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Thepaper presents new conditions, adequate in design of dynamic virtual actuators and utilizable in fault-tolerant control structures
(FTC) for continuous-time linear systems, which are stabilizable by dynamic output controllers. Taking into account disturbance
conditions and changes of variables in FTC after virtual actuator activation and applying the nominal control scheme relating to the
biproper dynamic output controller of prescribed order, the design conditions are outlined in terms of the linear matrix inequalities
within the enhanced bounded real lemma forms. Using a free tuning parameter in design, and with suitable choice of the controller
order, the approach provides the way to obtain acceptable dynamics of the closed-loop system after activation of the dynamic virtual
actuator.

1. Introduction

To increase the reliability of systems, FTC usually fix a system
with faults so that it can continue its mission with certain
limitations of functionality and quality. Considering this,
the different approaches were studied in FTC design (see,
e.g., [1, 2] and the references therein). The standard way of
control reconfiguration discards the nominal controller from
the control loop and replaces it with a new one so that its
parameters are retuned in occurred fault conditions and, in
dependency on the remaining set of sensors and actuators, to
recover in a certain extent the performance given on the fault-
free control system [3, 4]. Reconfiguration criterions for FTC
are presented, for example, in [5, 6].

By contrast, instead of adapting the controller to the faulty
plant, the virtual approach keeps the nominal controller in
the reconfigured closed-loop system and virtually adapts the
faulty plant to the nominal controller in such a way that
the activated virtual reconfiguration block, together with the
faulty plant, imitates the fault-free plant. The reconfiguration
block is chosen so as to hide the fault from the controller point
of view (the fault-hiding paradigm) and the approach tries to
offer away for theminimum invasive control reconfiguration.
Since in healthy conditions the virtual reconfiguration blocks

are not active, and the control action is realized by the
nominal controller, the design of the virtual reconfiguration
blocks is independent of the controller and can be aimed
at preserving prescribed reduced closed-loop properties of
the control in the presence of faults. Designated to sensor
faults the reconfiguration block is termed virtual sensor (VS),
while in the case of actuator faults is named virtual actuator
(VA). In particular, an FTC strategy based on virtual actuator
approach for linear piecewise affine systems with actuator
faults is presented in [7], for nonlinear systems that can be
approximated by linear parameter-varying (LPV) models in
discrete-time or continuous-time description; this policy is
proposed in [8–10] and [11], respectively, and applying to
continuous-time Lipschitz nonlinear systems, this practice is
introduced in [12]. Some practical case studies of using VA
for linear systems are treated, for example, in [13, 14].

Until the first ideas of control reconfiguration by using
VA, given for linear systems in [15, 16], could be summarized
in the books [17, 18], several aspects have been used for VA
design. Introducing the generalized virtual actuator [19], it
was shown in [20] that reconfiguration after an actuator fault
can be related to disturbance decoupling.Then, subsequently,
𝐻
∞
-based virtual actuator synthesis for optimal trajectory

recovery was presented in [21] and the dual principle was
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conveyed in the VA design methods [22]. In general, these
conditions for VA design are formulated in terms of a finite
set of linearmatrix inequalities (LMI) for the staticVAs. Some
actual modifications for the static proportional-integral (PI)
VAs can be found, for example, in [23–25].

Although the use of static VAs is not bound to the static
output controllers (SOCs) [26, 27], in the vast majority of
applications the control reconfiguration, exploiting static VA
in faulty systems, is realized in conjunction with such type
of regulators. This structure results in that the response of
the subsystem for fault detection and isolation has to be fast,
and, in addition to that, the peaks of the system output and
control variables, immediately after the activation of a VA,
are excessively high [28]. By adapting the dynamic output
controller (DOC) design strategies given for LPV models
in [29, 30], and considering characteristic conditions and
changes of variables in FTC after VA activation, the synthesis
of DOCswas stated in this context in [31, 32] and [33], respec-
tively. Extending these results, the technique proposed in the
paper is given by the above introduced virtual manner so
that a single actuator fault in FTC structure is hidden for the
DOC inputs by the dynamic VA (DVA). Based on the concept
of quadratic stability, the design problems, respecting the
𝐻
∞
norm of the disturbance transfer matrix in DOC design,

as well as the generalized disturbance transfer matrix in
DVA design, are transferred into standard LMI optimization
tasks, which includes enhanced bounded real lemma (BRL)
formalism [34, 35]. To the best of the authors’ knowledge, the
paper presents a new formulation of theDVAdesign principle
and newly defines the scheme relating to the order of DOC
and DVA, respectively.

The paper is organized as follows. In Section 2, the 𝐻
∞

approach is presented with results on BRL and enhanced
BRL for DOC design. Formulating the separation principle,
and continuing with this formalism for DVA state-space
description in Section 3, the equivalent BRL based design
methods are outlined for DVAs. Finally, the example is given
in Section 4 to illustrate the feasibility and properties of the
proposedmethod and some concluding remarks are stated in
Section 5.

Throughout the paper, the following notations are used:
x𝑇 andX𝑇 denote the transpose of the vector x and thematrix
X, respectively, diag[{X

𝑖
}, 𝑖 = 1, 2, . . . , 𝑝] denotes a block

diagonal matrix with 𝑝 blocks, rank(⋅) remits the rank of a
matrix, for a squarematrixX < 0means thatX is a symmetric
negative definitematrix, the symbol I

𝑛
indicates the 𝑛th order

unit matrix, R denotes the set of real numbers, R𝑛 and R𝑛×𝑟

refer to the set of all 𝑛-dimensional real vectors and 𝑛 × 𝑟

real matrices, respectively, and 𝐿
2
⟨0, +∞) entails the space of

square integrable functions over ⟨0, +∞).

2. Dynamic Output Controllers

In the paper, the continuous-time linear dynamic systems
described in fault-free conditions as

q̇ (𝑡) = Aq (𝑡) + Bu
𝑐
(𝑡) + Vk (𝑡) , (1)

y (𝑡) = Cq (𝑡) (2)

are taken into account, where q(𝑡) ∈ R𝑛 stands for the system
state, u

𝑐
(𝑡) ∈ R𝑟 denotes the control input, y(𝑡) ∈ R𝑚 is

the measurable output, k(𝑡) ∈ R𝑟V is the vector of unknown
disturbance, the matrices A ∈ R𝑛×𝑛, B ∈ R𝑛×𝑟, C ∈ R𝑚×𝑛,
and V ∈ R𝑛×𝑟V are finite valued. It is supposed that the
exogenous disturbance is a nonanticipative process k(𝑡) ∈

𝐿
2
(⟨0,∞);R𝑟V).
It is assumed that the system is controlled by biproper

DOC of the form

ṗ (𝑡) = Jp (𝑡) + Ly (𝑡) , (3)

u
𝑐
(𝑡) = Mp (𝑡) + Ny (𝑡) (4)

and of an order 𝑝, where it can be accepted 1 ≤ 𝑝 < 𝑛

(reduced order), 𝑝 = 𝑛 (full order), and 𝑛 < 𝑝 ≤ 𝑝
𝑚

(upgraded order), while p(𝑡) ∈ R𝑝 is the vector of the
controller state variables. With respect to the real matrices
J ∈ R𝑝×𝑝, L ∈ R𝑝×𝑚,M ∈ R𝑟×𝑝, andN ∈ R𝑟×𝑚, the controller
parameter notation takes for K∙ ∈ R(𝑝+𝑟)×(𝑝+𝑚) the following
prescribed structure:

K∙ = [

J L
M N

] . (5)

The objective is to design DOC to support the FTC structure
with VAs so that the impact of the system disturbance k(𝑡),
expressed in terms of the 𝐻

∞
norm of the closed-loop dis-

turbance transfer function matrix, is minimized in the mode
where, after a single actuator fault, VA is used to mask the
fault effects in the input of the controller.

To analyze the stability of the closed-loop system struc-
ture with DOC ((3) and (4)), the following form of the system
description can be formulated:

[

q̇ (𝑡)
ṗ (𝑡)

] = [

A + BNC BM
LC J

][

q (𝑡)
p (𝑡)

] + [

V
0
] k (𝑡) ,

y (𝑡) = [0 I
𝑚
] [

0 I
𝑝

C 0
][

q (𝑡)
p (𝑡)

] .

