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Abstract of the Dissertation

This thesis deals with the fault diagnosis design problem both for dynamical

continuous time systems whose output signal are affected by fixed point quantiza-

tion, referred as sampled-data systems, and for two different applications whose

dynamics are inherent high nonlinear: a remotely operated underwater vehicle

and a scramjet-powered hypersonic vehicle.

Robustness is a crucial issue. In sampled-data systems, full decoupling of

disturbance terms from faulty signals becomes more difficult after discretization.

In nonlinear processes, due to hard nonlinearity or the inefficiency of lineariza-

tion, the “classical” linear fault detection and isolation and fault tolerant control

methods may not be applied.

Some observer-based fault detection and fault tolerant control techniques are

studied throughout the thesis, and the effectiveness of such methods are vali-

dated with simulations. The most challenging trade-off is to increase sensitivity

to faults and robustness to other unknown inputs, like disturbances. Broadly

speaking, fault detection filters are designed in order to generate analytical diag-

nosis functions, called residuals, which should be independent with respect to the

system operating state and should be decoupled from disturbances. Decisions on

the occurrence of a possible fault are therefore taken on the basis such residual

signals.
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Chapter 1

Introduction

The main aim of this thesis is to provide robust deterministic fault diagnosis

techniques both for linear quantized sampled-data systems and for some classes of

nonlinear systems. This is achieved by designing controllers together with output

observers in a feasible set of assumptions.

1.1 Motivations

Over the past two decades, the growing demand for higher automatic system

performance on one side and more cost efficiency on the other side has drawn

increasing attention to the problems of Fault Detection and Isolation (FDI) and

Fault Tolerant-Control (FTC). Indeed early indications of faults occurrence can

help avoiding system breakdown, mission abortion or catastrophes on nuclear

reactors, chemical plants or aircrafts, and also help maintaining other advanced

systems like cars and rapid transit trains. For instance, recent dramatic news

about Fukushima nuclear power plant reactor accident and Cruise Concordia

crash showed the importance of on-line robust fault detection in power plants

and cruise liner.

Due to the numerous advantages that digital technology and computers can

offer, quantized Sampled Data (SD) systems are largely addressed in industrial

applications. These type of dynamical systems operate in continuous time, but

the output signals are sampled at certain time instants (usually periodically)
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due to the presence of an analog-digital converter, yielding discrete-time signals.

Sampled-data systems can thus be considered as a type of hybrid systems, involv-

ing both continuous-time and discrete-time signals. For instance, a grass-cutting

robot dynamics follows the classical continuous-time kinematics law but its po-

sitions, which are the outputs of the process, may be controlled by a digital

computer, so the continuous signals are sampled and become discrete functions.

The latter are then transformed back into continuous time values which get the

robot to go in a specific direction, for example.

It’s worth noting that another kind of dynamical process which is really in-

teresting from a fault diagnosis point of view is nonlinear systems. Indeed most

industrial plants show nonlinear behavior. For some nonlinear processes it is

sufficient to use linearization around operating points in order to apply linear

FDI/FTC methods; however, in general this is often not possible due to hard

nonlinearity or the inefficiency of linearization. Moreover nonlinear fault diag-

nosis techniques for nonlinear systems are more interesting than linearization

methods because the latter only hold in a neighborhood of the equilibrium point

around which the linearization has been done.

1.2 Background

Since the beginning of the 1970s the fault diagnosis research field gained in-

creasing consideration in both theory and applications.

In this context the “main actor” is a fault which may be defined as an un-

expected change in the process due to components malfunction and variations

in operating conditions, whose effect is some degradation of the overall system

performance [54], [9], [50], [51]. Such malfunctions may occur either in the sen-

sors (instruments), or actuators, or in the components of the process [36] and

are usually associated to increasing operating costs, off-specification production,

line shut-down and possible detrimental environment impact. According to [9]

and [51] the term “fault” differs from “failure” since the former denotes a mal-

function while the latter suggests a complete breakdown of a system component.

In this thesis no distinction between the two word will be done. A fault may be
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additive or multiplicative and according to its time dependence it may belong to

the abrupt (stepwise) class, the incipient (drift-like) class, it may be an intermit-

tent signal or it may represent a loss in efficiency [77]. Figure 1.1 displays the

time dependence of different classes of faults.

(d)

(a)

(c)

(b)

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1.1: Time dependence of faults: (a) abrupt fault, (b) incipient fault, (c)

intermittent fault and (d) loss in effectiveness.

Fault tolerance techniques may be based either on physical (hardware) re-

dundancy using multiple lanes of sensors, actuators and other type of redundant

hardware components, or on analytical (software) redundancy using functional

relations between measured variables [9], [26]. This thesis deals with analytical

redundancy methods which just need mathematical models of the considered pro-

cess (therefore they are referred as “model-based approach”) and neither extra

equipment nor maintenance cost which are necessary in hardware redundancy

schemes.

Dealing with fault diagnosis policies of any kind of dynamical systems consist

in solving the following problems.

Fault detection Decide whether or not a fault has occurred in the considered

dynamical process.

Fault isolation Find in which component a fault has occurred, i.e. localize

different faults.

Fault identification and fault estimation Identify the fault and estimate

its magnitude, i.e. estimate the type, the size and the nature of the fault.



4 1. Introduction

Fault tolerant control (fault accommodation vs control reconfigura-

tion) Guarantee stability and satisfactory performance under faulty con-

ditions. A ways of controller re-design is fault accommodation in which

the controller parameters have to be adapted to the dynamical properties

of the faulty system. Fault accommodation differs from control reconfig-

uration which involves changing the control structure in response to the

fault [4], [76].

Figure 1.2 briefly summarizes the basic ideas of FDI and FTC.

FDI

Controller Process

fault disturbance

input
output

FTC

Figure 1.2: FDI and FTC

Model-based FDI and FTC

Originated in the early 70’s, the model-based fault detection and isolation ap-

proach has developed remarkably since then. As classified in [74] FDI techniques

can be based either on qualitative models [48], [72] or on quantitative models

(for comprehensive surveys see [12], [36], [38], [39], [45], [52], [80], [83] and the

books by Gertler [44], Patton et al. [9], Lunze et al. [4], Isermann [53], Noura

et al. [64] and Ding [27]). Following the definitions provided in [54], qualita-

tive approaches describe a system behavior in qualitative terms using intervals

or symbols as values of signals, while quantitative approaches rely on differential

equations describing analytical dependencies among the signals.

Among the model-based quantitative fault detection techniques that have

been widely studied in the literature, the observer-based approach basically con-
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sists in reconstructing process measurements with the aid of an observer, built

using the mathematical model of the process itself. Decisions on the occurrence

of a possible fault are therefore taken on the basis of an analytical function of the

observed states called residual.

It should be noted that robustness is a crucial issue in fault detection, as

witnessed by the large body of work on the subject that has appeared in the

past decades. In particular, H∞ optimization ( [9], [27], [28], [49], [59], [71]) aims

at achieving an acceptable compromise between robustness to disturbances and

fault sensitivity, while the adoption of unknown input observers (UIO) ( [9], [10],

[29], [36], [51], [68], [69]) is aimed at analytically decoupling the state estimation

error from the unknown inputs. Broadly speaking, the residual generated within

the UIO approach should be independent with respect to the system operating

state and should be decoupled from disturbances.

After a FDI scheme has verified the occurrence of a fault in the process, a

fault tolerant control is needed in order to attain the control objectives in spite of

faults or, if this turns to be impossible, to assign new (achievable) objectives to

avoid catastrophic behaviors. Generally speaking there exist two approaches to

FTC: the passive and the active approach. Passive FTC takes into account a set

of presumed faults and provides robust control techniques which ensure that the

closed loop system remains insensitive to the repertory of faults considered. This

strategy tends to be conservative and deals with unanticipated faults. In contrast,

in the active approach a new control system reacts to the occurrence of systems

faults on-line in real-time in an attempt to maintain the overall system stability

and performance [4], [67]. In particular, active FTC may be obtained by fault

accommodation (FA) in which an appropriate control law is defined taking into

account information provided by a fault detection and isolation (FDI) method.

SD systems

Most FDI literature results address plants either in the continuous-time or in

the discrete-time domain. Despite of its large diffusion in industrial applications,

limited attention has been given to Sampled Data systems (SDs) [11], [40], [63],

constituted by continuous-time plants driven by digital computers (by the aid
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of analog/digital and digital/analog converters) as displayed in Figure 1.3. Dif-

ferently from the classical discrete-time description of sampled data systems, as

discussed in [57] and in [61], SD systems resulting from quantization can be nat-

urally viewed as hybrid dynamical systems, i.e., systems described by a coupling

between continuous and discrete dynamics. The digital controller is fed with

quantized output measurements, and control is performed with limited informa-

tion.

In the case of perturbed plants, if matched disturbances affect the continuous-

time plant, full decoupling of disturbance terms from faulty signal becomes more

difficult in SD systems [83], because uncertainty satisfying the matching condition

in the original continuous-time plant do lose such property after discretization,

therefore unmatched disturbances should be considered. This effect could make

even harder the design of robust tools to be used for detecting the eventual

occurrence of faults.

In the framework of SD systems, a possible FDI approach, called “indirect de-

sign”, consists in approximating either the continuous-time or the discrete-time

plant and using the known techniques; but because of the approximations one

might not get a satisfactory result [55], [84]. Instead the “direct method” [11] is

simpler, it does not need any approximations but ignores what is happening be-

tween the sampling instants which is a relevant issues when dealing with multirate

SD systems, i.e. when signals may be sampled at different rates [31], [85]. In this

thesis systems with signals synchronously sampled at a single rate are addressed.

The recent papers by Ding et al. [83], [84] proposed a direct FD design approach

for SD systems obtained solving an optimization problem based on a well defined

operator. Nevertheless no explicit analytical residual function is provided there.

A/D
CONTINUOUS-TIME

SYSTEMD/A
input output

quantization errorfault

Figure 1.3: SD systems
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Some class of Nonlinear systems: ROV and HSVs

As remarked above, FDI has been widely investigated in the area of lin-

ear systems (see, for example, [9], [36], [39], [52]). Moreover several studies

have developed observers for fault diagnosis for given classes of nonlinear sys-

tems [25], [42], [47], [62], [82]. In the literature some applications of fault diag-

nosis are reported for aeronautical and aerospace systems (for example, see [54]).

This thesis deals with the FDI and FTC problems of two different nonlinear ap-

plications: an underwater remotely operated vehicle (ROV) [58] and a scramjet-

powered hybrid vehicle (HSVs) [66].

In the last decades unmanned underwater vehicles (UUVs), usually classified

as either autonomous underwater vehicles (AUVs) or remotely operated vehi-

cles (ROVs) [1], have increased their popularity, especially as a cost-effective

solution for performing complex tasks in the underwater environment without

risking human life (e.g. environmental data gathering, transportation of assem-

bling modules for submarine installations, inspection of underwater structures).

Operational activity requires the vehicles to be able to detect and recover from

actuator faults in order to continue a mission in some form [35], [73]. Indeed

when actuator faults occur and result in abnormal operations, the only current

solution is to abort the mission, and use a damage control to make UUVs sur-

face [54]. Even though most UUVs use adaptive control systems, the response of

the controller is reactive, and no consideration is given to the source or extent of

the failures. It is desirable to incorporate a function of actuator fault detection

and isolation into the control system, so that it is possible to detect and identify

actuator fault and/or failures, and design compensation control laws.

Totally different is the case of air-breathing hypersonic vehicles which are

intended to be a reliable and cost-effective technology for access to space [32].

Because of the variability of the vehicle characteristics with light conditions (for

example, thermal effects on the structure), significant uncertainties affect the

vehicle model [6]. In scramjet-powered hypersonic vehicles (HSVs), engine unstart

is a phenomenon that occurs as a result of several causes, which include distortion

of the incoming airflow, thermal chocking of the flow in the combustor, and engine

control system malfunction.
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During unstart, the vehicle experiences an instantaneous loss of thrust and a

sudden change in pitching moment, usually accompanied by residual side forces

and yawing/rolling moments. Slope reversal in stability and control derivatives

has also been observed, which may cause an impulsive transition to unstable flight

conditions [5]. Unless proper corrective actions are taken, inlet unstart usually

results in system failure. Although every effort must be taken by the guidance

and control system to avoid the onset of unstart, it is recognized that such event

may be inevitable; hence the control architecture must be capable of detecting

the transition to unstart and steering the vehicle to a stabilized flight regime

where full operability of the engine is recovered.

1.3 Outline of the thesis

Divided in two parts, the remaining chapters are organized as follows:

Part I: Linear Sampled Data Systems

Chapter 2 - The robust (in the disturbance de-coupling sense) design

problem of deterministic quantitative fault detection strategies for

uncertain linear sampled-data systems with fixed point quantization

is addressed, considering only the output variable available for mea-

surements. Three different observer-based approaches are presented.

The first method [P2.1] deals with the possibility of extending the

full-order UIO [10] to detect sensor and actuator faults that may

affect a linear uncertain SD system. Restricting the class of distur-

bances, the second policy studied in [P2.2, P2.3, P2.5] overcomes

some structural constraints arose in the first approach. Finally, the

third strategy [P2.4] consists in the design of a Lyapunov-based di-

agnosis signal for the robust FD of a class of SD systems whose

output vector follows a given reference.

Related publications:
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P2.1. M. L. Corradini, R. Giambò, S. Pettinari. Design of robust fault detection

filters for plant with quantized information, Proc. Advanced Control and

Diagnosis, Zielona Góra, Poland, 2009.

P2.2. M. L. Corradini, A. Cristofaro, R. Giambò, S. Pettinari. Design of ro-

bust fault detection filters for plants with quantized information. Proc.

Advanced Control and Diagnosis, pp. 40-45, Ferrara, Italy, 2010.

P2.3. M. L. Corradini, A. Cristofaro, R. Giambò, S. Pettinari. Robust Fault

Detection Filters for a Class of MIMO Uncertain Sampled-Data Systems.

Proc. Conference on Control and Fault-Tolerant Systems (SysTol10), pp.

341-346, Nice, France, 2010.

P2.4. M.L. Corradini, A. Cristofaro, R. Giambò and S. Pettinari. A Lyapunov-

based diagnosis signal for fault detection robust tracking problem of a class

of sampled-data systems. Proc. CDC and ECC, Orlando, Florida, 2011.

P2.5. M.L. Corradini, A. Cristofaro, R. Giambò and S. Pettinari. Design of

robust fault detection filters for MIMO uncertain plants with quantized

information. Accepted by International Journal of Control, November 2011.

Chapter 3 - This chapter introduces two applications to real plants use-

ful to illustrate The fault detection approaches described in Chapter

2 are validated with two real plants applications: a three tank sys-

tems (TTS) [P3.1] and a vehicle suspension model reduced to the

so-called quarter-car plant (QCM) [P3.2, P3.3].

Related publications:

P3.1. M. L. Corradini, A. Cristofaro, R. Giambò, S. Pettinari. Robust Fault

Detection Filters for a Class of MIMO Uncertain Sampled-Data Systems.

Proc. Conference on Control and Fault-Tolerant Systems (SysTol10), pp.

341-346, Nice, France, 2010.

P3.2. M.L. Corradini, A. Cristofaro, R. Giambò and S. Pettinari. A Lyapunov-

based diagnosis signal for fault detection robust tracking problem of a class

of sampled-data systems. Proc. CDC and ECC, Orlando, Florida, 2011.

P3.3. M.L. Corradini, A. Cristofaro, R. Giambò and S. Pettinari. Design of

robust fault detection filters for MIMO uncertain plants with quantized

information. Accepted by International Journal of Control, November 2011.

Chapter 4 - An UIO-based control reconfiguration technique for linear

sampled-data systems affected by actuator faults and additive dis-
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turbances is presented. Considering the first fault detection ap-

proach discussed in Chapter 2, a control accommodation policy is

developed to adjust the system dynamics by correcting the effects

of generalized actuator faults belonging to the class of abrupt and

incipient faults [P4.1, P4.2, P4.3]. Several numerical examples illus-

trate the proposed fault accommodation strategy.

Related publications:

P4.1. A. Cristofaro, S. Pettinari. Stepwise fault accommodation for hybrid quan-

tized control systems. Proc. Mediterranean Conference on Control and

Automation, pp. 785–790, Corfu, Greece, 2011.

P4.2. A. Cristofaro, S. Pettinari. Abrupt Fault Accommodation for sampled-

data control systems. Proc. European Advanced Control and Diagnosis

Workshop, Budapest, Hungary, 2011.

P4.3 A. Cristofaro and S. Pettinari. Hybrid control design for fault accommo-

dation in sampled-data systems. Accepted by the 2012 American Control

Conference (ACC’12), Montréal, Canada, 2012.

Part II: Nonlinear Systems

Chapter 5 - A fault tolerant control scheme, consisting in a fault detec-

tion, isolation and control reconfiguration module, is discussed for

an underwater Remotely Operated Vehicle (ROV), used by SNAM-

progetti (Fano, Italy) in the exploitation of combustible gas deposits

at great water depths.

Related publications:

P5.1 M. L. Corradini, A. Monteriù , G. Orlando and S. Pettinari. An Actuator

Failure Tolerant Robust Control Approach for an Underwater Remotely

Operated Vehicle. Proc. CDC and ECC, Orlando, Florida, 2011.

Chapter 6 - An observer-based strategy for the detection of engine un-

start in a scramjet-powered hypersonic vehicle model is presented in

this chapter [P6.1]. A simple robust algorithm is derived that de-

tects the occurrence of the transition from “started” to “unstarted”
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mode, regarded as an actuator fault, by processing only the flight

control system data, without relying on engine data or measurement

of the airflow across the isolator, which facilitate integration with

existing control architectures.

Related publications:

P6.1. S. Pettinari, M.L. Corradini and A. Serrani. Detection of Scramjet Unstart

in a Hypersonic Vehicle Model. Accepted by the 2012 American Control

Conference (ACC’12), Montréal, Canada, 2012.

Chapter 7 - Conclusion on the work presented in the thesis are made,

and recommendations for future work are given.

Only the two following publications are not directly included in the thesis.

• M. L. Corradini, G. Ippoliti, G. Orlando, S. Pettinari. Robust Control of Hybrid

Plants in the Presence of Quantization Errors. Proc. IEEE International Conference

on Control and Automation, Christchurch, New Zealand, 2009.

• M.L. Corradini, G. Ippoliti, G. Orlando, S. Pettinari. Speed Estimation and Fault

Detection for PMSM via Quasi Sliding Modes. Proc. in the 18th IFAC World Con-

ference, Milan, Italy, 2011.

The paper presented in the IEEE International Conference on Control and Au-

tomation of 2009 deals just with the robust control design of an uncertain quan-

tized SD plant and neither FDI or FTC is addressed, driven by this motivation

the article has been omitted. Instead the paper published in the 2011 IFAC

proceedings has not been included in the thesis since it is a technical nonlinear

application. It addresses a cascade control scheme based on a reduced order state

observer for FD of abrupt faults in a SD Permanent Magnet Synchronous Motor

system (PMSMs) coupled with a quasi-sliding modes controller.

1.4 Contributions

The main challenge addressed in this thesis is the robust (in the disturbance

de-coupling sense) design of observer-based FDI and FTC strategies for quantized

sampled data systems and two classes of nonlinear models. The most challenging
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trade-off is to increase sensitivity to faults and robustness to other unknown

inputs, like disturbances. Even if almost every industrial process is sampled data

because it is digitally controlled, the analytical FDI and FTC problem seems to be

not extensively addresses in literature. In particular, many approaches addresses

SD plants discretizing both the disturbance term and the fault, unknown a priori,

with constant in any sampling intervals [46]. The FDI and FTC task becomes

more difficult dealing with systems which present high inherent nonlinearities.

The main contributions of this thesis can be summarized as:

FD of SDs Fault detection of sampled-data systems with additive disturbances,

considered as unknown input whose distribution is known a priori, is ex-

plicitly addressed in the theoretical development in Chapter 2. At first a

straightforward extension of the full-order unknown input observer pro-

posed by [10] to quantized SD systems is proved to be not possible and

structural conditions on the continuous-time plant under which faults can

be caught are provided. To overcome such strong constraints a reduced-

order filter coupled with a robust controller has been designed. A residual

signal generated by observer gives information about the occurrence of

faults in the given process. Finally, a totally different FD approach uses

of a Lyapunov function to generate a diagnosis signal for a class of sam-

pled data systems whose output vector follows a given reference. The

three FD approaches discussed in Chapter 2 are applied by simulations

to a three tank systems and a suspension vehicle model in Chapter 3.

FTC of SDs An UIO-based fault accommodation technique for linear sampled-

data systems affected both by actuator faults and by additive distur-

bances is designed in Chapter 4. Considering a fault detection approach

presented in Chapter 2, a fault control accommodation policy is devel-

oped in order to adjust the system dynamics by correcting the effects of

generalized actuator faults belonging to the class of abrupt and incipient

faults. Differently from [60] the fault signal is not supposed to be norm

bounded, both the disturbance and the fault term are not considered

constant during each sampling interval and the linear discretized-time
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system is not approximated.

FDI and FTC of a ROV A complete FDI and FTC of a ROV used by SNAM-

progetti (Fano, Italy) is provided in Chapter 5. Observing some sliding

surfaces actuator faults can be detected; exploiting the ROV structure,

faulty actuators can be isolated and then using the redundant healthy

actuators a control reconfiguration can be performed.

FD in HSVs A simple method for unstart detection in a longitudinal model

of scramjet-powered hypersonic vehicle is addressed in Chapter 6. The

attractive feature of the proposed technique, which make it suitable for

integration with existing flight control schemes, is the simplicity of the

robust detection algorithm as well as the fact that only signals typically

available for the navigation and flight control are employed.
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Part I

Linear Sampled Data Systems





Chapter 2

Fault Detection

In this chapter, the first of three which are devoted to fault diagnosis of sam-
pled data systems, three different observer-based fault detection (FD) methods
using only output information are developed. Following the well known robust
model-based fault detection approach [10], [39] and [69], an unknown input ob-
servers (UIO’s) [9] are designed as to make the state estimation error decoupled
from the unknown inputs. In other words, it is generated a diagnosis signal, called
residual, which should be independent with respect to the system operating state
and should be de-coupled from disturbances.

In Section 2.1 the general FD problem for uncertain uncertain linear sampled-
data systems with fixed point quantization is stated. The main challenge is to
define an output depending function which is disturbance decoupled and gives
information about the occurrence of faults in the continuous time plant. Section
2.2 investigates if the full-order UIO proposed in [10] is useful for detecting sen-
sor and actuator faults in linear hybrid systems resulting from quantization of
continuous time plant. The results presented in this section are published in [18].
Since some restrictive conditions prevent the desired straightforward extension
of the observer introduced in [10], Section 2.3 presents an analytical FD pol-
icy based on a reduced-order filter. The discussed results have been addressed
in [14], [15], [16]. Finally, a Lyapunov-based diagnosis signal for the robust FD of
a class of SD systems whose output vector follows a given reference is considered
in Section 2.4. The policy presented refers to the paper [17].

2.1 Problem statement

Consider a digital feedback control system composed of the interconnection
of an observable continuous-time plant, a digital controller and a A/D converter.
The plant is affected by an additive unknown disturbance term and may also



18 2. Fault Detection

undergo possible abrupt faults or incipient faults. With no loss of generality
the continuous-time system is given in the observability canonical form and it is
described as follows

{

ẋ(t) = Ax(t) +Buu(t) +Bdd(t) + E fa(t)
y(t) = Cx(t) + fs(t)

(2.1)

where x(t) ∈ R
n is the state vector, y(t) ∈ R

p is the output and u(t) ∈ R
m

is the known input vector. As in [9] the uncertainty term is represented as an
additive unmatched disturbance term d(t) ∈ Rq. Moreover, fa(t) ∈ Rm denotes
the presence of actuator faults that may occur in the system due to abnormal
operation or material aging, and fs ∈ Rp represents eventual sensor faults. A,
Bu, Bd, C, E are known real constant matrices with appropriate dimensions.

Remarks 2.1.1.

(a) According to [9] there is no loss of generality in assuming that the distur-
bance distribution matrix Bd should be a full column rank.

(b) The presence of a disturbance term in the output equation has not been
explicitly considered in view of the equivalence discussed in [10] and in [9].

(c) It is considered the realistic case when only a subset of the state variable
(the output variables) is available for measurement, therefore the output
matrix C is full row rank by construction.

(d) Additive time-depending faults, (e.g. offsets of sensors [52]) have been
considered [43]. As remarked by Frank in [36], fault modes that can occur
may belong to the abrupt faults class, i.e. step-like changes, or to the
incipient faults class, e.g. bias or drift. Reduction in effectiveness [77]
has been also considered, i.e. the case when exponentially decreasing faults
affect the continuous-time system.

The discretization of the plant equations, assuming that u is constant during
each sampling interval Tc, provides:

{

x̄(k + 1) = Ḡ x̄(k) + Q̄ u(k) + ∆̄(k) + Φ̄(k)
ȳ(k) = C x̄(k) + fs(k)

(2.2)
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with

Ḡ = eA Tc , (2.3)

Q̄ =

(
∫ Tc

0

eAs ds

)

Bu , (2.4)

∆̄(k) =

∫ Tc

0

eA(Tc−s)Bd d(kTc + s) ds , (2.5)

Φ̄(k) =

∫ Tc

0

eA(Tc−s)E fa(kTc + s) ds , (2.6)

With a slight abuse of notation we have written x(k), u(k) and y(k) in place of
x(k Tc), u(k Tc) and y(k Tc) respectively.

