570 research outputs found

    Active actuator fault-tolerant control of a wind turbine benchmark model

    Get PDF
    This paper describes the design of an active fault-tolerant control scheme that is applied to the actuator of a wind turbine benchmark. The methodology is based on adaptive filters obtained via the nonlinear geometric approach, which allows to obtain interesting decoupling property with respect to uncertainty affecting the wind turbine system. The controller accommodation scheme exploits the on-line estimate of the actuator fault signal generated by the adaptive filters. The nonlinearity of the wind turbine model is described by the mapping to the power conversion ratio from tip-speed ratio and blade pitch angles. This mapping represents the aerodynamic uncertainty, and usually is not known in analytical form, but in general represented by approximated two-dimensional maps (i.e. look-up tables). Therefore, this paper suggests a scheme to estimate this power conversion ratio in an analytical form by means of a two-dimensional polynomial, which is subsequently used for designing the active fault-tolerant control scheme. The wind turbine power generating unit of a grid is considered as a benchmark to show the design procedure, including the aspects of the nonlinear disturbance decoupling method, as well as the viability of the proposed approach. Extensive simulations of the benchmark process are practical tools for assessing experimentally the features of the developed actuator fault-tolerant control scheme, in the presence of modelling and measurement errors. Comparisons with different fault-tolerant schemes serve to highlight the advantages and drawbacks of the proposed methodology

    On-line estimation approaches to fault-tolerant control of uncertain systems

    Get PDF
    This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as such involves the joint problem of on-line estimation within an adaptive control system. The faults that are considered are significant uncertainties affecting the control variables of the process and their estimates are used in an adaptive control compensation mechanism. The approach taken involves the active FTC, as the faults can be considered as uncertainties affecting the control system. The engineering (application domain) challenges that are addressed are: (1) On-line model-based fault estimation and compensation as an FTC problem, for systems with large but bounded fault magnitudes and for which the faults can be considered as a special form of dynamic uncertainty. (2) Fault-tolerance in the distributed control of uncertain inter-connected systems The thesis also describes how challenge (1) can be used in the distributed control problem of challenge (2). The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control action and the second acting as an adaptive compensation for significant uncertainties and fault effects. The fault effects are a form of uncertainty which is considered too large for the application of passive FTC methods. The thesis considers several approaches to robust control and estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV) control; two-level distributed control with learning coordination

    Modelling and control of a high redundancy actuator

    Get PDF
    The high redundancy actuation concept is a completely new approach to fault tolerance, and it is important to appreciate that it provides a transformation of the characteristics of actuators so that the actuation performance (capability) degrades slowly rather than suddenly failing, even though individual elements themselves fail. This paper aims to demonstrate the viability of the concept by showing that a highly redundant actuator, comprising a relatively large number of actuation elements, can be controlled in such a way that faults in individual elements are inherently accommodated, although some degradation in overall performance will inevitably be found. The paper introduces the notion of fault-tolerant systems and the highly redundant actuator concept. Then a model for a two by two configuration with electro-mechanical actuation elements is derived. Two classical control approaches are then considered based on frequency domain techniques. Finally simulation results under a number of faults show the viability of the approach for fault accommodation without re-configuratio

    Fault Diagnosis Techniques for Linear Sampled Data Systems and a Class of Nonlinear Systems

    Get PDF
    This thesis deals with the fault diagnosis design problem both for dynamical continuous time systems whose output signal are affected by fixed point quantization,\ud referred as sampled-data systems, and for two different applications whose dynamics are inherent high nonlinear: a remotely operated underwater vehicle and a scramjet-powered hypersonic vehicle.\ud Robustness is a crucial issue. In sampled-data systems, full decoupling of disturbance terms from faulty signals becomes more difficult after discretization.\ud In nonlinear processes, due to hard nonlinearity or the inefficiency of linearization, the “classical” linear fault detection and isolation and fault tolerant control methods may not be applied.\ud Some observer-based fault detection and fault tolerant control techniques are studied throughout the thesis, and the effectiveness of such methods are validated with simulations. The most challenging trade-off is to increase sensitivity to faults and robustness to other unknown inputs, like disturbances. Broadly speaking, fault detection filters are designed in order to generate analytical diagnosis functions, called residuals, which should be independent with respect to the system operating state and should be decoupled from disturbances. Decisions on the occurrence of a possible fault are therefore taken on the basis such residual signals

