x→∞

sup
u�x

P
(
Sξ

n > u
)

∑n
k=1

1
Lξk

Fξk (u)

= lim sup
x→∞

P
(
Sξ

n > x
)

∑n
k=1

1
Lξk

Fξk (x)
� 1,

where the last estimate follows from Lemma 2 as well. The desired upper estimate in (17)
follows now from (32).

The asymptotic lower bound in (17) follows similarly. Indeed, in the same fashion,
we obtain

E
((

Sξ
n
)α
�{Sξ

n>x}

)
∑n

k=1 LξkE
(

ξα
k�{ξk>x}

) � min

{
P
(
Sξ

n > x
)

∑n
k=1 Lξk Fξk (x)

,

∫ ∞
x uα−1P

(
Sξ

n > u
)
du∫ ∞

x uα−1 ∑n
k=1 Lξk Fξk (u)du

}

=: min{C3(x), C4(x)}. (33)

Using Lemma 2, we have that lim inf
x→∞

C3(x) � 1 and

lim inf
x→∞

C4(x) = lim inf
x→∞

∫ ∞
x uα−1P

(
Sξ

n > u
)

du∫ ∞
x uα−1P

(
Sξ

n > u
)∑n

k=1 Lξk
Fξk

(u)

P
(

Sξ
n>u
) du

� lim inf
x→∞

inf
u�x

P
(
Sξ

n > u
)

∑n
k=1 Lξk Fξk (u)

= lim inf
x→∞

P
(
Sξ

n > x
)

∑n
k=1 Lξk Fξk (x)

� 1,

which implies the lower estimate in (17) due to (33). Theorem 3 is proved.

To prove Theorem 4, we need the following two additional lemmas from [2,6,27].

Lemma 3 (See Lemma 3.1 of [27] and Lemma 3 of [6]). If ξ and θ are two independent r.v.s
such that Fξ ∈ D and θ is nonnegative, non-degenerate at zero r.v., then d.f. Fθξ of product θξ
belongs to the class D. If, in addition, Eθp < ∞ for some p > J+ξ , then the inequality Lθξ � Lξ

holds for L-indices.

Lemma 4 (See [6] Lemma 4). Let two pairs of r.v.s {ξ1, ξ2} and {θ1, θ2} be independent. Let
ξ1, ξ2 be QAI r.v.s such that Fξk ∈ D, k ∈ {1, 2}, and let θ1, θ2 be two arbitrarily dependent,
nonnegative, non-degenerate at zero r.v.s with max{Eθ

p
1 ,Eθ

p
2 } < ∞ for some p > max{J+ξ1

, J+ξ2
}.

Then, r.v.s θ1ξ1 and θ2ξ2 are QAI as well.

Proof. Although the proof of this lemma can be found in [6], we present a more detailed
derivation based on the proof of Lemma 3.1 from [2]. Firstly, we need one result from [8].
Namely, by Lemma 3.7 of [8], we have that

P
(

θi > x1−ε
)
= o
(

Fξi (x)
)

(34)

for i ∈ {1, 2} and ε ∈ (0, 1 − max{J+ξ1
, J+ξ2

}/p).
It is obvious that, for a given ε̂ = (1 − max{J+ξ1

, J+ξ2
}/p)/2,

P(θ1ξ1 > x, θ2ξ2 > x)
Fθ1ξ1(x) + Fθ2ξ2(x)

=
P(θ1ξ1 > x, θ2ξ2 > x, max{θ1, θ2} > x1−ε̂)

Fθ1ξ1(x) + Fθ2ξ2(x)
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+
P(θ1ξ1 > x, θ2ξ2 > x, max{θ1, θ2} � x1−ε̂)

Fθ1ξ1(x) + Fθ2ξ2(x)

:= L1(x, ε̂) + L2(x, ε̂). (35)

Using (22), we estimate the first term in the following way:

L1(x, ε̂) � P(θ1 > x1−ε̂) + P(θ2 > x1−ε̂)

Fθ1ξ1(x) + Fθ2ξ2(x)
� max

i∈{1,2}

{
P(θi > x1−ε̂)

Fξi (x)
Fξi (x)

Fθiξi (x)

}
.

Therefore,

lim sup
x→∞

L1(x, ε̂) = 0 (36)

because of (34) and

lim sup
x→∞

Fξi (x)
Fθiξi (x)

� lim sup
x→∞

Fξi (x)
P(ξia > x, θi > a)

� 1
P(θi > a)

lim sup
x→∞

Fξi (x)
Fξi (x/a)

< ∞, (37)

provided that Fξi ∈ D and P(θi > a) > 0 for some positive a.
For the second term of (35), using (22) once again, we get

L2(x, ε̂) =

∫∫
{0<u1,u2�x1−ε̂}

P
(

ξ1 > x
u1

, ξ2 > x
u2

)
dP(θ1 � u1, θ2 � u2)

Fθ1ξ1(x) + Fθ2ξ2(x)

�

∫∫
{0<u1,u2�x1−ε̂}

P
(

ξ1 > x
max{u1,u2} , ξ2 > x

max{u1,u2}

)
dP(θ1 � u1, θ2 � u2)

Fθ1ξ1(x) + Fθ2ξ2(x)

� P(max{θ1, θ2}ξ1 > x) + P(max{θ1, θ2}ξ2 > x)
Fθ1ξ1(x) + Fθ2ξ2(x)

× sup
{0<u1,u2�x1−ε̂}

P
(

ξ1 > x
max{u1,u2} , ξ2 > x

max{u1,u2}

)
Fξ1

(
x

max{u1,u2}

)
+ Fξ2

(
x

max{u1,u2}

)
� max

i∈{1,2}

{
P(max{θ1, θ2}ξi > x)

Fξi (x)
Fξi (x)

Fθiξi (x)

}

× sup
z�xε

P(ξ1 > z, ξ2 > z)
Fξ1(z) + Fξ2(z)

.

Since ξ1, ξ2 are QAI r.v.s and E(max{θ1, θ2})p < ∞, the last estimate and relations
(34), (37) imply that

lim sup
x→∞

L2(x, ε̂) = 0. (38)

By substituting relations (36) and (38) into (35), we get

lim
x→∞

P(θ1ξ1 > x, θ2ξ2 > x)
Fθ1ξ1(x) + Fθ2ξ2(x)

= 0.

The equality

lim
x→∞

P((θ1ξ1)
− > x, θ2ξ2 > x)

Fθ1ξ1(x) + Fθ1ξ1(x)
= 0
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follows analogously, by observing that

P((θ1ξ1)
− > x, θ2ξ2 > x)

Fθ1ξ1(x) + Fθ1ξ1(x)
=

P(θ1ξ−
1 > x, θ2ξ2 > x)

Fθ1ξ1(x) + Fθ1ξ1(x)

and replacing ξ1 by ξ−
1 in the given proof. The lemma is proved.

Proof of Theorem 4. Since we have that max{Eθ
p
1 . . . ,Eθ

p
n} < ∞ for some p > max

{J+ξ1
, . . . , J+ξn

}, Lemma 3 implies that Fθkξk ∈ D and Lθkξk � Lξk for all k ∈ {1, . . . , n}.
Additionally, by Lemma 4, we have that for any k, l ∈ {1, . . . , n}, k �= l, r.v.s θkξk, θlξl are
QAI. In other words, r.v.s θ1ξ1, . . . , θnξn are pQAI. Thus, we only need to apply Theorem 3
for r.v.s θ1ξ1, . . . , θnξn to obtain the desired result.

6. Examples

In this section, we present three examples illustrating Theorem 3. For the sake of sim-
plicity, in this section, we consider sums consisting of exactly two summands, i.e., we only
consider bivariate distributions (ξ1, ξ2). Furthermore, we assume that their dependence
structure is defined by the FGM copula described in Example 1 of Section 2.3. To illustrate
the behaviour of dominatedly varying summands better, we consider three different cases
of marginal distributions from the disjoint subclasses of D.

Example 3. Let the vector (ξ1, ξ2) coordinates follow a bivariate FGM copula with a parameter ϑ,
and let ξ1 and ξ2 be distributed according to the Pareto distribution with parameters {γ1,κ1} and
{γ2,κ2} (case of class R), i.e.,

Fξ1(x) =
(

1 −
(κ1

x

)γ1
)
�{x�κ1}, Fξ2(x) =

(
1 −
(κ2

x

)γ2
)
�{x�κ2}.

For the parameter values γ1 = 4,κ1 = 5, γ2 = 2,κ2 = 5 and ϑ ∈ {−0.8, 0, 0.8}, we
compare simulated values of the moment tail E

(
(ξ1 + ξ2)

1/2
�{ξ1+ξ2>x}

)
with its asymptotic

values obtained via Theorem 3.

Example 4. Let ξ1, ξ2 be dependent r.v.s which dependence is controlled by the bivariate FGM
copula as in the previous example. In addition, let ξ1 and ξ2 be distributed according to the
generalised Peter and Paul distribution described in Section 2.2 with parameters {a1, b1} and
{a2, b2} (case of class D \ L), i.e.,

Fξ1(x) = �{x<1} +
(

b−a1
1

)�logb1
x�
�{x�1}, Fξ2(x) = �{x<1} +

(
b−a1

1

)�logb1
x�
�{x�1}.

For the parameter values a1 = 1, b1 = 2, a2 = 1/2, b2 = 2 and ϑ ∈ {−0.8, 0, 0.8}, we
compare simulated values of the moment tail E

(
(ξ1 + ξ2)

0.06
�{ξ1+ξ2>x}

)
with its asymptotic

bounds derived from Theorem 3.

Example 5. Let us suppose that r.v.s ξ1, ξ2 is dependent with the dependence structure generated
by the bivariate FGM copula as in the previous examples, and let ξ1 and ξ2 be distributed according
to the Tang distribution described in Section 2.2 with parameters p1 and p2 case of class C), i.e.,

ξ1 = (1 + Y)2N1 , ξ2 = (1 + Y)2N2 , Y d
=U ([0, 1]),

P(N1 = k) = (1 − pi)pk
i , k ∈ N0, i = {1, 2}.

For the parameter values p1 = 0.2, p2 = 0.3 and ϑ ∈ {−0.8, 0, 0.8}, we compare simulated
values of the moment tail E

(
(ξ1 + ξ2)

0.8
�{ξ1+ξ2>x}

)
with its asymptotic values derived from

Theorem 3.
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Even though we can usually derive the analytic expression of an expectation
E(ξα

�{ξ>x}) knowing the distribution of a r.v. ξ, finding an analytic expression for E((ξ1 +
ξ2)

α
�{ξ1+ξ2>x}) might be unfeasible if we assume that r.v.s ξ1 and ξ2 are not independent.

For this reason, in all the examples of this section, we derive the exact analytic expres-
sions for the asymptotic bounds in (17) and find values of the moments tails of sums of
r.v.s using the Monte-Carlo simulation method. Before turning to the final results for the
Examples 3–5, which are stated in Section 6.3, we present some preliminaries.

6.1. Sampling Procedure

To obtain samples of r.v.s having arbitrary distributions using pseudo-random num-
bers generator, we use the so-called inverse probability integral transform property.

Lemma 5 (Inverse probability integral transform). Let U d
=U ([0, 1]) and X be an arbitrary

r.v. with d.f. F. Then, F←(U)
d
= X, where, by F←(y), we denote the generalised inverse function

(g.i.f.) of a d.f. F
F←(y) := inf{x | F(x) � y}.

The proof of this lemma, as well as some additional properties of g.i.f.s, can be
found in [45]. Further, in this subsection, we derive the expressions of g.i.f.s of d.f.s in
Examples 3–5.

• G.i.f. of the Pareto d.f. Consider the regularly varying Pareto d.f. F with parameters
{γ,κ}, i.e.,

F(x) =
(

1 −
(κ

x

)γ
)
�{x�κ}. (39)

Since F is strictly monotone and increasing on interval [κ, ∞), one can derive that
F←(y) = F−1(y) and, therefore, for all y ∈ [0, 1)

F←(y) = κ(1 − y)1/γ.

• G.i.f. of the Peter and Paul d.f. Recall that Peter and Paul distribution with parameters
{a, b}, b > 1, a ∈ (0, ∞) is defined by the following d.f.

F(x) = (ba − 1) ∑
k�1, bk�x

b−ak =
(

1 − (b−a)�logb x�)
�{x�1}. (40)

To find the g.i.f. F←(y) we need to find the smallest x, for which F(x) � y. Since

1 − (b−a)�logb x� � y ⇔
⌊
logb x

⌋
� −1

a
logb(1 − y),

we get that

F←(y) = b(− 1
a logb(1−y)),

for all y ∈ [0, 1), where symbol (..) denotes the ceiling function.

• G.i.f. of d.f. of the Cai–Tang (5) distribution. In Section 2.2, we show that the d.f. of the r.v.