Assuming that observability is preserved by a proper choice of the sampling
frequency, with no loss of generality the discretized system (2.2) can be trans-
formed in the observability canonical form by a suitable square invertible matrix
M (see for example [2]), obtaining:

{

x(k + 1) = Gx(k) +Qu(k) +∆(k) +Φ(k)
y(k) = Cx(k) + fs(k)

(2.7)

with G = M−1 ḠM, Q = M−1 Q̄, ∆(k) = M−1 ∆̄(k), Φ(k) = M−1 Φ̄(k) and
C = CM.

Remark 2.1.1. No stability assumption for the state matrix is needed.

Remark 2.1.2. To simplify notation, the output stabilization problem will be
considered in the first three sections of this chapter. The extension to the output
regulation problem is straightforward, since it is enough to replace the output
equation in (2.7) with the equation describing the tracking error with respect to
a constant reference variable yd, as it will be done in the last Section of this
Chapter.

Denote the observability indices of the system (2.7) by νi ≥ 2, i = 1, . . . , p
such that

∑p
i=1 νi = n, and denote by ν̄ = maxi νi the observability index of (2.7),

see Appendix A for detailed definitions. The state vector x(t) can be partitioned
as x(t) = (xi(t), xi(t))

′ with xi(t) ∈ R
νi−1 and xi(t) ∈ R for i = 1, . . . , p, so

that the output signal is a linear combination of xi(t) for i = 1, . . . , p. Moreover,
the state vector can be arranged and partitioned such that xnm(k) = (xi(k))

′ for
i = 1, . . . , p, contains the unmeasurable components of x, and xm(k) = (xi(k))

′

for i = 1, . . . , p consists in measurable components. The square matrix

G = [Ḡij], i, j = 1, . . . , p,
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can be partitioned accordingly, obtaining

Ḡii =

[

Gii
(1,1) Gii

(1,2)

Gii
(2,1) Gii

(2,2)

]

∈ R
νi×νi, i = j,

Ḡij =







0 · · · 0 Gij

...
0 · · · 0 gij






∈ R

νi×νj , i 6= j,

where

Gii
(1,1) =

[

0 . . . 0
Iνi−2 0

]

∈ R
(νi−1)×(νi−1),

Gii
(1,2),Gij ∈ R(νi−1)×1, Gii

(2,1) ∈ R1×(νi−1), Gii
(2,2) ∈ R, Iνi−2 is the identity

matrix of size νi − 2, and 0 denotes a null vector of appropriate dimension. Note
that for every i the sub-matrix Gii

(1,1) is nilpotent and the norm of Gii
(2,1) is

always 1. The matrix Q can be partitioned as Q = [Q1 . . .Qp]
′, where every

sub-matrix is Qi = [q̄i,qi]
′ with q̄i ∈ R

(νi−1)×m and qi ∈ R
1×m. The disturbance

term and the fault signal can be partitioned similarly. In particular ∆(k) =
[d̄1(k), d1(k), . . . , d̄p(k), dp(k)]

′ with d̄i(k) ∈ Rνi−1 and di(k) ∈ R for i = 1, . . . , p;
and Φ(k) = [̄f1(k), f1(k), . . . , f̄p(k), fp(k)]

′ with f̄i(k) ∈ Rνi−1 and fi(k) ∈ R for
i = 1, . . . , p. Moreover, the output matrix C = [C1, . . . ,Cp] is

Ci =





















0 · · · 0 0
...

...
...

0 · · · 0 1

0 · · · 0 c
(i+1)
i

...
...

...

0 · · · 0 c
(p)
i





















∈ R
p×νi

where the 1 on the last column of Ci occurs at the ith-row location (i = 1, . . . , p).
Fixed-point quantization will be considered to possibly affect the A/D converter
sampling the output variable. Indeed when output measurements to be used for
feedback are sampled and quantized, adder overflow, magnitude truncation or
finite-wordlength format may introduce severe nonlinearities.

Remark 2.1.3. The quantizer has been considered as a device converting con-
tinuous-time signals into piecewise ones taking values on a finite set of elements,
according to [56].

It worths noticing that the problem of quantized state-feedback control de-
sign has been addressed through different approaches in the literature. Just
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to mention a very recent result, the problems of analysis and synthesis for lin-
ear state-feedback discrete-time systems have been addressed in [41] with a new
strategy based on quantization dependent Lyapunov functions, which results to
be less conservative than the standard methods. A/D conversion inherently gen-
erates quantization errors, here denoted by a function p(k), bounded by a known
constant ρ, i.e.

Assumption 1. In the presence of quantization, the only measured output vector
is

w(k) = y(k) + p(k), k ∈ N; ||p(k)|| ≤ ρ (2.8)

With a slight abuse of notation we have written p(k) in place of p(x(k)).

In this chapter three different fault detection observer-based strategies for the
system (2.1) are presented. A sketch of the aim of this chapter is shown in Figure
2.1.

D/A

A/D

OBSERVER

Continuous-time
System

Actuators Sensors

ALLARM

fA(t) d(t) fS(t)

p(k)

+

PLANT

w(k)

u(k)

w(k)

?

u(t)

Figure 2.1: Aim of the thesis.

The first approach refers to the robust (in the disturbance de-coupling sense) fault
detection design proposed in [18]. It deals with the possibility of extending the
full-order unknown input observer [10] to detect sensor and actuator faults that
may affect the uncertain hybrid system (2.1). In order to overcome the structural
constraint that arose in the first approach [14], Section 2.3 addresses a different
policy that has been studied in [15] and in [16]. In particular, restricting the
class of disturbances, a novel reduced-order filter is designed in order to generate
a function that gives information about the occurrence of actuator faults. Finally,
the third approach consists in the design of a Lyapunov-based diagnosis signal
for the robust Fault Detection of a class of Sampled Data systems whose output
vector follows a given reference (tracking problem).
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2.2 Extension of Patton’s observer

This section presents a fault detection approach aimed at investigating if well
known results about the design of robust unknown input observers (UIO’s) for
fault detection can be extended to the hybrid quantized systems (2.1). According
to Chen and Patton [9], the main idea of unknown input observers is to make the
estimation error de-coupled from the unknown inputs, i.e. from disturbances, so
that a diagnosis signal, called residual and defined as a weighted output estimation
error, may also be de-coupled from each disturbance.

The possibility of extending the fault detection full-order unknown input ob-
server proposed by Chen, Patton and Zhang in [10] to a hybrid system obtained
from quantization of a continuous time system is investigated in this Section.
Unfortunately, a straightforward extension is proved to be not possible, because
the standard UIO is unable to ensure, in general, the decoupling of the residual
signals with respect to the disturbance terms, still maintaining the sensitivity of
residuals with respect to faults. Conditions to detect the occurrence of faults
with a suitable choice of the design matrices of the observer are provided.

Consider a single input-single output (SISO) continuous-time system 2.1, i.e.
it is assumed that m = p = 1, such that the pair (C,G) is supposed detectable.

To be more clear the vector quantities u, d fa, y, fs, w and p defined in
the previous section will be here denoted with plain types like u, d, fa, y, fs, w
and p in order to stress their scalar nature. Table 2.1 summarizes the matrices
dimensions in the set-up developed in this Section.

A n× n Bu n× 1 Bd n× q E n× 1
G n× n Q n× 1 C 1× n

Table 2.1: Dimension of known matrices.

Consider the following full-order observer [10]
{

z(k + 1) = Fz(k) +TQ u(k) +Kw(k)
x̂(k) = z(k) +Hw(k)

(2.9)

where x̂(k) ∈ R
n is the estimated state vector, z(k) ∈ R

n is the state of the
full-order observer, matrices F, T, K are defined as follows

K := K1 +K2 ∈ R
n×1 (2.10)

T := In×n −HC ∈ R
n×n , (2.11)

F := TG−K1C ∈ R
n×n , (2.12)

K2 := FH ∈ R
n×1 , (2.13)



2.2. Extension of Patton’s observer 23

and H is such that (C,TG) is a detectable pair.

Definition 2.2.1. Let the residual signal be the output estimation error,

r(k) := w(k)−Cx̂(k) . (2.14)

where w(k) is the measured output vector defined in (2.8).

The residual signal generated by the filter (2.9) is not always disturbance-
decoupled, still maintaining the sensitivity of residual with respect to faults.
Therefore a straightforward extension of the full-order UIO [10] proposed to de-
tect sensor and actuator faults, that may affect (2.1), is not possible.

Due to the definitions (2.10-2.13), the dynamics of the state estimation error
defined as e(k) := x(k)− x̂(k) are

e(k + 1) = ((I−HC)G−K1C) e(k) + [((I−HC)G−K1C)− F] z(k) +

+ [((I−HC)G−K1C)H−K2] y(k) + (I−HC−T)Q u(k) +

+ (I−HC)∆(k) + (I−HC)Φ(k)−K1 fs(k)−H fs(k + 1) +

− H p(k + 1)−K1 p(k) =

= Fe(k) +T∆(k) +TΦ(k)−K1 fs(k)−H fs(k + 1) +

− H p(k + 1)−K1 p(k).

Assuming e(0) = 0n×1, by induction the residual signal can be expressed as

r(k) =

k−1
∑

i=0

CFk−1−iT [∆(i) +Φ(i)]−
k−1
∑

i=0

CFk−1−i(K1 fs(i) +H fs(i+ 1)) +

−
k−1
∑

i=0

CFk−1−i(K1 p(i) +H p(i+ 1)) =

=
k−1
∑

i=0

CFk−1−iT [∆(i) +Φ(i)]−
k−2
∑

i=0

CFk−1−iK fs(i) + (1−CH) fs(k) +

−
k−2
∑

i=0

CFk−1−iK p(i) + (1−CH) p(k) =

=
k−1
∑

i=0

CFk−1−iT [∆(i) +Φ(i)]−
k−2
∑

i=0

CFk−1−iK fs(i) + (1−CH) fs(k) +

+ r∗(k) . (2.15)

Proposition 2.2.1. Given the hybrid system (2.1) and the observer (2.9), faults
may affect the residual signal (2.14) if and only if the column vector H verifies
the condition

CH 6= 1 . (2.16)
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Proof. The proof simply consists in showing that if CH = 1 then faults do not
affect the residual signal (2.14). Indeed it is straightforward that if CH = 1 then
CT = 01×n, CK = 0 and CFi = (−1)i(CK1)

iC, so (2.14) vanishes at every time
k.

Remark 2.2.1. The residual signal (2.14) is disturbance de-coupled if and only
if the term

CT∆(k) =

∫ Tc

0

CTeAσBd d((k + 1)Tc − σ) dσ (2.17)

vanishes at every time k.

Theorem 2.2.1. The observer (2.9) is such that the residual signal (2.14) is
disturbance de-coupled if and only if the continuous-time system (2.1) verifies the
condition

C eAσBu = 0 (2.18)

for any σ ≥ 0.

Condition (2.18) is structural, since it only depends on the continuous-time
plant matrices. Next proposition gives a sufficient condition in order to design a
disturbance de-coupled residual signal.

Proposition 2.2.2. Consider S ⊆ C⊥ with C⊥ = {v ∈ R
n |Cv = 0} the or-

thogonal space of C. If S is an invariant set under the linear map A : Rn → Rn

associated to matrix A and Bu ∈ S, then the condition (2.18) is verified.

Proof. By definition for any σ ≥ 0

C eAσBu =

∞
∑

i=0

σi

i!
CAiBu ;

by hypothesis CAiBu = 0 for any i ≥ 0, so CeAσBu = 0.

Remark 2.2.2. Under the hypothesis of Proposition 2.2.2, the pair (C,TG) is
detectable (see for instance [10]).

Corollary 2.2.1. Given a continuous-time system (2.1) with a diagonalizable
matrix A, if the disturbance distribution vector Bd is parallel to an eigenvector
of A and Bd is orthogonal to the transpose of the output matrix C, then the
condition (2.18) is verified.

Proof. It is easy to check that the hypotheses verify the previous Proposition.

Proposition 2.2.3. Under the hypotheses of Proposition 2.2.2, if the norm of the
residual signal is larger than a constant (1 + |CK1|) ρ then a fault has occurred.
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Proof. By hypothesis, assuming e(0) = 0n×1, p(0) = fs(0) = 0, and choosing
a column vector H parallel to Bd, the residual signal (2.14) has the following
expression

r(k) = −
k−2
∑

i=1

CFk−1−iK p(i) + p(k) + fs(k)−
k−2
∑

i=1

CFk−1−iK fs(i) +

+

k−1
∑

i=0

CFk−1−iTΦ(i) .

If |r(k)| ≥ (1 + |CK1|) ρ then a fault has occurred at time k ≤ k.

Remark 2.2.3. If condition (2.18) is satisfied, no quantization errors affect the
system (i.e. p(k) = 0 for all instant k), and the norm of the residual signal is
larger than zero, then a fault has occurred.

Remark 2.2.4. In order to detect actuator faults fa(t), the column vector E has
to be not a multiple of Bu.

2.2.1 Example

Consider a plant (2.1) in modal canonical form whose output vector C has a
null entry (without loss of generality the first element will be assumed equal to
zero) and a disturbance column vector Bd such that CBd = 0. With reference
to the observer (2.9), choose K = 0n×1 and H parallel to Bd. It follows that F is
an upper triangular matrix, so CFH = CFi H = CFi GH = 0 for every i ≥ 0.
By induction, choosing e(0) = 0n×1, and p(0) = fs(0) = 0, we have that

r(k) = p(k) + fs(k) +
k−1
∑

i=0

CGiΦ(k − 1− i) .

If the norm of the residual signal |r(k)| is larger than the bound of the quantiza-
tion error ρ, for some k̄, it means that a fault has occurred at k ≤ k̄.

For instance consider a perturbed system which is affected by a sinusoidal
disturbance of amplitude 30. The numerical plant is described by

A =





−1.5581 0 0
0 −2.2228 0
0 0 −10



 Bu =





1
2
10



 Bd =





2.864
−4.326

0





C = (0 0.13320 0.30603)

Choosing Tc = 1/20 sec, different cases with different kind of faults have been
simulated:
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(a) an abrupt sensor fault (fs(t) = 2) occurring at time 200 Tc;

(b) an abrupt actuator fault (fs(t) = 2) at time 200 Tc;

(c) an incipient sensor fault occurring at time 200 Tc;

(d) and an incipient actuator fault occurring at time 200 Tc.

Results are reported in Figure 2.2.
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Figure 2.2: Numerical examples.

2.3 A reduced order observer

In order to avoid the structural constraint arising from the full-order filter
(2.9), a new disturbance decoupled filter is here designed. The idea is to provide
a policy of a decoupling (in the disturbance sense) fault detection filter together
with a robust controller, addressing uncertain sampled-data systems with possible
fixed-point quantization error.

Note that the class of disturbances here considered has been restricted to the
following state-dependent disturbance signals:

Assumption 2. The disturbance term d(t) = d(x(t)) is bounded by a known
piecewise continuous function depending on the norm of the measured output

||d(x(t))|| ≤ β ||ω(k Tc)||+ ρd (2.19)
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for every t ∈ [k Tc, (k + 1)Tc[, and β, ρd > 0, with

ω(k) =

{

y(k) without quantization

w(k) in the presence of quantization

Remark 2.3.1. The class of the disturbance signals does depend not strictly on
the sampling time. Indeed considering a rational sampling time Tc = T ∗/N with
N ∈ N and T ∗ a fixed time, instead of (2.19) one can consider a disturbance class
bounded by ||d(x(t), ω(t))|| ≤ β ||ω(k T ∗)||+ ρd for every t ∈ [kT ∗, (k + 1)T ∗].

Two further assumptions are introduced, the first ensuring the existence of a
particular control vector u allowing the output dynamics to reveal the presence
of faults, and the second crucial for guaranteeing closed loop system stability.

Assumption 3. {qi}i=1,...,p is a set of linear independent vectors on Rm.

Assumption 4. The invariant zeros of (G,Q,C) are stable in the Schur sense.

Remarks 2.3.1.

i) If the system is single input-single output (SISO), i.e. m = p = 1,
Assumption (3) implies that q2 6= 0.

ii) The number of input signals is supposed to be greater than the number of
the output signals, i.e. m ≥ p. If m < p, Assumption 3 looses sense, and
the right pseudo-inverse of q may not exist. In this case the whole set-up
reported in the following can be iterated supposing that q is a full column

rank, and considering the left pseudo-inverse q+L to define a suitable
control input.

Two different set-up are considered. A single input-single output quantized
uncertain system is studied at first reporting the results presented in [14]. Then
a multi input-multi output sampled-data system with fixed point quantization
and results explained in [15]- [16] are addressed. In both cases the argument
is similar: when no faults affect the continuous-time system, due to the class of
disturbances considered (Assumption 2), choosing a suitable control law, both the
residual signal and the state vector are asymptotically bounded (or they vanish
if no quantization error may occur); then a test function depending on the norm
of the residue gives a sufficient condition for detection actuator faults.

2.3.1 SISO system

A single input-single output sampled-data system is here studied excluding
the possible occurrence of sensor faults (i.e. assuming fs = 0). The extension
of the presented results to these type of failures is straightforward as remarked
in [14].
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Remark 2.3.2. Definitions and notations that will be used hereafter are the
following. The state vector x(t) is partitioned as x(t) = (x1(t), x2(t))

′ with
x1(t) ∈ Rn−1 and x2(t) ∈ R; the output signal is exactly the last component
of the state vector y(k) = x2(k). Plant matrices are partitioned accordingly

G =

(

G11 g12

g21 g22

)

, q =

(

q1

q2

)

, ∆(k) =

(

∆1(k)
∆2(k)

)

, Φ(k) =

(

Φ1(k)
Φ2(k)

)

,

where G11 ∈ R(n−1)×(n−1), q1,∆1(k) ∈ Rn−1 and the other matrices have appro-
priate dimensions.

Consider the reduced-order observer:
{

z(k + 1) = G11 z(k) + q1 u(k) + g12w(k)
r(k) = w(k)

(2.20)

where z(k) ∈ Rn is the estimated state vector and r(k) is the residual signal
generated.

Observer design will be carried out in two steps: i) it will be proved that
under proper conditions the whole state vector is asymptotically bounded, and
the same holds for the estimation error; ii) it will be defined a function depending
on the norm of w(k) as an indicator of the occurrence of actuator faults.

Before describing the filter design procedure, a crucial lemma for the set-up
is proved.

Lemma 2.3.1. The invariant zeros of (2.7) are Schur if and only if G11−
q1

q2
g21

′

is a Schur matrix.

Proof. The proof consists in showing that the invariant zeros of (2.2) are exactly
the eigenvalues of G11 −

q1

q2
g21

′. By definition (see Appendix A), the invariant

zeros are values z ∈ C that let the Rosenbrock matrix R(z) lose rank. In this
case

R(z) =





zIn−1 −G11 −g12 −q1

−g21 z − g22 −q2
01×(n−1) 1 0





which loses rank if det(R(z)) = 0, that is if and only if

det

[

zIn−1 −G11 −q1

−g21 −q2

]

= 0. (2.21)

Due to the next matrix decomposition
[

zIn−1 −G11 −q1

−g21 −q2

]

=

[

In−1
q1

q2

0 1

] [

zIn−1 −G11 +
q1

q2
g21 0

0 −q2

] [

In−1 0
g21

q2
1

]

,

from (2.21) follows that det(zIn−1 −G11 +
q1

g2
g21) = 0, so z is an eigenvalue of

G11 −
q1

q2
g21

′.
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2.3.1.1 Fault-free case

Supposing for the moment that no actuator faults affect the continuous-time
system (fa(t) = 0), define the estimation error as

e(k) := x1(k)− z(k) . (2.22)

The asymptotic boundedness both of the output variable w(k) and of the esti-
mation error is proved and an asymptotic threshold for the whole state vector is
provided.

Theorem 2.3.1. Setting

u(k) = −
g21

q2
z(k)−

g22
q2
w(k) , (2.23)

if

β <
1

||M−1|| e||A|| ||Bu|| Tc n
, (2.24)

then the residual signal r(k) is asymptotically bounded.

Proof. The proof will be carried out in two steps: at first it is shown that the
asymptotic bound of the estimation error depends only on the asymptotic bound
of the residual signal; then the asymptotic bound of r(k) ≡ w(k) is provided. By
(2.7), (2.8) and (2.20) the dynamics of the estimation error (2.22) are given by

e(k + 1) = G11 e(k) +∆1(k)− g12 p(k) . (2.25)

Since (G11)
n−1 = 0(n−1)×(n−1) and ||G11|| = 1, if k ≥ n− 1,

||e(k)|| ≤
k−1
∑

j=k−n+1

||∆1(j)− g12 p(j)|| .

From Assumption 2 and (2.5) it is easy to see that the norm of ∆(k) is bounded
by a known quantity depending on the output vector, in fact

||∆(k)|| < ||M−1|| e||A|| ||Bu||

∫ (k+1)Tc

kTc

|d(x(σ))| dσ = γ |w(k)|+
γ

β
γd , (2.26)

where
γ := ||M−1|| e||A|| ||Bu|| β Tc . (2.27)

It follows that for k ≥ n− 1

||e(k)|| < γ
k−1
∑

j=k−n+1

|w(j)|+ (n− 1)||g12|| ρ+ (n− 1)
γ

β
γd (2.28)
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where ρ is the quantization error bound as defined in (2.8).
From (2.8), (2.20) and (2.23) the dynamics of w(k) are

w(k + 1) = g21
′e(k)− g22 p(k)− p(k + 1) + ∆2(k) ;

since by hypothesis ||g21|| = 1, by (2.26) and (2.28), for every k ≥ n− 1

|w(k + 1)| ≤ ||e(k)||+ (|g22|+ 1)ρ+ γ |w(k)| < γ

k
∑

j=k−n+1

|w(j)|+ α , (2.29)

where

α = ((n− 1)||g12||+ |g22|+ 1)ρ+
γ

β
γd. (2.30)

Define

w̄ = max
0≤j≤k

|w(j)| .

From equation (2.29)

|w(k + 1)| ≤ γ nw̄ + α ,

choosing β as in (2.24) one gets that γ n < 1 so for every instant k there is always
a k1 < k such that

|w(k)| ≤ γ n |w(k1)|+ α .

By induction

|w(k)| ≤ (γ n)k−k1 |w(k1)|+
1− (γ n)k−k1

1− γ n
α ,

therefore

lim sup
k→∞

|w(k)| ≤
α

1− γ n
. (2.31)

Theorem 2.3.2. Setting the input u(k) as in (2.23), and β as in (2.24), the
whole state vector x(k) is asymptotically bounded.

Proof. Since the bound of the estimation error (2.28) depends only on the norm
of the measurable term w, the asymptotic boundedness of the estimation error
(2.22) follows directly from Theorem 2.3.1, and in particular

lim sup
k→∞

||e(k)|| ≤ (n− 1)

(

γα

1− γ n
+ ||g12|| ρ+

γ

β
γd

)

(2.32)

where α and γ verify (2.59) and (2.27) respectively. If the estimation state z
is asymptotically bounded, then the state vector x behaves accordingly due to
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(2.7). From (2.20), Lemma 2.3.1 and (2.23) the dynamics of the estimated vector
are

z(k + 1) =

(

G11 −
q1

q2
g21

′

)

z(k) +

(

g12 −
q1

q2
g22

)

w(k) . (2.33)

By Assumption 4 and Lemma 2.3.1,
(

G11 −
q1

q2
g21

′
)

is a Schur matrix, and due

to Theorem 2.3.1 w(k) is asymptotically bounded, so by induction

lim sup
k→∞

||z(k)|| =

∣

∣

∣

∣

∣

∣

∣

∣

g12 −
q1

q2
g22

∣

∣

∣

∣

∣

∣

∣

∣

lim sup
k→∞

k−1
∑

j=0

∣

∣

∣

∣

∣

∣

∣

∣

G11 −
q1

q2
g21

′

∣

∣

∣

∣

∣

∣

∣

∣

k−1−j

|w(j)| ≤

≤

∣

∣

∣

∣

∣

∣

∣

∣

g12 −
q1

q2
g22

∣

∣

∣

∣

∣

∣

∣

∣

1− ||G11 −
q1

q2
g21

′||

α

1− γ n
. (2.34)

By definition ||x(k)|| ≤ ||x1(k)||+ |x2(k)|, from (2.8) |x2(k)| ≤ |w(k)|+ ρ, so by
Theorem 2.3.1 x2(k) is asymptotically bounded, in fact

lim sup
k→+∞

|x2(k)| ≤ lim sup
k→+∞

|w(k)|+ ρ =
α

1− γ n
+ ρ .

It is enough to show that ||x1(k)|| is asymptotically bounded in order to complete
the proof. From (2.7) and (2.23) the evolution of x1(k) is

x1(k + 1) = G11x1(k) +

(

g12 −
q1

q2
g22

)

w(k)− g12 p(k)−
q1

q2
g21

′z(k) +∆1(k)

since G11 is a nilpotent matrix of degree n− 1, by induction for every k ≥ n− 1

||x1(k)|| ≤
k−1
∑

j=k−n+1

∣

∣

∣

∣

∣

∣

∣

∣

g12 −
q1

q2
g22

∣

∣

∣

∣

∣

∣

∣

∣

|w(j)|+
k−1
∑

j=k−n+1

||q1||

|q2|
||z(j)||+

+ (n− 1)||g12||ρ+
k−1
∑

j=k−n+1

||∆1(j)|| .

By (2.26), (2.31) and (2.34),

lim sup
k→+∞

||x1(k)|| ≤
(n− 1)α

1− γ n

∣

∣

∣

∣

∣

∣

∣

∣

g12 −
q1

q2
g22

∣

∣

∣

∣

∣

∣

∣

∣

(

1 +
||q1||

|q2|(1− ||G11 −
q1

q2
g21

′||)

)

+

+
(n− 1)α

1− γ n
γ + (n− 1)||g12||ρ+ (n− 1)

γ

β
γd .
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So the asymptotic bound of the state vector is

lim sup
k→+∞

||x(k)|| ≤
(n− 1)α

1− γ n

∣

∣

∣

∣

∣

∣

∣

∣

g12 −
q1

q2
g22

∣

∣

∣

∣

∣

∣

∣

∣

(

1 +
||q1||

|q2|(1− ||G11 −
q1

q2
g21

′||)

)

+

+
(n− 1)α

1− γ n
γ + (n− 1)||g12||ρ+

α

1− γ n
+ ρ+ (n− 1)

γ

β
γd .

