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The theory and applications of fractional calculus (FC) had a considerable progress during the last years. Dynamical systems and
control are one of the most active areas, and several authors focused on the stability of fractional order systems. Nevertheless, due
to the multitude of efforts in a short period of time, contributions are scattered along the literature, and it becomes difficult for
researchers to have a complete and systematic picture of the present day knowledge. This paper is an attempt to overcome this
situation by reviewing the state of the art and putting this topic in a systematic form. While the problem is formulated with rigour,
from the mathematical point of view, the exposition intends to be easy to read by the applied researchers. Different types of systems
are considered, namely, linear/nonlinear, positive, with delay, distributed, and continuous/discrete. Several possible routes of future
progress that emerge are also tackled.

1. Classical Stability Analysis

The study of stability of polynomial and related questions for
differential equations goes back to XIX century. Hurwitz (or
Routh-Hurwitz) criterion [1] is a necessary and sufficient
condition for all the roots of a polynomial

𝑃 (𝑧) = 𝑎
𝑛
𝑧
𝑛

+ 𝑎
𝑛−1

𝑧
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
0
, (𝑧 ∈ C) (1)

with real coefficients and 𝑎
𝑛

> 0 to have negative real parts.
It consists of the following: all principal minors Δ

𝑘
, 𝑘 =

1, 2, . . . , 𝑛, of the Hurwitz matrix 𝐻 are positive.
Here𝐻 is a matrix of order 𝑛whose 𝑗th row is of the form

𝑎
2𝑛−𝑗

, 𝑎
2𝑛−2−𝑗

, . . . , 𝑎
4−𝑗

, 𝑎
2−𝑗

, (2)

where 𝑎
𝑘

= 0 if 𝑘 > 𝑛 or 𝑘 < 0. Polynomial 𝑃(𝑧) satisfying
the Hurwitz condition is called a Hurwitz polynomial or, in
applications of the Routh-Hurwitz criterion in the stability
theory of oscillating systems, a stable polynomial. Exact
and approximate methods of Hurwitz factorization were
developed intensively (see, e.g., [2, 3]).

Among other criteria concerning zeros distribution of
polynomials, we have tomentionMikhailov stability criterion
[4]. It states that all roots of a polynomial

𝑃 (𝑧) = 𝑧
𝑛

+ 𝑎
𝑛−1

𝑧
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
0
, (𝑧 ∈ C) (3)

with real coefficients have strictly negative real part if and only
if the complex-valued function 𝜁 = 𝑃(𝑖𝜔), 𝑖 = √−1, of a
real variable 𝜔 ∈ [0,∞) describes a curve (the Mikhailov
hodograph) in the complex 𝜁-plane which starts on the positive
real semiaxis and does not cross the origin and successively
generates an anticlockwise motion through 𝑛 quadrants.

An equivalent condition is as follows: the radius vector
𝑃(𝑖𝜔), as 𝜔 increases from 0 to +∞, never vanishes and
monotonically rotates in a positive direction through an angle
𝑛𝜋/2.

The Mikhailov criterion gives a necessary and sufficient
condition for the asymptotic stability of a linear differential
equation of order 𝑛

𝑥
(𝑛)

+ 𝑎
𝑛−1

𝑥
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑎
0
𝑥 = 0 (4)
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with constant coefficients or of a linear system (where the
prime symbol denotes first derivative with respect to time):

𝑋


= 𝐴𝑋, 𝑋 ∈ R
𝑛

, (5)

with a constant matrix 𝐴, the characteristic polynomial of
which is 𝑃(𝑧).

A very general result on the zero location problem for
the polynomial is the Hermite-Biehler theorem [5], which
states that the roots of 𝑔(𝑧) + 𝑖ℎ(𝑧) are all on the same side
of the real axis when 𝑔(𝑧) and ℎ(𝑧) are polynomials with
real coefficients if and only if the zeros of 𝑔(𝑧) and ℎ(𝑧)

are real and alternate.TheHermite-Biehler theorem provides
necessary and sufficient conditions for Hurwitz stability of
real polynomials in terms of an interlacing (alternating)
property [6–8]. Notice that if a given real polynomial is not
a Hurwitz one, then the Hermite-Biehler theorem does not
provide information on its roots distribution.

During the last years, several surveys addressed this topic;
see, for instance, [9–12].This paper, without being exhaustive,
is complementary to the contents of such other works. In our
paper, we introduced formally a selected set of methods to
characterize the stability of fractional systems. It is intended
to form a comprehensive text so that readers can follow easily
the concepts. Furthermore, the limitations of the known
methods are also pointed out, giving readers the opportunity
to consider the open problems.

Bearing these ideas in mind, this paper is organized as
follows. Sections 2 and 3 introduce fundamental aspects,
namely, the concepts of quasi-polynomials and fractional
quasi-polynomials, respectively. Section 4 addresses themain
core of the paper, the stability of fractional order systems,
and is divided into eight subsections. The section starts by
presenting general fractional order systems. In the next sub-
sections issues associated with linear time-invariant systems
are discussed in more details, such as controllers, positive
systems, systems with delay, and distributed, discrete-time,
and nonlinear systems. Stability of closed-loop linear control
systems becomes a major motivation of the paper. Therefore,
four examples in Section 5 deal with this topic. Finally,
Section 6 outlines several techniques that are presently
emerging and draws the main conclusions.

2. Quasi-Polynomials

Pontryagin [13] gave a generalization of the Hermite-Biehler
Theorem, which appeared to be very relevant formal tool for
the mathematical analysis of stability of quasi-polynomials,
that is, of the functions of the following type:

𝐹 (𝑧) =

𝑛

∑

𝑘=0

𝑓
𝑘
(𝑧) 𝑒

𝜆𝑘𝑧, (6)

where 𝑓
𝑘
(𝑧) are polynomials in 𝑧 with constant coefficients,

and 𝜆
𝑘
, 𝑘 = 0, . . . , 𝑛, are real (or complex) numbers. By

other words, 𝐹(𝑧) is a sum, where the terms are the product
of and exponential and polynomial function with constant
coefficients. In control theory, such exponentials correspond
to delays. If 𝜆

𝑘
are commensurable real numbers, that is,

𝜆
𝑘

= 𝜆⋅𝑘, 𝑘 = 0, . . . , 𝑛, and 𝜆 > 0, then the quasi-polynomial
(6) can be written in the form

𝛿 (𝑧) = 𝑃 (𝑧, 𝑒
𝑧

) , (7)

with

𝑃 (𝑧, 𝑠) =

𝑚

∑

𝑗=0

𝑛

∑

𝑘=0

𝑎
𝑗𝑘

𝑧
𝑗

𝑠
𝜆𝑘

, 𝑧, 𝑠 ∈ C, (8)

where 𝑃(𝑧, 𝑠) is a polynomial function of two variables, and
then, if 𝑠 = 𝑒

𝑧, we get 𝛿(𝑧).
Thus, from this point of view, the determination of the

zeros of a quasi-polynomial (7) by means of Pontryagin
theorem can be considered to be a mathematical method
for analysis of stabilization of a class of linear time invariant
systems with time delay (see, e.g., [14]):

𝑚

∑

𝑗=0

𝑛

∑

𝑘=0

𝑎
𝑗𝑘

𝑥
(𝑗)

(𝑡 + 𝜆 ⋅ 𝑘) = 0, (9)

where 𝑎
𝑗𝑘
are constant coefficients.

