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ABSTRACT  

This paper presents a strategy for controlling inverter-interfaced DERs within a microgrid using an artificial neural network. The 

neural network implements a dynamic programming algorithm and is trained with a new Levenberg-Marquardt backpropagation 

algorithm. Hardware experiments were conducted to evaluate the performance of the neural network vector control method. They 

showed that the neural network control technique performs well for DER converter control if the controller output voltage is 

below the converter’s PWM saturation limit. If the controller’s output voltage exceeds the PWM saturation limit, the neural 

network controller automatically turns into a state by maintaining a constant dc-link voltage as its first priority, while meeting the 

reactive power control demand as soon as possible. Under variable, unbalanced, and distorted system conditions, the neural 

network controller is stable and reliable.  
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1 INTRODUCTION 

A microgrid primarily consists of four parts: a low-voltage (LV) distribution network, distributed generation units, 

energy storage units, and controllable and uncontrollable loads [1]. In a microgrid, distributed generated resources 

(DG) are normally small sources of energy located at or near the point of use. Typical DG units include photovoltaic 

(PV) arrays, wind turbines, fuel cells, and microturbines [2]. Distributed storage (DS) units are also used when the 

microgrid’s generation and loads do not match exactly. In order to convert energy into grid-compatible ac power, 

DG and DS units normally require power electronic converters for grid interfaces. 

This approach to designing and building future smart grids focuses on creating a plan for local energy delivery 

that meets the needs of the constituents being served. Microgrids can efficiently integrate small-scale DGs into 

low-voltage (LV) systems and supply the demand of local customers, so their development is expected to yield the 

following benefits: 1) enable the development of sustainable and green electricity, 2) enable larger public 

participation in the investment in small-scale generation, 3) reduce the number of marginal central power plants, 4) 

improve the security of the supply, 5) reduce losses, and 6) enable better network congestion management and 



control to improve power quality.  

One important issue in microgrid operation is how to control the inverter-interfaced distributed energy resources 

(DERs). Conventionally, these DERs are controlled using standard vector control technology (mostly, Proportional 

Integral, PI, controllers). Within this framework, different solutions for connecting them to and disconnecting them 

from the main network have been proposed [3]. Specifically, implementing a fast and accurate grid voltage 

synchronization algorithm [4] is crucial, though this usually involves a complicated process. 

Recent studies have shown that an artificial neural network can be trained and used to control a grid-connected 

converter [5]. In [5], the neural network’s performance was evaluated mainly for d- and q-axis current tracking 

control of a grid-connected converter in a vector control condition. Compared to conventional vector control 

methods, the neural network yielded an extremely fast response time, low overshoot, and, in general, the best 

performance. The purpose of this paper is to investigate how to implement more practical DER control requirements 

within a microgrid using the neural network vector control approach. The paper makes the following contributions: 

1) a neural network vector control strategy for inverter-interfaced DERs, 2) a neural network design and training 

algorithm that can handle DER control properly under physical system constraints, and 3) investigation of neural 

network vector control for a microgrid network.  

2 NEURAL NETWORK CONTROL 

The control objective of a DER is to manage the active power transferred from the dc side to the ac side and to 

control the reactive power absorbed from the ac grid. This active and reactive power control usually is transformed 

into d- and q-axis current control [6]. In the d-q reference frame and using the motor sign convention, the voltage 

balance across the grid filter is: 
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in which vd and vq represent the Point of Common Coupling (PCC) d- and q-axis voltages, id and iq are the d- and 

q-axis currents from the grid to the DER, ωs is the angular frequency of the PCC voltage, and vd1 and vq1 are the 

inverter’s d- and q-axis output voltages. Lf and Rf are the inductance and resistance of the grid filter, respectively. 

Using the PCC voltage-oriented frame [5, 6], the instant active and reactive powers absorbed by the DER from the 

grid are proportional to the grid's d- and q-axis currents, respectively, as shown by Eqs. (2) and (3):  
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Following [6], and as in Fig. 1, our neural network vector control structure of a DER a d-axis loop is used for 

active power control and a q-axis loop is used for reactive power, or grid voltage support, control. The error signal 

between the measured and reference active power generates a d-axis current reference to the neural network through 

a PI controller, while the error signal between the actual and desired reactive power generates a q-axis current 

reference. The neural network, known here as the action network, is applied to the DER inverter through a pulse 

width modulation (PWM) mechanism to regulate the DER output voltage in the three-phase ac system. The ratio of 

the inverter output voltage to the output of the action network is a gain of kPWM, which equals Vdc/2 if the amplitude 

of the triangle voltage waveform in the PWM scheme is 1V [7]. 
 