(6)

Introducing the notations

q∙𝑇 (𝑡) = [q𝑇 (𝑡) p𝑇 (𝑡)] , (7)

A∙ = [

A 0
0 0

] ,

B∙ = [

0 B
I
𝑝

0
] ,

C∙ = [

0 I
𝑝

C 0
] ,

(8)

V∙𝑇 = [V𝑇 0] ,

I∙ = [0 I
𝑚
] ,

(9)
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where A∙ ∈ R(𝑛+𝑝)×(𝑛+𝑝), B∙ ∈ R(𝑛+𝑝)×(𝑝+𝑟), C∙ ∈ R(𝑝+𝑚)×(𝑛+𝑝),
V∙ ∈ R(𝑛+𝑝)×𝑟V , and I∙ ∈ R𝑚×(𝑝+𝑚), the closed-loop state-space
equations take the form

q̇∙ (𝑡) = A∙
𝑐
q∙ (𝑡) + V∙k (𝑡) , (10)

y∙ (𝑡) = I∙C∙q∙ (𝑡) , (11)

where, with K∙ given in (5),

A∙
𝑐
= A∙ + B∙K∙C∙. (12)

In the sequel, it is supposed that (A∙,B∙) is stabilizable and
(A∙,C∙) is detectable [36].

Lemma 1 (see [33] (bounded real lemma)). The closed-loop
system, consisting of the plant (1), (2), and DOC (6), is stable
with the quadratic performance 𝛾∙ if there exist a symmetric
positive definite matrix Q∙ ∈ R(𝑛+𝑝)×(𝑛+𝑝), a regular matrix
H∙ ∈ R(𝑝+𝑚)×(𝑝+𝑚), a matrix Y∙ ∈ R(𝑝+𝑟)×(𝑝+𝑚), and a positive
scalar 𝛾∙ ∈ R such that

Q∙ = Q∙𝑇 > 0,

𝛾
∙

> 0,

[

[

[

[

A∙Q∙ +Q∙A∙𝑇 + B∙Y∙C∙ + C∙𝑇Y∙𝑇B∙𝑇 ∗ ∗

V∙𝑇 −𝛾
∙I
𝑟V
∗

I∙C∙Q∙ 0 −I
𝑚

]

]

]

]

< 0,

C∙Q∙ = H∙C∙,

(13)

where the generalized system matrices are defined in (8) and
(9).

When the above conditions hold,

K∙ = Y∙ (H∙)−1 . (14)

Here and hereafter, ∗ denotes the symmetric item in a symmet-
ric matrix.

In order to adjust fault detection and isolation time to the
dynamics of the closed-loop system, the selection of the order
𝑝 of the DOC is provided with a free tuning parameter in
control design. One serviceable method is based on incor-
poration of a slack matrix into LMI design conditions. This
augmentation is proposed in the following theorem.

Theorem 2 (enhanced bounded real lemma). The closed-loop
system, consisting of the plant (1), (2), and the DOC (6), is
stable with the quadratic performance 𝛾∙ if for the given positive
scalar 𝛿∙ ∈ R there exist symmetric positive definite matrices
R∙, U∙ ∈ R(𝑛+𝑝)×(𝑛+𝑝), a regular matrix H∙ ∈ R(𝑝+𝑚)×(𝑝+𝑚),

a matrix Y∙ ∈ R(𝑝+𝑟)×(𝑝+𝑚), and a positive scalar 𝛾∙ ∈ R such
that
R∙ = R∙𝑇 > 0,

U∙ = U∙𝑇 > 0,

𝛾
∙

> 0,

(15)

[

[

[

[

[

[

[

A∙R∙ + R∙A∙𝑇 + B∙Y∙C∙ + C∙𝑇Y∙𝑇B∙𝑇 ∗ ∗ ∗

U∙ − R∙ + 𝛿A∙R∙ + 𝛿B∙Y∙C∙ −2𝛿
∙R∙ ∗ ∗

V∙𝑇 𝛿
∙V∙𝑇 −𝛾

∙I
𝑟V
∗

I∙C∙R∙ 0 0 −I
𝑚

]

]

]

]

]

]

]

< 0,

(16)

C∙R∙ = H∙C∙, (17)

where the generalized system matrices are defined in (8) and
(9) and the positive 𝛿∙ ∈ R is the tuning parameter.

When the above conditions hold,

K∙ = Y∙ (H∙)−1 . (18)

Proof. Since the differential equation (10) can be rewritten as

A∙
𝑐
q∙ (𝑡) + V∙k (𝑡) − q̇∙ (𝑡) = 0, (19)

thenwith an arbitrary symmetric positive definitematrix S∙ ∈
R(𝑛+𝑝)×(𝑛+𝑝) and a positive scalar 𝛿∙ ∈ R it yields [37, 38]

(q∙𝑇 (𝑡) S∙ + 𝛿
∙q̇∙𝑇 (𝑡) S∙) (A∙

𝑐
q∙ (𝑡) + V∙k (𝑡) − q̇∙ (𝑡))

= 0.

(20)

Defining the Lyapunov function candidate as follows:

V (q∙ (𝑡)) = q∙𝑇 (𝑡)P∙q∙ (𝑡)

+ ∫

𝑡

0

(y𝑇 (𝜏) y (𝜏) − 𝛾
∙k𝑇 (𝜏) k (𝜏)) d𝜏

> 0,

(21)

where P∙ > 0 is symmetric positive definite and √𝛾
∙
> 0

is 𝐻
∞

norm of the closed-loop transfer matrix between the
disturbance input and the system output, then

V̇ (q∙ (𝑡)) = q̇∙𝑇 (𝑡)P∙q∙ (𝑡) + q∙𝑇 (𝑡)P∙q̇∙ (𝑡)

+ y𝑇 (𝑡) y (𝑡) − 𝛾
∙k𝑇 (𝑡) k (𝑡) < 0.

(22)

Therefore, adding (20) and its transposition to (22) gives

V̇ (q∙ (𝑡)) = q̇∙𝑇 (𝑡)P∙q∙ (𝑡) + q∙𝑇 (𝑡)P∙q̇∙ (𝑡) + q∙𝑇 (𝑡)

⋅ C∙𝑇I∙𝑇I∙C∙q∙ (𝑡) − 𝛾
∙k𝑇 (𝑡) k (𝑡)

+ (q∙𝑇 (𝑡) S∙ + 𝛿
∙q̇∙𝑇 (𝑡) S∙)

⋅ (A∙
𝑐
q∙ (𝑡) + V∙k (𝑡) − q̇∙ (𝑡))

+ (q∙𝑇 (𝑡)A∙𝑇
𝑐
+ k𝑇 (𝑡)V∙𝑇 − q̇∙𝑇 (𝑡))

⋅ (S∙q∙ (𝑡) + 𝛿
∙S∙q̇∙ (𝑡)) < 0.

(23)
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Using the following notation:

q∙𝑇
𝑐
(𝑡) = [q∙𝑇 (𝑡) q̇∙𝑇 (𝑡) k𝑇 (𝑡)] , (24)

the derivative of the Lyapunov function (23) can be written as

V̇ (q∙ (𝑡)) = q∙𝑇
𝑐
(𝑡)P∙
𝑐
q∙
𝑐
(𝑡) < 0, (25)

where

P∙
𝑐
=

[

[

[

[

S∙A∙
𝑐
+ A∙𝑇
𝑐
S∙ + C∙𝑇I∙𝑇I∙C∙ ∗ ∗

P∙ − S∙ + 𝛿
∙S∙A∙
𝑐

−2𝛿
∙S∙ ∗

V∙𝑇S∙ 𝛿
∙V∙𝑇S∙ −𝛾∙I

𝑟V

]

]

]

]

< 0.

