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Abstract: Forecasting the power production from renewable energy sources (RESs) has become
fundamental in microgrid applications to optimize scheduling and dispatching of the available assets.
In this article, a methodology to provide the 24 h ahead Photovoltaic (PV) power forecast based on a
Physical Hybrid Artificial Neural Network (PHANN) for microgrids is presented. The goal of this
paper is to provide a robust methodology to forecast 24 h in advance the PV power production in
a microgrid, addressing the specific criticalities of this environment. The proposed approach has
to validate measured data properly, through an effective algorithm and further refine the power
forecast when newer data are available. The procedure is fully implemented in a facility of the
Multi-Good Microgrid Laboratory (MG2

Lab) of the Politecnico di Milano, Milan, Italy, where new
Energy Management Systems (EMSs) are studied. Reported results validate the proposed approach
as a robust and accurate procedure for microgrid applications.

Keywords: photovoltaic; power forecast; day ahead; artificial neural network; short term

1. Introduction

The power uncertainty exhibited by many Renewable Energy Sources (RES) as PV and wind
represents a huge challenge for the stability, security, and reliability of integrated electricity systems [1].
PV power fluctuations depend on two factors: the first one is deterministic due to Earth’s revolution
around the Sun, while the second is stochastic and depends on atmospheric conditions as cloud
cover, dust, pollution, or local shadows on PV modules [2]. In this frame, forecasting power
production from RES can greatly help the management and the operation of modern energy systems
as, for example, microgrids.

Solar forecasting methodologies are mainly classified into three categories [3]: physical, statistical,
and hybrid methods. As for physical methods, data such as temperature, pressure, humidity, and cloud
cover are used as the input of a model describing the behavior of the component, through analytical
equations. Statistical methods, on the other hand, require historical data of solar irradiance and power
production to infer trends. They are further divided into two categories: Artificial Intelligence (AI)
based and regression methods [4,5]. Seasonality analysis, Auto Regressive Integrated Moving Average
(ARIMA), multiple regressions, and exponential smoothing are examples of the latter [6], while AI
paradigms include fuzzy inference systems, genetic algorithm, Artificial Neural Networks (ANNs),
etc. Finally, hybrid methods are a combination of two or more forecasting techniques [7]. The idea
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behind hybrid models is to overcome the deficiencies of the individual models while emphasizing
their strengths.

Many approaches and methods have been developed to predict the power injection in the grid
by a PV plant with reference to the day ahead, the 24 h ahead, and some hours ahead [8]. Short
term PV power prediction based on weather forecast can be obtained by means of simple rule based
or fuzzy logic algorithms: for instance, in [9], a fuzzy logic model was presented for short term PV
forecasting using the measured solar irradiance data; in [10], a model employing fuzzy logic was
proposed to forecast global solar energy using the dew-point as the main variable among many
other meteorological parameters for different sky-conditions. In [11], a hybrid forecasting algorithm
was proposed, based on ANN and fuzzy logic pre-processing, in order to increase forecast accuracy.
In particular, the robustness of the ANN approach for day ahead PV forecasting was also assessed
in [12]. In [13], a hybrid ANN model for the PV power forecasting exploiting clear-sky models and
ANN ensembles, based on day ahead weather forecast, was validated on a real PV plant as a robust
and accurate procedure.

The accuracy of the prediction is currently very good, and the error is quite similar to the one of
weather prediction [14]. Moreover, as already mentioned and demonstrated in [15], a machine learning
technique is natively able to update with time, after an updated training on recently measured data.

Among the aforementioned methods, it was proven that ANN based hybrid methods provide
the best solution in terms of the accuracy of prediction [16]. The main drawbacks deriving from the
implementation of those techniques is the need for accurate historical measurements, which have to be
previously analyzed and validated to be used in the forecasting process.

Load and RES forecasting in microgrids opens new challenges [17,18]. Microgrids, which can
be independent systems or connected to the main grid, consist of a mix of generation (PV, wind, and
traditional, controllable and uncontrollable), loads, different Energy Storage Systems (ESSs) such as
batteries, fuel cells, flow cells, thermal storage, etc.

Advanced cost effective microgrid design and an optimal dispatch strategy have to be developed
to reduce the dependence on costly and polluting traditional sources, to increase the use of RESs and
reduce the needs of large storage systems and conventional backup generation, but at the same time
to guarantee adequate electricity reliability and power quality [19]. A key issue in the identification
of the optimal dispatch strategy provided by a central Energy Management System (EMS) [20] is the
RES forecasting.

