19 research outputs found

    (SI10-115) Controllability Results for Nonlinear Impulsive Functional Neutral Integrodifferential Equations in n-Dimensional Fuzzy Vector Space

    Get PDF
    In this paper, we concentrated to study the controllability of fuzzy solution for nonlinear impulsive functional neutral integrodifferential equations with nonlocal condition in n-dimensional vector space. Moreover, we obtained controllability of fuzzy result for the normal, convex, upper semi-continuous and compactly supported interval fuzzy number. Finally, an example was provided to reveal the application of the result

    A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

    Full text link
    We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Applied Mathematics', ISSN: 0377-0427. Submitted 17-July-2017; Revised 18-Sept-2017; Accepted for publication 20-Sept-2017. arXiv admin note: text overlap with arXiv:1504.0515

    Optimal control results for impulsive fractional delay integrodifferential equations of order 1 < r < 2 via sectorial operator

    Get PDF
    This research investigates the existence of nonlocal impulsive fractional integrodifferential equations of order 1 < r < 2 with infinite delay. To begin with, we discuss the existence of a mild solution for the fractional derivatives by using the sectorial operators, the nonlinear alternative of the Leray–Schauder fixed point theorem, mixed Volterra–Fredholm integrodifferential types, and impulsive systems. Furthermore, we develop the optimal control results for the given system. The application of our findings is demonstrated with the help of an example

    Approximate Controllability of Delayed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects

    Get PDF
    We herein report a new class of impulsive fractional stochastic differential systems driven by mixed fractional Brownian motions with infinite delay and Hurst parameter H^(1/2,1)\hat{\cal H} \in ( 1/2, 1). Using fixed point techniques, a qq-resolvent family, and fractional calculus, we discuss the existence of a piecewise continuous mild solution for the proposed system. Moreover, under appropriate conditions, we investigate the approximate controllability of the considered system. Finally, the main results are demonstrated with an illustrative example.Comment: Please cite this paper as follows: Hakkar, N.; Dhayal, R.; Debbouche, A.; Torres, D.F.M. Approximate Controllability of Delayed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects. Fractal Fract. 2023, 7, 104. https://doi.org/10.3390/fractalfract702010

    Stability of fractional order systems

    Get PDF
    The theory and applications of fractional calculus (FC) had a considerable progress during the last years. Dynamical systems and control are one of the most active areas, and several authors focused on the stability of fractional order systems. Nevertheless, due to the multitude of efforts in a short period of time, contributions are scattered along the literature, and it becomes difficult for researchers to have a complete and systematic picture of the present day knowledge. This paper is an attempt to overcome this situation by reviewing the state of the art and putting this topic in a systematic form. While the problem is formulated with rigour, from the mathematical point of view, the exposition intends to be easy to read by the applied researchers. Different types of systems are considered, namely, linear/nonlinear, positive, with delay, distributed, and continuous/discrete. Several possible routes of future progress that emerge are also tackled

    List of contents

    Get PDF

    The 2nd International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’19, Belgorod, Russia, August 20-24, 2019 : book of abstracts

    Get PDF
    The proposed Scientific Program of the conference is including plenary lectures, contributed oral talks, poster sessions and listeners. Five suggested special sessions / mini-symposium are also considered by the scientific committe

    Applied Mathematics and Fractional Calculus

    Get PDF
    In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the classical notions of differentiation and integration. These fractional and derivative integrals, which until not many years ago had been used in purely mathematical contexts, have been revealed as instruments with great potential to model problems in various scientific fields, such as: fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing or entropy theory. Since the differential and integral operators of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes, which in many cases is more useful than classical formulations. This is why the application of fractional calculus theory has become a focus of international academic research. This Special Issue "Applied Mathematics and Fractional Calculus" has published excellent research studies in the field of applied mathematics and fractional calculus, authored by many well-known mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea, Turkey, and Saudi Arabia
    corecore