Remark 2.3.3. As expected, all the asymptotic thresholds found depend on the
known constant bound of the quantization error, ρ.

2.3.1.2 Presence of actuator faults affecting the plant

Let’s now suppose that an actuator fault fa(t) may affect the plant (2.1). By
definition (2.22) the dynamics of the estimation error are

e(k + 1) = G11e(k) +∆1(k)− g12 p(k) +Φ1(k) , (2.35)

and by (2.8) the evolution of the measurable output variable is

w(k + 1) = g21 e(k)− g22 p(k)− p(k + 1) + ∆2(k) + Φ2(k) .

A test function rf depending on the norm of the residual signal (2.20) is
defined to detect actuator faults.

Definition 2.3.1. Let the test function be

rf (k) :=
|r(k)|

γ n r(k) + α
(2.36)

where γ and α verify (2.27) and (2.30) respectively, and

r(k) = max
i=k−n,...,k−1

|r(i)| .

Proposition 2.3.1. If r(k̄) > 1 then an actuator fault has occurred at a time
k ≤ k̄.

Proof. The proof is straightforward. It simply consists in showing that using
equations (2.8), (2.29) and (2.36) one has:

rf (k) =
|r(k)|

γ n r(k) + α
≤ 1 +

|Φ2(k − 1)|+
∑k−2

i=k−n |Φ1(i)|

γ n r(k) + α
.

So if no faults affect the continuous-time system (2.1), then rf < 1.

Remark 2.3.4. The previous proposition gives only a sufficient condition for
detecting actuator faults. It may indeed happen that an actuator fault occurs but
it is “small” enough that the test of Proposition 2.3.1 fails. This would mean,
however, that condition (2.29) still holds, therefore the bounded behavior of the
output variable w(k) has not been destroyed by the fault.
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2.3.2 MIMO system

The fault detection policy presented above is here generalized to multi input-
multi output hybrid systems which may be affected by fixed-point quantization.

Without loss of generality, the residual generator design is presented for a two
output signals system, for the sake of simplicity of notation, the output vector
is y(k) = (y1(k), yrf(k))

′. In addition, define c := c
(2)
1 . The dynamics of the

discretized system (2.7) can be expressed in matrix form as

xnm(k + 1) = Γnm xnm(k) +Ωnm xm(k) + q̄ u(k) + d̄(k) + f̄(k)(2.37a)

xm(k + 1) = Γm xnm(k) +Ωm xm(k) + qu(k) + d(k) + f(k) (2.37b)

y(k) = C̄ xm(k) + fs(k) (2.37c)

where

Γnm =

[

G11
(1,1) 0

0 G22
(1,1)

]

, Ωnm =

[

G11
(1,2) G12

G21 G22
(1,2)

]

,

Γm =

[

G11
(2,1) 0

0 G22
(2,1)

]

, Ωm =

[

G11
(2,2) g12

g21 G22
(2,2)

]

,

C̄ =

[

1 0
c 1

]

, q =

[

q1

q2

]

, q̄ =

[

q̄1

q̄2

]

,

(2.38)

and d̄(k) = (d̄1(k), d̄2(k))
′, f̄(k) = (̄f1(k), f̄2(k))

′, d(k) = (d1(k), d2(k))
′, f(k) =

(f1(k), f2(k))
′.

Define the estimation error e(k) ∈ Rν1+ν2−2 as

e(k) := xnm(k)− z(k) . (2.39)

Of course, the estimation error is unmeasurable, but the analysis of its dynamics
are crucial as it will be clear in the following.

At first the MIMO sampled-data system without quantization (ρ = 0) is
studied, analyzing the faulty-free case and the faulty case. It is proved that
the state variables of the continuous-time plant vanish asymptotically, robustly
with respect to the considered class of disturbances affecting the continuous-
time system. Secondly fixed-point quantization is assumed to affect the sampled
output variable, and a theoretical development similar the previous one is carried
out, proving that the state variables of the continuous-time plant are ultimately
bounded.

As in the SISO case the generalization of Lemma 2.3.1 to a two outputs system
is crucial for the following set-up.

Lemma 2.3.2. Assumption 2 implies that Γnm − q̄q+RΓm is a Schur matrix.
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Proof. The proof consists in showing that the invariant zeros of (G, Q, C) are
exactly the eigenvalues of Γnm − q̄q+RΓm. By definition (see Appendix A), the
invariant zeros are values z ∈ C that let the Rosenbrock matrix lose rank. In this
case, with some row-column permutations, the Rosenbrock matrix can be written
as

R(z) =





zIn−2 − Γnm −q̄ −Ωnm

−Γm −q zI2 −Ωm

0 0 C̄



 ,

so the proof follows immediately by (2.38) and observing that
[

zIn−2 − Γnm −q̄
−Γm −q

]

=

[

zIn−2 − Γnm + q̄ q+RΓm −q̄
0 −q

] [

In−2 0
q+RΓm Im

]

.

2.3.2.1 Plant without output quantization

Assume no quantization error affects the sampled-data system, i.e. ρ = 0.
Consider the reduced-order observer:

{

z(k + 1) = Γnm z(k) + q̄ u(k) +Ωnm C̄−1 y(k)
r(k) = y(k)

(2.40)

where z(k) = (z1(k), z2(k))
′ with z1(k) ∈ Rν1−1 and z2(k) ∈ Rν2−1, and r(k) ∈ R

is the residual signal generated.
The fault detection policy is developed in two steps. The fault-free case is

studied first, showing that plant stabilization is achieved robustly with respect
to disturbances affecting the continuous-time system (2.1). Successively, the oc-
currence of actuator and sensor failures in (2.1) is taken into consideration. It is
shown that faults do affect the asymptotic behavior of residuals, which can there-
fore be effectively used to detect failures regardless the presence of disturbances.

2.3.2.1.1 Fault-free case Supposing fa = 0, fs = 0, the asymptotic vanish-
ing of the output variables is proved under some conditions about the disturbance
class and the choice of the input vector u. Next, the stabilization of the system
(2.37a)-(2.37c) coupled with the observer (2.40) is shown.

Theorem 2.3.3. Suppose m ≥ p, and choose the input vector

u(k) = −q+R(Γm z(k) +ΩmC̄−1y(k)) (2.41)

where q+R is the right pseudo-inverse of q, i.e. q+R = q′(qq′)−1. If the positive
constant β verifies the inequality

β <
1

||C̄|| Tc ν̄ ||M−1|| e||A|| ||Bd||
, (2.42)
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the residual signal defined in (2.40) vanishes asymptotically.

Proof. By equations (2.37a) and (2.40), the dynamics of the estimation error
(2.39) are

e(k + 1) = Γnm e(k) + d̄(k) ,

and since Γnm is a nilpotent matrix of degree ν̄ − 1 as defined in (2.38), by
induction one gets that for every k ≥ ν̄ − 1

e(k) =
k−1
∑

j=k−ν̄+1

(Γnm)k−1−jd̄(j). (2.43)

It is straightforward that

||e(k)|| ≤
k−1
∑

j=k−ν̄+1

||d̄(j)||. (2.44)

Due to the invertibility of matrix C̄ defined in (2.38) and to Assumption 3, it is
always possible to choose the input vector (2.41) which verifies

C̄ΩmC̄−1 y(k) + C̄Γm z(k) + C̄ qu(k) = 0p×1. (2.45)

Therefore the output signal develops as

y(k + 1) = C̄Γm e(k) + C̄ d(k) , (2.46)

since ||Γm|| = 1 from (2.38),

||y(k + 1)|| ≤ ||C̄|| ||e(k)||+ ||C̄|| ||d(k)|| ,

and by (2.44) and (2.38) it follows that

||y(k + 1)|| ≤ ||C̄||
k
∑

j=k−ν̄+1

||∆(j)|| . (2.47)

From Assumption 2 and (2.5) it is easy to see that the norm of ∆(k) is bounded
by a known quantity depending on the output vector:

||∆(k)|| < ||M−1|| e||A|| ||Bd||

∫ Tc

0

|d(s)|ds <

< ||M−1|| e||A|| ||Bd|| Tc (β ||y(k)||+ ρd) . (2.48)

Choosing a positive constant β fulfilling (2.42), from (2.48) and (2.40) one gets

||y(k + 1)|| < θ

(

k
∑

j=k−ν̄+1

||y(j)||+ ν̄ρ̃

)

. (2.49)



36 2. Fault Detection

where

θ = β ||C̄|| Tc ||M
−1|| e||A|| ||Bd|| (2.50)

is a constant less than 1, and ρ̃ = ρd/β.
The asymptotic vanishing of the output signal can be proved with a reduction ad
absurdum observing that y has a constant upper bound.
Define

ȳ = max
0≤i≤k

||y(i)||.

From (2.42) and (2.49) it follows that

||y(k + 1)|| < θ ν̄ ȳ < ȳ.

So for every k exists always a k1 < k such that

||y(k)|| < ||y(k1)||,

therefore ||y|| is bounded. If the upper bound of y is a finite number

0 < L = lim sup
k→+∞

||y(k)|| < +∞ ,

by (2.49)

L = lim sup
k→+∞

||y(k + 1)|| ≤ θ ν̄ L < L ,

that is obviously absurd unless L = 0, so the asymptotic vanishing of the output
vector is proved, and by definition also the residual signal vanishes asymptotically.

Corollary 2.3.1. If β verifies (2.42), setting u as in (2.41) and defining an
unknown input observer as in (2.40), the state vector of system (2.37a)-(2.37c)
vanishes asymptotically.

Proof. Since the bound of the estimation error (2.44) depends only on the norm
of the residual term r, the asymptotic vanishing of the estimation error follows
directly from Theorem 2.3.3. If the estimation state z approaches asymptotically
zero, then the state vector x behaves accordingly. Therefore, showing that the
estimated state vanishes asymptotically the Theorem is proved. From (2.40) and
(2.41), the dynamics of the estimated state are

z(k + 1) = (Γnm − q̄ q+RΓm) z(k) + (Ωnm − q̄ q+RΩm) C̄−1 y(k) . (2.51)

From Theorem 2.3.3 and Lemma 2.3.2, the estimated state approaches asymp-
totically the origin.
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2.3.2.1.2 Faults affecting the continuous-time plant Consider now the
case when actuator and sensor faults affect the continuous-time plant (2.1) (re-
member that no output quantization error is assumed to affect the sampled-data
system). At first an arbitrary actuator fault distribution matrix E ∈ Rn×m is
considered and then results obtained are particularized to the case when E = Bu

(reduction of effectiveness [77]).

Theorem 2.3.4. Consider the system (2.37a)-(2.37c) coupled with the UIO (2.40),
choose an input vector u according to (2.41) and assume that the positive constant
β verifies (2.42). Define a test-function rf as

rf(k) :=
||r(k)||

ν̄ maxj∈{k−ν̄,...,k−1} ||r(j)||
. (2.52)

If rf (k̄) > 1 with k̄ ≥ ν̄ − 1, then a fault has occurred at a time k ≤ k̄.

Proof. If an actuator fault and a sensor fault affect system (2.1), for every k ≥
ν̄ − 1 the estimation error dynamics are

e(k) =

k−1
∑

j=k−ν̄+1

(Γnm)k−1−jd̄(j) + f̄(j) , (2.53)

and the output vector dynamics are given by

y(k + 1) = C̄Γm e(k) + C̄ d(k) + C̄ f(k) + fs(k). (2.54)

Using (2.40), (2.53) and (2.54), one has

y(k + 1) = C̄Γm

k−1
∑

j=k−ν̄+1

(Γnm)k−1−jd̄(j) + C̄ d(k) +

+ C̄Γm

k−1
∑

j=k−ν̄+1

(Γnm)k−1−j f̄(j) + C̄ f(k) + fs(k)

and by (2.48) and (2.50) the norm is bounded as follows

||y(k + 1)|| < ||C̄||
k
∑

j=k−ν̄+1

||∆(j)||+ ||C̄||

(

k−1
∑

j=k−ν̄+1

||̄f(j)||+ ||f(k)||

)

+ ||fs(k)|| <

< θ ν̄

k
∑

j=k−ν̄+1

||y(j)||+ ||C̄||

(

k−1
∑

j=k−ν̄+1

||̄f(j)||+ ||f(k)||

)

+ ||fs(k)|| .

It is clear that if no faults affect the continuous-time system, then rf < 1.

Remark 2.3.5. When the fault distribution E is equal to the input distribution
Bu all the results presented above do still hold. Of course, in the case when
Bd = Bu disturbances affecting the plant (2.37a)-(2.37c) cannot be decoupled
from faults.



38 2. Fault Detection

2.3.2.2 Presence of output quantization

In this section fixed-point quantization is assumed to affect the A/D converter
sampling the output variable. Indeed when output measurements to be used for
feedback are sampled and quantized, adder overflow, magnitude truncation or
finite-wordlength format may introduce severe nonlinearities. Therefore rough
measurements cause quantization errors denoted by the function p(k) (defined in
Assumption 1) which is bounded by a known constant ρ 6= 0.

Consider the reduced-order observer:
{

z(k + 1) = Γnm z(k) + q̄ u(k) +Ωnm C̄−1w(k)
r(k) = w(k)

(2.55)

where z(k) = (z1(k), z2(k))
′ with z1(k) ∈ Rν1−1 and z2(k) ∈ Rν2−1, and r(k) =

(r1(k), r2(k))
′ is the residual signal generated.

The theoretical development will be carried out considering a two output sys-
tem (2.37a)-(2.37c) and following the same lines of the case without quantization
error, in particular it will be proved that: i) under proper conditions the whole
state vector is asymptotically bounded, and the same holds for the estimation er-
ror; ii) the residual signal introduced can be used as an indicator of the occurrence
of faults.

Due to the presence of quantization error, only the ultimate boundedness of
the residual signal can be achieved. Again, a test-function based on the residual
dynamics will provided for the on-line detection of faults.

2.3.2.2.1 Fault-free case Suppose fa = 0, fs = 0. With reference to the
chosen class of disturbances, a suitable input vector can be found such that the
asymptotic boundedness of the measurable output vector can be here proved.

Theorem 2.3.5. Suppose m ≥ p and choose

u(k) = −q+R(Γm z(k) +ΩmC̄−1w(k)) (2.56)

where q+R is the right pseudo-inverse of q. If the positive constant β verifies the
inequality

β <
1

||C̄|| Tc ν̄ ||M−1|| e||A|| ||Bd||
, (2.57)

the output measurement vector is asymptotically bounded:

lim sup
k→∞

||w(k)|| ≤
α

1− θ ν̄
, (2.58)

with
α = ((ν̄ − 1)||Ωnm|| ||C̄||2 + ||C̄||2 ||Ωm|| + 1) ρ, (2.59)

and
θ = β ||C̄|| Tc ||M

−1|| e||A|| ||Bd||. (2.60)
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Proof. Consider the estimation error (2.39). Due to Assumption 1, (2.37a) and
(2.55), the dynamics of the estimation error are

e(k + 1) = Γnm e(k) + d̄(k)−Ωnm C̄−1p(k), (2.61)

and since Γnm is a nilpotent matrix of degree ν − 1 as defined in (2.38), by
induction one gets that for every k ≥ ν̄ − 1

e(k) =
k−1
∑

j=k−ν̄+1

(Γnm)k−1−j(d̄(j)−Ωnm C̄−1p(j)), (2.62)

so by (2.38), for every k ≥ ν̄ − 1

||e(k)|| ≤
k−1
∑

j=k−ν̄+1

||∆(j)||+ (ν̄ − 1)||Ωnm|| ||C̄|| ρ . (2.63)

Recall that, according to (2.40), the residual r(k) is defined as the signal w(k)
when quantization is considered. Due to Assumption 3, it is always possible to
choose the input vector (2.56) such that the measurable output w(k) develops as

w(k + 1) = C̄ Γm e(k) + C̄ d(k)− C̄Ωm C̄−1p(k) + p(k + 1) ,

and from (2.38), (2.63) and Assumption 1 it follows that

||w(k + 1)|| ≤ ||C̄|| ||e(k)||+ ||C̄|| ||d(k)||+ (||C̄||2 ||Ωm|| + 1) ρ ≤

≤ ((ν̄ − 1)||Ωnm|| ||C̄||2 + ||C̄||2 ||Ωm|| + 1) ρ+

+ ||C̄||
k
∑

j=k−ν̄+1

||∆(j)|| (2.64)

From (2.5) and Assumption 2 the norm of ∆(k) is bounded by a known quantity
depending on the output measurable vector, i.e.

||∆(k)|| < ||M−1|| e||A|| ||Bd|| Tc (β ||w(k)||+ ρd) . (2.65)

For k ≥ ν̄−1, choosing a positive constant β fulfilling (2.58) and setting ρ̃ = ρd/β,
from (2.65) and (2.55) one gets that

||w(k + 1)|| < θ

(

k
∑

j=k−ν̄+1

||w(j)||+ ν̄ρ̃

)

+ α, (2.66)

where α and θ verify (2.59) and (2.60) respectively.
As the recursive bound given by (2.66) is analogous to the estimate (2.49), the
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ultimate boundedness of the output measurement signal w(k) can be proved
following the steps of the previous proof; in particular one has

lim sup
k→∞

||r(k)|| = lim sup
k→∞

||w(k)|| ≤
ρ̃+ α

1− θ ν̄
.

Corollary 2.3.2. If β verifies (2.57), setting u as in (2.56) and defining an
unknown input observer as in (2.55), the state vector of system (2.37a)-(2.37c)
is asymptotically bounded.

Proof. Since the bound of the estimation error (2.63) depends only on the norm
of the measurable term w, the asymptotic boundedness of the estimation error
(2.39) follows directly from Theorem 2.3.5. If the estimation state z is asymptot-
ically bounded, then the state vector x behaves accordingly due to (2.37a). The
asymptotic bound of z will be found and for completeness also the asymptotic
bound of x will be provided.
From (2.55) and (2.56), the dynamics of the estimated state are

z(k + 1) = (Γnm − q̄ q+R Γm) z(k) + (Ωnm − q̄ q+R Ωm) C̄−1w(k) ,

and by induction

z(k) = (Γnm − q̄ q+R Γm)k z(0) +

+
k−1
∑

j=0

(Γnm − q̄ q+R Γm)k−1−j(Ωnm − q̄ q+R Ωm) C̄−1w(j).

To simplify the notation define H := (Γnm − q̄ q+R Γm) which is a Schur matrix
due to Lemma 2.3.2. From (2.31) it follows that the estimated state is asymp-
totically bounded:

lim sup
k→∞

||z(k)|| ≤
||Ωnm − q̄ q+R Ωm || ||C̄||

1− ||H||

α

1− θ ν̄
. (2.67)

By definition ||x(k)|| ≤ ||xnm(k)||+||xm(k)||, and from (2.37c) and (2.8) xm(k) =
C̄−1(w(k)− p(k)), so xm(k) is asymptotically bounded, in fact

lim sup
k→+∞

||xm(k)|| ≤ ||C̄||

(

α

1− θ ν̄
+ ρ

)

, (2.68)

where α and θ verify (2.59) and (2.60) respectively. From (2.37a), (2.38) and
(2.56) the dynamics of xnm(k) are

xnm(k) =

k−1
∑

j=k−ν̄+1

Γnm
k−1−j

(

(Ωnm − q̄ q+RΩm) C̄−1w(j)−Ωnm C̄−1p(j)
)

+

+
k−1
∑

j=k−ν̄+1

Γnm
k−1−j

(

−q̄ q+RΓm z(j) + d̄(j)
)

(2.69)
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for every k ≥ ν̄− 1. Therefore for every k ≥ ν̄ − 1, using (2.38), (2.8), (2.60) and
(2.65)

||xnm(k)|| ≤
k−1
∑

j=k−ν̄+1

(

||Ωnm − q̄ q+RΩm|| ||C̄||+
θ

||C̄||

)

||w(j)||+

+
k−1
∑

j=k−ν̄+1

||q̄|| ||q+R|| ||z(j)||+ ||Ωnm|| ||C̄|| ρ(ν̄ − 1) ,

and by (2.31) and (2.67)

lim sup
k→∞

||xnm(k)|| ≤

(

||Ωnm − q̄ q+RΩm|| ||C̄||+
θ

||C̄||

)

α(ν̄ − 1)

1− θ ν̄
+

+

(

||q̄|| ||q+R||
||Ωnm − q̄ q+R Ωm || ||C̄||

1− ||H||

)

α(ν̄ − 1)

1− θ ν̄
+

+ ||Ωnm|| ||C̄|| (ν̄ − 1) ρ (2.70)

So from (2.68) and (2.70), the asymptotic bound of the state vector is

lim sup
k→∞

||x(k)|| ≤

(

||Ωnm − q̄ q+RΩm|| ||C̄||+
θ

||C̄||

)

α(ν̄ − 1)

1− θ ν̄
+

+

(

||q̄|| ||q+R||
||Ωnm − q̄ q+R Ωm || ||C̄||

1− ||H||

)

α(ν̄ − 1)

1− θ ν̄
+

+ ||C̄||
α

1− θ ν̄
+ (||Ωnm|| (ν̄ − 1) + 1) ||C̄|| ρ . (2.71)

2.3.2.2.2 Faults affecting the continuous-time plant Consider now the
case when general actuator and sensor faults affect the continuous-time system
(2.1). Next, the case when E = Bu (reduction of effectiveness [77]) will be
addressed.

Theorem 2.3.6. Consider the system (2.37a)-(2.37c) coupled with the UIO (2.55),
choose an input vector u according to (2.56) and assume that the positive constant
β verifies (2.57). Define a test-function rf quant as

rf quant(k) =
||w(k)||

ν̄ maxj∈{k−ν̄,...,k−1} ||w(j)||
. (2.72)

If rf quant(k̄) > 1 with k̄ ≥ ν̄ − 1, then a fault has occured at a time k ≤ k̄.
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Proof. Similarly to Theorem 2.3.4 using (2.55), (2.63) and (2.66), in the faulty
case the output measurement bound is

||w(k + 1)|| < θ

k
∑

j=k−ν̄+1

||w(j)||+ α+ ||C̄||

(

k−1
∑

j=k−ν̄+1

||(j)||+ ||f(k)||

)

+

+ ||fs(k)|| . (2.73)

It is clear that if no faults affect the continuous-time system, then rf quant < 1.

Remark 2.3.6. As in the case without quantization error, all the results pre-
sented above do still hold when E = Bu, and, of course, in the case when Bd = Bu

disturbances affecting the plant (2.37a)-(2.37c) cannot be decoupled from faults.
Moreover this strategy does not help in distinguishing actuator faults from sensor
failures.

2.3.2.3 Conclusive considerations

A design policy of a decoupling (in the disturbance sense) fault detection filter
together with a robust controller has been presented, addressing uncertain multi
input-multi output sampled data systems with possible fixed-point quantization
error. In the considered set-up, the only available signal is the output variable,
which may be also affected by a bounded quantization error. The proposed filter,
coupled with a robust stabilizing controller, ensures the asymptotic vanishing of
the estimation error (or its ultimate boundedness in the case of quantized output
measurements). The observer dynamics is implicitly defined by the invariant
zeros. Whenever it is required to manage the transient behavior of the observer,
this can be done relaxing the Assumption 4 that is requiring just that ((Γnm −
q̄ q+RΓm), q̄) is controllable. Indeed, it is enough to add a term q+RK to the

control input (2.41) such that the matrix q+RK assigns the dynamics of Γnm −

q̄ q+R(Γm +K).

2.3.3 Example

Consider an unstable, uncertain, continuous-time plant of the form (2.1) with:

A =





0 0 1.1
1 0 0.2
0 1 0.8



 Bu = Bd =





1
1
1



 E =





0
0
1





C =
[

0 0 1
]

The plant has been discretized with a sampling time Tc = 10−3 sec, and quanti-
zation has been assumed to produce a quantization error bounded by ρ = 10−3.
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A disturbance term d(t) = β x2(t) sin(t) has been supposed to perturb the
continuous-time system, with β = 0.1511, and γ = ||M−1|| e||A|| ||Bu|| = 19.8576.
Assuming that the largest variation D which the variable w(k) can undergo be-
tween two consecutive samples w(k) and w(k + 1) with k ∈ N is equal to 2,
it can be seen that the disturbance function considered is consistent with the
Assumption 2, since |d(t)| ≤ β|w(k)| + β(ρ + D) in every interval of amplitude
Tc.

Simulations have been performed with initial conditions x(0) = [0.5 0.5 0.5]′.
Results have been reported in Figures 2.3a-2.5b. Figures 2.3a, 2.3b show the
dynamics of the estimation error and of the test function (2.36) when no actuator
faults affect the sampled-data system. The red lines reported in Fig.2.3a are the
estimation error asymptotic bound (2.32), while in Fig. 2.3b the red threshold
set at 1 is consistent with Proposition 2.3.1.
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Figure 2.3: Fault-free case.

Fig. 2.4a displays the evolution of the test function (2.36) when an abrupt fault
fa(t) = 25 (resp. an incipient fault fa(t) = 2t − 100 in Fig. 2.4b) affects the
third component of the state vector x(t) of the sampled data system (2.1) at
test function (2.36) when the abrupt fault fa(t) = 25 and a larger abrupt fault
fa(t) = 300, respectively, affect the second component of the sampled data system
(2.1) at time t = 50. These two pictures support what has been emphasized in
Remark 2.3.6. Indeed, due to the sampled-data system under consideration, an
abrupt fault of amplitude 25 affecting the plant (2.1) with a distribution vector
E = [0 1 0]′ is so “small” that the test of Proposition (2.3.1) fails.
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(a) fa(t) = 25 at t = 50 sec.
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(b) fa(t) = 2t− 100 at t = 50 sec.

