
Context-aware management of multi-device services in the home
Barakos, Ioannis

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/2331

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30696008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/2331

Ioannis Barakos – MPhil Thesis

Context-Aware Management of Multi-Device

Services in the Home

MPhil Thesis

MPhil Student : Mr. Ioannis Barakos

Supervisor : Dr. Stefan Poslad

School of Electronic Engineering & Computer Science

Queen Mary, University of London

Ioannis Barakos – MPhil Thesis

Declaration

The work presented in the thesis is the author’s own.

DATE:

SIGNATURE:

Ioannis Barakos – MPhil Thesis

To Kostas and Maria

Ioannis Barakos – MPhil Thesis

 4

Abstract

More and more functionally complex digital consumer devices are becoming

embedded or scattered throughout the home, networked in a piecemeal fashion and

supporting more ubiquitous device services. For example, activities such as watching

a home video may require video to be streamed throughout the home and for multiple

devices to be orchestrated and coordinated, involving multiple user interactions via

multiple remote controls.

The main aim of this project is to research and develop a service-oriented multi-

device framework to support user activities in the home, easing the operation and

management of multi-device services though reducing explicit user interaction. To do

this, user contexts i.e., when and where a user activity takes place, and device

orchestration using pre-defined rules, are being utilised.

A service-oriented device framework has been designed in four phases. First, a simple

framework is designed to utilise OSGi and UPnP functionality in order to orchestrate

simple device operation involving device discovery and device interoperability.

Second, the framework is enhanced by adding a dynamic user interface portal to

access virtual orchestrated services generated through combining multiple devices.

Third the framework supports context-based device interaction and context-based task

initiation. Context-aware functionality combines information received from several

sources such as from sensors that can sense the physical and user environment, from

user-device interaction and from user contexts derived from calendars. Finally, the

framework supports a smart home SOA lifecycle using pre-defined rules, a rule

engine and workflows.

Ioannis Barakos – MPhil Thesis

 5

Acknowledgements

Firstly, I would like to take this opportunity to thank my supervisor, Dr. Stefan

Poslad, for his guidance, experience, impressive visions that guided my whole

research all the way through and his incredible patience. I would like to give my big

thank to the School of Electronic Engineering and Computer Science, Queen Mary

University of London for their support during my PhD research. For part of my

project, I knowledge that I was also funded by an EPSRC Industrial Case award

(EP/C537831/1) and by British Telecommunications plc ("BT") as the industrial

sponsor. As a result, I thank also two key personnel from BT that gave much guidance

on the research and development, John Sherpherdson (who has since left BT) and

(Dr.) Dr Botond Virginas, Principal Research Professional at Martlesham Heath, BT.

It is also a pleasure to thank my research colleagues and friends who helped me and

also made this journey much more enjoyable, in particular, Kraisak, Dejian, Zhenchen

and Janny.

Finally, my love and gratitude go to my family, for their great love and support, and

their encouragement have made the journey easier, without them, this thesis would

not have happened.

Ioannis Barakos – MPhil Thesis

 6

Table of Contents

1 Introduction .. 13

1.1 Motivation ... 13

1.2 Research Objectives .. 14

1.3 Report Outline ... 15

2 Problem Analysis: Advanced Device Interaction for Future Home Environments

 16

2.1 Use Scenarios .. 17

2.1.1 Basic Device Infrastructure.. 18

2.1.2 User Device Portal Interaction ... 19

2.1.3 Context-aware Device Interaction ... 19

2.1.4 Policy-based Device Management ... 21

2.1.5 User Goal-based Planner Interaction Using Rules and Workflows 22

2.2 Device and Service Use... 23

2.2.1 Device Service Lifecycle ... 25

2.3 Types of Interaction between Users, Devices and the Physical World 26

2.4 Device environments ... 27

2.4.1 Physical Environment .. 28

2.4.2 ICT Environment ... 28

2.4.3 Human Environment .. 29

3 Literature Survey ... 30

3.1 Visions for Pervasive Device Interaction .. 31

3.2 Device Interoperability and Device Gateways .. 35

3.2.1 OSGi .. 35

3.2.2 Web Services (WS) .. 37

3.2.3 UPnP .. 38

Ioannis Barakos – MPhil Thesis

 7

3.3 Universal Device Portal .. 38

3.3.1.1 Local Sensing and Control ... 39

3.4 Supporting Planned Activities Spanning Multiple Devices 39

3.5 Context-aware Devices ... 40

3.5.1 User Context-awareness... 42

3.5.1.1 User Location and Identification awareness 43

3.5.1.2 User Task Modelling .. 45

3.5.1.3 User Activity Recognition .. 46

3.5.2 Physical Environment Context-awareness ... 47

3.6 Multi-Device Orchestration... 47

3.6.1 Planning ... 49

3.6.2 Rule-based and Policy-based Management of Devices 50

3.7 Discussion ... 51

3.7.1 Message exchange between Services (OSGi/ Web Services) 51

3.7.2 Planned Activities that Span Multiple Devices 52

3.7.3 Context-Driven Activities .. 54

4 Framework ... 56

4.1 Iterative System Development .. 56

4.2 Service Architecture Overview ... 57

4.3 Core system ... 58

4.3.1 OSGi Gateway ... 58

4.3.2 Service Discovery and Addition .. 58

4.4 User Device Portal .. 59

4.4.1 Device Orchestration (Prototype 1) ... 59

4.4.1.1 Evaluation of Demonstrator 1 ... 62

4.4.2 Device Discovery (Prototype 2)... 63

Ioannis Barakos – MPhil Thesis

 8

4.5 User Tasks or Activity Planner ... 65

4.5.1 Planner System Design .. 67

4.5.1.1 Phase 1- Goal Identification ... 68

4.5.1.2 Phase 2- Plan Creation .. 69

4.6 Context-Awareness ... 72

4.6.1 Indoor User Location Determination using RSSI 72

4.6.2 Indoor User Mobility and Activity Determination Using Accelerometer

Sensors 75

4.6.3 User Identification ... 77

4.6.4 User Status Recognition ... 78

4.7 Policy-based and Workflow-based Management of Devices 78

4.7.1 Framework Requirements .. 78

4.7.2 Architecture Overview ... 79

4.7.3 Device and Service Repository .. 81

4.7.4 Policy Management Subsystem ... 81

4.7.4.1 Rules ... 81

4.7.4.2 Rule Generation and Execution .. 82

4.7.4.3 Rete Algorithm ... 82

4.7.4.4 Rule Properties ... 83

4.7.5 Workflow Process .. 84

4.7.5.1 Service Workflows versus Device Workflows 84

4.7.5.2 Workflow Types ... 85

4.7.5.3 Registration Workflow ... 86

4.7.5.4 Service Execution or Jobflow Workflow 87

4.7.6 Implementation and Evaluation ... 88

5 Discussion .. 91

Ioannis Barakos – MPhil Thesis

 9

5.1 Achievements & Novelty .. 91

5.1.1 Device Integration .. 91

5.1.2 Dynamic Interface Generation – Device Portals 92

5.1.3 Context-aware Device Control .. 93

5.1.4 Policy Based Device Control ... 94

5.1.5 Device Orchestration using Workflows and Pre-defined rules 94

5.2 Future Work .. 95

5.2.1 Service Orchestration and Planning ... 95

5.2.1.1 Orchestration using Business Process Execution Language 97

5.2.2 Universal Service Controller .. 97

6 Conclusion ... 100

Appendix A .. 101

Glossary of Terms .. 106

Ioannis Barakos – MPhil Thesis

 10

Table of Figures

Figure 2-1: Interaction between the three context domains (Device, Physical world

and User) – Context Aware device Interaction .. 20

Figure 2-2: Various home services and networks controlled by a rule engine 21

Figure 2-3: User to service interaction using event driven actions (policy manager) . 22

