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Abstract: A microgrid consists of a variety of inverter-interfaced distributed energy resources (DERs). A key issue is how 

to control DERs within the microgrid and how to connect them to or disconnect them from the microgrid 

quickly. This paper presents a strategy for controlling inverter-interfaced DERs within a microgrid using an 

artificial neural network, which implements a dynamic programming algorithm and is trained with a new 

Levenberg-Marquardt backpropagation algorithm. Compared to conventional control methods, our neural 

network controller exhibits fast response time, low overshoot, and, in general, the best performance. In 

particular, the neural network controller can quickly connect or disconnect inverter-interfaced DERs without the 

need for a synchronization controller, efficiently track fast-changing reference commands, tolerate system 

disturbances, and satisfy control requirements at grid-connected mode, islanding mode, and their transition.

1 INTRODUCTION 

Distributed generation (DG) is an approach that 

employs small-scale technologies to produce 

electricity close to the end users of power. DG 

technologies often consist of modular and 

renewable-energy generators. They offer a number of 

potential benefits over traditional power generators, 

such as lower-cost electricity and increased power 

reliability and security with fewer environmental 

consequences. A microgrid is defined as an 

interconnected network of distributed energy systems 

(loads and DG resources) that can function with or 

without a connection to the main grid. This new 

approach to designing and building future smart grids 

focuses on creating a plan for local energy delivery 

that meets the needs of the constituents being served. 

Microgrids can efficiently integrate small-scale DGs 

into low-voltage (LV) systems and supply the demand 

of local customers, so their development is expected to 

yield the following benefits: 1) enable the 

development of sustainable and green electricity; 2) 

enable larger public participation in the investment in 

small-scale generation; 3) reduce the number of 

marginal central power plants, 4) improve the security 

of the supply; 5) reduce losses; and 6) enable better 

network congestion management and control to 

improve power quality. One important issue in 

microgrid operation is how to control the 

inverter-interfaced distributed energy resources 

(DERs). Conventionally, these DERs are controlled 

using standard vector control technology (mostly, 

Proportional Integral, PI, controllers). Within this 

framework, different solutions for connecting them to 

and disconnecting them from the main network have 

been proposed (Blaabjerg et al., 2006). Specifically, 

implementing a fast and accurate grid voltage 

synchronization algorithm (Rodríguez et al., 2012) is 

crucial, though this usually involves a complicated 

process. Recent studies have shown that an artificial 

neural network can be trained and used to control a 

grid-connected converter (Li et al., 2014). In (Li et al., 



2014), the neural network performance was evaluated 

mainly for d- and q-axis current tracking control of a 

grid-connected converter in a vector control condition. 

Compared to conventional vector control methods, the 

neural network yielded an extremely fast response 

time, low overshoot, and, in general, the best 

performance. The purpose of this paper is to 

investigate neural network control technology for 

control of grid-connect converters, including PQ and 

PV converters, and for control of a microgrid 

containing PQ and PV grid-connected converters. The 

main contributions of the paper include: 1) a neural 

network vector control strategy for optimal control of 

grid-connected converters (GCC); 2) a neural network 

design and training algorithm that can handle GCC 

control properly under physical system constraints; 3) 

control of inverter-interfaced DERs in a microgrid 

without using a synchronization control technique; and 

4) investigation of neural network vector control for a 

microgrid network.  

2 CONTROL ARCHITECTURES 

The control objective of a DER is to manage the active 

power transferred from the dc side to the ac side and to 

control the reactive power absorbed from the ac grid. 

This active and reactive power control usually is 

transformed into d- and q-axis current control (Li et 

al., 2011). In the d-q reference frame and using the 

motor sign convention, the voltage balance across the 

grid filter is: 
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in which vd and vq represent the Point of Common 

Coupling (PCC) d- and q-axis voltages, id and iq are 

the d- and q-axis currents from the grid to the DER, ωs 

is the angular frequency of the PCC voltage, and 

vd1and vq1 are the inverter’s d- and q-axis output 

voltages. Lf and Rf are the inductance and resistance of 

the grid filter, respectively. Using the PCC 

voltage-oriented frame (Li et al., 2011; Li et al., 2014), 

the instant active and reactive powers absorbed by the 

DER from the grid are proportional to the grid's d- and 

q-axis currents, respectively, as shown by Eqs. (2) and 

(3):  
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2.1 Conventional Control Structure 

The conventional standard vector control method of a 

DER converter implements a nested-loop structure. 

