
Northumbria Research Link

Citation: Moradi, Jalal, Shahinzadeh, Hossein, Nafisi, Hamed, Marzband, Mousa and Gharehpetian, 
Gevork B. (2019) Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical  
Power  Systems.  In:  2020  14th  International  Conference  on  Protection  and  Automation  of  Power 
Systems (IPAPS):  Amirkabir  University  of  Technology,  Tehran,  Iran Dec.  31,  2019-Jan.  1,  2020 ;  
proceedings. IEEE, Piscataway, NJ, pp. 83-92. ISBN 9781728161907, 9781728161891 

Published by: IEEE

URL:  https://doi.org/10.1109/ipaps49326.2019.9069391 
<https://doi.org/10.1109/ipaps49326.2019.9069391>

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/42834/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access 
the University’s research output. Copyright © and moral rights for items on NRL are retained by the 
individual author(s) and/or other copyright owners.  Single copies of full items can be reproduced, 
displayed or performed, and given to third parties in any format or medium for personal research or 
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, 
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata 
page. The content must not be changed in any way. Full items must not be sold commercially in any  
format or medium without formal permission of the copyright holder.  The full policy is available online: 
http://nrl.northumbria.ac.uk/pol  i  cies.html  

This  document  may differ  from the  final,  published version of  the research  and has been made 
available online in accordance with publisher policies. To read and/or cite from the published version 
of the research, please visit the publisher’s website (a subscription may be required.)

                        

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/305121394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html




 
14th International Conference on Protection & Automation 

 in Power System 
Amirkabir University of Technology (Tehran Polytechnic), Tehran  

December 31, 2019 -  January 1, 2020 
  

 

Attributes of Big Data Analytics for Data-Driven 

Decision Making in Cyber-Physical Power Systems 

Jalal Moradi 
Young Researchers and Elite Club 

Khomeinishahr Branch, Islamic Azad University 

Isfahan, Iran 

sj.moradi@iaukhsh.ac.ir  

Hossein Shahinzadeh 
IEEE Member, Department of Electrical Engineering 

Amirkabir University of Technology (Tehran Polytechnic) 

Tehran, Iran 

h.s.shahinzadeh@ieee.org

Hamed Nafisi 
Department of Electrical Engineering 

Amirkabir University of Technology 

Tehran, Iran 

nafisi@aut.ac.ir 

Mousa Marzband 
Department of Electrical Engineering 

Northumbria University 

Newcastle, United Kingdom 

mousa.marzband@northumbria.ac.uk  

Gevork B. Gharehpetian 
Prof., Department of Electrical Engineering 

Amirkabir University of Technology 

Tehran, Iran 

grptian@aut.ac.ir 

 

 
Abstract— Big data analytics is a virtually new term in power 

system terminology. This concept delves into the way a massive 

volume of data is acquired, processed, analyzed to extract 

insight from available data. In particular, big data analytics 

alludes to applications of artificial intelligence, machine learning 

techniques, data mining techniques, time-series forecasting 

methods. Decision-makers in power systems have been long 

plagued by incapability and weakness of classical methods in 

dealing with large-scale real practical cases due to the existence 

of thousands or millions of variables, being time-consuming, the 

requirement of a high computation burden, divergence of 

results, unjustifiable errors, and poor accuracy of the model. Big 

data analytics is an ongoing topic, which pinpoints how to 

extract insights from these large data sets. The extant article has 

enumerated the applications of big data analytics in future 

power systems through several layers from grid-scale to local-

scale. Big data analytics has many applications in the areas of 

smart grid implementation, electricity markets, execution of 

collaborative operation schemes, enhancement of microgrid 

operation autonomy, management of electric vehicle operations 

in smart grids, active distribution network control, district hub 

system management, multi-agent energy systems, electricity 

theft detection, stability and security assessment by PMUs, and 

better exploitation of renewable energy sources. The 

employment of big data analytics entails some prerequisites, 

such as the proliferation of IoT-enabled devices, easily-accessible 

cloud space, blockchain, etc. This paper has comprehensively 

conducted an extensive review of the applications of big data 

analytics along with the prevailing challenges and solutions. 

Keywords— Big data analytics, Machine learning and data 

mining, Future power systems, Artificial intelligence, Clustering 

and classification, Smart grids.  

I. Introduction 
In recent years, the emerging concept of the applications 

of big data analytics in the area of smart grids has been 

propounded. The term “big data” refers to the procedure of 

massive data acquisition, processing, and analyzing using 

artificial intelligence techniques such as data mining, 

machine learning, and neural networks for some purposes 

such as clustering, pattern recognition, classification, feature 

selection, or time series forecasting, etc. Power systems are 

progressively changing toward smart and digitalized grids, 

which have a higher level of autonomy and complexity. The 

penetration of large-scale renewable energy sources (RES) is 

accelerated, which alludes to the increase in the level of 

uncertainty in power systems. The pervasiveness of 

microgrids and active distribution networks with mounting 

penetration of virtual power plants (VPPs) in demand-side is 

an ever-growing trend in the current power systems. The 

coordination of interconnected microgrids has immense 

complexity that requires elaborate controlling schemes to be 

dealt with. Regard to the proliferation of microsources such 

as roof-top solar panels, small-scale wind turbines, and a 

variety of small-scale storage facilities as well as incremental 

penetration of electric vehicles (EVs), particularly with 
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vehicle-to-grid (V2G) capability, distribution networks are 

