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Abstract— Hybrid cascaded-parallel microgrid is becoming a 

new emerging structure to integrate multiple low-voltage power 
sources. This paper presents a unified distributed control 
strategy to implement power sharing control in hybrid cascaded-
parallel microgrid under both resistive-inductive (RL) and 
resistive-capacitive (RC) load, where a sign function is 
introduced to automatically match load characteristic. Active 
power and reactive power regulators without frequency drop are 
developed, and low bandwidth communication network is 
employed to support power management and improve system 
redundancy. Furthermore, small signal model of hybrid 
cascaded-parallel microgrid with RL load and RC load is 
established. Also, small signal stability and dynamic 
performance of the proposed distributed control strategy is 
investigated. Simulation results show that the unified distributed 
control strategy is able to implement desirable power sharing 
under different load types with superior control performance. 
Also, the proposed control strategy is able to improve system 
redundancy and support plug-and-play operation of microgrid.  

 
Index Terms—Hybrid cascaded-parallel microgrid, 

distributed control, power sharing, low band width 
communication. 

 

I.  INTRODUCTION  

ICROGRID is becoming an attractive and promising 
structure to integrate renewable energies into power 

system [1]-[2], which can enhance reliability and flexibility of 
power supply. Autonomous microgrids can be typically 
classified as parallel-type [3] and cascaded-type [4] as shown 
in Fig.1(a)-(b). Recently, hybrid cascaded-parallel microgrid is 
proposed as a promising structure [5]-[6] to support high 
power operation as shown in Fig.1(c), which can be applied for 
low-voltage (LV) power sources integrating such as cascaded 
PV panels and battery cells. However, power control strategy 
of hybrid cascaded-parallel microgrid has merely been 
concerned. 

�In parallel-type microgrids, power control issue is one of 
important concerns in autonomous microgrids. Droop control 
strategies have been frequently developed to perform 
proportional power assignment in parallel-type microgrids 
[7]-[8]. However, implementation of droop control tends to 
cause an undesirable frequency deviation, which thus weakens 
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power quality. Currently, no single decentralized control can 
guarantee frequency/voltage regulation and exact 
active/reactive power sharing at the same time [9]. Thus, 
communication-based control methods have been widely 
researched. The centralized control is presented in [10]-[11]. 
By installing current sharing module to broadcast current 
reference to each inverter, the current sharing is maintained 
during both steady state and transients. However, these 
methods need high-bandwidth communication links between 
central controller and each inverter, which reduces the system 
reliability and may impose single point of failure on the 
central controller [12]. Moreover, the plug-and-play feature is 
not available since the central controller needs to reset 
parameters when a new DG is added to the system. Also, 
distributed control method has been paid much attention due 
to redundancy and scalability. In distributed control, each DG 
unit exchanges information with others according to defined 
communication protocols [13]-[15], where only low-
bandwidth communication (LBC) network is required to 
implement synchronization operation among all inverters. In 
addition, single point of failure can be avoided in distributed 
control by properly designing communication network, 
enhancing system reliability and redundancy [16]-[17].  

The cascaded-type microgrid is also proposed for high 
power application [18]-[25] as shown in Fig.1(b). Especially, 
this topology is practical for integrating LV photovoltaic 
sources into medium-voltage (MV) power system using LV 
devices [18]-[19]. Similarly, most power sharing methods of 
cascaded-type system are centralized with high-bandwidth 
communication [18]-[21], which mitigates system reliability 
and flexibility. An inverse droop control strategy is proposed 
in [22] to perform power sharing without using 
communication links. However, this method is only 
applicable for microgrid with resistive-inductive (RL) load. 
To overcome this limitation, [23] proposes a frequency-active 
power/reactive power (f-P/Q) droop control strategy to 
perform power sharing for microgrid with RL load and 
resistive-capacitive (RC) load. Considering diverse user 
demands, a unified droop control is proposed in [24] to 
enhance stable operation under four-quadrant modes. [25] has 
introduced a P-߱ droop control for the grid-connected 
cascaded inverters. The necessary and sufficient condition of 
system stability is also presented. However, methods in [18]-
[25] cannot perform unified power control in hybrid cascaded-
parallel microgrid, which is addressed in this paper. 

