1,418 research outputs found

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    A survey on modeling of microgrids - from fundamental physics to phasors and voltage sources

    Get PDF
    Microgrids have been identified as key components of modern electrical systems to facilitate the integration of renewable distributed generation units. Their analysis and controller design requires the development of advanced (typically model-based) techniques naturally posing an interesting challenge to the control community. Although there are widely accepted reduced order models to describe the dynamic behavior of microgrids, they are typically presented without details about the reduction procedure---hampering the understanding of the physical phenomena behind them. Preceded by an introduction to basic notions and definitions in power systems, the present survey reviews key characteristics and main components of a microgrid. We introduce the reader to the basic functionality of DC/AC inverters, as well as to standard operating modes and control schemes of inverter-interfaced power sources in microgrid applications. Based on this exposition and starting from fundamental physics, we present detailed dynamical models of the main microgrid components. Furthermore, we clearly state the underlying assumptions which lead to the standard reduced model with inverters represented by controllable voltage sources, as well as static network and load representations, hence, providing a complete modular model derivation of a three-phase inverter-based microgrid

    Dynamic modeling, stability analysis, and controller design for DC distribution systems

    Get PDF
    The dc distribution systems or dc microgrids are known to be best suited for integration of renewable energy sources into the current power grid and are considered to be the key enabling technology for the development of future smart grid. Dc microgrids also benefit from better current capabilities of dc power lines, better short circuit protection, and transformer-less conversion of voltage levels, which result in higher efficiency, flexibility, and lower cost. While the idea of using a dc microgrid to interface distributed energy sources and modern loads to the power grid seems appealing at first, several issues must be addressed before this idea can be implemented fully. The configuration, stability, protection, economic operation, active management, and control of future dc microgrids are among the topics of interest for many researchers. The purpose of this dissertation is to investigate the dynamic behavior and stability of a future dc microgrid and to introduce new controller design techniques for the Line Regulating Converters (LRC) in a dc distribution system. Paper I is devoted to dynamic modeling of power converters in a dc distribution system. The terminal characteristics of tightly regulated power converters which are an important factor for stability analysis and controller design are modeled in this paper. Paper II derives the simplified model of a dc distribution system and employs the model for analyzing stability of the system. Paper III introduces two controller design methods for stabilizing the operation of the LRC in presence of downstream constant power loads in a dc distribution system. Paper IV builds upon paper III and introduces another controller design method which uses an external feedback loop between converters to improve performance and stability of the dc grid. --Abstract, page iv

    A Unified Distributed Control Strategy for Hybrid Cascaded-Parallel Microgrid

    Get PDF

    Modeling and Large Signal Stability Analysis of A DC/AC Microgrid

    Get PDF
    abstract: The concept of the microgrid is widely studied and explored in both academic and industrial societies. The microgrid is a power system with distributed generations and loads, which is intentionally planned and can be disconnected from the main utility grid. Nowadays, various distributed power generations (wind resource, photovoltaic resource, etc.) are emerging to be significant power sources of the microgrid. This thesis focuses on the system structure of Photovoltaics (PV)-dominated microgrid, precisely modeling and stability analysis of the specific system. The grid-connected mode microgrid is considered, and system control objectives are: PV panel is working at the maximum power point (MPP), the DC link voltage is regulated at a desired value, and the grid side current is also controlled in phase with grid voltage. To simulate the real circuits of the whole system with high fidelity instead of doing real experiments, PLECS software is applied to construct the detailed model in chapter 2. Meanwhile, a Simulink mathematical model of the microgrid system is developed in chapter 3 for faster simulation and energy management analysis. Simulation results of both the PLECS model and Simulink model are matched with the expectations. Next chapter talks about state space models of different power stages for stability analysis utilization. Finally, the large signal stability analysis of a grid-connected inverter, which is based on cascaded control of both DC link voltage and grid side current is discussed. The large signal stability analysis presented in this thesis is mainly focused on the impact of the inductor and capacitor capacity and the controller parameters on the DC link stability region. A dynamic model with the cascaded control logic is proposed. One Lyapunov large-signal stability analysis tool is applied to derive the domain of attraction, which is the asymptotic stability region. Results show that both the DC side capacitor and the inductor of grid side filter can significantly influence the stability region of the DC link voltage. PLECS simulation models developed for the microgrid system are applied to verify the stability regions estimated from the Lyapunov large signal analysis method.Dissertation/ThesisMasters Thesis Engineering 201

    Source-load-variable voltage regulated cascaded DC/DC converter for a DC microgrid system

    Get PDF
    Solar energy is available abundantly, the utilization of solar energy is developing rapidly and the photovoltaic based direct current (DC) microgrid system design is under demand but the stability of the DC voltage is of most important issue, as the variation of the output DC voltage is a common problem when the load or source voltage varies, hence a regulated DC output voltage converter is proposed. This paper presents source-load-variable (SLV) voltage regulated cascaded DC/DC converter which is used to obtain regulated output voltage of 203.1 V DC at 0.4 duty ratio with ±2% voltage fluctuations for the variation in the input source voltage and ±1.5% voltage fluctuations for the variation in load resistance of the nominal value with lower output voltage ripple and without use of sub circuits. A simulation model of SLV voltage regulated cascaded DC/DC converter in LTspice XVII software environment for the assessment of converter performance at different input source voltages and load resistances are verified