evolving to AC/DC mesh grids. The ongoing technological 

developments in distributed technologies such as internet of 

things (IoT), particularly in intelligent electronic devices 

(IEDs), sensors, and actuators, have been led to the 

production of a large body of data that can be employed for 

various purposes in power systems. The penetration of EVs 

can immensely impact on the operation of power systems 

soon. The discovery of consumption and feed-in patterns of 

EVs and incorporation of them requires intelligent 

computational tools. The existence of a huge quantity of 

microsources in a restructured environment will be led to 

local markets that must handle microtransactions. This matter 

conveys the necessity of the use of blockchain and 

cryptocurrency and indicates that a large body of data will be 

generated that can be explored to find useful patterns for 

better operation of future energy grids [1]. These 

abovementioned features are some of the underlying 

attributes of future power systems, which imply future smart 

electrical grids that differ from the current power grids 

because of mounted decentralization, enhanced monitoring 

capabilities, expanded high-frequency communication, and 

diversified generation sources. The expansion of smart grid 

infrastructures, the proliferation of IoT, and increasing the 

penetration of RES are the major thrusts in the ongoing 

research conducting in the area of future power systems [2]. 

Fig. 1 illustrates the different areas of applications of big data 

analytics in power systems and the interconnections.  

During recent years many scholars have addressed some 

of the application of big data in power systems. This subject 

is broad, and the presented works in the literature have not 

provided a comprehensive review to cover all categories and 

challenges. The previous works usually have covered some 

areas rather than a broad point of view. In [3], a review is 

presented about the various usages of big data in distributions 

level. Some authors have introduced the role of big data in 

transient stability assessment [4]. A similar study is also 

conducted on the security and resilience assessment in large-

scale grids using big data techniques [5]. Many researchers 

have also addressed the applications of big data and cloud 

computing in the areas of wide-area measurement, wide-area 

monitoring, and wide-area protection [6,7]. Some authors 

have also proposed common big data techniques used in 

smart grids [8-10]. Some authors have investigated the role of 

big data analytics in demand response modeling [11]. The 

applications of big data in renewable power generation are 

also addressed in [12,13]. An example of the use of big data 

in electricity markets and the restructured environment is 

presented in [14]. The authors in [15], have proposed a 

concise review, and they explained the state-of-the-art 

opportunities and future direction. 

In the extant study, a new well-designed classification of 

this topic is done, while many details are elaborately 

discussed. The categorization of subjects is made based on a 

holistic point of view, which provides a better overview of the 

topic. In each part, aside from open challenges and barriers, 

the possible solutions and prospects are also suggested. In 

other words, this paper presents a fully-fledged review of the 

applications of big data analytics in modernized cyber-

physical power systems for data-driven decision making. In 

the next section, the terminology of big data is elucidated. In 

the third section, the algorithms and methods proposed for big 

data handling are introduced. In the fourth section, the 

possible challenges faced or to be faced in the smart grid 

implementation using big data analytics have been 

investigated. In section 5, an elaborate description of various 

applications and initial requirements pertaining to the 

deployment of big data analytics for better exploitation of 

resources and more flexible, secure, reliable, environmentally 

sustainable, and economical operation is presented. 

Ultimately, the conclusions are presented in the end.  
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Figure 1.  Big data management structure.



 

II. Big data analytics definition 
The term data refers to any type of sensed output from any 

source, whereas big data denotes a massive body of data that 

is too complex, big, and overwhelming to be processed and 

analyzed using traditional methods. Hence, the volume, 

velocity, value, and variety are regarded as four primary 

attributes of big data. These attributes convey the big size of 

data, the wide diversity of types of data (strings, numbers, 

texts, encrypted data, etc.), the importance of data and 

analytics, and real-time data acquisition. If traditional methods 

have adequate time to process the data, they eventually can 

analyze any large volume dataset. However, the ever-growing 

continuous acquisition of data severely hedges the data 

processing that it reveals the importance of velocity and 

precludes traditional methods to be used [16]. Besides, the 

term analytics denotes the systematic computational analysis 

of data or statistics. In all facets of data processing from any 

system, the amount of data is not important, but what really 

matters is what will be done with these data and how to make 

sense out of data. In other words, the value of data must be 

extracted, and the required information must be extrapolated. 

The necessity of online real-time decision-making is 

growingly and broadly recognized in various sectors of 

everyday life and particularly in industry, which requires a 

large reliable computation burden as well as a highly equipped 

environment. The application domain of big data is phased in 

for health care sector, transportation sector, financial systems, 

search engines, social networking, to name just a few. Big 

data helps to acquire a better perception of complicated 

systems, such as power systems, to assist sustainable 

development socially, economically, and environmentally 

[17]. 

III. Algorithms for big data processing 
The most prevalent methods for dealing with big data 

analytics are machine learning and deep learning methods. 