(1 + Y)2N with independent Y d
=U [0, 1] and geometric N with parameter p ∈ (0, 1),

is the following

F(x) = (1 − p)

(
1 − p�log2 x�

1 − p
+

(
x

2�log2 x� − 1
)

p�log2 x�
)
�{x�1}.

To find the g.i.f. F←, we observe that the d.f. F is continuous, strictly monotone on
the interval [1, ∞) and linearly increasing on intervals [2k, 2k+1), k ∈ {0, 1, . . .}. Hence, g.i.f.
F← coincides with F−1.
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Suppose that, for a given y ∈ (0, 1), variable x ∈ [2k, 2k+1) is such that F(x) = y. In
such situation, we have

F(x) = (1 − p)

(
1 − pk

1 − p
+
( x

2k − 1
)

pk

)
= y ⇔ x =

2k
(

y − 1 + pk(2 − p)
)

pk(1 − p)
. (41)

Since F(2n) = 1 − pn for all n ∈ {0, 1, . . .}, we obtain

F←(y) =
2�logp(1−y)�(y − 1 + p�logp(1−y)�(2 − p)

)
p�logp(1−y)�(1 − p)

for all y ∈ [0, 1).
Similarly to the case described in Lemma 5, one can draw samples from multivariate

distributions which marginals are not necessarily mutually independent. The procedure is
mainly based on the so-called Rosenblatt transformation presented in [46]. According to
the results of Rosenblatt [46], Brockwell [47], for an arbitrary random vector (X1, . . . , Xn)
with absolutely continuous distribution, the collection

{F1(X1), F2(X2 | X1), . . . , Fn(Xn | Xn−1, . . . , X1)}

consists of independent r.v.s which are uniformly distributed on interval [0, 1], where

F1(x1) = P(X1 � x1), F2(x2 | x1) = P(X2 � x2 | X1 = x1),

Fk(xk | xk−1, . . . , x1) = P(Xk � xk | Xk−1 = xk−1, . . . , X1 = x1), k ∈ {3, . . . , n}.

For any copula C(u, v) = P(U � u, V � v), the conditional distribution function of U
for the given event {V = v} is defined by equality

Cv(u) := P(U � u | V = v) = lim
δ↓0

C(u, v + δ)− C(u, v)
δ

=
∂

∂v
C(u, v).

By Theorem 2.2.7 of [38], it follows that the partial derivative in the last expression
exists for almost all v in the interval [0, 1]. To sample from a bivariate copula, we follow the
algorithm presented in Section 2.9 of [38].

• Algorithm N . Generation of samples from a bivariate distribution characterised by marginal
d.f.s F1, F2 and copula C(u, v).

Step 1: Generate two independent realisations {t∗, v∗} of distribution U ([0, 1]).
Step 2: To induce the copula implied dependence, transform t∗ into u∗ = C←

v∗ (t∗),
where C←

v (t) is the g.i.f. of the conditional distribution Cv(u). In such a way, we obtain the
realisation (u∗, v∗) from copula C(u, v).

Step 3: Obtain the realisation of the desired distribution using Lemma 5 by transform-
ing (u∗, v∗) into

(
F←

1 (u∗), F←
2 (v∗)

)
.

In what follows, we derive the conditional distribution function Cv(u) and its gener-
alised inverse C←

v (t) for the bivariate FGM copula which is used in Examples 3–5.

• Inverse conditional distribution of bivariate FGM copula.

FGM copula is described in Section 2.3. Since

Cϑ(u, v) = uv + ϑuv(1 − u)(1 − u), θ ∈ [−1, 1],

for u, v ∈ [0, 1], we get that

Cϑ,v(u) = u(1 − ϑ + 2vϑ) + u2(ϑ − 2vϑ).
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To obtain the inverse C←
θ,v(t), we observe that equation

x2(ϑ − 2vϑ) + x(1 − ϑ + 2vϑ)− t = 0, t ∈ (0, 1),

has two roots

x1,2 =
−(1 − ϑ + 2vϑ)±

√
(1 − ϑ + 2vϑ)2 − 4t(ϑ − 2vϑ)

2(ϑ − 2vϑ)
.

We are interested in C←
ϑ,v(t) ∈ (0, 1). Consequently,

C←
ϑ,v(t) =

−(1 − ϑ + 2vϑ) +
√
(1 − ϑ + 2vϑ)2 − 4t(ϑ − 2vϑ)

2(ϑ − 2vϑ)
.

6.2. Analytic Expressions of Individual Summands’ Tail Expectations

To obtain exact analytic expressions of the bounding functions in (17), we need to find
the tail expectations E(ξα

�{ξ>x}) for all marginal distributions considered in Examples 3–5
together with L-indices in the case of the generalised Peter and Paul r.v.s. Note that both
the Pareto distribution and the Cai–Tang distribution (5) defined in Section 2.2 belong to
the class C. Hence, the L-indices for both distributions are equal to units, and we obtain
the exact asymptotic equivalences in (17).

• Truncated expectation of the Pareto distribution. Let us consider r.v. ξ having the Pareto
distribution with parameters {γ,κ} presented in Equation (39). If γ > α, then it is
obvious that

E
(

ξα
�{ξ>x}

)
=

γκγ max{x,κ}α−γ

γ − α
,

• Truncated expectation and L-index of Peter and Paul distribution. If r.v. ξ has the generalised
Peter and Paul distribution (40) with parameters {a, b}, α < a, then

E
(

ξα
�{ξ>x}

)
=

∞

∑
k=1

(ba − 1)bk(α−a)
�{bk>x} =

∞

∑
k=�logb x�+1

(ba − 1)bk(α−a)

= (ba − 1)
b�logb x�(α−a)

ba−α − 1
.

In addition, for any y > 1,

lim inf
x→∞

Fξ(xy)
Fξ(x)

= lim inf
x→∞

(
b−a)�logb y�+�l̂ogb x+l̂ogb y�

=
(
b−a)�logb y�+1,

where the symbol ẑ denotes the fractional part of z. Hence, L-index of r.v. ξ

Lξ = lim
y↓1

lim inf
x→∞

Fξ(xy)
Fξ(x)

= lim
y↓1

(
b−a)�logb y�+1

= b−a.

• Truncated expectation of the Cai–Tang distribution. Let ξ be r.v. defined by Equation (5).
If α < log2(1/p), then according to (6) and (41), we get

E
(

ξα
�{ξ>x}

)
=

1 − p
α + 1

(
2α+1 − 1
1 + 2α p

)
�{x<1} +

1 − p
α + 1

(( p
2

)�log2 x�(
2(log2 x)(α+1) − xα+1

)
+

(
2α+1 − 1

)
(2α p)(log2 x)

1 − 2α p

)
�{x�1},
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because for x < 1

E
(

ξα
�{ξ>x}

)
= E(ξα) =

∫
[1,∞)

uαdFξ(u)

= (1 − p)
∫
[1,∞)

uαd

(
1 − p�log2 u�

1 − p
+

(
u

2�log2 u� − 1
)

p�log2 u�
)

= (1 − p)
∞

∑
k=0

∫
[2k ,2k+1)

uαd

(
1 − p�log2 u�

1 − p
+

(
u

2�log2 u� − 1
)

p�log2 u�
)

= (1 − p)
∞

∑
k=0

∫
[2k ,2k+1)

uαd

(
1 − pk

1 − p
+
( u

2k − 1
)

pk

)

= (1 − p)
∞

∑
k=0

( p
2

)k ∫
[2k ,2k+1)

uαdu

= (1 − p)
∞

∑
k=0

( p
2

)k (2k)
α+1(

2α+1 − 1
)

α + 1

=

(
2α+1 − 1

)
p(1 − p)

(α + 1)(1 − 2α p)
,

and for x � 1

E
(

ξα
�{ξ>x}

)
=
∫
(x,2(log2 x))

uαdFξ(u) +
∫
[2(log2 x) ,∞)

uαdFξ(u) =: K1 +K2,

with

K1 =
∫
(x,2(log2 x))

uαd

(
(1 − p)

(
1 − p�log2 u�

1 − p
+

(
u

2�log2 u� − 1
))

p�log2 u�
)

=
∫
(x,2(log2 x))

uαd

(
(1 − p)

(
1 − p�log2 x�

1 − p
+

(
u

2�log2 x� − 1
))

p�log2 x�
)

= (1 − p)
( p

2

)�log2 x� ∫
(x,2(log2 x))

uαdu

= (1 − p)
( p

2

)�log2 x� 2(log2 x)(α+1) − xα+1

α + 1

and

K2 =
∫
[2(log2 x) ,∞)

uαd

(
(1 − p)

(
1 − p�log2 u�

1 − p
+

(
u

2�log2 u� − 1
))

p�log2 u�
)

= (1 − p)
∞

∑
k=0

( p
2

)(log2 x)+k ∫
[2(log2 x)+k ,2(log2 x)+k+1)

uαdu

= (1 − p)
∞

∑
k=0

( p
2

)(log2 x)+k 2((log2 x)+k)(α+1)(2α+1 − 1
)

α + 1

=
(1 − p)

(
2α+1 − 1

)
(2α p)(log2 x)

(α + 1)

∞

∑
k=0

(2α p)k

=
(1 − p)

(
2α+1 − 1

)
(2α p)(log2 x)

(α + 1)(1 − 2α p)
.
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6.3. Simulation Procedure and Results

We performed three different simulation studies described in Examples 3–5. We speci-
fied the concrete d.f.s of r.v.s ξ1, ξ2 and exponent α in (17). For every case, we considered
three different scenarios defined by parameter ϑ of the FGM copula. In particular, we chose
θ = 0 to include independent case of ξ1, ξ2 and two other cases, namely θ = −0.8 and
θ = 0.8, to reflect how imposed dependence affect the overall asymptotic behaviour. For all
three cases of bivariate distributions, we calculated asymptotic bounds in (17) for various x
values to see how quickly the theoretical asymptotics are attained as x tends to infinity.

• Under the conditions of Example 3, we get from Theorem 3 that

E
(
(ξ1 + ξ2)

1/2
{ξ1+ξ2>x}

)
∼

2

∑
k=1

E
(

ξ1/2
k ξk>x

)[
=

100
3x3/2

(
1 +

150
7x2

)
, x > 5

]
for all ϑ ∈ {−0.8, 0, 0.8}, according to the expressions of truncated moments derived in
Section 6.2. The results of simulated values of E

(
(ξ1 + ξ2)

1/2
{ξ1+ξ2>x}

)
together with

the values of the derived asymptotic formula are presented in Figure 1.
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50 100 150 200

x
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0

0.8

Figure 1. Simulated and asymptotic values for the truncated expectation of Example 3. Solid red

line represents the exact asymptotic values of
2
∑

k=1
E
(

ξ1/2
k {ξk>x}

)
.

• The conditions of Example 4 and Theorem 3 imply that

E
(
(ξ1 + ξ2)

0.06
{ξ1+ξ2>x}

)
�

2

∑
k=1

1
Lξk

E
(

ξ0.06
k {ξk>x}

)
[
=

2
20.94 − 1

2−0.94�log2 x� +
2 −

√
2

20.44 − 1
2−0.44�log2 x�, x > 1

]
,

E
(
(ξ1 + ξ2)

0.06
{ξ1+ξ2>x}

)
�

2

∑
k=1

LξkE
(

ξ0.06
k {ξk>x}

)
[
=

1
2(20.94 − 1)

2−0.94�log2 x� +
(
√

2 − 1)√
2(20.44 − 1)

2−0.44�log2 x�, x > 1

]

due to the formulas derived in Section 6.2. The results of the simulated values of
E
(
(ξ1 + ξ2)

0.06
{ξ1+ξ2>x}

)
together with the asymptotic values are presented in Figure 2.
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Figure 2. Simulated and asymptotic values for the truncated expectation of Example 4. Red area

represents the region bounded by
2
∑

k=1
Lξk

E
(

ξ0.06
k {ξk>x}

)
and

2
∑

k=1
L−1

ξk
E
(

ξ0.06
k {ξk>x}

)
. Cyan area

reflects the additional error using bounding coefficients Lξ
2 = min{Lξ1 , Lξ2} and (Lξ

2)
−1.

