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Abstract— A Microgrid is widely recognized as a prominent solution to enhance the resilience and 

performance of distributed power systems. Microgrids offer a unique advantage in that they can easily 

incorporate distributed energy resources into the existing electrical networks.  The unpredictable nature of 

distributed energy resources (DERs) makes it difficult to coordinate their activities, so control techniques are 

employed to bring them into synchronization. Recently techniques based on artificial intelligence are being 

applied to the problems that arise in the operation and control of the latest generation Microgrid. Machine 

learning and deep learning are two of the most commonly used techniques in the field of artificial 

intelligence. Both of these approaches are effective in providing intelligent solutions to complex problems.  

The objective of this research is to survey the latest strategies of control in microgrids using the deep 

reinforcement learning approach (DRL). Other techniques of artificial intelligence had already been 

reviewed extensively but the use of DRL has increased in recent years. To bridge the gap for the researchers, 

this survey paper aims to provide an overview of the current strategies for controlling Microgrids using DRL. 

It specifically focuses on voltage control and frequency regulation with distributed, cooperative and multi-

agent approaches. 
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1. INTRODUCTION 

The development of microgrids and smart grids can 

have the potential to address the shortcomings of 

traditional energy generation and distribution 

networks. This new system provides a more 

efficient and reliable energy source than its 

predecessor, making it an attractive option for 

many. Distributed energy resources (DERs) based 

systems reduce the cost of electricity and enhance 

reliability and efficiency along with the benefits of 

reduction in carbon emissions. Artificial 

intelligence (AI) is widely used to solve problems in 

almost every field in modern times i.e. healthcare, 

transport, communication and the power sector. The 

current application of AI is widespread, ranging 

from autonomous cars to drones. It has also been 

used to tackle complex problems encountered in the 

operation of microgrids due to fluctuations in the 

frequency of DERs. This review paper will provide 

a brief overview of AI, microgrids and their 

associated control strategies.   

1.1 Machine Learning (ML) 

The buzzword of machine learning (ML) has been 

around the scientific world since 1959 as the term 

was invented in 1959 by A. Samuel and who was a 

leading computer scientist in the area of artificial 

intelligence. As defined by him, in machine 

learning, computers gain the capability to learn even 

if they are not programmed explicitly. Machine 

Learning (ML) algorithms allow for accurate 

predictions to be made without relying on 

traditional programming approaches. The 

fundamental concept of ML is to anticipate the 

output by inputting data and performing analysis 

based on statistical methods. A summary of 

machine learning techniques is given in [1]. 

ML algorithms can be divided into three main 

types. 

I. “Supervised Learning” 

II. “Unsupervised Learning” 



III. “Reinforcement Learning” 

I. Supervised Learning  

In this class of machine learning technique, the 

system is provided with data that is labeled 

correctly i.e., the input data or reference data which 

is tagged with some meaningful labels. This data is 

then used to train a function that can identify and 

predict data as the output of the system. A model 

for supervised learning is showed in Figure 1.  

In supervised learning, the system is inputted with a 

set of data that is characterized with labels, which 

means the data set is tagged with the right label. 

When training is complete under the supervision of 

labeled or tagged data, it’s time to assess the model 

using a new data set. Hence this model can predict 

the outcome based on some referenced data sets. 

This type of learning can be used for two types of 

problems: classification and regression. 

Classification problems involve predicting the 

output as a category, for example, categorizing a 

population as healthy or unhealthy. Regression 

problems involve predicting the output as a real 

value, such as height or currency. 

 

 

Figure 1 Supervised Learning Model 

 

II. Un-Supervised Learning  

Un-supervised learning is the opposite of supervised 

learning in the manner that the provided data is 

without labels and there is no training involved 

initially. This system is kind of a model to test 

artificially intelligent algorithms. It requires the 

coded algorithm to provide output and concludes 

the data based on the primary structure of the 

elements in the input. This model can efficiently 

categorize elements into two types. Clustering is 

used to make predictions based on the inherent 

behavior of the data, such as grouping retailers 

according to the availability of products. 

Association, on the other hand, involves learning 

rules to make predictions based on the rules that are 

observed in the data set. For example, people who 

buy mobile phones (X item) might also purchase 

protection cases (Y item). 

There is also a special type of machine learning 

called semi-supervised learning, in which the 

training data is incomplete or missing some 

information. The model for supervised learning is 

shown in Figure 2. 



 

Figure 2 Unsupervised Learning Model 

 

III. Reinforcement Learning  

Reinforcement Learning (RL) is a type of learning 

in which the agent is trained itself by interacting 

with the environment. It is an algorithm that allows 

the agent to interact with its environment and 

receive either positive or negative rewards 

depending on their performance. Unlike other types 

of learning, RL does not require any human 

intervention and is based on dynamic programming 

that maximizes rewards and minimizes 

punishments. 