Machine learning refers to the deployment of artificial 

intelligence (AI) to teach a machine (a computer system) by 

exploring patterns and discovering inferences among 

unclassified training data without the use of explicitly 

programmed instructions. The term “machine learning” was 

first coined by Arthur Samuel in 1595. There are different 

types of learning algorithms, which are employed in machine 

learning analytics, such as supervised and unsupervised 

learning, reinforcement learning, feature learning, anomaly 

detection, association rule learning, etc. The generality of 

supervised learning expresses a mathematical model made up 

of appropriate inputs and the desired outputs. Classification 

algorithms, support vector machine (SVM), and regression 

algorithms are recognized as some common types of 

supervised learning. In unsupervised learning methods, a 

mathematical model is built based on eligible inputs and 

regardless of desired outputs in order to extrapolate patterns 

and structure. This method is normally employed to explore 

and discover the existing structures in a dataset. Clustering 

and dimensionality reduction are two well-known models of 

unsupervised learning. Pattern recognition is also a model 

that can be implemented both supervised or unsupervised. 

Reinforcement learning methods denote a category of 

machine learning that uses positive and negative feedback to 

improve the cognition of a system in a dynamic environment, 

and it is particularly used for decision-making and automatic 

controlling.  

Knowledge discovery and data mining is another field of 

data science that it has a large and ambiguous degree of 

overlap with machine learning. However, they have 

conceptual differences in terms of meaning, history, tasks, 

origin, implementation, nature, applications, abstraction, 

techniques, and scopes. The most distinct difference between 

them is that data mining is used to extract knowledge from a 

big dataset, while machine learning is used to export a new 

algorithm from a big dataset that can operate virtually the 

same as the original system does. The goal of data mining 

methods is to extract the rules from existing data, while the 

goal of machine learning is to teach a computer (machine) to 

learn and perceive the given rules. Data mining requires 

human interference and creativity, while machine learning is 

automated, self-learned, once design self-implemented, and 

needless of human efforts in order to train a machine to do a 

task intelligently. It can be alleged that machine learning can 

be applied in a vast area, while data mining has a more 

limited scope. As a more comprehensive definition, machine 

learning works based on known properties that are learned 

from the training data, while data mining delves into the 

discovery of previously unknown properties. Data mining 

employs machine learning algorithms, although it follows 

different goals; machine learning, on the other hand, also uses 

data mining algorithms as a preprocessing step or as 

"unsupervised learning" to improve learner accuracy. Big 

data has also intimate ties to statistics and optimization. For 

example, some learning problems are formulated to minimize 

an objective function, which expresses the discrepancy 

between real actual values and the predicted values from the 

model being trained [18].  

Deep learning, which is also called as hierarchical 

learning, is a subset of machine learning that is basically based 

on artificial neural networks (ANNs). Deep learning has 

multiple applications, such as computer vision and speech 

recognition, etc. ANNs consist of multiple consecutive layers 

to progressively extract latent features from raw inputs. In 

order to ease the computation in deep learning methods, 

especially for systems with complex structures, the 

dimensionality reduction, and numerosity reduction 

techniques are suggested. Time-series forecasting and 

classification is an intriguing topic used for various 

applications in the power system from large-scale to local-

scale. One of the facets, which makes the operation of power 

systems challenging to be tackled, is the fact that the 

monitoring has to be done on streams of raw and processed 

data that have a time-series evolution. An accurate forecast 

helps the operator to better cope with disturbances [19]. 



 

IV. Challenges confronting the 

deployment of big data analytics in future 

power systems 

In future power systems, a wide variety of challenges 

exists which compromise the reliability, security, and 

economy of supply. The main challenge correlated to the 

deployment of big data in power systems stems from the 

existence of a large number of operational constraints, the 

complex structures in electricity markets and clearance 

mechanisms, as well as computation time restrictions for 

many types of optimization in power systems. Some 

conducted researches indicate that the practical big data 

incorporation still has some hurdles in terms of storage, 

sharing, visualization, computation time, and computation 

burden. Firms that are prone to use big data analytics tools 

would like to employ less expensive processing and storage 

alternatives.   

During the recent decade, many governments and private 

companies have largely invested in data management tools. 

These tools usually follow the cycle of data preparation, 

analysis, validation, collaboration, reporting, access, and 

retrieving in order to deal with different types of large-scale 

optimization problems with significant uncertainty of input 

parameters. These input data are gathered from various 

sources in several ways, mainly to solve a forecasting, 

classification, or optimization problem. The important point 

that should be noticed is that the classical optimization 

methods are not designed and able to handle the large data 

size properly.  

There are some applied methods for dealing with such 

cases. Unconstrained optimization problems is a type of large-

scale case in power system operation, which needs a high 

memory due to the existence of many variables. In this case, 

some penalty terms are included in the objective function. 

Even though some techniques are developed to solve such 

problems, the conjugate gradient method is suggested to deal 

with large-scale problems. Some problems in power system 

operation may have non-smooth functions (discontinuous or 

non-differentiable), which have abrupt bends in their graph. 