Hybrid cascaded-parallel microgrid structure as shown in 
Fig.1(c) is proposed in [5]-[6] for high power application, 
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Fig. 1. Architectures of microgrid. (a) Parallel-type microgrid. (b) Cascaded-type microgrid. (c) Hybrid cascaded-parallel microgrid. 

which is able to provide high flexibility and reduce operation 
cost. However, power control strategy in cascaded-parallel 
microgrid with both RL and RC load is slightly developed. A 
hierarchical control structure is developed in [5] to perform 
power sharing and synchronization operation, where 
centralized control method is implemented to distribute the 
power demand among cascaded inverters. However, the 
application of central controllers weakens reliability and 
flexibility of paralleled strings. Communication-less power 
control strategy for cascaded-parallel microgrid is slightly 
developed. 

Therefore, this paper presents a unified distributed control 
method. The main contributions in this work are explained as 
follows. (1) A unified distributed control strategy is proposed 
to implement power control under both RL and RC load. (2) 
Small signal stability and dynamic performance of hybrid 
microgrid with the proposed distributed control strategy is 
investigated. 

II. POWER CONTROL CHARACTERISTIC OF PARALLEL-TYPE 

AND CASCADED-TYPE DROOP-CONTROLLED MICROGRIDS 

In this section, power control characteristic of parallel-type 
and cascaded-type microgrids is analyzed. 

A. Power Control Characteristic of Parallel-type Microgrid 

Fig.1(a) shows the circuit configuration of parallel-type 
microgrid. With the assumption of inductive feeder 
impedance, the output active power Pi and reactive power Qi 
of the i-th DG are given as (1)-(2) [3],[24].  

  sin   i p i p
i iP iP

i i

VV VV
P

X X
  (1) 

 
 

 i i p

i
i

V V V
Q

X
  (2) 

where Vi is the output voltage amplitude of i-th inverter. VP is 
the voltage amplitude of common AC bus. δiP is the power 
angle difference between Vi and Vp. Xi is reactance of the 
feeder impedance between DG#i and AC bus. 

The relationship between ∆Pi-∆δi and ∆Qi-∆Vi can be 
simplified from (1)-(2) as (3)-(4). 
   i iP   (3) 

 i iQ V     (4) 

where   represents “a positive correlation”.  
The mathematical relationships (3)-(4) indicate that the 

output active and reactive power can be controlled by 
regulating frequency and voltage of inverters. Therefore, the 
conventional active power-angular frequency (P-ω) and 
reactive power-voltage (Q-V) droop control can be given as (5)
-(6) [26]. 

 *
i i im P     (5) 

 *
i i iV V n Q    (6) 

where ωi is the angular frequency, ω* and V* represent angular 
frequency and voltage amplitude without load. mi and ni are 
coefficients of P-ω droop control and Q-V droop control, 
respectively. 

B. Power Control Characteristic of Cascaded-type 
Microgrid  

Since power control characteristic in cascaded-type 
microgrid is different with that in parallel-type microgrid, an f-
P/Q droop control is introduced in [23] to perform power 
control among cascaded inverters, whose principle is revealed 
as follows. 

In the cascaded-type microgrid shown in Fig. 1(b), output 
power of the i-th DG is given as (7)-(8) [23]. 

  
1

cos  


 
n

i i L j ij L
j

P V Y V   (7) 
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  
1

sin  


 
n

i i L j ij L
j

Q V Y V   (8) 

where |YL| and φL are the amplitude and angle of load 
admittance. δij is the power angle between DG#i and DG#j, 
which is much smaller than φL in steady state. Then, ∆Pi-∆δi 
and ∆Qi-∆Vi relationships are given as (9) and (10). 

  sini L iP       (9) 

  sini L iQ V      (10) 

Fig. 2 and Fig. 3 show the ∆Pi-∆δi and ∆Qi-∆Vi relationships 
in cascaded-type microgrid. With RL load, there is sin(φL)<0, 
which means the ∆Pi has a negative correlation with ∆δi and 
∆Qi has a positive correlation with ∆Vi. In this case, the P-ω 
inverse droop control and conventional Q-V droop control 
should be adopted. With RC load, ∆Pi has a positive 
correlation with ∆δi and ∆Qi has a negative correlation with 
∆Vi, which means that the system can be stable under the 
conventional P-ω droop control and Q-V inverse droop control. 
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Fig. 3. ∆Qi-∆Vi relationship in cascaded-type microgrid. 