The control strategy of the inner current loop is 

developed by rewriting Eq. (1) as:     

  

( )1d f d f d s f q dv R i L di dt L i vω= + ⋅ − +  (4) 

( )1q f q f q s f dv R i L di dt L iω= + ⋅ +  (5) 

in which the expressions in parentheses are treated 

as the state equations between the voltage and current 

on the d- and q-axis loops, and the remaining 

expressions are treated as compensation terms (Li et 

al., 2011; Rocabert et al., 2011). The final control 

voltages,vd1
*
 and vq1

*
, applied to the DER converter 

include the d- and q-axis voltages, vd
’ 

and vq
’
, 

generated by the current-loop controllers, in addition 

to the compensation terms, as shown in Eq. (6). Hence, 

the conventional control configuration of the DER 

converter intends to regulate id and iq using vd
’ 
and vq

’
, 

respectively. However, as indicated in (Li et al., 2011), 

vd
’ 
is only effective for reactive power, or iq, control, 

and vq
’
 is only effective for active power, or id, control. 

Although the final control voltage applied to the 

converter contains the compensation terms, those 

compensation terms are not generated by the PI 

controllers.   

 
* ' * '

1 1
,d d s f q d q q s f dv v L i v v v L iω ω= − + = +   (6) 

 

2.2 Neural Network Control Structure 

Following (Li et al., 2011), our neural network vector 

control structure of a DER a d-axis loop is used for 

active power control and a q-axis loop is used for 

reactive power, or grid voltage support control. The 

error signal between the measured and reference active 

power generates a d-axis current reference to the 



neural network through a PI controller, while the error 

signal between the actual and desired reactive power 

generates a q-axis current reference. The neural 

network, known here as the action network, is applied 

to the DER inverter through a pulse width modulation 

(PWM) mechanism to regulate the DER output voltage 

in the three-phase ac system. The ratio of the inverter 

output voltage to the output of the action network is a 

gain of kPWM, which equals Vdc/2 if the amplitude of 

the triangle voltage waveform in the PWM scheme is 

1V (Mohan et al., 2002). The integrated DER system, 

described by Eq. (1), is rearranged into the standard 

state-space representation using Eq. (7), in which the 

system states are id and iq, PCC voltages vd and vq 

normally are constant, and converter output voltages 

vd1and vq1 are the control voltages to be specified by 

the output of the action network. For digital control 

implementation and offline training of the neural 

network, the discrete equivalent of the continuous 

system state-space model, Eq. (7), must be obtained 

using Eq. (8), in which Ts represents the sampling 

period, k is an integer time step, F is the system matrix, 

and G is the matrix associated with the control voltage. 

In this paper, a zero-order-hold discrete equivalent 

(Franklin et al., 1998) is used to convert the 

continuous state-space model of the system in Eq. (7) 

to the discrete state-space model in Eq. (8). In all 

experiments, Ts=1ms. 
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The action network is a fully connected multi-layer 

perceptron (Hagan et al., 2002) with six input nodes, 

two hidden layers having six nodes each, two output 

nodes, and shortcut connections between all pairs of 

layers, with hyperbolic tangent functions at all nodes. 

These six input components correspond to 1) the d- 

and q-axis current signals, 2) the two error signals of 

the d- and q-axis currents, and 3) the two integrals of 

the error signals. To simplify the expressions, the 

discrete system model in Eq. (8) is represented by:  
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i
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v
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(9) 

For a reference dq current, the control action 

applied to the system is expressed by: 
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dq
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i
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i
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dq
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in which 
!
w  represents the weight vector of the 

action network, and 
!
s
dq
(k) represents the network’s 

integral input vector defined by 

!
s(k) =

!
i
dq
t( )−
!
i
da_ ref

t( )( )dt
0

k

∫ . To prevent the neural 

network controller from being affected by the PCC 

voltage variation, we used a strategy that introduces 

the disturbance PCC voltage to the output of the 

network.  