(26)

Thus, using Schur complement property, (26) implies

[

[

[

[

[

[

[

S∙A∙
𝑐
+ A∙𝑇
𝑐
S∙ ∗ ∗ ∗

P∙ − S∙ + 𝛿
∙S∙A∙
𝑐

−2𝛿
∙S∙ ∗ ∗

V∙𝑇S∙ 𝛿
∙V∙𝑇S∙ −𝛾∙I

𝑟V
∗

I∙C∙ 0 0 −I
𝑚

]

]

]

]

]

]

]

< 0. (27)

Defining the transform matrix

T∙ = diag [R∙ R∙ I
𝑟V

I
𝑚
] , R∙ = (S∙)−1 , (28)

premultiplying the left-hand side and postmultiplying the
right-hand side of (27) by (28), results in

[

[

[

[

[

[

[

A∙
𝑐
R∙ + R∙A∙𝑇

𝑐
∗ ∗ ∗

R∙P∙R∙ − R∙ + 𝛿
∙A∙
𝑐
R∙ −2𝛿∙R∙ ∗ ∗

V∙𝑇 𝛿
∙V∙𝑇 −𝛾

∙I
𝑟V
∗

I∙C∙R∙ 0 0 −I
𝑚

]

]

]

]

]

]

]

< 0. (29)

Substituting (12) and analyzing the matrix element at the
upper left corner of (29), that is,

A∙
𝑐
R∙ + R∙A∙𝑇

𝑐
= (A∙ + B∙K∙C∙)R∙

+ R∙ (A∙ + B∙K∙C∙)𝑇 ,
(30)

it can be set that

B∙K∙H∙ (H∙)−1 C∙R∙ = B∙Y∙C∙, (31)

where

(H∙)−1 C∙ = C∙ (R∙)−1 ,

Y∙ = K∙H∙.
(32)

Thus, with (31), and with the notation

U∙ = R∙P∙R∙, (33)

(29) implies (16), and (32) specifies ((17) and (18)). This
concludes the proof.

Consider the case 𝑟 = 𝑚 (square plants), where with
each output signal is associated with a reference signal. Such
regime is called the forced regime and for DOC it is defined
as follows.

Definition 3. The forced regime for (1) and (2) with DOC ((3)
and (4)) is given by the control policy

ṗ (𝑡) = Jp (𝑡) + Ly (𝑡) ,

u (𝑡) = Mp (𝑡) + Ny (𝑡) +Ww (𝑡) ,

(34)

where w(𝑡) ∈ R𝑚 is desired output signal vector and W ∈

R𝑚×𝑚 is the signal gain matrix.

Theorem 4. If square systems (1) and (2) is stabilizable by the
control policy (34), and [39]

𝑟𝑎𝑛𝑘 [

A B
C 0

] = 𝑛 + 𝑚, (35)

then the matrixW takes the form

W = − (C (A − BMJ−1LC + BNC)
−1

B)
−1

. (36)

Proof. In a steady state, the disturbance-free equations (1) and
(2) and the control law (34) imply

0 = Aq
𝑜
+ Bu
𝑜
,

y
𝑜
= Cq
𝑜
,

(37)

0 = Jp
𝑜
+ LCq

𝑜
,

u
𝑜
= Mp

𝑜
+ NCq

𝑜
+Ww

𝑜
,

(38)

where q
𝑜
, u
𝑜
, y
𝑜
, p
𝑜
, and w

𝑜
are steady-state values of the

vectors q(𝑡), u(𝑡), y(𝑡), p(𝑡), and w(𝑡), respectively.
Since in a steady state (38) implies

u
𝑜
= (−MJ−1LC + NC) q

𝑜
+Ww

𝑜
, (39)

then the substitution of (39) into (37) leads to the equation

0 = (A − BMJ−1LC + BNC) q
𝑜
+ BWw

𝑜
. (40)

Then,

q
𝑜
= − (A − BMJ−1LC + BNC)

−1

BWw
𝑜

(41)

and, according to (37) and (41),

y
𝑜
= −C (A − BMJ−1LC + BNC)

−1

BWw
𝑜
. (42)

Thus, considering y
𝑜
= w
𝑜
, (42) implies (36). This concludes

the proof.

The matrix W is nothing else than the inverse of the
closed-loop static gain matrix. Note that the static gain
realized by theWmatrix is ideal in control if the plant param-
eters, onwhich the value ofW depends, are known and donot
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vary with time. The forced regime is basically designed for
constant references and is very closely related to shift of ori-
gin. If the command value w(𝑡) is changed “slowly enough,”
the above scheme can do a reasonable job of tracking, that is,
making y(𝑡) follow w(𝑡) [40].

Remark 5. Since the input and outputmatrix rank conditions
of existence of FTC with actuator faults and VA generally
mean that rankC ≤ rankB

𝑓
< rankB, then (36) gives

W = − (C (A − BMJ−1LC + BNC)
−1

B)
⊝1

, (43)

where (43) is the pseudoinverse ofC(A−BMJ−1LC+BNC)−1B
[41].

3. Dynamic Virtual Actuators

The state-space description of the system with a single
actuator fault is considered as follows:

q̇fa (𝑡) = Aqfa (𝑡) + B
𝑓
ufa (𝑡) + Vk (𝑡) , (44)

yfa (𝑡) = Cqfa (𝑡) , (45)

where qfa(𝑡) ∈ R𝑛, ufa(𝑡) ∈ R𝑟, and yfa(𝑡) ∈ R𝑚 denote
the faulty system state variables vector, the vector of the
acting control input variables, and the vector of faulty output
variables, respectively, and the matrix B

𝑓
∈ R𝑛×𝑟 is finite

valued, while rank(B
𝑓
) < rank(B). Moreover, it is supposed

that the pair (A,B
𝑓
) is controllable and the input vector

ufa(𝑡) is available for reconfiguration (all inputs to the plant
are available as they use the nominal controller, but one
associated with the faulty actuator is broken).

Analogously, using the same system variable notations,
the state-space description ofDOC, acting on the systemwith
a single actuator fault, but without DVA, is of the form

ṗfa (𝑡) = Jpfa (𝑡) + Lyfa (𝑡) , (46)

u
𝑐
(𝑡) = Mpfa (𝑡) + Nyfa (𝑡) , (47)

where pfa(𝑡) ∈ R𝑝 denotes the controller state variables
vector in the faulty system control.

To obtain the DVA state-space description, the following
theorem is proven at first.

Theorem 6 (separation principle). The dynamic virtual actu-
ator for the system with a single actuator fault ((44) and (45))
takes the form

ėfa (𝑡) = (A + B
𝑓
S) efa (𝑡) + B

𝑓
Rkfa (𝑡) − Bu

𝑐
(𝑡) , (48)

̇kfa (𝑡) = Okfa (𝑡) + Pefa (𝑡) , (49)

where

efa (𝑡) = qfa (𝑡) − q (𝑡) , (50)

k
𝑓𝑎
(𝑡) ∈ R𝑘 is the state vector of DVA, 𝑘 is the order of DVA,

and O ∈ R𝑘×𝑘, P ∈ R𝑘×𝑛, R ∈ R𝑟×𝑘, and S ∈ R𝑟×𝑛 are real
matrices.

Proof. Using (1), (2), and (3) describing the dynamics of the
system and DOC in the fault-free working conditions and
(2), (44), and (46) describing the dynamics of the system and
DOC in the faulty operating conditions and proposing the
outlining dynamic equation of the DVA as follows:

̇kfa (𝑡) = Okfa (𝑡) + P (qfa (𝑡) − q (𝑡)) , (51)

then the expression of the common system variable model is

[

[

[

[

[

[

[

[

[

q̇fa (𝑡)
q̇ (𝑡)
ṗfa (𝑡)
ṗ (𝑡)
̇kfa (𝑡)

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

A 0 0 0 0
0 A 0 0 0
LC 0 J 0 0
0 LC 0 J 0
P −P 0 0 O

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

qfa (𝑡)
q (𝑡)
pfa (𝑡)
p (𝑡)
kfa (𝑡)

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

[

B
𝑓

0
0 B
0 0
0 0
0 0

]

]

]

]

]

]

]

]

]

[

ufa (𝑡)
u
𝑐
(𝑡)

] +

[

[

[

[

[

[

[

[

[

V
V
0
0
0

]

]

]

]

]

]

]

]

]

k (𝑡) .