 

The integrated DER system, described by Eq. (1), is rearranged into the standard state-space representation using 

Eq. (4), in which the system states are id and iq, PCC voltages vd and vq normally are constant, and converter output 

voltages vd1 and vq1 are the control voltages to be specified by the output of the action network. For digital control 

implementation and offline training of the neural network, the discrete equivalent of the continuous system 

state-space model, Eq. (4), must be obtained using Eq. (5), in which Ts represents the sampling period, k is an integer 

time step, F is the system matrix, and G is the matrix associated with the control voltage. In this paper, a 

zero-order-hold discrete equivalent [8] is used to convert the continuous state-space model of the system in Eq. (4) 

to the discrete state-space model in Eq. (5). In all experiments, Ts=1ms. 
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The action network is a fully connected multi-layer perceptron [9] with six input nodes, two hidden layers having 

six nodes each, two output nodes, and shortcut connections between all pairs of layers, with hyperbolic tangent 

functions at all nodes. These six input components correspond to 1) the d- and q-axis current signals, 2) the two 

error signals of the d- and q-axis currents, and 3) the two integrals of the error signals. To simplify the expressions, 

the discrete system model in Eq. (5) is represented by:  
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For a reference dq current, the control action applied to the system is expressed by: 
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Fig.1. Neural network vector control structure of DER converter. va1,b1,c1 represents the converter’s 

output voltage in the three-phase ac system, and the corresponding voltages in the dq-reference frame 

are vd1 and vq1. va,b,c is the three-phase PCC voltage, and the corresponding voltages in the dq-reference 

frame are vd and vq. ia,b,c represents the three-phase current flowing from the PCC to the converter, and 

the corresponding currents in the dq-reference frame are id and iq. v
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d1 and v
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q1 are the d- and q-axis 

voltages from the neural network controller, and the corresponding control voltage in the three-phase 

domain is v
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in which 
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w  represents the weight vector of the action network, and 
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3 NEURAL NETWORK TRAINING 

Unlike the conventional standard vector controller, the neural network controller is produced through training using 

Dynamic Programming (DP). DP employs Bellman’s Principle of Optimality [10] and is a very useful tool for 

solving optimal control problems [11, 12]. The typical structure of discrete-time DP includes a discrete-time system 

model and a performance index or cost associated with the system [13]. The DP cost function associated with the 

vector-controlled system is defined as: 
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in which α  is a constant. The function C(⋅),  depending on the initial time j and the initial state i
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so that the function C(⋅)  in Eq. (11) is minimized. The current-loop action network was trained to minimize the 

DP cost in Eq. (11) using Levenberg-Marquardt backpropagation (LMBP) [9]. LMBP, a variation of Newton’s 

method, minimizes a function that is the sum of squares of a nonlinear function. Using LMBP with a general value 

for α requires a modification for the cost function ( )C ⋅  defined in Eq. (8). Consider the cost function 
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in which V (k) = U (e
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Therefore, the process of updating the weights using LMBP for a neural network controller can be expressed as: 
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The parameter µ was dynamically adjusted to ensure that the training followed the decreasing direction of the 

cost function. When µ increased, (13) approached the steepest descent algorithm with a small learning rate, while 

as µ  decreased, the algorithm (13) approached Gauss-Newton, which typically provides faster convergence. In 

order to increase the speed of computation, the weight update in Eq. (13) was conducted using Cholesky 

factorization, which is roughly twice as efficient as lower-upper decomposition for solving systems of linear 

equations [14].  

To train the action network, the system data associated with Eq. (4) had to be specified. The training procedure 

for the current-loop action network involved: 1) randomly generating a sample initial state idq(j); 2) randomly 

generating a changing sample reference dq current time sequence; 3) unrolling the trajectory of the system from the 

initial state; 4) training the current-loop neural network based on Eq. (13); and 5) repeating the process for all of the 

sample initial states and reference dq currents until reaching a stop criterion associated with the DP cost. All of the 

network weights initially were randomized using a uniform distribution with zero mean and 0.1 variance. The 

generation of the reference current considered the physical constraints of a practical DER inverter system. The 

randomly generated d- and q-axis reference currents first were chosen uniformly from [-Irated, Irated], in which Irated 

represents the rated inverter line current. Then, these randomly generated d- and q-axis current values were checked 

and modified to ensure that their resultant magnitude did not exceed the inverter’s rated current limit and/or the 

control voltage did not exceed the converter’s PWM saturation limit. From the neural network standpoint, the PWM 

saturation constraint indicates the maximum positive or negative voltage that the action network can output. 

Therefore, if a reference dq current requires a control voltage that exceeds the acceptable voltage range of the action 

network, it is impossible to reduce the cost during the training of the action network.  

The neural network controller is trained offline, and no training occurs in the real-time control stage. Without 

online training, a real-time control action can be computed very quickly using modern DSP chips. The most 

important issue is the sampling time. However, an optimal neural network controller can be trained using a large 

sampling time based on the DP principle, while tuning a conventional controller for the same sampling time could 

be very difficult or impossible. Therefore, the neural network controller actually has lesser sampling and computing 

power requirements during the real-time control process. 