Figure 2-4: Service Oriented Architecture model (CCI actions are highlighted) 25

Figure 2-5: Smart subsystems and components [2] ... 26

Figure 2-6: Extended set of internal system properties and device environments [2] . 27

Figure 3-1: The OSGi layer specification .. 36

Figure 3-2: Message exchange in Web Service architecture 38

Figure 3-3: Sensor Badge orientation during different user positions (standing, sitting,

lying) .. 46

Figure 3-4: Service Oriented Architecture Life Cycle model 48

Figure 4-1: Generic System Architecture .. 57

Figure 4-2: Home Environment domain to OSGi Gateway domain Interaction 58

Figure 4-3: Process diagram of Demonstrator 1 .. 61

Figure 4-4: Main components of the Demonstrator 2 .. 63

Figure 4-5: The OSGi gateway system architecture .. 64

Figure 4-6: General view of the proposed framework ... 66

Figure 4-7: The two phases in proposed planner framework: Goal Identification and

Plan Creation. ... 68

Figure 4-8: The structure of a Hierarchical Goal Determination Process based on

action mapping. (a) Action maps to a single goal, (b) action maps to multiple goals

until a third action is performed. .. 69

Figure 4-10: Forward chain plan for the Watch Weather Forecast goal 71

Figure 4-9: Forward chain plan.. 71

Ioannis Barakos – MPhil Thesis

 11

Figure 4-11: Experiment environment floor plan showing the base station position and

the path followed by the Sun SPOT ... 73

Figure 4-12: RSSI values collected from the 3 Base Stations 74

Figure 4-13: Relation between RSSI and Distance on the free space propagation

model.. 74

Figure 4-14; a. acceleration: actual acceleration data as obtained using an

accelerometer sensor, b. velocity: velocity after single integration, c. position:

distance travelled from zero after a double integration ... 76

Figure 4-15: Overview of the 3rd Framework architecture displaying the three main

processes and their main subsystems. .. 80

Figure 4-16: a. Simple sequence workflow, b. Branched workflow, c. Parallel-process

workflow .. 85

Figure 4-17 a. Nesting synchronous service workflow, b. service workflow through

pipe, c. multi-threaded synchronised service workflow .. 86

Figure 4-18 Graphical representation of the registration workflow 88

Figure 4-19 Light service execution workflow (job flow)... 90

Figure 5-1: Universal device and service controller model ... 99

Figure A-1: Demonstrator 1. Two services are combined and configuration

information has been entered ... 101

Figure A-2: Demonstrator 1. Camera service cannot be combined with other services

.. 102

Figure A-3: Demonstrator 1. Input service configuration expressed in natural

language. .. 102

Figure A-4: Demonstrator 2. Initial state where the services have been discovered 103

Figure A-5: Demonstrator 2. One of the discovered services is selected and its

interface is displayed.. 104

Figure A-6: Demonstrator 2: When two of the discovered services are selected, a

dynamic interface containing components of both the two services interfaces is

displayed. ... 105

Ioannis Barakos – MPhil Thesis

 12

Index of Tables

Table 2-1: Future Home Scenarios .. 18

Table 2-2: Features of ICT home devices and their characteristics 24

Table 2-3: Different interaction models in the home environment.............................. 27

Table 3-1: Open questions generated by the variety of devices and accessories in

home environments. ... 30

Table 3-2: Summary of the activity properties from [10] and the design implications

.. 33

Table 3-3: Summarises the activity properties from Abowd and Mynatt [8] and their

design implications .. 33

Table 3-4: Edwards and Grinter [9] device interoperability challenges 34

Table 3-5 OSGi specification design principles .. 37

Table 3-6: Description of the three context domains ... 42

Table 3-7 SOAP – RMI Evaluation - GetIntegers() use between a client and server . 52

Table 4-1 System requirements of System 4 ... 79

Table 4-2 Rule properties... 83

Table 5-1: Future Service orchestration planning challenges 95

Table 5-2: Gesture-based universal controller challenges ... 98

Ioannis Barakos – MPhil Thesis

 13

1 Introduction

1.1 Motivation

The vision of ubiquitous computing, UbiCom [1], is that we will become immersed in

a digital world that will enable us to transparently access services to support user-

centred activities based upon our current context and needs. For example, when we

are travelling, we will have access to relevant maps and route information centred

about our current location context. When we are in a voice call and need to arrange an

appointment, a shared calendar will pop up, determined through detection of our time

context and intended task context. The term, and use of the term, context is multi-

dimensional [2]. There are multiple types of context which affect user activities such

as physical world context (e.g., location, time, weather etc), human context

(individual versus social identity, competency and goals) and distributed computing

(ICT) context. A context can be sensed, presented to users, automatically adapted and

can be used to control environments. A context can affect both pre-planned executing

tasks or act as spontaneous conditions to trigger unplanned tasks (situated actions and

tasks).

Much progress has been made in making device interaction more adaptable and more

natural in order to support Weiser’s vision of hidden computing [1]. For example, the

use of touch screens enables fingers to be used as input devices rather than using more

obtrusive input devices such as computer pointing devices and keyboards. Touch

screens support two dimensional gestures as a means to change selections. Devices

such as mobile devices are also increasingly incorporating accelerometer, gyroscope,

etc., sensors to define the orientation of the device and to support 3D gestures of

hands. For example, changing the orientation of the device can be used to change the

orientation of the content being displayed. The incorporation of accelerometers which

can sense gestures in 3D gives additional means to support 3D haptic input into

systems.

The range of activities in an ICT home includes device and service access throughout

the home, dynamic installation and termination of devices, sensors or home

appliances, maintenance and upgrading of interoperable appliances and support for

Ioannis Barakos – MPhil Thesis

 14

various users and types of activities such as entertainment, leisure, work and social

interaction. The number of computing devices that people use to support their

personal and work activities in their homes is growing. The increasing number of

possible combinations of connected ICT home appliances and devices, the fault

identification, the diversity of house environments and the partial understanding of

events and activities by different users implies a major increase in complexity when

operating and managing ICT based home services.