  

Figure 3: Reinforcement Learning Model 

 

Reinforcement Learning (RL) is an approach where 

an agent is rewarded or penalized based on the 

choice it makes. For example, if the agent decides 

to take the path of fire over the other path of water, 

it is penalized by losing rewards so that agent learns 

to avoid the wrong path i.e., the fire path.  However, 

if the agent chooses the path of water, it is rewarded 

with certain points. This technique allows the agent 

to improve its policy and optimize its performance 

in the environment. The model for reinforcement 

learning is shown in Figure 3. 

1.2 Deep Learning (DL) 

Deep Learning (DL) is a part of AI that is designed 

to simulate the human brain for predicting model 

functions and structure [2]. It relies on Artificial 

Neural Networks (ANNs) to process large amounts 

of data. The ANNs are organized in layers, 

including input, hidden and output layers. Each 

layer contains nodes, which are analogous to 

neurons in the brain. A deep learning model 

depicting the layered structure of the system is 

shown in Figure 4. 

 



Figure 4 : Layered Structure of Deep Learning Model 

 

At each node, a data set is provided as input. This 

node is multiplying the inputs with various random 

weights and adds a bias in the hidden layer 

afterward. An activation function is employed to 

activate the desired neuron. Several of the most 

frequently used algorithms in DL are 

 Recurrent Neural Networks (RNNs) 

 Generative Adversarial Networks (GANs) 

 Convolutional Neural Networks (CNNs) 

 Long Short-Term Memory Networks 

(LSTMs) 

 

1.3 Deep Reinforcement Learning (DRL) 

This paper provides a review of Deep 

Reinforcement Learning (DRL) for the control of 

microgrids. DRL is a powerful technique that can 

be used to optimize the operation of microgrids by 

considering both the energy supply and demand. It 

has the potential to improve the efficiency of energy 

management in microgrids and provide a more 

reliable electrical supply. DRL, a deep learning 

algorithm, merges the strengths of reinforcement 

learning to find solutions to problems that require a 

sequence of decisions that have a direct impact on 

the agent's environment. Both of these approaches 

have already been explained in detail in this article. 

A sample model for deep reinforcement learning is 

shown in Figure 5.  

 

Figure 5 : Model for deep reinforcement learning 

Solving problems using DRL algorithms can be 

achieved through the use of control theory, 

optimization and management. The application of 

model based and model free DRL algorithms have 

been discussed for electrical power systems in [3]. 

Apart from these two types, other reviewed 

approaches include value based and gradient type 

algorithms. DRL methods are classified into three 

main categories: value-based, policy gradient-based 

and model-based. One of the most popular value-

based methods is Deep Q Learning, known as Deep 

Q Network or DQN. It uses the deep learning 



technique of Convolution Neural Networks (CNNs) 

to approximate the value function Q. Further 

reinforcement techniques are employed to develop a 

reward based policy, as described in [4]. 

Policy gradient algorithms are used to maximize 

performance and reward by learning an optimal 

policy. This type of algorithm requires a gradient 

theorem, and the value function is determined by 

the current policy [5]. Principle aspects of reward 

functions i.e., environment models in combination 

with optimal algorithm affect the model-based 

category methods of DRL. These methods are 

known for their fast processing [6]. There are five 

algorithms available for each DRL category, and 

further details can be found in [7]. 

 

2. AN OVERVIEW OF MICROGRIDS AND 

THEIR CONTROL 

A Microgrid (MG) is an advanced electrical grid 

system that has the capability to independently 

operate, even when disconnected from the larger 

power grid. This is possible because of the smart 

control abilities built into the architecture of the 

Microgrid. Outlook of a migrogrid is shown in 

Figure 6. 

 

Figure 6 : A Sample Outlook of Microgrid Blocks 

 

A grid is a network connected by a central power 

source with transmission and distribution 

mechanisms. The smart grid technology offers 

improved monitoring, protection and optimization 

of the generation, transmission, distribution and 

consumers of all grids. This is achieved through 

two-way communications, digital technologies, 

advanced sensing and computing infrastructure and 

software capabilities. These features make the smart 

grid a valuable asset for the efficient functioning of 

all grids. A microgrid is an isolated system that is 

capable of operating with or without the main grid. 

When the microgrid didn't connect to the main grid, 

the situation is called islanding. An islanded 

microgrid can provide energy to its connected users 

and is beneficial in times of power outages. A 

microgrid is connected to a grid with the point that 

couples both grids at the same voltage and 

frequency. This technology is currently being 

researched extensively and is becoming 

increasingly popular in the energy sector [8].  