Figure 2.4: Residual signal when x3 is faulty.
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(b) fa(t) = 5000 at t = 50 sec.

Figure 2.5: Residual signal when x2 is faulty.

2.4 A Lyapunov-based method

In this section a Lyapunov-based diagnosis signal design for the robust fault
detection is presented for a class of sampled data systems whose output vector
follows a given reference. Differently from the previous approaches, the control
law is here designed such that the output of the resulting closed-loop system
tracks (i.e., follows), some a priori given reference signal [78]. Indeed the output
tracking of arbitrary reference signals (particularly constant ones) is of major
interest in control systems, especially regarding a practical perspective.

Consider a completely observable single input-single output (SISO), time-
invariant continuous-time system which may be affected both by actuator faults
and by uncertain terms, such as unknown disturbances or model uncertainties
[83], which are assumed bounded by a suitable positive constant. It is supposed
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that the fault distribution vector does not belong to the same subspace of the
disturbance distribution vector and that the system is not controllable. Setting up
suitable assumptions the design of a reduced-order observer and a control input
are addressed to guarantee an assigned reference following. Then the presence of
a nonzero fault is taken into account a Lyapunov function is designed to define a
fault diagnosis signal.

Consider the single input-single output (m = p = 1) continuous-time system
2.1 described in Section 2.2, and denote the vector quantities u, d, fa, y, w and p
with plain types like u, d, fa, y, w and p in order to highlight their scalar nature.
Table 2.2 summarizes the matrices dimensions in the present set-up.

A n× n Bu n× 1 Bd n× q E n× 1
C 1× n Q n× 1 Q1 (n− 1)× 1 q2 1× 1
G n× n G11 (n− 1)× (n− 1) G12 (n− 1)× 1
G21 1× (n− 1) g22 1× 1

Table 2.2: Dimension of known matrices.

As previously stated the state vector is unavailable for measurement except
for the output variable y(k). The addressed problem requires the following as-
sumptions:

Assumption 5. The disturbance distribution Bd is not multiple of the fault dis-
tribution E, that is for any α ∈ R, Bd 6= αE.

Assumption 6. The system (A,E) is not controllable.

The above assumption assures that the subset 〈A|ImE〉⊥ contains a not null
vector. In addition, Assumption 3 and Assumption 4, which state that q2 is not
equal to 0 and that the invariant zeros of (G,Q,C) are Schur stable, do still hold
in order to ensure the existence of a particular control vector u which causes the
tracking error to be bounded, and the state vector boundedness.

Differently from the second policy (2.3) and as in many other approaches the
bound of the disturbance is supposed to be known.

Assumption 7. The unknown term d(t) is assumed to be bounded by a known
positive constant ̺ > 0:

|d(t)| ≤ ̺ ∀ t ∈ [0,∞).

Assuming initially that no faults affects the continuous time system, a reduced-
order filter which causes the estimation error to be bounded by a known constant
is firstly designed. Then the robust tracking problem ia addresses and a novel
Lyapunov-based diagnosis signal design problem is proposed.
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2.4.1 Filter design

Assume no actuator faults affect the continuous-time system (2.1), fa(t) = 0.
Design the following reduced-order state observer

z1(k + 1) = q1u(k) +G12y(k) +G11z1(k) (2.74)

where z1 ∈ Rn−1 is the estimated state vector. The dynamics of the estimation
error, defined as

e1(k) := x1(k)− z1(k), (2.75)

is given by

e1(k + 1) = G11e1(k) +∆1(k).

where the term ∆1(k) is bounded by ||∆(k)|| which verifies

||∆(k)|| ≤ ̺

∫ Tc

0

∥

∥M−1eAσ E
∥

∥ dσ =: ˜̺. (2.76)

As a consequence, since the matrix G11 is nilpotent by definition (i.e. G11
n = 0),

for k ≥ n the estimation error verifies

||e1(k)|| ≤ n ˜̺ . (2.77)

2.4.2 Robust tracking problem

Assign a priori a reference signal yrf(k). The control law u(k) is designed such
that the output of the resulting closed-loop system asymptotically converges to
a neighborhood of yrf(k). This means that the tracking error ǫ(k) defined as

ǫ(k) := y(k)− yrf(k), (2.78)

is asymptotically bounded. In addition the asymptotic boundedness of the state
vector is also addressed.

The asymptotic boundedness of the tracking error is guaranteed choosing the
control law

u(k) := −q2
−1G21z1(k)− q2

−1g22ǫ(k) + q2
−1yrf(k + 1)− q2

−1g22yrf(k),

which exists due to Assumption 3. So the dynamics of the error ǫ(k) is:

ǫ(k + 1) = G21z1(k) + g22ǫ(k) + q2u(k) +G21e1(k) + ∆2(k) +

− yrf(k + 1) + g22yrf(k) =

= G21e1(k) + ∆2(k).
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Thanks to the error estimation (2.77) and to the observability canonical form
of (2.7), the tracking error is always bounded by a constant depending on the
disturbance bound

|ǫ(k + 1)| ≤ ˜̺(1 + n), (2.79)

where ˜̺ is defined in (2.76).
Since the estimation error is bounded as shown in (2.77), if the estimated

state z1 is bounded, then the asymptotic boundedness of the vector state x is
straightforward. Due to (2.74) and (2.79) the dynamics of the estimated state z1
are given by

z1(k + 1) = H z1(k) +K ǫ(k) + q−1
2 q1 yrf(k + 1) +Kyrf(k)

where H := (G11 − q−1
2 q1G21) and K := (G12 − q−1

2 q1g22). Due to Lemma
2.3.2 the eigenvalues of H are exactly the invariant zeros of (G,q,C), so due to
Assumption 4 H is Schur stable. Therefore the asymptotic boundedness of the
estimated state z1 follows straightforwardly observing that

||z1(k + 1)|| ≤ ||Hkz1(0)||+
k−1
∑

i=0

||Hi||C0,

where
C0 := ˜̺(1 + n||G21||)||K||+ (||K||+ ||q−1

2 q1||) sup
j∈N

|yd(j)|

and, as a consequence

lim sup
k→∞

||z1(k)|| ≤
∞
∑

i=0

||Hi||C0 <∞.

2.4.3 Fault Detection problem

When a nonzero actuator fault fa(t) ∈ R may affect the continuous time
system, using Assumption 6 a sufficient condition for faults detectability based
on a Lyapunov function is provided.

By definition, ∆(k) ∈ Im([E ĀE . . . Ān−1E]) = 〈Ā|ImE〉 where Ā :=
M−1A and 〈Ā|ImE〉 is the controllable subspace of (Ā,E) defined by Wonham
in [81]. Due to Assumption 6 there exists

v ∈ 〈Ā,E〉⊥

such that v′ĀiE = 0 for all i = 0, 1, . . . , n− 1, hence such that v′∆(k Tc) = 0 for
every instant k Tc. The vector v can be partitioned as (v1, v2)

′ with v1 ∈ Rn−1

and v2 ∈ R according to the previous partitions.
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Set er(k) := [e1(k) ǫ(k)]
′. As the dynamics of the estimation error (2.75) and

the dynamics of the tracking error for k ≥ n are respectively

e1(k + 1) =
n−1
∑

i=0

G11
i(∆1(k − i) +Φ1(k − i)),

ǫ(k + 1) = G21e1(k) + ∆2(k) + Φ2(k),

the evolution of er(k) is given by

er(k + 1) = Ger(k) +

[

∆1(k)
∆2(k)

]

+

[

Φ1(k)
Φ2(k)

]

with G :=

[

G11 0
G21 0

]

.

By means of a change of coordinates er(k) := T−1 er(k) = (e1(k),v
′er(k))

′

through the matrix

T−1 =

[

In−1 0
v′
1 v2

]

, T =

[

In−1 0
−v−1

2 v′
1 v−1

2

]

(2.80)

where In−1 is the identity matrix of dimension n − 1, the dynamics of er(k) are
transformed as follows

er(k + 1) = Ωer(k) + s(k) +

[

Φ1(k)
v′
1Φ1(k) + v2Φ2(k)

]

.

where s(k) = [∆1(k) 0]′ is bounded by ˜̺ due to (2.76) and the state matrix

Ω := T−1GT =

[

G11 0
v′
1G11 + v2G21 0

]

is Schur stable, as all its eigenvalues are

placed in the origin of the complex plane.

The following result states that in the fault-free case the norm of er(k) is
decreasing at any time step if it is outside a suitable interval.

Proposition 2.4.1. Assume fa(t) = 0. If ||er(k)|| ≥ er0, with er0 a suitable
constant, then the norm of er(k) is decreasing at any time step.

Proof. Define a Lyapunov function

V (k) := er(k)
′ Ler(k) (2.81)

where L is the solution of the algebraic equation

Ω′LΩ− L = −Ψ, (2.82)
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with a symmetric positive-definite matrix Ψ > 0. It is worth to note that, since Ω
is a stable matrix the existence of the solution L is ensured. Setting the increment
of the Lyapunov function

LV (k) := V (k + 1)− V (k),

we have

LV (k) = −er(k)
′Ψer(k) + 2 s(k)′ LΩer(k) + s(k)′L s(k)

and due to (2.76)

LV (k) ≤ −er(k)
′Ψer(k) + 2˜̺||LΩer(k)||+ ||L|| ˜̺2 ≤

≤ −ψ||er(k)||
2 + ||L|| ˜̺2 + 2˜̺||LΩT−1|| ||er(k)||

with
ψ := ||(T−1)′ΨT−1||.

The inequality LV (k) ≤ 0 is satisfied for

||er(k)|| ≥ er0,

where

er0 :=
˜̺
(

||LΩT−1||+
√

||L||ψ + ||LΩT−1||2
)

ψ
. (2.83)

This means that, outside such interval, the norm of er(k) is decreasing at any
time step and this fact can be employed for diagnosis purposes. On the other
hand, not the whole error vector er(k) but only the tracking error ǫ(k) is available
for measurement. A sufficient condition for the fault occurrence considering the
worst case can be given as explained in the next statement.

Proposition 2.4.2. Suppose that for a time step k > 0 the variable ǫ(k) satisfies
|ǫ(k)| > er0. If the condition |ǫ(k + 1)| > |ǫ(k)| + n ˜̺ holds for a given k, then a
fault has occurred at some time step k1 < k.

Proof. Suppose that |ǫ(k)| > er0. Since

||er(k)|| ≥ |ǫ(k)| > er0

we have also ||er(k)|| > er0. Outside, in the absence of faults, one must have
||er(k+1)|| < ||er(k)|| and also ||er(k+1)|| < ||er(k)||, as the Lyapunov function
can be rewritten as V (k) = er(k)

′(T−1)′LT−1er(k). Since ||e1(k)|| ≤ n ˜̺, the
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observation error cannot contribute to any eventual growth of ||er(k)|| for more
than n ˜̺. Therefore:

||er(k + 1)|| ≥ |ǫ(k + 1)| > |ǫ(k)|+ n ˜̺≥ |ǫ(k)|+ ||e1(k)|| > ||er(k)||

hence whenever |ǫ(k+1)| > |ǫ(k)|+n ˜̺, then ||er(k+1)|| > ||er(k)||, this meaning
that a fault has necessarily occurred.

The previous development requires that er0 < ˜̺(1 + n) in view of (2.79).
Setting L and Ψ such that

ψ(1 + n)− 2||LΩT−1|| − ||L|| > 0, (2.84)

the inequality er0 < ˜̺(1 + n) holds true.

2.4.4 Example

Consider an unstable, uncertain, continuous-time plant of the form (2.1) with:

A =





0 0 1.1
1 0 0.2
0 1 0.8



 Bu = E =





1
1
1



 Bd =





0
0.1
0





C =
[

0 0 1
]

affected by a disturbance term d(t) = 0.1511 sin t bounded by 0.1511. Discretiz-
ing the system with a sampling time Tc = 0.02 sec, the matrices of the discretized
plant are

G =





0 0 1.0161
1 0 −3.0323
0 1 3.0162



 Q =





0.01996
−0.040316
0.020364





and it can be verified that Assumptions 3 and 4 hold true, indeed the invariant
zeros of (G,Q,C) are both equal to 0.99005. It can be verified that the con-
trollability matrix of (A,Bd) has a small determinant (≃ 0.001) with respect to
matrix coefficients, therefore Assumption 7 is fulfilled too. The vector v can be
determined as v = [0 0 10−5]′, and setting

Ψ =





0.001 0 0
0 0.001 0
0 0 10−5





one gets a solution

L =





0.0019836 0 0
0 0.001 0
0 0 10−5
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with ||L|| = 0.0019836 which gives a bound er = 1.17510−5 greater than (n−1)ρ̃ =
8.6164 10−6. Plant initial conditions have been chosen as x(0) = [0.5 0.5 0.5]′,
and a reference signal yrf(t) = 0 has been chosen.

When no faults affect the continuous time system, Fig. 2.6a shows that the
output signal follows the given signal yrf and Fig. 2.6b shows that the estimation
error e1(k) verifies (2.77).
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Figure 2.6: Fault-free case.

Then an abrupt fault fa(t) of intensity equal to 1.2 has considered to occur in
(2.1) for t ≥ 50 s. Fig. 2.7 displays the dynamics of the control input u(k).
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Figure 2.7: Control input.

Following the procedure of Proposition 2.4.2, detection is performed at time t =
50 s. In particular, the tracking error is reported in Fig. 2.8a, where a dotted
line shows the tracking bound (n + 1)˜̺ (2.79) and a dash-dot line represents w0

(2.83). As proved in Proposition 2.4.2, since |ǫ(k)| ≥ w0 and g(k) = |e(k + 1)| −
|e(k)| − n ˜̺> 0 as showed in Fig. 2.8b, we are certain a fault has occurred.
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Figure 2.8: Presence of an abrupt fault fa(t) = 1.2 at t = 50 s.



Chapter 3

Fault Detection: Application to
real plants

This chapter introduces two applications to real plants useful to illustrate the
fault detection approaches described in the previous chapter. In Section 3.1 the
hydraulic process of a three tank system (TTS) used by Ding as a benchmark
example in [26] is remodeled as a two inputs-two outputs perturbed linear time-
invariant system whose independent pumps (the actuators) may be affected by
both abrupt and incipient faults. A couple observer-controller is designed fol-
lowing the fault detection technique discussed in Section 2.3, and the obtained
results seem to support the effectiveness of the approach. In Section 3.2 a vehicle
suspension model is used as a worked example for all the three fault detection
strategies discussed in Chapter 2. In particular the model is reduced to the so-
called quarter-car model (QCM) where the tire is typically shaped like a single
linear spring. Assuming that just the body of the car is available for measure-
ments, both the extended Patton’s observer and the Lyapunov-based filter do
reveal the presence of eventual faults affecting an additional force resulting from
semi-active components which is used as actuator. It is also shown that the re-
duced order observer described in Section 2.3 can provide useful result also in the
case when the car ant the wheel position are both measurable.

3.1 A three tank system

A three tank system (TTS) is studied as a worked example for the fault
detection approach studied in Section 2.3. The hydraulic process, sketched in
Figure 3.1, consists of three cylindrical water tanks connected by pipes of identical
circular section which can be filled with two identical, independent pumps acting
on the two outer tanks T1, T2.

Taking into account the fundamental laws of conservation of fluid, one gets a
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Figure 3.1: Three Tank System.

nonlinear model (see [26] for more details) which is then linearized at the oper-
ating point h1 = 45 cm, h2 = 15 cm, h3 = 30 cm, where hi denotes the level in
the tank i. Therefore the following linear model is obtained

{

ẋ(t) = Ax(t) +Buu(t) +Bdd(t) +Bufa(t)
y(t) = Cx(t)

(3.1)

with

A =





−0.0085 0 0.0085
0 −0.0019 0.0084

0.0085 0.0084 −0.0169



 , Bu =





0.0065 0
0 0.0065
0 0



 ,

Bd =





1 0 0
0 1 0
0 0 1



 , C =

[

1 0 0
0 1 0

]

.

Note that, differently from [26], not all the components of the state vector are
assumed available here. The uncertain term considered is

d(t) = (0,−0.0027 x2(t) + 0.00114 x3(t), 0)
′

where xi(t) is the i-th component of the state vector x(t). It is worth to note
that such d(t) is compatible with the model uncertainty reported in [26].

The continuous-time system is affected only by faults in pumps, that are
actuator faults fa(t). Moreover faults belonging to the classes of abrupt faults
(stepwise) or incipient faults (drift-like), according to the fault classification pro-
vided in [51] are considered. The sampling interval is Tc = 0.01 sec. Finally note
that the observability indices of three tank system (3.1) are ν1 = 2 and ν2 = 1,
and faults causing reduction in effectiveness are considered.

System (3.1) is transformed in the observable canonical form (Ao,Buo,Co)
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using the square matrix

Mo =





0 1 0
0 0.9882 1

117.6471 −1.9882 0



 ,

(see [2]). It can be easily verified that the obtained system fulfills Assumptions
2-4. Indeed in the observer canonical form, the output matrix is

Co =

[

0 1 0
0 0.9882 1

]

,

so x2(t) and x3(t) are available for measurements at every sampling interval
[k Tc, (k + 1) Tc[. The row vectors q1 and q2 are linearly independent; and
eig(Γnm − q̄q+RΓm) = 0.9998 i.e. such matrix is Schur. Finally, choosing
β = 2.0075, Assumption 2 follows directly.

Then the discretized system is transformed in the observable canonical form
(G,Q,C) using the matrix

M =





100.0127 100.0127 0
0 1 0
0 0 1



 ,

so the matrices of (2.7) are

G =





0 −0.9997 0
1 1.9997 0
0 0.0001 1



 , Q =





−0.000065 0
0.000065 0
−0.000064 0.000065



 ,

C =

[

0 1 0
0 0.9882 1

]

.

Simulations have been performed with initial conditions x(0) = [0.5 0.5 0.5]′.
Results have been reported in Figures 3.2a-3.5b. Figures 3.2a-3.2b show the
dynamics of the residual signal (2.40) and of the test function (2.52) when no
actuator faults affect the sampled data system. It can be seen that Theorem 2.3.3
and Theorem 2.3.4 are verified since the residual signal vanishes asymptotically
in Fig. 3.2b and the test-function rf (k) is null after a transitory time. Fig. 3.3
displays the evolution of the residual signal (2.40) when an abrupt fault fa(t) =
[1, 0]′ (resp. an incipient fault fa(t) = [0, t − 100]′ in Fig. 3.4) affects the three
tank continuous-time system (3.1) at time t = 10000Tc sec. Both in Fig. 3.3 and
in Fig. 3.4 the test function rf (k) behaves as expected, since it exceeds 1 when
the fault occurs. Finally, Fig. 3.5b shows the dynamics of the residual signal
(2.40) when the actuator fault fa(k) = [0.1 t−10, 1, 1]′ plotted in Fig. 3.5a affects
the sampled data system (3.1) at time t = 10000Tc sec. Also in this case the
test-function reveals the presence of an actuator fault, though it is not possible
to distinguish the abrupt fault from the incipient one.
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Figure 3.2: TTS: Fault-free case.
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Figure 3.3: TTS: Test-function in
abrupt actuator fault presence.
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Figure 3.4: TTS: Test-function in in-
cipient actuator fault presence.
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Figure 3.5: TTS: Presence of an actuator fault fa(t) = [0.1 t− 10, 1]′.

3.2 A Vehicle Suspension System

A vehicle suspension system is here presented as a worked example of all the
three fault detection policies addressed in Chapter 2. A vehicle suspension system
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can be reduced to the so-called quarter-car model, shown in Fig. 3.6, where an
additional force ∆Fu resulting from semi-active components has been added, and
the Coulomb friction FC has been neglected for simplicity. The tire is typically
modeled by a single linear spring. The classical quarter-car model can be derived

mB

mW

∆Fu

cB

cW

dB

zB

zW

Fz

FB

r

FC

Figure 3.6: The Quarter-Car Model. (QCM)

(see [34])

z̈B(t) = −
dB
mB

żB(t) +
dB
mB

żW (t)−
cB
mB

zB(t) +
cB
mB

zW (t)−
FC

mB

+

+
1

mB
∆Fu −

1

mB
FB

z̈W (t) =
dB
mW

żB(t)−
dB
mB

żW (t) +
cB
mW

zB(t)−
cB + cW
mW

zW (t)−
FC

mW
+

−
1

mW
∆Fu +

cW
mW

r(t)

where cB and cW stand for stiffness of body spring and of tire respectively, dB
is the body damping coefficient supposed to be constant. mB and mW are the
body and wheel mass, zB, zW and r stand for the vertical body, wheel, and road
displacement, FZ is the dynamic car load and FB is the gravity force which is
negligible because zB and zW are the distance from the equilibrium. The road has
a displacement |r(t)| ≤ 0.01 m. The state vector x = [x1, x2, x3, x4]

′ has been
built as follows: x1 = żB, x2 = zB, x3 = żW , and x4 = zW . A perturbation ∆cW
of the stiffness of the body spring has been considered, therefore a disturbance
term d(t) = x4(t)∆ cW + cW r(t) has been considered to be present. Finally, the
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input function u(t) = ∆Fu has been taken into account. The continuous time
system is

ẋ(t) =









− dB
mB

− cB
mB

dB
mB

cB
mB

1 0 0 0
dB
mW

cB
mW

− dB
mW

− cB+cW
mW

0 0 1 0









x(t) +









1
mB

0
− 1

mW

0









u(t) +

+









0
0
1

mW

0









d(t) +









1
mB

0
− 1

mW

0









fa(t)

y(t) =

[

0 1 0 0
0 0 0 1

]

x(t) (3.2)

where fa(t) is an eventual time-dependent actuator fault. After a change of
coordinates by the nonsingular matrix P:

P =









1 − dB
mB

0 dB
mB

0 1 0 0
0 dB

mW
1 − dB

mW

0 0 0 1









, (3.3)

the following continuous-time system (in the observable canonical form) is ob-
tained

ẋ(t) =











0 − cB
mB

0 cB
mB

1 − dB
mB

0 dB
mB

0 cB
mW

0 − cB+cW
mW

0 dB
mW

1 − dB
mW











x(t) +









1
mB

0
− 1

mW

0









u(t) +

+









0
0
1

mW

0









d(t) +









1
mB

0
− 1

mW

0









fa(t)

According to [40], the following coefficient values have been used: mB = 375 kg,
mW = 20 kg, cB = 130000N/m, cW = 105N/m, dB = 9800N · sec/m, obtaining
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this plant description:

ẋ(t) =









0 −346.667 0 346.667
1 −26.1333 0 26.1333
0 6500 0 −11500
0 490 1 −490









x(t) +









0.0027
0

−0.05
0









u(t) +

+









0
0

0.05
0









d(t) +









0.0027
0

−0.05
0









fa(t)

All the three approaches are tested on the present quarter-car model. In order
to verify the first and the third methods just the second component of the state
vector, i.e. zB, is considered available for measurement, while both the second and
the fourth elements of x(t) are supposed available for measurements to validate
the second policy.

3.2.1 First approach

Assume the output vector is equal to

y = [0 1 0 0] x(t) . (3.4)

Two example shows that the residual signal generated by the full-order observer
proposed in Section 2.2 actually gives information about the occurrence of faults
in the continuous-time system 2.1.

Example 3.1. The first example deals with a disturbance-free suspension system,
d(t) = 0 for every t ∈ R. Discretizing the system with a sampling interval
Tc = 0.02 sec, the matrices of the discretized plant (2.7) are

G =









0.9163 −0.9345 0.0431 −3.3833
0.0189 0.9867 0.0086 −0.0273
0.8083 8.2015 0.0049 −18.8272
0.0161 0.1901 0.0021 0.6232









, Q = 10−4









0.0719
0.0011

−0.6308
−0.0146









.

The plant is supposed to be affected by an abrupt fault fa(t) ≡ 50000 (⋍ cW/2)
for t ≥ 8 sec (⋍ 400Tc) and a quantization error p(k) norm bounded by 10−3 is
considered. Figure 3.7 displays the behavior of the residual signal r(k) = y(k)−
Cx̂(k), and the red dotted line is the quantity determined in Proposition 2.2.3.
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Figure 3.7: Generated residual signal.

Example 3.2. A simplified model in which the influence of the wheel configura-
tion on the body dynamics is neglected is studied. The state matrix is modified as
follows

A =









− dB
mB

− cB
mB

0 0

1 0 0 0
dB
mW

cB
mW

− dB
mW

− cB+cW
mW

0 0 1 0









It can be verified that the condition (2.18) is satisfied under the above assumption.
A road displacement of the form r(t) = 0.1 ∗ sin(t) has been considered, therefore
the disturbance term turns out to be bounded by a constant ρ = cW ∗ 0.1 =
10000. The measurement are supposed to be affected by the quantization error
p(k) = 0.0005∗ cos(k). Choosing once again the sampling time Tc = 0.02 sec., the
discretized plant matrices are

G =









0.5442 −5.2764 0.0000 0.0000
0.0152 0.9420 0.0000 0.0000
0.4856 4.3963 −0.0341 −15.9199
0.0133 0.1542 0.0014 0.6442









, Q = 10−4









0.4058
0.0045
−0.3382
−0.0119









.

The plant is supposed to be affected by an abrupt fault fa(t) ≡ 5 ρ for t ≥ 8 sec.
Figure 3.8 displays the behavior of the residual signal r(k) = y(k)−Cx̂(k), and
the red dotted line is the quantity determined in Proposition 2.2.3.
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Figure 3.8: Disturbance-decoupled residual signal.