Many approaches are introduced to deal with small-scale 

problems, whereas these methods show weakness in 

scalability. However, the Bundle method is proposed to tackle 

large-scale cases. This method has two types of diagonal 

bundle method (D-Bundle) and limit memory bundle method 

(LMBM). In addition, some problems in the area of reliability, 

adequacy, risk assessment, state estimation, power markets, 

and long-term expansion planning have logistic functions, 

which require logistic optimization techniques. Such problems 

usually have a large data set of historical records that need big 

data techniques to be dealt with. Moreover, in some cases, the 

objective function or some of the constraints do not meet the 

convexity condition. Many real cases in power system 

operation and planning have non-convex nature. In such a 

case, particularly when a large data set is involved, it is very 

hard to find the global optimum point and the local optimum 

solutions are also inevitably acceptable [20]. The economic 

load dispatch (ELD) problem with consideration of the valve-

point effect is case in point. Swarm intelligence algorithms are 

good tools to obtain local optimum solutions with relatively 

agile performances. Such algorithms usually follow the local 

random search techniques to seek for the best answer in the 

search space. Besides, some problems in practice have several 

objectives that should be maximized or minimized at the same 

time. Such problems are referred to as multi-objective 

problems, in which some functions conflict with each other. In 

such a circumstance, there are Pareto optimal solutions. For a 

big data set, not only the best accuracy must be achieved, but 

also the computation time is also important. Hence, some 

distributed optimization techniques such as alternating 

direction method of multipliers (ADMM), which is a kind of 

spectral partitioning approach, is suggested in order to obtain 

an answer close to a local optimum. Furthermore, during the 

recent two decades, many researchers and decision-makers 

have confronted with problems pertaining to optimization 

programming for real cases in terms of memory, convergence 

speed, and accuracy because the problem has comprised of 

thousands or millions of variables. Many approaches have 

been suggested to tackle high-dimensional optimization 

problems. Among these methods, metaheuristic methods 

sound more time-efficient with a fair computing performance. 

A myriad of scholars has used metaheuristic algorithms for the 

purpose of optimization is power systems. Many others have 

improved the existing methods, and some others have 

innovated new metaheuristic techniques that demonstrate 

better or the same performances. However, there are still vast 

open research fields, challenges, and issues for improvement. 

Among these methods, evolutionary algorithms have the fame 

of being powerful techniques. However, as the number of 

variables increases, the performance of optimizer is 

deteriorated. A scant improvement in the result can be 

concluded in outstanding economic saves in practical cases in 

power systems. In such cases, the hybridization of 

metaheuristic methods for large-scale high-dimensional 

problems is suggested, which shows superior performance. 

Some scholars have also suggested combining metaheuristics 

with fuzzy logic for searchability enhancement [2]. 

V. Deployment of big data for various 

applications in power system operation 

Some big data techniques, such as time series techniques 

for load and price forecasting, have been widely used in 

power systems since the last decades. The advent of smart 

grids has converted a traditional electricity network into a 

data-driven industry. In a power system, various data must be 

acquired from physical devices and infrastructures so that the 

complexity, speed, and size of collected data is important.           

During the recent decade, the volume of generating data 

in a power grid has been dramatically increased, which are 

used mainly for power market analyzing and power system 

state estimation through collecting data from phasor 

measurement units (PMUs, also known as time-synchronized 

phasor). By harnessing insights from these rich sets of data, 



 

the generation companies (GENCOs) and other market 

participants are able to improve their performance and 

increase their profitability. In a restructured market, a variety 

of market indicators must be forecasted, such as hourly spot 

market price, near-real-time customers’ demand, and the 

production of RESs. These factors are salient decision-

making inputs for electric utilities and GENCOs to establish 

the most effective strategy for boosting their own benefit. In 

addition, the data collected from PMUs’ remote feedback 

signals should be optimized in order to be used in wide-area 

measurement systems (WAMS) for better system monitoring 

and detection of intra-area oscillations. Then the oscillations 

could be damped through special controllers. Big data 

analytics can be used for real-time self-healing schemes and 

distribution network reconfiguration. In the following parts, 

some of the main applications of big data analytics in the 

current and future power systems are elucidated.    

A. Big data in smart grids 

In order to efficiently manage power systems, particularly 

distribution systems, the smart grid idea is suggested. This 

concept has a wide range of requirements that should be 

fulfilled. One of the key prerequisites for the launch of a 

smart grid is the implementation of advanced information and 

communication technologies (ICT) and modern 

telecommunication infrastructures such as 5G wireless 

communication networks. In addition, the materialization of 

smart grids requires the utilization of advanced metering 

infrastructure (AMI). The use of an extensive sensor network 

for a wide variety of connected devices will produce a vast 

information flow inside the network. These data are 

heterogenous and with different frequencies. The main 

concern about such a large volume of data is how to classify, 

quantify, analyze, and take profit from them in a certain 

period with the best possible accuracy. The grid’s planners 

and operators must analyze and discover these data to find 

out the insights from them in order to operate the network 

more efficiently. However, dealing with such a high amount 

of data brings up a tough challenge for the experts. The 

urgency of data processing increases as the volume of data 

grows, which is a matter of primary concern. Fig. 2 shows the 

big data usages in the direct domain of power systems, as 

well as some off-domain usages in electricity grids.  