• Under the conditions of Example 5, Theorem 3 implies that E
(
(ξ1 + ξ2)

0.8
{ξ1+ξ2>x}

)
can be approximated by sum

2

∑
k=1

E
(

ξ0.8
k ξk>x

)
=

4
9

(
10−�log2 x�

(
21.8(log2 x) − x1.8

)
+

(21.8 − 1)(24/5/5)(log2 x)

1 − 24/5/5

)

+
7

18

[(
3
10

)�log2 x�(
2(log2 x) − x1.8

)
+

(21.8 − 1)(24/53/10)(log2 x)

1 − 24/53/10

]
, x > 1,

for large x and for all three parameter ϑ values. The simulated values of
E
(
(ξ1 + ξ2)

0.8
{ξ1+ξ2>x}

)
and its asymptotic values are presented in Figure 3.
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Figure 3. Simulated and asymptotic values for the truncated expectation of Example 5. Solid red

line represents the exact asymptotic values of
2
∑
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)
.
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From the presented graphs, we can see that the tail expectationsE((ξ1 + ξ2)
α
�{ξ1+ξ2>x})

are approximated quite accurately by their asymptotic values in all three examples. In
addition, the effect of the copula dependence implied by the parameter ϑ quickly becomes
negligible, as x attains larger values. In addition, we observe that the scale of the horizontal
axis is different in each of the graphs, which reflects the different rate of convergence in the
three examples.

To perform Monte Carlo simulations evaluating E((ξ1 + ξ2)
α
�{ξ1+ξ2>x}) for each of

the three examples, we firstly generated two samples consisting of M = 2 × 107 uniform
random variates, namely vectors (t1, . . . , tM) and (v1, . . . , vM), and transformed them ac-
cording to Algorithm N to induce the FGM copula dependence. Then, we modified each of
the resulting vectors (u1, . . . , uM) and (v1, . . . , vM) according to the inverse probability inte-

gral transform described in Section 6.1, obtaining samples
{

F←
ξ1
(uk), F←

ξ2
(vk)

}M

k=1
from dis-

tributions Fξ1 and Fξ2 . Finally, we replaced elements of the collection{
(F←

ξ1
(uk) + F←

ξ2
(vk))

α
}M

k=1
exceeding given threshold x by zeroes and calculated the em-

pirical mean of the resulting vector.
All simulations were computed in the statistical programming package R [48]. Apart

from the base R functions, several others from the tictoc [49], tikzDevice [50], furrr [51] and
tidyverse [52] libraries were used.

7. Conclusions

In this paper, we investigate the asymptotic behaviour of tails of the moments for
randomly weighted sums with possibly dependent dominatedly varying summands. Our
results improve and generalise other related findings in the literature. Firstly, by putting
the L-indices of individual summands inside the bounding sums, we achieve sharper
asymptotic bounds under pQAI dependence structure. Moreover, we relax the condition
for the exponent, allowing it to be any fixed nonnegative real number. Finally, in the case
of randomly weighted sums, we substitute the boundedness condition on random weights
by a less restrictive moments condition.

To illustrate and further validate the obtained results, we performed a Monte Carlo
simulation study in which we considered three concrete examples of random sums from
disjoint subclasses of dominatedly varying distributions. The simulations confirmed our
derived asymptotic relations.
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Abstract: Observational errors of Particle Filtering are studied over the case of a state-space model
with a linear observation equation. In this study, the observational errors are estimated prior to
the upcoming observations. This action is added to the basic algorithm of the filter as a new step
for the acquisition of the state estimations. This intervention is useful in the presence of missing
data problems mainly, as well as sample tracking for impoverishment issues. It applies theory of
Homogeneous and Non-Homogeneous closed Markov Systems to the study of particle distribution
over the state domain and, thus, lays the foundations for the employment of stochastic control against
impoverishment. A simulating example is quoted to demonstrate the effectiveness of the proposed
method in comparison with existing ones, showing that the proposed method is able to combine
satisfactory precision of results with a low computational cost and provide an example to achieve
impoverishment prediction and tracking.

Keywords: particle filter; missing data; single imputation; impoverishment; Markov Systems

MSC: 60G35; 60G20; 60J05; 62M20

1. Introduction

Particle Filter (PF) methodology deals with the estimation of latent variables of
stochastic processes taking into consideration noisy observations generated by the la-
tent variables [1]. This technique mainly consists of Monte-Carlo (MC) simulation [2] of
the hidden variables and the weight assignment to the realizations of the random trials
during simulation, the particles. This procedure is repeated sequentially, at every time step
of a stochastic process. The involvement of sequential MC simulation in the method is
accompanied by a heavy computational cost. However, the nature of the MC simulation
makes the PF estimation methodology suitable for a wide variety of state-space models, in-
cluding non-linear models with non-Gaussian noise. The weights are defined according to
observations, which are received at every time step. The weight assignment step constitutes
an evaluation process of the existing particles, which are created at the simulation step.

As weight assignment according to an observation dataset is a substantial part of
PF, missing observations hinder the function of the filter. Wang et al. [3] wrote a review
concerning PF on target tracking, wherein they mentioned cases of missing data and
measurement uncertainties within multi-target tracking, as well as methods that deal
with this problem (see, e.g., [4]). Techniques that face the problem of missing data focus
mainly on substitution of the missing data. In recent decades, Expectation-Maximization
algorithm [5] and Markov-Chain Monte Carlo methods [6] became popular for handling
missing data problems. These algorithms have been constructed independently of PF.
Gopaluni [7] proposed a combination of Expectation-Maximization algorithm with PF for
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253



Mathematics 2021, 9, 1445

parameter estimation with missing data. Housfater et al. [8] devised Multiple Imputations
Particle Filter (MIPF), wherein missing data are substituted by multiple imputations from
a proposal distribution and these imputations are evaluated with an additional weight
assignment according to their proposal distribution. Xu et al. [9] involved uncertainty
on data availability in the observations with the form of additional random variables in
the subject state-space model. All the aforementioned approaches are powerful, although
computationally costly.

This paper focuses on state-space models with linear observation equations and pro-
vides an estimation of the errors of missing observations (in cases of missing data), aiming
at the approximation of weights, under a Missing At Random (MAR) assumption [10]. Lin-
earity in an observation equation permits sequential replacements of missing values with
equal quantities of known distributions. Although this method is applicable to a smaller
set of models than the former ones, it is much faster as it leads to a single imputation
process. A simulating example is provided for the comparison of the suggested method
with existing techniques for the advantages of the proposed algorithm to be highlighted.
The contribution of the a priori estimation step to the study of impoverishment phenomena
is also exhibited through Markov System (MS) framework (see, e.g., [11]). The substitution
of future weights renders the estimation of future distribution of particles in the state
domain feasible. The significance of this initiative lays on the possible estimation of the
sample condition concerning impoverishment, in future steps, based on the suggested
theory. Such a practice permits the coordinated application of stochastic control [12] instead
of the mostly empirical approaches that been proposed so far [13].

The present article is based on the work of Lykou and Tsaklidis [14]. Further mathemat-
ical propositions are formed by the sparse remarks exhibited in [14], and the incorporation
procedure of MS-theory in the study of particle distribution is explained in detail. The
presentation of the initial results of the simulation example is reformulated for the exam-
ple to be more easily understandable, as well as a new application of MS-theory for the
quantitative prior estimation of the particle distribution one time step forward is added to
the initial example. In Section 2, PF algorithm is presented analytically. In Section 3, the
new weight estimation step is introduced and its connection with the study of degeneracy
and impoverishment is explained. In Section 4, a simulating example is provided, where
the results of the current method are compared with those of MIPF and the results of the
basic PF algorithm in the case when all data are available. An example for the estimation of
the particle distribution one step ahead after the current is also presented in the direction
of impoverishment tracking and prediction. In Section 5, the discussion and concluding
remarks are quoted.

2. Particle Filter Algorithm

Let {xt}t∈N be a stochastic process described by m-dimensional latent vectors, xt ∈ Rm,
and {yt}t∈N be the k-dimensional process of noisy observations, yt ∈ Rk. The states and
observations are inter-related according to the state-space model,

xt = f (xt−1) + vt (1)

yt = c + Axt + ut ⇔ yt − c − Axt = ut. (2)

In the system of Equations (1) and (2), f is a known deterministic function of xt, vt
stands for the process noise, and ut symbolizes the observation noise. Each sequence
{vt}t∈N and {ut}t∈N consists of independent and identically distributed (iid) random
vectors, while c ∈ Rk is a constant vector and A ∈ Rk×m is a constant matrix.
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PF methodology employs Bayesian inference for state estimation. The Bayesian ap-
proach aims at the construction of the posterior probability distribution function p(xt|y1:t),
where y1:t = (y1, y2, ..., yt), resorting to the recursive equations,

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (prediction)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫

p(yt|x′
t)p(x′

t|y1:t−1)dx′
t

(update).

These equations are analytically solvable in cases of linear state-space models with
Gaussian noises. However, for more general models, analytical solutions are usually
infeasible. For this reason, PF can be applied by utilizing MC simulation and integration
to represent the state posterior probability distribution function, p(xt|y1:t), with the help
of a set of N ∈ N particles xi

t, i = 1, 2, ..., N, with corresponding weights wi
t, i = 1, 2, ..., N.

Then, p(xt|y1:t) can be approximated by the discrete mass probability distribution of the
weighted particles {xi

t}N
i=1 as

p̂(xt|y1:t) ≈
N

∑
i=1

wi
tδ(xt − xi

t),

where δ is the Dirac delta function and weights are normalized, so that ∑i wi
k = 1. As

p(xt|y1:t) is usually unknown; this MC simulation is based on importance sampling, namely
a known probability (importance) density q(xt|y1:t) is chosen in order for the set of particles
to be produced. Then, the state posterior distribution is approximated by

p̂(xt|y1:t) ≈
N

∑
i=1

w̃i
tδ(xt − x̃i

t),

with x̃i
t ∼ q(xt|y1:t), while

w̃i
t ∝ w̃i

t−1
p(yt|x̃i

t)p(x̃i
t|x̃i

t−1)

q(x̃i
t|x̃i

t−1, yt)
(3)

are the normalized particle weights for i = 1, 2, ..., N.
As PF is applied successively for several time steps, it happens that increasing weights

are assigned to the most probable particles, while the weights of the other particles become
negligible progressively. Thus, only a very small proportion of particles is finally used for
the state estimation. This phenomenon is known as PF degeneracy. In order to face this
problem, a resampling with replacement step according to the calculated weights has been
incorporated into the initial algorithm, resulting in the Sampling Importance Resampling
(SIR) algorithm. Nevertheless, sequential resampling leads the particles to take values from
a very small domain and exclude many other less probable values. This problem is called
impoverishment. A criterion over the weight variability has been introduced for a decision
to be made at every time step, whether existing particles should be resampled or not, to
reach the middle ground between degeneracy and impoverishment. In this criterion, the
Effective Sample Size measure of degeneracy, defined as

Ne f f (t) =
N

1 + Varp(•|y1:t)
(w(xt))

,

is involved (see, e.g., [15], pp. 35–36). As this quantity cannot be calculated directly, it can
be estimated as

N̂e f f (t) =
1

∑N
i=1(w̃

i
t)

2
.
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The decision on resampling is positive whenever N̂e f f (t) < NT, where NT = c1N, c1 ∈ R
is a fixed threshold. A usually selected value for NT is 75%N. Establishing a criterion for
resampling slows down sample impoverishment of the sample but does not prevent it.

Algorithm 1 summarizes PF steps. The sampling part corresponds to the prior (pre-
diction) step of Bayesian inference, while weight assignment and possible resampling
constitute the posterior (update) step.

Algorithm 1 SIR Particle Filter

Require: N, q, Ne f f , T
Initialize {xi

0, wi
0}

for t = 1, 2, ..., T do
1. Importance Sampling
Sample x̃i

t ∼ q(xt|xi
0:t−1, yt)

Set x̃i
0:t = (xi

1:t−1, x̃i
t),

Calculate importance weights

w̃i
t ∝ wi

t−1
p(yt |x̃i

t)p(x̃i
t |xi

t−1)

q(x̃i
t |xi

t−1,yt)
.

end for
for i = 1, 2, ..., N do

Normalize weights wi
t =

w̃i
t

∑N
i=1 w̃i

t
2. Resampling
if N̂e f f (t) ≥ NT then

for i = 1, 2, ..., N do
xi

0:t = x̃i
0:t

end for
else

for i = 1, 2, ..., N do
Sample with replacement index j(i) according to the discrete weight distribution
P(j(i) = d) = wd

t , d = 1, ..., N
Set xi

0:t = x̃j(i)
0:t and wi

t =
1
N

end for
end if

end for

3. The Missing Data Case—Estimation of Weights

We now proceed to the addition of a new step to Algorithm 1 for the case of missing
data. For that purpose, some new definitions need be quoted. As the missing data
mechanism is usually unknown, its possible dependence on the missing data themselves
could introduce bias to the statistical inference. For this reason, a Missing at Random
(MAR) assumption is adopted: let a random indicator variable Rt,j, j = 1, ..., k, indicate
whether the jth component of the tth observation is available or not. That is,

Rt,j =

{
0 the jth component is available at time t
1 otherwise

.

Additionally, sets Zt and Wt are defined as the collections of missing and available
components of observations yt, respectively, for every time step t ∈ N.