3.2.2 Second approach

Assume now that the output vector is given by

y(t) =

[

0 1 0 0
0 0 0 1

]

x(t) . (3.5)

Since the observability indices are ν1 = 2 and ν2 = 2 (so ν = 2), the state vector
can be partitioned as xnm(k) = [x1(k), x3(k)]

′ and xm(k) = [x2(k), x4(k)]
′. It

can be noticed that the number of input signals are less than the dimension of
output vector y, i.e m = 1 < p = 2, which is the case discussed in Remark 2.3.1.

Discretizing the system with a sampling interval T = 0.1 sec, the matrices of
system (2.2) are

G =









0 −0.0535 0 0.0001
1 −0.0219 0 1.0273
0 −0.0357 0 0.0001
0 −0.2115 1 0.7930









, Q =









0.3870 · 10−5

0.4403 · 10−5

0.2558 · 10−5

−0.0656 · 10−5









(3.6)

and it can be verified that the quantities (10a)-(11b) are

Γnm =

[

0 0
0 0.0001

]

, Ωnm =

[

−0.0535 0.0001
−0.0357 0.0001

]

,

Γm =

[

1 0
0 1

]

, Ωm =

[

−0.0219 1.0273
−0.2115 0.7930

]

,

C̄ =

[

1 0
0 1

]

, q̄ =

[

0.3870 · 10−5

0.2558 · 10−5

]

, q =

[

0.4403 · 10−5

−0.0656 · 10−5

]

.

It is easy to verify that Assumption 3 and 4 hold true in fact the eigenvalues
of Γnm − q̄ q+R Γm are −0.7750 and 0. Two cases are considered. At first,
assuming the road is ideally flat (r(t) = 0), system (3.4) is considered affected
by a disturbance term d(t) = x4(t)∆ cW with no output quantization error. Fig.
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3.9a shows that the state vector vanishes asymptotically when no fault affect
the continuous-time system, as theoretically proved in Corollary 2.3.1, and Fig.
3.9b displays that in this case the test-function rf (k) is always less than 1 in the
faultless case.

(a) State vector. (b) Test-function rf (k).

Figure 3.9: Fault-free case.

Considering a 2, 5% variation ∆ cW of cW , the norm of the disturbance term
d(t) is less than β ||y(t)|| with β < 1

||C̄||Tc ν̄ ||M−1|| e||A|| ||Bd||
= 24.4057 where β, i.e.

Assumption 2 is verified. If an abrupt actuator fault fa(t) = 1 for every t ≥ 50
is considered, the test-function rf reported in Fig. 3.10 is obtained, where the
spike reveals the fault has occurred.

Figure 3.10: Dynamics of rf(k) when the system is affected by fa(t) = 1 ∀t ≥ 50
and ∆cW ∼= 2, 5% cW .

Secondly, system (3.4) is studied when a fixed-point quantization affects the
A/D converter sampling the output variable, so the output measurement avail-
able is w(k) = y(k)+p(k) with ||p(k)|| < 10−3. Fig.3.11a shows that the output
measurement available w(k) is bounded asymptotically by Lw = α+ρ̃

1−θ ν
when no

faults affect the continuous-time system, as theoretically proved in Theorem 2.3.3.
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Moreover Fig. 3.11b displays that when the output signal is affected by a quan-
tization error, the test-function rf(k) is always less than 1 in the faultless case.

(a) Dynamics of ||w(k)||. (b) Dynamics of rf (k)

Figure 3.11: Fault-free case with output quantization.

Considering a 2, 5% variation ∆ cW of cW , and an actuator fault

fa(t) =

{

0 t < 50
e−t+50 t ≥ 50

(3.7)

the test-function rf quant(k) reported in Fig. 8 is obtained, where the spike reveals
a fault has occurred.

Figure 3.12: Dynamics of rf(k) when the system is affected by (3.7) and ∆cW ∼=
2, 5% cW .
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3.2.3 Third approach

In order to verify the fault detection policy proposed in Section 2.4 the output
vector

y(t) =
[

0 1 0 0
]

x(t)

is assumed available for measurements. Discretizing the system with a sampling
interval TC = 0.02 sec, the matrices of the discretized plant are

Ḡ =









0.9997 −0.111 −25.4 −2866
0.009975 0.9913 −2.026 −241.4
4.771 10−5 0.009216 0.8177 −21.61
6.404 10−8 1.465 10−5 0.001653 −0.03565









, (3.8)

q̄ =
[

0.133 0.0006427 2.673 10−5 4.159 10−8
]′
, (3.9)

and it can be verified that Assumptions 3 and 4 hold true, in fact the plant zeros
are −0.2118, 0.7633± 0.6466i.

A control input u(t) = u(k Tc) for t ∈ [k Tc, (k + 1) Tc[ verifies (2.79). A road
displacement of the form r(t) = 0.01 ∗ sin(t) has been considered, therefore the
disturbance term turns out to be bounded by a constant ρ = cW ∗0.01 = 1000. It
can be verified that the controllability matrix of (A, r) has a small determinant
(≃ 0.75) with respect to matrix coefficients, therefore Assumption 5 is fulfilled
too. The vector v can be determined as v′ = [0 0 0 10−5], and setting

Ψ =









0.001 0 0 0
0 0.001 0 0
0 0 0.001 0
0 0 0 0.00001









one gets a solution

L =









0 −2.28 · 10−5 1.86 · 10−9 0
−2.28 · 10−5 0.002 3.55 · 10−15 0
1.86 · 10−9 3.55 · 10−15 0.001 0

0 0 0 0.001









with ||L|| = 0.0020003 which gives a bound w0 = 0.028882 greater than (n+1)ρ̃ =
0.0030879. Plant initial conditions have been chosen as x(0)′ = [0 0.3 0 0.3].

A reference signal yd(t) = 0 has been chosen, and Fig. 3.13a shows that the
output signal follows the given signal when no faults affect the continuous time
system. Fig. 3.13b shows that the estimation error e1(k) verifies (2.77) in the
fault free case.



3.2. A Vehicle Suspension System 65

0 10 20 30 40 50 60 70 80 90 100
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

y(
k)

 

 
y
y

d

(a) Robust tracking.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

x 10
−3

k

||e
1(k

)|
|

(b) Estimation error. The dashed lines is nρ̃.

Figure 3.13: Fault free case.

Then an abrupt fault fa(t) of intensity equal to 30 ρ has considered to occur
in (2.1) for t ≥ 50 s. Fig. 3.14 displays the dynamics of the control input
u(k). Following the procedure of Proposition 2.4.2, detection is performed at
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fault free case	

abrupt fault case

Figure 3.14: Control input.

time t = 51 s. In particular, the tracking error is reported in Fig. 3.15a, where a
dotted line shows the tracking bound (n+1)˜̺ (2.79) and a dash-dot line represents
w0 (2.83). As proved in Proposition 2.4.2, since |e(k)| ≥ w0 and g(k) = |e(k +
1)| − |e(k)| − n ˜̺> 0 as showed in Fig. 3.15b, we can be certain that a fault has
occurred.
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Figure 3.15: Presence of an abrupt fault fa(t) = 30ρ at t = 51 s.

In Fig. 3.16a and Fig. 3.16b an incipient fault of amplitude equal to ρ has
considered to occur in (2.1) for t ≥ 50 s.
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Figure 3.16: Presence of an incipient fault of amplitude ρ at t = 51 s.



Chapter 4

Fault Accommodation

Faults may drastically change the system behavior, ranging from performance
degradation to instability. Fault Tolerant Control (FTC) is therefore needed in
order to attain the control objectives in spite of faults or, if this turns to be
impossible, to assign new (achievable) objectives to avoid catastrophic behaviors.
Fault-tolerance is considered as one of the characteristics of intelligent systems:
according to Aström (1991) “Fault diagnosis is an essential ingredient property of
an intelligent control systems”. Generally speaking there exist two approaches to
Fault Tolerant Control: the passive and the active approach. Passive FTC takes
into account a set of presumed faults and provides robust control techniques which
ensure that the closed loop system remains insensitive to the repertory of faults
considered. This strategy tends to be conservative and deals with unanticipated
faults. In contrast, in the active approach a new control system reacts to the
occurrence of systems faults on-line in real-time in an attempt to maintain the
overall system stability and performance. The reader is referred to [4] and [67]
for more detailed issues.

In particular, active FTC may be obtained by fault accommodation (FA)
in which an appropriate control law is defined taking into account information
provided by a fault detection and isolation (FDI) method.

This chapter is devoted to study an UIO-based control reconfiguration tech-
nique for linear sampled-data systems affected by actuator faults and additive
disturbances. Considering the fault detection approach presented in Section 2.2,
a control accommodation policy is developed in order to adjust the system dy-
namics by correcting the effects of generalized actuator faults belonging to the
class of abrupt and incipient faults. The following results can be found in [22], [23]
and [24].

This chapter is structured as follows. Section 4.1 summarizes some issues
presented in Chapter 2. A fault accommodation approach is described in Section
4.2 considering continuous time systems which may be affected both by abrupt
actuator faults (Subsection 4.2.1) and by generalized drift-like actuator faults
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(Subsection 4.2.2). In Section 4.3 several numerical examples validate the pro-
posed fault accommodation approach when the continuous time plant is affected
either by abrupt or by incipient faults.

4.1 Preliminaries

As in Chapter 2, consider a digital feedback control system composed of the
interconnection of an observable continuous-time plant, a digital controller and
a A/D converter. The continuous time plant is affected by an additive unknown
disturbance term and may also undergo possible actuator faults:

{

ẋ(t) = Ax(t) +Buu(t) +Bdd(t) +Bu fa(t)
y(t) = Cx(t)

(4.1)

where x(t) ∈ Rn is the state vector, y(t) ∈ R is the output signal and u(t) ∈ R is
the control input. The uncertainty term is represented as an additive unmatched
disturbance term d(t) ∈ R, and fa(t) ∈ R denotes the presence of actuator faults
that may occur in the system due to abnormal operation or material aging. A,
Bu, Bd, C are known real constant matrices with appropriate dimensions. The
state vector is assumed to be not available for measurements, therefore the only
signal available is the output which may be affected by quantization errors.

Remark 4.1.1. Differently from the problem stated in Chapter 2, the actuator
fault signal is matched with the control input, i.e. E = Bu. Moreover no sensor
fault has been considered in the present strategy.

Discretizing the plant expression, assuming that u is constant during each
sampling interval Tc, and setting with a slight abuse of notation x(k) = x(k Tc),
one gets:

{

x(k + 1) = Gx(k) +Q u(k) +∆(k) +Φ(k)
y(k) = Cx(k)

(4.2)

where G, Q, ∆(k) and Φ(k) verify the definitions (2.3-2.7), i.e.

G = eATc , (4.3)

Q =

(
∫ Tc

0

eAs ds

)

Bu , (4.4)

∆(k) =

∫ Tc

0

eA(Tc−s)Bd d(kTc + s) ds , (4.5)

Φ(k) =

∫ Tc

0

eA(Tc−s)E fa(kTc + s) ds , (4.6)

(4.7)
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The pair (G,Q) and (C,G) are supposed controllable and detectable respectively.
Fixed-point quantization is assumed to be added to the A/D converter, so the

only signal available for measurement is

w(k) := y(k) + p(k), k ∈ N (4.8)

which is affected by the quantization error p(k) bounded by a known constant ρ,
i.e.

|p(k)| ≤ ρ ∀k ∈ N.

Consider the full-order observer (2.9)
{

z(k + 1) = Fz(k) +TQ u(k) +Kw(k)
x̂(k) = z(k) +Hw(k)

(4.9)

where x̂(k) ∈ Rn is the estimated state vector, z(k) ∈ Rn is the state of the
full-order observer, matrices F, T, K verify

K := K1 +K2 ∈ R
n×1

T := In×n −HC ∈ R
n×n ,

F := TG−K1C ∈ R
n×n ,

K2 := FH ∈ R
n×1 ,

and H is such that (C,TG) is a detectable pair.
In Chapter 2 Theorem 2.2.1 states that the residual signal

r(k) := w(k)−Cx̂(k) (4.10)

is robust to system uncertainty (i.e. it is disturbance decoupled) if and only if
the structural condition

C eAσBu = 0 (4.11)

holds true for all σ larger than zero. In addition, if condition (4.11) is satisfied,
the evolution of the residual signal is given by

r(k) =

k−1
∑

i=0

CFk−1−iTΦ(i)−
k−2
∑

i=0

CFk−1−iK p(i) + (1−CH) p(k) =

=

k−1
∑

i=0

CFk−1−iTΦ(i) + r∗(k) (4.12)

and faults can be detected checking when the norm of the residual signal is larger
than the quantity

Tk(ρ) =

(

1 + ||C||(||K||+ ||H||)
k−1
∑

i=0

||Fi||

)

ρ. (4.13)
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Indeed in the fault-free case r(k) = r∗(k) ≤ Tk(ρ) .

Setting u(t) := u0(t)+ ũ(t), the aim of this chapter is to design a control input
ũ(t) depending on the residual in order to correct the negative effects on system
performances caused by the occurrence of actuator faults.

4.2 Fault accommodation technique

Suppose that the original continuous-time plant (4.1) verifies the condition
(4.11) so that the residual signal (4.10) is disturbance decoupled. A control re-
configuration technique is developed in order to cope both with stepwise actuator
faults and with generalized drift-like actuator faults. In the abrupt fault case the
presence of quantization errors is also taken into consideration.

4.2.1 Abrupt actuator faults

Assume that a stepwise actuator fault fa(t) ≡ ξ ∈ R for t ≥ t0 ≥ 0 may affect
the continuous-time plant (4.1).
The discretized system is given by

{

x(k + 1) = Gx(k) +Q [u0(k) + ũ(k)] +∆(k) +Φ(k)
w(k) = Cx(k) + p(k)

where Φ(k) = 0 for any k such that k Tc < t0. In addition consider a nominal
plant as a virtual reference of the fault-free dynamics

{

x∗(k + 1) = Gx∗(k) +Q u∗0(k) +∆(k)
y∗(k) = Cx∗(k)

The terms u0(k), u
∗
0(k) are the nominal control inputs, responsible to tune the

performances of the system in absence of faults.

Remark 4.2.1. The controls u0(k), u
∗
0(k) are assumed to be defined by a suitable,

possibly dynamic, output feedback in order to stabilize the nominal system, i.e.

u0(k) = g(k, y(k)), u∗0(k) = g(k, y∗(k)) (4.14)

with g(k, ·) such that the closed-loop system driven by the field Gx+Q g(k,Cx)
is exponentially stable in the absence of faults and disturbances.

The term ũ(k) = ũ(k, r(k)) is a residual-dependent control input which has
to be designed in order to correct the system dynamics in presence of actuator
faults. In particular the residual control ũ(k) has to satisfy

r(k) = 0 ⇒ ũ(k, r(k)) = 0,
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that is
ũ(k) = r(k) · h(k)

for a suitable function h(k).
Suppose that an abrupt fault fa(t) = ξ ∈ R occurs at time t ≥ t0 > 0 with
k0Tc ≤ t0 < (k0 + 1)Tc for some k0 ∈ N. By equation (4.12)

r(k) = r∗(k) ∀k < k0,

r(k0) = r∗(k0) +CT

∫ (k0+1)Tc

t0

eA((k+1)Tc−τ)Bu ξ dτ =: r∗(k0) +CTR0

r(k) = r∗(k) +CFk−k0TR0 +

k−k0−1
∑

i=1

CFiT

∫ Tc

0

eAτBuξ dτ ∀k > k0.

Define the following quantities for k ∈ N:

̺(k) = 1 ∀k < k0,

̺(k) =

k−k0
∑

i=0

CFiT

∫ Tc

0

eAτBudτ ∀k ≥ k0.

Remark 4.2.2. Without loss of generality it can be assumed that C(In−F)−1TQ 6=
0; if this is not the case, it is sufficient to change suitably the matrix F by tuning
the parameter K1. As a consequence, there exists k ≥ k0 such that ̺(k) 6= 0 for
any k ≥ k; for sake of simplicity we assume that k = k0 (otherwise, if ̺(k) = 0
for some k > k0, it can be replaced by a fixed constant ǫ > 0.).

Set h(k) := −
1

̺(k)
, that is

ũ(k) := −
r(k)

̺(k)
. (4.15)

Lemma 4.2.1. Let ũ(k) = ũ(k, r(k)) be defined by (4.15). Then, for any abrupt
fault fa(t) = ξ ∈ R, the following identity holds

lim sup
k→∞

||ũ(k) + ξ|| ≤ θ,

where θ = θ(ρ) is a bounded quantity depending on the quantization error.

Proof. For sake of simplicity, without loss of generality it can be assumed 0 =
k0 ≤ t0 < Tc. The control ũ(k) verifies

ũ(k) = −ξ +
CFkT

∫ t0
0
eAσBuξ dσ

∑k
i=0CFiTQ

+
r∗(k)

∑k
i=0CFiTQ

.
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Since F has been chosen as a Schur matrix (in particular all the eigenvalues are
inside the open unit circle), by Remark 4.2.4 one gets

lim
k→∞

k
∑

i=0

CFiTQ = C(In − F)−1TQ 6= 0

and

0 ≤ lim
k→∞

∣

∣

∣

∣

CFkT

∫ t0

0

eAτBuξ dτ

∣

∣

∣

∣

≤ lim
k→∞

γ1||F
k|| = 0

with γ1 := Tc|ξ| · ||C|| · ||T|| · ||Bu||e||ATc||. So

lim sup
k→∞

||ũ(k) + ξ|| ≤ lim sup
k→∞

Tk(ρ)

|CTQ|
=: θ.

Remark 4.2.3. If no quantization errors may affect the output signal, i.e. if
ρ = 0, Lemma 4.2.1 implies that for any abrupt fault fa(t) = ξ ∈ R, the function
ũ(k) = ũ(k, r(k)) defined by (4.15) tends to −ξ, i.e. the following identity holds

lim
k→∞

ũ(k) = −ξ.

Theorem 4.2.1. Setting the residual control ũ(k) according to (4.15) and if
(4.14) holds true, the Euclidean distance between the fault-affected system state
x(k) and the state of the nominal plant x∗(k) is bounded.

In order to prove the previous Theorem, two technical lemmas are necessary.

Lemma 4.2.2. Let W be an n × n Schur matrix. Then for any α > 0 the
following identity holds

lim
k→∞

kα
∥

∥Wk
∥

∥ = 0.

Proof. Denote by λ1, ..., λn the eigenvalues of W and define

µ := max
i=1,...,n

|λi| < 1.

Now kαWk =
(

kα/kW
)k
; since limk→∞ kα/k = 1 ∀α > 0, there exist η > 0 and

kη such that
1 ≤ kα/k < 1 + η ∀k > kη, µ(1 + η) < 1.

As a consequence (1 + η)W is still a Schur matrix and the conclusion follows
observing that

lim sup
k→∞

kα
∥

∥Wk
∥

∥ ≤ lim sup
k→∞

∥

∥

∥
((1 + η)W)k

∥

∥

∥
= 0.
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Lemma 4.2.3. Let {ak} and {bk}, k ∈ N, be two sequences of positive real
numbers satisfying

lim
k→∞

kαak = lim
k→∞

kβbk = 0 (4.16)

with some α > 1 ≥ β > 0. Then the following identity holds

lim
k→∞

Sk := lim
k→∞

k
∑

i=0

ak−ibi = 0.

Proof. Setting
a := sup

k∈N
ak, b := sup

k∈N
bk,

and denoting with [ · ] the integer part of a real number, the sum Sk can be
estimated as

0 ≤ Sk ≤ kβa sup
i>

[

kβ

2

]

bi + (k − kβ)b sup
i>

[

kβ

2

]

ai

and the vanishing behavior of right-hand side can be deduced from assumption
(4.16).

Proof of Theorem 4.2.1. Since the nominal controls u0(k) and u
∗
0(k) are supposed

to satisfy condition (4.14) (see Remark 4.2.1), the closed-loop system is exponen-
tially stable in absence of faults and disturbances. Without loss of generality, it
can be assumed that G is a Schur matrix and that u0(k) = u∗0(k) ≡ 0.
Since x(0) = x∗(0), the estimation error e∗(k) = x(k) − x∗(k) can be expressed
for k > k0 as follows

e∗(k) =

k−1
∑

i=k0

Gk−i−1 [Qũ(i) +Φ(i)] .

The quantity in the square bracket verifies

Qũ(i) +Φ(i) =

∫ Tc

0

eAσBu(ũ(i) + ξ) dσ =

=

∫ Tc

0

eAσBu

(CFiT
∫ t0
0
eAsBuξ ds) + r∗(i)

∑i
j=0CFjTQ

dσ

Setting

β :=
γ1|Tc| ||Bu||e

||ATc||

|CTQ|
,

with γ1 := Tc|ξ| · ||C|| · ||T|| · ||Bu||e
||ATc||, it follows that

lim sup
k→∞

||e∗(k)|| ≤ lim sup
k→∞

β

k−1
∑

i=k0

||Gk−i−1||

(

||Fi||+
Tk(ρ)

γ1

)

.
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Since both G and F are Schur matrices, by Lemma 4.2.2, ||Gk|| and ||Fk|| satisfy
the hypothesis of Lemma 4.2.3 and Tk(ρ) converges therefore

lim sup
k→∞

||x(k)− x∗(k)|| ≤ lim sup
k→∞

β

γ1

k−1
∑

i=k0

||Gk−i−1|| Tk(ρ) < +∞.

Corollary 4.2.1. Assuming no quantization error occurs (ρ = 0), setting the
residual control ũ(k) according to (4.15) and if (4.14) holds true, the fault-affected
system state x(k) converges to the state of the nominal plant x∗(k), i.e.

lim
k→∞

||x(k)− x∗(k)|| = 0.

Proof. The proof follows directly from Theorem 4.2.1.

4.2.2 Incipient actuator faults

Assume a generalized drift-like actuator fault fa(t) : [0,∞) → R such that

fa(t) =

{

0 for t ∈ [0, t0)
µt+ ξ for t ∈ [t0,+∞)

may occur in the continuous-time system (4.1) with k0Tc ≤ t0 < (k0 + 1)Tc for
some k0 ∈ N; and suppose no quantization errors affect the output signal, i.e.
ρ = 0. The discretized system is given by

{

x(k + 1) = G x(k) +Q u0(k) +U(k) +∆(k) +Φ(k)
y(k) = Cx(k)

where

U(k) :=

∫ (k+1)Tc

kTc

eA((k+1)Tc−τ)Buũ(τ)dτ

and Φ(k) = 0 for any k such that kTc < t0. In addition consider a nominal plant
as a virtual reference of the fault-free dynamics

{

x∗(k + 1) = Gx∗(k) +Q u∗0(k) +∆(k)
y∗(k) = Cx∗(k)

The terms u0(k), u
∗
0(k) are the nominal control inputs, responsible of tuning the

performances of the system in absence of faults, and they can be defined as in
Remark 4.2.1. The term ũ(t) = ũ(t, r([t/Tc])), where [ · ] stands for the integer
part of a real number, is a residual-dependent control input which has to be



4.2. Fault accommodation technique 75

designed in order to correct the system dynamics in presence of actuator faults.
In particular the residual control ũ(t) has to satisfy

r([t/Tc]) = 0 ⇒ ũ(t, r([t/Tc])) = 0,

that is
ũ(t) = r([t/Tc]) · h(t)

for a suitable function h(t).

Notation. Given a real-valued function g(k) defined on the set of integer num-
bers, the expression g(k) = O(1/k) means that as k tends to infinity if

lim
k→∞

kβ|g(k)| = 0 ∀β < 1.

By equation (4.12) the dynamics of the residual signal are

r(k) = 0 ∀k < k0,

r(k0) = CT

∫ (k0+1)Tc

t0

eA((k0+1)Tc−τ)Bu (µτ + ξ) dτ =: CT(Rµ + Rξ)

and for any k > k0,

r(k) = CFk−k0T Rµ +
k
∑

i=k0+1

CFk−iT

∫ (i+1)Tc

iTc

eA((i+1)Tc−τ)Bu µτ dτ +

+ CFk−k0T Rξ +

k
∑

i=k0+1

CFk−iT

∫ Tc

0

eAτBuξ dτ =

=: rµ(k) + rξ(k).

Define the following quantities for k ∈ N:

̺(k) = 1 ∀k < k0,

̺(k) =
k
∑

i=k0

CFk−iT

∫ (i+1)Tc

iTc

eA((i+1)Tc−τ)Bu τdτ =:
k
∑

i=k0

CFk−i TS(i) ∀k ≥ k0.

Remark 4.2.4. It can be easily verified that, for any j ∈ N, one has
∣

∣

∣

∣

∣

k
∑

i=j

CFk−iTS(i)

∣

∣

∣

∣

∣

= O(k) as k → ∞;

as a consequence
lim inf
k→∞

|̺(k)| 6= 0.
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This means that an integer number k∗ can be found such that

hmin := inf
k>k∗

|̺(k)| 6= 0.

For sake of simplicity assume that k0 > k∗ (otherwise it is sufficient to set ̺(k) ≡
ε0 for k0 ≤ k < k∗, where ε0 ∈ R is a fixed constant).

Set h(t) = −
t

̺([t/Tc])
, that is

ũ(t) = −
r([t/Tc])t

̺([t/Tc])
=: z([t/Tc]) · t (4.17)

Proposition 4.2.1. Let z(k) be the function defined on the set N by equation
(4.17). Then, for any actuator fault fa(t) = µt + ξ ∈ R, the following identity
holds

lim
k→∞

z(k) = −µ.