PontryaginTheorem (see [13]). Let 𝛿(𝑧) = 𝑃(𝑧, 𝑒
𝑧

) be a
quasi-polynomial of the type (7), where 𝑃(𝑧, 𝑠) is a polynomial
function in two variables with real coefficients. Suppose that
the “oldest” coefficient 𝑎

𝑚𝑛
̸= 0. Let 𝛿(𝑖𝜔) be the restriction of

the quasi-polynomial 𝛿(𝑧) to imaginary axis. One can express
𝛿(𝑖𝜔) = 𝑓(𝜔) + 𝑖𝑔(𝜔), where the real functions (of a real
variable) 𝑓(𝜔) and 𝑔(𝜔) are the real and imaginary parts of
𝛿(𝑖𝜔), respectively. Let one denote by 𝜔

𝑟
and 𝜔

𝑖
, respectively,

the zeros of the functions 𝑓(𝜔) and 𝑔(𝜔). If all the zeros of
the quasi-polynomial 𝛿(𝑧) lie to the left side of the imaginary
axis, then the zeros of the functions 𝑓(𝜔) and 𝑔(𝜔) are real,
alternating, and

𝑔


(𝜔) 𝑓 (𝜔) − 𝑔 (𝜔) 𝑓


(𝜔) > 0 (10)

for each 𝜔 ∈ R.
Reciprocally, let one of the following conditions be satisfied:

(1) all the zeros of the functions𝑓(𝜔) and 𝑔(𝜔) are real and
alternate, and the inequality (10) is satisfied for at least
one value 𝜔;

(2) all the zeros of the function 𝑓(𝜔) are real, and for each
zero of 𝑓(𝜔) the inequality (10) is satisfied; that is,
𝑔(𝜔

𝑟
)𝑓



(𝜔
𝑟
) < 0;

(3) all the zeros of the function 𝑔(𝜔) are real, and for each
zero of 𝑔(𝜔) the inequality (10) is satisfied; that is,
𝑔


(𝜔
𝑖
)𝑓(𝜔

𝑖
) > 0.

Then all the zeros of the quasi-polynomial 𝛿(𝑧) lie to the left
side of the imaginary axis.

In [15] quasi-polynomial of the type

𝐹 (𝑧) = 𝐴 (𝑧) + 𝐵 (𝑧) 𝑒
−𝜏𝑧 (11)

is studied where𝐴(𝑧) and𝐵(𝑧) are polynomials with constant
coefficients given by

𝐴 (𝑧) =

𝑚

∑

𝑘=0

𝑎
𝑚−𝑘

𝑧
𝑘

, 𝐵 (𝑧) =

𝑛

∑

𝑘=0

𝑏
𝑛−𝑘

𝑧
𝑘

. (12)
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A notion of the principal term, closely connected with the
stability problem, is used in this study; namely, the principal
term of quasi-polynomial (11) after premultiplying it by 𝑒

𝜏𝑧 is
the term 𝑐

𝑘
𝑧
𝑘

𝑒
𝜏𝑧 in which the argument of the power 𝑧 and

𝜏 has the highest value for some 𝑘 = 0, 1, . . . , 𝑛. From the
Pontryagin criterion, follows that a quasi-polynomial with no
principal term has infinitely many roots with arbitrary large,
positive real parts. Hence, the presence of principal term in a
quasi-polynomial is a necessary condition for its stability. In
[15] the following formula, related zeros of quasi-polynomials
𝑧
𝑗
and it coefficients are proved:

∞

∑

𝑗=1

1

𝑧
𝑗

=
1

2
[

𝐹


(𝑧)

𝐹(𝑧)
]

𝑧=∞

− [
𝐹



(𝑧)

𝐹(𝑧)
]

𝑧=0

. (13)

Stability of systems of differential equations with delay
(or, in other words, systems of differential-difference equa-
tions)

𝑥


(𝑡) = 𝐴𝑥 (𝑡 − 𝜏) , 𝑥 ∈ R
𝑛 (14)

with a constant matrix 𝐴 was also investigated by using
properties of quasi-polynomials.

Thus, in [16] the following criterion was proved: let 𝐴 be
a 2 × 2 matrix of real constants. Then all zeros of the quasi-
polynomial Δ(𝑧) = 𝑧

2

𝑒
2𝑧

− tr(𝐴)𝑧𝑒
𝑧

+ |𝐴| have negative real
parts if and only if

(
𝜋

2
)

2

+
𝜋

2
tr (𝐴) + |𝐴| > 0,

0 < |𝐴| < 𝜁
2

< (
𝜋

2
)

2

,

(15)

where 𝜁 is the smallest positive root of the equation 𝑦 sin𝑦 =

−(1/2) tr(𝐴).
Distribution of zeros of quasi-polynomials, related to the

coupled renewal-differential system

𝑤 (𝑡) = 𝑓 (𝑡) + ∫

𝑡

0

𝐴 (𝑡 − 𝜏)𝑤 (𝜏) 𝑑𝜏 + 𝑏𝑦 (𝑡) ,

𝑦


(𝑡) = 𝐶𝑤 (𝑡) + 𝐷𝑦 (𝑡) , 𝑦 (0) = 𝑦
0
,

(16)

is discussed in [17]). A numerical method for calculation of
zeros of quasi-polynomials is proposed, for example, in [18].

Special attention was paid in the last years to (finite and
infinite) Dirichlet series. In [19] it was proved that if

∞

∑

𝑘=0

𝑃
𝑘
(𝑧) 𝑒

−𝜆𝑘𝑧,

𝑧 = 𝜎 + 𝑖𝑡, 𝜆
𝑘

∈ C,

𝑃
𝑘
(𝑧) ∈ C [𝑧] , Re 𝜆

𝑘
↑ ∞

(17)

is a convergent Taylor-Dirichlet series, where, as usual,
C[𝑧] means the set of polynomial with constant complex
coefficients. The symbol 𝜆

𝑘
↑ ∞ denotes 𝜆

1
< 𝜆

2
< ⋅ ⋅ ⋅ <

𝜆
𝑛

< ⋅ ⋅ ⋅ → ∞, when 𝑛 → ∞, and satisfies an algebraic
differential-difference equation

𝐺(𝑥, 𝑓
(𝑚1) (𝑥 + ℎ

1
) , . . . , 𝑓

(𝑚𝑟) (𝑥 + ℎ
𝑟
)) = 0,

𝐺 (𝑥, 𝑥
1
, . . . , 𝑥

𝑟
) = ∑𝐶

𝑘1 ,...,𝑘𝑟
𝑥
𝑘1 ⋅ ⋅ ⋅ 𝑥

𝑘𝑟 ,

(18)

where 𝐶
𝑘1 ,...,𝑘𝑟

are constant coefficients, and then the set of its
exponents {𝜆

𝑘
}
∞

𝑘=0
has a finite, linear, integral basis.