According to the MAR assumption, the missing data mechanism does not depend on
the missing observations, given the available ones:

P(Rt,j|Zt, Wt) = P(Rt,j|Wt), t ∈ N, j = 1, ..., k.

Proposition 1. Let {xi
t−1}N

i=1 be the set of particles produced for the posterior estimation of
latent vector xt−1, while whole observation yt is missing. In addition, let ui

t, i = 1 . . . N, be
the observational errors for corresponding candidate particles x̃i

t, so that ui
t = yt − c − Ax̃i

t−1,
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according to (2). Then, the conditional distribution of every observational error ui
t on the particle

set {xi
t−1}N

i=1 is approximated as

p(ui
t|{xi

t−1}N
i=1) ≈ p(A( f (x̂t−1)− f (xi

t−1)) + Avt − Avi
t + ut), (4)

where x̂t−1 is a point estimation of xt−1 and vi
t represents the process noise for the generation of xi

t.

Proof. Let xi
t−1 be a particle for the posterior estimation of the hidden state xt−1 of the

state-space model (1)–(2). Then, according to Algorithm 1 and Equation (1), the ith prior
estimation of the hidden state xt is produced by equation

x̃i
t = f (xi

t−1) + vi
t. (5)

According to Equation (2), the observational error of the particle is calculated as

ui
t = yt − c − Ax̃i

t. (6)

If the (whole) observation yt is unavailable, sequential replacements of ui
t and yt from

Equations (6) and (2), respectively, contribute to the creation of the formula,

ui
t = c + Axt + ut − c − Ax̃i

t

= A(xt − x̃i
t) + ut.

As observation yt is considered missing, particles x̃i
t cannot be evaluated. Thus, both

xt and x̃i
t are replaced according to Equations (1) and (5),

ui
t = A f (xt−1) + Avt − A f (xi

t−1)− Avi
t + ut

= A( f (xt−1)− f (xi
t−1)) + Avt − Avi

t + ut.

The hidden state xt−1 is unknown, but its posterior distribution is available, so that a
point estimation of it, x̂t−1, can be calculated. Then,

ui
t ≈ A( f (x̂t−1)− f (xi

t−1)) + Avt − Avi
t + ut. (7)

Therefore, since the quantity A( f (x̂t−1)− f (xi
t−1)) is a constant at time t, the distribu-

tion of ui
t can be approximated as

p(ui
t|{xi

t−1}N
i=1) ≈ p(A( f (x̂t−1)− f (xi

t−1)) + Avt − Avi
t + ut). (8)

Remark 1. Given that the distributions of the random vectors vt, vi
t, and ut are known, the

distribution of Avt − Avi
t + ut is also known, as it is the convolution of linear functions of the

initial components vt, vi
t, and ut. Calculation of such convolutions is not always an easy task, as

analytical solutions may not be feasible, leading to numerical approximation options ([16]). However,
given that each noise process consists of iid vectors and matrix A is constant, the distribution of this
sum needs to be calculated only once.

Remark 2. The replacement of x̃i
t can be avoided, if MC simulation has been implemented at this

time point.

The weight assigned to x̃i
t depends on ui

t, according to Equations (3) and (6), because

p(yt|x̃i
t) = p(ui

t).
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Then, as the two variables (w̃i
t and ui

t) are closely associated, knowledge of the dis-
tribution of ui

t leads to the derivation of the distribution of w̃i
t. Even if the distribution

of w̃i
t may not be exactly calculated, in cases where w̃i

t are complicated functions of ui
t,

knowledge on the distribution of ui
t will suffice to provide information on the weight

distribution. Thereby, calculation of p(ui
t ∈ D), D ⊂ Rk, as it is suggested in Remark 1, is

of interest for the concomitant estimation of weights.

Proposition 2. If the conditions of Proposition 1 hold, while yt is partially observed, the conditional
distribution of every observational error ui

t on particle set {xi
t−1}N

i=1 and collection Wt of available
components of yt is approximated as

p(ui
t|{xi

t−1}N
i=1, Wt) ≈ p(A( f (x̂t−1)− f (xi

t−1)) + Avt − Avi
t + ut|Wt).

Proof. Estimation of ui
t implies the estimation of yt, according to Equation (6). If obser-

vation yt is partially available, its available components, say Wt collection, can be placed
into the above equations. Thus, some components of the observational error will also be
available, while the rest of the components, say Zt collection, possibly dependent on the
available ones, is estimated in the same rationale. In this case, (4) takes the form

p(ui
t|{xi

t−1}N
i=1, Wt) ≈ p(A( f (x̂t−1)− f (xi

t−1)) + Avt − Avi
t + ut|Wt).

In any case, missing (parts of) observational errors ui
t along with their weights can

be substituted by single values, as expected values or modes. Consequently, the initial PF
algorithm undergoes a slight change, as presented in Algorithm 2. Further to Remark 2,
the substitution of observational errors ui

t is implemented after the Importance Sampling
step in Algorithm 2 for the sake of simplicity.

3.1. Connection to Markov Systems and Contribution to the Study over Impoverishment

Impoverishment over the particle samples can be studied in connection with certain
Markov models, the Homogeneous or Non-homogeneous Markov Systems (denoted as
HMSs or NHMSs, respectively) , which have their roots in [17]. With the consideration
of a grid of d ∈ N cells over the state domain, problems of impoverishment reduce to
a problem concerning the derivation of the distribution of the particle population over
the grid cells. Term “grid” denotes here a single partition over the whole state domain.
The cells of this grid represent the states of the MS. At every time step, a particle moves
from cell i (i = 1, . . . , d) to cell j (j = 1, . . . , d) with (time-dependent) transition probability
pij,h(t), (h = 1, . . . , N) in the general case. However, MS consideration is based on the
hypothesis that population members which are situated in the same state move to any cell
at the next time step according to a joint transition probability. Thus, for the introduction
of MS-theory in the study of particle distribution over the grid, probabilities pij,h(t) are
approximated by single quantities pij(t) for all particles in cell i at time point t. The fact
that PF is applied to dynamical systems entails that different areas of the state domain
become of particular interest at different time steps. Therefore, it is preferable for the grid
lines not to remain constant over time. A simple time-varying grid is constructed within
the simulating example in Section 4, while a more complex structure is provided in [18].
In the simple case that the PF algorithm comprises constant parameters and excludes the
resampling step, the corresponding MS can be considered homogeneous, as the particles
only move according to a state equation with constant approximating transition probability
values. Resampling causes the redistribution of particles over the grid. The probability
vectors for this redistribution are defined by the observational errors at every time step.
Thus, steps of changing probability vectors are introduced in the MS rendering this MS
non-homogeneous. Moreover, the results over the grid of both production of weighted
particles on the basis of system (1)–(2) and resampling, at the end of every time step, derive
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the results of sums of multinomial trials with varying probability vectors (see also [19],
p. 28); this procedure corresponds to the transitions of population members between the
state of a MS. In general, the sums of multinomial trials can be considered to follow
generalized multinomial distribution [20] or, more generally, Poisson Binomial distribution
(which has its roots in [21], §14 ). As the number of particles remains constant, according
to Algorithm 1, the MS is considered to be closed. The difficulty in making predictions
on the MS lies in the fact that observational errors are not a priori acquired during the
filtering procedure.

Algorithm 2 SIR Particle Filter for missing data with observational error estimation

Require: N, q, Ne f f , T
Initialize {xi

0, wi
0}

for t = 1, 2, ..., T do
1. Importance Sampling
Sample x̃i

t ∼ q(xt|xi
0:t−1, Wt)

Set x̃i
0:t = (xi

1:t−1, x̃i
t),

Produce observational error estimations ûi
t for the missing components Zt and calculate

importance weights

w̃i
t ∝ wi

t−1
p(yt |x̃i

t)p(x̃i
t |xi

t−1)

q(x̃i
t |xi

t−1,yt)
.

end for
for i = 1, 2, ..., N do

Normalize weights wi
t =

w̃i
t

∑N
i=1 w̃i

t
2. Resampling
if N̂e f f (t) ≥ NT then

for i = 1, 2, ..., N do
xi

0:t = x̃i
0:t

end for
else

for i = 1, 2, ..., N do
Sample with replacement index j(i) according to the discrete weight distribution
P(j(i) = d) = wd

t , d = 1, ..., N
Set xi

0:t = x̃j(i)
0:t and wi

t =
1
N

end for
end if

end for

In this study, observational errors are substituted by single values for one time step, so
that weights can be estimated one step ahead. The set of weights configures the probability
vectors of the resampling step. Thus, the distribution of particles over the grid cells can
be approximated during the upcoming step of resampling and new Importance Sampling.
Thus, the distribution of the particle population can be estimated for the next step on the
basis of the estimated weights for the dispersion of the future particles over the grid to
be assessed and impoverishment phenomena to be predicted. Such a practice paves the
way to the involvement of stochastic control theory [12] (leading to control of asymptotic
variability [22]) into the matter of the avoidance of impoverishment.

4. Simulating Example

4.1. Contribution to the Missing Data Case

A simulation example is presented in this section to emphasize the benefits of the
proposed algorithm. The proposed method is compared with the typical PF algorithm,
when the complete dataset is available, and the multiple imputation particle filter (MIPF)
for n = 5 imputations [8]. The reduction step proposed in [23] is incorporated in the initial
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MIPF algorithm for the best possible results to be achieved. The data simulation is based
on the state-space model of Equations (1) and (2), with two-dimensional vectors

xt =

[
x1,t
x2,t

]
=

[
cos(x1,t−1 − x1,t−1/x2,t−1)
cos(x2,t−1 − x2,t−1/x1,t−1)

]
+

[
v1,t
v2,t

]
(9)

yt = xt + ut,

where vt =

[
v1,t
v2,t

]
∼ N(μ, S1), μ =

[
0
0

]
, S1 =

(
0.05 0

0 0.05

)
, ut ∼ N(μ, S2),

S2 =

(
0.03 0

0 0.03

)
and N symbolizes Gaussian distribution. Let x0 =

[
1

0.5

]
be

considered known. Next, concerning missing data, we let Rt,j ∼ Bernoulli(0.15), j = 1, 2,
that is the data are missing completely at random. N = 100 particles have been used
for every filter. The distributions of noises are also considered known. The weighted
mean is used as a point estimator of a hidden state and missing observational errors are
substituted by their expected values. All the filters have been repeated for 100 times and
their performance concerning their precision and consumed time has been recorded. (The
code was written in R project [24]. Packages mvnorm [25], with its corresponding reference
book [26], ggplot [27], and ggforce [28] were also used. Simulations were performed on an
AMD A8-7600 3.10 GHz processor with 8 GB of RAM.)

The results of the three methods are shown in Table 1. In the first two columns,
the means over the simulations of Root-Mean-Square Errors (RMSE) of the estimators
(weighted means) for each component of the hidden states are presented. The mean of
the two aforementioned columns is also calculated, as well as the mean time consumed
in each approach. In the table, it is shown that the weight estimation with the suggested
method outperforms MIPF concerning both precision and time elapsed. The precision of the
suggested method supersedes that of MIPF slightly, while the mean required computational
time is about 50% less than the corresponding mean time required for MIPF. The proposed
method is also compared with the results of the standard PF algorithm, for which all
observations are available, and it seems that, even if the precision is inevitably reduced
in the case of missing data, the computational time remains nearly the same. The small
differentiation in the mean elapsed time is probably connected with the resampling decision.
That is, in this example, the precision of the suggested method slightly supersedes its
competitor, while its computational cost is much lower than the cost of its competitor,
reaching the levels of the basic filter (which is practically infeasible in the missing data
case). In Figures 1 and 2, the performances of the proposed method and MIPF are depicted
for the two components of the state process, respectively, for one iteration of each filter.
The estimators (weighted means) of the two approaches are close to each other, tracking
the hidden vector satisfactorily. Therefore, in this example, the suggested method appears
to provide the best option between the available ones in the missing data case.

Table 1. Comparison of the results over three methods: the basic PF algorithm, when all observations
are available; the weight estimation method, which is proposed in this study; and MIPF for n = 5
imputations. The methods are compared through the mean of RMSE and the time consumed over
the 100 repeated implementations.

Method
Mean RMSE for

(x1,t)
Mean RMSE for

(x2,t)
Overall Mean

Precision
Mean Time
Elapsed (s)

Basic PF 0.1610253 0.1566881 0.1588567 2.5570

Weight est. 0.2065578 0.2102287 0.2083933 2.5491

MIPF 0.2267527 0.2173670 0.2220598 4.9137
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Figure 1. Time-series of the hidden values, the observations, and the corresponding point estimations
of the proposed method and MIPF imputations for the first component x1,t of the state process.

Figure 2. Time-series of the hidden values, the observations, and the corresponding point estimations
of the proposed method and MIPF imputations for the second component x2,t of the state process.