Proof. The slope coefficient z(k) verifies

z(k) = −

[

k
∑

i=k0

CFk−iTS(i)

]−1
[

CFk−k0T(Rµ + Rξ)
]

+

−

[

k
∑

i=k0

CFk−iTS(i)

]−1 [ k
∑

i=k0+1

CFk−iT(S(i)µ+Qξ)

]

=

= −µ+
CFk−k0T

∫ t0
k0Tc

eA((k0+1)Tc−τ)Bu µ τ dτ
∑k

i=k0
CFk−iTS(i)

−

−
CFk−k0TRξ +

∑k
i=k0+1CFk−iTQξ

∑k
i=k0

CFk−iTS(i)
.

Since F has been chosen as a Schur matrix (in particular all the eigenvalues are
inside the open unit circle), by Remark 4.2.4

0 < hmin ≤ lim inf
k→∞

∣

∣

∣

∣

∣

k
∑

i=k0

CFk−iTS(i)

∣

∣

∣

∣

∣

and

lim
k→∞

∣

∣

∣

∣

CFk−k0T

∫ t0

k0Tc

eA((k0+1)Tc−τ)Bu µ τ dτ

∣

∣

∣

∣

≤ lim
k→∞

γ2||F
k−k0|| = 0
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with γ2 := |µ(k0 + 1)T 2
c | · ||C|| · ||T|| · ||Bu||e

||ATc||. Moreover the last term in the
expression of z(k) verifies

ψ(k) := −
rξ(k)

∑k
i=k0

CFk−iTS(i)
= O

(

1

k

)

(4.18)

as k → ∞. This concludes the proof.

Theorem 4.2.2. Setting the residual control ũ(k) according to (4.17) and if
(4.14) holds true, the fault-affected system state x(k) converges to the state of
the nominal plant x∗(k), i.e.

lim
k→∞

||x(k)− x∗(k)|| = 0.

In order to prove the Theorem 4.2.2, an additional lemma is introduced.

Lemma 4.2.4. Let {ak}, k ∈ N, be a sequence of real numbers satisfying a0 6= 0
and

lim
k→∞

k2ak = 0. (4.19)

Then the sequence

ck =

∑k
j=0(k − j)ak−j

∑k
j=0(j + 1)ak−j

verifies

lim
k→∞

ck = 0, with ck = O

(

1

k

)

Proof. Due to assumption (4.19) one has

sup
k

∣

∣

∣

∣

∣

k
∑

j=0

(k − j)ak−j

∣

∣

∣

∣

∣

=: smax <∞;

therefore

|ck| ≤

∣

∣

∣

∣

∣

smax

|a0(k + 1)| −
∑k−1

j=0(j + 1)|ak−j|

∣

∣

∣

∣

∣

.

Since a0 6= 0, the conclusion follows observing that

k−1
∑

j=0

(j + 1)

k + 1
|ak−j| <

k−1
∑

j=0

|ak−j| <∞.
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Proof of Theorem 4.2.2. Since the nominal controls u0(k) and u
∗
0(k) are supposed

to satisfy condition (4.14) (see Remark 4.2.1), the closed-loop system in absence
of faults and disturbances is exponentially stable. For sake of simplicity, without
loss of generality, it can be assumed that G is a Schur matrix and that u0(k) =
u∗0(k) ≡ 0.
Since x(0) = x∗(0), the estimation error e∗(k) = x(k) − x∗(k) can be expressed
for k > k0 as follows

e∗(k) =
k
∑

ℓ=k0

Gk−ℓ [U(ℓ) +Φ(ℓ)] .

The quantity in the square bracket verifies

U(ℓ) +Φ(ℓ) =

∫ (ℓ+1)Tc

ℓTc

eA((ℓ+1)Tc−τ)Bu(ũ(τ) + µτ + ξ) dτ =

=

∫ (ℓ+1)Tc

ℓTc

eA((ℓ+1)Tc−τ)Bu

CFℓ−k0T
∫ t0
k0Tc

eA((k0+1)Tc−σ)Bu µ σ dσ
∑ℓ

i=k0
CFℓ−iTS(i)

τdτ +

+

∫ (ℓ+1)Tc

ℓTc

eA((ℓ+1)Tc−τ)Bu(ψ(ℓ)τ + ξ)dτ =: J1(ℓ) + J2(ℓ),

where the two terms of the right hand side will be treated separately. Setting

β2 :=
γ2|Tc| · ||Bu||e||ATc||

hmin

,

it follows that

|| J1(ℓ)|| ≤ β2(ℓ+ 1)‖Fℓ−k0‖; (4.20)

on the other hand the term J2(ℓ) verifies

J2(ℓ) =

∫ (ℓ+1)Tc

ℓTc

eA((ℓ+1)Tc−τ)Bu

CFℓ−k0T
∫ t0
k0Tc

eA((k0+1)Tc−σ)Bu ξdσ
∑ℓ

i=k0
CFℓ−iTS(i)

τdτ +

+

∫ (ℓ+1)Tc

ℓTc

eA((ℓ+1)Tc−τ)Bu

(

−

∑ℓ
i=k0

CFℓ−iTQ ξ τ
∑ℓ

i=k0
CFℓ−iTS(i)

+ ξ

)

dτ =

=: J2,1(ℓ) + J2,2(ℓ).

The first term can be estimated similarly to (4.20)

|| J2,1(ℓ)|| ≤ β2
(ℓ+ 1)

(k0 + 1)Tc
‖Fℓ−k0‖. (4.21)
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Setting θ := (ℓ + 1)Tc − τ , performing a change of variables and then applying
the mean-value theorem one gets

J2,2(ℓ) =

∫ Tc

0

eAθBu

(

−

∑ℓ
i=k0

CFℓ−i TQ ξ((ℓ+ 1)Tc − θ)
∑k0

i=0CFℓ−iTS(i)
+ ξ

)

dθ =

= eAθ∗
ℓBu

(

−

∑ℓ
i=k0

CFℓ−iTQ ξ((ℓ+ 1)Tc − θ∗ℓ )
∑ℓ

i=k0
CFℓ−iTS(i)

+ ξ

)

Tc

for some θ∗ℓ ∈ (0, Tc) and hence

|| J2,2(ℓ)|| ≤ e||A||Tc||Bu|| Tc · [s1(ℓ) + s2(ℓ)],

where

s1(ℓ) :=

∣

∣

∣

∣

∣

∑ℓ
i=k0

CFℓ−iTQ ξ(ℓ+ 1)Tc
∑ℓ

i=k0
CFℓ−iTS(i)

− ξ

∣

∣

∣

∣

∣

, s2(ℓ) :=

∣

∣

∣

∣

∣

∑ℓ
i=k0

CFℓ−iTQ ξ θ∗ℓ
∑ℓ

i=k0
CFℓ−iTS(i)

∣

∣

∣

∣

∣

.

Exploiting the expression of S(i) we obtain

S(i) = Tc(i+ 1)Q−

∫ Tc

0

eAσBudσ =: Tc(i+ 1)Q+ S0,

where the matrix S0 does not depend on i. This can be done integrating by
parts; setting

Q̃(s) :=

∫ s

i Tc

eA((i+1)Tc−τ)Budτ,

one gets

S(i) = sQ̃(s)

∣

∣

∣

∣

∣

(i+1)Tc

iTc

−

∫ (i+1)Tc

iTc

Q̃(s)ds = (i+1)TcQ−TcQ̃(iTc)−

∫ (i+1)Tc

iTc

Q̃(s)ds.

Now, by construction, F̃ (iTc) = 0; moreover the matrix S0 :=
∫ (i+1)Tc

iTc
Q̃(s)ds

does not depend on i. Using the previous computation, the term s2(ℓ) can be
rewritten as

s2(ℓ) =

∣

∣

∣

∣

∣

∑ℓ
i=k0

CFℓ−iTQ ξ θ∗ℓ
∑ℓ

i=k0
CFℓ−iT(Tc(i+ 1)Q+ S0)

∣

∣

∣

∣

∣

and it can be inferred that

lim
ℓ→∞

s2(ℓ) = 0, s2(ℓ) = O

(

1

ℓ

)

.
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The term s1(ℓ) can be rearranged as

s1(ℓ) =

∣

∣

∣

∣

∣

∑ℓ
i=k0

CFℓ−i T (Q ξ Tc(ℓ− i)− S0)
∑ℓ

i=k0
CFℓ−iT(QTc(ℓ+ 1) + S0)

∣

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∣

∑ℓ
i=k0

CFℓ−i TQ ξ Tc(ℓ− i)
∑ℓ

i=k0
CFℓ−iT(QTc(ℓ+ 1) + S0)

∣

∣

∣

∣

∣

+O

(

1

ℓ

)

.

Since F is a Schur matrix, by Lemma 4.2.2, the real sequence ak = CFkTQ
satisfies the hypothesis of Lemma 4.2.4 and in conclusion

s1(ℓ) + s2(ℓ) = O

(

1

ℓ

)

as ℓ→ ∞. (4.22)

Since G is a Schur matrix too, putting together the conditions (4.20), (4.21)
and (4.22), and applying Lemma 4.2.3 to the sequences āk = ||Gk|| and b̄k =
|| J1(k + k0)||+ || J2(k + k0)|| and it follows that

lim
k→∞

||e∗(k)|| ≤ lim
k→∞

k
∑

ℓ=k0

||Gk−ℓ|| || J1(ℓ) + J2(ℓ)|| ≤ lim
m→∞

m
∑

i=0

ām−ib̄i = 0,

with m = k − k0. The proof is completed.

4.3 Numerical examples

Several examples are presented in this section. Assuming that an abrupt actu-
ator fault may affect the continuous time system, the first three cases illustrate the
performances of the fault reconfiguration technique discussed in Section 4.2.1 for
an unperturbed unstable plant without quantization errors, an uncertain stable
system without quantization errors and an unperturbed quantized stable process
respectively. Examples 4.4-4.6 test the effectiveness of the method examined in
Section 4.2.2. In particular an incipient actuator fault is supposed to affect an
unstable uncertain plant with no quantization errors, a stable perturbed system
without quantization errors and a stable uncertain quantized process respectively.

Example 4.1. Consider an exponentially unstable continuous-time system with
parameter matrices

A =





−1.5 1 0
0 2.2 0
0 0 −10



 , Bu =





0.1
1

−0.2



 , Bd = 03×1, C = [0.7, 1, 1],
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and with initial condition x(0) = [1, 1, 1]′. Assume also that no disturbance terms
affect the plant, a stepwise actuator fault fa(t) = ξ = 5 occurs at t = t0 = 3.95
sec. Assuming a sampling interval Tc = 0.01 sec, the discretized parameters are

G =





0.9851 0.0100 0
0 1.0222 0
0 0 0.9048



 , Q =





0.0010
0.0101
−0.0019



 .

Define the static output feedback u0(k) = −kuCx(kTc) with ku = 4, so that the
matrix G−Q kuC is Schur stable with eigenvalues λ1 = 0.9172, λ2 = 0.9796 +
0.0133j and λ3 = 0.9796− 0.0133j.
Chose a full-order observer (4.9) with

F =





0.9657 −0.0189 −0.0254
−0.0277 0.9809 −0.0363
−0.0277 −0.0413 0.8685



 ,

whose eigenvalues are µ1 = 0.8475, µ2 = 0.9677, µ3 = 0.9998. Figure 4.2a and
4.2b show the dynamics of the state vector norm and the evolution of the residual
function (4.10) respectively. The blue line represents the faulty-free evolution, the
red dashed line is the fault dynamics and the magenta dash dotted one displays
the fault accommodated evolution.

(a) Evolution of the state vector norm. (b) Dynamics of the residual function.

Figure 4.1: Example 4.1

Example 4.2. Consider a stable continuous-time plant defined by the following
system parameters

A =





−1.5 1 0
0 −2.2 0
0 0 −10



 , Bu =





0
0
10



 , Bd = 03×1, C =





0.7
1
1





′

,
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which has an initial condition x(0) = [1, 1, 1]′, and it is affected by an abrupt
actuator fault fa(t) = ξ = 3 for t ≥ t0 = 3.95 sec. Since the plant is stable, the
control input u0 is chosen exactly equal zero, i.e. u0(k) ≡ 0. Discretizing the
system with a sampling interval Tc = 0.01 sec, the plant (4.2) is characterized by

G =





0.9851 0.0098 0
0 0.9782 0
0 0 0.9048



 , Q =





0
0

0.0952



 .

Define the observer matrices (4.9) as

H =





0.0281
0.0402
0.0402



 , K1 =





0
0
0



 , T =





0.9803 −0.0281 −0.0281
−0.0281 0.9598 −0.0402
−0.0281 −0.0402 0.9598



 ,

F =





0.9657 −0.0179 −0.0254
−0.0277 0.9387 −0.0363
−0.0277 −0.0396 0.8685



 , K2 =





0.0254
0.0355
0.0325



 ,

and note that the matrix F is Schur stable since the eigenvalues are µ1 = 0.8428,
µ2 = 0.9782, µ3 = 0.9519.
Figure 4.2a and 4.2b show the dynamics of the state vector norm and the evo-
lution of the residual function (4.10) respectively. The blue line represents the
faulty-free evolution, the red dashed line is the fault dynamics and the magenta
dash dotted line displays the fault accommodated evolution.

(a) Norm of the state vector. (b) Dynamics of the residual function.

Figure 4.2: Unperturbed case.

Then assume that an uncertain term d(t) = 2 sin(t) with a disturbance input
vector

Bd =





−0.82
0.57
0
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affects the continuous-time plant. Note that the condition (4.11) holds true, i.e.
C eA sBd = 0 for all s ∈ N, and hence the residual signal r(k) is robust with
respect to system uncertainties. Even in this case the fault accommodation policy
works fine as Figure 4.3a and 4.3b show. As above, the blue line represents the
faulty-free evolution, the red dashed line is the fault dynamics and the magenta
dash dotted one displays the fault accommodated evolution.

(a) State vector norm. (b) Disturbance decoupled residual function.

Figure 4.3: Perturbed case.

Example 4.3. Consider a disturbance-free continuous time system

ẋ(t) =









−26.1333 −346.667 26.1333 346.667
1 0 0 0
490 6500 −490 −11500
0 0 1 0









x(t) +









0.0027
0

−0.05
0









(u(t) + fa(t))

y(t) = [ 0 1 0 0 ]

where the actuator fault fa(t) belongs to the abrupt fault class and it is defined as
fa(t) ≡ 50000 for t ≥ 8 sec. Output measurements are supposed to be affected by a
quantization error p(k) = 0.0005 cos(k). Discretizing the system with a sampling
interval Tc = 0.02 sec, the matrices of the discretized plant (4.2) are

G =









0.9163 −0.9345 0.0431 −3.3833
0.0189 0.9867 0.0086 −0.0273
0.8083 8.2015 0.0049 −18.8272
0.0161 0.1901 0.0021 0.6232









, Q = 10−4









0.0719
0.0011

−0.6308
−0.0146









.

The designed control input provides fault accommodation as it is shown in the
Figure 4.4 where the evolution of the state norm is displayed.
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k

||
x
(k
)|
|

Figure 4.4: Norm of the state variable (disturbance-free system).

Example 4.4. Consider an exponentially unstable continuous-time plant with
input disturbances. The system parameters are set as follows:

A =





−13 9 2
−16 12 2
10 −9 −5



 , Bu =





1
3
0



 , Bd =





−1
−1
1



 , C =
[

0 1 1
]

,

and the initial condition is x(0) = [1, 1, 1]′. Note that the eigenvalues of the state
matrix are λ1 = −6, λ2 = −3 and λ3 = 3. The plant is supposed to be affected
both by a disturbance term d(t) = 0.98 sin(t) and by an incipient actuator fault
fa(t) = 0.8 t for t ≥ t0 = 7.98 sec. Setting the sampling-time Tc = 0.02 sec. and
defining x(k) = x(k Tc), the discretized system is:

{

x(k + 1) = G x(k) +Qu0(k) +U(k) +∆(k) +Φ(k)
y(k) = Cx(k)

where

G =





0.7486 0.1749 0.0366
−0.3133 1.2368 0.0366
0.1932 −0.1749 0.9052



 , Q =





0.0228
0.004

−0.0032



 .

It can be verified that the discretized system is stabilizable with the output feedback

u0(k) = −5Cx(k).

Consider a suitable observer

z(k + 1) = Fz(k) +TQ u0(k) +TU(k) +K y(k)
x̂(k) = z(k) +Hx(k)
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(a) Evolution of the state norm. (b) (detail)

Figure 4.5: Fault accommodation.

Figure 4.6: Dynamics of the residual function.

where the matrix F is Schur stable with eigenvalues µ1 = 0.9946, µ2 = 0.8869,
µ3 = 0.6360. The following pictures show the behavior of the system.

Example 4.5. Consider an asymptotically stable continuous-time plant with in-
put disturbances. The system parameters are set as follows:

A =





−3.2 2.4 −2.6
2 −3 2

2.2 −2.4 1.6



 , Bu =





1.1
0

−1.3



 , Bd =





−0.5
1.2

−0.5



 , C = [1 0 1],

and the initial condition is x(0) = [1, 1, 1]′. It can be verified that the eigenvalues
of the state matrix are λ1 = −1, λ2 = −3 and λ3 = −0.6. The disturbance
term is supposed to be d(t) = 0.015 sin(2t). Through Tc = 0.03 sec., setting
x(k) = x(k Tc), the discretized system is:

{

x(k + 1) = Gx(k) +Q u0(k) +U(k) +Φ(k)
y(k) = C x(k)
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where

G =





0.9081 0.0682 −0.0741
0.0565 0.9139 0.0565
0.0624 −0.0682 1.0445



 , Q =





0.0329
−0.0002
−0.0388



 .

Since the original plant is stable, it can be set u0(k) ≡ 0. Consider the observer
(4.9) where the matrix F is Schur stable with eigenvalues µ1 = 0.8734 , µ2 =
0.9139 , µ3 = 0.9822. Figures 4.7a and 4.7b show the behavior of the system
subject to a generalized drift-like actuator fault fa(t) = 0.3t+0.7 for t ≥ t0 = 11.97
sec. The dynamics of the residual signal (4.10) is plotted in Figure 4.8.

(a) Faulty system. (b) Fault accommodation.

Figure 4.7: Evolution of the state norm.

Figure 4.8: Dynamics of the residual function.
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Example 4.6. Consider now a sampled-data system whose continuous-time evo-
lution is given by

ẋ(t) =









−26.1333 −346.667 0 0
1 0 0 0
490 6500 −490 −11500
0 0 1 0









x(t) +









0.0027
0

−0.05
0









u(t) +

+









0.0027
0

−0.05
0









fa(t) +









0
0

0.05
0









d(t)

where the disturbance term d(t) = 10000 sin(t) is bounded a constant ρ = 10000
and the actuator fault belongs to the abrupt fault class fa(t) ≡ 5 ρ for t ≥ 8
sec. The only state components available for measurements is x2(t) which is also
affected by a quantization error p(k) = 0.0005 ∗ cos(k). Choosing a sampling time
Tc = 0.02 sec., the discretized plant matrices are

G =









0.5442 −5.2764 0.0000 0.0000
0.0152 0.9420 0.0000 0.0000
0.4856 4.3963 −0.0341 −15.9199
0.0133 0.1542 0.0014 0.6442









, Q = 10−4









0.4058
0.0045
−0.3382
−0.0119









.

It can be verified that the condition (4.11) is satisfied under the above assumption.
The proposed fault accommodation strategy works well even in this case and the
asymptotic behavior of the state norm is plotted in Figure 4.9.

k

||
x
(k
)|
|

Figure 4.9: Norm of the state variable.
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Part II

Nonlinear Systems





Chapter 5

A Fault Tolerant Control
Approach for an Underwater
Remotely Operated Vehicle

This chapter presents an observer-based fault tolerant control scheme applied
to a nonlinear unmanned underwater vehicle: a Remotely Operated Vehicle.

In the last decades Unmanned Underwater Vehicles (UUVs) have increased
their popularity, especially as a cost-effective solution for performing complex
tasks in the underwater environment without risking human life (e.g. environ-
mental data gathering, transportation of assembling modules for submarine in-
stallations, inspection of underwater structures). On the other hand, the un-
derwater environment introduces numerous challenges in control, navigation and
communication of such vehicles. With increasing mission durations in complex
marine applications, one of the primary concerns is the eventual occurrence of
actuator failures [35], [73]. When actuator failures occur and result in abnormal
operations, the only current solution is to abort the mission, and use a damage
control to make UUVs surface [54]. Therefore, the problem of reliability and se-
curity of UUVs, especially their tolerance to actuator fault tolerance, has become
a major concern. Even though most UUVs use adaptive control systems, the
response of the controller is reactive, and no consideration is given to the source
or extent of the failures. It is desirable to incorporate a function of actuator fault
detection and isolation into the control system, so that it is possible to detect and
identify actuator fault and/or failures, and design compensation control laws.

Driven by these motivations a fault tolerant method for an underwater Re-
motely Operated Vehicle (ROV) [58], used by SNAMprogetti (Fano, Italy) in the
exploitation of combustible gas deposits at great water depths, is addressed in the
present chapter. The vehicle is equipped with four thrusts propellers, controlling
its position and orientation in planes parallel to the sea surface, and is connected
with the surface vessel by a supporting cable which controls the vehicle depth and
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provides power and communication facilities. The control system is composed of
two independent parts: the first part, placed on the surface vessel, monitors the
vehicle depth, and the second part controls the position and orientation of the
vehicle in the dive plane. The attention has been focused on this second part of
the control system: the ROV is supposed to move on a plane, with three degrees
of freedom. Due to this assumption, the thrusters configuration is redundant, as
in general happens with UV’s. This redundancy can be exploited to enhance the
ROV ability to achieve the mission objective in the presence of a thruster fault.

The actuator failure tolerant control scheme consists of performing detection,
isolation, accommodation of failures by control reconfiguration as it is usually
done in literature [45]. A reduced order observer has been specifically designed
for the ROV exploiting the features of the underwater vehicle, permitting to esti-
mate the underwater vehicle velocities, which are in general difficult to be gath-
ered and poorly reliable. These velocity estimations and the available position
measurements, have been then used for developing a robust sliding mode control
law [79], which is able to solve the regulation problem for the ROV positions,
with respect to the reference ones. The developed sliding surfaces have been used
both for designing a robust ROV control algorithm ensuring plant regulation, and
for detecting the thruster failures. Failure detection is performed simply checking
the presence of any deviation of the observed sliding surfaces, which can be due
only to the occurrence of a thruster failure. Exploiting the ROV structure, faulty
thruster can be successfully isolated. Once the failed actuator has been identified,
control reconfiguration is performed using the redundant healthy actuators. In
other words, the control activity is redistributed among the actuators still work-
ing such that the failed actuator is compensated for, and control performances
are this way preserved.

The proposed scheme is addressed in [19].

5.1 Mathematical model of the ROV

5.1.1 ROV nonlinear model

The equations describing the ROV dynamics have been obtained from classi-
cal mechanics [13], [58], [21]. The ROV considered as a rigid body can be fully
described with six degrees of freedom, corresponding to the position and orien-
tation with respect to a given coordinate system. Let us consider the inertial
frame R (0, x, y, z) and the body reference frame Ra (0a, xa, ya, za) [13] shown in
Fig.5.1.

The ROV position with respect to R is expressed by the origin of the system
while its orientation by the roll, pitch, and yaw angles ψ, θ, and φ, respectively.
Being the depth controlled by the surface vessel, the ROV is considered to operate
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Figure 5.1: ROV operational configuration.

on surfaces parallel to the x− y plane. Accordingly the controllable variables are
x, y, and the yaw angle φ. It should be noticed that the roll and pitch angles
ψ and θ will not be considered in the dynamic model: their amplitude, in fact,
has been proved to be negligible in a wide range of load conditions, and with
different intensities and directions of the underwater current as well [58], [13].
Therefore, the ROV model is described by the following system of differential
equations [58], [13], [21], [20]:







(M +m) ẍ+Hx +Rx − Tx = 0
(M +m) ÿ +Hy +Ry − Ty = 0

(Iz + iz) φ̈+Mr +Md +Mc −Mz = 0
(5.1)

where M is the vehicle mass, m is the addition mass, Iz is the vehicle inertia
moment around the z axis, iz is the addition inertia moment, and Mc is the
resistance moment of the cable. Hx, Hy are given by the following expressions:

{

Hx = K (x−GVcx ‖V c‖)
Hy = K (y −GVcy ‖V c‖)

(5.2)

They are the forces produced by the cable traction corresponding to a submarine
current with a velocity Vc = [Vcx Vcy]

′, with

K =
W

log
(

1 + WL
Tv

) ; G =

(

L+
Tv
K

)

ρwCdc
Dc

2W
(5.3)
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where L is the cable length, Tv the vehicle weight in the water, W the weight for
length unit of the cable, ρw the water density, Cdc is the drag coefficient of the
cable, and Dc is the cable diameter. Rx and Ry are the drag forces along the x
and y axes, given by:
{

Rx = 1
2
ρwVx ‖V ‖ [Cd1Cr1S1 |cos (φ)|] +

1
2
ρwVx ‖V ‖ [Cd2Cr2S2 |sin (φ)|]

Ry = 1
2
ρwVy ‖V ‖ [Cd1Cr1S1 |sin (φ)|] +

1
2
ρwVy ‖V ‖ [Cd2Cr2S2 |cos (φ)|]

(5.4)
In (5.4) Cdi is the drag coefficient of the i−th side wall (i = 1, 2), Cri the packing
coefficient (depending on the geometrical characteristics of the i−th side wall
(i = 1, 2)), Si is the area of the i−th side wall (i = 1, 2) and V = [Vx Vy]

′ = [(ẋ−
Vcx) (ẏ−Vcy)]

′. Md andMr in (5.1) are the components of the drag torque around
the z-axis produced by the vehicle rotation and by the current, respectively, and
are given by:

{

Md = 1
2
ρwCdCrSr

3φ̇
∣

∣

∣
φ̇
∣

∣

∣

Mr = 1
8
ρw ‖V c‖

2 [Cd1Cr1 − Cd2Cr2] d1d2d3 sin
(

φ−φc

2

)
(5.5)

where Cd is the drag coefficient of rotation, Cr is the packing coefficient of ro-
tation, S is the equivalent area of rotation, r is the equivalent arm of action, di
(i = 1, 2, 3) are the vehicle dimensions along the xa, ya and za axes, respectively,
and φc is the angle between the x axis and the velocity direction of the current.
This model is in agreement with models usually proposed in literature for under-
water ROV’s moving in the dive plane [35]. Substituting (5.2)–(5.5) in (5.1), the
following equations are obtained:










p1ẍ+ (p2 |cos (φ)|+ p3 |sin (φ)|) Vx |V |+ p4x− p5Vcx |V c| = Tx
p1ÿ + (p2 |sin (φ)|+ p3 |cos (φ)|) Vy |V |+ p4y − p5Vcy |V c| = Ty

p6φ̈+ p7φ̇
∣

∣

∣
φ̇
∣

∣

∣
+ p8 |V c|

2 sin
(

φ−φc

2

)

+ p9 =Mz

(5.6)

The expressions of coefficients pi (i = 1, . . . , 9) are reported in Table 5.1.