This project will explore how to support and manage a wider variety of (sensor based

and controller) devices situated more in the physical environment, devices that are

physical context aware and that can promote the vision of UbiCom. Two main types

of systems will be researched and developed. First, a managed remotely accessible

system portal or hub enables multiple physical devices that are situated in specific

physical, human and ICT contexts, to interoperate and to be orchestrated, and

choreographed1 at a peer-to-peer level, in an open service environment (Sections: 4.4,

4.5 and 4.7). Second, more flexible, programmable, local sensor and devices such as

the Sun SPOT (Sun Small Programmable Object Technology) [3] sensor platform

(Section 4.6) is used to sense the physical world, to determine human environment

(user’s) contexts, to assess how these affect planned tasks and how they trigger

spontaneous tasks.

1.2 Research Objectives

The research objectives are:

1. Investigate more flexible operation and management of ubiquitous computing

applications which span multiple devices. Of particular interest are techniques

for orchestrating and choreographing the interaction of multiple distributed

devices using SOA (Service Orientated Architectures), based on the OSGi

standard specifications.

2. Examine techniques for applying interaction models that will enable more

user-centred and intrinsic service interaction. Of particular interest here is to

1 Orchestration refers to use of centralised control of distributed devices whereas choreography refers

to more distributed control of devices.

Ioannis Barakos – MPhil Thesis

 15

study the use of both planned user activity models and context-driven situated

action models.

3. Examine, propose and implement techniques for sensing, processing and

storing user contextual data. Of particular interest are techniques to identify

and locate the user inside the home premises and to enable scalable gesture-

based device control.

The combined goal is then to enable planned user tasks to be executed across multiple

devices situated in the physical world and human-centred environments and to

consider how these planned tasks are affected by specific environment contexts and

how favourable contexts could spontaneously trigger and schedule new tasks.

1.3 Report Outline

The remainder of this report is structured as follows. Chapter 2 characterises the

main properties of advanced device interaction, outlines some applications and

then discusses the design issues in a more general, less application specific way.

Chapter 3 surveys the work of other researchers along two main themes: how

planned users’ activities which span multiple devices can be supported and how

unplanned, situated action driven activities which can disrupt active planned

activities can be supported. Chapter 4 describes some preliminary prototypes

undertaken to support planned activities (unplanned activities are discussed in

further work). Chapter 5 discusses the use of the framework, achievements

during the research project period and specifies a detailed plan for further work.

Ioannis Barakos – MPhil Thesis

 16

2 Problem Analysis: Advanced Device Interaction for

Future Home Environments

The problem domain focus is on home environments in the future, in which a

profusion of different digital information and task devices are both embedded into the

physical environment (smart environments) in order to enhance and automate

everyday activities, e.g., automatic doors and lighting. Devices can act as tags,

sensors, and controllers and can support application specific tasks using an

Application Specific Operating System (ASOS) and support multiple tasks using a

MultiTask Operating System (MTOS). Smart mobile devices can accompany the

users such as phones, remote controls, cameras and can increasingly sense and control

digital devices and physical objects in this environment. This environment is referred

to synonymously as a smart environment, smart home or home environments which

provides the living space for daily activities.

The interaction between humans, devices and the physical world is the result of a

number of various activities and tasks. In this research project an activity is defined

as an action that is performed by a human and may or may not have a purpose. A task

may be the result of a number of activities and is an action with a purpose. For

example when a person has the task to have dinner, he/she performs a number of

activities such as cook food, make table and turn the lights on.

The context for interaction and can be divided into three domains:

• The human context. It is the context domain that holds information about the

user such as his location in the house premises, identification and personal

preferences.

• The physical world context. This context domain holds the information of

the physical context: outside temperature, inside temperature, local time and

local weather are some examples of the physical context domain.

• The system context. System context is the information extracted from the

home devices, this information includes: device uptime, device operations,

capabilities, configuration, etc.

Context-driven applications exist today but they tend to use a simple inbuilt

predefined rule model to perform a task based on the current context. A lighting

Ioannis Barakos – MPhil Thesis

 17

system with light sensors may be used to turn on the lights of a room at night and turn

them off during the day. Another example of a simple context-driven application is

the thermostat-based heating system that regulates the central heating of a house.

Complex context-driven situated action models are influenced by people’s actions

(human context), the physical environment (physical world context) and device

operations (system context).

Advanced device interaction within this research project refers to device interaction

which has these properties:

• Planned user activities that may span multiple devices.

• Devices are distributed and interact at a P2P level rather than being operated

via a centralised controller.

• Use of devices by human users can often be affected by unplanned

spontaneous situated actions by human users which cause planned activities to

be altered in some way, e.g., by being suspended and resumed.

• Users’ mental models of understanding the complexity of multiple interacting

devices may differ from the actual operating system model of these devices:

they may need to be relate multiple levels of the system at different levels of

abstraction.

2.1 Use Scenarios

The following table (Table 2-1) summarises some example scenarios of next

generation device interaction.

Ioannis Barakos – MPhil Thesis

 18

Future Home

Interaction Scenarios

Example

Orchestrate service
interaction which spans
multiple devices
(scenario 1)

Orchestrate AV content delivery, sound and lighting,
possibly from one console or service portal

User Device Portal
interaction (scenario 2)

Orchestrate AV content delivery and combining the
various device interfaces into one, creating a virtual
service that a user can interact with.

Context-aware device
control
(scenario 3)

Situated, task specific, control devices can be
dynamically configured and regulated with respect to
user context. Detect user actions and gestures and
control devices based on where the user is located and
where he gestures to.

Policy-based device
Management (scenario
4)

Device interaction and interoperability based on pre-
defined policies and events generated from devices and
sensors, e.g., someone enters the living room, a motion
sensor is triggered by this event and a policy instructs
the light service to turn on the light of the living room.

User goal-based planner
interaction using rules
and workflows (scenario
5)

Workflows and rules drive the lifecycle of a service:
installation, operation and maintenance, uninstallation.

Table 2-1: Future Home Scenarios

Although these scenarios seem deceptively simple, the challenge for future home

environments is that they will require substantial advances in existing ICT system

research and design in order to support them. This challenge and the advances needed

are described below.

2.1.1 Basic Device Infrastructure

In a typical home entertainment system a variety of devices exist such as a radio,

music player with radio, video player (e.g., DVD) or recorder, one or two audio-video

amplifiers, a television, sound speakers and maybe a lighting diming system. Each of

these devices may have its own control device and the user needs to control each of

these devices separately even if he has only one goal (e.g. to watch a movie). Some of

his actions may include: turn the radio off, turn the radio amplifier off, turn the DVD

player on, turn the DVD 5.1 audio amplifier on, turn the television on, adjust volume

and decrease the light intensity. Furthermore, the goal “change the volume” requires a

Ioannis Barakos – MPhil Thesis

 19

user to interact with at least three devices: DVD player, television and a surround

sound system. As each of them has its own volume control.