3 NEURAL NETWORK TRAINING 

Unlike the conventional standard vector controller, the 

neural network controller is produced through training 

using Dynamic Programming (DP). DP employs 

Bellman’s Principle of Optimality (Bellman, 1957) 

and is a very useful tool for solving optimal control 

problems (Balakrishnan and Viega, 1996; He et al., 

2012). The typical structure of discrete-time DP 

includes a discrete-time system model and a 

performance index or cost associated with the system 

(Wang et al., 2009). The DP cost function associated 

with the vector-controlled system is defined as: 
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in which α is a constant. The function C(⋅),  

depending on the initial time j and the initial state 
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( j),  is referred to as the cost-to-go of state i
dq
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( j)  

of the DP problem. The objective of the neural 

network controller is to solve a current tracking 

problem, i.e., to hold the existing state
!
i
dq

 near a given 

(possibly moving) target state
!
i
dq

*
 so that the function 

C(⋅) in Eq. (11) is minimized. The current-loop action 

network was trained to minimize the DP cost in Eq. 

(11) using Levenberg-Marquardt backpropagation 

(LMBP) (Hagan et al., 2002). LMBP, a variation of 

Newton’s method, minimizes a function that is the 

sum of squares of a nonlinear function. Using LMBP 

with a general value for α  requires a modification 

for the cost function ( )C ⋅ defined in Eq. (11). Consider 

the cost function C = γ k− jU (e
dq

! "!

(k))
k= j

∞

∑ , in which 

γ =1, 1,=j  and 
   k = 1,…, N .  Then, C  can be 

written as: 
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in which V (k) = U (e
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! "!

(k)) and the gradient 

∂C / ∂w

!"

can be written in matrix form as:  
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in which  V
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, and the 

Jacobian matrix J (w
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(15) 

Therefore, the process of updating the weights 

using LMBP for a neural network controller can be 

expressed as: 
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(16) 

The parameter µ was dynamically adjusted to 

ensure that the training followed the decreasing 

direction of the cost function. When µ increased, (16) 

approached the steepest descent algorithm with a small 

learning rate, while as µ  decreased, the algorithm 

(16) approached Gauss-Newton, which typically 

provides faster convergence. In order to increase the 

speed of computation, the weight update in Eq. (16) 

was conducted using Cholesky factorization, which is 

roughly twice as efficient as lower-upper 

decomposition for solving systems of linear equations 

(Press et al., 1992).  

To train the action network, the system data 

associated with Eq. (7) had to be specified. The 

training procedure for the current-loop action network 

involved: 1) randomly generating a sample initial state 

idq(j); 2) randomly generating a changing sample 

reference dq current time sequence; 3) unrolling the 

trajectory of the system from the initial state; 4) 

training the current-loop neural network based on Eq. 

(16); and 5) repeating the process for all of the sample 

initial states and reference dq currents until reaching a 

stop criterion associated with the DP cost. All of the 

network weights initially were randomized using a 

uniform distribution with zero mean and 0.1 

variance.The generation of the reference current 

considered the physical constraints of a practical DER 

inverter system. The randomly generated d- and q-axis 

reference currents first were chosen uniformly from 

[-Irated,Irated], in which Irated represents the rated inverter 

line current. Then, these randomly generated d- and 

q-axis current values were checked and modified to 

ensure that their resultant magnitude did not exceed 

the inverter’s rated current limit and/or the control 

voltage did not exceed the converter’s PWM saturation 

limit. From the neural network standpoint, the PWM 

saturation constraint indicates the maximum positive 

or negative voltage that the action network can output. 

Therefore, if a reference dq current requires a control 

voltage that exceeds the acceptable voltage range of 

the action network, it is impossible to reduce the cost 

during the training of the action network. The neural 

network controller is trained offline, and no training 

occurs in the real-time control stage. Without online 

training, a real-time control action can be computed 

very quickly using modern DSP chips. The most 



important issue is the sampling time. However, an 

optimal neural network controller can be trained using 

a large sampling time based on the DP principle, while 

tuning a conventional controller for the same sampling 

time could be very difficult or impossible. Therefore, 

the neural network controller actually has lesser 

sampling and computing power requirements during 

the real-time control process. 