Microgrids can be connected to a main grid or 

operated independently, depending on the source of 

their energy i.e., by central source or locally 

distributed renewable energy sources. While 

connected to the main grid, the controller of a 

Microgrid only needs to manage energy, but when it 

is in its isolated state, it must also synchronize 



frequency and regulate voltage in addition to 

management of energy load. Inverters are 

responsible for the control systems in Microgrids. 

This provides a more reliable and efficient source of 

energy [9][10][11]. 

There are three main ways to control microgrids, 

centralized, decentralized, or distributed and 

hierarchal control. The centralized approach has 

been employed on the generation side and planned 

before the implementation phase. In this approach, a 

controller is connected with load balancing and 

sensing devices through a network to communicate 

data regarding control variables [11][12]. 

The decentralized control is a system where the 

control is distributed across a series of small 

networks called microgrids. Each microgrid has its 

controller or a single controller can be used to 

control several microgrids. This type of control is 

especially useful when there are numerous local 

control machines connected to each other. 

Distributed control is especially challenging as 

renewable energy sources are highly unpredictable 

and difficult to manage [12][13]. The three main 

approaches used for distributed control are 

consensus based, predictive models and agent 

based. Moreover, hierarchical control operations 

can be used at tertiary, secondary and primary 

levels. Recent research has focused on optimizing 

distributed control for islanded microgrids [14]. 

Primary control is related to the regulation of 

frequency and control of converters and distributed 

energy resource elements within a microgrid. While 

secondary control is used to reduce any frequency 

fluctuations which may arise from primary control, 

by coordinating the local controllers of a distributed 

microgrid also called the consensus-based approach. 

Finally, tertiary control is the highest level of 

hierarchical control or overall control of power 

flow, aiming to optimize solutions and consider all 

potential uncertainties to optimize solutions [15].  

 

3. METHODOLOGY 

Deep reinforcement learning for the control of 

microgrids has not been implemented properly 

before 2019. This study focuses on the period 

between 2019 and 2022 since the majority of related 

research has been done in that time frame.  The 

sources examined in this review are only from 

journals that are indexed in International Scientific 

Indexing (ISI) and Scopus. Conference papers are 

not included due to the page limit, and also because 

most of these works were usually further developed 

and published in journals. The keywords used for 

filtering the research data were deep reinforcement 

learning for control, DRL and Microgrids, Smart 

grid control using Deep Q networks, Microgrid 

management based on deep Q learning, Deep forest 

reinforcement for microgrid control, deep learning 

and reinforcement learning, voltage control in 

Microgrid and frequency regulation Microgrid.    

This paper reviews research based on DRL used for 

certain control problems of microgrids. To ensure 

the quality and relevance of the material, only 

papers from reputable journals were chosen. A few 

preliminary versions (pre-prints) are also included 

from free repositories which are not yet been 

published in any peer reviewed journal. The 

summary of published work is organized according 

to year, starting from 2019 until 2022, and will be 

presented in the following section. 

4. APPLICATIONS OF DRL IN CONTROL OF 

MICROGRIDS 

A comprehensive summary of the operation, 

application and control of microgrids is given in 

[16]. The authors have provided an in-depth 

overview of microgrids, exploring their 

architecture, functioning, and applications. They 

have also highlighted the importance of economic 

feasibility and optimization for the successful 

implementation of microgrids. 

Sequential attributes like heuristic, programming, 

and convex optimization methods have been used to 

solve decision-making problems. These methods 

have been widely employed for problem-solving in 

power systems. However, the introduction of 

distributed generation and its control, particularly in 

the form of microgrids, has raised the complexity of 

the system and necessitated the use of new models 

that can manage larger data spaces in real-time 

environment. Glavic [17] provided an overview of 

control-related issues in electrical systems and their 

potential solutions through deep reinforcement 

learning techniques. 

DRL technologies are far more robust to handle 

complex control issues of the distributed power 

system than the traditional methods used previously 

without the use of artificial intelligence. The 

advantages of DRL over traditional methods have 

been discussed in [18]. DRL does not require a 



proper objective function and can handle more data 

than convex optimization techniques. A detailed 

survey is available in [19] to study the applications 

of artificial intelligence for the management and 

control problems of the microgrid. In this research, 

almost every aspect of microgrid applications has 

been reviewed based on different artificial 

intelligence techniques. What makes DRL 

especially useful is its ability to make decisions in 

real time, as its reward policy is only dependent on 

the current state. Heuristic methods cannot match 

the stability and robustness of DRL for convergence 

and decision making. 