Table 5.1: Expressions of the model parameters.

p1 M +m p2
1
2
ρwCd1Cr1S1

p3
1
2
ρwCd2Cr2S2 p4 W/

[

log
(

1 + WL
Tv

)]

p5 (p4L+ Tv) ρwCdc
Dc

2W
p6 Iz + iz

p7
1
2
ρwCdCrSr

3 p8
1
8
ρw [Cd1Cr1 − Cd2Cr2] d1d2d3

p9 Mc

The quantities Tx, Ty and Mz appearing in (5.6) are the decomposition of the
thrust and the torque provided by the four vehicle propellers along the axes of R
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(see Figure 5.1)






Tx = cos(φ)(T1 + T2 + T3 + T4) cos(α)− sin(φ)(−T1 − T2 + T3 + T4) sin(α)
Ty = sin(φ)(T1 + T2 + T3 + T4) cos(α) + cos(φ)(−T1 − T2 + T3 + T4) sin(α)
Mz = (−T1 + T2 − T3 + T4)da

(5.7)

with α =
π

4
, da = (dx sin (α) + dy cos (α)).

5.1.2 State Space ROV model

Define the vectors zp = [z1 z2 z3]
′ = [x y φ]′, zv = [z4 z5 z6]

′ =
[ ẋ ẏ φ̇ ]′, the state vector z = [z′p z′v]

′, and introduce the input vector u =
[u1 u2 u3]

′ = [Tx Ty Mz]
′. Moreover, since model parameters and submarine

current are not exactly known, bounded uncertainties are taken into account as
follows: pi = p̂i + ∆pi, |∆pi| ≤ ρpi, i = 1 . . . 9, Vcx = V̂cx + ∆Vcx, |∆Vcx| ≤ ρVcx

,

Vcy = V̂cy + ∆Vcy, |∆Vcy| ≤ ρVcy
, being p̂i, V̂cx, V̂cy the nominal values of the

parameter and of the submarine current components, respectively, and |∆pi|,
|∆Vcx|, |∆Vcy| the corresponding uncertainties, bounded by ρpi , i = 1 . . . 9, ρVcx

,
ρVcy

, respectively. Considering the above definitions and equations (5.6), the
following state space model is obtained:

ż(t) = f(z) + ∆f(z,u) + g u (5.8)

with:

f(z) =

















z4
z5
z6

−f4(z3)z̄4Nz + ϕ4(z1)
−f5(z3)z̄5Nz + ϕ5(z2)

− p̂7
p̂6
z6 |z6|+ ϕ6(z3)

















g =

[

03×3

gR

]

(5.9)

being gR = diag

{

1

p̂1
,
1

p̂1
,
1

p̂6

}

, z̄4 = z4 − V̂cx, z̄5 = z5 − V̂cy, Nz =
√

z̄24 + z̄25 ,

c3 = cos(z3), s3 = sin(z3), |V̂c| =
√

V̂ 2
cx + V̂ 2

cy, φ̂c = arctan(V̂cy/V̂cx), and f4(z3) =

1
p̂1
(p̂2 |c3|+ p̂3 |s3|), f5(z3) =

1
p̂1
(p̂2 |s3|+ p̂3 |c3|), ϕ4(z1) =

1
p̂1

(

−p̂4z1 + p̂5V̂cx|V̂c|
)

,

ϕ5(z2) =
1

p̂1

(

−p̂4z2 + p̂5V̂cy|V̂c|
)

, ϕ6(z3) = −
1

p̂6

(

p̂8|V̂c|
2 sin

(

z3 − φ̂c

2

)

+ p̂9

)

,

and the term

∆f(z,u) = [0 0 0 ∆4(z1, z3, z4, Tx) ∆5(z2, z3, z5, Ty) ∆6(z3, z6,Mz)]
′

can be easily computed considering the uncertainties |∆pi|, i = 1 . . . 9, ∆Vcx,
∆Vcy.
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5.2 Robust Control Design

A reduced order observer is specifically designed to estimate the ROV veloc-
ities which are either difficult to be gathered and poorly reliable unlike position
measurements which are usually available and sufficiently reliable.

The observer design is carried out exploiting the following features of the
ROV:

• in the model (5.8)-(5.9, positive scalars γ14, γ24, γ15. γ25 can be found
such that: 0 < γ14 ≤ f4(z3) ≤ γ24, 0 < γ15 ≤ f5(z3) ≤ γ25;

• there is a maximal (known) velocity zmax
4 , zmax

5 , zmax
6 achievable by the

vehicle, as a consequence of the existence of a maximal power supply by
thrusters. Therefore it exists a boundM =

√

(zmax
4 − Vcx)2 + (zmax

5 − Vcy)2

such that Nz ≤ M .

• as a consequence of the existence of a maximal power supply by thrusters,
control variables Tx, Ty, Mz are bounded, too, and bounds can be eas-
ily computed also for the uncertain terms. Therefore, it can be as-
sumed that: |∆4(z1, z3, z4, Tx)| ≤ ρ4(z1); |∆5(z2, z3, z5, Ty)| ≤ ρ5(z2);
|∆6(z3, z6,Mz)| ≤ ρ6(z3).

Define ξ = [ξ1 ξ2 ξ3]
′, and consider the following reduced state observer:

ξ̇1 =− f4(z3)Mξ̄1 + ϕ4(z1) +
u1
p̂1

ξ̇2 =− f5(z3)Mξ̄2 + ϕ5(z2) +
u2
p̂1

ξ̇3 =− α6M̄ξ3 + ϕ6(z3) +
u3
p̂6

(5.10)

with ξ̄1 = ξ1 − Vcx, ξ̄2 = ξ2 − Vcy, α6 = p7/p6, M̄ = sup{|zmax
6 |,M}.

A robust control law, coupled with the above observer, will be here presented
aimed at solving the regulation problem for the variables z1, z2, z3 with respect
to reference variable zd = [z1d z2d z3d]

′. Define the following sliding surface:

s = [s1, s2, s3]
′ = ǫ̇+Λǫ = 0 (5.11)

being ǫ = zp − zd the tracking error and Λ = diag{λi}, λi > 0 for i = 1, 2, 3.
Moreover define

s̃ = [s̃1, s̃2, s̃3]
′ = (ξ − żd) +Λ

∫ t

0

ξ(τ)dτ − zd = 0. (5.12)

Of course, s̃ → s as ξ → zv.
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Lemma 5.2.1. Consider the uncertain ROV model (5.8). The control law u =
ueq + un, with:

ueq = gR
−1





f4(z3)ξ̄1M − ϕ4(z1) + λ1(ξ1 − ż1d) + z̈1d
f5(z3)ξ̄2M − ϕ5(z2) + λ2(ξ2 − ż2d) + z̈2d
α6M̄ξ3 − ϕ6(z3) + λ3(ξ3 − ż3d) + z̈3d





un = −gR
−1





ρ4sign(s̃1)
ρ5sign(s̃2)
ρ6sign(s̃3)



 (5.13)

guarantees the asymptotic achievement of a sliding motion on (5.12).

Proof. The achievement of a sliding motion on (5.12) is guaranteed by the fol-
lowing condition:

s̃′ ˙̃s = s̃1

(

ξ̇1 − z̈1d + λ1(ξ1 − ż1d)
)

+ s̃2

(

ξ̇2 − z̈2d + λ2(ξ2 − ż2d)
)

+

+ s̃3

(

ξ̇3 − z̈3d + λ3(ξ3 − ż3d)
)

< 0 (5.14)

which can be fulfilled imposing separately three inequalities, i.e.

si

(

ξ̇i − z̈id + λi(z3+i − żid)
)

< 0, i = 1 · · ·3.

The first inequality gives, e.g.:

s̃1

(

−f4(z3)N̂z ξ̄1 + ϕ4(z1) +
1

p̂1
u1 − z̈1d + λ1(ξ1 − ż1d)

)

< 0 (5.15)

and one gets immediately the controller (5.13).

Define the observation error as e = [e1 e2 e3]
′ = zv − ξ. The following result

can be given:

Theorem 5.2.1. Consider the uncertain plant model (5.8) driven by the con-
trol law (5.13). The reduced order observer (6.5) ensures the robust ultimately
boundedness both of the observation error and of the tracking error.

Proof. The observation error dynamics are:

ė1 =− f4(z3)(z̄4Nz −Mξ̄1) + ∆4(z1, z3, z4, Tx)

ė2 =− f5(z3)(z̄5Nz −Mξ̄2) + ∆5(z2, z3, z5, Ty)

ė3 =− α6(|z6|z6 − M̄ξ3) + ∆6(z3, z6,Mz) (5.16)

Consider e.g. the first component. Rearranging first equation of (5.16), one has:

ė1 = −f4(z3)Nze1 + f4(z3)(M −Nz)ξ̄1 +∆4(z1, z3, z4, Tx) (5.17)
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Since control law (5.13) guarantees the achievement of a sliding motion on the
sliding surface (5.12), variable ξ1 asymptotically converges to ż1d, and therefore

ξ̄1 is bounded. Let’s denote such bound with ξ̄
(max)
1 . The following inequality

holds:
ė1 ≤ −f4(z3)Nze1 + γ24(M −Nz)ξ̄

(max)
1 + ρ̄4. (5.18)

From the Comparison Theorem, it is immediate to see that the tracking error is
bounded by the solution of the following differential equation:

η̇ = −f4(z3)Nzη1 + γ24(M −Nz)ξ̄
(max)
1 + ρ̄4 (5.19)

which is bounded. An analogous approach can be taken for the remaining two
components of (5.16), i.e. the observation error e is ultimately bounded. Define
also ˙̂e = ξ− żd = ξ−zv+zv− żd = −e+ ǫ̇, then ǫ̇ = ˙̂e+e. As a consequence, the
quantity s is bounded and the tracking error ǫ is bounded too, and the statement
follows.

5.3 Fault Detection, Isolation and Accommoda-

tion

In the scenario considered, each thruster is an actuator potentially affected
by faults. The basic idea is that, whenever a failure is detected and identified,
a supervisor performs a control reconfiguration exploiting thrusters redundancy
(three propellers are enough to control the ROV trajectory). In this framework,
it is convenient to rewrite the model (5.8) as follows:

ż(t) = f(z) + ∆f(z,u) + ḡ(zp)





T1 + T2 + T3 + T4
−T1 − T2 + T3 + T4
−T1 + T2 − T3 + T4



 (5.20)

with:

ḡ(zp) =









03×3

ḡ1(z3)
ḡ2(z3)
ḡ3(z3)









=













03×3
1
p1
c3 cos(α) − 1

p1
s3 sin(α) 0

1
p1
s3 cos(α)

1
p1
c3 sin(α) 0

0 0
da
p6













5.3.1 Class of potential faults

The addressed potential faults belong to a wide class. First, the so called
abrupt fault [51] [7] [65] are considered. They are described by a step function,
modeling the case when the faulty variable is instantaneously stuck to an unknown
but bounded value. Such fault may occur when a failure of a component produce
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a sudden deviation of the actuator dynamics (as for example a valve completely
failing to open or close, a short circuit in the motor circuitry [69]). This type of
thruster faults has the following model:

|Tj (t) | = T̄ ≤ Tmax ∀t ≥ tj, j ∈ {1, 2, 3, 4} (5.21)

where the failure times tj are unknown. In other words, when a fault does occur
on a thruster, this causes the complete and permanent unavailability of the con-
sidered actuator at unknown time instant. This means that, from the unknown
time instant tj , it is not possible to recover the thruster functionality and thus
only the remaining working thrusters can be used to control the vehicle. The case
when a thruster undergoes a failure occurs when T̄ = 0.

Also, the behavior of a faulty device can be consequence of deterioration, ob-
solescence or cumulation phenomena (cumulation of sediment, wear of impeller
casing, silt within pipelines, leaks in the machinery, erosion). These phenomena
produce a small instantaneous deviation of the actuator behavior, but it cumu-
lates in time; as a result, these faults can result in a loss of efficiency within
the system. A usual way to mathematically describe such temporal behavior is
assuming that the development of the fault is given by

Tj(t) =







Tj (t) t < tj

Tj
(

t−j
)

+
(

T̄ − Tj
(

t−j
))

(

1− e
−
(

t−tj

θj

))

; t ≥ tj;
(5.22)

where θj > 0, j ∈ {1, 2, 3, 4}, and |Tj(t)| ≤ T̄ ≤ Tmax, i.e. the loss of effectiveness
slowly changes from zero (i.e. no fault is present) to a steady-state value T̄ [65].

The following Assumptions are needed.

Assumption 8. Only one of the four thrusters can undergo a fault, i.e. multiple
thruster faults cannot be admitted. Moreover, it is assumed that any fault does not
compromise controllability of the plant driven by the remaining healthy thrusters.

Assumption 9. In the case of the fault model (5.22), it is assumed that the loss
of effectiveness occurs slowly enough.

Assumption 10. In view of the fact that the reaching phase can be made arbi-
trarily short, it is assumed that the fault can occur only after a sliding motion has
been achieved on (5.12).

5.3.2 Fault Detection

The eventual occurrence of a fault and the identification of the failed thruster
can be performed by means of simple considerations exploiting the ROV model.
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To this purpose, it is important to notice that the control law is computed impos-
ing the achievement of a sliding motion of the observed surface (5.12). Therefore,
once the sliding motion is established (i.e. when s̃i = 0 after the reaching phase),
it is straightforward to verify that any deviation of the sliding surface is due to
the occurrence of a fault. For instance, if a fault occurs at the time tf on the
thruster T1 such that the control input actually supplied undergoes a deviation
∆T1(t − tf ) for t > tf with respect to its theoretical value, for the first sliding
surface it holds:

s̃1(t)− s̃1(tr) = s̃1(t) =
1

p1

∫ t

tf

∆T1(τ − tf ) cos(z3 − α)

having denoted by tr the time when the sliding motion is achieved (therefore
s̃1(t) = 0 for t ≥ tr). Similar effects are produced by the considered variation of
thruster T1 on the remaining sliding surfaces.

Proposition 5.3.1. Consider the uncertain ROV model (5.8) driven by the robust
controller (5.13). Suppose that the thruster Tk, k ∈ {1, . . . , 4} undergoes a fault
at time tf , thus causing a deviation of ∆Tk(t − tf) of the control input supplied
with respect to its theoretical value. Then one has, for t > tf :

s̃1(t) =
1

p1

∫ t

tf

∆Tk(τ − tf ) cos(z3 − (−1)k÷3α)dτ

s̃2(t) =
1

p1

∫ t

tf

∆Tk(τ − tf ) sin(z3 − (−1)k÷3α)dτ

s̃3(t) =
da

p6

∫ t

tf

(−1)k∆Tk(τ − tf )dτ (5.23)

where the symbol ÷ denotes the operator of division between integers.

Proof. The statement follows directly from Assumption 10 and from the observer
(6.5).

From the previous proposition, a fault detection rule immediately follows.

Proposition 5.3.2. Consider the uncertain ROV model (5.8) driven by the robust
controller (5.13) under Assumptions 8,9,10. Suppose that the thruster Tk, k ∈
{1, . . . , 4} underwent a fault at time tf . The fault can be detected checking the
variables s̃i(t), i = 1, 2, 3, at t < tf , i.e. if

(s̃1(t) 6= 0)OR(s̃2(t) 6= 0)OR(s̃3(t) 6= 0)

then a fault has occurred.
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Proof. The proof is straightforward. It simply consists in checking the eventual
violation of the sliding mode existence condition, according to (5.23). It is worth
recalling that, according to Assumption 10, the sliding motion has been estab-
lished, and the sliding surface (5.12) should be zero in the absence of a fault
affecting the actuators.

Remark 5.3.1. It should be noticed that the previous Proposition gives a suffi-
cient condition, therefore the occurrence of a fault could not necessarily produce
the variation of all sliding surfaces s̃i (i = 1, 2, 3). Nevertheless, also in view
of (5.23), one should consider the deviation from zero of the surfaces as symp-
tomatic of the occurrence of a fault, since whenever the occurred fault were not
severe enough to cause any deviation of s̃i, i = 1, 2, 3, from zero, this would simply
mean that the controller is still able to guarantee the achievement of the required
performances in face of the fault itself.

5.3.3 Failed Thruster Isolation

The identification of the thruster which underwent the fault can be performed
by means of simple considerations exploiting the ROV structure. Assume a fault
has occurred at time tf , and define for t > tf :

Ic1(t) =

∫ t

tf

cos(z3 − α)dτ ; Ic2(t) =

∫ t

tf

cos(z3 + α)dτ ;

Ic3(t) =

∫ t

tf

sin(z3 − α)dτ ; Ic4(t) =

∫ t

tf

sin(z3 + α)dτ. (5.24)

Proposition 5.3.3. Consider the uncertain ROV model (5.8) driven by the robust
controller (5.13), under Assumptions 8,10,9. Suppose that the thruster Tk, k ∈
{1, . . . , 4} underwent a fault at time tf , then detected at time td > tf . Compute
the quantities for t > td:

µ11(t) =
s̃1(t)

Ic1(t)
µ13(t) =

s̃1(t)

Ic3(t)

µ22(t) =
s̃2(t)

Ic2(t)
µ24(t) =

s̃2(t)

Ic4(t)

µ3(t) = s̃3(t)
p6
da

(5.25)

The failed thruster Tf can be isolated according to the following rule. Fix a time
t̄ > td.

• If sign(µ11(t̄)) 6= sign(µ3(t̄)) then

– if µ22(t̄) = µ11(t̄) then Tf = T1
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– else Tf = T3;

• else (if sign(µ11(t̄)) = sign(µ3(t̄)) then)

– if µ22(t̄) = µ11(t̄) then Tf = T2

– else Tf = T4;

Proof. The statement follows directly from Proposition 5.3.1. In fact, under
Assumption 9 and for short intervals (tf , t̄), the term ∆Tk(τ− tf ) in (5.23) can be
moved outside the integral signs. It follows that comparing signs of the quantities
(5.25) one can identify the failed actuator, exploiting the model (5.20). Just as an
example, suppose that the thruster T2 underwent a fault of intensity ∆T2(τ − tf ).
According to the model (5.20), one has

s̃1(t) =
1

p1
∆T2

∫ t

tf

cos(z3 − α);

s̃2(t) =
1

p1
∆T2

∫ t

tf

sin(z3 − α);

s̃3(t) =
da
p6

∆T2(t− tf) (5.26)

therefore µ11 = 1
p1
∆T2, µ3 = ∆T2(t − tf ), and µ11, µ3 have the same sign. The

same would anyway have occurred if the fault had undergone in the thruster T4,
in view of the structure of the matrix ḡ(z3) of the model (5.20). To discriminate
between T2 and T4, it is enough to consider that, from the first two equalities of
(5.26):

1

p1
∆T2 =

s̃1(t)
∫ t

tf
cos(z3 − α)

=
s̃2(t)

∫ t

tf
sin(z3 − α)

therefore it is simply needed to check whether µ22(t̄) = µ11(t̄). This approach
can be generalized to the remaining possible cases. In particular, in the case
when sign(µ11(t̄)) 6= sign(µ3(t̄)), only thrusters T1 or T3 could have experienced
a fault. Moreover, if µ22(t̄) = µ11(t̄), then the failed actuator is T1, otherwise is
T3. An analogous argument holds for the case when sign(µ11(t̄)) = sign(µ3(t̄)),
for which the candidate failed actuators are T2 or T4.

5.3.4 Control reconfiguration

After a failure has been detected and isolated by the FD and FI module re-
spectively, the supervisor has to perform a control reconfiguration to preserve the
desired performances in face of the failure occurrence. In particular, the inherent
redundancy of the considered ROV can be exploited for fault accommodation.
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Consider the model (5.20), and suppose that a fault has been detected and
isolated. The plant model can be rearranged separating the failed and the active
thrusters, e.g. if the failed thruster were T1 one would get:

ż(t) = f(z)+∆f(z,u)+









03×3

ḡ1(z3)
−ḡ2(z3)
−ḡ3(z3)









T1+









03×3

ḡ1(z3)
ḡ2(z3)
ḡ3(z3)













T2 + T3 + T4
−T2 + T3 + T4
T2 − T3 + T4



 (5.27)

To accommodate the fault, it is now easy to rewrite the sliding mode controller us-
ing the model (5.27) and the bound Tmax available for the failed actuator, follow-
ing the lines of Lemma 6.2.2. In view of the robustness properties of sliding-mode
control, this procedure guarantees the robust asymptotic vanishing of the track-
ing errors also in the presence of a faulty actuator (with known upper bound),
i.e. that robust regulation is achieved asymptotically.

5.4 Simulation results

The proposed actuator fault tolerant control scheme has been validated by
simulation. Tests have been performed in the following operative condition:

• Parameters variations of 10% with respect to their nominal value, as
reported in Tab.5.2;

• In the simulation tests, the plant initial condition has been chosen as
x(0) = 0, y(0) = 0, φ(0) = 0, ẋ(0) = 0, ẏ(0) = 0, φ̇(0) = 0, and the set
point as yd = [1 m 1 m 30◦]′.

• Favorable submarine current has been considered, with Vc = [0.1 0.1]′

m/s. Notice that such marine currents have been considered constant
since they are very slowly time-varying due to the fact that they model
submarine currents at great sea depth.

• The actuator T2 has been supposed to undergo an abrupt fault at t = 70
s of the form:

T2(t) = 2000N for t ≥ 70 s.

Before fault occurrence, the control action applied to the ROV is subdi-
vided among the four thrusters (T1 is redundant and its value is set to
500 N). After the fault occurrence, control reconfiguration is performed
including the (previously redundant) actuator T1 in the triple of actuators
needed to control the ROV.
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Table 5.2: Model parameters and their variations.

p1 12670 kg ± 10% p2 2667 kg ·m−1 ± 10% p3 4934 kg ·m−1 ± 10%

p4 417N ·m−1 ± 5% p5 46912 kg ·m−1 ± 10% p6 18678 kg ·m2 ± 10%

p7 9200 kg ·m2 ± 10% p8 −308.4 kg ± 5% p9 1492N ·m± 5%

Simulation results obtained considering the occurrence of an abrupt fault have
been reported in Figs. 5.2-5.5. It can be verified that, before the fault occur-
rence on T2, actuators T2, T3 and T4 are able to effectively control the ROV (see
Figs. 5.2-5.3). Moreover, simulations results show that satisfactory performances
are maintained also in the faulty situation, since the ROV controlled outputs
effectively follow the reference values (see Fig. 5.2) also after fault occurrence,
and that observation errors are bounded (see Fig. 5.4). It is interesting to ver-
ify that detection of the fault is correctly performed by the sliding surfaces at
t = 70 s (see Fig. 5.5), since the sliding surfaces noticeably deviate from zero.
After fault isolation, reconfiguration is performed, and the previously redundant
thruster T1 is activated, along with T3 and T4, for ensuring output regulation and
for maintaining the required control performances.
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Chapter 6

Detection of Scramjet Unstart in
a Hypersonic Vehicle Model

This chapter presents an observer-based fault detection approach to another
class of highly nonlinear system, a Hypersonic Vehicle. In scramjet-powered hy-
personic vehicles (HSVs), engine unstart is a phenomenon that occurs as a re-
sult of several causes, which include distortion of the incoming airflow, thermal
chocking of the flow in the combustor, and engine control system malfunction.
During unstart, the vehicle experiences an instantaneous loss of thrust and a sud-
den change in pitching moment, usually accompanied by residual side forces and
yawing/rolling moments. Slope reversal in stability and control derivatives has
also been observed, which may cause an impulsive transition to unstable flight
conditions [5]. Unless proper corrective actions are taken, inlet unstart usually
results in system failure. Although every effort must be taken by the guidance
and control system to avoid the onset of unstart, it is recognized that such event
may be inevitable; hence the control architecture must be capable of detecting
the transition to unstart and steering the vehicle to a stabilized flight regime
where full operability of the engine is recovered.

The occurrence of unstart in a longitudinal model of the dynamics of a
scramjet-powered hypersonic vehicle is modeled as an actuator fault with an
associated abrupt change in the model parameters. Specifically, the velocity dy-
namics have been modeled as a nonlinear switching system, consisting of two
systems which represent the started mode and the unstarted mode, respectively.
The setup discussed in this chapter therefore differs from the previous problem
statements where the fault is described as an unknown input to the system model.
Detection of this mode switching is crucial in establishing that unstart has oc-
curred, so the flight control systems to resize the control objective and maintain
a stable configuration from which a started engine operation can be recovered.
Detection is accomplished by processing only flight control system data, without
relying on engine data or measurement of the airflow across the isolator, which
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facilitate future integration with existing control architectures. The attractive
feature of the technique, which make it suitable for integration with existing
flight control schemes, is the simplicity of the detection algorithm as well as the
fact that only signals typically available for the navigation and flight control
are employed. Current work is addressing the integration of this scheme in a
fault-tolerant flight control architecture that provides recovery from unstarted
conditions.