In future power systems, a myriad of elements of the grid 

is equipped with intelligent, robust, and reliable IoT-oriented 

devices, which report the latest state of grid in near real-time 

to the monitoring center, and the local or central controlling 

center will issue the proper controlling command. The IoT-

enabled devices will increase the level of autonomy and 

smartness of the grid [21,22]. This matter is specifically 

important for electricity networks due to the dynamic nature 

of elements. The existence of a secure and high-performance 

communication network is indispensable for the 

interconnection between IoT-based devices and is the 

prerequisite for a smart electricity network. The main 

challenge is that how to manage and operate the physical 

network by a cyber system and taking advantage of the large 

volume of generated data as well as boosting the intelligence 

and autonomy of subsystems and components by 

manufacturing controlling equipment powered by well-

thought-out controlling schemes and well-designed analytical 

programs. This matter alludes to the importance of big data 

techniques in future networks. At present, many ongoing 

studies are conducted to mature these methods in terms of 

speed and accuracy. Some controlling measures require real-

time data from IoT-enabled devices, while some measures 

need to be supported by historical records. Thus, a storage 

server is needed, which can be a local storage center or a 

cloud space. In addition, the computation for making a 

decision by a controlling scheme can be processed through 

cloud computation. The security of such a data-driven 

network is an extraordinary facet of these communication 

networks, which has assumed particular attention. For 

instance, the deployment of blockchain and cryptocurrencies 

are suggested by some researchers [23]. 

The cyber-physical smart grids have two layers of 

physical component and the cyber layer, which are connected 

with IoT-enabled devices together with excellent 

communication infrastructure. This communication platform 

must have specific attributes in terms of latency, bandwidth, 

interoperability, flexibility, data throughput, and 

cybersecurity. Fig. 3 demonstrates the paradigm of big data 

analytics in a cyber-physical power system. 

B. Big data in electricity markets  

Currently, the data mining methods are applied by power 

system operators for security assessment, load forecasting, 

price forecasting, power system control, and fault detection. 

There are still big data issues corresponded with power 

system modeling in the areas of scheduling, unit 

commitment, and electricity market analysis. 
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Figure 2.  Big data usages in the power systems; background layer (off-domain) and direct usages in power systems.
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Figure 3.  The structure of big data analytics in power systems. 

1) unit commitment 

In order to better recognize the enormity of big data issues 

in power system operation, the following extreme condition 

in a security-constrained unit commitment problem can be 

discussed. Such a problem usually is solved by a two-stage 

decomposition technique, which accounts for a master 

problem and a subproblem to arrange a day-ahead schedule. 

To capture the decision, the problem must seek the solution 

space by solving the problem constraints many times through 

internal loops and with respect to optimization cuts. The 

calculation of any loop requires a specific computation time 

(usually lower than 1 second). To reach a predefined duality 

gap (or relative gap), the procedure must be continued to a 

certain number of iterations to resolve all violations. Now 

suppose a system with a large number of buses and a list of 

thousands of N-1 or N-2 contingencies for 24 consecutive 

intervals. Such a problem definitely involves the solution of 

millions of contingency cases. To achieve all post-

contingency results using AC power flow will definitely take 

many hours for such a system using a powerful computer. 

The consideration of operation strategies and stochastic 

conditions also exacerbates the solution and extends the 

overall computation time. Even though AC results are more 

accurate, but the operators tend or are obliged to use DC-

power flow along with scenario reduction techniques to 

shorten the computation time and obtain the results faster 

with an essential level of accuracy. In this case, the operators 

use additional tools to analyze the constraints of voltage and 

reactive power flow. Thus, the improvement in solving such 

an optimization problem with a large body of data and 

numerous constraints is still a challenge for the experts who 

are dealing with mathematical modeling and optimization in 

the area of power system operation. Dantzig–Wolfe 

decomposition method and Benders decomposition method 

are two decomposition techniques to tackle such large-scale 

mixed-integer multistage problems which are broadly used in 

power system analysis. The former builds a master problem 

consists of fewer rows compared with the original problem 

but a large number of columns. The looping process between 

a master problem and subproblems will be operated until the 

program reaches an optimal solution. The Benders 

decomposition method takes also the advantage of 

modularity, flexibility, and robustness. This method is 

particularly used for security-constrained economic dispatch, 

simultaneous generation, and transmission expansion 

planning, optimal power flow, hydrothermal coordination. 

However, since the Benders decomposition is a cutting-plane 

approach, it may demonstrate instabilities that are translated 

into convergence delay. Since the master problems in the 

scope of power system operation are often formulated as 

mixed-integer non-linear problems (MINLP), it entails a high 

computational burden that significantly affects the 

convergence time. Therefore, the researchers are attempting 

to improve the big data performance for such a problem, 

particularly for stochastic problems. Thus, the progressive 

hedging method and dual approximation dynamic 

programming approach are suggested. The first method 

decomposes the whole problem into several scenarios while 

defining some of the constraints as a dual problem. The 

second method includes dynamic subsystems as a parallel 

dual problem, which increases the complexity but results in a 

more accurate approximation.   