4 CONTROL OF INVERTER DER  

The key requirements for controlling 

inverter-interfaced DERs within a microgrid include: 

1) active power control; 2) reactive power control; 3) 

grid voltage support control, and 4) control under 

physical constraints. If a GCC can meet these control 

requirements, it can be applied broadly to power and 

energy system applications involving GCCs. In our 

experiments, the system data and controller parameters 

for various control purposes are as in Tables 1 and 2:  

 
Table 1: Systems data. 

 
Component Parameter Value 

AC system 
  Line voltage 400V 

   Frequency 60Hz 

Transmission line 
   Resistance   0.0076Ω 

   Inductance   0.154mH 

  Grid-filter 
   Resistance   0.006Ω 

   Inductance 1mH 

DER converter   Switching frequency   3000Hz 

DC system    Voltage 700V 

 

Table 2: Parameters of DER controller (kp – proportional 
gain, ki – integral gain). 

Approach Controller Gain (kp / ki) 

Conventional 
Current loop   1.54 / 53.52 

  AC bus voltage   1.09 / 35.6 

  Neural network 
Current loop    Neural network 

  AC bus voltage   1.09 / 35.6 

 

The PCC bus was connected to the microgrid 

through a transmission line that was modeled by an 

impedance. A fault-load was connected before the 

PCC bus to evaluate how the controller behaves when 

a fault appears in the grid. The DER inverter’s 

switching frequency was 3kHz. Typical strategies for 

operating a DER in a microgrid include PQ-inverter 

DER and PV-inverter DER (Katiraei et al., 2008). In 

the power converter switching condition, the controller 

can be evaluated under close to real-life conditions. 

The position of the PCC voltage space vector θv was 

obtained directly from the PCC voltage measurement 

in the α-β reference frame given by: 

 

  
θ

v
= tan

−1
v
α

v
β( )  

(17) 

     
 

4.1 Control of PQ-Inverter DERs 

A PQ-inverter DER operates by injecting active and 

reactive power into the microgrid. The active and 

reactive power control at the PCC of an 

inverter-interfaced DER is converted to d- and q-axis 

current control. The d- and q-axis current references, 

id
*
 and iq

*
, are obtained either through a PI control 

mechanism or by calculating Eqs. (2) and (3), as 

discussed in (Li et al., 2011): 

 
* * * *

,d ac d q ac di P v i Q v= = −  (18) 

The desired active power of the DER normally is 

generated according to either a maximum power 

capture rule for a renewable DER unit or an active 

power control demand from the microgrid central 

control (MGCC) level. The desired reactive power is 

issued either locally for the unity power factor or 

centrally according to a control command from the 

MGCC.  

Fig. 1 in the Appendix presents a case study of the 

PQ-controlled DER using the conventional and neural 

network control methods. At first, the active and 

reactive power references were 40kW and 0kVar, 

respectively. After the system started, the neural 

network controller quickly regulated the active and 

reactive power of the DER to the reference values. 

When the reference power took on new values of 

-50kW/20kVar and -100kW/10kVar at t=2sec and 

t=4sec, respectively, the neural network controller 

immediately restored DER power to the new reference 

values (Fig. 1a). As shown in Fig. 1c, the three-phase 



grid current was properly balanced. For any other 

commanded change of the reference power within the 

DER-rated power limit, the system could be adjusted 

immediately to the new reference power, 

demonstrating the strong optimal control capability of 

the neural network vector controller. Compared to the 

neural network controller, the conventional controller 

was slower, had a higher oscillation, and took longer 

to reach its target value. This was more evident at 

t=0sec when starting the system. 