(52)

Since it is possible to define the transform matrix T of the
form

T = T−1 =

[

[

[

[

[

[

[

[

[

I
𝑛

0 0 0 0
I
𝑛
−I
𝑛

0 0 0
0 0 I

𝑝
0 0

0 0 I
𝑝

−I
𝑝

0
0 0 0 0 I

𝑘

]

]

]

]

]

]

]

]

]

, (53)

then

T

[

[

[

[

[

[

[

[

[

qfa (𝑡)
q (𝑡)
pfa (𝑡)
p (𝑡)
kfa (𝑡)

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

qfa (𝑡)
efa (𝑡)
pfa (𝑡)
e
𝑝fa (𝑡)

k𝑇fa (𝑡)

]

]

]

]

]

]

]

]

]

,

T

[

[

[

[

[

[

[

[

[

B
𝑓

0
0 B
0 0
0 0
0 0

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

B
𝑓

0
B
𝑓

−B
0 0
0 0
0 0

]

]

]

]

]

]

]

]

]

,

T

[

[

[

[

[

[

[

[

[

V
V
0
0
0

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

V
0
0
0
0

]

]

]

]

]

]

]

]

]

,
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T

[

[

[

[

[

[

[

[

[

A 0 0 0 0
0 A 0 0 0
LC 0 J 0 0
0 LC 0 J 0
P −P 0 0 O

]

]

]

]

]

]

]

]

]

T−1 =

[

[

[

[

[

[

[

[

[

A 0 0 0 0
0 A 0 0 0
LC 0 J 0 0
0 LC 0 J 0
0 P 0 0 O

]

]

]

]

]

]

]

]

]

,

(54)

where

e
𝑝fa (𝑡) = pfa (𝑡) − p (𝑡) (55)

and (52) can be rewritten as

[

[

[

[

[

[

[

[

[

q̇fa (𝑡)
ėfa (𝑡)
ṗfa (𝑡)
ė
𝑝fa (𝑡)

̇kfa (𝑡)

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

A 0 0 0 0
0 A 0 0 0
LC 0 J 0 0
0 LC 0 J 0
0 P 0 0 O

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

qfa (𝑡)
efa (𝑡)
pfa (𝑡)
e
𝑝fa (𝑡)

kfa (𝑡)

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

[

B
𝑓

0
B
𝑓

−B
0 0
0 0
0 0

]

]

]

]

]

]

]

]

]

[

ufa (𝑡)
u
𝑐
(𝑡)

] +

[

[

[

[

[

[

[

[

[

V
0
0
0
0

]

]

]

]

]

]

]

]

]

k (𝑡) .

(56)

Defining the covering of the faulty control input as follows:

ufa (𝑡) = Rkfa (𝑡) + S (pfa (𝑡) − p (𝑡))

= Rkfa (𝑡) + Sefa (𝑡) ,
(57)

then the substitution of (57) into (56) leads to

[

[

[

[

[

[

[

[

[

q̇fa (𝑡)
ėfa (𝑡)
ṗfa (𝑡)
ė
𝑝fa (𝑡)

̇kfa (𝑡)

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

A 0 0 0 0
0 A 0 0 0
LC 0 J 0 0
0 LC 0 J 0
0 P 0 0 O

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

qfa (𝑡)
efa (𝑡)
pfa (𝑡)
e
𝑝fa (𝑡)

kfa (𝑡)

]

]

]

]

]

]

]

]

]

−

[

[

[

[

[

[

[

[

[

0
B
0
0
0

]

]

]

]

]

]

]

]

]

u
𝑐
(𝑡) +

[

[

[

[

[

[

[

[

[

B
𝑓
S B
𝑓
R

B
𝑓
S B
𝑓
R

0 0
0 0
0 0

]

]

]

]

]

]

]

]

]

[

efa (𝑡)
kfa (𝑡)

]

+

[

[

[

[

[

[

[

[

[

V
0
0
0
0

]

]

]

]

]

]

]

]

]

k (𝑡) ,

(58)

which implies

[

[

[

[

[

[

[

[

[

q̇fa (𝑡)
ėfa (𝑡)
ṗfa (𝑡)
ė
𝑝fa (𝑡)

̇kfa (𝑡)

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

A B
𝑓
S 0 0 B

𝑓
R

0 A + B
𝑓
S 0 0 B

𝑓
R

LC 0 J 0 0
0 LC 0 J 0
0 P 0 0 O

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

qfa (𝑡)
efa (𝑡)
pfa (𝑡)
e
𝑝fa (𝑡)

kfa (𝑡)

]

]

]

]

]

]

]

]

]

−

[

[

[

[

[

[

[

[

[

0
B
0
0
0

]

]

]

]

]

]

]

]

]

u
𝑐
(𝑡) +

[

[

[

[

[

[

[

[

[

V
0
0
0
0

]

]

]

]

]

]

]

]

]

k (𝑡) .

(59)

Thus, the second and the fifth rows of (59) imply (48) and
(49).

Obviously, in view of the block structure of the extended
system matrix of the system (59), the separation principle
yields, and the parameters of DVA, O, P, R, and S can be
designed independently of the faulty system model, if the
condition of the controllability for the pair (A,B

𝑓
) is satis-

fied.

Lemma 7. The state-space description of the closed-loop faulty
system with activated DVA is as follows:

q̇∘fa (𝑡) = (A∘ + B∘
𝑓
G∘) q∘fa (𝑡) + V∘fad

∘

fa (𝑡) , (60)

yfa (𝑡) = C∘q∘fa (𝑡) , (61)

where

q∘fa (𝑡) = [

qfa (𝑡)
kfa (𝑡)

] ,

d∘fa (𝑡) =
[

[

[

Sq (𝑡)
k (𝑡)

Pq (𝑡)

]

]

]

,

V∘fa = [

−B
𝑓

V 0
0 0 −I

𝑘

] ,

(62)

A∘ = [

A 0
0 0

] ,

B∘
𝑓
= [

0 B
𝑓

I
𝑘

0
] ,

G∘ = [

P O
S R

] ,

C∘ = [C 0] ,

(63)

and q∘
𝑓𝑎
(𝑡) ∈ R(𝑛+𝑘), d∘

𝑓𝑎
(𝑡) ∈ R(𝑛+𝑟V+𝑘), A∘ ∈ R(𝑛+𝑘)×(𝑛+𝑘),

B∘ ∈ R(𝑛+𝑘)×(𝑟+𝑘), C∘ ∈ R𝑚×(𝑛+𝑘), G∘ ∈ R(𝑟+𝑘)×(𝑛+𝑘), and V∘
𝑓𝑎

∈

R(𝑛+𝑘)×(𝑟+𝑟V+𝑘).
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The system with an actuator fault, under control of DOC
covered by the DVA, operates in the reconfiguration regime
along with the unknown input disturbance d∘

𝑓𝑎
(𝑡). Moreover,

the stability of the closed-loop system in the reconfiguration
regime is determined by the system matrix

A∘
𝑐
= A∘ + B∘

𝑓
G∘. (64)

Proof. Since the first and the fifth rows of (59) give

[

q̇fa (𝑡)
̇kfa (𝑡)

] = [

A B
𝑓
R

0 O
][

qfa (𝑡)
kfa (𝑡)

]

+ [

B
𝑓
S V

P 0
][

efa (𝑡)
k (𝑡)

] ,

(65)

then, by substituting (50) into (65), they can obtain

[

q̇fa (𝑡)
̇kfa (𝑡)

] = [

A + B
𝑓
S B
𝑓
R

P O
][

qfa (𝑡)
kfa (𝑡)

]

+ [

−B
𝑓

V 0
0 0 −I

𝑘

]
[

[

[

Sq (𝑡)
k (𝑡)

Pq (𝑡)

]

]

]

.