4.2. Contribution to Impoverishment Prediction

As far as estimation of particle distribution one step ahead is concerned, an application
for the transition of the particles from time point t = 9 to t = 10 is presented during one
implementation of the suggested PF with single imputation for missing values on the
available dataset. In the time interval (0,10], only the first component of observation
y6 is unavailable. In the end of time step t = 9, resampling is implemented and the
histograms of the particle sets are exhibited in Figure 3. The sample mean of the particles
is m = [m1 = 0.947 m2 = 1.07]T and the standard deviations of the corresponding
components are s1 = 0.126 and s2 = 0.127. According to Equation (4) and the given
parameters of the problem, the random factor needed to be estimated for every particle at
the next time step is

zi
t = Avt+1 − Avi

t+1 + ut+1 ∼ N(0, Sz), Sz = 2S1 + S2 =

(
σ2

z 0
0 σ2

z

)
,
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where σz = 0.36. Thus, in both dimensions, the following partitions are considered,

Πj = {(−∞, mj − σz/2), [mj − σz/2, mj + σz/2), [mj + σz/2,+∞)}, j = 1, 2,

so that a grid of nine cells is configured over the two dimensions. The frequency table
(Table 2) exhibits the particle distribution over the grid.

(a) Histogram of the particle sample (i =
1, . . . , N) for the posterior estimation of
first component x1,9.

(b) Histogram of the particle sample
(i = 1, . . . , N) for the posterior estima-
tion of second component x2,9.

(c) Joint histogram of the particle sample (i = 1, . . . , N) for the posterior estima-
tion of both components of the whole hidden vector x9. Red lines delimit the
suggested grid cells.The red diamond stands for the hidden state.

Figure 3. Histograms of particle samples for the posterior estimation of hidden variable x9.

The selected time period was chosen because there is a considerable number of
preceding steps that permits a relatively good adaptation of the particle samples over the
hidden states and the samples have not yet collapsed to a tiny neighborhood around a
single point (utter impoverishment). This argument is evinced in Figure 3c and Table 2,
where the distribution of the particles is presented in connection with the hidden state and
the suggested grid. The produced particles are both close to the hidden state, as most of
them are less than one standard deviation σz from it, and sparse enough for the existence
of particles outside the central cell of the grid. Thus, the condition of the sample during
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these time points configures a typical example of filter implementation before its collapse.
Such time points may be suitable starting points for the introduction of control (which
exceeds the limits of this study) as the subject sample is in a good condition concerning
both impoverishment and accuracy over hidden variable estimation.

Table 2. Frequency table of the particle distribution over the suggested grid at the end of t = 9.

1st
Component

2nd Component

(−∞, 0.89) [0.89, 1.25) [1.25,+∞)

(−∞, 0.767) 2 6 3

[0.767, 1.13) 5 77 1

[1.13,+∞) 1 4 1

For the next time step, a prior estimation for hidden vector x10 is implemented. For the
formation of the new grid, the existing particles are moved according to the deterministic
part of Equation (9), resulting in x10(−) = [0.993 0.984]T , the mean of the new particle
set. This quantity constitutes a prior point estimator of the hidden state. Thus, the grid of
t = 9 is shifted by x10(−)− m to a new grid, as shown it Table 3, the central cell of which is

[x10(−)[1]− 0.18, x10(−)[1] + 0, 18)× [x10(−)[2]− 0.18, x10(−)[2] + 0, 18) =

[0.813, 1.17)× [0.804, 1.16).

The movement of all the particles according to the deterministic part of Equation (9)
results in the frequency table in Table 3, where it is shown that all the new particles belong
to the central cell. Even though the particles are identically distributed, with the addition
of the process noise to the particles, the probabilities for particles to move from the central
cell to random ones defer from particle to particle, as the particles have different distances
form the grid lines initially. This fact is in contrast to the theoretical background of MS,
according to which population members have a common transition probability matrix P
to move during a time step. For this reason, the probabilities of particles to move to a cell
with the addition of the random noise are approximated by the probabilities of the point
estimation x10(−) to move to a random cell with the addition of noise. These probabilities
(rounded values) are provided in Table 4. Thus, the expected numbers of particles over the
grid cells are

N ∗ P = 100 ∗

⎛⎝0.044 0.122 0.044
0.122 0.335 0.122
0.044 0.122 0.044

⎞⎠
and the expected distribution of the particles over the grid is presented in Table 5. Concern-
ing the expected posterior distribution of the particles, the expected observational errors
are zero, so that particle weights are expected to remain the same. Thus, no further change
is expected in their distribution in cells even if resampling is decided to take place, as all
weights are equal after resampling in the previous time step.

Remark 3. The expected values of observational errors are zero. Nevertheless, the prior estimation
of their distribution according to relation (4) and model parameters, where the variances of the errors
are presented, evinces the increased uncertainty for them, as σ2

u = 0.03 while σ2
z = 0.13.
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Table 3. Frequency table of the particle distribution over the suggested grid at t = 10 when the
particles xi

9, i = 1, . . . , 100, move only according to the deterministic part of Equation (9).

1st
Component

2nd Component
(−∞, 0.804) [0.804, 1.16) [1.16,+∞)

(−∞, 0.813) 0 0 0

[0.813, 1.17) 0 100 0

[1.17,+∞) 0 0 0

Table 4. Transition probability table for x10(−) to move with the addition of process noise v10 .

1st
Component

2nd Component
(−∞, 0.804) [0.804, 1.16) [1.16,+∞)

(−∞, 0.813) 0.044 0.122 0.044

[0.813, 1.17) 0.122 0.335 0.122

[1.17,+∞) 0.044 0.122 0.044

Table 5. Frequency table for the expected numbers of the particles over the grid cells after the
addition of process noise realizations at t = 10.

1st
Component

2nd Component
(−∞, 0.804) [0.804, 1.16) [1.16,+∞)

(−∞, 0.813) 4.4 12.2 4.4

[0.813, 1.17) 12.2 33.5 12.2

[1.17,+∞) 4.4 12.2 4.4

The results of the implementation of PF at time step t = 10 are also exhibited. Resam-
pling has taken place at this time step as well. The joint histogram of the posterior sample
over both dimensions (Figure 4) indicates that the majority of the particles do not belong to
the central cell. This fact is reasonable, as the length of the sides of the central cell equals
only one standard deviation σz, so that prior probabilities for the particles to be placed
outside of the central cell at this time point are considerably big according to the Empirical
Rule (68-95-99.7) for normal distribution. For the consolidation of these results towards
this rule, the orange squares are drawn in Figure 4 for the corresponding areas of the rule
to be defined for each separate dimension, while the orange circles are the corresponding
standard deviation circles (and not ellipses, generally, as the two components have the
same variance σ2

z = 0.13) of the whole vector. Thus, questions on the suitability of the
proposed grid structure are raised for future study. Nevertheless, it should be mentioned
that a grid with a central cell of double side length would have classified all particles to
the central cell during time step t = 9, rendering further study on the issue meaningless.
Additionally, a new grid of nine cells is also constructed around the mean of this posterior
particle set, the central cell of which also has length σz. The distribution of the particles in
the new grid is quoted in Table 6. In comparison with Table 2, it seems that the number of
particles in the central cell is increased in Table 6.
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Table 6. Frequency table of the particle distribution over the grid around the mean of the sample in
the end of t = 10.

1st
Component

2nd Component
(−∞, 1.01) [1.01, 1.37) [1.37,+∞)

(−∞, 1.06) 1 3 0

[1.06, 1.42) 6 90 0

[1.42,+∞) 0 0 0

Figure 4. Joint histogram of the particle sample (i = 1, . . . , N) for the posterior estimation of both
components of the whole hidden vector x10. Red lines delimit the suggested grid cells of Table 3. The
red diamond stands for the hidden state. The red star stands for the observation at this time point.
The sides of the two squares are correspondingly one and two standard deviations σz from the center
of the diagram. The circles are inscribed in the corresponding squares.

Remark 4. In the present example, the transitions of the particles according to the deterministic
function led all particles to a single cell (Table 3), so that the result of the addition of process noise
was handled as a result of a multinomial trial. In the case that the deterministic function leads the
particles to more than one cell, then it is suggested that different means be found for each cell as well
as corresponding transition probabilities, so that the final result can be considered the sum of results
of multinomial trials for the transitions to every cell.

5. Discussion and Conclusions

In this study, single substitution (in contrast to MIPF) of observational errors is pro-
posed for missing data cases, when PF is implemented and MAR assumption is adopted.
This method is a single imputation procedure. Acuña et al. [23] argued against single im-
putation, as it is rather simplistic and it cannot attribute to a single value the distributional
characteristics that can be approached and described by a sample of multiple imputation.
Nevertheless, the primary target of the proposed technique is the minimization of the
computational cost that is added to the initial PF algorithm, in the case of missing data.
For this purpose, interventions in the PF algorithm are slight. Moreover, in the provided
simulation, the suggested method outperforms the multiple imputation approach even for
a considerable number of imputations, whereas Acuña et al. [23] noticed that MIPF with
n = 3, 4, 5 imputations produces very satisfactory results, according to the approximation
of multiple imputation estimator of efficiency provided by Rubin [29]. As a result, in
this example, estimation of observational errors performs better with respect to both the
computational time it requires and the precision it achieves. Besides, knowledge on the
distribution of the observational errors contributes to the quantification possibility of the
uncertainty over the point estimations. Thus, the suggested method takes advantage of the
low computational cost of the single imputation option, while the study of more general
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distributional characteristics of the observational noise can also be taken into account at
the same time (see Remark 3).

The contribution of such a method in order to cope with impoverishment problems is
also worth mentioning. This method permits the estimation of observational errors and
their corresponding weights one time step forward. The evolution of weight distribution
has not been a priori estimated for multiple time steps yet, to the best of the authors’
knowledge, but this is feasible at least for one step ahead. As the weights of the next step
can be estimated, the probabilities that a particle will be chosen at the resampling step
can also be estimated. As explained in Section 3.1, the assessment of weight distribution
for the forthcoming time steps could be very interesting, as far as it is connected with
impoverishment issues. Concerning future perspectives over this issue, the study of
impoverishment problems can be implemented with the use of input control [12], in order
for the impoverishment to be controlled; laws of large numbers [30], as MC approximation
employs large samples; state capacity restrictions [31]; for the existence of a population
limit at every grid cell; literature on the evolution of attainable structures [32]; the evolution
of the distribution of particles [33] or of the corresponding moments [34] in the direction
of HMSs and NHMSs; and for the estimation of the future behaviour of the sample,
possibly reaching continuous-time models [35]. Research on automatic optimal control [36]
could be combined with the suggested methodology, possibly leading to interesting joint
applications of PF [37] along with artificial intelligence [38]. The performance of the
method could also be tested when data are missing for longer time periods [39], while
more sophisticated grid structures could also be examined [18]. Correspondingly, in a
broader sense, the main idea of the proposed method could be implemented in the errors-
in-variables signal processing for missing data cases [40], or it could be involved in more
complex models that require MC simulation for the prior estimation of variables [41].
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The following abbreviations are used in this manuscript:

PF Particle Filter
MC Monte Carlo
MIPF Multiple Imputation Particle Filter
MAR Missing At Random
MS Markov System
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iid independent and identically distributed
SIR Sampling Importance Resampling
HMSs Homogeneous Markov Systems
NHMSs Non-homogeneous Markov Systems
RMSE Root Mean Square Error

References

1. Gordon, N.; Salmond, D.; Smith, A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. Radar Signal
Process. 1993, 140, 107. [CrossRef]

2. Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949. [CrossRef]
3. Wang, X.; Li, T.; Sun, S.; Corchado, J.M. A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget

Tracking. Sensors 2017, 17, 2707. [CrossRef]
4. Degen, C.; Govaers, F.; Koch, W. Track maintenance using the SMC-intensity filter. In Proceedings of the 2012 Workshop on

Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 4–6 September 2012; pp. 7–12. [CrossRef]
5. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J. R. Stat. Soc. Ser. B

(Methodol.) 1977, 39, 1–22. [CrossRef]
6. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing

Machines. J. Chem. Phys. 1953, 21, 1087–1092. [CrossRef]
7. Gopaluni, R.B. A particle filter approach to identification of nonlinear processes under missing observations. Can. J. Chem. Eng.