4.2 Control of PV-Inverter DERs 

One critical disadvantage of the PQ-inverter DER is 

that the PCC bus voltage changes as active and 

reactive power are transferred through the PCC and as 

the load varies. A PV-inverter DER operates by 

injecting active power into the microgrid while 

simultaneously maintaining the PCC bus voltage at a 

desired value. The desired active power is formed in 

the same way as that used in a PQ-inverter DER, but 

the reactive power is controlled according to the error 

signal between the desired and the actual PCC bus 

voltage to which the inverter is connected. Therefore, 

as the PCC bus voltage fluctuates, so does the 

reference q-axis current generated by a PI controller. 

Fig. 2 in Appendix presents a case study of the 

PV-inverter DER using the conventional and neural 

network controllers. The active power reference was 

the same as that used in the case study presented in 

Fig. 1, while the reference PCC voltage was 1pu. After 

the system started, the neural network controller 

quickly regulated the active power of the DER and the 

PCC bus voltage to the reference values. The inverter 

initially absorbed active power from the grid, and the 

reactive power was generated so as to maintain the 

PCC voltage at 1pu. When the reference active power 

in the ac system began to generate at t=2sec, the 

reactive power shifted from generating to absorbing. 

At t=4sec, the reactive power absorbed more in order 

to maintain the PCC voltage for the increased active 

power generated by the DER (Fig. 2a). Similar to Fig. 

1, this case study demonstrates the excellent 

performance of the neural network vector controller 

for the PV-inverter DER. However, using the 

conventional controller, a large oscillation occurred 

each time the DER active power changed significantly 

(Fig. 2b). 

4.3 Control of DER Inverter under 
Constraints 

In practice, a DER inverter cannot operate beyond the 

rated power and PWM saturation of the converter. To 

handle DER operation under such conditions, we 

propose controlling the DER by maintaining the 

effectiveness of the active power control while 

meeting the reactive power control demand as much as 

possible. This is expressed as: minimize Q
ac
−Q
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For the conventional controller, the following 

strategies are used. To prevent the DER converter 

from exceeding the PWM saturation limit, Eq. (19) is 

applied if the amplitude of the reference voltage 

generated by the inner current-loop controller exceeds 

the converter’s PWM saturation limit (Gagnon, 2009; 

Li et al., 2011), in which vd1_new
*
 and vq1_new

*
 are the d 

and q components of the modified controller output 

voltage, and Vmaxis the maximum allowable dq 

voltage: 
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(19) 

 

To prevent the DER converter from exceeding the 

rated current, Eq. (20) is employed if the amplitude of 

the reference current generated by the outer control 

loop exceeds the rated current limit, i.e., the d-axis 

current reference id
*
 is kept constant to maintain active 

power control effectiveness, while the q-axis current 

reference iq
*
 is modified to satisfy the reactive power 

or ac system bus voltage support control demand as 

much as possible (Gagnon, 2009; Li et al., 2011): 
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(20) 

 



For the neural network controller, if |idq
*
| generated 

by the dc-voltage or the active and reactive power 

control loops exceeds the rated current limit, id
*
 and iq

*
 

are modified by Eq. (20) before being applied to the 

action network (Li et al., 2011); if |vdq1
*
| generated by 

the current control loops exceeds the PWM saturation 

limit, the action neural network automatically turns 

into a state by regulating vq1 to maintain the 

effectiveness of the active power control while 

restraining vd1 to meet the reactive power control 

demand as much as possible.  

Fig. 3 in the Appendix presents a case study of the 

PQ-inverter DER in which there was high demand for 

reactive power generation. The active power reference 

was the same as that used in the case study illustrated 

in Fig. 2, while the reactive power demand caused the 

required control voltage to exceed the inverter’s PWM 

saturation limit at t=3sec. As Fig. 3a illustrates, the 

neural network controller automatically restrained the 

reactive power control while maintaining the 

effectiveness of the active power control at t=3sec. At 

t=5sec, when the reactive power demand generation 

decreased, causing the control voltage to fall below the 

PWM saturation limit, the neural network controller 

returned to its normal control condition immediately. 

For the conventional controller, however, when the 

control voltage exceeded the inverter’s PWM 

saturation limit at t=3sec, the system could not follow 

the control commands properly due to its competing 

control nature (Li et al., 2011), as shown in Fig. 3b. 