Different questions related to the series of polynomial of
exponents were discussed in [20] (see also references therein
and [21]). In [22] the large 𝑛 asymptotic of zeros of sections of
a generic exponential series are derived, where the 𝑛th section
of the mentioned series mean the the sum of the first 𝑛 terms
of it. In [23] it is given an answer on the question when the
reciprocal to the product of Gamma-functions coincide with
a quasi-polynomial of type (6).

3. Fractional Quasi-Polynomials

Recently, an attention is paid to the study of linear fractional
systems with delays described by the transfer function

𝑃 (𝑧) =

𝑞
0
(𝑧) + ∑

𝑚2

𝑗=1
𝑞
𝑗
(𝑧) exp (−𝑧

𝑟

𝛾
𝑗
)

𝑝
0
(𝑧) + ∑

𝑚1

𝑗=1
𝑝
𝑗
(𝑧) exp (−𝑧𝑟𝛿

𝑗
)

=
𝑁 (𝑧)

𝐷 (𝑧)
, (19)

where 𝑟 is such a real number (0 < 𝑟 ≤ 1), and the
fractional degree nontrivial polynomials 𝑝

𝑗
(𝑧) and 𝑞

𝑗
(𝑧)with

real coefficients have the forms

𝑝
𝑗
(𝑧) =

𝑛

∑

𝑘=0

𝑎
𝑗𝑘

𝑧
𝛼𝑘 , 𝑗 = 0, 1, . . . , 𝑚

1
,

𝑞
𝑗
(𝑧) =

𝑚

∑

𝑘=0

𝑏
𝑗𝑘

𝑧
𝛽𝑘 , 𝑗 = 0, 1, . . . , 𝑚

2
,

(20)

where 𝛼
𝑘
, 𝛽

𝑘
are real nonnegative numbers and 𝑎

0𝑛
̸= 0,

𝑏
0𝑚

̸= 0.
The fractional degree characteristic quasi-polynomial of

the system (19) has the form

𝐷 (𝑧) = 𝑝
0
(𝑧) +

𝑚1

∑

𝑗=1

𝑝
𝑗
(𝑧) exp (−𝑧

𝑟

𝛿
𝑗
) . (21)

In the case of a system with delays of a fractional commen-
surate order (i.e., when 𝛼

𝑘
= 𝛼 ⋅ 𝑘 (𝑘 = 0, 1, . . . , 𝑛); 𝛽

𝑘
=

𝛼 ⋅ 𝑘 (𝑘 = 0, 1, . . . , 𝑚)), one can consider the natural degree
quasi-polynomial

𝐷 (𝜆) = 𝑝
0
(𝜆) +

𝑚1

∑

𝑗=1

𝑝
𝑗
(𝜆) exp (−𝜆

𝑟/𝛼

𝛿
𝑗
) , 𝜆 = 𝑧

𝛼

, (22)

associated with the characteristic quasi-polynomial (21) of a
fractional order.

In [24] new frequency domain methods for stability
analysis of linear continuous-time fractional order systems
with delays of the retarded type are proposed. The methods



4 Mathematical Problems in Engineering

are obtained by generalization to the class of fractional order
systems with delays of the Mikhailov stability criterion and
the modified Mikhailov stability criterion known from the
theory of natural order systems without and with delays.

The following results concerning stability of the consid-
ered system are proved in [24].

(1) The fractional quasi-polynomial (21) of commensu-
rate degree satisfies the condition 𝐷(𝑧) ̸= 0, Re 𝑧 ≥ 0 if and
only if all the zeros of the associated natural degree quasi-
polynomial (22) satisfy the condition

arg (𝜆)
 >

𝛼𝜋

2
, (23)

where arg(𝜆) means the principal branch of the multivalued
function Arg(𝜆), 𝜆 ∈ C; that is, arg(𝜆) ∈ (−𝜋, 𝜋].

(2) The fractional quasi-polynomial (21) of commensu-
rate degree is not stable for any 𝛼 > 1.

(3) The fractional characteristic quasi-polynomial (21) of
commensurate degree is stable if and only if

Δ
0≤𝜔<+∞

arg (𝐷 (𝑖𝜔)) =
𝑛𝜋

2
, (24)

which means that the plot of 𝐷(𝑖𝜔) with 𝜔 increasing from
0 to +∞ runs in the positive direction by 𝑛 quadrants of the
complex plane, missing the origin of this plane.

(4)The fractional characteristic quasi-polynomial (21) (of
commensurate or noncommensurate degree) is stable if and
only if

Δ
−∞<𝜔<+∞

arg (𝜓 (𝑖𝜔)) = 0, (25)

where

𝜓 (𝑧) =
𝐷 (𝑧)

𝑤
𝑟
(𝑧)

, (26)

and 𝑤
𝑟
(𝑧) can be chosen, for example, as

𝑤
𝑟
(𝑧) = 𝑎

0𝑛
(𝑧 + 𝑐)

𝛼𝑛 , 𝑐 > 0. (27)

Remark 1. Stability of fractional polynomials is related to the
stability of ordinary quasi-polynomials due to the following
relation:

𝑎
0
+ 𝑎

1
𝑧
𝛼1 + ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑧
𝛼𝑛 = 𝑎

0
+ 𝑎

1
⋅ 𝑒

𝛼1𝑤 + ⋅ ⋅ ⋅

+ 𝑎
𝑛
⋅ 𝑒

𝛼𝑛𝑤,

(28)

where𝑤 = log 𝑧. Application of formula (28) needs to be very
careful since𝑤 is now the point on the Riemann surface of the
logarithmic function (see, e.g., [22]).

An approach describing the stability of fractional quasi-
polynomials in terms of zeros distribution of these polyno-
mials on certain Riemann surfaces is widely used now (see,
e.g., survey paper [10] and references therein). Sometimes it is
called “root-locusmethod.”The characteristic result obtained
with the application of this method is the following [25].

(5) The fractional order system with characteristic poly-
nomial 𝑤(𝑧) is stable if and only if 𝑤(𝑧) has no zeros in the
closed right-half of the Riemann surface; that is,

𝑤 (𝑧) ̸= 0 ∀Re 𝑧 ≥ 0. (29)

The fractional order polynomial 𝑤(𝑧) is a multivalued
function whose domain is a Riemann surface. In general,
this surface has an infinite number of sheets, and thus the
fractional polynomial has (in general) an infinite number of
zeros.We are interested only in those zeros which are situated
on the main sheet of the Riemann surface which can be fixed
in the following way: −𝜋 < arg(𝑧) < 𝜋.