2008, 86, 1081–1092. [CrossRef]
8. Housfater, A.S.; Zhang, X.P.; Zhou, Y. Nonlinear fusion of multiple sensors with missing data. In Proceedings of the 2006 IEEE

International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 14–19 May 2006. [CrossRef]
9. Xu, L.; Ma, K.; Li, W.; Liu, Y.; Alsaadi, F.E. Particle filtering for networked nonlinear systems subject to random one-step sensor

delay and missing measurements. Neurocomputing 2018, 275, 2162–2169. [CrossRef]
10. Rubin, D.B. Inference and Missing Data. Biometrika 1976, 63, 581. [CrossRef]
11. Vassiliou, P.C.G. Asymptotic behavior of Markov systems. J. Appl. Probab. 1982, 19, 851–857. [CrossRef]
12. Vassilliou, P.C.G.; Tsantas, N. Stochastic control in non- homogeneous markov systems. Int. J. Comput. Math. 1984, 16, 139–155.

[CrossRef]
13. Li, T.; Sun, S.; Sattar, T.P.; Corchado, J.M. Fight sample degeneracy and impoverishment in particle filters: A review of intelligent

approaches. Expert Syst. Appl. 2014, 41, 3944–3954. doi:10.1016/j.eswa.2013.12.031. [CrossRef]
14. Lykou, R.; Tsaklidis, G. A priori estimation methodology on observation errors of a state space model with linear observation

equation using Particle Filtering. InProceedings of the 6th Stochastic Modeling Techniques and Data Analysis International
Conference, Skiadas, C.H., Ed.; Barcelona, Spain, 2–5 June 2020; pp. 333–341.

15. Liu, J.S. Monte Carlo Strategies in Scientific Computing; Springer Series in Statistics; Springer: New York, NY, USA, 2004. [CrossRef]
16. Lykou, R.; Tsaklidis, G. Prior estimation of observational errors of Particle Filter. In Proceedings of the 32nd Panhellenic Statistics

Conference, Ioannina, Greece, 30 May–1 June 2019; pp. 195–204. (In Greek)
17. Bartholomew, D.J. A Multi-Stage Renewal Process. J. R. Stat. Soc. Ser. B (Methodol.) 1963, 25, 150–168. [CrossRef]
18. Li, T.; Sattar, T.P.; Sun, S. Deterministic resampling: Unbiased sampling to avoid sample impoverishment in particle filters. Signal

Process. 2012, 92, 1637–1645. [CrossRef]
19. Bartholomew, D.J. Stochastic Models for Social Processes, 3rd ed.; Wiley: New York, NY, USA, 1982.
20. Beaulieu, N. On the generalized multinomial distribution, optimal multinomial detectors, and generalized weighted partial

decision detectors. IEEE Trans. Commun. 1991, 39, 193–194. [CrossRef]
21. Poisson, S.D. Recherches sur la Probabilité des Jugements en Matière Criminelle et en Matière Civile; Bachelier: Paris, France, 1837.
22. Vassiliou, P.C.G.; Georgiou, A.C.; Tsantas, N. Control of Asymptotic Variability in Non-Homogeneous Markov Systems. J. Appl.

Probab. 1990, 27, 756–766. [CrossRef]
23. Acuña, D.E.; Orchard, M.E.; Silva, J.F.; Pérez, A. Multiple-imputation-particle-filtering for uncertainty characterization in battery

state-of-charge estimation problems with missing measurement data: Performance analysis and impact on prognostic algorithms.
Int. J. Progn. Health Manag. 2015, 6, 1–12.

24. R Core Team. R: A Language and Environment for Statistical Computing. 2014. Available online: https://www.gbif.org/tool/81
287/r-a-language-and-environment-for-statistical-computing (accessed on 20 June 2021)

25. Genz, A.; Bretz, F.; Miwa, T.; Mi, X.; Leisch, F.; Scheipl, F.; Hothorn, T. {mvtnorm}: Multivariate Normal and t Distributions. 2020.
Available online: http://mvtnorm.r-forge.r-project.org/ (accessed on 20 June 2021)

26. Genz, A.; Bretz, F. Computation of Multivariate Normal and t Probabilities; Lecture Notes in Statistics; Springer: Heidelberg,
Germany, 2009.

27. Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016.
28. Pedersen, T.L. ggforce: Accelerating ’ggplot2’; R Package Version 0.3.3. 2021. Available online: https://cran.r-project.org/web/

packages/ggforce/index.html (accessed on 20 June 2021)
29. Rubin, D.B. (Ed.) Multiple Imputation for Nonresponse in Surveys; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.:

Hoboken, NJ, USA, 1987. [CrossRef]

267



Mathematics 2021, 9, 1445

30. Vassiliou, P.C. Laws of Large Numbers for Non-Homogeneous Markov Systems. Methodol. Comput. Appl. Probab. 2020, 22,
1631–1658. [CrossRef]

31. Vasiliadis, G.; Tsaklidis, G. On the Distributions of the State Sizes of the Closed Discrete-Time Homogeneous Markov System
with Finite State Capacities (HMS/c). Markov Process. Relat. Fields 2011, 17, 91–118.

32. Tsaklidis, G.M. The evolution of the attainable structures of a homogeneous Markov system by fixed size. J. Appl. Probab. 1994,
31, 348–361. [CrossRef]

33. Kipouridis, I.; Tsaklidis, G. The size order of the state vector of discrete-time homogeneous Markov systems. J. Appl. Probab.
2001, 38, 357–368. [CrossRef]

34. Vasiliadis, G.; Tsaklidis, G. On the moments of the state sizes of the discrete time homogeneous Markov system with a finite state
capacity. In Recent Advances in Stochastic Modeling and Data Analysis; Skiadas, C.H., Ed.; 2007; pp. 190–197.
[CrossRef]

35. Vasiliadis, G.; Tsaklidis, G. On the Distributions of the State Sizes of Closed Continuous Time Homogeneous Markov Systems.
Methodol. Comput. Appl. Probab. 2009, 11, 561–582. [CrossRef]

36. Sands, T. Optimization Provenance of Whiplash Compensation for Flexible Space Robotics. Aerospace 2019, 6, 93. [CrossRef]
37. Bachmann, A.; Williams, S.B. Outlier handling when using particle filters in terrain-aided navigation. IFAC Proc. Vol. 2004, 37,

358–363. [CrossRef]
38. Sands, T. Development of Deterministic Artificial Intelligence for Unmanned Underwater Vehicles (UUV). J. Mar. Sci. Eng. 2020,

8, 578. [CrossRef]
39. Orchard, M.E.; Cerda, M.A.; Olivares, B.E.; Silva, J.F. Sequential monte carlo methods for discharge time prognosis in lithium-ion

batteries. Int. J. Progn. Health Manag. 2012, 3, 90–101.
40. Maciak, M.; Pešta, M.; Peštová, B. Changepoint in dependent and non-stationary panels. Stat. Pap. 2020, 61, 1385–1407.

[CrossRef]
41. Maciak, M.; Okhrin, O.; Pešta, M. Infinitely stochastic micro reserving. Insur. Math. Econ. 2021, 100, 30–58. [CrossRef]

268



mathematics

Article

State Space Modeling with Non-Negativity Constraints Using
Quadratic Forms

Ourania Theodosiadou *,† and George Tsaklidis *,†

��������	�
�������

Citation: Theodosiadou, O.;

Tsakilids, G. State Space Modeling

with Non-Negativity Constraints

Using Quadratic Forms. Mathematics

2021, 9, 1908. https://doi.org/

10.3390/math9161908

Academic Editors:

Panagiotis-Christos Vassiliou and

Andreas C. Georgiou

Received: 11 July 2021

Accepted: 5 August 2021

Published: 10 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
* Correspondence: outheod@math.auth.gr (O.T.); tsaklidi@math.auth.gr (G.T.); Tel.: +30-2310-997964 (O.T.)
† These authors contributed equally to this work.

Abstract: State space model representation is widely used for the estimation of nonobservable
(hidden) random variables when noisy observations of the associated stochastic process are available.
In case the state vector is subject to constraints, the standard Kalman filtering algorithm can no longer
be used in the estimation procedure, since it assumes the linearity of the model. This kind of issue
is considered in what follows for the case of hidden variables that have to be non-negative. This
restriction, which is common in many real applications, can be faced by describing the dynamic
system of the hidden variables through non-negative definite quadratic forms. Such a model could
describe any process where a positive component represents “gain”, while the negative one represents
“loss”; the observation is derived from the difference between the two components, which stands
for the “surplus”. Here, a thorough analysis of the conditions that have to be satisfied regarding
the existence of non-negative estimations of the hidden variables is presented via the use of the
Karush–Kuhn–Tucker conditions.

Keywords: state space model; Kalman filter; constrained optimization; two-sided components

1. Introduction

State space modeling is used for estimating—revealing the dynamic evolution of
hidden variables’ processes. In some cases, the state vector, which includes the hidden
components, is subject to constraints, which are derived either due to the physical meaning
of the states or because of the mathematical properties that have to be satisfied. For example,
state space models with constraints are used in camera surveillance [1,2], navigation
issues [3], and biological systems [4]. Especially, in finance, the hidden variables are often
subject to non-negative constraints or in general have to be bounded. For example, in
the Vasicek model [5] and its extension [6], the interest rates are considered to be hidden
random variables subject to non-negative constraints, while in [7,8], the eigenvalues of
the VAR process were restricted within the unit circle. Considering the use of state space
models in the domain of finance, a discrete state space model could be implemented
for the estimation of the hidden jump components of asset returns [9,10]. The use of
jumps has been proposed for the description of the dynamics of asset prices since they can
explain some of the empirical characteristics of the asset prices, e.g., the lack of a normal
distribution or the existence of leptokurticity (see for example [11]).

When dealing with state space models that are subject to constraints, the Kalman
filtering algorithm [12] can no longer be used, since it assumes linearity in the model. In
the domain of nonlinear filters, the particle filtering approach (see for example [13–16])
has wide applicability, and it adopts resampling techniques for the estimation of the state
vector at every time t. However, the use of resampling techniques adds considerable
computational cost in the estimation procedure.

In this work, the observation is defined as the difference between the two-sided
components under noise inclusion. The components are considered to be hidden random
variables, and therefore, a state space model is established, where the state equation
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describes the dynamic evolution of the two hidden components. This equation represents
a first-order Markov process, i.e., all the information needed for the estimation of the
components at time t is derived by the components at time t − 1, and no other information
from past times is needed. Moreover, the state vector is subject to non-negative constraints
that have to be taken into account for its estimation in time. Such a model could describe,
for example, the evolution of a system where the positive component represents “gain”,
while the negative one represents “loss”; the observation is derives from the difference
between the two components, which stands for the “surplus”, under noise inclusion. In
asset pricing, an asset return can be defined as the difference between the two-sided non-
negative return jump components under noise inclusion, and the jump components are
considered to be hidden variables. Another example could be the one-dimensional random
walk, where a positive jump could represent (the measure of) a move to the right and
a negative jump (the measure of) a move to the left, while the observation could be a
function of the two jump components given at discrete times. To handle such kinds of
problems, non-negative definite quadratic forms are adopted in the state equation for the
dynamic evolution of the two-sided components. In this case, the recursive equations
of the Kalman filter cannot be used for the estimation of the state vector, since this filter
assumes linearity in the measurement and state equation. To this end, this work first
derives the recursive equations for the estimation of the state vector based on the state
space model representation with non-negative definite quadratic forms in the state equation
and their Taylor expansions. Then, a thorough analysis of the necessary conditions that
have to be satisfied in order to obtain the non-negative estimations at every time t is
provided. In Proposition 1, the stationary points of the optimization problem with the
non-negative constraints are given by using the Karush–Kuhn–Tucker conditions, while
in Proposition 2, the necessary conditions for the existence of feasible solutions in the
constrained optimization problem are provided.

Overall, this work proposes a method in state space modeling representation, which
can be used when dealing with hidden components that are subject to non-negativity
constraints. The method results in the formulation of a constrained optimization problem
for which the stationary points are derived via Proposition 1, and the necessary condi-
tions for the existence of feasible solutions in this optimization problem are provided via
Proposition 2; to that end, the iterative formulas for the minimum variance a posteriori
estimators for the (hidden) state vector are illustrated. Moreover, the proposed method
has a low computational burden compared to other nonlinear filtering methods that can
be used in state space modeling with inequality constraints and are based on resampling
techniques (e.g., particle filtering).

The paper is organized as follows. In Section 2, the state space model proposed for the
estimation of the two jump components is established. Two non-negative quadratic forms
are adopted to describe the dynamic evolution of the two-sided components subject to their
non-negative restrictions. In Section 3, the recursive equations of the second-order Kalman
filter are presented, while in Section 4, a thorough analysis of the conditions that have to be
fulfilled so as to have non-negative estimations is presented. The results of this analysis are
summarized in Propositions 1 and 2. In Section 5, an illustrative example concerning the
evolution of positive and negative jumps of asset returns is presented to demonstrate the
theoretical results. Finally, Section 6 concludes on the findings and provides suggestions
for future work.

