970 research outputs found

    Context aware programmable trackers for the next generation Internet

    Get PDF
    This work introduces and proposes the concept of context aware programmable trackers for the next generation Internet. The pro- posed solution gives ground for the development of advanced applications based on the P2P paradigm and will foster collaborative efforts among several network entities (e.g. P2P applications and ISPs). The proposed concept of context aware programmable trackers allows that several peer selection strategies might be supported by a P2P tracker entity able to improve the peer selection decisions according with pre-defined objectives and external inputs provided by specific services. The flexible, adaptive and enhanced peer selection semantics that might be achieved by the proposed solution will contribute for devising novel P2P based services and business models for the future Internet

    Proposal of a health care network based on big data analytics for PDs

    Get PDF
    Health care networks for Parkinson's disease (PD) already exist and have been already proposed in the literature, but most of them are not able to analyse the vast volume of data generated from medical examinations and collected and organised in a pre-defined manner. In this work, the authors propose a novel health care network based on big data analytics for PD. The main goal of the proposed architecture is to support clinicians in the objective assessment of the typical PD motor issues and alterations. The proposed health care network has the ability to retrieve a vast volume of acquired heterogeneous data from a Data warehouse and train an ensemble SVM to classify and rate the motor severity of a PD patient. Once the network is trained, it will be able to analyse the data collected during motor examinations of a PD patient and generate a diagnostic report on the basis of the previously acquired knowledge. Such a diagnostic report represents a tool both to monitor the follow up of the disease for each patient and give robust advice about the severity of the disease to clinicians

    ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic

    Get PDF
    It is well known that apps running on mobile devices extensively track and leak users' personally identifiable information (PII); however, these users have little visibility into PII leaked through the network traffic generated by their devices, and have poor control over how, when and where that traffic is sent and handled by third parties. In this paper, we present the design, implementation, and evaluation of ReCon: a cross-platform system that reveals PII leaks and gives users control over them without requiring any special privileges or custom OSes. ReCon leverages machine learning to reveal potential PII leaks by inspecting network traffic, and provides a visualization tool to empower users with the ability to control these leaks via blocking or substitution of PII. We evaluate ReCon's effectiveness with measurements from controlled experiments using leaks from the 100 most popular iOS, Android, and Windows Phone apps, and via an IRB-approved user study with 92 participants. We show that ReCon is accurate, efficient, and identifies a wider range of PII than previous approaches.Comment: Please use MobiSys version when referencing this work: http://dl.acm.org/citation.cfm?id=2906392. 18 pages, recon.meddle.mob

    Peer-to-peer collaboration in content delivery networks

    Get PDF
    A low-cost collaboration architecture for web content distribution, that aims to improve all stakeholder's interests, is presented. A peer-to-peer (P2P) contribution among the end users layer is suggested, in order to increase download rates and reduce server traffic and resource usage. In addition, the Internet Service Providers (ISPs) concerns are also considered, with an ISP-aware connection strategy in the P2P protocol. Collaboration among publisher's web server resources is also proposed, in order to improve the CDN architecture performance. All the elements of this architecture have been developed and have been successfully tested in 5 different scenarios, within the PlanetLab large-scale overlay network testbed. Results show that download speed increases after implementing P2P collaboration on a content delivery scenario, with a strong reduction of data transferred via HTTP servers. The ISP-aware approach reduces inter-ISP traffic, with an increase of download speeds. This implementation is fairer as the content popularity grows because end-users extreme download rates tend to approach to the average.info:eu-repo/semantics/acceptedVersio

    Continuous, Evolutionary and Large-Scale: A New Perspective for Automated Mobile App Testing

    Full text link
    Mobile app development involves a unique set of challenges including device fragmentation and rapidly evolving platforms, making testing a difficult task. The design space for a comprehensive mobile testing strategy includes features, inputs, potential contextual app states, and large combinations of devices and underlying platforms. Therefore, automated testing is an essential activity of the development process. However, current state of the art of automated testing tools for mobile apps poses limitations that has driven a preference for manual testing in practice. As of today, there is no comprehensive automated solution for mobile testing that overcomes fundamental issues such as automated oracles, history awareness in test cases, or automated evolution of test cases. In this perspective paper we survey the current state of the art in terms of the frameworks, tools, and services available to developers to aid in mobile testing, highlighting present shortcomings. Next, we provide commentary on current key challenges that restrict the possibility of a comprehensive, effective, and practical automated testing solution. Finally, we offer our vision of a comprehensive mobile app testing framework, complete with research agenda, that is succinctly summarized along three principles: Continuous, Evolutionary and Large-scale (CEL).Comment: 12 pages, accepted to the Proceedings of 33rd IEEE International Conference on Software Maintenance and Evolution (ICSME'17