2) Financial transmission rights  



 

In addition, financial transmission rights (FTRs) are a 

vital element in the structure of any electricity market. The 

reason is that FTRs enable the participants to hedge against 

volatile market prices through uncertainty mitigation. 

Besides, FTRs facilitates competitive open access to the 

transmission network for all customers. 

The inclusion of FTRs into the market clearing 

mechanism makes the solution more sophisticated, especially 

when the contingencies corresponded with the line outages 

are contemplated. Big data analytics could be employed to 

overcome the complexity of such a problem.  

3) Time-constrained economic load dispatch  

The short-term generation schedules usually are 

maintained at different intervals, particularly in weekly and 

day-ahead periods. The classical techniques employed for this 

schedule are static methods in the sense that the program 

solves a snapshot problem rather than a dynamic problem. In 

order to come up with the prevailing changes in power 

systems, the idea of time-constrained economic dispatch is 

suggested for the improvement of the grid’s performance, in 

which the instantaneous condition of the grid topology as 

well as demand variations and components updates are 

maintained and sent to the control center to arrange a day-

ahead or two-hour-ahead redispatch. This matter facilitates a 

more secure and more economic real-time operation and 

avoids unwanted load shedding and curtailments. Such a 

problem has interdependent time-oriented constraints 

between consecutive hours, which means that the time 

horizon of calculation is more than a single hour. Such a 

problem is regarded as a big data problem in practice which 

must be solved with big data analytics techniques.  

4) Market clearing price forecasting 

The forecasting methods utterly depend on the historical 

records of the purported variable. To forecast solar or wind 

power generation in a plant, the historical weather records are 

analyzed by the forecasting tools to predict the short-term 

forecasts. In a similar way, the load forecasting can be 

maintained for the scheduling with respect to the historical 

records of the loads’ consumption. That is why the load 

forecasts usually have relatively low inaccuracy. However, 

price forecasting is a little different. Price forecast is 

influenced by demand forecast, historical records of price, as 

well as some other correlating factors, which makes the 

forecast more complicated. Hence, at present, the common 

using methods of price forecasting have still a relatively high 

level of error. The current methods usually simplify the 

solution in order to reach a sensible answer for price signals. 

These problems will be more acute when the proposed 

methods are employed for real cases with big historical data 

sets of records for a large-scale system. The market clearance 

mechanism is a complex paradigm per se, especially when 

there is congestion in the power flow analysis. This 

mechanism must also be taken into consideration for better 

forecasting. The classical methods are inappropriate and 

unable to deal with such a hard and complex problem. So far, 

some augmented and combinatorial types of neural networks 

are suggested to achieve better solutions, but the challenge is 

still open for researchers for further improvement and 

innovation.  

Besides, in a deregulated and restructured power system, 

generating companies are private equities that would like to 

maximize their own benefit. One of the most useful tools for 

this purpose is price-based unit commitment. This tool helps 

the company owners to bid in a competitive electricity 

market. Generation companies employ this tool in addition to 

the game theory methods while receiving price signals from 

the operator. The calculation of such a complicated problem 

needs a powerful method. This matter necessitates the 

deployment of big data analytics in a restructured 

environment.   

5) Collaborative operation of grid-scale energy storage 

facilities with RESs 

There is ever-growing technological development in 

large-scale energy storage facilities. These resources play a 

vital role in the balance of instantaneous energy in the grid. 

An energy storage unit can be utilized for the purposes of 

bulk energy time-shifting, frequency regulation in small-

scale, frequency stability in large-scale, and power reliability 

(as reserve capacity) [24]. These features boost the flexibility 

and dispatchability of the grid’s operation. In a restructured 

environment, wind and solar plants usually would like to 

have a collaborative operation with a storage facility to offset 

their imbalance due to uncertainties. This matter helps them 

to mitigate financial detriments and improve their 

profitability due to curtailments. The storage plants are also 

prone to have a joint operation because they can increase 

their profit. The storage units protect the renewable units 

against high prices of the spot market and redress the 

negative and positive imbalances. This matter mitigates the 

risk of bidding in the day-ahead market for uncertain 

renewable sources. It is noticeable that a joint operation 

scheme needs a smart infrastructure so that the instantaneous 

imbalances must be managed by a collaborative operation 

controlling scheme. The storage unit must dedicate part of its 

capacity to the renewable unit’s imbalance, and the power 

exchange between them is out of the day-ahead schedule. The 

storage unit absorbs the excess generation of RES when there 

is excess renewable generation. The storage plant has to 

inject power instead of RES when this unit is unable to fulfill 

its pledged commitment. Such a storage management scheme 

needs an elaborated scheme as well as modern 

communicational infrastructure for better coordination. The 

computation should be performed by big data analytics for 

intra-day and intra-hour forecasts in order to manage real-

time power exchange [25].    