2. State Space Model

In this section, a state space model representation is illustrated considering the case
where there are two hidden processes subject to non-negativity constraints. The state
equation that describes the dynamic evolution of the hidden components adopts the use of
non-negative definite quadratic forms, while the measurement equation is linear.
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The state equation is given by:

Xt = (zt−1 + wt−1)
�G(1)(zt−1 + wt−1) = f1(zt−1, wt−1)

Yt = (zt−1 + wt−1)
�G(2)(zt−1 + wt−1) = f2(zt−1, wt−1)

}
(1)

or equivalently:

zt =
2

∑
k=1

φk(zt−1 + wt−1)
�G(k)(zt−1 + wt−1) (2)

where:

• zt = (Xt, Yt)� = (zt,1, zt,2)
� stands for the state vector;

• wt stands for the noise, and it is assumed that wt ∼ N(0, Q), where Q =

[
σ2

x 0
0 σ2

y

]
;

• G(k), k = 1, 2, is a (symmetric, 2 × 2) non-negative definite matrix, i.e.,

g(k)11 > 0 and g(k)11 g(k)22 − (g(k)12 )2 > 0 , k = 1, 2.

The vector φk is a (2 × 1) column vector, where the k-th element equals 1, and the
other element equals 0. The measurement equation is given by the relation:

Rt = Hzt + et , (3)

where H =
[
1 −1

]
and et ∼ N(0, V). Moreover, it is assumed that E(ekwT

j ) = 0.
Apparently, state Equation (2) describes a (nonobservable) first-order non-negative

valued Markovian process, the evolution of which and its characteristics (e.g., periodicity,
convergence etc.) depend on the structure (values) of the associated noisy observation
sequence. The aim of our study here was to estimate (reveal) the Markovian process (2) (i.e.,
the matrices G(k), k = 1, 2, and Q), through the observation Equation (3), if the components
of the state vector have to be non-negative. For this purpose, Model (2) and (3) adopts
the use of non-negative definite quadratic forms to describe the dynamic evolution of the
hidden two-sided components; that is, to ensure that the estimations of the components
will be non-negative. To that end, the extended Kalman filter of second order is proposed
in order to estimate at every time t the state vector zt that incorporates the hidden jump
components. It is noticed here that the noise component in Relation (2) is multiplicative
and not additive.

Next, the extended Kalman filter of second order is described and its iterative equa-
tions for the estimation of the state vector are presented.

3. Extended Kalman Filter of Second Order

Model (2) and (3) presented in Section 2 is nonlinear, and subsequently, the recursive
standard algorithm of the Kalman filter cannot be used for the estimation of the state vector.
Aiming to derive the recursive equations for the estimation of the hidden states taking into
consideration that the state Equation (2) is a quadratic form, the following notation is used:

• ẑ−
t : the a priori estimation of the state vector zt, i.e., without taking into consideration

the measurement at time t;
• ẑ+t : the a posteriori estimation of the state vector zt, i.e., by considering the measure-

ment at time t;
• P−

t , P+
t : the variance–covariance matrices of the a priori and a posteriori error estima-

tions of zt, respectively, i.e.,

P−
t = E[(zt − ẑ−

t )(zt − ẑ−
t )

�] and P+
t = E[(zt − ẑ+t )(zt − ẑ+t )

�] .
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According to (2), zt,k, k = 1, 2 is a function of the random variables zt−1, and wt−1, i.e.,
zt,k = zt,k(zt−1, wt−1). Then, using the Taylor expansion of second order of zt,k at (ẑ+t−1, 0),
it is derived that:

zt,k = fk(ẑ
+
t−1, 0)

+ (
∂ fk(ẑ

+
t−1, 0)

∂zt−1
)�(zt−1 − ẑ+t−1) + (

∂ fk(ẑ
+
t−1, 0)

∂wt−1
)�wt−1

+
1
2
(zt−1 − ẑ+t−1)

� ∂2 fk(ẑ
+
t−1, 0)

∂z2
t−1

(zt−1 − ẑt−1) (4)

+
1
2

w�
t−1

∂2 fk(ẑ
+
t−1, 0)

∂w2
t−1

wt−1

+ (zt−1 − ẑ+t−1)
� ∂2 fk(ẑ

+
t−1, 0)

∂zt−1∂wt−1
wt−1, k = 1, 2

where functions fk = fk(zt−1, wt−1), k = 1, 2, are given in (1). By equating the mean values
in Relation (4), the a priori estimation of zt (prediction stage) is derived, that is:

ẑ−
t,k = fk(ẑ

+
t−1, 0) +

1
2

tr(
∂2 fk(ẑ

+
t−1, 0)

∂z2
t−1

P+
t−1) (5)

+
1
2

tr(
∂2 fk(ẑ

+
t−1, 0)

∂w2
t−1

Q), k = 1, 2

and the entries of the respective variance–covariance matrix P−
t are given by the relation,

(P−
t )k,m =(

∂ fk(ẑ
+
t−1, 0)

∂zt−1
)�P+

t−1
∂ fm(ẑ

+
t−1, 0)

∂zt−1

+ (
∂ fk(ẑ

+
t−1, 0)

∂wt−1
)�Q

∂ fm(ẑ
+
t−1, 0)

∂wt−1
(6)

+
1
2

tr(
∂2 fk(ẑ

+
t−1, 0)

∂z2
t−1

P+
t−1

∂2 fm(ẑ
+
t−1, 0)

∂z2
t−1

P+
t−1)

+
1
2

tr(
∂2 fk(ẑ

+
t−1, 0)

∂w2
t−1

Q
∂2 fm(ẑ

+
t−1, 0)

∂w2
t−1

Q), k, m = 1, 2

where (P−
t )k,m denotes the (k, m)-element of matrix P−

t and tr(.) denotes the trace of the
respective matrix. Taking into consideration the properties of the trace of a matrix, it is
derived after some algebraic manipulations on Relations (5) and (6) that:

ẑ−
t,k = ẑ+t−1

TG(k)ẑ+t−1 + tr(G(k)P+
t−1) + tr(G(k)Q), k = 1, 2 (7)

(P−
t )k,m =4ẑ+t−1

TG(k)P+
t−1G(m)ẑ+t−1 + 4ẑ+t−1

TG(k)QG(m)ẑ+t−1

+ 2 tr(G(k)P+
t−1G(m)P+

t−1) + 2 tr(G(k)QG(m)Q), k, m = 1, 2 . (8)

Regarding the a posteriori estimations of zt, it is taken into account that the joint
distribution of zt and Rt is normal, based on the relation:[

zt
Rt

]
∼ N(

[
ẑ−

t
Hẑ−

t

]
,

[
P−

t P−
t HT

HP−
t

T
HP−

t HT + V

]
) .

Then, we make use of the following Lemma (see for example [17]):
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Lemma 1. Let x, y be two random variables that are jointly normally distributed with:

E(
[

x

y

]
) =

[
μx
μy

]
and Σ =

[
Σ11 Σ12
Σ21 Σ22

]
.

Then, (x/y) ∼ N(μ′, Σ′), where:

μ′ = μx + Σ11Σ−1
22 (y − μx) and Σ′ = Σ11 − Σ12Σ−1

22 Σ21 .

Based on Lemma 1, the a posteriori estimation of zt (update stage) and the related
variance–covariance matrix Pt(+) are given by,

ẑ+t = ẑ−
t + Kt(Rt − Hẑ−

t ) , (9)

P+
t = (I − KtH)P−

t , (10)

where Kt = P−
t HT(HP−

t HT + V)−1. By using the recursive Relations (7)–(10), we can
estimate the hidden components at every time t.

Next, a detailed investigation regarding the existence of non-negative solutions (i.e.,
non-negative a posteriori estimations of zt) derived from (9) is presented.

4. Investigation of the State Space Model

In what follows, we present an investigation concerning the conditions that have
to be satisfied so as to derive non-negative a posteriori estimations of the state vector zt.
Obviously, Relation (7) ensures the existence of non-negative a priori estimations of zt at
every time t. However, the a posteriori estimations of zt given by (9) may not fulfil the
non-negativity condition. We note that the solutions depend on the term Kt(Rt − Hẑ−

t ),
the sign of which is not time invariant. To this end, in order to ensure that the a posteriori
unbiased estimator ẑ+t will be a minimum variance estimator under the non-negativity
restrictions that its components must satisfy, the following optimization problem arises,

minẑ+t
{tr(P+

t ) = E[(zt − ẑ+t )(zt − ẑ+t )
T ]} (11)

where ẑ+t * 0.

Symbol * (or +) is used for the elementwise inequality, while zt = (Xt, Yt)T is given
by Equation (1) (or (2)). The following Proposition 1 provides the set of stationary points
related to the optimization problem (11), subject to the non-negativity restrictions. This set
includes the optimal solution, i.e., the unbiased minimum variance estimator ẑ+t . In what
follows, we use the following notations:

at = Rt − Hẑ−
t , bt = HP−

t HT and Kt = (Kt,1, Kt,2)
�.

Remark 1. Notice that, if at = 0, then Relation (9) leads to ẑ+t = ẑ−
t * 0, and consequently, the

solution is acceptable.

Taking into consideration Remark 1, it is assumed in the sequel that at �= 0 for every t.

Proposition 1. The weight matrix Kt and the stationary points related to the optimization prob-
lem (11) are given by the relations:

(i) Kt = (bt + Rt)−1P−
t HT, which leads to the solution:

ẑ+t = ẑ−
t + at(bt + Rt)

−1P−
t HT ;

(ii) Kt =

(
(bt + Rt)−1(P−

t HT)1
−a−1

t ẑ−
t,2

)
which leads to the solution:
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ẑ+t,1 = ẑ−
t,1 + at(bt + Rt)

−1(P−
t HT)1,

and:
ẑ+t,2 = 0 ;

(iii) Kt =

(
−a−1

t ẑ−
t,1

(bt + Rt)−1(P−
t HT)2

)
, which leads to the solution:

ẑ+t,1 = 0

and:

ẑ+t,2 = ẑ−
t,2 + at(bt + Rt)

−1(P−
t HT)2;

(iv) Kt = −a−1
t ẑ−

t , which leads to the solution:

ẑ+t = 0,

where (P−
t HT)i denotes the ith-row of matrix P−

t HT, i = 1, 2.

Proof. The Lagrangian function related to the optimization problem (11) is defined as:

Λ = tr(P+
t ) + λ1(−ẑ+t,1) + λ2(−ẑ+t,2)

= tr(E[(zt − ẑ+t )(zt − ẑ+t )
T ]) + λ1(−ẑ+t,1) + λ(−ẑ+t,2) , λ1, λ2 ≥ 0.

(12)

Based on (10), it is derived that:

tr(P+
t ) = tr[(I − KtH)P−

t (I − KtH)T + KtVKT
t ]

while (by assuming the dependence of ẑ+t,i on Rt and ẑ−
t,i, i = 1, 2, as provided in Kalman filtering):

ẑ+t,1 = ẑ−
t,1 + Kt,1(Rt − Hẑ−

t ) = ẑ−
t,1 + atKt,1 ,

ẑ+t,2 = ẑ−
t,2 + Kt,1(Rt − Hẑ−

t ) = ẑ−
t,2 + atKt,2 .

By calculating the first derivative of the Lagrangian function and equating it to 0, it is
derived that:

dΛ
dKt

=
d

dKt
[tr[(I − KtH)P−

t (I − KtH)T + KtVKT
t ]− λ1(ẑ−

t,1 + atKt,1)

− λ2(ẑ−
t,2 + atKt,2)] (13)

= −2P−
t

THT + 2KtHP−
t HT + 2KtV − atλ

= 0

where λ = (λ1, λ2)
T . Thus, matrix Kt has to satisfy the following condition (by noticing

that P−
t is symmetric):

− 2P−
t HT + 2KtHP−

t HT + 2KtV = atλ (14)

based on the constraints [18]:

λ1(ẑ−
t,1 + atKt,1) = 0,

λ2(ẑ−
t,2 + atKt,2) = 0
λ1, λ2 ≥ 0.

The following cases have to be considered:
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(i) The two constraint conditions are inactive. Then, λ1 = λ2 = 0, and the optimiza-
tion problem, leading to (14), is transformed into the unconstrained one considered
in the case of the Kalman filter. It is derived that:

Kt = P−
t HT(HP−

t HT + V)−1, (15)

which is the well-known Kalman gain matrix. The related solution in terms of the a
posteriori estimator ẑ+t is:

ẑ+t = ẑ−
t + at(bt + Rt)

−1P−
t HT . (16)

Relation (16) constitutes a possible solution of the optimization problem (11), and
it has to satisfy the constraint ẑ+t * 0;

(ii) The first constraint condition is inactive (i.e., λ1 = 0), while the second one is

active. Then, the following two cases are considered:

(a) If λ2 = 0, then we are led to the unconstrained optimization problem
presented in Case (i), and the solution must satisfy the non-negative restric-
tions, i.e., ẑ+t * 0;

(b) If ẑ−
t,2 + atKt,2 = 0, it is derived via the active constraint condition that:

Kt,2 = −a−1
t ẑ−

t,2 . (17)

By using (17), Relation (14) is transformed into:(
(P−

t HT)1
(P−

t HT)2

)
+

(
Kt,1

−a−1
t ẑ−

t,2

)
HP−

t HT +

(
Kt,1

−a−1
t ẑ−

t,2

)
V = atλ .