    Context-aware management of multi-device services in the home

    Get PDF
    MPhilMore and more functionally complex digital consumer devices are becoming embedded or scattered throughout the home, networked in a piecemeal fashion and supporting more ubiquitous device services. For example, activities such as watching a home video may require video to be streamed throughout the home and for multiple devices to be orchestrated and coordinated, involving multiple user interactions via multiple remote controls. The main aim of this project is to research and develop a service-oriented multidevice framework to support user activities in the home, easing the operation and management of multi-device services though reducing explicit user interaction. To do this, user contexts i.e., when and where a user activity takes place, and device orchestration using pre-defined rules, are being utilised. A service-oriented device framework has been designed in four phases. First, a simple framework is designed to utilise OSGi and UPnP functionality in order to orchestrate simple device operation involving device discovery and device interoperability. Second, the framework is enhanced by adding a dynamic user interface portal to access virtual orchestrated services generated through combining multiple devices. Third the framework supports context-based device interaction and context-based task initiation. Context-aware functionality combines information received from several sources such as from sensors that can sense the physical and user environment, from user-device interaction and from user contexts derived from calendars. Finally, the framework supports a smart home SOA lifecycle using pre-defined rules, a rule engine and workflows

    Security and Privacy for IoT Ecosystems

    Get PDF
    Smart devices have become an integral part of our everyday life. In contrast to smartphones and laptops, Internet of Things (IoT) devices are typically managed by the vendor. They allow little or no user-driven customization. Users need to use and trust IoT devices as they are, including the ecosystems involved in the processing and sharing of personal data. Ensuring that an IoT device does not leak private data is imperative. This thesis analyzes security practices in popular IoT ecosystems across several price segments. Our results show a gap between real-world implementations and state-of-the-art security measures. The process of responsible disclosure with the vendors revealed further practical challenges. Do they want to support backward compatibility with the same app and infrastructure over multiple IoT device generations? To which extent can they trust their supply chains in rolling out keys? Mature vendors have a budget for security and are aware of its demands. Despite this goodwill, developers sometimes fail at securing the concrete implementations in those complex ecosystems. Our analysis of real-world products reveals the actual efforts made by vendors to secure their products. Our responsible disclosure processes and publications of design recommendations not only increase security in existing products but also help connected ecosystem manufacturers to develop secure products. Moreover, we enable users to take control of their connected devices with firmware binary patching. If a vendor decides to no longer offer cloud services, bootstrapping a vendor-independent ecosystem is the only way to revive bricked devices. Binary patching is not only useful in the IoT context but also opens up these devices as research platforms. We are the first to publish tools for Bluetooth firmware and lower-layer analysis and uncover a security issue in Broadcom chips affecting hundreds of millions of devices manufactured by Apple, Samsung, Google, and more. Although we informed Broadcom and customers of their technologies of the weaknesses identified, some of these devices no longer receive official updates. For these, our binary patching framework is capable of building vendor-independent patches and retrofit security. Connected device vendors depend on standards; they rarely implement lower-layer communication schemes from scratch. Standards enable communication between devices of different vendors, which is crucial in many IoT setups. Secure standards help making products secure by design and, thus, need to be analyzed as early as possible. One possibility to integrate security into a lower-layer standard is Physical-Layer Security (PLS). PLS establishes security on the Physical Layer (PHY) of wireless transmissions. With new wireless technologies emerging, physical properties change. We analyze how suitable PLS techniques are in the domain of mmWave and Visible Light Communication (VLC). Despite VLC being commonly believed to be very secure due to its limited range, we show that using VLC instead for PLS is less secure than using it with Radio Frequency (RF) communication. The work in this thesis is applied to mature products as well as upcoming standards. We consider security for the whole product life cycle to make connected devices and IoT ecosystems more secure in the long term

    Healthcare in the Smart Home: A Study of Past, Present and Future

    Get PDF
    Open Access journalUbiquitous or Pervasive Computing is an increasingly used term throughout the technology industry and is beginning to enter the consumer electronics space in its most recent form under the umbrella term: “Internet of Things”. One area of focus is in augmenting the home with intelligent, networked sensors and computers to create a Smart Home which opens a host of possibilities for the role of tomorrow’s dwelling. As the world’s population continues to live longer and consequently experience more medical-related ailments, at the same time institutional healthcare is struggling to cope, the role of the Smart Home becomes paramount to monitoring a dweller’s health and providing any necessary intervention. This study looks at the history of Smart Home Healthcare, current research areas, and potential areas of future investigation. Unique categorisations are presented in Activities of Daily Living (ADL) and Personal Sensors, and a thorough look at the application of Smart Home Healthcare is presented. Technology can augment traditional methods of healthcare delivery and in some cases completely replace it. Costs can be reduced and medical adherence can be increased, all of which contribute to a more sustainable and effective model of care
    • …
    corecore