2,339 research outputs found

    Hardware Validation for Control of Three-Phase Grid-Connected Microgrids Using Artificial Neural Networks

    Get PDF
    This paper presents a strategy for controlling inverter-interfaced DERs within a microgrid using an artificial neural network. The neural network implements a dynamic programming algorithm and is trained with a new Levenberg-Marquardt backpropagation algorithm. Hardware experiments were conducted to evaluate the performance of the neural network vector control method. They showed that the neural network control technique performs well for DER converter control if the controller output voltage is below the converter?s PWM saturation limit. If the controller?s output voltage exceeds the PWM saturation limit, the neural network controller automatically turns into a state by maintaining a constant dc-link voltage as its first priority, while meeting the reactive power control demand as soon as possible. Under variable, unbalanced, and distorted system conditions, the neural network controller is stable and reliable

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    Robust 24 Hours ahead Forecast in a Microgrid: A Real Case Study

    Get PDF
    Forecasting the power production from renewable energy sources (RESs) has become fundamental in microgrid applications to optimize scheduling and dispatching of the available assets. In this article, a methodology to provide the 24 h ahead Photovoltaic (PV) power forecast based on a Physical Hybrid Artificial Neural Network (PHANN) for microgrids is presented. The goal of this paper is to provide a robust methodology to forecast 24 h in advance the PV power production in a microgrid, addressing the specific criticalities of this environment. The proposed approach has to validate measured data properly, through an effective algorithm and further refine the power forecast when newer data are available. The procedure is fully implemented in a facility of the Multi-Good Microgrid Laboratory (MG(Lab)(2)) of the Politecnico di Milano, Milan, Italy, where new Energy Management Systems (EMSs) are studied. Reported results validate the proposed approach as a robust and accurate procedure for microgrid applications

    Deep Reinforcement Learning for Control of Microgrids: A Review

    Get PDF
    A microgrid is widely accepted as a prominent solution to enhance resilience and performance in distributed power systems. Microgrids are flexible for adding distributed energy resources in the ecosystem of the electrical networks. Control techniques are used to synchronize distributed energy resources (DERs) due to their turbulent nature. DERs including alternating current, direct current and hybrid load with storage systems have been used in microgrids quite frequently due to which controlling the flow of energy in microgrids have been complex task with traditional control approaches. Distributed as well central approach to apply control algorithms is well-known methods to regulate frequency and voltage in microgrids. Recently techniques based of artificial intelligence are being applied for the problems that arise in operation and control of latest generation microgrids and smart grids. Such techniques are categorized in machine learning and deep learning in broader terms. The objective of this research is to survey the latest strategies of control in microgrids using the deep reinforcement learning approach (DRL). Other techniques of artificial intelligence had already been reviewed extensively but the use of DRL has increased in the past couple of years. To bridge the gap for the researchers, this survey paper is being presented with a focus on only Microgrids control DRL techniques for voltage control and frequency regulation with distributed, cooperative and multi agent approaches are presented in this research

    A Review on Application of Artificial Intelligence Techniques in Microgrids

    Get PDF
    A microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area. Microgrids with the advantages of being flexible, environmentally friendly, and self-sufficient can improve the power system performance metrics such as resiliency and reliability. However, design and implementation of microgrids are always faced with different challenges considering the uncertainties associated with loads and renewable energy resources (RERs), sudden load variations, energy management of several energy resources, etc. Therefore, it is required to employ such rapid and accurate methods, as artificial intelligence (AI) techniques, to address these challenges and improve the MG's efficiency, stability, security, and reliability. Utilization of AI helps to develop systems as intelligent as humans to learn, decide, and solve problems. This paper presents a review on different applications of AI-based techniques in microgrids such as energy management, load and generation forecasting, protection, power electronics control, and cyber security. Different AI tasks such as regression and classification in microgrids are discussed using methods including machine learning, artificial neural networks, fuzzy logic, support vector machines, etc. The advantages, limitation, and future trends of AI applications in microgrids are discussed.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions
    • …
    corecore