    Solid state transformer technologies and applications: a bibliographical survey

    Get PDF
    This paper presents a bibliographical survey of the work carried out to date on the solid state transformer (SST). The paper provides a list of references that cover most work related to this device and a short discussion about several aspects. The sections of the paper are respectively dedicated to summarize configurations and control strategies for each SST stage, the work carried out for optimizing the design of high-frequency transformers that could adequately work in the isolation stage of a SST, the efficiency of this device, the various modelling approaches and simulation tools used to analyze the performance of a SST (working a component of a microgrid, a distribution system or just in a standalone scenario), and the potential applications that this device is offering as a component of a power grid, a smart house, or a traction system.Peer ReviewedPostprint (published version

    Dynamic Interactions of a Double-stage Photovoltaic Power Converter: Modelling and Control

    Get PDF
    Photovoltaic (PV) systems are a promising renewable source to achieve green energy targets and be part of the electricity generation. Lots of efforts have been devoted to increase the penetration level of PV systems and its share in the generated electricity. Power quality is one of the challenges that impact the penetration level of PV systems. It is important to ensure high power quality from PV systems to allow more installations to the grid. So, PV power quality issues have to be addressed properly. It was reported that the poor power quality of the PV systems might be caused by many reasons such as the large amount of PV power fluctuation, the low level of current from the PV system, and large populations of PV inverters. In addition to the aforementioned reasons, recently it was suggested that perturb and observe (P&O) controller is another source of harmonics which result in a deprived PV power quality. This newly reported problem is based on experimental observations without full understanding of the generation mechanism of these harmonics in the PV system, the relation between the P&O controller design and the generated harmonics, and the effect of these harmonics on the rest of the system. Thus, in-depth analysis of the harmonics in PV systems due to P&O controller and a solution to eliminate these harmonics are demanded. Therefore, in this research an investigation is carried out to explore P&O related harmonics in a double-stage grid-connected PV system. First, regarding the P&O related harmonics full explanation of how harmonics are generated due to the perturbing nature of the P&O controller is provided, a modelling approach is suggested to identify the frequency and the amplitude of the variations in the DC bus due to the P&O controller, the effect of different factors (e.g. weather conditions, system parameters, system operating point, and P&O architecture) on the induced harmonics are investigated. Secondly, regarding the effect of the P&O related harmonics on the rest of the system an intense simulation analysis is provided to explore the possible effect of the P&O related harmonics on increasing the interaction between the system power stages. This can help to set system design recommendations and guidelines such as sizing the dc-link capacitance and designing the system controllers. Finally, a novel mitigation solution is proposed to supress the P&O related harmonics. That can help to reduce the dynamic interaction between system power stages and improve the power quality of the PV system

    Linear Quadratic Optimal Control for a Cascaded Converters-Based Microgrid

    Get PDF
    There is a constant transformation of the electric grid due to an ongoing interest in the deployment of renewable energy resources and electric microgrid formation. This transformation, though advantageous in many ways, poses great challenges for the energy industry and there must be a constant improvement in modeling, simulation, analysis and control techniques in order to characterize and optimize the system design and operation. In this light, the scope of this thesis is focused on developing a linear model, analyzing the stability and designing an optimal linear quadratic regulator (LQR) for a microgrid system. The microgrid system used is inspired by an existing, operational grid-connected microgrid testbed at the National Center for Reliable Electric Power Transmission (NCREPT). Simulation results using Matlab/SimulinkTM show that the linearized model has the same dynamics and converges to the same steady state values as the actual model with minimal error. The simulation results also show that the system’s stability margin lessens as the input impedance to the microgrid increases; suggesting a weaker coupling. Finally, it is observed through simulation that the proposed LQR controller remarkably improves the voltage settling time and overshoot, henceforth ameliorating the ability to include larger renewable generation capacity

    Nonlinear Control of an AC-connected DC MicroGrid

    Full text link
    New connection constraints for the power network (Grid Codes) require more flexible and reliable systems, with robust solutions to cope with uncertainties and intermittence from renewable energy sources (renewables), such as photovoltaic arrays. A solution for interconnecting such renewables to the main grid is to use storage systems and a Direct Current (DC) MicroGrid. A "Plug and Play" approach based on the "System of Systems" philosophy using distributed control methodologies is developed in the present work. This approach allows to interconnect a number of elements to a DC MicroGrid as power sources like photovoltaic arrays, storage systems in different time scales like batteries and supercapacitors, and loads like electric vehicles and the main AC grid. The proposed scheme can easily be scalable to a much larger number of elements.Comment: IEEE IECON 2016, the 42nd Annual Conference of IEEE Industrial Electronics Society, October 24-27, 201
    • …
    corecore