Fig. 4 in the Appendix presents a case study of the 

PV-inverter DER for PCC voltage support control 

under a moderate voltage drop caused by a fault at 

t=3sec. Due to the inverter’s PWM saturation 

constraint, the neural network controller could not 

maintain the PCC voltage at 1pu to compensate for the 

voltage drop (Fig. 4c). Instead, it operated by 

maintaining the effectiveness of the active power 

control while providing PCC voltage support control 

as much as possible. At t=5sec, when the short circuit 

was cleared, the neural network controller returned to 

its normal operating condition, and the PCC bus 

voltage recovered to the rated bus voltage quickly, 

thus demonstrating the neural network controller’s 

excellent PCC voltage support control under the 

physical constraints of DERs. For the conventional 

controller, however, when the required control voltage 

exceeded the inverter’s PWM saturation limit shortly 

after t=3sec, the system could not follow the control 

commands properly, as shown in Fig. 4b and 4d. 

5 MICROGRID CONTROL AND 

STABILITY ANALYSIS  

5.1 A Benchmark Microgrid Network 

A typical benchmark low-voltage (LV) microgrid 

network was built using MatLab SimPowerSystems 

and an Opal-RT real-time simulation system, as shown 

in Fig. 5. The microgrid was supplied through a LV 

feeder to serve a suburban residential area with a 

limited number of consumers connected along its 

length. The microgrid consisted of DGs from the most 

relevant technologies, such as solar photovoltaics, 

wind turbines, microturbines, and fuel cells. The 

impedance data for various line types used in the 

network, as well as detailed information about the 

installed capacities of the microturbine, fuel cell, and 

battery storage device, are available in 

(Papathanassiou et al., 2005)). The loads were 

assumed to have similar load patterns. The power 

factor was 0.85 lagging. The DGs were connected to 

the following buses: solar on buses 6 and 7, wind on 

bus 6, microturbine on bus 5, fuel cell on bus 8, and 

battery on bus 4. Thus, the benchmark network 

maintained the important technical characteristics of 

real-life utility distribution systems, while dispensing 

with the complexity of actual networks, to permit the 

efficient modeling and simulation of the microgrid’s 

operation. 
 

 

 

Figure 5. Benchmark LV microgrid networks using neural 
controllers. 



5.2 DER Synchronization 

Before connecting any DER to the microgrid, it must 

be synchronized accurately with the network voltage 

to avoid over currents (Rodríguez et al., 2012). Most 

grid-tied systems use a phase locked loop (PLL) for 

synchronization (Rodríguez et al., 2012). Many grid 

synchronization applications for three-phase systems 

are based on the implementation of synchronous 

reference frame PLLs (SRF-PLL) (Chung, 2000), in 

which the three-phase grid voltage is transformed 

using Clarke and Park transformation into a stationary 

reference frame (Chung, 2000). The quadrature 

component of the voltage resulting from this 

synchronous transformation, namely, vq, is conducted 

to zero using a PI controller. The output of the PI 

controller provides the estimated value of the rotating 

frequency of the SRF-PLL. Integrating this frequency 

yields the phase angle of the SRF (θ). When the 

quadrature component, vq, is equal to zero, θ matches 

the phase angle of the input voltage vector; hence, the 

PLL is synchronized with the positive-sequence 

component of the grid. Although the SRF-PLL 

performs appropriately under balanced voltages, it 

exhibits highly deficient performance under 

unbalanced and distorted grid conditions (Rocabert et 

al., 2011)). Moreover, its performance is very sensitive 

to sudden changes in the phase angle, which makes it 

less reliable when synchronizing power converters 

with the grid (Rocabert et al., 2011). However, this is 

not the case when using the neural network vector 

controller. The neural controller can better satisfy the 

requirements of an ideal controller with its close to 

zero rise time, zero overshoot, and zero settling time. 

Therefore, it is possible to connect the 

inverter-interfaced DERs to the grid using the neural 

vector controller directly, without pre-synchronization.  