In a more user-centred scenario, the devices interact with each other allowing the user

to give a single instruction about his goal (e.g. turn the volume down) using a single

action even if this goal needs more than one device to operate to reach this goal.

2.1.2 User Device Portal Interaction

A home may include over a hundred electronic devices and use a basic or more

sophisticated operating system and a screen. Multi device interaction raises the

problem of having multiple user interfaces for users interact with.

A device portal in this scenario allows the devices to interact and allows the user to

combine multiple device interfaces into one main interface that controls the

interoperable devices. The picture and volume settings from the television, the DVD

player and the surround system are combined from three interfaces into one and the

user controls it using a single controller (e.g. DVD’s remote control). The user in this

scenario interacts with a virtual service that is the result of various services offered by

different devices.

2.1.3 Context-aware Device Interaction

The next scenario expands the previous scenario by enabling a control device (e.g. a

sensor-based, e.g., Sun SPOT or Nindendo Wii, Controller) to point at spaces in the

physical world and to get information and to interact with home services by pointing

at physical objects.

Home users may interact with a mobile device that acts as a universal controller. This

device has various sensors and run modules that allows services to query the user’s

location, position and hand movement (simple gestures) in the home. In this scenario

a user points the universal controller towards the window (physical object) and then

points it towards the television screen (device). The two objects are identified and a

planner works to reach the user goal “show me the weather forecast on the screen”.

Ioannis Barakos – MPhil Thesis

 20

Figure 2-1: Interaction between the three context domains (Device, Physical world and User) –

Context Aware device Interaction

In Figure 2-1 the interaction in three context domains is presented in a more generic

view. Activities between a User Domain and a Physical World domain are captured

and extracted by sensors (scenario example: user points with the controller towards

the window). A Task Recognition process identifies the user goal (scenario example:

watch the weather forecast) and sends this to the device orchestrator located in the

device portal. The device orchestrator then creates a method to achieve the user goal

and feeds this plan to the OSGi framework. Finally, the OSGi framework sends

control messages to devices following the plan received by the orchestrator.

Device

Domain

User

Domain

Physical

World

Sensors
Context Extraction

Task Recognition

OSGi

Device
Orchestrator

Device Portal

Ioannis Barakos – MPhil Thesis

 21

2.1.4 Policy-based Device Management

Figure 2-2: Various home services and networks controlled by a rule engine

A set of pre-defined policies may be used to configure and control one or more

services in the home. Policies are rules that specify what action can be performed

when one or more conditions are satisfied. These types of systems use an Event

Condition Action (ECA) or event driven architecture and consist of three parts: the

event, the condition and the action part.

The event part specifies the signal that triggers the invocation of a specific rule. The

condition part is a logical test that if satisfied or evaluates to be true, it causes the

action to be carried out. Finally, the action part consists of invocations on the local

service or data. The next scenario demonstrates an ECA architecture running in a

home domain.

 A house is equipped with motion sensors in each room and door sensors. A “low-

energy consumption” policy would make each of the home’s lights to be turned on

only when a person is situated inside the room, only at specific times and when there

is no sunlight and the room is dark. In that case an event driven policy manager takes

context data (e.g. sensors’ data, time) (events), applies its rules (conditions), and

controls the services through the home’s gateway (action). An example of a rule that

Rules
Engine

Ioannis Barakos – MPhil Thesis

 22

instructs the lights of a room to turn on each time someone enters the room can be

considered as:

IF SENSOR_DOOR_1.isTriggered()==true and TIME.now()>17:00 and

TIME.now()<07:00

 THEN LIGHTS_ROOM_1.setOn()

Figure 2-3 shows the ECA architecture for the above scenario and its main

components.

Figure 2-3: User to service interaction using event driven actions (policy manager)

Context information (sensors, time, and location) triggers the event process. An event

process feeds the contextual data into the condition process that searches for

conditions (policies, rules) in a rules database. When a suitable policy that meets the

specified condition is found, the action part is triggered. The action process sends

control messages to devices and services based on the policy that triggered it and also

may trigger a new event and so on.

2.1.5 User Goal-based Planner Interaction Using Rul es and

Workflows

The device and service life-cycle in a home environment includes four phases:

installation: where someone configures the device for operation in the home network;

operation: the operation of the devices from its users; maintenance: the re-

Clock

Sensors

Event

Condition

Service/

Device

Service/

Device

Services/
Devices

Policies
(XML)

Action

Ioannis Barakos – MPhil Thesis

 23

configuration and updating of the device and finally, uninstallation: the removal of the

device from the home network.

The above four phases may seem complicated to people without technical and

electronics skills and experience. These can become much more complicated when

more networked and interoperable devices are installed in a house.

To solve this problem this scenario uses a planner that plans the above four phases

(installation, operation, maintenance and uninstallation) of each device based on what

the user wants to do (the user goal). A service workflow begins the process from

phase one when a new device is introduced into the home environment and is driven

by pre-defined rules and user events to configure the new device and any related

home devices (on demand).

For example, consider the multimedia installation described in the previous scenarios.

When a new video player (e.g. an internet enabled Blu-ray player) is turned on for the

first time in the home, the planner triggers a first phase’s workflow where the

configuration of the player takes place. Pre-defined rules and UPnP messages

configure the player. When extra configuration details are needed they are requested

from the user in easy to understand queries (e.g. shown on the television screen).

After the configuration phase is complete the planner triggers the next two workflows:

operation and maintenance workflows to work in parallel. Operation workflow puts a

device in stand-by mode until an event is received from a user or from another device.

Maintenance workflow is on stand-by as well until a miss-configuration or a device

malfunction event is received. Pre-defined rules in these workflows decide the actions

that the device should take.

2.2 Device and Service Use

Services in a home may be divided and distributed across high-resources devices and

low-resources devices. A clarification of the various features of the home devices that

are considered in this project is listed on the next table (Table 2-2).

Ioannis Barakos – MPhil Thesis

 24

Device Feature Characteristics

Simple/ Complex

service access

Device provides services that are simple or complex to

initiate and operate.

Mobility The device is situated inside the premises and is static (e.g.

desktop computer, TV set) or it is a mobile device (e.g.

PDA, laptop, wireless camera)

Open Access The device can execute both local processes and remote

processes

Shared resources and

services

The device has the ability to share a service with multiple

devices.

Networked The device has a network connection with the ICT home.

Local resource

capabilities

How powerful the device is in terms of CPU speed,

memory, network connection and storage.

Context-aware The device can be aware of the current context. Context-

aware devices fall in three sub-categories (section 2.4):

ICT context-aware devices

Physical context-aware devices

User context-aware devices

Table 2-2: Features of ICT home devices and their characteristics

Home devices typically embody services in fixed systems to support task-specific

functions and they have limited ICT resources. However, even these fixed system

devices can be part of a distributed home network if they at least support networking

and sharing their resources.