Recently the notion of robust stability was introduced
for systems with characteristic polynomials dependent on
uncertainty parameter (see [26–29]). In [25] this notion is
applied to the convex combination of two fractional degrees
polynomials

𝑊(𝑧, 𝑞) = {𝑤 (𝑧, 𝑞) : 𝑞 ∈ 𝑄 = [0, 1]} , (30)

𝑤 (𝑧, 𝑞) = (1 − 𝑞)𝑤
𝑎
(𝑧) + 𝑞𝑤

𝑏
(𝑧) , (31)

where 𝑞 is uncertainty parameter, and𝑤
𝑎
(𝑧), 𝑤

𝑏
(𝑧) are frac-

tional degree polynomials.
The family (30) of fractional degree polynomials is called

robust stable if polynomial 𝑤(𝑧, 𝑞) is stable for all 𝑞 ∈ 𝑄.
Generalization of the Mikhailov-type criterion (see [24])

to this case has the following form [25].
(6) Let the nominal polynomial 𝑤

𝑎
(𝑧) be stable. The

family of polynomials (30) is robust stable if and only if the
plot of the function

𝜗 (𝑗𝜔) =
𝑤

𝑏
(𝑗𝜔)

𝑤
𝑎
(𝑗𝜔)

, 𝜔 ∈ Ω = [0,∞) (32)

does not cross the nonpositive part (−∞, 0] of the real axis in
the complex plane.

4. Stability of Fractional Order Systems

Several applications of the results on stability of the fractional
polynomials to the systems describing different processes and
phenomena are presented, for example, [30, 31]. Some of
these results are closely related to the recent achievements
and the theory and applications of fractional calculus and
fractional differential equations (see [32–34]). The results in
this area need to be systematized as from the point of the
ideas, technical point of view.

4.1. General Fractional Order Systems. A general fractional
order system can be described by a fractional differential
equation of the form

𝑎
𝑛
𝐷

𝛼𝑛𝑦 (𝑡) + 𝑎
𝑛−1

𝐷
𝛼𝑛−1𝑦 (𝑡) + ⋅ ⋅ ⋅ + 𝑎

0
𝐷

𝛼0𝑦 (𝑡)

= 𝑏
𝑚
𝐷

𝛽𝑚𝑦 (𝑡) + 𝑏
𝑚−1

𝐷
𝛽𝑚−1𝑦 (𝑡) + ⋅ ⋅ ⋅ + 𝑏

0
𝐷

𝛽0𝑦 (𝑡) ,

(33)

where 𝐷
𝛾

=
0
𝐷

𝛾

𝑡
denotes the Riemann-Liouville RL

0
𝐷

𝛾

𝑡
or

Caputo 𝐶

0
𝐷

𝛾

𝑡
fractional derivative [32, 33]. Another form of

general fractional order system is due to properties of the
Laplace transform [32, 34]. This form represents the system
in terms of corresponding transfer function

𝐺 (𝑠) =
𝑏
𝑚
𝑠
𝛽𝑚 + 𝑏

𝑚−1
𝑠
𝛽𝑚−1 + ⋅ ⋅ ⋅ + 𝑏

0
𝑠
𝛽0

𝑎
𝑛
𝑠𝛼𝑛 + 𝑎

𝑛−1
𝑠𝛼𝑛−1 + ⋅ ⋅ ⋅ + 𝑎

0
𝑠𝛼0

=
𝑄 (𝑠)

𝑃 (𝑠)
, (34)
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where 𝑠 is the Laplace variable. Here 𝑎
𝑛
, . . . , 𝑎

0
, 𝑏

𝑚
, . . . , 𝑏

0
are

given real constants, and 𝛼
𝑛
, . . . , 𝛼

0
, 𝛽

𝑚
, . . . , 𝛽

0
are given real

numbers (usually positive). Without loss of generality, these
sets of parameters can be ordered as 𝛼

𝑛
> ⋅ ⋅ ⋅ > 𝛼

0
, 𝛽

𝑚
>

⋅ ⋅ ⋅ > 𝛽
0
.

If both sets 𝛼-𝑠 and 𝛽-𝑠 constitute an arithmetical pro-
gression with the same difference, that is, 𝛼

𝑘
= 𝑘𝛼, 𝑘 =

0, . . . , 𝑛, 𝛽
𝑘

= 𝑘𝛼, 𝑘 = 0, . . . , 𝑚, then system (33) is called
commensurate order system. Usually it is supposed that par-
ameter 𝛼 satisfies the inequality 0 < 𝛼 < 1. In all other cases
system (33) is called incommensurate order system. Anyway,
if parameters 𝛼 and 𝛽 are rational numbers, then this case
can be considered as commensurate one, with 𝛼 = 1/𝑁

being a least common multiple of denominators of fractions
𝛼
𝑛
, . . . , 𝛼

0
, 𝛽

𝑚
, . . . , 𝛽

0
[35].

For commensurate order system, its transfer function can
be thought as certain branch of the following multivalued
function:

𝐺 (𝑠) =
∑

𝑚

𝑘=0
𝑏
𝑘
(𝑠

𝛼

)
𝑘

∑
𝑛

𝑘=0
𝑎
𝑘
(𝑠

𝛼
)
𝑘

=
𝑄 (𝑠

𝛼

)

�̃� (𝑠
𝛼
)

. (35)

Since the right hand-side of this relation is a rational function
of 𝑠𝛼, then one can represent 𝐺(𝑠) in the form of generalized
simple fractions. The most descriptive representation of such
a type is that for 𝑛 > 𝑚,

𝐺 (𝑠) =

{

{

{

𝑝

∑

𝑖=1

𝑟𝑖

∑

𝑗=1

𝐴
𝑖𝑗

(𝑠𝛼 + 𝜆
𝑖
)
𝑗

}

}

}

, (36)

where −𝜆
𝑖
is a root of polynomial 𝑃(𝑧) of multiplicity 𝑟

𝑖
. In

particular, if all roots are simple, then the representation (36)
has the most simple form

𝐺 (𝑠) = {

𝑛

∑

𝑖=1

𝐵
𝑖

𝑠𝛼 + 𝜆
𝑖

} . (37)

In this case an analytic solution to system (33) is given by the
formula

𝑦 (𝑡) = L
−1

{

𝑛

∑

𝑖=1

𝐵
𝑖

𝑠𝛼 + 𝜆
𝑖

⋅ (L𝑢) (𝑠)}

= L
−1

{

𝑛

∑

𝑖=1

𝐵
𝑖

𝑠𝛼 + 𝜆
𝑖

} ∗ 𝑢 (𝑡)

= (

𝑛

∑

𝑖=1

𝐵
𝑖
𝑡
𝛼

𝐸
𝛼,𝛼

(−𝜆
𝑖
𝑡
𝛼

)) ∗ 𝑢 (𝑡) ,

(38)

where the symbol “∗” means the Laplace-type convolution,
and 𝐸

𝜇,] is the two-parametric Mittag-Leffler function [36]

𝐸
𝜇,] (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝜇𝑘 + ])
. (39)

In the case of homogeneous fractional order system

𝑎
𝑛
𝐷

𝛼𝑛𝑦 (𝑡) + 𝑎
𝑛−1

𝐷
𝛼𝑛−1𝑦 (𝑡) + ⋅ ⋅ ⋅ + 𝑎

0
𝐷

𝛼0𝑦 (𝑡) = 0, (40)

the analytical solution is given by the following formula (see,
e.g., [10, 37]):

𝑦 (𝑡)