 

The effective power control strategies of parallel- and 
cascaded-type microgrid with RL or RC load are summarized 
in Table I according to aforementioned analysis. It can be seen 
that neither droop control nor inverse droop control is 
compatible among cascaded and paralleled inverters under RL 
load or RC load, which means these decentralized control 

methods are not applicable for hybrid cascaded-parallel 
microgrid. However, since the communication links are 
usually indispensable for fault monitoring and energy 
management, a distributed control strategy based on LBC thus 
can be designed to perform unified power control under RL 
load and RC load, which is presented in Section III.  

III. PROPOSED DISTRIBUTED CONTROL STRATEGY 

In this section, a distributed control strategy is proposed to 
perform unified power control for hybrid cascaded-parallel 
microgrid with RL and RC load, which is able to implement 
proportional power sharing without frequency deviation. 

A. Communication Network Design 

Fig. 1(c) shows circuit configuration of the hybrid cascaded-
parallel microgrid. Several LV DGs are cascaded-connected to 
provide a medium- or high-voltage. These cascaded DGs are 
then connected to AC bus in parallel to supply power to the 
load. Such a physical system can be equipped with a 
communication network to facilitate data exchange among 
DGs for control and monitoring purposes. Fig. 4 shows the 
graphical representation of communication network. In the 
graph, nodes represent DGs and edges connecting notes 
represent communication links. Each node sends its active 
power and reactive power information to neighboring nodes. 
The information transmission can be bidirectional or 
unidirectional, and the graph is correspondingly called 
undigraph or digraph. In addition, nodes receive information 
from neighbors with different gains which are called 
communication weights. For example, if Node#i receives data 
xj from Note#j with weight aij, it means that the information 
received by Node#i is aij∙xj. Usually, aij>0 if Node#i receives 
information from Node#j and aij=0, otherwise. In the graph, an 
adjacency matrix A=[aij]∈ℝN×N is defined to carry the 
communication weights. For each node, the weight in degree 

i

in
i ij

j N

d a


  corresponds to the sum of weights of all ingoing 

edges into Node#i, where Ni is the set of neighbors of Node#i. 
The associated in-degree matrix is defined as  in in

iD diag d . 

The Laplacian matrix is constructed as inL D A  .  
In fact, for a system with a large number of DGs, topology 

of communication network may be various. However, there 
are some rules for managing a communication network. The 
mechanism can be explained as follows. Some definitions are 
first introduced. In the graph, a direct path from Node#i to 
Node#j is a sequence of edges connecting the two nodes. Root 
node is defined as a certain node, where there exists at least a 
direct path between the node and any other nodes. A graph 
includes a spanning tree if it contains a root node. A 
communication network is viewed as interconnection if it 
contains at least a spanning tree. Then, the rules of designing a 
communication network are given as follows [27]-[28]. (1) To 
ensure connectivity of communication network, the network 
should contain at least one spanning tree. (2) To ensure system 
redundancy, the remaining communication network should 
still be connected in the case of any single communication link 
failure.  

TABLE I 
DECENTRALIZED POWER CONTROL OF MICROGRIDS 
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Fig. 6. Block diagram of proposed unified distributed control strategy. 

 
In this paper, a bidirectional sparse-network with the 

minimum redundancy is developed. The graphical diagram of 
the proposed communication network is shown in Fig. 5. It has 
been proved that the ring structure is one of the most effective 
structures [28]. Here, the number ij (i=1, 2, …, N; j=1, 2, …, 
Mi) denotes the j-th DG in the String#i, where N is the number 
of strings and Mi is the number of DGs in String#i. In the 
hybrid cascaded-parallel microgrid, information network 
includes communication links among cascaded DGs and those 
among paralleled DGs. Considering the sparsity, only one DG 
in each string is selected as a leader to exchange information 
with leaders of other strings. In addition, the mechanism for 
leader selection can be established for different objectives, and 
here we choose DGs with biggest rated power as leaders for 
optimum reliability.  