In a Service-Oriented Architecture (SOA), a service is organised and utilised by a

number of distributed components providing required capabilities. Thus, even the

lower-resources devices can be used in an SOA to support a service as long as there is

a way to interoperate and share their capabilities.

In a SOA, distributed applications are built by orchestrating or choreographing

reusable services using high-level workflows or business processes. The complexity

Ioannis Barakos – MPhil Thesis

 25

of developing and maintaining these processes is addressed by SOA development

cycles that identify the roles of participants at each stage.

2.2.1 Device Service Lifecycle

SOAs can facilitate the practical development of large-scale systems. Some of the s

limitations of SOAs are based on the use of a centralised design of their core services

that is more sensitive to errors and provides a single point of failure. For example, if

the component that is responsible for service discovery (service discovery component)

goes offline in the SOA network, then the discovery service will remain unavailable

until that component goes online again.

The life-cycle includes four phases: the Creation, Execution, Maintenance and

Dissolution of the service. Each of these phases contains a number of actions that

need to be taken in order for the phase to be completed. For example to successfully

complete the Creation phase a service must have mechanisms to propose, discover

and select other services and to successfully create an initial plan or workflow that

will enable the proposed and selected services to interact.

A typical service interaction life-cycle is summarised in Figure 2-4. Each life-cycles

phase includes a number of actions (e.g. 1.1 Service Proposal, 1.2 Service Discovery,

etc.) that is either part of a CCI or CHI interaction (CCI actions are highlighted).

2. EXECUTION 4. DISSOLUTION

3. MAINTENANCE

1. CREATION

1.1 Service Proposal
1.2. Service Discovery
1.3 Service Selection
1.4 Plan (WF), contract
Formation

2.1 Joint Action: execute &
orchestrated WF that
adheres to contract
(policies)

4.1 Close Contract
4.2 Remove advertisements
of service descriptions

3.1 Update Plans
3.2 Service Update
3.3 Service Management

Figure 2-4: Service Oriented Architecture model (CCI actions are highlighted)

Ioannis Barakos – MPhil Thesis

 26

2.3 Types of Interaction between Users, Devices and the

Physical World

Figure 2-5: Smart subsystems and components [2]

Home services act in open system environments. Home environments are considered

as smart environments as they are dynamic and complex: they are uncertain and non-

deterministic, are partially viewed or sensed by the services, are sequential and consist

of other intelligent components and services. A system’s smart and context-aware

environment can be categorised in three domains as described in the next section

(section 2.4): the physical environment (physical world environment), the device

operations (system environment) and the people’s actions (human environment).

Based on the above three environment domains there are five types of interaction in a

home environment: interaction between humans, interaction between a human and the

physical world, interaction between a human and home devices and services,

interaction between home devices and finally interaction between the physical world

and home devices. Table 2-3 lists these interaction models. Human to human

interaction (HHI) models are not the focus of this research project and will not be

described any more in this document.

Ioannis Barakos – MPhil Thesis

 27

Interaction Model Example
Human to Human (HHI) People socialise in the house, share

activities, communicate, etc.
Human to World (HWI) People interact with physical objects in

the house: move chair, open door. People
move, change their location.

Human to Device (HCI) People interact with devices: operate
devices, configure devices, install new
devices, etc.

Device to Device (CCI) Devices interact with each other, e.g., a
TV switches to a SCART input when a
DVD player turns on.

World to Device (WCI) Physical world triggers devices (sensors),
e.g., daylight triggers a light sensor to
turn the lights off, wind speed changes
triggers a weather sensor to measure wind
speed, etc.

Table 2-3: Different interaction models in the home environment

2.4 Device environments

Figure 2-6: Extended set of internal system properties and device environments [2]

Device interaction within each of the environment domains varies between devices

(Figure 2-6). There are devices designed to interact only with the human environment

and react only to simple control commands that a user applies while other smarter

devices execute services in each of the environment domains (e.g. support user

Ioannis Barakos – MPhil Thesis

 28

interaction, sense the physical world and exchange information with other services

simultaneously).

2.4.1 Physical Environment

The physical environment domain contains the context information of the physical

world. This information includes for example, the outside temperature, local time and

daylight intensity. Physical environments are not fully observed by devices and the

amount and type of the physical environment context constraint experienced depends

on the type and amount of sensors a device includes.

Devices that operate in this environment domain are aware of the physical

environmental changes on behalf of the user and may automatically adjust the system

to the context without the user being aware of it. Design issues in these devices

include people’s privacy (e.g. if the device may acquire the identification and position

of a user), how and what amount of physical environment information is acquired,

where the acquired context is being stored and what context information and to whom

it is distributed to.

2.4.2 ICT Environment

The system (ICT) environment domain contains the information that is extracted from

the devices and services registered in the home network (also called distributed

computer network domain). This information may include: device configuration data,

device capabilities, service outputs (e.g. video, sound) and sensor data exchange.

The variety of home devices makes the ICT environment more complex: it can be

non-deterministic as devices can enter and leave the environment and it is partly

observable. Design issues in devices interacting with the ICT environment include:

how the messages are exchanged between devices, how to adapt to system changes

and re-configurations, and how to identify and adapt to system failures.

This environment domain also depends on the physical environment domain, as some

factors of the physical environment can affect the ICT environment. For example,

Ioannis Barakos – MPhil Thesis

 29

really bad weather may affect the satellite video broadcasting received by a set-top

box.

2.4.3 Human Environment

The human environment domain holds the user context information. Examples

include: user identification, user activities, user interaction with a service and user

personal preferences (user profiles). Humans interact with both the physical

environment (they open the windows in a sunny day) and the system (ICT)

environment (they turn on the lights when it’s dark). They can provide personalised

information to the system environment to make the system adapt to their needs. They

may use the home services while they are away from home. Some design issues in

this environment domain include: Where and how the human preferences are

modelled and stored, which devices and what amount of human information a device

can extract and what methods and sensors can be used to extract human information

such as location and identification.

Ioannis Barakos – MPhil Thesis

 30

3 Literature Survey

Present day home environments include a range of digital and analogue devices

ranging from light switches to desktop computers, digital satellite set-top boxes and

various types of handheld mobile devices. Moreover, various input/output wireless

devices exist such as remote controls, wireless mice/keyboards, displays, printers,

projectors and accessories such as storage media and various types of cables. This

increased number of analogue and digital devices in the home and the variety of their

accessories generate a number of open questions listed in Table 3-1.

Open question Example
How devices can be utilized in
different combinations and to
what extent?

A device offering service A to be combined with
a device offering service B to produce a new
service C.

How to enable users to operate
home services based on their
habits, behaviours and (past)
experiences

A user does not want to receive telephone calls
from work while at home between 6:00pm to
9:00pm

How to acquire context
information from a home
environment or user

Types of sensors to installed in the house.
Location of where these sensors should be
installed. Filtering of data acquired from sensors.