=
1

𝑎
𝑛

∞

∑

𝑘=0

(−1)
𝑘

𝑘!
∑

𝑘0+⋅⋅⋅+𝑘𝑛−2=𝑘

𝑘0≥0,...,𝑘𝑛−2≥0

(𝑘; 𝑘
0
, . . . , 𝑘

𝑛−2
)

×

𝑛−2

∏

𝑖=0

(
𝑎
𝑖

𝑎
𝑛

)

𝑘𝑖

E
𝑘

× (𝑡, −
𝑎
𝑛−1

𝑎
𝑛

; 𝑎
𝑛
− 𝑎

𝑛−1
, 𝑎

𝑛
+

𝑛−2

∑

𝑗=0

(𝑎
𝑛−1

− 𝑎
𝑗
) 𝑘

𝑗
+ 1) ,

(41)

where (𝑘; 𝑘
0
, . . . , 𝑘

𝑛−2
) are the multinomial coefficients, and

E
𝑘
(𝑡, 𝑦; 𝜇, ]) is defined by the formula [33]

E
𝑘
(𝑡, 𝑦; 𝜇, ]) = 𝑡

𝜇𝑘+]−1
𝐸

(𝑘)

𝜇,] (𝑦𝑡
𝜇

) , (𝑘 = 0, 1, 2, . . .) ,

𝐸
(𝑘)

𝜇,] (𝑧) =

∞

∑

𝑗=0

(𝑗 + 𝑘)!𝑧
𝑗

𝑗!Γ (𝜇𝑗 + 𝜇𝑘 + ])
(𝑘 = 0, 1, 2, . . .)

(42)

is the 𝑘th derivative of two-parametric Mittag-Leffler func-
tion [32, 38]

𝐸
𝜇,] (𝑧) =

∞

∑

𝑗=0

𝑧
𝑗

Γ (𝜇𝑗 + ])
(𝑘 = 0, 1, 2, . . .) . (43)

The stability analysis of the fractional order system gives
the following results (see [10, 24, 39, 40]).

Theorem 2. A commensurate order system with transfer
function (37) is stable if and only if

arg (𝜆
𝑖
)
 > 𝛼

𝜋

2
∀𝑖 = 1, . . . , 𝑛, (44)

with −𝜆
𝑖
being the 𝑖th root of the generalized polynomial 𝑃(𝑠

𝛼

).

To formulate the result in incommensurate case, we use
the concept of bounded input-bounded output (BIBO) or
external stability (see [10, 39]).

Theorem 3. Let the transfer function of an incommensurate
order system be represented in the form

𝐺 (𝑠) =

{

{

{

𝑝

∑

𝑖=1

𝑟𝑖

∑

𝑗=1

𝐴
𝑖𝑗

(𝑠𝑞𝑖 + 𝜆
𝑖
)
𝑗

}

}

}

, (45)

for some complex numbers 𝐴
𝑖𝑗
, 𝜆

𝑖
, positive 𝑞

𝑖
, and positive

integer 𝑟
𝑖
.

Such system is BIBO stable if and only if parameters 𝑞
𝑖
and

arguments of numbers 𝜆
𝑖
satisfy the following inequality:

0 < 𝑞
𝑖
< 2,

arg (𝜆
𝑖
)
 < 𝜋 (1 −

𝑞
𝑖

2
) ∀𝑖 = 1, . . . , 𝑝. (46)

The result of Theorem 3 was obtained by using the
stability results given in [40, 41].



6 Mathematical Problems in Engineering

4.2. Fractional Order Linear Time-Invariant Systems. Besides
the conception of stability, for fractional order linear time-
invariant systems

0
𝐷

q
𝑡
x (𝑡) = Ax (𝑡) + Bu (𝑡) ,

y (𝑡) = Cx (𝑡) ,

(47)

the conceptions of controllability and observability (known
as linear and nonlinear differential systems [42, 43]) are
introduced too.

In (47) x ∈ R𝑛 is an unknown state vector, and u ∈

R𝑟, y ∈ R𝑝 are the control vector and output vector, res-
pectively. Given (constant) matrices A, B, and C are of the
following size A ∈ R𝑛×𝑛

, B ∈ R𝑛×𝑟

, and C ∈ R𝑝×𝑛,. Positive
vector q = [𝑞

1
, . . . , 𝑞

𝑛
]
𝑇 denotes the (fractional) order of

system (47). If 𝑞
1

= ⋅ ⋅ ⋅ = 𝑞
𝑛

= 𝑞, then system (47) is called a
commensurate order system.

As in case of ordinary linear differential time-invari-
ant systems, controllability and observability conditions [44]
are represented in terms of controllability 𝐶

𝑎
= [𝐵|𝐴𝐵

|𝐴
2

𝐵| ⋅ ⋅ ⋅ |𝐴
𝑛−1

𝐵] and observability 𝑂
𝑎

= [𝐶|𝐶𝐴|𝐶𝐴
2

| ⋅ ⋅ ⋅

|𝐶𝐴
𝑛−1

] matrices, respectively.
We have to mention also the stability criterion for the

system (47) (see [40, 45–48]).

Theorem 4. Commensurate system (47) is stable if the follow-
ing conditions are satisfied:

arg (eig (A))
 > 𝑞

𝜋

2
, 0 < 𝑞 < 2, (48)

for all eigenvalues eig(A) of the matrix A.

Several new results on stability, controllability, and
observability of system (47) are presented in the recent
monograph [49] (see also [37, 50–52]) is proposed. We can
say that control theory for fractional order systems becomes a
special branch of fractional order systems andmention in this
connection several important papers developing this theory
[53–67]. A number of applications of the fractional order
systems are presented in [30, 31, 68].

4.3. Fractional Order Controllers. The fractional-order con-
troller (FOC) PI𝜆D𝛿 (also known as PI𝜆D𝜇 controller) was
proposed in [33] as a generalization of the PID controller with
integrator of real order𝜆 anddifferentiator of real order𝛿.The
transfer function of such controller in the Laplace domain has
this form

𝐶 (𝑠) =
𝑈 (𝑠)

𝐸 (𝑠)
= 𝐾

𝑝
+ 𝑇

𝑖
𝑠
−𝜆

+ 𝑇
𝑑
𝑠
𝛿

(𝜆, 𝛿 > 0) , (49)

where 𝐾
𝑝
is the proportional constant, 𝑇

𝑖
is the integration

constant, and 𝑇
𝑑
is the differentiation constant.

In [69] a classification of different modifications of the
fractional PI𝜆D𝛿 controllers (see also [49, 70–72]):

(i) CRONE controller (1st generation), characterized by
the bandlimited lead effect:

𝐶 (𝑠) = 𝐶
0

(1 + 𝑠/𝜔
𝑏
)
𝑟

(1 + 𝑠/𝜔
ℎ
)
𝑟−1

. (50)

There are a number of real-life applications of three
generations of the CRONE controller [73].