Fig. 6 in Appendix compares the performance of 

the conventional and neural network control methods 

without synchronization control when connecting the 

two-DER systems to the grid. Neither DER was 

connected to the MG before t=1sec. When DER1 and 

DER2 were connected to the MG at 1sec and 2sec, 

respectively, the system reached the reference current 

or power demand of each micro-source almost 

immediately, without any over current, using the 

neural network controller. However, using the 

conventional controller, a large oscillation appeared in 

the ac system three-phase currents, depending on the 

extent to which the DER was synchronized with the 

grid when closing the switch. The comparison 

demonstrates the superior synchronization capability 

of the neural network vector controller, which is due to 

this controller having been trained to implement the 

optimal control according to the DP principle. An ideal 

optimal controller would allow a reference value to be 

reached immediately without any oscillation. A 

well-trained neural network controller based on the DP 

principle could exhibit very close to ideal performance 

to satisfy the need for fast synchronization. 

5.3 Microgrid Control and Stability  

The performance of neural networks for microgrid 

control was further evaluated under the following 

conditions. Initially, the microgrid was connected to 

the main grid. The solar and wind turbine at Bus 6 

operated in the maximum power extraction and PCC 

voltage control mode. The PCC voltage control has the 

advantage of providing a better voltage quality to the 

microgrid, which is particularly important under the 

microgrid islanding condition. The converter of the 

microturbine at Bus 5 operated in the V-f control mode 

based on the conventional droop control concept 

(Bottrell et al., 2013; Lee et al., 2013; Rowe et al., 

2013), which is a necessary requirement especially in 

the microgrid islanding operating condition. The droop 

control is implemented by 
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where fs0 and Vac0 represent the nominal frequency 

and voltage, Pac0 and Qac0 signify the PCC active and 

reactive power that the microturbine is expected to 

generate at the nominal frequency and voltage, rf and 

rV are the coefficients corresponding to frequency- and 

voltage-droop characteristics, and fs, Vac, and Pac and 

Qac represent the instant frequency, voltage, and PCC 

active and reactive powers, respectively. The battery at 

Bus 4 employed the vector control structure with the 

d-axis loop for active power control and q-axis loop 

for PCC voltage control. Again, with the PCC voltage 

control, a better voltage quality across the microgrid 

can be achieved. The reference active power command 

P
*

ac of the battery converter is generated based on the 

frequency-droop characteristic as shown by 
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where P
*

ac0 represents the secondary active 

reference power command generated by the MGCC. 

Hence, if the frequency fs of the microgrid equals to 

the nominal frequency fs0, the reference power 

command P
*

ac of the battery equals to the power 

command P
*

ac0 from the MGCC; if the frequency fs of 

the microgrid is different from the nominal frequency 

fs0, the reference power command equals to the power 

command P
*

ac0 from the MGCC plus an adjustment 

generated according to the droop principle. 

Fig. 7 shows the performance of the microgrid in 

the grid-connected mode, islanding mode, and 

transition from the grid-tied to islanding mode. Due to 

variable weather conditions, the power transferred 

from a wind turbine or solar array changed constantly. 

This is represented by a changing d-axis current as 

shown in Figs. 7a and 7b. Before t=2sec, only wind 

and solar DERs at Bus 6 were connected to the 

microgrid. At t=2sec, the battery at Bus 4was 

connected to the microgrid with full charging power, 

which increased the power supplied by the grid to the 

microgrid (Fig. 7e). At t=4sec, non-critical loads 

within the microgrid were curtailed to prepare for the 

islanding operation, which increased voltage distortion 

within the microgrid network as demonstrated by 

higher d- and q-axis current oscillation from wind, 

solar, and battery DERs in Figs. 7a to 7c. At t=6sec, 

the battery shifted from charge mode to discharge 

mode, which decreased the power supplied by the grid 

even more (Fig. 7e). During the grid-connected mode, 

the microgrid frequency was stable (Fig. 7d) so that 

the reference power of the battery converter depended 

mainly on the charge or discharge power command 

from the MGCC (Fig. 7c). At t=8sec, the microgrid 

shifted from the grid-tied mode to the islanding mode. 