    Robust model-based fault estimation and fault-tolerant control : towards an integration

    Get PDF
    To maintain robustly acceptable system performance, fault estimation (FE) is adopted to reconstruct fault signals and a fault-tolerant control (FTC) controller is employed to compensate for the fault effects. The inevitably existing system and estimation uncertainties result in the so-called bi-directional robustness interactions defined in this work between the FE and FTC functions, which gives rise to an important and challenging yet open integrated FE/FTC design problem concerned in this thesis. An example of fault-tolerant wind turbine pitch control is provided as a practical motivation for integrated FE/FTC design.To achieve the integrated FE/FTC design for linear systems, two strategies are proposed. A H∞ optimization based approach is first proposed for linear systems with differentiable matched faults, using augmented state unknown input observer FE and adaptive sliding mode FTC. The integrated design is converted into an observer-based robust control problem solved via a single-step linear matrix inequality formulation.With the purpose of an integrated design with more freedom and also applicable for a range of general fault scenarios, a decoupling approach is further proposed. This approach can estimate and compensate unmatched non-differentiable faults and perturbations by combined adaptive sliding mode augmented state unknown input observer and backstepping FTC controller. The observer structure renders a recovery of the Separation Principle and allows great freedom for the FE/FTC designs.Integrated FE/FTC design strategies are also developed for Takagi-Sugeno fuzzy modelling nonlinear systems, Lipschitz nonlinear systems, and large-scale interconnected systems, based on extensions of the H∞ optimization approach for linear systems.Tutorial examples are used to illustrate the design strategies for each approach. Physical systems, a 3-DOF (degree-of-freedom) helicopter and a 3-machine power system, are used to provide further evaluation of the proposed integrated FE/FTC strategies. Future research on this subject is also outlined

    FTC with Dynamic Virtual Actuators: Characterization via Dynamic Output Controllers and H

    Get PDF
    The paper presents new conditions, adequate in design of dynamic virtual actuators and utilizable in fault-tolerant control structures (FTC) for continuous-time linear systems, which are stabilizable by dynamic output controllers. Taking into account disturbance conditions and changes of variables in FTC after virtual actuator activation and applying the nominal control scheme relating to the biproper dynamic output controller of prescribed order, the design conditions are outlined in terms of the linear matrix inequalities within the enhanced bounded real lemma forms. Using a free tuning parameter in design, and with suitable choice of the controller order, the approach provides the way to obtain acceptable dynamics of the closed-loop system after activation of the dynamic virtual actuator

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Fault-tolerant control under controller-driven sampling using virtual actuator strategy

    Full text link
    We present a new output feedback fault tolerant control strategy for continuous-time linear systems. The strategy combines a digital nominal controller under controller-driven (varying) sampling with virtual-actuator (VA)-based controller reconfiguration to compensate for actuator faults. In the proposed scheme, the controller controls both the plant and the sampling period, and performs controller reconfiguration by engaging in the loop the VA adapted to the diagnosed fault. The VA also operates under controller-driven sampling. Two independent objectives are considered: (a) closed-loop stability with setpoint tracking and (b) controller reconfiguration under faults. Our main contribution is to extend an existing VA-based controller reconfiguration strategy to systems under controller-driven sampling in such a way that if objective (a) is possible under controller-driven sampling (without VA) and objective (b) is possible under uniform sampling (without controller-driven sampling), then closed-loop stability and setpoint tracking will be preserved under both healthy and faulty operation for all possible sampling rate evolutions that may be selected by the controller

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Fault Tolerant Control Systems:a Development Method and Real-Life Case Study

    Get PDF
    • 

    corecore