(ii) Fractional lead-lag compensator [49], which is given
by

𝐶 (𝑠) = 𝑘
𝑐
(

𝑠 + 1/𝜆

𝑠 + 1/𝜆
)

𝑟

, (51)

where 0 < 𝑠 < 1, 𝜆 ∈ R, and 𝑟 ∈ R.
(iii) Noninteger integral and its application to control as a

reference function [74, 75]; Bode suggested an ideal
shape of the loop transfer function in his work on
design of feedback amplifiers in 1945. Ideal loop
transfer function has the form

𝐿 (𝑠) = (
𝑠

𝜔
𝑔𝑐

)

𝛼

, (𝛼 < 0) , (52)

where 𝜔
𝑔𝑐
is desired crossover frequency and 𝛼 is the

slope of the ideal cut-off characteristic. The Nyquist
curve for ideal Bode transfer function is simply a
straight line through the origin with arg(𝐿(𝑗𝜔)) =

𝛼𝜋/2.
(iv) TID compensator [76], which has structure similar to

a PID controller but the proportional component is
replaced with a tilted component having a transfer
function 𝑠 to the power of (−1/𝑛). The resulting
transfer function of the TID controller has the form

𝐶 (𝑠) =
𝑇

𝑠1/𝑛
+

𝐼

𝑠
+ 𝐷𝑠, (53)

where 𝑇, 𝐼, and 𝐷 are the controller constants, and 𝑛

is a non-zero real number, preferably between 2 and
3. The transfer function of TID compensator more
closely approximates an optimal transfer function,
and an overall response is achieved, which is closer to
the theoretical optimal response determined by Bode
[74].

Different methods for determination of PI𝜆D𝛿 controller
parameters satisfying the given requirements are proposed
(see, e.g., [69] and references therein).

4.4. Positive Fractional Order Systems. A new concept
(notion) of the practical stability of the positive fractional
2D linear systems is proposed in [77]. Necessary and suf-
ficient conditions for the practical stability of the positive
fractional 2D systems are established. It is shown that the
positive fractional 2D systems are practically unstable (1) if a
corresponding positive 2D system is asymptotically unstable
and (2) if some matrices of the 2D system are nonnegative.

Simple necessary and sufficient conditions for practical
stability independent of the length of practical implementa-
tion are established in [78]. It is shown that practical stability
of the system is equivalent to asymptotic stability of the
corresponding standard positive discrete-time systems of the
same order.
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4.5. Fractional Order Systems with Delay. Fractional order
systems with delay meet a number of important applications
(see, e.g., [31, 49]). There are several important works about
stability of closed-loop fractional order systems/controllers
with time delays. Some relevant examples can be found in
[79–81].

To describe simplest fractional order systems with delay,
let us introduce some notations (see [82]).

Let C([𝑎, 𝑏],R𝑛

) be the set of continuous functions
mapping the interval [𝑎, 𝑏] to R𝑛

). One may wish to identify
a maximum time delay 𝑟 of a system. In this case, we
are interested in the set of continuous function mapping
[−𝑟, 0] to R𝑛

), for which we simplify the notation to C =

C([−𝑟, 0],R𝑛

). For any𝐴 > 0 and any continuous function of
time x ∈ C([𝑡

0
− 𝑟, 𝑡

0
+𝐴],R𝑛

), 𝑡
0
≤ 𝑡

0
+𝐴, let x

𝑡
(𝜃) ∈ C be a

segment of function defined as x
𝑡
(𝜃) = x(𝑡 + 𝜃), −𝑟 ≤ 𝜃 ≤ 0.

Let the fractional nonlinear time-delay system be the
system of the following type:

𝐶

𝑡0

𝐷
q
𝑡
x (𝑡) = f (𝑡, x

𝑡
(𝑡)) , (54)

where x ∈ C([𝑡
0

− 𝑟, 𝑡
0

+ 𝐴],R𝑛

) for any 𝐴 > 0, q =

(𝑞, . . . , 𝑞), 0 < 𝑞 < 1, and 𝑓 : R × C → R𝑛. To determine
the future evolution of the state, it is necessary to specify the
initial state variables x(𝑡) in a time interval of length 𝑟, say
from 𝑡

0
− 𝑟 to 𝑡

0
; that is,

x (𝑡
0
) = 𝜑, (55)

where 𝜑 ∈ C is given. In other words x(𝑡
0
)(𝜃) = 𝜑(𝜃), −𝑟 ≤

𝜃 ≤ 0.
Several stability results for fractional order systems with

delay were obtained in [82–84]. In particular, in [84], the
linear and time-invariant differential-functional Caputo frac-
tional differential systems of order 𝛼 are considered:

𝐶

𝐷
𝛼

0𝑡
x (𝑡) :=

1

Γ (𝑘 − 𝛼)
∫

𝑡

0

x(𝑘)

(𝜏)

(𝑡 − 𝜏)
𝛼+1−𝑘

𝑑𝜏

=

𝑝

∑

𝑖=0

A
𝑖
x (𝑡 − ℎ

𝑖
) + Bu (𝑡) ,

(56)

𝑘 − 1 < 𝛼 ≤ 𝑘, 𝑘 − 1 ∈ Z
0+
, 0 < ℎ

0
< ℎ

1
< ⋅ ⋅ ⋅ < ℎ

𝑝
= ℎ < ∞.

A
0
, A

𝑖
∈ R𝑛×𝑛 are matrices of dynamics for each delay ℎ

𝑖
,

and B ∈ R𝑛×𝑚 is the control matrix. Under standard initial
conditions, the solution to this problem is represented via
Mittag-Leffler function, and the dependence of the different
delay parameters is studied.

4.6. Distributed Order Fractional Systems. An example of dis-
tributed order fractional systems is the systemof the following
type (see, e.g., [85]) containing the so-called distributed order
fractional derivative:

𝐶

𝑑𝑜
𝐷

𝛼

𝑡
𝑥 (𝑡) = 𝐴

𝐶

𝑑𝑜
𝐷

𝛽

𝑡
𝑥 (𝑡) + 𝐵𝑢 (𝑡) , 𝑥 (0) = 𝑥

0
, (57)

where 0 < 𝛽 < 𝛼 ≤ 1,

𝑑𝑜
𝐷

𝛼

𝑡
(⋅) = ∫

𝛾

𝑡

𝑏 (𝛼)
𝑑
𝛼

(⋅)

𝑑𝑡𝛼
𝑑𝛼, 𝛾 > 𝑙 ≥ 0, 𝑏 (𝛼) ≥ 0, (58)

and
𝑠𝑜
𝐷

𝛼

𝑡
(⋅) = 𝑑

𝛼

(⋅)/𝑑𝑡
𝛼 is a standard (single order) fractional

derivative.
Application of such systems to the description of the

ultraslow diffusion is given in series of articles by Kochubei
(see, e.g., [86]).

4.7. Discrete-Time Fractional Systems. There are different
definitions of the fractional derivative (see, e.g., [34, 87]).
The Grünwald-Letnikov definition, which is the discrete
approximation of the fractional order derivative, is used here.
TheGrünwald-Letnikov fractional order derivative of a given
function 𝑓(𝑡) is given by

GL
𝑎

𝐷
𝛼

𝑡
𝑓 (𝑡) = lim

ℎ→0

𝑎
Δ

𝛼

ℎ
𝑓 (𝑡)

ℎ𝛼
, (59)

where the real number 𝛼 denotes the order of the derivative,
𝑎 is the initial time, and ℎ is a sampling time. The difference
operator Δ is given by

𝑎
Δ

𝛼

ℎ
𝑓 (𝑡) =

[(𝑡−𝑎)/ℎ]

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)𝑓 (𝑡 − 𝑗ℎ) , (60)

where (
𝛼

𝑗 ) is the Pochhammer symbol and [⋅] denotes an
integer part of a number.