In addition to the aforementioned drawbacks, new problems arise in forecasting the PV power
production in microgrid applications. Firstly, data processing and validation are extremely critical due
to the need for working in a Reduction Power Point (RPP) during several hours of the day to follow
the load profile properly. Secondly, when dealing with microgrid management, in order to guarantee
the continuity of the service and plan and manage backup systems properly, long term forecasts are
required (seven days ahead), which should be further refined when newer data are available, usually
every day. Finally, as the EMS optimization process is computationally intensive, PV power prediction
algorithms should be as effective as possible while not time consuming.

The goal of this paper is to provide a robust methodology to forecast 24 h in advance the PV
power production in a microgrid environment. The issues related to the validation and management
of real data through a fast and effective algorithm are addressed. Moreover, particular attention is
paid to working conditions such as the microgrid operating state, the PV inverters’ working status,
and the RPP tracking algorithm. The output of the forecasting procedure is then provided to the EMS
to schedule the available assets optimally. This process was tested in a real microgrid showing good
results in terms of availability and the continuity of the operation.

2. Microgrid 24 h ahead Forecast

In a microgrid, it is extremely important to have a reliable forecast of the available power sources
and to schedule the programmed mix of power sources effectively in order to supply the expected
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energy demand. This process should be iteratively performed with different time horizons in order to
ensure the maximum continuity of the operation. In this context, the 24 h ahead forecast is a key process.
In order to accomplish the aforementioned task, several steps should be followed. The methodology
applied here is fully summarized in the logic scheme of Figure 1, showing in a circular way different
sub-tasks of the forecasting process at two times (i.e., Day i and Day i + 1). The process is divided into
blocks, and each block accomplishes a specific task, while there is not a direct correspondence between
a block and a physical component in the microgrid. In other words, there are no single components
absolving the different tasks represented here.

Figure 1. Scheme of the forecasting process. CSRM, Clear Sky Radiation Model.

The whole procedure is mainly divided into two different parts according to the tasks that are
performed on consecutive days. On Day i:

(A) weather forecasts and Clear Sky Radiation Model (CSRM) for the next 24 h acquisition;
(B) forecasting engine output and data post-processing.

Instead, on Day i + 1, the following tasks should be performed:

(C) microgrid data validation;
(D) daily performance metrics’ calculation and historical dataset update.

2.1. Weather Forecasts and CSRM for the Next 24 h Acquisition

Among the required parameters in order to run the algorithm, which was previously described
in [21] and improved in this work, the weather forecasts for the next 24 h should be acquired.
For redundancy reasons, in order to guarantee the continuity of operation, it is better to acquire
the weather forecasts for several days, avoiding a future transmission fault that could occur. In the
present work, the weather hourly forecasts for the next seven days were collected. The following day,
if available, newer data would overwrite the oldest.

A complete list of the weather parameters collected every day at 23:00 is given here:

• T (◦C): ambient temperature;
• GHI (W/m2): Global Horizontal Irradiation;
• GPOA (W/m2): irradiation on the plane of the array;
• Ws (m/s): Wind speed;
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• Wd (◦): Wind direction;
• P (hPa): ambient Pressure;
• Prec (mm): rainfall;
• CC (%): percentage of Cloud cover;
• CT : Cloud type (low, mid, high).

The importance of providing the CSRM when forecasting the PV power production through AI
algorithms was proven in [22]. In this work, the model fully described in [23] and the cited papers was
implemented.

2.2. Forecasting Engine Output and Data Post-Processing

The methodology applied, based on a Physical Hybrid Artificial Neural Network (PHANN),
was introduced and refined in works such as [24,25]. Its basic scheme is shown in Figure 2.
The developed forecasting engine consisted of an ANN, which was trained with the historical weather
forecasts collected, coupled with the solar radiation under clear-sky condition (CSRM), and an accurate
output of the hourly profile expected by the PV plant was generated for the next seven days. After the
output was generated, data had to be validated by a post-processing step consisting of checking the
reliability of the output. Thus, meaningless values (i.e., negative or positive) of the output power by
night should be made equal to zero.

Figure 2. Physical Hybrid Artificial Neural Network (PHANN) architecture designed to provide the
output power forecast PF.

The day after (i.e., Day i + 1 in the scheme of Figure 1), the actual measurements were recorded,
allowing performing the following tasks.