B. Proposed Unified Control Strategy of Hybrid Microgrid 

In autonomous microgrids, the output power can be 
automatically assigned by controlling frequency and output 
voltage of DG unit. In hybrid microgrid, a distributed control 
strategy is proposed as (11)-(12). 
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s
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where the subscript ij represents the j-th DG of string#i. h∈Nij_s 
is the set of cascaded neighbors of DG#ij. r∈Nij_p is the set of 
paralleled neighbors of DG#ij. aij_h (aij_r) is the communication 
weight between DG#ij and DG#h (DG#r), whose definition 

has been given in Section III.A. 
ijk  and _

ij
pk  are parameters 

of proportional controllers in the active power regulator (11). 

_, ,ij ij ij
P I P pk k k  and _

ij
I pk  are parameters of proportional-

integral (PI) controllers in the reactive power regulator (12). 
pu

ijP  and pu
ijQ  are normalized active and reactive power of 

Node
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Fig. 4. Graphical representation of communication network. 
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DG#ij, which are given as (13). The rated voltage amplitude 
Vij

* is given as (14). 

 = , =ij ijpu pu
ij ijrated rated

ij ij

P Q
P Q

P Q
  (13) 

 * *

1

=
i

rated
ij

ij Pm
rated
il

l

Q
V V

Q



  (14) 

where rated
ijP  and rated

ijQ  are rated active and reactive power of 

DG#ij and VP
* is the rated voltage amplitude of AC bus. 

Fig. 6 shows block diagram of the distributed control 
strategy. The distributed controller consists of active power 
regulator and reactive power regulator. Controller of DG#ij 
receives information (Ph

pu, Qh
pu, Pr

pu, Qr
pu) from its neighbors 

and processes them with local data (Pij
pu, Qij

pu) in two 
regulators. The frequency reference value is calculated by 

active power regulator according to (11). Here, 1
ij  is added 

to mitigate the power mismatch among cascaded DGs, so a 
sign function sgn(Qij) is introduced to match the different 
power transmission characteristics under RL load and RC load, 
ensuring the proposed controller effective under both 

situations. And 2
ij  carries the active power mismatch 

between DG#ij and its paralleled neighbors, which is zero for 
the non-leaders since the set Nij_p is an empty set. The phase 
angle of DG#ij is given as (15). 

 * 1 2
ij ij ij ijdt t dt dt           (15) 

It can be seen from (15) that the frequency of DG#ij will 

synchronize to the rated value in the steady state. And 1
ij  

and 2
ij  will converge to zero, which means accurate 

proportional active power sharing is guaranteed. In reactive 
power regulator, reactive power mismatch is fed to PI 

controllers, producing correction terms 1
ijV  and 2

ijV  to 

adjust the voltage amplitude. Similar with the active power 

regulator, a sign function sgn(Qij) is introduced in 1
ijV  to 

match the different reactive power transmission characteristics 

under RL load and RC load. In the steady state, 1
ijV  and 2

ijV  

decay to zero and all normalized reactive power synchronizes, 
which indicates the proportional reactive power sharing.  

The proposed distributed control is a unified method for 
parallel and cascaded inventers under RL and RC load. 
Compared with central control method, DGs only need to 
exchange data with several neighbors by a low-bandwidth 
communication network. Therefore, single point of failure can 
be avoided so that the reliability and flexibility of microgrid 
can be enhanced. 

IV. SMALL SIGNAL MODELING AND STABILITY ANALYSIS 

Small signal stability of microgrids with proposed 
distributed control strategy is investigated in this section.  

A. Small Signal Modeling 

1) Normalized power modeling 
The power generation of the ij-th DG is presented as (16). 
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  (16) 

where Vij and δij represent the output voltage amplitude and 
phase angle of ij-th DG. VP and δP are the voltage amplitude 
and phase angle of AC bus. |Yi| and φi are the amplitude and 
angle of line admittance of String#i. According to Kirchhoff 
laws, the voltage of AC bus is obtained as (17). 
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Define =ij ij s ij s         , where ωs is the frequency in 

steady state. Then, combining (16)-(18), the instantaneous 
power supplied by the ij-th DG is given as (19). 
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 (19) 
Instantaneous power is then passed through low-pass filter 

with the cutoff frequency ωc. The average active and reactive 
power are given as (20). 
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  (20) 

Combining (13), (19) and (20), small signal equations of 
normalized active and reactive power can be obtained as (21). 
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where variable vectors (  puP ,  puQ ,   and V ) and 

parameter matrixes (
pup

K , pup V
K , 

puq
K  and puq V

K ) are 

given in Appendix. 
2) Distributed controller modeling 
With the proposed distributed control, small signal models 

of active and reactive controllers are given as (22). 
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where Kω, Kω_p, KP, KI, KP_p, KI_p are control coefficient 
matrixes. Ls and Lp are Laplacian matrixes carrying the 
information of cyber configuration. They are given in 
Appendix. 