4.1 Relevant Published Work in the Year 2019 

Manufacturing plants require a consistent energy 

supply, which can be provided by renewable energy 

sources integrated into on-site microgrids. To 

implement optimal energy control, reinforcement 

learning combined with neural networks is 

employed. The results have shown energy cost 

savings with no constraints on manufacturing output 

[20]. Other research has also demonstrated the 

superior performance of the Adaptive Deep 

Dynamic Programming (ADDP) algorithm, which 

integrates three deep learning algorithms. For multi-

microgrid architecture, the designed control system 

was simulated against 157 other algorithms in six 

different environments, with improved frequency 

control results [21]. 

Proactive risk management and effective decision 

making in real-time are achieved through 

reinforcement learning integrated with a 

convolution neural network. This is also used in 

stabilizing voltage in grids with distributed energy 

sources in islanding situations [22]. Value based 

policy learning algorithm along with deep neural 

networks is applied in stack mode to solve problems 

in huge data space. This is done by creating a model 

with subnetworks of grids [23]. A summary of this 

research is presented in table 1 below. 

 

 

 

 

Table 1:Relevant Published Work in the Year 2019

Reference Objective Application Architecture DRL Algorithm 
Q function 

estimator 

[20] 

To reduce energy cost for 

production without 

sacrificing production 

throughput while 

addressing the “curse of 

dimensionality”. 

Optimal Control 

On-Site 

Microgrid 

Generation 

System and 

Manufacturing 

Plant 

Simultaneously 

Deterministic 

Policy Gradient 

(DPG) With On-

Policy Temporal 

Difference 

Control 

Neural Networks 

[21] 

To regulate the frequency 

of the system to its 

standard value. 

Secondary 

Control in Terms 

of Frequency 

Control. 

Microgrid 

Systems Based 

on Multi Area 

and Multi-Level 

Adaptive-Deep 

Dynamic-

Programming 

with Deep 

Learning 

Neural Networks 

Based on Deep 

Prediction, Deep 

Critic and Deep 

Action 

[22] 

Stability of high voltage 

buses with efficient 

decision making. 

Transient 

Voltage Control 

Islanded Mode, 

Distributed 

Energy Resources 

Reactive Power 

Compensation 

Decision 

Optimization 

Algorithm 

Convolutional 

Neural Network 

[23] 

To resolve high 

dimensional, hierarchical 

control tasks. 

Optimal Control Multi-Stage Grid Stacked DQN 
Deep Neural 

Networks 

 

4.2 Relevant Published Work in the Year 2020 

Photovoltaic (PV) systems are an essential element 

of microgrid generation as a renewable energy 

source in smart grids. Model free DRL algorithm 



has been designed for maximum power point 

tracking (MPPT) control problems in varying 

weather conditions when the state of each PV layer 

is different and requires online modeling.  Open 

source simulation environments have been 

developed by the authors to test their algorithm and 

further support research progress [24]. Additionally, 

the complex problem of bus voltage stability in DC 

microgrids is being tackled through the 

development of a DC-DC Converter, which is 

designed using a deep reinforcement learning 

approach. Simulations have demonstrated improved 

voltage control through an enhanced self-learning 

process [25]. 

Frequency deviation control is an important 

component of microgrid architecture. To address 

instability issues due to the unpredictable nature of 

renewable energy resources, fuzzy control with 

online learning via an Actor-Critic Framework 

based deep reinforcement learning scheme has been 

employed [26]. Active distribution networks 

(ADNs) similar to microgrids, also have a majority 

of their energy sources based on renewable energy 

sources. A DRL based optimal control scheme with 

additional safety features for voltage control 

problems has been developed as a continuous action 

space [27]. Furthermore, a Policy Approximation 

based on a multilayer perceptron neural network 

and feed forward algorithm was proposed to 

synchronize frequencies and solve control problems 

in interconnected microgrids [28]. 

Frequency regulation in an islanded mode of AC 

microgrids can be improved through the use of a 

controller based on a deep deterministic policy 

gradient algorithm. This approach has been shown 

to be more reliable, even in extreme conditions, 

compared to a proportional-integral controller (PIP) 

[29]. A model free solution based on DRL has also 

been used to address the Volt-Volt Amp reactive 

(VAR) control problem, producing superior results 

in comparison to traditional optimization techniques 

and other reinforcement learning methods [30]. 

Moreover, the integration of Long Short-Term 

Memory (LSTM) neural networks with 

reinforcement learning have been proposed for the 

protection layer in overcurrent scenarios, resulting 

in a faster, more robust solution than existing relays 

designed for the same objective [31]. 