2.3. Microgrid Data Validation

The raw data had to be validated since their quality strongly affected the forecasting model
output. One of the most critical aspects was to have an accurate and coherent dataset of historical
measurements. In particular, the ANN needed to be trained with historical data, and their quality
guaranteed a good learning capability, finally providing a stable and reliable output. Hence, data
validation consisted of providing a criterion that should be enough strict in order to select the amount
of data to be included in the training process and sufficiently relaxed in order not to lose valuable
information according to the expected accuracy in the desired task.

When PV systems are integrated with microgrids, some peculiarities are observed. In fact, during
some periods of the day, there is no need to produce as much power as is available; therefore, a cut-off
of the generated power is needed, and the PV system is working in the so-called Reduction Power
Point (RPP).
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It is easy to understand that PV power output records relevant to those RPP periods cannot be
included in the training dataset, as the ANN task is to forecast the PV power output corresponding to
the expected weather conditions, discarding the overall power control. The RPP recorded data are not
useful for this task and should be properly identified and excluded from the training process. For this
reason, during the RPP periods, as many inverters as possible should work in Maximum Power Point
Tracking (MPPT) in order to collect useful data for the training. Otherwise, the validation criterion
would exclude many useful data.

Moreover, in order to infer the sub-PV fields’ peculiarities, an in-rotation RPP working logic
among different inverters is preferred. In this way, the power forecast algorithm can be properly
trained and run for each inverter with its specific dataset of historical measurements, keeping updated
their peculiarities such as partial shadings, aging, and pollution. Besides, when PV systems are
introduced in broader systems as microgrids, electrical variables are not able to tell the full story of
the working status of the PV. For example, Figure 3 depicts the 20 s records in p.u. of solar radiation
measured, DC power, voltage, operating state, and RPP in a single PV converter. It can be observed
that the DC power production of the PV system followed a peculiar trend, which was not consistent
with the recorded solar radiation, being equal to zero for several minutes in the afternoon. For this
reason, the PV inverter working status (PVrun), the RPP, and the microgrid operating status (µGrun)
were key parameters to be used in the validation.
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Figure 3. Raw data for (a) irradiance, (b) DC power, (c) voltage, and the flags corresponding to the
state of (d) the run of the microgrid µGrun, (e) PV converter PVrun, and (f) the Reduction Power Point
(RPP) algorithm. The flag values are true when green, false otherwise.
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For this reason, a new validation procedure to analyze and filter the recorded measurements from
the microgrid properly was developed and is summarized in the flowchart of Figure 4. The flowchart
is fully described below. Firstly, to ensure that the measurements were properly recorded and stored,
the microgrid had to be working (µGrun = true). Different control strategies were considered depending
on the irradiation level. In order to switch on the PV inverter, it was required that a certain amount of
power was produced by the PV, at least enough to cover its self-consumption. If this circumstance was
not met, the inverter did not start, and the condition was tested after a predefined amount of time.
Through irradiation measurements, it was possible to distinguish easily among night and daily hours
and finally sunrise and sunset, when the previous procedure was expected to take place. The minimum
amount of irradiance needed to run the system can be computed as follows:

GT =
PT

A · η
(1)

where PT is the minimum amount of power required to make the inverter work, A is the overall surface
of the PV string, and η is the nominal module efficiency.

Start

Measurements

µGrun

Solar Irradiation Measurements

G ≤ Gin f Gin f < G ≤ Gsup

PVrun

Vflat

PVrun

RPP

PVrun

RPP

ACCEPTED

Stop
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false
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Figure 4. Flowchart describing the sample validation process.
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Since the obtained value for GT was just a rough estimation and the power condition was tested
intermittently, a punctual value was not useful. Through a sensitivity analysis carried out on the
available data, it was then possible to define three intervals as follows:

1. night: G ≤ 0.9 · GT = Gin f ;
2. sunrise and sunset: Gin f < G < 1.1 · GT = Gsup;
3. day: G ≥ Gsup.

If the irradiation G is lower than Gin f , to be considered reliable, the inverter should be switched
off (PVrun = false) and the voltage profile should be flat (Vflat = true).

When the irradiation is between Gin f and Gsup, the inverter is likely to be performing the
aforementioned switching on procedure. For this reason, all the PV inverter statuses (PVrun = true or
no), but the RPP (RPP = false), are considered reliable.

