2,501 research outputs found

    Controlled Fault-Tolerant Power Converters for Power Quality Enhancement

    Get PDF
    Power quality depends generally on the interaction of electrical power with electrical equipments. If electrical equipments operate correctly and reliably without being damaged or stressed, a suitable level of power quality is assured. On the other hand, if the electrical equipment malfunctions, is unreliable, or is damaged during normal usage, power quality is poor and probably the economical loss could be important like the technical one. In the scenario of the Distributed Generation, power quality issues will be moreover important because an higher dissemination of power conditioning equipment will be requested and this obviously increases the sources of vulnerability of the electrical system. In this paper fault tolerant power converters are considered as a viable solution of power quality problems and a suitable control algorithm of them is presented. The control proposed in the paper is based on the model of the power converter reformulated in terms of healthy leg binary variable and the paper shows how this control is able to save the aspect of power quality when the converter works in the linear range. The effectiveness of such an algorithm and of the fault tolerant power converters are finally verified by means of simulations

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y TecnologĂ­a DPI2001-3089Ministerio de EduaciĂłn y Ciencia d TEC2006-0386

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    Design and testing of electromechanical actuator for aerospace applications

    Get PDF
    Electromechanical actuators are gaining interest in the aerospace industry within the More Electrical Aircraft (MEA) architecture. The end-goal of fully electric aircraft includes Electromechanical actuation for flight control systems. The design and testing of a flight control system for helicopter swashplate is presented in this work. The mechanical system is driven by electrical machines and controlled by dedicated power electronics, both of which fit challenging space requirements and environmental conditions. The predicted performances are validated by experimental testing of prototypes

    Fault Tolerant Power Systems

    Get PDF

    Inertia emulation control of VSC-HVDC transmission system

    Get PDF
    The increasing penetration of power electronics interfaced renewable generation (e.g. offshore wind) has been leading to a reduction in conventional synchronous-machine based generation. Most converter-interfaced energy sources do not contribute to the overall power system inertia; and therefore cannot support the system during system transients and disturbances. It is therefore desirable that voltage-source-converter (VSC) based high voltage direct current (HVDC) interfaces, which play an important role in delivery of renewable power to AC systems, could contribute a virtual inertia and provide AC grid frequency support. In this paper, an inertia emulation control (IEC) system is proposed that allows VSC-HVDC system to perform an inertial response in a similar fashion to synchronous machines (SM), by exercising the electro-static energy stored in DC shunt capacitors of the HVDC system. The proposed IEC scheme has been implemented in simulations and its performance is evaluated using Matlab/Simulink

    Review of Five-Level Front-End Converters for Renewable Energy Applications

    Get PDF
    Provisional fileWith the objective of minimizing environment and energy issues, distributed renewable energy sources have reached remarkable advancements along the last decades, with special emphasis on wind and solar photovoltaic installations, which are deemed as the future of power generation in modern power systems. The integration of renewable energy sources into the power system requires the use of advanced power electronics converters, representing a challenge within the paradigm of smart grids, e.g., to improve efficiency, to obtain high power density, to guarantee fault-tolerance, to reduce the control complexity and to mitigate power quality problems. This paper presents a specific review about front-end converters for renewable energy applications (more specifically the power inverter that interfaces the renewable energy source with the power grid). It is important to note that the objective of this paper is not to cover all types of front-end converters; the focus is only on single-phase multilevel structures limited to five voltage levels, based on a voltage-source arrangement and allowing current or voltage feedback control. The established review is presented considering the following main classifications: (a) Number of passive and active power semiconductors; (b) Fault tolerance features; (c) Control complexity; (d) Requirements of specific passive components as capacitor or inductors; (e) Number of independent or split dc-link voltages. Throughout the paper, several specific five-level front-end topologies are presented and comparisons are made between them, highlighting the pros and cons of each one of them as a candidate for the interface of renewable energy sources with the power grid.Fundação para a CiĂȘncia e Tecnologia (FCT

    Energy and voltage management methods for multilevel converters for bulk power system power quality improvement

    Get PDF
    Electric arc furnaces (EAFs) are prevalent in the steel industry to melt iron and scrap steel. EAFs frequently cause large amplitude fluctuations of active and reactive power and are the source of significant power quality disturbances. Also EAFs comprise a major portion of industrial loading on the bulk power system. Typically, a static VAR compensator (SVC) or Static Synchronous compensator (STATCOM) are use to provide the reactive power support in order to alleviate the fluctuations in voltage at PCC. Static Synchronous Compensators (STATCOMs) provide a power electronic-based means of embedded control for reactive power support. Integrating an energy storage system (ESS) such as large capacitors with the STATCOM will improve the device performance to have active power controllability as well as the reactive power. A cascaded multilevel STATCOM has been utilized in order to compensate for all the fluctuations caused by an EAF both in the RMS of the voltage at PCC and also the active power generation. Designing a sophisticated controller, it is possible to get the STATCOM track the variations of active power in load. Therefore, the generator does not need to produce the random active power demanded by the load --Abstract, page iv
    • 

    corecore