The traditional approach of centralized control fails 

to deal with the increasing integration of distributed 

energy generation in power systems. To address this 

limitation, distributed control is implemented in 

such systems to support automated control. The 

Action Discovery based Dual Deep Q Network, a 

deep reinforcement learning technique has been 

applied [32]. Moreover, Voltage deviations due to 

distributed energy generation in modern distributed 

grids create huge power flow problems.  To solve 

this, a Deep Q Network based solution has been 

employed, making use of convolutional neural 

networks (NNs) to stabilize the voltage in 

distribution grids with renewable energy generation 

[33]. Additionally, the Volt-VAR Optimization 

(VVO) algorithm has been applied to the 

distribution network to adjust varying conditions 

over time. The proposed DRL scheme provides 

power flow with accuracy. Numerical results based 

on simulations validate exceptional performance in 

terms of reduced power loss and enhanced voltage 

stability  [34]. A summary of the relevant research 

papers is presented in Table 2. 

 

Table 2 Relevant Published Work in the Year 2020 

Reference Objective Application Architecture 
DRL 

Algorithm 

Q function 

estimator 

[24] 

To resolve the problem of 

maximum power point 

tracking (MPPT) of 

photovoltaic (PV) systems for 

partial shading conditions. 

MPPT control 

Microgrid 

based of PV 

arrays 

Deep 

Deterministic 

Policy 

Gradients 

algorithm 

Deep Neural 

Network 

[25] 

To design a converter for DC-

DC control with self-

optimization ability. 

Bus Voltage Stability DC Microgrid 
Deep Q 

Network 

Neural 

Network 



[26] 

To Restore Stability with 

Efficient Load Frequency 

Control. 

Frequency 

Regulation/Secondary 

Control 

Hybrid 

Distributed 

Power System 

as Isolated 

Microgrid 

Actor-Critic 

Framework 

Based 

Algorithm 

Neural 

Network 

[27] 

To address control issues with 

the additional characteristic of 

the safety layer. 

Voltage Control 

Distributed 

Generators and 

Smart 

Transformers 

Deep 

Deterministic 

Policy Gradient 

Algorithm 

Deep Neural 

Network 

[28] 

To regulate of frequency by 

eliminating the deviations in 

frequency that occur during 

transients in microgrids. 

Primary Frequency 

Regulation 

Interconnected 

Microgrids 

Simulated in 

Grid LAB-D™ 

Policy 

Approximation 

Algorithm 

Multilayer 

Perceptron 

Neural 

Network 

[29] 

To design robust controller 

for AC microgrid to regulate 

frequency under stochastic 

conditions. 

Frequency 

Regulation, 

Primary/Secondary 

Control 

Islanded AC 

Microgrid 

Deep 

Deterministic 

Policy 

Gradients 

Algorithm 

Deep Neural 

Network 

[30] 

To resolve control problem 

related to Volt-VAR based on 

model free method. 

Volt- volt Amp 

reactive (VAR) 

control 

Distribution 

Test Feeders 

Based on IEEE 

4-Bus And 123, 

34-Bus 

Deep Q-

Network 

Policy Neural 

Network 

[31] 

To design and implement 

protective relays in the 

distribution grid. 

Over Current 

Protection in 

Distributed Control 

Distribution 

Grids 

Deep Q 

Network 

Long Short-

Term Memory 

(LSTM) 

[32] 

To develop a more effective 

automatic generation control 

(AGC) strategy. 

Distributed Control 

Connected 

Small 

Microgrids 

Dual Deep Q 

Network- 

Action 

Discovery 

Deep Neural 

Network 

[33] 

To implement voltage 

regulation by focusing on the 

reactive control abilities of 

inverters and capacitors. 

Voltage Regulation 
Distribution 

Grid 

Deep Q-

network 

Convolutional 

NN 

[34] 

To enhance the performance 

of the control in distribution 

feeders with large-scale 

Voltage Control 

Unbalanced 

Smart 

Distribution 

Systems 

Soft Actor-

Critic 

Algorithm 

Neural 

Network 

 

4.3 Relevant Published Work in the Year 2021 

To allow local autonomy in microgrids without the 

need for human personnel or central control, an 

edge computing-based deep reinforcement learning 

distributed multi-agent intelligent control algorithm 

has been proposed for power flow management 

[35]. 

A decentralized control scheme based on a 

cooperative approach has been proposed to improve 

scalability and smooth communication among 

agents [36].  



The preservation of electricity consumer privacy 

and peak power load handling in residential 

microgrids is a complex task. For this, a distributed 

model free technique based on multi agent DRL has 

been simulated to achieve better results [37]. 

Transfer learning integrated deep learning 

algorithms have also been successfully used with 

scheduling knowledge to effectively optimize the 

operations of microgrids [38]. Furthermore, a novel 

approach has been proposed to control voltage and 

frequency in an islanded mode with the integration 

of electric vehicles [39]. Additionally, the stability 

of DC microgrids is endangered by the presence of 

Constant Power Loads (CPLs) due to their 

impedance. To address this issue, a converter based 

on the Deep Deterministic Policy Gradient 

Algorithm has been designed.[40].  