Traditional discrete-time state-space model of integer
order, that is, when 𝛼 is equal to unity has the form,

x (𝑘 + 1) = Ax (𝑘) + Bu (𝑘) , 𝑥 (0) = 𝑥
0
,

y (𝑘) = Cx (𝑘) + Du (𝑘) ,

(61)

where u(𝑘) ∈ R𝑝 and y(𝑘) ∈ R𝑞 are, respectively, the input
and the output vectors, and x(𝑘) = [𝑥

1
(𝑘), . . . , 𝑥

𝑛
(𝑘)] ∈

R𝑛 is the state vector. Its initial value is denoted by 𝑥
0

=

𝑥(0) and can be set equal to zero without loss of generality.
A, B, C, and D are the conventional state space matrices
with appropriate dimensions.

The generalization of the integer-order difference to a
noninteger order (or fractional-order) difference has been
addressed in [88] where the discrete fractional-order differ-
ence operator with the initial time taken equal to zero is
defined as follows:

Δ
𝛼x (𝑘) =

1

ℎ𝛼

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
) x (𝑘 − 𝑗) . (62)

In the sequel, the sampling time ℎ is taken equal to 1.
These results conducted to conceive the linear discrete-time
fractional-order state-space model, using

Δ
𝛼x (𝑘 + 1) = A

𝑑
x (𝑘) + Bu (𝑘) , x (0) = x

0
. (63)

The discrete-time fractional order system is represented by
the following state space model:

x (𝑘 + 1) =

𝑘

∑

𝑗=0

A
𝑗
x (𝑘 − 𝑗) + Bu (𝑘) , x (0) = x

0
,

y (𝑘) = Cx (𝑘) + Du (𝑘) ,

(64)
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where A
0

= A
𝑑

− 𝑐
1
I
𝑛
and A

𝑗
= −𝑐

𝑗+1
𝐼
𝑛
for 𝑗 ≥ 2 with 𝑐

𝑗
=

−(−1)
𝑗

(
𝛼

𝑗 ). This description can be extended to the case of
noncommensurate fractional-order systems modeled in [88]
by introducing the following vector difference operator:

Δ
Υx (𝑘 + 1) = A

𝑑
x (𝑘) + Bu (𝑘) ,

x (𝑘 + 1) = Δ
Υx (𝑘 + 1) +

𝑘+1

∑

𝑗=1

A
𝑗
x (𝑘 − 𝑗 + 1) ,

Δ
Υx (𝑘 + 1) =

[
[
[
[

[

Δ
𝛼1𝑥

1
(𝑘 + 1)

Δ
𝛼2𝑥

2
(𝑘 + 1)

...
Δ

𝛼𝑛𝑥
𝑛
(𝑘 + 1)

]
]
]
]

]

.

(65)

Stability analysis of such system is performed, for example,
[89] (see also [90, 91]).

The paper [92] is devoted to controllability analysis of
discrete-time fractional systems.

4.8. Fractional Nonlinear Systems. The simplest fractional
nonlinear system in the incommensurate case is the system
of the type

0
𝐷

q
𝑡
x (𝑡) = f (x (𝑡) , 𝑡) ,

x (0) = c.
(66)

It has been mentioned in [39] that exponential stability
cannot be used to characterize the asymptotic stability of
fractional order systems. A new definition of power law
stability was introduced [93].

Definition 5. Trajectory x(𝑡) = 0 of the system (66) is power
law 𝑡

−𝑞 asymptotically stable if there exists a positive 𝑞 > 0

such that

∀ ‖x (𝑡)‖ with 𝑡 ≤ 𝑡
0
, ∃𝑁 = 𝑁 (x (⋅)) ,

such that ∀𝑡 ≥ 𝑡
0
⇒ ‖x (𝑡)‖ ≤ 𝑁𝑡

−𝑞

.

(67)

Power law 𝑡
−𝑞 asymptotic stability is a special case of the

Mittag-Leffler stability [94], which has the following form.

Definition 6 (definition of the Mittag-Leffler stability). The
solution of the nonlinear problem

𝑡0
𝐷

q
𝑡
x (𝑡) = 𝑓 (x (𝑡) , 𝑡) ,

x (𝑡
0
) = c

(68)

is said to be Mittag-Leffler stable if

‖𝑥 (𝑡)‖ ≤ {𝑚 [𝑥 (𝑡
0
)] 𝐸

𝑞
(−𝜆(𝑡 − 𝑡

0
)
𝑞

)}
𝑏

, (69)

where 𝐸
𝑞
(𝑢) is the classical Mittag-Leffler function, q =

(𝑞, . . . , 𝑞), 𝑞 ∈ (0, 1), 𝜆 > 0, 𝑏 > 0, and 𝑚(0) = 0, 𝑚(x) ≥

0, 𝑚 is locally Lipschitz on x ∈ B ⊆ R𝑛 with Lipschitz
constant 𝑚

0
.

Among the many methods that have been proposed for
the study of “different kinds of stability definitions” of non-
linear fractional order systems (66), wemention perturbation
analysis.

Thus, in [95], it is investigates the qualitative behaviour
of a perturbed fractional order differential equations with
Caputo derivatives that differs in initial position and initial
time with respect to the unperturbed fractional order dif-
ferential equation with Caputo derivatives. In [96], the sta-
bility of 𝑛-dimensional linear fractional differential systems
with commensurate order and the corresponding perturbed
systems is investigated. By using the Laplace transform,
the asymptotic expansion of the Mittag-Leffler function,
and the Grönwall’s inequality, some conditions on stability
and asymptotic stability are given. In [97], the stability
of nonlinear fractional differential systems with Caputo
derivatives by utilizing a Lyapunov-type function is studied.
Taking into account the relation between asymptotic stability
and generalized Mittag-Leffler stability, the condition on
Lyapunov-type function is weakened.

5. Some Examples

In this section, we analyze the stability of the four systems by
means of the root locus and the polar diagram. For calculating
the root-locus, the algorithmproposed in [98] is adopted.The
closed-loop system is constituted by a controller and a plant
with transfer functions 𝐶(𝑠) and 𝐺(𝑠), respectively, and unit
feedback.

For studying the stability, the following classical criteria
are applied

(i) ultimate (or critical) gain 𝐾
𝑢
: 1 + 𝐾

𝑢
𝐶(𝑠)𝐺(𝑠) = 0,

Re(𝑠) = 0,
(ii) phasemargin PM: |𝐶𝐺(𝑖𝜔

1
)| = 1, PM = arg{𝐶𝐺(𝑖𝜔

1
)}

+𝜋,
(iii) gain margin GM: arg{𝐶𝐺(𝑖𝜔

𝜋
)} = −𝜋, GM =

|𝐶𝐺(𝑖𝜔
𝜋
)|

−1.