How to generate user goals by
observing their daily in-home
activities, events and experiences
within a home environment (and
devices)

User enters home
User sits down
User relaxes
User usually takes a shower after work (past
experience)
Goals:
Warm up the house
Make bathroom ready for a shower

Table 3-1: Open questions generated by the variety of devices and accessories in home

environments.

This survey focuses on and is organised into three main topic areas. First, general

challenges of using increasing numbers of heterogeneous digital devices with a

greater ad hoc device interaction capability to support smart environment activities,

are discussed. Second, issues to do with how planned activities that can span multiple

autonomous and heterogeneous devices can be supported, are considered. Third, how

unplanned situated activities, related to context (change) determination can be

supported, is analysed. Finally, an analysis of this related work is given.

Ioannis Barakos – MPhil Thesis

 31

3.1 Visions for Pervasive Device Interaction

According to Weiser [1], work on ubiquitous computing began at Xerox Palo Alto

Research Center or PARC in 1987 when Bob Spraque, Richard Bruce and others

proposed developing wall-sized displays. Later in 1989 Olivetti Research labs and the

University of Cambridge developed the first context-aware computing application: the

Active Badge system [4].

In the late 1990s, Philips proposed the Ambient Intelligence project as a novel

paradigm for consumer electronics that are sensitive to, and responsive to, the

presence of people. Prototypes of Ambient Intelligence ranged from electronics that

could recognise voice and movement to digital displays within a bathroom mirror to

new “toys” that were designed to help children expand their creativity [2]. The Aura

project at Carnegie Mellon University [5] introduces the concept of a personal

information aura: an invisible part of computing and information services that persists

regardless of location and that spans wearable, hand-held, desktop and infrastructure

computers.

Giving everyday objects the ability to connect to a data network would have a range

of benefits: making it easier for homeowners to configure their lights and switches,

reducing the cost and complexity of building construction, assisting with home health

care. Many alternative standards currently compete to do just that - a situation

reminiscent of the early days prior to the Internet, when computers and networks

came in multiple incompatible types.

The Internet-0 (I0) project defines seven principles that extend the original notion of

internetworking to inter-device internetworking [6].These principles define

specifications and properties for designing and implementing internetworking

devices. Each connected device must include a number of tasks and processes to

produce one or multiple services in order to be useful for the smart space – device

services.

Several researchers have analysed the general research challenges in developing next

generation device services. Whereas, Harper et al. [7], and Abowd and Mynatt [8]

focus on the human environment characteristics, Edwards and Grinter focus on the

system characteristics [9].

Ioannis Barakos – MPhil Thesis

 32

Harper et al. [7] in a report called “Being Human: Human-Computer Interaction in

2020” reflects on how changes in smart devices will lead to major transformations in

the nature of human computer interaction. They have illustrated these transformations

using three cases studies: trafficking content across mobile devices; tracking versus

surveillance in families and augmented personal human memories.

The way that people use multiple services in the home implies four problems [10].

First, associating a user’s activities with a particular device is problematic for multiple

device users because many activities span multiple devices. Second, device use varies

with respect to users and their circumstances. Users assign different roles to devices

both by choice and by constraint. For example one person may use a PDA only to

receive and make phone calls while another person may take advantage of other

PDA’s capabilities such as web browsing, e-mail viewing, audio and video playback,

etc. Third, users want to separate activities across work, leisure and personal devices,

but this is not easy to do in practice because it is difficult to categorise activities into

work and leisure types. A user for example may wish to see a combined work and

private calendar at work in order to better integrate work and leisure activities and

may wish to share their work but not their leisure activities. Finally, users employ a

variety of techniques for accessing information across multiple devices. This may

also be interpreted as users requiring access to information anywhere, anytime.

Activities in home use resources that span multiple devices, rather than just using one

device for a particular task and they may even request information from resources

located outside of the home environment. For example a weather forecasting action

may require information from a web server on the Internet. These properties and the

associated design principles are summarised in Table 3-2.

Ioannis Barakos – MPhil Thesis

 33

Activity Property Design Implications

Activities span multiple
devices

Device interoperability

Device use varies by
user and circumstance

Configurable, context-aware system behaviours,
personalised system configuration

Separation of activities
across devices

Context-bounded system behaviours

Access to activities via
multiple devices

Device interoperability

Table 3-2: Summary of the activity properties from [10] and the design implications

In the Classroom 2000 project [8], Abowd and Mynatt expounded several design

challenges and principles for everyday computing to support more informal, daily,

activities. These are summarised in Table 3-3.

Activity Property Design Implications

Some user activities
rarely have a clear
beginning or end

Provide persistence, visibility of the current state, support
multiple levels of activeness; support context-driven or
situated actions.

Interruptions are to be
expected

Interaction can be modelled as a plan that may be
suspended at any time and be resumed at a later time
Model unplanned or context- or situated action- driven
actions which interrupt and resume plans.
Make users aware of uncompleted processes;
inconsistencies may arise as device states may change.

Multiple activities
operate concurrently

Support for context-shifting amongst multiple activities is
needed; support background awareness; interfaces should
support multiple levels of “intrusiveness” in conveying
monitoring information that matches the relative urgency
and importance of events

Activities can be filtered
and adapted to the
contexts.

Contexts such as time are rarely represented in computer
interfaces and available to interlink to activities. Generic,
e.g., time, location, and specific contexts, e.g., outcome or
rating of a past similar activity, need to be supported,

Activities may interlink
with other activities and
devices

Associative knowledge-based models of information are
needed that support information reuse on multiple
occasions, from multiple perspectives

Table 3-3: Summarises the activity properties from Abowd and Mynatt [8] and their design

implications

Ioannis Barakos – MPhil Thesis

 34

Device interoperability challenges are summarised by Edwards and Grinter in [9] as

Unintelligible interaction, No
top to bottom holistic design,
piecemeal adoption of devices

Use mediating devices as universal portals, brokers, or
local controllers to simplify access or to orchestrate the
use of multiple services

Impromptu Interoperability,
multi-vendor devices added
piecemeal but fluid operation
still expected

Detect and Manage situated or context-driven actions
Use policies to constrain the interoperability

Inference in the presence of
ambiguity of context

Use of multiple sensor sources to reduce ambiguity;
Balance full system adaptation versus some user
control of

No System Administrator:
lack of ability or interest by
users in home ICT

Six different design models for user centred
management have been proposed [2].

Nature of user activities given
in [7] and [8].

Store state of instances of processes of operation of
multiple devices;

New social norms created,
more open and interlinked
access, privacy control of
more vulnerable groups

Support both individual private operation and closed
public operation

Reliability: current appliances
& embedded ASOS systems
are more reliable & available
than MTOS systems

Designs based upon planning can replan to handle
failures. Policies can be used to constrain interactions
to prevent problems arising.