To protect against different types of cyber-attacks, 

two algorithms based on multi agent DRL have 

been implemented for DC microgrids in islanding 

mode [41]. A novel technique has been proposed to 

manage the control problems between power 

distribution nodes and controllers in an islanded 

microgrid, which is based on ensemble, imitation, 

and curriculum learning. The proposed technique is 

validated through simulation to improve frequency 

control and cost savings [42]. Moreover, a robust 

controller has been designed to control bus voltage 

fluctuations by formulating the Markov chain 

problem [43]. An online distributed control strategy 

has been developed to regulate Volt/Var control 

issues through DRL [44]. 

The Internet of Things combined with deep learning 

group control methods can be used to manage the 

regulated power output from multiple distributed 

energy sources [45]. A load control scheme with the 

extra feature of privacy has been applied in 

microgrid based residential buildings with home 

appliances and electric vehicles. This goal is 

achieved due to the use of a recurrent neural 

network to partially observe the states [46]. A 

control method for load frequency management has 

been proposed for all layers of microgrid control 

with no communication required between operating 

nodes, providing an extra security layer. This 

proposed DRL method is implemented with central 

learning, but in a distributed manner [47]. 

Optimizing a microgrid in real-time is a challenging 

process that can be achieved through the use of a 

double deep Q network based algorithm [48]. To 

accurately forecast scheduling problems and power 

flow from distributed energy sources, a combination 

of long short-term memory deep learning and 

model-based reinforcement learning can be used for 

residential microgrids [49]. Active distribution 

networks with renewable energy sources are 

implemented with DRL based techniques to resolve 

problems of power losses and voltage violations. 

This proposed method is implemented in two 

stages; first, to the capacitor nodes and on-load tap 

changer (OLTC) to achieve minimum power loss, 

and then secondly, to regulate the reactive power of 

photovoltaic systems to mitigate voltage 

fluctuations [50]. Additionally, a converter for 

secondary voltage control based on DRL has been 

designed to assess the flexibility of the voltage 

capacity of the power grid, allowing it to host 

renewable energy sources without causing voltage 

instability and overcurrent scenarios [51]. 

Research has been conducted to apply DRL based 

control methods to physical architectures with 

photovoltaic energy generation [52]. In particular, 

multi-agent DRL techniques have been proposed to 

solve the problem of load frequency control in 

power systems with distributed energy resources 

[53]. Quantum learning combined with DRL is 

applied to optimize real time control in electrical 

systems featuring high penetration of alternative 

energy sources [54]. A double deep Q-learning 

technique has been applied to an islanded microgrid 

with energy storage capabilities for cooperative 

control and energy management in different weather 

conditions [55]. A summary of this section's 

research is presented in table 3. 

 

Table 3 Relevant Published Work in the Year 2021



Reference Objective Application Architecture DRL Algorithm 
Q function 

estimator 

[35] 

To enhance the efficiency 

and scalability of the 

system. 

Power Flow 

Control 

Sub-grid 

partition based 

Asynchronous 

Advantage 

Actor-

Critic(A3C) 

algorithm 

Value Networks 

[36] 

To avoid the effects of 

system uncertainty and 

random noise for 

cooperative control. 

Secondary 

Voltage 

Control 

Power grid 

With 

Distributed 

Generation, 

Microgrid 

Independent 

Actor-Critic 

(IA2C) 

Long Short-Term 

Memory (LSTM) 

[37] 

To reduce the cost of 

management of the grid 

and cost of electricity. 

Load Control 
Residential 

Smart Grids 

Actor Critic-

Based Algorithm 

Deep Neural 

Network 

[38] 

To effectively accumulate 

and utilize the scheduling 

knowledge at present to 

control scheduling in 

microgrids. 

Scheduling 

Microgrid 

With 

Distributed 

Energy 

Resources 

Deep 

Deterministic 

Policy Gradient 

Neural Networks 

based on Transfer 

Learning based 

[39] 

To solve the problem of 

stability of islanded 

microgrid. 

Frequency and 

voltage 

regulation/Sec

ondary Control 

Island 

Microgrid with 

Electric 

Vehicles 

Deep 

Deterministic 

Policy Gradient 

(DDPG) 

Critic Target 

Network 

[40] 

To develop an advanced 

regulatory mechanism for 

DC-DC converters 

implementation in 

microgrids. 