6) Uncertain demand response modeling 

Demand response resources (DRRs) are regarded as 

demand-side virtual power plants. In a broader sense, it is 

also referred to as demand-side management (DSM). There 

are some types of demand response programs categorized as 

time-based rate programs and incentive-based programs. The 

latter can be a voluntary or mandatory program. Some of 

these programs provide a definitive source of power (e.g., 

direct load control (DLC)) for scheduling while some others 



 

have uncertain nature. Even though some non-linear models 

are proposed for the model of such resources, these models 

suffer from scant accuracy and incompatibility. This matter 

underlies the employment of big data analytics for better 

modeling of such volatile and stochastic sources. 

In traditional systems, the demand was treated as inelastic 

loads, which could not be interrupted or deferred. Unlike, the 

modernized power systems use digital information for better 

energy saving by changing the electric usage of end-users, 

particularly in critical conditions. DRRs are also integrated 

for the balancing services such as frequency regulation, 

valley filling, and peak load leveling. Together with the rise 

in the implementation of DR programs at high-resolution 

level, load serving entities (LSEs) have encountered new 

challenges and difficulties such as collecting, storing, and 

processing of such a large volume of data, which generally 

encompasses power consumption of different appliances and 

a high quantity of residential end-users, in addition to the data 

gathered from industrial and commercial consumers. LSEs 

must take the forecasted (expected) consumption values of 

the loads and expected generation values of available 

GENCOs, together with the varying electricity prices, in the 

schedule decision-making process, and resulting load 

reductions. This matter further complicates the solution of a 

data management problem. Hence LSEs are inclined to 

employ big data management techniques to handle such 

enormous data sets. Big data analytics applications in demand 

response can be summarized into three categories of 

consumption pattern assessment and demand forecasting, 

electric load classification, and dynamic pricing. In order to 

improve the cyber-security at various layers of intelligent 

demand response execution, some methods such as 

encryption and anonymization are used in order to achieve 

services such as remote access control and authentication 

[20]. 

C. Large scale wind and solar power exploitation 

Various types of neural networks and clustering methods 

have been widely used and developed by researchers and 

experts to forecast and estimate the generated power of RES. 

In these methods, the models of wind turbines or solar panels 

are trained by meteorological data, such as wind speed, 

humidity, solar irradiance, temperature, etc., while respecting 

to wind turbine parameters and solar panel characteristics. 

These methods are used in order to maintain long-term, mid-

term, and short-term predictions. The mentioned method 

highly relies on a massive amount of heterogeneous data, 

which reflect always a high level of non-smoothness, non-

convexity, and non-linearity. The extraction of the correct 

information and precise results is still a big challenge in this 

field, and many ongoing research works are conducting to 

improve the methods that have been using in practice.   

D. Stability and security control by PMUs 

Synchrophasors or time-synchronized vectors are the 

measured values by PMUs which report the instantaneous 

phase angle and magnitude of the sine waves of current or 

voltage at the point of installation in the grid. These high-

speed high-precision PMUs are approximately 100 times 

faster than traditional SCADA system, and provide a high 

level of accuracy via GPS for the monitoring system to 

identify instabilities, power swing conditions, and transient 

phenomena. Besides, PMUs provide data of the grid for off-

line analysis as well as real-time operation. This technology 

is typically adopted for wide-area monitoring and wide-area 

protection subject to improve efficiency and reliability and to 

mitigate operation cost.   

One of the vital signs of an electric grid is the frequency. 

A PMU can report the instantaneous frequency along with the 

speed of change of frequency according to the IEEE C37.118 

communication protocol. The aggregated data of PMUs, 

topological data of the grid, and the data of configuration of 

equipment must be integrated into a controlling center in a 

wide-area monitoring facility in order to be analyzed for 

occurred of possible blackouts in a large-scale network.    

E. Grid operation with large penetration of the hybrid 

electric vehicle  

With respect to the recent advances in battery technology 

resulting in a considerable decrease in charging time along 

with remarkable improvement in the efficiency, the 

pervasiveness of electric vehicles (EV) has had an accelerated 

ever-growing trend. It is estimated that in the near future, the 

penetration of millions of electric vehicles in a power system 

can affect the operation of grids. It should be noted that the 

model of electric vehicles in a power system is very complex 

because they are regarded as mobile distributed energy 

storage sources that have highly stochastic, intermittent, and 

volatile consumption and generation nature. Hence, the 

integration of massive amounts of these vehicles will pose a 

big challenge in future power systems. They can demand 

power from any point in the network and can also inject 

power to the grid at any point. This challenge can only be 

managed by taking advantage of IoT-enabled devices, cloud 

space accessibility, and big data processing techniques. As a 

solution, each electric must be equipped with IoT devices. It 

must be defined for the controlling center that the electric car 

has vehicle-to-grid (V2G) capability or not. In addition, the 

instantaneous charging status of EVs’ batteries must be 

reported. The number of EVs in the vicinity of a specific 

parking lot must be instantaneously reported. With respect to 

these items, along with some other factors, the highly 

uncertain behavior of EVs can be estimated. The EVs should 

be classified and clustered into different categories, and the 

historical records pertaining to each individual EV can 

specify the most probable and routine power exchange 

pattern of an owner. Such a massive generation and storage of 

data needs a cloud space all over the power system. In 

addition, enjoying the cloud computing technology, the big 

data techniques must be employed to process and deal with 

such a huge volume of produced data. In essence, the use of 

big data techniques for such a complex problem is inevitable.  