(66)

Writing (45) as

yfa (𝑡) = Cqfa (𝑡) = [C 0] [
qfa (𝑡)
kfa (𝑡)

] (67)

and using the relation

[

A + B
𝑓
S B
𝑓
R

P O
] = [

A 0
0 0

] + [

0 B
𝑓

I
𝑘

0
][

P O
S R

] , (68)

with the notations (62) and (63) then (66) and (67) imply (60)
and (61), respectively. This concludes the proof.

Lemma 8. The state-space description ((48) and (49)) of the
DVA with the covering of the faulty control input (57) is as
follows:

ė∘fa (𝑡) = (A∘ + B∘
𝑓
G∘) e∘fa (𝑡) + B∘u

𝑐
(𝑡) ,

u
𝑐
(𝑡) = I∘G∘e∘fa (𝑡) ,

(69)

where

e∘fa (𝑡) = [

efa (𝑡)
kfa (𝑡)

] ,

B∘ = [

−B
0
] ,

I∘ = [0 I
𝑟
] .

(70)

In the autonomous regime, the stability of the DVA is
determined by the same system matrix (64) as stability of the
closed-loop system in the reconfiguration regime.

Proof. Writing (48), (49), and (57) in the following form:

[

ėfa (𝑡)
̇kfa (𝑡)

] = [

A + B
𝑓
S B
𝑓
R

P O
][

efa (𝑡)
kfa (𝑡)

]

+ [

−B
0
] u
𝑐
(𝑡) ,

(71)

ufa (𝑡) = [S R] [
efa (𝑡)
kfa (𝑡)

]

= [0 I
𝑟
] [

P O
S R

][

efa (𝑡)
kfa (𝑡)

] ,

(72)

respectively, and using notations (70) as well as the relation
(68), then (71) and (72) imply (69). This concludes the proof.

Lemma 9. The state-space description of DOC masked in
inputs by DVA and acting on the system with a single actuator
fault is of the form

[

ṗfa (𝑡)
u
𝑐
(𝑡)

] = [

J L
M N

][

pfa (𝑡)
yfa (𝑡)

] − [

0 0
M N

][

e
𝑝fa (𝑡)

Cefa (𝑡)
] , (73)

where y
𝑓𝑎
(𝑡) is the measurable output of the closed-loop faulty

system.

Proof. Using (45) and (50), then (2) can be rewritten as

y (𝑡) = Cq (𝑡) = C (qfa (𝑡) − (qfa (𝑡) − q (𝑡)))

= yfa (𝑡) − Cefa (𝑡) .
(74)

Considering (74) as the input to the nominal DOC which
masks an actuator fault, by using (55) and (74), then (3) and
(4) imply

[

ṗ (𝑡)
u
𝑐
(𝑡)

] = [

J L
M N

][

p (𝑡)
y (𝑡)

]

= [

J L
M N

][

pfa (𝑡) − e
𝑝fa (𝑡)

yfa (𝑡) − Cefa (𝑡)
] ,

(75)

[

ṗ (𝑡)
u
𝑐
(𝑡)

] = [

J L
M N

][

pfa (𝑡)
yfa (𝑡)

] − [

J L
M N

][

e
𝑝fa (𝑡)

Cefa (𝑡)
] , (76)

respectively. Separating the equation given by the forth row
of (59) as follows:

ė
𝑝fa (𝑡) = Je

𝑝fa (𝑡) + LCefa (𝑡) , (77)

(76) can be rewritten as

[

ṗ (𝑡)
u
𝑐
(𝑡)

] = [

J L
M N

][

pfa (𝑡)
yfa (𝑡)

] − [

I
0
] ė
𝑝fa (𝑡)

− [

0 0
M N

][

e
𝑝fa (𝑡)

Cefa (𝑡)
] .

(78)
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Since the time derivative of (55) takes the form

ė
𝑝fa (𝑡) = ṗfa (𝑡) − ṗ (𝑡) , (79)

using (79), then (78) implies the equations of DOC covered
by DVA (73). This concludes the proof.

4. Design of Dynamic Virtual Actuators

If the pair (A∘,B∘
𝑓
) is controllable, for the given structure of

DVAs (48) and (49), the form of the unknown input dis-
turbance d∘fa(𝑡) (62), and the system matrix parameters (63),
the conditions for design of DVA are given by the following
theorems.

Theorem 10 (bounded real lemma). The closed-loop system,
consisting of the plant with a single actuator fault (44), (45),
DOC (6), and DVAs (48) and (49), is stable with the quadratic
performance 𝛾

∘ if there exist a symmetric positive definite
matrix X∘ ∈ R(𝑛+𝑘)×(𝑛+𝑘), a matrix Y∘ ∈ R(𝑟+𝑘)×(𝑛+𝑘), and a
positive scalar 𝛾∘ ∈ R such that

X∘ = X∘𝑇 > 0,

𝛾
∘

> 0,

(80)

[

[

[

[

A∘X∘ + X∘A∘𝑇 + B∘
𝑓
Y∘ + Y∘𝑇B∘𝑇

𝑓
∗ ∗

V∘𝑇fa −𝛾
∘I
𝑟+𝑟V+𝑘
∗

C∘X∘ 0 −I
𝑚

]

]

]

]

< 0,

(81)

where the generalized system matrices are defined in (62) and
(63).

When the above conditions hold,

G∘ = Y∘ (X∘)−1 . (82)

Proof. Considering the Lyapunov function candidate as fol-
lows:

V (q∘fa (𝑡))

= q∘𝑇fa (𝑡)P
∘q∘fa (𝑡)

+ ∫

𝑡

0

(y𝑇fa (𝜏) yfa (𝜏) − 𝛾
∘d∘𝑇fa (𝜏) d

∘

fa (𝜏)) d𝜏 > 0,

(83)

where P∘ ∈ R(𝑛+𝑘)×(𝑛+𝑘) is symmetric positive definite matrix
and 𝛾∘ ∈ R is square of the𝐻

∞
norm of the transfer function

matrix of the disturbance d∘fa, then

V̇ (q∘fa (𝑡)) = q̇∘𝑇fa (𝑡)P
∘q∘fa (𝑡) + q∘𝑇fa (𝑡)P

∘q̇∘fa (𝑡)

+ y𝑇fa (𝑡) yfa (𝑡) − 𝛾
∘d∘𝑇fa (𝑡) d

∘

fa (𝑡) < 0.

(84)

Substituting (69) with (64) in (84), we have

V̇ (q∘fa (𝑡)) = d∘𝑇fa (𝑡)B
∘𝑇

𝑓
P∘q∘fa (𝑡) + q∘𝑇fa (𝑡)P

∘B∘
𝑓
d∘fa (𝑡)

+ q∘𝑇fa (𝑡) (A
∘

+ B∘
𝑓
G∘)
𝑇

P∘q∘fa (𝑡)

+ q∘𝑇fa (𝑡)C
∘𝑇C∘q∘fa (𝑡)

+ q∘𝑇fa (𝑡)P
∘

(A∘ + B∘
𝑓
G∘) q∘fa (𝑡)

− 𝛾
∘d∘𝑇fa (𝑡) d

∘

fa (𝑡) < 0

(85)

and with the notation

q∘𝑇
𝑐fa (𝑡) = [q∘𝑇fa (𝑡) d∘𝑇fa (𝑡)] , (86)

then (85) can be rewritten as

V̇ (q∘
𝑐fa (𝑡)) = q∘𝑇

𝑐fa (𝑡)P
∘

faq
∘

fa (𝑡) < 0, (87)

where

P∘fa = [

A∘𝑇
𝑐
P∘ + P∘A∘

𝑐
+ C∘𝑇C∘ ∗

V∘𝑇fa P
∘

−𝛾
∘I
𝑟+𝑟V+𝑘

] < 0 (88)

and, using the Schur complement property, (88) can be
written as follows:

[

[

[

[

A∘
𝑐
P∘ + P∘A∘

𝑐
∗ ∗

V∘𝑇fa P
∘

−𝛾
∘I
𝑟+𝑟V+𝑘
∗

C∘ 0 −I
𝑚

]

]

]

]

< 0. (89)

Introducing the transform matrix of the form

T
𝑓
= diag [X∘ I

𝑟+𝑟V+𝑘
I
𝑚
] , X∘ = (P∘)−1 , (90)

premultiplying and postmultiplying (89) byT
𝑓
, and inserting

(64), then it yields

[

[

[

[

X∘ (A∘ + B∘
𝑓
G∘)
𝑇

+ (A∘ + B∘
𝑓
G∘)X∘ ∗ ∗

V∘𝑇fa −𝛾
∘I
𝑟+𝑟V+𝑘
∗

C∘X∘ 0 −I
𝑚

]

]

]

]

< 0.