3) Overall small signal modeling 
Small signal dynamic model of the whole system can be 

established by combining (21)-(22) as (23).  
 x A x     (23) 
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Fig. 7. Eigenvalue trajectory as  0,100ωk  . 
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Fig. 8. Eigenvalue trajectory as  0,10ω_pk  . 
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Fig. 9. Eigenvalue trajectory as  0, 100Pk  . 

100

0

-50

-8 -6 -4 -2 0

λ1

λ2Im
ag

in
ar

y

Real

50

-100

2

kI=31

kI=31

 

Fig. 10. Eigenvalue trajectory as  0, 100Ik  . 
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Fig. 11. Eigenvalue trajectory as  _ 0, 50P pk  . 
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Fig. 12. Eigenvalue trajectory as  _ 0, 50I pk  . 
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B. Eigenvalue Analysis 

The eigenvalues of matrix A can be calculated to investigate 
small signal stability of the system. According to the system 
parameters described in Section V, eigenvalue trajectory of 
system (23) is analyzed while varying the control parameters, 
where control parameters are identical for all DG units, 
defined as kω, kω_p, kP, kI, kP_p and kI_p. It is noted that matrix A 
has one zero eigenvalue which is corresponding to rotational 
symmetry and only the nonzero eigenvalues are valid for the 
system dynamic stability [29]-[31]. Since the system has 
similar response to the control parameters under RL and RC 
load, only the dynamic response under RL load is described, 
while the stability regions of control parameters under RC load 
can be found in Table II.  

Fig. 7 and Fig. 8 show eigenvalue trajectories with kω and 
kω_p varying. In Fig. 7, when kω is small, conjugate poles λ1 and 
λ2 are located in right half-plane, which means that system is 
unstable. The eigenvalue traces will move to left-half plane as 
increases of kω. Meanwhile, λ3~λ11 move toward the imaginary 
axis decreasing the damping ratio of system. In Fig. 8, as kω_p 
increases, λ1 and λ2 move toward unstable region and 
eventually lie on the right half-plane when kω_p=6.4, making 
system unstable. 

Fig. 9 and Fig. 10 show eigenvalue trajectories with kP and 
kI varying. It can be seen from Fig. 9 that increasing kP attracts 

the conjugate poles λ1 and λ2 to the imaginary axis, making the 
system unstable. It can also be seen from Fig. 10 that 
increasing kI facilitates λ1 and λ2 moving away from the 
imaginary axis, keeping system stable. Parameters kP_p and kI_p 
have similar influence with kP and kI respectively, as shown in 
Fig. 11 and Fig. 12.  

Fig. 7-12 show control parameters kω, kω_p, kP, kI, kP_p and 
kI_p have critical influence on system stability and dynamic 
performance. Taking the overshoot during transients into 
account, the stability regions of those parameters under RL 
load and RC load are shown in Table II. 

 

 

    

TABLE II 
STABILITY REGION OF CONTROL PARAMETERS 

RL Load RC Load 

Parameter Stability Region Parameter Stability Region 

kω [12.3, 100] kω [18, 100] 

kω_p [0, 6.4]	 kω_p	 [0, 5.3]	

kP [0, 82.5] kP [0, 76.2] 

kI [31, 100] kI [35.8, 100] 

kP_p [0, 44.2] kP_p [0, 39.5] 

kI_p [11.5, 50] kI_p [13.4, 50] 

DG#14 DG#13 DG#12 DG#11

DG#24 DG#23 DG#22 DG#21

DG#34 DG#33 DG#32 DG#31

DG#44 DG#43 DG#42 DG#41

1 4.5 4.7 LZ j

2 4.5 4.7 LZ j

3 4.5 6.4 LZ j

4 4.5 6.4 LZ j

1 0.25+ 0.63Z j

2 0.2+ 0.63Z j

4 0.26+ 0.63Z j

3 0.23+ 0.63Z j

 
Fig. 13. Equivalent circuit of test microgrid. 