Table 3-4: Edwards and Grinter [9] device interoperability challenges

In addition to device interoperability and service control through a home gateway

(OSGi), the ability to detect changes in the physical status of things is also essential

for recording changes in the environment. In this regard, sensors play a pivotal role in

bridging the gap between the physical and virtual worlds, and enable things to

respond to changes in their physical environment. Sensors collect data from their

environment, generating information and raising awareness about context. For

example, sensors in an electronic jacket can collect information about changes in

external temperature and the parameters of the jacket can be adjusted accordingly to

insulate more or ventilate more.

Embedded intelligence in things themselves will distribute processing power to the

edges of the network, offering greater possibilities for data processing and increasing

the resilience of the network. This will also empower things and devices at the edges

of the network to take independent decisions.

Ioannis Barakos – MPhil Thesis

 35

The Internet of Things [6] will draw on the functionality offered by all of these

technologies to realize the vision of a fully interactive, responsive and ubiquitous

network environment.

3.2 Device Interoperability and Device Gateways

Supporting activities that span multiple devices introduce two problems: how the

devices are connected and how the devices transfer information between them. Schilit

[22][23] surveys the technologies, standards and research into device ensemble.

Device interoperability applies to many system levels that can be divided into four

layers:

• Link layer: to enable for example low-power, short range communication

• Network layer; to find the best route of information between connected

devices

• Data layer: to support sharing and synchronisation of information (photos,

emails, music)

• Application layer: to support applications that span multiple devices where

one device may act as an input of information where another one may act as

output.

3.2.1 OSGi

Several standards and protocols have been introduced to manage multiple home

devices and appliances. Traditionally, a Residential Gateway in a home network

ensures that all devices and appliances can be connected to the Internet, while

possibly sharing a single address in the Internet Protocol address space. But a

Residential Gateway can be used for more than just routing and address translation: it

can be used as a service execution platform, enabling service providers to manage

their services dynamically within the home network. It can also be used to provide IP

based services to non-IP devices such as IEEE 1394-enabled consumer electronics.

An open standards organisation, the Open Services Gateway initiative or the OSGi

Alliance is an innovative system that has been proposed to enable device inter-

Ioannis Barakos – MPhil Thesis

 36

connection and control in ICT home networks. OSGi specifies a Java service platform

framework that defines an application life cycle model and a service registry [24].

This framework defines a number of OSGi services including: configuration and

preferences management, logging, http services, UPnP explorer, application tracking,

power and device management, ubiquitous security, IO Connector Service and

diagnostic services of the connected devices. Components and applications in the

OSGi framework can be installed, uninstalled, started, stopped and updated remotely

without requiring reboot. New services and device components are detected

automatically by the OSGi service platform.

Figure 3-1: The OSGi layer specification

The following table lists a set of principles to guide the development of the OSGi

specifications and frameworks [16].

Ioannis Barakos – MPhil Thesis

 37

OSGi Principle Description

Platform Independence The OSGi software environment can be implemented on
many platforms, with widely varying capabilities

Application
Independence

OSGi provides a horizontal platform that is applicable in
any computing environment where the capabilities of the
software environment are useful

Multiple Service
Support

OSGi environments are capable of hosting multiple
applications from different service providers on a single
service platform

Service Collaboration
Support

The OSGi environment allows services to be deployed that
provide functionality to other services. Applications can
dynamically discover these services and adapt their
behaviour to the configuration of the environment and
other services that are present

Security An OSGi environment can concurrently support many
services from different service providers. Security between
these services is of paramount importance

Multiple Network
Technology Support

OSGi cannot mandate particular choices of network and it
is network agnostic, as far as is reasonably practical

Simplicity The OSGi environment offers a service environment
where the complexity of managing the service
environment can be placed into the hands of professionals
in the form of the gateway operator. This does not,
however, preclude individuals from configuring their own
gateway as appropriate.

Table 3-5 OSGi specification design principles

3.2.2 Web Services (WS)

Web Services are Application Programming Interfaces (APIs) that are accessed via

the Hypertext Transfer Protocol (HTTP). W3C [34] defines web services as software

systems designed to support interoperable machine-to-machine interaction over a

network. A web service has an interface described in a machine-processable format

called Web Services Description Language (WSDL) [35]. WSDL is used to describe

services in terms of actions, input data, output data and service processes. Other

systems interact with the web service using the Simple Object Access Protocol

(SOAP) [36] which is a lightweight XML-based transport independent protocol for

exchanging structured information between peers in a distributed environment.

Ioannis Barakos – MPhil Thesis

 38

Figure 3-2: Message exchange in Web Service architecture

3.2.3 UPnP

The Universal Plug and Play protocol (UPnP) is another promising technology to

allow device control in home networks. It is based on the SOAP protocol and offers

pervasive peer-to-peer network connectivity of computers, home appliances and

wireless devices. UPnP can be supported on essentially any operating system and in

any type of network technology wired or wireless.

3.3 Universal Device Portal

The increasing number of home appliances, including televisions, video players

(DVD, Blu-ray players, etc.), light switches and sensors are examples of more

computerised devices that offer more services. This makes these devices more

complex with complex remote controls that make their interfaces harder to use [38].

Universal portal systems have been introduced in the market during the last few years

and their purpose is to make the management of a device or the combination of two or

more devices simpler. In such a system, devices use a portal to connect to and to be

managed by the portal’s interface that is simpler. The aim of these portals is to enable

heterogeneous applications on heterogeneous hardware devices to communicate with

each other within a common defined hardware and software environment.

The Multimedia Home Platform (MHP) [39] is an example of a portal application that

receives digital broadcast video, audio streams and the Internet, offering a common

Ioannis Barakos – MPhil Thesis

 39

API that is accessible for other applications, television, set-top boxes and any

combination of these.

3.3.1.1 Local Sensing and Control

The complexity of device functions and interfaces make researchers focus not only on

building universal portal systems but also on building universal remote controls that

offer virtual portal capabilities and LCD screens displaying dynamic interfaces based

on user profiles to improve existing device interfaces.

The Personal Universal Controller (PUC) [41] is a remote control device for

improving the interfaces to complex appliances. A PUC remotely connects to

everyday appliances using a two-way communication and an interface generator that

generates graphical and speech interfaces. Hodes, et. al. have designed a similar

project to PUC called Universal Interactor [42], while the XWeb project creates

dynamic interfaces to devices by defining an XML language[43]. Other later

approaches include the iCrafter [44] and Roadie [45] with the latter offering goal-

oriented interfaces using planning and common-sense reasoning.

3.4 Supporting Planned Activities Spanning Multiple Devices

Observing human activities, determining what data to use and where to acquire this

data to support a context-aware application is challenging. This difficulty increases

when these activities are not centred on a single device but they span multiple

independent devices [11].

The ACHE system2 designed by Mozer [12] describes a house that learns patterns in

its occupants’ behaviours and automatically controls some basic house appliances and

devices. ACHE monitors the environment, observes the occupants’ actions (e.g.

adjusting thermostats, turning on a particular configuration of lights) and attempts to

infer patterns in the environment that predict these actions.