(91)

Thus, using the notation

Y∘ = G∘X∘, (92)

then (91) and (92) imply (81) and (82), respectively. This
concludes the proof.

In order to adjust fault detection and isolation time to the
dynamics of the closed-loop system, not only is selection of
the order 𝑝 of DOC provided with a free tuning parameter
in control design step, but also the selection of the order 𝑘
of DVA could be offered with a further tuning parameter in
virtual actuator design. This augmentation is reflected in the
following theorem.
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Theorem 11 (enhanced bounded real lemma). The closed-
loop system, consisting of the plant with a single actuator fault
(44), (45), DOC (6), and DVAs (48) and (49), is stable with
the quadratic performance 𝛾∘ if for given positive 𝛿∘ ∈ R there
exist symmetric positive definite matricesR∘,U∘ ∈ R(𝑛+𝑘)×(𝑛+𝑘),
a matrix Y∘ ∈ R(𝑟+𝑘)×(𝑛+𝑘), and a positive scalar 𝛾∘ ∈ R such
that

R∘ = R∘𝑇 > 0,

U∘ = U∘𝑇 > 0,

𝛾
∘

> 0,

(93)

[

[

[

[

[

[

[

A∘R∘ + R∘A∘𝑇 + B∘
𝑓
Y∘ + Y∘𝑇B∘𝑇

𝑓
∗ ∗ ∗

U∘ − R∘ + 𝛿
∘A∘R∘ + 𝛿

∘B∘
𝑓
Y∘ −2𝛿

∘R∘ ∗ ∗

V∘𝑇fa 𝛿
∘V∘𝑇fa −𝛾

∘I
𝑟+𝑟V+𝑝V

∗

C∘R∘ 0 0 −I
𝑚

]

]

]

]

]

]

]

< 0,

(94)

where the generalized system matrices are defined in (62) and
(63) and positive 𝛿∘ is the tuning parameter.

When the above conditions hold,

G∘ = Y∘ (R∘)−1 . (95)

Proof. Since (60) with (64) implies

A∘
𝑐
q∘fa (𝑡) + V∘fad

∘

fa (𝑡) − q̇∘fa (𝑡) = 0, (96)

then it yields

(q∘𝑇fa (𝑡) S
∘

+ 𝛿
∘q̇∘𝑇fa (𝑡) S

∘

)

⋅ (A∘
𝑐
q∘fa (𝑡) + V∘fad

∘

fa (𝑡) − q̇∘fa (𝑡)) = 0,

(97)

where S∘ ∈ R(𝑛+𝑘)×(𝑛+𝑘) is a symmetric positive definitematrix
and 𝛿∘ ∈ R is a positive scalar.

Adding (97) as well as its transpose to (84) and then
inserting (61), it can be seen that

V̇ (q∘fa (𝑡)) = q̇∘𝑇fa (𝑡)P
∘q∘fa (𝑡) + q∘𝑇fa (𝑡)P

∘q̇∘fa (𝑡)

+ (q∘𝑇fa (𝑡) S
∘

+ 𝛿
∘q̇∘𝑇fa (𝑡) S

∘

)

⋅ (A∘
𝑐
q∘fa (𝑡) + V∘fad

∘

fa (𝑡) − q̇∘fa (𝑡))

+ (A∘
𝑐
q∘fa (𝑡) + V∘fad

∘

fa (𝑡) − q̇∘fa (𝑡))
𝑇

⋅ (S∘q∘fa (𝑡) + 𝛿
∘S∘q̇∘fa (𝑡)) + q∘𝑇fa (𝑡)C

∘𝑇C∘q∘fa (𝑡)

− 𝛾
∘d∘𝑇fa (𝑡) d

∘

fa < 0

(98)

and with the notation

q∘𝑇
𝑐𝑒
(𝑡) = [q∘𝑇fa (𝑡) q̇∘𝑇fa (𝑡) d∘𝑇fa ] (99)

inequality (98) can be written as

V̇ (q∘
𝑐
(𝑡)) = q∘𝑇

𝑐𝑒
(𝑡)P∘
𝑐𝑒
q∘
𝑐𝑒
(𝑡) < 0, (100)

where

P∘
𝑐𝑒

=

[

[

[

[

S∘A∘
𝑐
+ A∘𝑇
𝑐
S∘ + C∘𝑇C∘ ∗ ∗

P∘ − S∘ + 𝛿
∘S∘A∘
𝑐

−2𝛿
∘S∘ ∗

V∘𝑇fa S
∘

𝛿
∘V∘𝑇fa S

∘

−𝛾
∘I
𝑟+𝑟V+𝑘

]

]

]

]

.

(101)

Since, using the Schur complement property, (101) can be
rewritten as

[

[

[

[

[

[

[

S∘A∘
𝑐
+ A∘𝑇S∘ ∗ ∗ ∗

P∘ − S∘ + 𝛿
∘S∘A∘
𝑐

−2𝛿
∘S∘ ∗ ∗

V∘𝑇fa S
∘

𝛿
∘V∘𝑇fa S

∘

−𝛾
∘I
𝑟+𝑟V+𝑘
∗

C∘ 0 0 −I
𝑚

]

]

]

]

]

]

]

< 0, (102)

inserting (64) in (102) and then premultiplying and postmul-
tiplying the result by the transform matrix

T∘
𝑓𝑒
= diag [R∘ R∘ I

𝑟+𝑟V+𝑘
I
𝑚
] , R∘ = (S∘)−1 , (103)

it can be obtained that

[

[

[

[

[

[

[

(A∘ + B∘
𝑓
G∘)R∘ + R∘ (A∘ + B∘

𝑓
G∘)
𝑇

∗ ∗ ∗

R∘P∘R∘ − R∘ + 𝛿
∘

(A∘ + B∘
𝑓
G∘)R∘ −2𝛿

∘R∘ ∗ ∗

V∘𝑇fa 𝛿
∘V∘𝑇fa −𝛾

∘I
𝑟+𝑟V+𝑘
∗

C∘R∘ 0 0 −I
𝑚

]

]

]

]

]

]

]

< 0. (104)

Introducing the notations

U∘ = R∘P∘R∘,

Y∘ = G∘R∘,
(105)

then (104) and (105) imply (94) and (95), respectively. This
concludes the proof.

When control with DOC is implemented in the forced
mode, DVA also must have a forced mode. Using (49) and
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(57), DVA extended by the block defining the forced mode
can be considered in the form

̇kfa (𝑡) = Okfa (𝑡) + Pefa (𝑡) , (106)

ufa (𝑡) = Rkfa (𝑡) + Sefa (𝑡) + Fu
𝑐
(𝑡) , (107)

where F ∈ R𝑟×𝑟 and (48) is changed as follows:

ėfa (𝑡) = (A + B
𝑓
S) efa (𝑡) + B

𝑓
Rkfa (𝑡)

+ (B
𝑓
F − B) u

𝑐
(𝑡) .

(108)

Moreover, (74) prescribes that
y (𝑡) = yfa (𝑡) − Cefa (𝑡) . (109)

If the pair (A∙,B∙
𝑓
), given in (8), is stabilizable by DOC

with the gain matrix G∙ of the structure (5) and rankB∘
𝑓
≥

rankC∘, then the following theorem is applicable.

Theorem 12. Under the above given conditions, a forced mode
in the closed-loop system consisting of the plant with a single
actuator fault (44), (45), DOC (6), and DVAs (48) and (49)
can be achieved if there exists a matrix F ∈ R𝑟×𝑟 of the form

F = F
∘
(C (A − B

𝑓
RO−1P + B

𝑓
S)
−1

B) , (110)

where

F
∘
= (C (A − B

𝑓
RO−1P + B

𝑓
S)
−1

B
𝑓
)

⊝1

(111)

is the pseudoinverse of C(A − B
𝑓
RO−1P + B

𝑓
S)−1B

𝑓
.