Power 

Conversion, 

Voltage 

Regulation 

DC Microgrid 

Scenario 
Deep Q Network 

Deep Neural 

Network 

[41] 

To address issues related 

to cyber security in 

microgrids for the 

secondary control layer. 

Detection of 

Cyber Attacks 

through 

Distributed 

Control 

DC Microgrids 

in Islanded 

Mode 

Deep 

Deterministic 

Policy Gradient 

(DDPG)/ DQN 

Not mentioned 

[42] 

To minimize the cost of 

power generation and 

achieve improved 

frequency stability. 

Secondary 

Control in 

Frequency 

Regulation 

Islanded 

Microgrid 

Variant of Deep 

Deterministic 

Policy Gradient 

Critic Network 

[43] 

To reduce network power 

losses and bus voltage 

deviations for optimization 

problems in Volt/Var 

control 

Voltage 

Control 

Active 

Distribution 

Networks 

based on PV 

Multi-Agent 

Deep 

Deterministic 

Policy Gradient 

Behavior Cloning 

Based Q Learning 

[44] 

Online Decentralized 

Control framework to 

improve the stability and 

efficiency of Volt-VAR 

control. 

Voltage 

Control 

Active 

Distribution 

Networks 

Multi-Agent 

Actor-Critic 

Based Algorithm 

Deep Neural 

Network 

[45] 

To attain economic 

operation of the power 

grid by regulating the 

coordination in the output 

of distributed energy 

sources. 

Group Control 

Connected 

Microgrids 

Based on IoT 

Model 

Edge-Side 

Training 

Learning Based 

Deep Neural 

Network 



[46] 

To improve the operating 

efficiency with privacy 

preserving mechanism. 

Load Control 

Residential 

Microgrid 

Based Home 

Appliances and 

Electric 

Vehicles 

Vectorized 

Advantage 

Actor-Critic 

(Va2c) 

Algorithm Based 

DQN 

Recurrent Neural 

Network (RNN) 

[47] 

To design an algorithm to 

control load frequency 

without the need for a 

central controller. 

Primary, 

Secondary, 

And Tertiary 

Control 

Distributed 

Microgrids 
Deep Q Network 

Long Short-Term 

Memory (LSTM) 

[48] 

To operate microgrid with 

power flow constraints in 

real-time. 

Optimization 

10-Bus 

Microgrid 

System with 

Modified IEEE 

69-Bus 

Microgrid 

System 

Double Deep Q 

Network 

Long Short-Term 

Memory (LSTM) 

[49] 

To forecast Accurately 

renewable power 

generations with online 

scheduling. 

Optimal Power 

Flow and 

Economic 

Operation 

Residential 

Microgrid 

Model-Based 

Deep 

Reinforcement 

Learning 

Long Short-Term 

Memory (LSTM) 

[50] 

To eliminate violations of 

fast voltage and 

minimalization of power 

loss in the network. 

Voltage 

Control 

Active 

Distribution 

Networks 

Deep 

Deterministic 

Policy Gradient 

Deep Neural 

Network 

[51] 

To enhance the efficiency 

of converter-interfaced 

generators in electrical 

networks. 

Secondary 

Control 

Modified IEEE 

34-bus test 

feeder with six 

inverted-based 

DGs 

Deep Recurrent 

Q-Network 

(DRQN 

Long Short-Term 

Memory (LSTM) 

[52] 

To Design a control based 

on closed-loop for 

optimization in Distributed 

Energy Resources based 

systems 

Control Of 

Load And 

Efficiency of 

Energy 

Physical Test 

Building for 

Distributed 

Energy 

Resources 

(DER) 

Deep 

Deterministic 

Policy Gradient 

Two Neural 

Networks 

[53] 

To achieve an optimal 

resolution by a 

collaboration of multi 

region grids and overcome 

issues in classical deep 

reinforcement learning 

techniques. 

Load 

Frequency 

Control 

Hubei Power 

Grid Model 

Combined with 

IEEE Standard 

Double Deep Q‐

Network 

Context-

dependent 

processing 

(DDQN-CDP) 

Backpropagation 

Neural Network 

(NN) 

[54] 
Avoiding the curse of 

dimensionality 
Online Control 

Grid 

Connected 

Wind Turbines 

Based 

Distributed 

Network 

Quantum Deep 

Reinforcement 

Learning 

Deep Belief 

Networks 

[55] 

To develop real-time 

charge and discharge 

strategy, and calculate the 

timing arrangement 

scheme of the storage 

system. 