Therefore, no power was transferred from the grid to 

the microgrid after t=8sec (Fig. 7e) and at the same 

time there was a large increase of the power supplied 

by the microturbine (Fig. 7f). Note that in Figs. 7e and 

7f, the motor sign convention is used to represent the 

power absorbed by the microgrid from the grid or 

power absorbed by the microturbine from the 

distribution network. In the islanding mode, the 

microgrid frequency was more sensitive to the load 

and DER power variations (Fig. 7d). The frequency 

alteration caused the battery controller to adjust the 

MGCC power reference according to the droop 

principle (Eq. (22) and Fig. 7c). During both the 

grid-tied and islanding modes, the microgrid voltage 

was properly maintained around the desired value 

(Figs. 7g and 7h). Although there was a high 

oscillation in DER currents during the transition from 

the grid-tied to islanding mode (Fig. 7i), the current 

oscillation of the loads within the microgrid is not 

obvious (Fig. 7j).  

For each DER, only information about the nominal 

PCC voltage, nominal dc voltage, and resistance and 

inductance values of the grid filter is required to train 

the neural network controller of the DER converter. 

The same information is needed for the design of a 

conventional controller, as well. After the training, the 

neural network controller can be applied to the DER 

converters in a microgrid, although the distribution 

system structure seen by each DER may be different. 

Again, the study shown by Fig. 7 demonstrates a great 

performance and stability of the microgrid in grid-tied 

mode, islanding mode, and transition from the 

grid-tied to islanding mode by using the proposed 

neural network vector controllers, which is an 

important issue in microgrid operation (Bottrell et al., 

2013; Lee et al., 2013; Rowe et al., 2013). 

6 CONCLUSIONS  

 

This paper presented a neural network control 

mechanism for the control of a microgrid and the 

distributed energy sources within the microgrid. This 

controller, which implements dynamic programming, 

was trained with a Levenberg-Marquardt 

backpropagation algorithm. Compared to conventional 

vector control methods, the neural network controller 

demonstrated a stronger ability to determine optimal 

control actions from multiple inputs. It boasts very fast 

response and close to ideal controller performance. It 

does not require synchronization to initially connect a 

DER or a microgrdi to the grid, making it a potential 

solution to many challenges in the operation and 

management of DERs and future smart microgrids. 

Using a neural network control technique, a microgrid 

can achieve a better voltage profile, high power quality 

and quick connection or disconnection of a distributed 

energy source to the microgrid. In future work, we 

plan to build a micro-scale microgrid system and 

obtain real data and more solid experiment results. 
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a) Active and reactive power (neural network) 

 

b) Active and reactive power (conventional) 
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c) Three-phase current (neural network) 

 

d) Three-phase current (conventional) 

 

Fig. 1. Performance of PQ-inverter DER using conventional and neural network controllers (Ts=1ms). 

 

 

a) Active and reactive power (neural network) 

 

b) Active and reactive power (conventional) 

 

c) PCC voltage (neural network) 

 

d) PCC voltage (conventional) 

Fig. 2. Performance of PV-inverter DER using conventional and neural network controllers (Ts=1ms). 

 

a) Active and reactive power (neural network) 

 

b) Active and reactive power (conventional) 

Fig. 3. PQ-inverter DER with constraints using conventional and neural network controllers. 
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a) Active and reactive power (neural network) 

 

b) Active and reactive power (conventional) 

 

c) PCC voltage (neural network) 

 

d) PCC voltage (conventional) 

Fig. 4. PV-inverter with constraints using conventional and neural network controllers. 

 

 

a) DER1 current (neural network) 

 

b) DER1 current (conventional) 

 

c) DER2 current (neural network) 

 

d) DER2 current (conventional) 

Fig. 6. Three-phase currents when connecting DERs to the grid without synchronization control. 
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a) Solar inverter d- and q-axis currents 

 

b) Wind turbine inverter d- and q-axis currents 

 

c) Battery inverter d- and q-axis currents 
 

d) Microgrid frequency 

 

e) Active and reactive power absorbed from the grid 

 

f) Active and reactive power of the microturbine 

 

g) RMS line voltage at Bus 4 

 

h) RMS line voltage at Bus 6 

 

i) Three-phase PCC current of wind DER 

 

j) Three-phase load current at Bus 8 

Fig. 7. Performance of neural network controlled microgrid. 
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