5.1. Example 1. This example was discussed in [10]. In this
case we have 𝐶(𝑠) = 𝐾(64.47 + 12.46𝑠) and 𝐺(𝑠) = 1/(0.598 +

39,96𝑠
1.25

). Figure 1 depicts the root locus where the white
circles represent the roots for𝐾 = 1, 𝑠

1,2
= −1.0788±𝑖 0.6064.

The system is always stable.
Figure 2 shows the polar diagram for 𝐾 = 1. The corre-

sponding phase margin is MF = 1.4720 rad for 𝜔
1

= 1.5195.
Varying the gain, we verify again that the system is always
stable.

5.2. Example 2. This example was discussed in [99]. In this
case we have 𝐶(𝑠) = 𝐾(1 + 1.1694(1/𝑠

1.1011

) − 0.1517𝑠
0.1855

)

and 𝐺(𝑠) = 𝑒
−0.5𝑠

/(1 + 𝑠
0.5

). Figure 3 depicts the root locus
where the white circles represent the roots for 𝐾 = 1.4098;
namely, 𝑠

1,2
= −0.6620 ± 𝑖 0.4552, 𝑠

3,4
= −2.0323 ± 𝑖 4.1818.

The limit of stability occurs for 𝐾
𝑢

= 3.5549, 𝑠
1,2

= 0 ±

𝑖 4.5124.
Figure 4 shows the polar diagram for 𝐾 = 1.4098. The

corresponding phase margin is PM = 1.1854 rad for 𝜔
1

=
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Figure 1: Root locus for 𝐶(𝑠) = 𝐾(64.47 + 12.46𝑠) and 𝐺(𝑠) =

1/(0.598 + 39,96𝑠
1.25

).
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Figure 2: Polar diagram for 𝐶(𝑠) = 𝐾(64.47 + 12.46𝑠), 𝐺(𝑠) =

1/(0.598 + 39,96𝑠
1.25

), and 𝐾 = 1.

1.0478, and gain margin GM = 2.5201 for 𝜔
𝜋

= 4.5062 rad
which leads to 𝐾

𝑢
= 3.5549 as the ultimate gain.

5.3. Example 3. This example analyzes the system 𝐾/𝑠

(𝑠 + 1)
𝛼

(𝑠 + 2) for 𝛼 ∈ {0, 1/2, 1, 3/2, 2, 5/2, 3}. Since the
integer-order cases are trivial, in Figures 5, 6, and 7 are
only depicted the fractional-order cases. Table 1 shows the
corresponding gain in the limit of stability 𝐾

𝑢
, the phase

margin PM, and gain margin GM for several values of 𝛼.

5.4. Example 4. This example analyzes the nonminimum
phase system 𝐾((𝑠 + 2)

𝛼2/(𝑠 − 1)
𝛼1) for 𝛼

1
= 3.3, 𝛼

2
= 2.3.

Figure 8 depicts the root locus. The limit of stability occurs
for 𝐾

𝑢
= 4.3358, 𝑠

1,2
= 0 ± 𝑖 4.8493.

Figure 9 shows the polar diagram for 𝐾 = 1.0. The
corresponding gain margin is GM = 4.3358 for 𝜔

𝜋
=

4.8493 rad which leads to 𝐾
𝑢

= 4.3358 as the ultimate gain.

0
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6
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Im
(𝑠

)

Figure 3: Root locus for 𝐶(𝑠) = 𝐾(1 + 1.1694(1/𝑠
1.1011

) −

0.1517𝑠
0.1855

) and 𝐺(𝑠) = 𝑒
−0.5𝑠

/(1 + 𝑠
0.5

).

0
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−2
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−0.5 0.5
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Figure 4: Polar diagram for 𝐶(𝑠) = 𝐾(1 + 1.1694(1/𝑠
1.1011

) −

0.1517𝑠
0.1855

), 𝐺(𝑠) = 𝑒
−0.5𝑠

/(1 + 𝑠
0.5

), and 𝐾 = 1.4098.

6. Future Directions of Research and
Conclusions

In the previous discussion, one can outline themainmethods
applied at the study of stability of ordinary and fractional
order systems. These directions are as follows:

(i) complex analytic methods related to the properties of
single- and multivalued analytic functions;

(ii) methods of geometric functions theory describing the
behaviour of polynomials or systems in geometrical
terms;

(iii) methods of linear algebra (mainly matrix analysis);

(iv) methods of stochastic analysis;

(v) methods of fuzzy data analysis;

(vi) perturbation analysis of nonlinear systems;

(vii) methods of differential equations of fractional order.
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Figure 5: Root locus and polar diagram for 𝐾/𝑠(𝑠 + 1)
𝛼

(𝑠 + 2), 𝛼 = 0.5.

0
0

−1

−1

−2

−2

−3

−3

1

1

2

3

Re(𝑠)

Im
(𝑠

)

(a)

−1
−1

−2

−3

−4

4

−5

5

−0.8 −0.6 −0.4
−0.2 0.2

0
0

1

2

3

Re

Im
 

(b)

Figure 6: Root locus and polar diagram for 𝐾/𝑠(𝑠 + 1)
𝛼

(𝑠 + 2), 𝛼 = 1.5.
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Figure 7: Root locus and polar diagram for 𝐾/𝑠(𝑠 + 1)
𝛼

(𝑠 + 2), 𝛼 = 2.5.
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Table 1: Stability indices of 𝐾/(𝑠(𝑠 + 1)
𝛼

(𝑠 + 2)) for 𝛼 ∈ {0, 1/2, 1, 3/2, 2, 5/2, 3}.

𝛼 𝐾
𝑢

PM 𝜔
1

GM 𝜔
𝜋

0 1.332478866 0.4858682677
0.5 17.0542240216776 1.125696835 0.4639038816 16.97056274 2.828427124
1 6 0.9321940595 0.4457479715 6 1.414213562
1.5 3.3537212820799 0.7492952635 0.4303313791 3.338364465 0.9397638161
2 2.25 0.5751435644 0.4169759154 2.25 0.7071067811
2.5 1.69381413351661 0.4083841882 0.4052247852 1.680695653 0.5691429584
3 1.347 0.2479905647 0.3947560116 1.33607116 0.4774914945
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Figure 8: Root locus for 𝐾((𝑠 + 2)
𝛼2/(𝑠 − 1)

𝛼1 ) for 𝛼
1

= 3.3, 𝛼
2

=

2.3.
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Figure 9: Polar diagram for𝐾((𝑠 + 2)
𝛼2/(𝑠 − 1)

𝛼1 ) for 𝛼
1
= 3.3, 𝛼

2
=

2.3.

We can also mention the possibility to apply the study of
fractional order stability methods of Padé (or Hermite-Padé)
approximation (see, e.g., [100–102]).

In conclusion, this paper reviewed themain contributions
that were proposed during the last years for analysing the
stability of fractional order systems. Different problems were

addressed such as control, systems including a delay or with
a distributed nature, as well as discrete-time and nonlinear
systems.The paper presented in a comprehensive and concise
way many details that are scattered in the literature and
provide researchers a reference text for work in this area.
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