13 12 1114

23 22 2124

33 32 3134

43 42 4144  
Fig. 14. Cyber configuration of test microgrid. 

TABLE III 
SYSTEM PARAMETERS 

Item Value Item Value 

Voltage amplitude reference of 
AC bus 

Vp
* =311V 

Rated active power 

,11 12 13 141kW 1.5kW= = rated rated rated ratedP P P P  

,21 22 23 24kW .5k=2 W=2 rated rated rated ratedP P P P  

,31 32 33 34kW .5k=3 W=3 rated rated rated ratedP P P P  

,41 42 43 44kW .5k=4 W=4 rated rated rated ratedP P P P  

Rated angular frequency ߱* =100π rad/s 

Filter inductance Lf =1.6 mH 

Filter capacitance Cf =20 μF 

Communication weights _ __ , _ ,1 1  ，
ij s ij pij h h N ij h h Na a  

Rated reactive 
power 

,11 12 13 141kVar 1.5kVa= = r rated rated rated ratedQ Q Q Q  

,21 22 23 24kVar .5kVa=2 2 r= rated rated rated ratedQ Q Q Q  

,31 32 33 34kVar .5kVa=3 3 r= rated rated rated ratedQ Q Q Q  

,41 42 43 44kVar .5kVa=4 4 r= rated rated rated ratedQ Q Q Q  

Active power control coefficients kω=30, kω_p=3 

Reactive power control 
coefficients 

kP=35, kI=50 
kP_p=20, kI_p=30 
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V. SIMULATION RESULTS 

To validate effectiveness of the proposed unified distributed 
control strategy, simulation verification is implemented in a 
scale-down AC microgrid with 4×4 inverters in MATLAB. The 
circuit configuration of the exemplified microgrid is shown in 
Fig. 13. The ring communication network is shown in Fig. 14. 
The circuit and control parameters applied in simulation 
verification are given in Table III. 

A. Case I: Performance of Unified Distributed Controller 

In this case, performance of proposed distributed control 
method is tested under RL load and RC load. In practical 
operation, there exist several trivial disturbances such as 
measurement noise and parameter perturbations [3], etc., which 
may deteriorate controller performance. Therefore, immunity 
capability to these disturbances is also tested in this case. 
Measurement noise is added to voltage/current measurement 
signals and stochastic disturbance is added to controller 
parameters. Fig. 15 shows simulation results under RL load. In 
order to analyze power sharing performance of proposed 
controller under different load profiles, ZL1 is connected at first 
and ZL2 is plugged at 2s. It can be seen from Fig. 15(a) that all 
inverter frequencies synchronize to the rated frequency of 50 
Hz in the steady state without any deviation. And the system 
has a fast response with the load change. Fig. 15(b)-(c) show 
that proportional load sharing is accurately maintained among 
cascaded and paralleled sources. Fig. 16 shows simulation 
results under RC load, where ZL3 is connected at first and ZL4 is 
plugged at 2s. It can be seen that similar performance is 
achieved under RC load. These simulation results validate the 
effectiveness of unified power control strategy under RL and 
RC load. Furthermore, the proposed controller is able to deal 
with the effect of measurement noise and parameter 
perturbation as shown in Fig.15-16. 
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Fig. 15. Simulation results of case I under RL load. (a) Frequency. (b) Active 
power. (c) Reactive power.  
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Fig. 16. Simulation results of case I under RC load. (a) Frequency. (b) Active 
power. (c) Reactive power.   

B. Case II: Performance of Droop Controller 
Performance of conventional droop controller is tested in this 

case, where conventional droop controller is enabled during 2-
5s and the proposed unified distributed controller is activated 
during 0-2s and 5-8s. Fig. 17-18 show frequency responses of 
DGs under RL load and RC load. It can be seen that hybrid 
cascaded-parallel microgrid with RL and RC load would 
become unstable once droop controller is activated, which 
agrees with theoretical analysis in Section II. Compared with 
droop control strategy, the proposed distributed control strategy 
can ensure the system stability without frequency deviation 
under both RL and RC load. 
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Fig. 17. Simulation result of case II under RL load.  
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Fig. 18. Simulation result of case II under RC load.  