F. Active distribution networks 

Unlike tradition distribution networks, an active 

distribution network is comprised of many demand-side 

generation resources, which are also called virtual power 

plants (VPPs), and the operator has overall real-time 



 

monitoring and control over all feeders and intrinsic 

microgrids. The utilization of distributed generation, mostly 

small-scale RES, can boost the flexibility of the operation and 

enhance operational efficiency and economy in low-voltage 

grids. Modern distribution networks must be equipped with 

advanced meters and two-way communicational tools in 

order to facilitate the execution of demand-side management 

tasks in order to improve power quality and voltage 

instabilities and mitigating losses. The use of AMIs enabled 

with IoT technology will produce a big data set that can be 

analyzed for enhancement of observability and controllability 

of the grid. Hence, a higher level of autonomy will facilitate 

the control of these systems. So far, various methods of 

artificial intelligence, machine learning, statistical techniques, 

and pattern recognition methods are suggested to deal with 

data analytics in active distribution networks [26]. Big data 

analytics techniques can be applied in active distribution 

networks for the purposes of grid visualization, high 

impedance fault detection, loss detection, demand response 

execution, integration of RES in demand side, equipment 

diagnosis, asset management, etc. To tackle the 

abovementioned problems, many methods are used, such as 

decision tree, regression, clustering, support vector machine, 

neural networks, Bayesian estimation, classification, and 

sequence mining. The important point is what kind of data 

must be collected and how often these data must be produced. 

These data must be processed by big data techniques to 

extract targeted benefits. Some scholars have also suggested 

big data techniques such as greedy algorithms and clustering 

methods for topology learning and state estimation in radial 

distribution networks. Some researchers have also employed 

unsupervised learning techniques and data visualization 

methods for voltage unbalance analysis in distribution grids.     

G. Microgrids and local-scale energy Hubs  

Microgrids are proliferating throughout the world day by 

day. The idea is to satisfy part of demand in demand-side 

using various decentralized small-scale sources. The priority 

of generation is by renewable clean sources, but the existence 

of storage facilities and fossil-fuel burning generators is yet 

inevitable. The microgrids are usually connected to an 

upstream distribution grid as a back-up source. So far, many 

controlling schemes are introduced for the operation of 

microgrids as well as some schemes for the control and 

protection of interconnected microgrids. The implementation 

of such schemes requires dealing with a large body of data for 

data-driven optimization to maximize the exploitation of 

internal resources and meeting the security of loads. 

Moreover, some innovative schemes have suggested multi-

carrier and multi-agent energy schemes for the microgrids so 

that the optimization of electricity, heat, and gas consumption 

is addressed at the same time. These systems are sometimes 

referred to as multiform energy systems. In these models, an 

energy hub is defined for the microgrid, and the controlling 

scheme has the responsibility to optimize the cost and 

emission simultaneously by receiving updated data of the 

system continuously [27]. In these systems, combined cooling 

heating and power (CCHP) facilities, micro-turbines usually 

are used for flexible and reliable operation. The execution of 

such a controlling scheme requires the employment of big data 

analytics to provide a high level of autonomy and intelligence. 

On a larger scale, district heat and electricity supply schemes 

and centralized energy management systems are also 

suggested [28]. Fig. 4 shows the hierarchical paradigm of a 

smear management scheme using big data analytics.  
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Figure 4.  Hierarchical paradigm of smart energy management scheme. 

VI. Conclusions 
Big data refers to a new breed of structured or unstructured 

data with high velocity, volume, and variety in a highly 

complicated structure for being processed, which cannot be 

analyzed via classic methods. The electricity grids are 

experiencing a gradual transition toward smart future power 

systems. The most predominant feature of this era is high-

frequency generation and exchange of a large volume of data 

in real-time that must be analyzed to make proper decisions 

and taking appropriate actions as quickly as possible. The 

data-driven environment of future power systems has salient 

attributes of high penetration of renewable energy sources, 

proliferated use of IoT-enabled and cloud-based devices, 

higher integration of demand-side resources, and better 

management of electrical vehicle fleets, especially with V2G 

capabilities, higher implementation of individual and 

interconnected microgrids and nanogrids, decentralization of 

controlling and monitoring centers capable of high-frequency 

communication data processing, high integration of 

cryptocurrencies secured by blockchain techniques, etc. The 

focus of big data analytics is mainly on the field of artificial 

intelligence, machine learning, data mining, and advanced 

statistics. The extensive deployment of big data analytics in 

various interconnected intelligent mechanisms in future power 

systems will shift the traditional grids, which are pure 

physical, to cyber-physical grids with a high level of 

autonomy, intelligence, adaptability, flexibility, functionality, 



 

efficiency, safety, and reliability. The incorporation of big data 

techniques also procures economic and environmental benefits 

and alleviates the system vulnerability. 
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