Proof. In a steady-state, DVA equations (106), (108), and (109)
imply

Okfa∘ + Pefa∘ = 0, (112)

(A + B
𝑓
S) efa∘ + B

𝑓
Rkfa∘ + (B

𝑓
F − B) u

𝑐∘
= 0, (113)

y
∘
= yfa∘ − Cefa∘, (114)

where efa∘, kfa∘, u𝑐∘, y∘, and yfa∘ are steady-state values of the
vectors efa(𝑡), kfa(𝑡), u𝑐(𝑡), y(𝑡), and yfa(𝑡), respectively.

SinceO is a regular matrix, (112) implies

kfa∘ = −O−1Pefa
∘

(115)

and, substituting (115) into (113), it yields

(A − B
𝑓
RO−1P + B

𝑓
S) efa

∘

+ (B
𝑓
F − B) u

𝑐
∘

= 0, (116)

which gives

efa
∘

= − (A − B
𝑓
RO−1P + B

𝑓
S)
−1

(B
𝑓
F − B) u

𝑐
∘

, (117)

Cefa
∘

= −C (A − B
𝑓
RO−1P + B

𝑓
S)
−1

(B
𝑓
F − B) u

𝑐
∘

, (118)

respectively.
Considering that in a steady state y

∘
= yfa∘, then (115)

implies Cefa
∘

= 0; that is, (118) gives

−C (A − B
𝑓
RO−1P + B

𝑓
S)
−1

(B
𝑓
F − B) = 0, (119)

which implies (110).

5. Illustrative Example

The considered system is represented by the model ((1) and
(2)) with the model matrix parameters [42]

A

=

[

[

[

[

[

[

[

[

[

0.5432 0.0137 0 0.9778 0

0 −0.1178 0.2215 0 −0.9661

0 −10.5130 −0.9967 0 0.6176

2.6221 −0.0030 0 −0.5057 0

0 0.7075 −0.0939 0 −0.2120

]

]

]

]

]

]

]

]

]

,

C =

[

[

[

[

[

[

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

]

]

]

]

]

]

,

B

=

[

[

[

[

[

[

[

[

[

−0.0318 −0.0548 −0.0548 −0.0318 0.0004

0.0024 0.0095 −0.0095 0.0024 0.0287

−2.2849 −1.9574 1.9574 2.2849 1.4871

−0.4628 −0.8107 0.8107 −0.4628 0.0024

0.0944 −0.1861 −0.1861 0.0944 −0.8823

]

]

]

]

]

]

]

]

]

,

V =

[

[

[

[

[

[

[

[

[

0.7593

0.4116

0.8793

0.0272

0.0389

]

]

]

]

]

]

]

]

]

,

(120)

and k(𝑡) is noise with the variance 𝜎2V = 7.1 × 10
−3.

The system is controlled by DOC (6), whose parameters
were determined by using (15)–(17) for the DOC order 𝑝 = 1

and by setting the tuning parameter as 𝛿∙ = 10. Using the
SeDuMi package [43], the LMI variables take the values

R∙

=

[

[

[

[

[

[

[

[

[

[

[

[

0.6975 0.0740 −0.0000 −0.0581 −0.0188 0.0000

0.0740 0.6196 0.0000 0.0332 0.3265 −0.0000

−0.0000 0.0000 0.9569 −0.0000 0.0000 0.0000

−0.0581 0.0332 −0.0000 0.5631 0.0008 0.0000

−0.0188 0.3265 0.0000 0.0008 0.4883 −0.0000

0.0000 −0.0000 0.0000 0.0000 −0.0000 0.7480

]

]

]

]

]

]

]

]

]

]

]

]

,

U∙

=

[

[

[

[

[

[

[

[

[

[

[

[

8.8815 0.6615 −0.3939 −0.6145 −0.2835 0.0000

0.6615 4.2501 −1.2541 0.0617 1.8953 −0.0000

−0.3939 −1.2541 9.2830 −0.0156 0.8764 0.0000

−0.6145 0.0617 −0.0156 10.7212 0.3256 0.0000

−0.2835 1.8953 0.8764 0.3256 13.7591 0.0000

0.0000 −0.0000 0.0000 0.0000 0.0000 9.9276

]

]

]

]

]

]

]

]

]

]

]

]

,
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H∙ =

[

[

[

[

[

[

[

[

[

0.7480 0.0000 −0.0000 0.0000 −0.0000

0.0000 0.6975 0.0740 −0.0581 −0.0188

−0.0000 0.0740 0.6196 0.0332 0.3265

0.0000 −0.0581 0.0332 0.5631 0.0008

−0.0000 −0.0188 0.3265 0.0008 0.4883

]

]

]

]

]

]

]

]

]

,

Y∙ =

[

[

[

[

[

[

[

[

[

[

[

[

−1.0298 −0.0000 −0.0000 −0.0000 −0.0000

0.0000 4.9096 −5.5163 1.7685 1.5014

0.0000 6.9316 4.4012 2.4561 −1.5329

0.0000 9.9788 1.3867 3.5236 −0.4959

0.0000 4.3088 0.6154 1.5426 0.3277

−0.0000 −2.5551 −1.1452 −0.8279 2.5340

]

]

]

]

]

]

]

]

]

]

]

]

,

𝛾
∙

= 13.4697.

(121)

Using (18), the DOC gain matrices are separated as follows:

J = −1.3767,

L = 10
−8

[−0.0673 −0.0049 −0.1764 −0.0886] ,

M = 10
−8

[

[

[

[

[

[

[

[

[

−0.2501

0.3877

0.0318

0.0714

−0.0043

]

]

]

]

]

]

]

]

]

,

N =

[

[

[

[

[

[

[

[

[

9.9037 −18.8161 5.2467 16.0287

8.8524 11.2393 4.6291 −10.3231

14.8863 0.4394 7.7691 −0.7511

6.5785 −0.7130 3.4584 1.3946

−2.8555 −6.3480 −1.4051 9.3270

]

]

]

]

]

]

]

]

]

(122)

and the signal gain matrixW is calculated by (43) as

W =

[

[

[

[

[

[

[

[

[

−5.1176 −0.1008 0.0521 −0.2320

−7.0937 0.5788 −0.4934 −1.4523

−11.5871 −0.2253 1.4234 0.6632

−3.0013 −0.7243 −1.0022 3.3029

2.6838 2.3520 −0.6184 −5.3107

]

]

]

]

]

]

]

]

]

. (123)

The closed-loop system is stable with the closed-loop system
matrix eigenvalue spectrum

𝜌 (A∙ + B∙G∙C∙)

= {−4.3447 −1.9657 −0.5713 −1.2897 −1.0802 −1.3767} .

(124)

In Figures 1 and 2 are shown the time responses of
the system output and control variables for the control law
realized by DOC of order 𝑝 = 1 in the controller forced
mode, acting on the fault-free system. The initial condition
was set to q

0
= 0 and the desired output values were w(𝑡) =

[0.3 0.4 0.5 0.6], which were changed within the interval
𝑡 ∈ ⟨20 s, 30 s⟩ to w(𝑡) = [0.75 0.70 0.85 1.0].
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Figure 1: Output response.
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Figure 2: Control variables.

The control reconstruction byDVA is illustrated for single
fault of the second actuator, which is modeled by the matrix
B
𝑓
of the form

B
𝑓
=

[

[

[

[

[

[

[

[

[

−0.0318 0 −0.0548 −0.0318 0.0004

0.0024 0 −0.0095 0.0024 0.0287

−2.2849 0 1.9574 2.2849 1.4871

−0.4628 0 0.8107 −0.4628 0.0024

0.0944 0 −0.1861 0.0944 −0.8823

]

]

]

]

]

]

]

]

]

. (125)
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For this fault scenario, with a total loss of the the second
actuator gain, the closed-loop system consisting of (44), (45),
and DOCs (3) and (4) with the above designed parameters
is instable and DVA has to be activated to stabilize the faulty
system.