C. Case III: Communication Delay 

To investigate the effect of communication delay on system 
stability, controller performance with different delay time (τ 
=50ms and τ =100ms) is presented in Fig. 19 and Fig. 20. 
Controller performances under RC load are omitted since they 
are similar with those under RL load. Load change is same as it 
in case I. Fig. 19 shows the system frequency with τ =50ms. It 
can be seen that frequency synchronization is achieved at 
steady state and only little fluctuations are caused during 
transients. The active and reactive power results are omitted 
since they are similar with those in case I. In Fig. 20, bigger 
fluctuations and even the system oscillation during steady state 
are triggered when τ =100ms. From Fig. 19 and Fig. 20, it can 
be seen that communication delay may mitigate system stability 
if delay time is higher than critical value of stability region. 
Here, the proposed controller has a good immunity capability 
for communication system within delay time 50ms, which 
ensures system stability for existing communication protocols 
including WiFi and ultrawideband (UWB) [27]. 
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Fig. 19. Simulation result as τ =50ms. 
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Fig. 20. Simulation results as τ =100ms. (a) Frequency. (b) Active power. (c) 
Reactive power. 

D. Case IV: Communication Link Failure 

In this case, resiliency to the communication link failure is 
investigated. To test controller performance under cyber 
network with the minimum connectivity, links 13-14, 23-24, 
33-34, 43-44 and 14-24 fail at 0.25s, which is illustrated in Fig. 
21. It can be seen from Fig. 21 that the system remains 
connected under the new graph. Therefore, the link failure 
should have no effect on the steady-state performance. In order 
to test the response to load change, load ZL2 is attached and 
detached at 0.5s and 2.5s respectively. The performance of 
controller is identical under RL load and RC load, and thus we 
omit the plots under RC load due to space consideration. Fig. 
22 shows frequency and power distribution results under 
communication link failure. It can be seen that communication 
link failure does not affect the steady-state performance while it 
slows down the system dynamics. 

13 12 11

23 22 2124

33 32 3134

43 42 4144
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Fig. 21. Cyber configuration in case IV. 
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Fig. 22. Simulation results of case IV. (a) Frequency. (b) Active power. (c) 
Reactive power. 

E. Case V: Plug-and-Play Characteristic  

Plug-and-play characteristic of the proposed distributed 
control method is tested, via unplugging the String#4 at 0.5s 
and plugging it back in at 2.5s. The two physical configurations 
are illustrated in Fig. 23 and simulation results are displayed in 
Fig. 24. It should be noted that when String#4 is unplugged, the 
communication link 34-44 is disabled at the same time. 
Nevertheless, the cyber network remains connected and, thus, 
the steady-state performance is not compromised. From Fig. 24, 
the power supplied by String#4 reduces to zero during 
0.5s~2.5s and the excess power is proportionately shared 
among remaining DGs. After String#4 is reconnected at 2.5s, 
the controllers successfully respond to the inverter plugging 
and share load demand among all DGs. 

(a) State I (b) State II

Physical Configurations in Case V

String#1
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Fig. 23. Physical configuration in case V. 
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Fig. 24. Simulation results of case V. (a) Frequency. (b) Active power. (c) 
Reactive power. 

VI. CONCLUSIONS 

This paper presents a unified distributed control strategy for 
hybrid cascaded-parallel microgrid with different load types, 
where active power and reactive power regulators without 
frequency drop are developed. A low bandwidth 
communication network is designed to support power control 
and improve system redundancy. Furthermore, small signal 
model of hybrid cascaded-parallel microgrid is established. 
And small signal stability and dynamic performance is 
investigated. Eigenvalue analysis shows that parameters of 
active power regulator and reactive power regulator have 
critical influences on system stability and dynamic 
performance. Simulation results show that the unified 
distributed control strategy is able to implement desirable 
power sharing under RL load and RC load with superior control 
performance. Also, the steady-state performance of proposed 
control strategy is slightly affected in the presence of 
communication delay and communication link failure. In 
addition, the distributed control strategy is able to improve 
system redundancy and support plug-and-play operation of 
microgrid.  
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APPENDIX 

The variable vectors (  puP ,  puQ ,   and V ) and 

parameter matrixes (
pup

K , pup V
K , 

puq
K  and puq V

K ) in (21) 

are given as (25)-(26). 
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The control coefficient matrixes (Kω, Kω_p, KP, KI, KP_p and 
KI_p) and Laplacian matrixes (Ls and Lp) in (22) are given as 
(27).  
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