Optimization 

Control and 

Energy 

Management 

Island Micro-

Grid System 

Double Deep Q 

Network 

(DDQN) 

Long Short-Term 

Memory (LSTM) 



4.4 Relevant Published Work in the Year 2022 

A coordinated approach is implemented in the 

multiple area model architecture of “China 

Southern Grid (CSG)” with integrated renewable 

energy sources. The proposed method efficiently 

improved frequency regulation decision making in 

real time [56]. The virtual combination method 

has been tested and found to be effective in 

correcting unbalanced load voltage problems in 

three phase systems with single phase loads. Deep 

Q network learning was also tested to manage 

unintentional load shedding in an islanded 

microgrid with successful results. These 

techniques have been found to be reliable and 

effective [57]. 

A control method based on deep reinforcement 

learning (DRL) was proposed for reconfiguring 

islanded hybrid microgrids with AC/DC 

distribution networks [58]. Distributed frequency 

control method for islanded microgrids is 

proposed by combining DRL with quantum 

learning [59]. For islanded microgrids an optimal 

control strategy is proposed using deep 

reinforcement learning by deploying microgrids as 

multiagent systems [60]. A decentralized control 

method for frequency deviations is proposed in 

[61]. It is capable of restoring system frequency 

with minimum cost. In [62] challenge of recurrent 

fluctuation produced in microgrids due to 

renewable energy resources is presented with the 

solution through a self adaptive model free 

algorithm.  A summary of this section's research is 

presented in table 4. 

 

Table 4 Relevant Published Work in the Year 2022 

Reference Objective Application Architecture DRL Algorithm 
Q function 

estimator 

[56] 

To improve the 

performance of 

frequency regulation 

using coordinated 

control. 

Load 

frequency 

control 

Multi-Area 

System 

Integrated with 

Renewable 

Energy 

Multi-Agent Deep 

Deterministic Policy 

Gradient 

Neural Network 

[57] 

To mitigate shortage of 

power issue while 

transitioning to islanding 

mode unintentionally. 

Frequency 

Regulation 

Hybrid Multi-

Microgrid 

Deep Q-Learning 

Network 

Convolutional 

Neural Network 

[58] 

To reconfigure 

microgrid after 

unintentional islanding 

Restoration 

Through 

Coordinated 

Control 

Hybrid 

Distribution 

Networks with 

AC and DC 

sources as 

Microgrid 

Soft Actor-Critic 

Algorithm with 

Multi-Agent 

Approach 

Deep Neural 

Network 

[59] 

To regulate frequency in 

islanded microgrids with 

improved performance 

regarding training. 

Frequency 

Control 

Islanded 

Microgrids 

Deep Deterministic 

Policy Gradient 

Algorithm 

Quantum Neural 

Network 

[60] 
Development of Global 

Cost Function 

Secondary 

Control 

Islanded 

Microgrids 

Deep Deterministic 

Policy Gradient 

Algorithm 

Deep Neural 

Network 

[61] 

Optimal Control under 

varied frequency and 

load 

Frequency 

Control 

Networked 

microgrid  

Soft Actor-Critic  

Algorithm 
Neural Network 

[62] 

To minimize the 

deviation of the 

frequency 

Frequency 

Control 

Islanded AC 

Microgrid 

Deep Deterministic 

Policy Gradient 

Algorithm 

Deep Neural 

Network 



 

5. DISCUSSION & CONCLUSION 

Distributed Energy Resources that contain various 

AC, DC, and hybrid loads with energy storage 

systems have become increasingly popular in 

managing the energy flow in Microgrids. This 

combination of technology has proven to be an 

effective way of controlling energy usage. 

Traditional control approaches are not sufficient 

for this purpose, and therefore, distributed and 

central approaches are implemented to regulate 

frequency and voltage. Artificial Intelligence has 

been used in forecasting problems and providing 

solutions to tackle the complexity of energy 

demand and supply, as rapidly fluctuating prices 

of energy in the renewable power sector. 

 

This paper has presented an overview of artificial 

intelligence and its sub-categories to provide 

oversight to researchers about machine learning, 

such as deep learning, reinforcement learning, and 

the combination of both. It then proceeds with an 

overview of microgrids and their control. The 

background and limitations of traditional control 

methods used in the control of microgrids are 

discussed, along with the advantages of 

implementing deep reinforcement learning-based 

schemes. These techniques are highly suitable for 

scenarios where control problems have a larger 

database and previous methods based on deep 

learning can cause a curse of dimensionality. By 

combining reinforcement learning with neural or 

deep networks, this issue can be successfully 

addressed. 

Real time decision making, effectiveness and 

robustness are improved dramatically through the 

use of the techniques surveyed in this paper. 

Moreover, deep reinforcement learning (DRL) can 

provide effective support for microgrids in terms 

of handling large data sets and solving problems 

in real time. By forecasting and decisions making 

in advance, energy utilization in the future can be 

optimized. To further advance this research, 

energy and demand side management should be 

incorporated. 
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