Finally, if the irradiation is greater than Gsup, only those samples in which the inverter is working
in the Maximum Power Point (MPP) (PVrun = true and RPP = false) are kept.

All the accepted samples are used in the composition of the power produced on an hourly basis
and later used for the PHANN training dataset, if two further controls are satisfied.

Once the measurements were filtered, a minimum number of samples had to be disposable to
consider the average power produced representative of the hour. Following a sensitivity analysis,
two thirds of the theoretically available measurements were needed. As previously stated, ANNs learn
to infer trends from historical data. If the training dataset is composed of too many hourly samples
with power equal to zero, there might be the possibility that the forecasts tend to underestimate the
power production. For this reason, it is important to have approximately the same number of daily
and night hourly samples.

2.4. Daily Performance Metrics’ Calculation and Historical Dataset Update

The power forecast computed on Day i had to be evaluated in view of the acquired power
measurements. To solve the scope, error metrics were needed. The indicators applied here were fully
described in [15], where a deep insight into the different features of those indicators was provided.

Finally, the last task to be performed on Day i + 1 consisted of updating the historical dataset
used in the training and validation phase with the newest available data.

3. Case Study

In this section, the above mentioned procedure to provide the power forecast for the next 24 h is
shown through a real case study. The test facility was located at Politecnico di Milano, Milan, Italy.

3.1. Microgrid Description

The Multi-Good MicroGrid laboratory (MG2
Lab) setup available in the Department of Energy,

Politecnico di Milano, is a cutting edge microgrid integrating different distributed energy resources
like solar, Combined Heat and Power (CHP), battery, and hydrogen storage and serving both electric
and thermal load to power lighting, heating, desalination, electric vehicles, and electric bikes, as shown
in Figure 5.

This microgrid facility is multi-good and multi-fluid, as shown in Table 1. It features the ability to
be operated both in on-grid and off-grid modes. Additionally, it is flexible with multiple configurations
(single/multi-node), including an AI implementation for optimal management.
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Figure 5. Schematic diagram of the Multi-Good MicroGrid laboratory (MG2
Lab) principal units.

Table 1. Microgrid overview.

Components Size

Electric power generation 100 kW
Thermal power generation 45 kW
Potable water production 1 m3/h

Electric storage 150 kWh
Hydrogen storage 30 kWh
Thermal storage 50 kWh
Electric vehicles 2

Electric bikes 10

The experimental microgrid facility interconnects the following systems and sub-systems:

• three Power Centers (PCs), acting as the electricity hub;
• dispatchable and non-dispatchable units for Heat, Power and Combined Heat and Power (CHP)

generation:

– three PV fields of 24, 25, and 26 kW, respectively;
– a natural gas micro-CHP system (TOTEM) (electric power 25 kW, thermal power 25 kW);

• three different storage systems:

– a thermal energy storage (TES) system (50 kWh)
– two lithium ion Battery Energy Storage Systems (BESS), 70 kWh each;
– a hydrogen Hybrid Energy Storage System (HyESS), 30 kWh storage coupled to a

power-to-power system alkaline electrolyzer (25 kW) Proton-Exchange Membrane (PEM)
fuel cell (25 kW);

• several loads:

– an electric grid simulator, which acts as the virtual electricity user, as well as (if needed) a
connection point with the electric grid: 100 kW;

– programmable electric loads, namely two heat pumps that are smart-grid ready (2 × 6 kW),
a potable water producer (6 kW), and lights (5 kW);

– charging stations: two fast charging stations for electric vehicles (2 × 50 kW) and one for 10
electric bikes: (10 × 250 W).
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The non-dispatchable units (PV modules) are located on the building roofs of the Department
of Energy, Politecnico di Milano. In particular, this experimental microgrid is organized into three
different Power Centers (PCs), each connected to the others, which work together. The main Power
Center PC1 is composed by the PV systems, a storage system, a master controller, and the electric
vehicle plugs. The two PV fields are composed by six strings of 13 modules each (the first), for a total
of 78 modules, and by six strings of 12 modules each (the second), for a total of 72 modules. Three PV
inverters are used for DC/AC conversion. A junction box can monitor the current of each string and
the environmental and the PV modules’ temperatures.

3.2. Application and Discussion

The automatic procedure described was performed iteratively every day at 23:00. The forecast
power values were then provided to the EMS with the goal of scheduling the optimal MG operation
plan of all the controlled assets. The optimal management strategy could then be evaluated by means
of different indicators such as economic, technical, and environmental.