Consequently,
Kt,1 = (bt + Rt)

−1(P−
t HT)1, (18)

where bt = HP−
t HT ≥ 0. By using (17) and (18), it is derived that:

Kt =

(
(bt + Rt)−1(P−

t HT)1
−a−1

t ẑ−
t,2

)
.

Thus,

ẑ+t,1 = ẑ−
t,1 + at(bt + Rt)

−1(P−
t HT)1

and:
ẑ+t,2 = 0 ;

(iii) The first constraint condition is active, while the second one is inactive (i.e.,
λ2 = 0). The following two cases are considered:

(a) If λ1 = 0, then we obtain the unconstrained optimization problem pre-
sented in Case (i), and the solution must fulfil the nonnegative restrictions,
i.e., ẑ+t * 0;

(b) If ẑ−
t,1 + atKt,1 = 0 and λ1 = 0, then it is derived that:

Kt,1 = −a−1
t ẑ−

t,1 , (19)

and Relation (14) is transformed into:(
(P−

t HT)1
(P−

t HT)2

)
+

(
Kt,1

−a−1
t ẑ−

t,2

)
HP−

t HT +

(
Kt,1

−a−1
t ẑ−

t,2

)
V = atλ .
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Then,
Kt,2 = (bt + Rt)

−1(P−
t HT)2 (20)

where bt = HP−
t HT ≥ 0. By using (19) and (20), it is derived that:

Kt =

(
−a−1

t ẑ−
t,1

(bt + Rt)−1(P−
t HT)2

)
,

and consequently:
ẑ+t,1 = 0

and:
ẑ+t,2 = ẑ−

t,2 + at(bt + Rt)
−1(P−

t HT)2 ;

(iv) The two constraint conditions are active, i.e., ẑ−
t,1 + atKt,1 = 0 and ẑ−

t,2 + atKt,2 = 0.
In this case, we have to seek solutions such that λ1, λ2 ≥ 0.

Based on the active constraint conditions, it is derived that:

Kt,1 = −a−1
t ẑ−

t,1 and Kt,2 = −a−1
t ẑ−

t,2

i.e., Kt = −a−1
t ẑ−

t , resulting in the relation,

ẑ+t = ẑ−
t + atKt

= ẑ−
t − ata−1

t ẑ−
t

= 0.

The state vector ẑ+t = 0 constitutes a feasible solution, and it has to be checked whether
Relation (14) is satisfied with λ1, λ2 ≥ 0.

In what follows, Proposition 2 provides the necessary conditions for the existence of
feasible solutions regarding the constrained filter.

Proposition 2. The solutions given in Proposition 1 regarding the optimization problem (11) are
feasible upon the following conditions (necessary conditions):

(i)
ẑ+t = ẑ−

t + at(bt + Rt)
−1P−

t H�

constitutes a feasible solution, if:

atP
−
t HT * −(bt + Rt)ẑ

−
t ;

(ii)

ẑ+t =

(
ẑ−

t,1 + at(bt + Rt)−1(P−
t HT)1

0

)
constitutes a feasible solution, if:

at(P
−
t H�)1 ≥ −(bt + Rt)ẑ

−
t,1

and:

at(P
−
t H�)2 < −(bt + Rt)ẑ

−
t,2 ;

(iii)

ẑ+t =

(
0

ẑ−
t,2 + at(bt + Rt)−1(P−

t HT)2

)
constitutes a feasible solution, if:
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at(P
−
t HT)1 < −(bt + Rt)ẑ

−
t,1

and:
at(P

−
t HT)2 ≥ −(bt + Rt)ẑ

−
t,2 ;

(iv) ẑ+t = 0 constitutes a feasible solution, if:

at(P
−
t HT)1 < −(bt + Rt)ẑ

−
t,1

and:
at(P

−
t HT)2 < −(bt + Rt)ẑ

−
t,2.

Proof. Similar to the proof of Proposition 1, four cases are considered:

(i) The two constraint conditions are inactive. Then, λ1 = λ2 = 0, and the opti-
mization problem is transformed into the unconstrained one that is met in the
case of the Kalman filter. In this case, based on Proposition 1, we obtain that
Kt = (bt + Rt)−1P−

t HT , resulting in the estimation:

ẑ+t = ẑ−
t + at(bt + Rt)

−1P−
t HT ,

where ẑ+t is a feasible solution of the optimization problem with the nonnegative
constraints, if:

ẑ−
t + at(bt + Rt)

−1P−
t HT * 0.

Consequently, the necessary condition is formulated as follows:

atP
−
t HT * −at(bt + Rt)ẑ

−
t ;

(ii) The first constraint condition is inactive, while the second one is active, i.e,
λ1 = 0 and ẑ−

t,2 + atKt,2 = 0, respectively. The following two cases are considered:

(a) If λ2 = 0, then based on (14), the solution is given by (15), which is related
to the Kalman filter and the unconstrained optimization problem. This
solution is acceptable if it is aligned with the active constraint condition.
Otherwise, it is rejected;

(b) If λ2 > 0, matrix Kt has to be in such a form so that ẑ+t,1 ≥ 0.
It is derived via the active constraint condition that Kt,2 = −a−1

t ẑ−
t,2 where

at �= 0 based on Remark 1. Then, (14) results in:

atλ =

(
(P−

t HT)1
(P−

t HT)2

)
+

(
Kt,1

−a−1
t ẑ−

t,2

)
HP−

t HT +

(
Kt,1

−a−1
t ẑ−

t,2

)
V(

λ1
λ2

)
=

(−a−1
t (P−

t HT)1
−a−1

t (P−
t HT)2

)
+

(
a−1

t Kt,1
−a−2

t ẑ−
t,2

)
HP−

t HT +

(
a−1

t Kt,1
−a−2

t ẑ−
t,2

)
V (21)

=

(
−a−1

t (Pt(−)HT)1 + a−1
t btKt,1 + a−1

t Kt,1V
−a−1

t (P−
t HT)2 + a−2

t btẑ−
t,2 + a−2

t ẑ−
t,2V

)
.

Since λ1 = 0 and for at �= 0, Relation (21) implies:(
0

λ2

)
=

( −(P−
t HT)1 + btKt,1 + Kt,1V

−a−1
t (P−

t HT)2 − a−2
t btẑ−

t,2 − a−2
t ẑ−

t,2V

)
(22)

It is derived via (22) that if λ2 > 0, then:

λ2 = −at(P
−
t HT)2 − btẑ−

t,2 − ẑ−
t,2V > 0 .

277



Mathematics 2021, 9, 1908

Consequently,

at(P
−
t HT)2 < −(bt + V)ẑ−

t,2 , (23)

resulting in at(P
−
t HT)2 < 0. Moreover, taking into consideration that:

ẑ+t,1 = ẑ−
t + atKt,1 = ẑ−

t,1 − at(bt + V)(P−
t HT)1

and ẑ+t,1 ≥ 0, it is derived that:

at(P
−
t HT)1 < −(bt + V)ẑ−

t,1 ; (24)

(iii) The first constraint condition is active, while the second one is inactive, i.e.,
ẑ−

t,1 + atKt,1 = 0 and λ2 = 0, respectively. The following two cases are considered:

(a) λ1 = 0 and λ2 = 0;

(b) λ1 > 0 and λ2 = 0.

Similar to Case (ii), the third part of Proposition 2 can be derived;

(iv) The two constraint conditions are active, i.e., ẑ−
t,1 + atKt,1 = 0 and ẑ−

t,2 + atKt,2 = 0.
In this case, we have to search for solutions where λ1, λ2 ≥ 0.
It is derived via Proposition 1 that:

Kt = a−1
t ẑ−

t , (25)

which leads to the solution ẑ+t = 0.
The following subcases are considered:

(a) If λ1 = λ2 = 0, Solution (15) is derived via Relation (14), and it is accepted
if it coincides with Relation (25). Otherwise, it is rejected;

(b) If λ1 = 0 and λ2 > 0, then by taking into consideration Case (iib), it is
concluded that the solution zt(+) = 0 is accepted, if:

at(P
−
t HT)2 < −(bt + V)ẑ−

t,2 .

Otherwise, it is rejected since it is not aligned with the conditions of the
considered case (i.e., λ1 = 0 λ2 > 0);

(c) If λ1 > 0 and λ2 = 0, similar to Case (iv)-c, the solution z+t = 0 is
accepted, if:

at(P
−
t HT)1 < −(bt + V)ẑ−

t,1 ;

(d) If λ1 > 0 and λ2 > 0, then by taking into consideration Relations (23)
and (25), it turns out that the necessary condition in order for z+t = 0 to
be accepted as a feasible solution (which satisfies the conditions of the
considered case, i.e., λ1 > 0 λ2 > 0) is:

at(P
−
t HT)1 < −(bt + V)ẑ−

t,1 and at(P
−
t HT)2 < −(bt + V)ẑ−

t,2.

In conclusion, in Case (iv), the vector z+t = 0 is a possible optimal solution, if at least
one of the following conditions holds:

at(Pt(−)HT)1 < −(bt + V)ẑ−
t,1 or at(P

−
t HT)2 < −(bt + V)ẑ−

t,2.
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Remark 2. Based on the low computational cost, the four possible solutions of the constrained
optimization problem (11) can be examined one-to-one, aiming to find the optimal solution. In any
case, the necessary conditions presented in Proposition 2 can be examined simultaneously to have a
more comprehensive view in the process of searching for the optimal solution.

Next, an illustrative application of the described methodology is presented regarding
the estimation (revelation) of the two-sided jump components of asset returns.

5. Application; Estimation of the Two-Sided Jump Components of the NASDAQ Index

In this section, an application example of the proposed methodology analyzed in
Section 4 is illustrated concerning the estimation of the hidden two-sided jump compo-
nents of the NASDAQ index for the 3 y period 2006–2008. To estimate the parameters
of the model, i.e., the parameter set φ = (G(1), G(2), σ2

x , σ2
y , V), the maximum likelihood

estimation method is used taking into consideration that the distribution of Rt conditioned
on zt is normal, i.e.,

Rt|zt ∼ N(Hẑ−
t , HP−

t HT + V) .

Therefore, the log-likelihood function, LogL, is of the form:

LogL(R1, . . . , Rn) = −n/2 log(2π)− 0.5
n

∑
t=1

(log(|ωt|) + uT
t ω−1

t ut) (26)

where,
ut = Rt − Hẑ−

t and ωt = HP−
t HT + V .

The estimations derived by maximizing LogL, given in (26), are as follows:

G(1) =

[
5.4741 −2.8498

−2.8498 7.3474

]
, G(2) =

[
7.4368 1.4909
1.4909 2.8304

]
and:

σ2
x = 0.9897 × 10−3, σ2

y = 0.86281 × 10−3, V = 4.961 × 10−11,

with LogL = 995.9854. Based on the estimated parameters, the estimated two-sided jump
components of the NASDAQ index are showcased in Figure 1.

Figure 1. (a) Estimated positive return jumps of the NASDAQ index during 2006–2008. (b) Estimated negative return jumps
of the NASDAQ index during 2006–2008.
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6. Conclusions

In this work, the topic of state space modeling with non-negative constraints was
considered. For that purpose, a state space model was constructed where the state equa-
tion that describes the dynamic evolution of the components of the hidden state vector
was expressed via non-negative definite quadratic forms and represents a non-negative
valued Markovian stochastic process of order one. Due to the inequality conditions, a con-
strained optimization problem arises to derive estimators for the states, which are unbiased
and of minimum variance. Towards this direction, a thorough analysis was illustrated
via Propositions 1 and 2, concerning the stationary points of the optimization problem
along with the special conditions that have to be satisfied in order to derive non-negative
estimations for the state vectors at every time. Thus, in Proposition 2, necessary condi-
tions were derived for a stationary point to constitute a feasible solution. The proposed
method constitutes an alternative for handling state space models with non-negativity
constraints, and it has a low computational burden compared to resampling methods for
the estimation procedure.

Regarding future work, the generalization of the proposed method for the case of an
n-dimensional non-negative state vector, n > 2, could be examined. This is a challenging
problem in many applications. For example, in navigation problems, for n = 3, state space
models with non-negativity constraints are suitable to describe the distance covered during
the motion of a vehicle, if we let the three non-negative components of the state vector
represent the measures of the velocities (speeds) along the axes in R3.
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