The chapter presents the result discussed in [70] and it is organized as follows:
in Section 6.1, the HSV model is described including the scramjet model with
unstart conditions due to thermal engine choking. The design of the detection
algorithm is carried out in Section 6.2, both for the nominal and for the perturbed
plant model. Simulation studies presented and discussed in Section 6.3 verify that
the method is robust for bounded perturbations in a neighborhood of the nominal
plant parameters.

6.1 Vehicle Model

A sketch of the geometry of the hypersonic vehicle in the longitudinal plane
is shown in Fig. 6.1. Following [66], a longitudinal rigid-body vehicle model
has been derived from the higher-fidelity model of [6] by replacing complicated
expressions of forces and moments with curve-fit approximations, whereas no
vibrational modes have been considered in this study. The rigid-body state vari-
ables are velocity, V , altitude, h, flight-path angle, γ, angle-of-attack, α, and
pitch rate, Q. The equations of motion read as

V̇ =
1

m
T (α, φ) cosα−

1

m
D(α, δc, δe)− g sin γ

ḣ = V sin γ

γ̇ =
1

mV
(T (α, φ) sinα + L(α, δc, δe))−

g

V
cos γ

α̇ = Q− γ̇

Q̇ =
1

Iyy
M(α, δc, δe) (6.1)

where m and Iyy are the vehicle mass and the vehicle inertia respectively. The
control inputs are respectively the fuel-to-air ratio normalized at the stoichio-
metric ratio for hydrogen (FER), φ, the canard deflection, δc, and the elevator
deflection, δe. The approximated expressions of the aerodynamic forces and mo-
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ments read as follows

T (α, φ) = q̄ScT,φ(α,M∞)φ+ q̄ScT (α,M∞)

D(α, δc, δe) = q̄ S cD(α, δc, δe)

L(α, δc, δe) = q̄ S cL(α, δc, δe)

M(α, δc, δe) = zT T + q̄ S c̄ cM(α, δc, δe)

where

cT,φ(α,M∞) = cαT,φα + cαM−2
∞

T,φ αM−2
∞ + cM

−2
∞

T,φ M−2
∞ + c0T,φ

cT (α,M∞) = cαT α + cM
−2
∞

T M−2
∞ + c0T

cD(α, δc, δe) = cα
2

D α
2 + c

δ2c
D δ

2
c + c

δ2e
D δ

2
e + cαDα+ cδcDδc + cδeDδe + c0D

cL(α, δc, δe) = cαLα+ cδcL δc + cδeL δe + c0L

cM(α, δc, δe) = cαMα + cδcMδc + cδeMδe + c0M

where S denotes the reference area, c̄ the mean aerodynamic chord, zT the thrust
moment arm and cji are the coefficients of the curve-fit approximations [66]. The
dynamic pressure q̄ and the free-stream Mach number M∞ satisfy

q̄ =
ρ(h)

2
V 2 =

ρ0
2
e−

h−h0
hs V 2, M∞ =

V
√

kRT∞(h)

where ρ0 is the nominal air density, h0 the nominal altitude, h−1
s is the air density

decay rate, k = 1.4 is the ratio of specific heats, R = 1716 (ft lbf)/(slug °R) is
the gas constant, T∞(h) is the free-stream temperature, and ρ(h) is the altitude
dependent air-density. The free stream temperature and the air-density are ob-
tained from a lookup table parameterized by altitude, based on the U.S. standard
atmosphere model.

As in Ref. [33], it is assumed that all model parameters are subject to uncer-
tainty, and all the state variables are available for measurements. The nonlinear
robust adaptive controller presented in [33] has been adopted in this study. Since
the focus of the chapter is on detection of the mode of the vehicle system, no de-
tails of the control strategy are provided, the reader is referred to [33] for details.

6.1.1 Scramjet engine model

A typical scramjet propulsion system consists of four major engine components
(internal inlet, isolator, combustor, internal nozzle) and two vehicle components
(external nozzles) which are integrated with the airframe, as shown in Fig. 6.2.
The primary purpose of the external inlet system is to capture and compress
the air flowing in the engine. The combustor accepts the inlet/isolator airflow
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Figure 6.2: Representative scramjet engine.

with variations in geometry profiles and provides efficient fuel air mixing within
the available combustor length. When flow phenomena in the internal portion of
the inlet are independent from the air capture characteristics, the vehicle is said
to be in a “started” mode. If the internal flow phenomena and the air capture
characteristics are highly coupled, causing an unacceptably low pressure, the
vehicle may switch into an “unstarted” mode, where the operability of the engine
is compromised. In this paper, the mechanism that generates engine unstart is
related to thermal chocking of the engine. Heat addition (due to increased FER)
tends to slow down the flow within the combustion chamber, until it becomes
subsonic, at which point scramjet combustion can no longer be sustained. Using
the first-principle model in [6], the relationship between the free-stream flow
conditions and the conditions at the second stage of the engine that produce
thermal chocking can be found through shock-expansion theory and the theory of
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flow through nozzles [86]. A polynomial spline approximation of this relationship
has been derived in [86] to obtain a function φchoke = φchoke(M∞, q̄, α) that defines
the maximum fuel-to-air ratio that can be provided at a given flight condition
compatible with the scramjet engine operating in started regime. As an example,
Figure 6.3 shows plots of φchoke versus Mach number for given values of α at
q̄ = 1800 psv. It can be noted that at lower Mach number the attainable thrust
(hence, the vehicle acceleration) is severely limited by the choking conditions.

Figure 6.3: Plot of φchoke(M∞, q̄, α) vs. M∞ for different values of α [86].

6.2 Fault Detection Algorithm

In this section an analytical observer-based fault detection algorithm is de-
signed by considering only the acceleration dynamics. Subsection 6.2.1 deals with
a fault detection strategy for the nominal model (6.1), and in Subsection 6.2.2 the
robustness of the method is proved under certain conditions on the perturbation
affecting the nominal value of the plant parameters.
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Table 6.1: Admissible range, A, for the HSV model

Variable Min. value Max. value

V 5500 ft/s 11000 ft/s
h 70000 ft 135000 ft
γ −3 deg 3 deg
α −5 deg 5 deg
Q −1 deg/s 1 deg/s
φ 0.01 1.5
δc −15 deg 15 deg
δe −15 deg 15 deg
q̄ 500 psf 2000 psf
M∞ 6 12

6.2.1 Nominal dynamics

Assume at first that no model parameter perturbations affects the vehicle
dynamics (6.1). In order to detect if the unstart inlet has occurred, it is useful
to consider only the V̇ dynamics equation. For notational convenience, define
x := V and w := [h, γ, α,Q, φ, δc, δe]

′. The vehicle is assumed to be in start mode
at t = 0. Let ts be the switching time from started to unstarted mode, with the
provision that ts = +∞ if no transition occurs. The problem can be formalized
as follows

x(t) =

{

xs(t) t < ts
xu(t) t ≥ ts

(6.2)

with

ẋs = fs(xs, w), xs(0) = x0,
ẋu = fu(xu, w), xu(ts) = xs(ts),

(6.3)

and fs(·), fu(·) are the velocity dynamics in started and unstarted mode respec-
tively. In particular, fs, fu : A → R verify

fs(xs, w) =
Sq̄

m

(

csT,φ(α,M∞)φ+ csT (α,M∞)

)

cosα+

−
Sq̄

m
csD(α, δc, δe)− g sin γ

fu(xu, w) =
Sq̄

m
cuT (α,M∞) cosα−

Sq̄

m
cuD(α, δc, δe)+

− g sin γ (6.4)

where A is the admissible range considered in [75] for all variables given in Ta-
ble 6.1, and csT,φ(·), c

s
T (·), c

s
D(·) and c

u
T (·), c

u
D(·) are the curve-fit polynomial ap-

proximations of thrust and drag in started and unstarted mode, respectively.
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The admissible range A determines the air-breathing hypersonic flight envelope
depicted in Figure 6.4.

Remark 6.2.1. Note that the functions fs(xs(t), w(t)) and fu(xu(t), w(t)) are
available for feedback for all t ∈ R because (x(t), w(t)) are available signals. How-
ever, it is not possible to identify which of the two functions are representing the
vehicle dynamics at any given t ∈ R.

Consider the full-order nonlinear observer

ż = σ(x− z) +
fs(x, w) + fu(x, w)

2
(6.5)

where σ is a suitable positive constant, and define two estimation errors ǫ1, ǫ2 as

ǫ1 := x− z, (6.6)

ǫ2 := −ǫ1 = −x+ z (6.7)

The following result presents an analytical method to verify if the hypersonic
vehicle dynamics is in unstarted mode or in normal scramjet operating conditions.

Theorem 6.2.1. Given the system (6.2) and the observer (6.5), if the difference
fs(x(t̄), w(t̄)) − fu(x(t̄), w(t̄)) is positive (resp., negative) at a certain instant t̄,
then the system (6.2) is in unstarted mode if and only if the estimation error ǫ1
(resp., ǫ2) is negative.

Proof. Observe that (6.2) and (6.5) imply that the dynamics of the estimation
error ǫ1 is given by

ǫ̇1 = ẋ− ż = −σǫ1 + f(x, w)−
fs(x, w) + fu(x, w)

2

Assume that ts = +∞ and that

fs(x(t), w(t))− fu(x(t), w(t)) ≥ Kp > 0

then

ǫ̇1 = −σǫ1 +
fs(x, w)− fu(x, u)

2
≥ −σǫ1 +

Kp

2
(6.8)

and thus

ǫ1(t) ≥ ǫ1(0) exp
−σt +

Kp

2σ
−
Kp

2σ
exp−σt (6.9)

for all t. Now, assume ts < +∞. Then, for all t ≥ ts

ǫ̇1 = −σǫ1 −
fs(x, w)− fu(x, u)

2
≤ −σǫ1 −

Kp

2
(6.10)
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Figure 6.4: Flight envelope and operational limits for the considered HSV.

and thus

ǫ1(t+ ts) ≤ ǫ1(ts) exp
−σt−

Kp

2σ
+
Kp

2σ
exp−σt . (6.11)

Let z(0) = x0 so that ǫ1(0) = 0 and note that ǫ1(ts) is a bounded quantity by
construction. Choosing a positive constant σ such that exp−σt vanishes in a short
time and the quantity Kp/2σ is big enough, then the first part of the Theorem
is proved. A similar argument is used when fs(x, w)− fu(x, w) ≤ −Kn < 0, and
this concludes the proof.

Remark 6.2.2. Defining

ǫ :=

{

ǫ1 if fs(x, w)− fu(x, w) > 0
ǫ2 if fs(x, w)− fu(x, w) < 0

(6.12)

the previous Theorem states that the switching from started mode to unstarted
mode can be detected checking the sign of ǫ. In order to detect if (6.2) is in
unstarted mode it is necessary to wait until the transient has expired.

Remark 6.2.3. Reasonably, this method fails when fs(x, w) is equal to fu(x, w).
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6.2.2 Perturbed dynamics

Now, suppose that bounded model parameter perturbations affect the vehicle
model (6.1). Consider again the acceleration equation and define x and w as in
the previous subsection. The perturbed problem can be formalized as

x(t) =

{

xs(t) t < ts
xu(t) t ≥ ts

(6.13)

with

ẋs = fs(xs, w) + ∆fs, xs(0) = x0,
ẋu = fu(xu, w) + ∆fu, xu(ts) = xs(ts),

(6.14)

where ts is the unknown switching time (ts = +∞ if no transition occurs), fs(·)
and fu(·) verify (6.4), and ∆fs and ∆fu are bounded by a known positive constant
ρ, that is

|∆fs| < ρ and |∆fu| < ρ. (6.15)

Theorem 6.2.2. Given the perturbed system (6.13), the observer (6.5) and the
estimation errors ǫ1, ǫ2 defined in (6.6)-(6.7), if

fs(x(t), w(t))− fu(x(t), w(t)) > 2ρ (6.16)

for every t ≥ 0, then the method proved in Theorem 6.2.1 is robust.

Proof. Assume that ts=+∞ and that for some t > 0 fs(x(t),w(t))−fu(x(t),w(t))≥
Kp > 0. By (6.13) and (6.15),

ǫ̇1 ≥ −σǫ1 +
Kp

2
− ρ (6.17)

otherwise if ts < +∞ and t > ts (so the system is in unstarted mode)

ǫ̇1 ≤ −σǫ1 −
Kp

2
+ ρ. (6.18)

If the inequality (6.16) holds true, the proof of Theorem 6.2.1 can be repeated.
When fs(x, w)− fu(x, w) ≤ −Kn < 0 a similar argument can be addressed.

6.3 Simulations

To test the performance of the fault detection strategy proved in the previ-
ous section, three representative cases have been studied on the control-oriented
vehicle model described in [6]. The vehicle operational mode was determined by
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comparing φ(t) value with the function φchoke described in Section 6.1. In partic-
ular, assuming that the vehicle is initially in started engine mode, transition to
unstart at t = ts occurs when φ(ts) = φchoke(M∞(ts), q̄(ts), α(ts)). At that point,
loss of available thrust is modeled by setting φ = 0 for all t ≥ ts and by changing
the coefficient of the forces from cs⋆ to cu⋆ in (6.4).

In the first case study, the initial condition of the vehicle is x0 = [V0, h0, 0, α0, 0]
′

where V0 = 8000 ft/s, h0 = 90000 ft, α0 = 1 deg, yielding an initial Mach number
equal to 8.129 and a dynamic pressure equal to 1700.6 psf. The observer gain
σ has been set to σ = 10. In this case, the vehicle remains in started mode, as
indeed φchoke is always greater than φ, as seen in Fig. 6.5a. Figure 6.5b shows
that the vehicle dynamics function in the started mode, fs, is always greater than
fu. Figure 6.5c displays that the system mode can be detect checking the sign of
the estimation error ǫ1 as proved in Theorem 6.2.1.
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The second case study considers an initial condition x0 = [V0, h0, 0, α0, 0]
′

with V0 = 10000 ft/s, h0 = 100000 ft, α0 = 1 deg, so at the beginning the Mach
number is about 10 and the dynamic pressure is equal to 1659 psf. The observer
gain σ is set equal to 1000. As shown in Figure 6.6a, the vehicle switches into
unstarted mode at t = 5 sec. Figure 6.6b shows the functions fs and fu, whereas
Figure 6.6c shows the residual ǫ defined in Remark 6.2.2. The sign of ǫ reveals
that the vehicle has transitioned to unstarted mode.
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Figure 6.6: Case study II

In the last case study a 10% perturbation has been added to the nominal values
of model parameters, for which the condition (6.16) has been verified to hold. The
initial condition has been selected as x0 = [10000 ft/s, 100000 ft, 0, 1 deg, 0]′ and
the observer gain σ set 1000. Figure 6.7a, 6.7b and 6.7c show that the results of
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Theorem 6.2.2 hold true and transition can still be detected.
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Chapter 7

Conclusions

7.1 Conclusions

This thesis focused on robust fault detection and isolation and fault tolerant
control both of hybrid systems resulting from fixed point quantization of contin-
uous linear system whose only signal available for measurements is the output,
and two classes of nonlinear continuous-time processes. This have been achieved
by designing digital controllers together with appropriate observers that generate
disturbance decoupled residual signals which give information about the occur-
rence of faults.

The general robust (in the sense of disturbance decoupling) fault detection
problem for uncertain linear sampled data systems whose measurements may
be affected by fixed point quantization has been formally addressed in Chapter
2. Since a straightforward extension of the full-order unknown input observer
proposed by [10] to quantized SD systems is proved to be not possible, a reduced-
order residual generator filter coupled with a robust controller has been designed.
Chapter 2 also addresses a Lyapunov-based residual design for a class of sampled
data systems whose output vector follows a given reference. The originality of
these approaches is that both the disturbance and the fault terms affecting the
continuous time system are not assumed constant during every sampling interval,
so the disturbance decoupling design is more challenging.

All the three approaches developed in Chapter 2 are validated with two real-
plant applications, a three tank system and a suspension vehicle model. In par-
ticular, the hydraulic process is remodeled as a two inputs-two outputs perturbed
linear time-invariant system whose independent faulty pumps are detected using
the reduced-order filter coupled with a digital controller theoretically presented
in Section 2.3. The other worked example, the vehicle suspension model, shows
the effectiveness of all the three fault detection strategies discussed in Chapter 2.

The main contribution of Chapter 4 is an active fault accommodation tech-
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nique for linear sampled-data systems affected both by actuator faults and by
additive disturbances. An appropriate control law is defined taking into account
information provided by a fault detection method addressed in Chapter 2.

A complete fault detection and isolation and control reconfiguration design of
a remotely operated underwater vehicle is provided in Chapter 5. Observing some
sliding surfaces actuator faults can be detected; exploiting the ROV structure,
faulty actuators can be isolated and then using the redundant healthy actuators
a control reconfiguration can be performed.

Chapter 6 presents a simple method for unstart detection in a longitudinal
model of scramjet-powered hypersonic vehicle. The setup differs from the previous
problem statements where the fault is described as an unknown input to the
system model, indeed the occurrence of “unstart” is modeled as an actuator fault
with an associated abrupt change in the model parameters. The attractive feature
of the technique, which make it suitable for integration with existing flight control
schemes, is the simplicity of the detection algorithm as well as the fact that only
signals typically available for the navigation and flight control are employed.

7.2 Future works

The proposed observer-based fault diagnosis and fault tolerant control tech-
niques have been applied to some uncertain linear time-invariant sampled-data
systems and some nonlinear systems, and they showed promising performance
from simulations. In every strategy to consider a realistic set up, the state vari-
able has been assumed unavailable and only output variables have been used for
measurements.

Other classes of disturbances could be considered in the linear sampled-data
plant setting in order to further generalize the approaches presented.

Nonlinear sampled-data processes should be studied, indeed it seems that the
literature of this area is not so vast.

Current work is also addressing the integration of the detection of scramjet
unstart in HVSs scheme in a fault-tolerant flight control architecture that provides
recovery from unstarted conditions.

Finally it would be interesting to study similar observer-based fault diagnosis
methods for other dynamical systems like descriptor systems for instance.
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Terminology and Nomenclature

This appendix summarizes the nomenclature and some well-known basic con-
cepts in linear control systems field which have been used so far.

Nomenclature

The symbols are used according to the following convention. Scalars are rep-
resented by plain lower-case types like d, y, s, vectors are indicated with bold
lower-case letters like x, y, u, and matrices with bold upper-case symbols like
A, C. Sets are denoted by calligraphic letters like Y , U .
The following symbols are referred as in the table

Symbol Meaning
|| · || Euclidean norm,
(·)′ transpose operation,

(M)−L left pseudo-inverse of a monic matrix M, i.e. M−L = M′(MM′)−1,
(M)−R right pseudo-inverse of an epic matrix M, i.e. M−R = (MM′)−1M,
In×n n-dimensional identity matrix.

Moreover the following abbreviations have been used

Abbreviation Meaning
FDI Fault Detection and Isolation,
FTC Fault Tolerant Control,
UIO Unknown Input Observers,
SDs Sampled-Data systems,
SISO Single Input-Single Output,
MIMO Multi Input-Multi Output,
LTI Linear Time Invariant,
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Abbreviation Meaning
TTS Three Tank System,
QCM Quarter Car Model,
UUVs Unmanned Underwater Vehicles,
AUVs Autonomous Underwater Vehicles,
ROV Remotely Operated Vehicle,
HSVs Hypersonic Vehicles.

Definitions

The terminology used in fault diagnosis and fault tolerant control literature has
only during the recent years approached a coherency in the published material.
The SAFEPROCESS Technical Committee of IFAC, the International Federation
of Automatic Control, has compiled a list of suggested definitions [54] which is
generally in accordance to the terminology used throughout this thesis.

Below, some definitions of general control systems and fault diagnosis are
listed in alphabetic order. In particular it is considered an m-input, p-output,
n-dimensional, time-invariant linear state equation

Σ :

{

ẋ(t) = Ax(t) +Bu u(t) , x(0) = x0

y(t) = Cx(t)
(A.1)

and Σx = {x : R → X|x abs. cont. and ẋ(t) − Ax(t) ∈ ImBu a.e.} denote all
the trajectories of this system. The coefficient matrices in (A.1) are A ∈ R

n×n,
Bu ∈ Rn×m andC ∈ Rp×n. Note thatA, Bu andCmay be viewed as representing
linear maps according to

A : X → X , Bu : U → X , C : X → Y (A.2)

with dim(X ) = n, dim(U) = m, dim(Y) = p.

Availability Probability that a system or equipment will operate satisfactorily
and effectively at any period of time [53].

Analytical redundancy (or software redundancy) Use of two or more, but
not necessary identical ways to determine a variable [4].

Controllable Controllability is the dual concept of observability among linear
systems, indeed a pair (A,Bu) is controllable if and only if the pair
(A′,C) is observable. A continuous-time linear dynamical system is said
to be controllable if, given any initial state x0 there exists a finite time
ta > 0 and a continuous input signal ua(t) such that the corresponding
solution of (A.1) satisfies x(ta) = 0.
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It can be proved that a vector x0 ∈ X is a controllable state for a linear
state equation Σ if and only if x0 belongs to the controllable subspace
〈A|ImBu〉.

Controllable subspace A subspace of X given by

R = 〈A|ImBu〉 = ImBu +A ImBu + . . .+An−1 ImBu =

= Im[Bu ABu . . .A
n−1Bu]

is called the controllable subspace for a linear state equation Σ. It is the
smallest A-invariant subset of X containing ImBu (due to the Cayley-
Hamilton theorem).

Detectable A system Σ or a pair (A,C) is detectable if all the unobservable
eigenvalues are stable.

Failure “A failure is a permanent interruption of a system’s ability to perform
a required function under specified operating conditions” [53].

Fault Isermann in [50] defined a fault as “a non permitted deviation of a char-
acteristic property which leads to the inability to fulfill the intended pur-
pose” while Patton in [9] affirms that “fault” is to be understood as an
unexpected change of the system function.

Fault detection Detection of occurrence of faults in the functional units of the
process which may lead to undesired or intolerable behavior of the whole
system [26].

Fault diagnosis Determination of size, kind, location, and time of occurrence
of faults. Fault diagnosis includes fault detection, isolation and identifi-
cation.

Fault isolation Localization (classification) of different faults [26].

Fault identification Estimation of the type and size or nature of the fault [9].

Fault-tolerant control Technique that guarantee stability and satisfactory per-
formance of a process under faulty conditions.

Invariant zeros Roots of the invariant polynomials of the Rosenbrocks system
matrix P(s) of Σ, where

P(s) :=

[

s In×n −A Bu

−C 0

]

.

A complete classification of systems zeros can be found in [8], [2].
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Observability index If p > 1, the observability matrix

O := [C CA · · · CAn−1]′ =

= [c1 . . . cp c1A . . . cpA . . . c1A
n−1 . . . cpA

n−1]′

where c1, . . . , cp denotes the p rows of C, can be reordered selecting the
first n linearly independent rows in O and first taking all the rows involv-
ing c1, then c2 etc., so that Ō := [c1 c1A . . . c1A

ν1−1 . . . cp . . . cpA
νp−1]′.

The p integers νi, i = 1 . . . p, are the observability indices of the system [2].

Observable “The term observability denotes generically the possibility of deriv-
ing the initial state x(t0) or the final state x(t1) of a dynamic system Σ
when the time evolutions of input and output in the time interval [t0, t1]
are known.” [3] A system Σ or a pair (A,C) is observable if and only if
its observability matrix O :=

[

C CA · · · CAn−1
]

has full column
rank. [2]

Physical redundancy (or hardware redundancy) Use of more than one in-
dependent instrument to accomplish a given function.

Qualitative model A process model describing the behaviour with relations
among system variables and parameters in heuristic terms such as causal-
ities or if-then rules.

Quantitative model A process model describing the behaviour with relations
among system variables and parameters in analytical terms such as dif-
ferential and difference equations.

Reliability Ability of a system to perform a required function under stated
conditions, within a given scope, during a given period of time [53].

Residual A fault indicator.

Robust FDI scheme A fault detection and isolation technique designed to pro-
vide satisfactory sensitivity to faults, associated with the necessary ro-
bustness with respect to modeling uncertainty [9], [37].

Safety Ability of a system not to cause danger to persons or equipment or the
environment [53].

Sliding mode control Control approach that transformed a higher-order sys-
tem into first-order system. Essentially, sliding mode control utilizes
discontinuous feedback control laws to force the system state to reach,
and subsequently to remain on, a specified surface within the state space
(the so called sliding surface). The system dynamic when confined to the
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sliding surface is described as an ideal sliding motion and represent the
controlled system behaviour [30], [79].

Switching system A class of hybrid systems consisting of a family of subsys-
tems and a switching rule determining which subsystem is active at cer-
tain time interval [57].

Unobservable subspace A subspace N ⊂ X given by

N =
n−1
⋂

k=0

Ker(CAk) = KerC ∩A−1KerC ∩ . . . ∩A−(n−1)KerC =

= Ker







C
...

An−1C







is called the unobservable subspace for Σ. It is the largest A-invariant
subset of X contained in KerC.
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fault detection filters for plants with quantized information. In Proceedings
of the 8th Workshop on Advanced Control and Diagnosis, Ferrara, IT, 2010.

[15] M. L. Corradini, A. Cristofaro, R. Giambò, and S. Pettinari. Robust fault
detection filters for a class of mimo uncertain sampled-data systems. In
Proceedings of the Conference on Control and Fault-Tolerant Systems, Nice,
France, 2010.

[16] M. L. Corradini, A. Cristofaro, R. Giambò, and S. Pettinari. Accepted by
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