Dynamic modeling, stability analysis, and controller design for DC distribution systems

Abstract

The dc distribution systems or dc microgrids are known to be best suited for integration of renewable energy sources into the current power grid and are considered to be the key enabling technology for the development of future smart grid. Dc microgrids also benefit from better current capabilities of dc power lines, better short circuit protection, and transformer-less conversion of voltage levels, which result in higher efficiency, flexibility, and lower cost. While the idea of using a dc microgrid to interface distributed energy sources and modern loads to the power grid seems appealing at first, several issues must be addressed before this idea can be implemented fully. The configuration, stability, protection, economic operation, active management, and control of future dc microgrids are among the topics of interest for many researchers. The purpose of this dissertation is to investigate the dynamic behavior and stability of a future dc microgrid and to introduce new controller design techniques for the Line Regulating Converters (LRC) in a dc distribution system. Paper I is devoted to dynamic modeling of power converters in a dc distribution system. The terminal characteristics of tightly regulated power converters which are an important factor for stability analysis and controller design are modeled in this paper. Paper II derives the simplified model of a dc distribution system and employs the model for analyzing stability of the system. Paper III introduces two controller design methods for stabilizing the operation of the LRC in presence of downstream constant power loads in a dc distribution system. Paper IV builds upon paper III and introduces another controller design method which uses an external feedback loop between converters to improve performance and stability of the dc grid. --Abstract, page iv

    Similar works