In Figure 6, the effects of the controls described in Section 2.3 are shown on the data collected from
one PV field of the microgrid. Figure 6a presents in blue the power measured every 20 s for the whole
day (PM), while the hourly power averages computed validating the available data according to the
proposed methodology (PF valid) or not (PF not valid) are shown in orange and yellow, respectively.
On the other hand, Figure 6b, as with the previous, shows a flag stating whether the measured samples
should be considered reliable or not, based on previous considerations (accepted samples in the
flowchart). Three different critical situations are shown. The first one (A) occurred in the morning
due to the inverters’ failures during the switching on procedure and resulted in power recordings
equal to zero. The second one (B) represented an example of power production under RPP conditions,
following the microgrid load demand. Finally, the third (C) was due to a disconnection of the PV from
the grid. As can be seen from the yellow line, the consequent average was greatly affected by those
occurrences, while the orange line was unaffected, following the actual power production (blue line),
with great accuracy.

As previously stated, ANNs learn to infer trends from historical data. When the available data
are not properly filtered, the ANN loses its ability to generalize trends. The averaged measured data
were used in the composition of the dataset, which was later used in the training and validation of the
PHANN.

Figure 7 shows the measured power and power forecasts for the microgrid. In particular,
the blue line represents the measured power (PM), while the orange and yellow lines show the
power forecast provided by PHANN trained with validated (PF valid) and not validated (PF not valid)
data, respectively.

As is clearly shown, the yellow line (PF not valid) greatly underestimated the power forecast in
the central hours of the day, when the production peak was expected, but due to both RPP and faults,
the power measurements were greatly affected. Quantitative information about the improvement
derived from the implementation of the novel validation procedure is provided in Table 2, where the
forecast error committed using the two datasets is reported for one month of forecasting. For example,
the Enveloped-Mean Absolute Error (EMAE) was reduced from 35.12% to 24.57% with an overall
improvement around 30%. Similar considerations can be drawn for every indicator reported in Table 2.
Since for the recently proposed EMAE and OMAE [15], the availability of the results in the literature is
limited, thus, for the sake of clarity, we chose to refer to indicators usually employed (NMAE, nRMSE,
etc.), whose average values were generally better than those reported in the literature [14].
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PHANN’s training is either performed with a validated historical dataset (orange line) or with all the
available data (yellow line).
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Table 2. Forecast improvements achieved by filtering measured data.

Non Validated Validated %

dts dts Improvement

NMAE 5.28 3.81 27.87
WMAE 36.07 25.75 28.61
EMAE 35.12 24.57 30.03
nRMSE 16.40 12.77 22.17
OMAE 19.77 14.25 27.92

Since the EMS optimization algorithm was time consuming, the power forecast had to be
performed in a short time. The average time required to compute all the described tasks was 46.6 s
(when simulations were run on an Intel(R) i7-7700 CPU @3.60 GHz-64 GB).

Finally, in Figure 8, a representative output of the whole procedure is presented for July 2019.
In Figure 8a, the measured power is depicted in blue (PM) together with the power forecast computed
by PHANN(PF) in orange. Figure 8b shows in blue the Mean Absolute Error (MAE), while the red
dashed line represents the average monthly MAE. Thanks to the novel validation procedure introduced
in this work, the accuracy achieved for the power forecasts in the microgrid was very close to the grid
connected application.
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Figure 8. (a) Measured and forecast power together with (b) the absolute error committed and the
MAE for the month of July 2019.

4. Conclusions

The scope of the paper was to provide a methodology aiming at computing the 24 h ahead PV
power forecast specifically tailored for microgrid applications. A novel data validation procedure
was developed to address the peculiarities such as the reduction power point functioning state and
the service interruptions that may occur in microgrids’ operations. The proposed methodology was
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divided into sub-tasks that were singularly evaluated and discussed throughout the work. Moreover,
the importance of filtering the available measurements to compose the historical dataset needed for
the physical hybrid artificial neural network training was shown. The whole procedure was tested
and discussed in detail through a real case study in the MG2

Lab installed at the Department of Energy,
Politecnico di Milano. The obtained results showed a great increase of the forecast performances
thanks to the methodology exposed here. The error committed, evaluated in terms of NMAE, was
reduced from 5.28% to 3.81% on a monthly basis.
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