The DVA parameters are determined by using (93) and
(94) for the DVA order 𝑘 = 1 and by setting the tuning
parameter as 𝛿∘ = 1.834. Using the SeDuMi package, the LMI
variables take the values

R∘

=

[

[

[

[

[

[

[

[

[

[

[

[

0.7433 0.0235 0.0409 −0.3245 −0.0007 0.0000

0.0235 0.7999 −0.3282 0.0094 0.5090 −0.0000

0.0409 −0.3282 3.6571 0.0899 −0.0134 0.0002

−0.3245 0.0094 0.0899 1.2167 −0.0124 0.0000

−0.0007 0.5090 −0.0134 −0.0124 1.2983 0.0001

0.0000 −0.0000 0.0002 0.0000 0.0001 2.2724

]

]

]

]

]

]

]

]

]

]

]

]

,

U∘

=

[

[

[

[

[

[

[

[

[

[

[

[

2.4329 0.0396 −0.0549 −0.7109 −0.0189 −0.0001

0.0396 1.9899 −0.0690 −0.0632 0.5240 0.0000

−0.0549 −0.0690 5.5004 0.0779 −0.4162 0.0010

−0.7109 −0.0632 0.0779 5.8210 −0.0589 −0.0001

−0.0189 0.5240 −0.4162 −0.0589 6.2191 0.0008

−0.0001 0.0000 0.0010 −0.0001 0.0008 5.1268

]

]

]

]

]

]

]

]

]

]

]

]

,

Y∘

=

[

[

[

[

[

[

[

[

[

[

[

[

−0.0000 −0.0000 −0.0002 0.0000 0.0004 −2.1667

12.2309 −0.1429 1.0569 3.4036 0.0041 −0.0001

0 0 0 0 0 0

7.6875 1.0336 0.3775 1.1029 −0.1676 −0.0000

5.5771 1.9340 0.1682 2.2672 −0.3676 −0.0001

0.2607 0.4858 −1.7157 0.2977 4.4104 0.0001

]

]

]

]

]

]

]

]

]

]

]

]

,

𝛾
∘

= 7.4681.

(126)

Using (95), the common gain matrix of DVA is computed as

G∘

=

[

[

[

[

[

[

[

[

[

[

[

[

0.0000 −0.0004 −0.0000 0.0001 0.0005 −0.9535

20.0899 −1.3715 −0.2580 8.1918 0.6273 −0.0001

0 0 0 0 0 0

12.1035 1.2399 −0.0244 4.1211 −0.5695 −0.0000

9.2730 3.0481 0.1051 4.2907 −1.4311 −0.0000

0.7123 −2.4879 −0.6979 0.5499 4.3709 −0.0001

]

]

]

]

]

]

]

]

]

]

]

]

,

(127)

from which are separated the matrix parameters of DVA as
follows:

O = −0.9535,

P

= 10
−3

[0.0496 −0.3536 −0.0350 0.0801 0.4884] ,

R = 10
−3

[

[

[

[

[

[

[

[

[

−0.1466

0

−0.0475

−0.0479

−0.0709

]

]

]

]

]

]

]

]

]

,

S

=

[

[

[

[

[

[

[

[

[

20.0899 −1.3715 −0.2580 8.1918 0.6273

0 0 0 0 0

12.1035 1.2399 −0.0244 4.1211 −0.5695

9.2730 3.0481 0.1051 4.2907 −1.4311

0.7123 −2.4879 −0.6979 0.5499 4.3709

]

]

]

]

]

]

]

]

]

.

(128)

The eigenvalue spectrum of the matrix A∘
𝑐
= A∘ + B∘

𝑓
G∘ is

𝜌 (A∘
𝑐
)

= {−3.4345 −2.6887 −1.3070 −1.0258 ± 0.1850𝑖 −0.9535}

(129)

and this spectrumdetermines the dynamics of the closed loop
system with DOC after DVA activation.

In Figures 3 and 4 are shown the time responses of the
system output and control variables for the control realized
by DOC of order 𝑝 = 1 in the controller forced mode
and DVA of order 𝑘 = 1, acting on the faulty system.
The single second actuator fault occurred at time instant
𝑡 = 15 s and DVA was activated at time instant 𝑡 = 17 s.
In simulation, the initial condition was set as q

0
= 0 and

the desired output values w(𝑡) = [0.3 0.4 0.5 0.6] were
changed stepwise at the time instants 𝑡 = 40 s and 𝑡 = 70 s
to w(𝑡) = [0.4 − 0.2 − 0.2 − 0.1 0.1] and w(𝑡) =

[0.45 0.3 0.35 0.4 0.1], respectively.
From the system response in Figure 3, it can be seen that

the system outputs after intervention of DVA do not reach
the desired values; therefore, it was supplemented the forced
mode of DVA, too. The supplemented forced mode of DVA
was realized by the additive parts Fu

𝑐
(𝑡) in (107) with the

signal gainmatrixF, computed from (110) and (111) as follows:

F =

[

[

[

[

[

[

[

[

[

1.0000 1.4253 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 −0.0080 1.0000 0.0000 0.0000

0.0000 0.3113 0.0000 1.0000 0.0000

0.0000 0.3820 0.0000 0.0000 1.0000

]

]

]

]

]

]

]

]

]

. (130)

Using the same conditions in simulation as those presented in
the comment to Figures 3 and 4, the time responses of the sys-
tem output and control variables for control realized by DOC
of order 𝑝 = 1 in the controller forced mode and DVA of
order 𝑘 = 1 in the virtual actuator forced mode are presented
in Figures 5 and 6. Although the required values of output
variables were achieved, the output and control variables
peaks after the activation of DVA are excessively high.
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Figure 3: Output response.
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Figure 4: Control variables.

Within the same simulation conditions, Figures 7 and
8 show the time response of the system output and input
variables for control realized by DOC of order 𝑝 = 4 in the
controller forced mode and DVA of order 𝑘 = 1 in the virtual
actuator forced mode and Figures 9 and 10 show the time
response of the system output and input variables for control
realized by DOC of order 𝑝 = 7 in the controller forcedmode
and DVA of order 𝑘 = 1 in the virtual actuator forced mode,
respectively.

It is obvious that an appropriate conjunction of orders of
DOCandDVAgives the possibility to significantly reduce the
output and control variables peaks after activation of DVAs.
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Figure 5: Output response.
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Figure 6: Control variables.

6. Concluding Remarks

A key contribution of the proposed approach is the blending
of the virtual actuator technique and the output control prin-
ciple in a unique dynamic scheme, able to provide fault toler-
ance against actuator faults with such acceptable responses of
the system variables, primarily after activation of DVA, which
cannot by reached by applying a static output controller on
the exactly same plant.

The proposed model of the dynamic effect of a virtual
actuator in the FTC structure relies on newly introduced gen-
eralized disturbance patterns, reflecting fading of the nominal
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Figure 7: System output.

−10

−5

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 1000
Time t (s)

In
pu

t s
ig

na
lu

(t
)

u1(t)
u2(t)
u3(t)

u4(t)
u5(t)

Figure 8: Control variables.

system state variables after DVA activation. This allows
including in the DVA design conditions the disturbance
input/system output model property by𝐻

∞
norm approach.

Another important contribution presented in the paper
consists in showing that the separation principle is valid for
the proposed dynamic schemes of arbitrarily order and, as
a consequence, these components of the dynamic structure
can be designed separately, to achieve stability, as well as the
desired performance under both nominal and faulty situa-
tions.
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Figure 9: System output.
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Figure 10: Control variables.

The application of the proposed approach requires that a
fault detection and isolation subsystem is available. However,
it becomes clear that the desired performances depend on the
fault isolation time, but a suitable order conjunction of both
dynamic components allows significantly extending the time
limit of fault detection.

The authors believe the presented method, although
partly interactive, can be useful in real context as a suitable
and skilled way to set desired properties of FTC with DOC
and DVA for linear systems.
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