4 HARDWARE EXPERIMENT AND RESULTS 

A hardware laboratory ac/dc/ac test system was built to validate the proposed neural network vector controller for 

DERs and compare it with the conventional controller. Fig. 2 shows the testing system with the following setup: 1) 

an ac/dc converter connected to an adjustable LabVolt three-phase power supply signifying the microgrid; 2) 

another dc/ac converter connected to the second LabVolt three-phase power supply representing a DER; 3) a 

three-phase grid filter built using three LabVolt smoothing inductors, with R and L nameplate values of 0.6Ω and 

25mH, respectively; 4) a dc-link capacitor with a capacitance of 3260µF; and 5) an ac/dc converter controlled by a 



dSPACE digital control system [15]. The control system collects the dc-link voltage and three-phase currents and 

voltages at the PCC, and sends out control signals to the converter according to different control demands.  
 

 
 

Fig. 2.  Hardware laboratory testing and control systems 

 

To ensure proper functioning of the neural network and conventional controllers, the test system was evaluated 

through computer simulation first before the hardware experiment. The simulation time step for the controllers was 

the same as the sampling time used in the dSPACE digital control system. Despite conducting simulation 

verification, the actual system performance in the hardware experiment environment could deteriorate due to 

unexpected disturbances, such as unbalanced grid-filter inductance, unbalanced and distorted grid voltage, and the 

deviation of system parameters from pre-measured values. 

The test sequence was scheduled as follows, with t=0sec serving as the starting point for data recording. Around 

t=50sec, the active power transferred from the DER converter to the dc-link capacitor decreased. Around t=100sec, 

the value of the q-axis reference current changed from negative to positive, which corresponds to the reactive power 

reference changing from absorbing to generating. Around t=150sec, the active power transferred from the DER 

converter to the dc-link capacitor increased. The system data were not only collected by the dSPACE system, but 

also monitored by oscilloscopes and/or meters. 

Fig. 3 shows the hardware experiment results. Compared to the standard vector control method, the neural 

network vector control approach demonstrated superior performance across various areas of functionality. When the 

dc-link voltage dropped due to a reduction of the active power transferred from the DER converter to the dc-link 

capacitor at approximately t=50sec, the controller quickly regulated the actual voltage to the reference value (Fig. 

3a). As the reactive power demand changed from absorbing to generating around t=100sec, the actual q-axis current 

rapidly adjusted to the new q-axis current reference (Fig. 3c), and the oscillation of the dc-link voltage was very 

small. The converter was operating around the PWM saturation at this moment due to the generating reactive power; 

therefore, the q-axis current was unable to follow the reference current any better, causing the d- and q-axis currents 

to oscillate more because of the increased harmonic distortion. When the dc-link voltage increased due to a boost of 

active power transferred from the DER converter to the dc-link capacitor at approximately t=150sec, the controller 

quickly stabilized the dc-link capacitor voltage to the reference value (Fig. 3a). The neural network controller 

demonstrated great performance under all other conditions, even under the distorted PCC voltage in the laboratory 

condition (Fig. 3d). 

The conventional vector controller was extremely hard to tune. For the same laboratory condition, we found that 

the gains of the outer loop PI controllers must be very small in order to maintain the stable operation of the 

conventional vector controller. As a result, the oscillation of the dc-link voltage (Fig. 3e) is much higher than that of 



the neural network based vector controller (Fig. 3a). In addition, the generation of the q-axis current reference for 

the conventional vector controller must assure that the converter operates well below the PWM saturation limit. 

Otherwise, the conventional vector control approach will go into a malfunction state. Other researchers also have 

reported the similar results, especially for converters in low-voltage applications [16-18].  

 

 
a) dc link voltage (neural network) 

 
e) dc link voltage (conventional) 

 
b) Grid d-axis current (neural network) 

 
f) Grid d-axis current (conventional) 

 
c) Grid q-axis current (neural network) 

 
g) Grid q-axis current (conventional) 

 
d) Three-phase PCC voltage (neural network) 

 
h) Three-phase PCC voltage (conventional) 

 

Fig. 3.  Hardware experiment evaluation using the conventional and neural network vector control mechanisms 

 

Regarding the PCC voltage as shown in Figs. 3d and 3h, several factors contributed to the PCC voltage 

distortion. First, before conducting the experiment, we found that the three-phase voltage of the ac system was not 

perfectly sinusoidal. This voltage distortion resulted in more current harmonics during the vector control process. 

Second, the current harmonics generated by the power converter caused more PCC voltage distortion because of the 

equivalent ac system impedance. Third, the impact of the equivalent ac system impedance was significant in the 

low-voltage laboratory system. 

5 CONCLUSIONS 

This paper presented a neural network vector control mechanism for the control of a microgrid and the distributed 

energy sources within the microgrid. This controller, which implements dynamic programming, was trained with a 
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Levenberg-Marquardt backpropagation algorithm. Hardware experiments were conducted to evaluate the 

performance of the neural network vector control method. They showed that the neural network control technique 

performs well for DER converter control if the controller output voltage is below the converter’s PWM saturation 

limit. If the controller’s output voltage exceeds the PWM saturation limit, the neural network controller 

automatically turns into a state by maintaining a constant dc-link voltage as its first priority, while meeting the 

reactive power control demand as soon as possible. Under variable, unbalanced, and distorted system conditions, the 

neural network controller is stable and reliable.  
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