2 ACHE stands for Adaptive Control of Home Environments

Ioannis Barakos – MPhil Thesis

 40

Cohen et al. in [13] describes a multi agent system that uses multimodal collaborative

interface technology to facilitate human interaction with a pre-existing distributed

simulator. Cohen’s system uses a novel interface that allows users to employ speech

and gestures commands simultaneously while a multimodal interpreter is used to

engage a distributed agent framework based on the Open Agent Architecture [14] that

tries to execute the recognised commands by accessing a number of devices.

A system that supports collaboration of activities is described in [15]. Their system

uses a dialogue model that is able to manage conversations about multiple tasks and

collaborative activities and builds a multi-modal conversational interface to the

devices.

3.5 Context-aware Devices

In a context aware design, applications must be aware of the existence and the

characteristics of user’s activities and the rest of the networked system operation

(system’s activities). For context aware applications to function according to its users’

expectations, they must consider all the relevant entities that enable them to adapt

their behaviour based on the current conditions and situation. These relevant entities

are commonly referred to as context and contain the user situation and activities,

service situation and state, physical environment information and other relevant

information such as available equipment, system configuration and service

capabilities.

The first context aware systems were developed in the beginning of the 90s and were

led by the desire to use computer systems ubiquitously in a variety of physical

environments. The Active Badge project [4] developed by the Olivetti Research Lab

was one of the first attempts to adapt applications to people regarding their locations

in a building. In the Active Badge location system people carry a small device with

them known as Active Badges that emit a unique code for approximately a tenth of a

second every 15 seconds. These signals are picked up by a network of sensors that are

placed in the host building’s rooms and corridors. The sensors’ data is processed by a

master station also connected to the network that polls the data and makes it available

applications and clients.

Other context aware systems were developed later that tried to determine the location

of an individual using the context related user location information. These systems

Ioannis Barakos – MPhil Thesis

 41

include global positioning systems (GPS) that use location information from satellites

and distributed systems that use location information available from underlying

communication infrastructures such as GSM and Wi-Fi. In ubiquitous computing,

context aware systems must consider a context that is more than a location in order to

provide information and services to the user relevant to the user activities, tasks and

goals. A special case of a context aware application for example is the Follow-me

application [46]. The user interfaces of these applications can follow the user as they

move using the equipment and resources (e.g. network resources) available as the user

moves out of his office. In the Follow-me application framework the context not only

provides user location but also equipment location and capabilities.

Systems can discover and take advantage of a situation or context such as: location,

time and user activity. Context holds a huge amount of information to be addressed as

a whole thus we divide the context into 3 main categories or domains based on the

information it contains (Table 3-6). These are: the user context domain, the system

context domain and the physical environment context domain.

Ioannis Barakos – MPhil Thesis

 42

Context Domain Context Information Examples

User Context User identification

User location

User action/situation

User tasks

Social activity

User id is George

User is at point X,Y

User is walking/sleeping

User has an appointment
with the doctor at 10:00am

George is watching the
television with Michael

System or ICT Context Device location

Device properties

Device status

DVD player is in living
room
MP3 player is on user
George
Laptop is in Wi-Fi range

PDA has a X by Y screen

Set top box is in sleeping
mode
Awareness of QoS when
transmitting messages

Physical Environment
Context

Environment constraints

Date/Time

Inside temperature
Outside temperature
Air quality
Light intensity

18th of September, 2008

Table 3-6: Description of the three context domains

3.5.1 User Context-awareness

The user context domain contains context data such as the user location, user

identification, user activities and tasks. With advances in sensors technology user

location and identification can be obtained by sensors placed inside buildings (e.g.

Active Badges [4] and RFID receivers [47]), while user activities can be obtained by

sensors that are located on the user such as accelerometer sensors (wearable

computing).

Ioannis Barakos – MPhil Thesis

 43

3.5.1.1 User Location and Identification awareness

Harter et al. [48] describe a context aware design for a sensor-driven platform that

collects environmental data and exports the data in a form suitable for context-aware

applications. Harter’s biggest design challenge is to get the user location. Global

Positioning Systems (GPS) is not suitable for use inside buildings while

electromagnetic methods suffer interference from other devices. Optical systems such

as face recognition systems require expensive image processors and detectors and

may not work effectively in environments containing many objects and much

furniture. To address this challenge they designed BAT, a sensor-driven system that

uses ultrasonic techniques to detect the location of the user. In the BAT system,

objects and people inside the system’s environment are tagged by small wireless

transmitters. Each of these transmitters known as bats has a unique ID associated with

it and consists of a radio transceiver, controlling logic and an ultrasound transducer.

Receivers consist of an ultrasound receiver and a serial port interface. They are placed

at known places on the ceiling of the rooms and are connected together by a serial

wired network to form a matrix. The BAT system consists of a number of mobile and

fixed bats (wireless transmitters), a matrix of receiver elements, a central RF base

station and a computer that does all the data analysis for tracking the transmitters. The

RF base station initiates the process by resetting the ultrasound receivers via the wired

network. Then it periodically broadcasts a radio message containing a single identifier

addressed to each of the bats (transmitters) in turn. When the corresponding bat

receives the broadcasted message, emits a short non-encoded pulse of ultrasound. The

ultrasound receivers hear the incoming ultrasound and record the time of arrival of

each signal from the bat. Finally, the bat-to-receiver distance can be calculated by

using the speed of sound and the times-of-flight of each ultrasound pulse transmitted

by the bats to three or more receivers (multilateration3).

An extension of the BAT system is described in [49] that uses context not only for

location awareness but for orientation or state awareness as well. The ORL system

requires three or more transmitters to be attached to an object or a person and uses the

same ultrasound technique used in the BAT system. The orientation calculation is

3 When the distance from a transmitter to three or more receivers is known, its position in 3D space can

be found using the process of multilateration which is an extension of trilateration.

Ioannis Barakos – MPhil Thesis

 44

made by calculating the distance of each of the transmitters placed on the object’s

body. When the points of the transmitters are known, the orientation of a known

object can be determined in 3D space.

The BAT and ORL systems use the ultrasound to measure distances and extract

location information from the context. Other systems have been proposed to enable

location awareness using Wi-Fi values to estimate location. These fall in two

categories. In the first category, are systems that use a deterministic method and in

the second category are systems that use a probabilistic approach.

The RADAR (Radio Detection And Ranging) system [50] follows a deterministic

approach and implements a location service utilising the information collected from

an already existing Wi-Fi infrastructure. It uses signal strength information that is

collected from multiple receivers to calculate the distance between the transmitter and

each receiver. Then these distances are used to triangulate the user’s location. A

probabilistic method applying the Bayesian sampling approach is described in [51]. It

uses multiple probabilistic models and histograms to find the probabilities over

locations calculated from RSSI values. RSSI (Received Signal Strength Indication)

values are provided by most wireless Wi-Fi interface cards.

Other user location and identification awareness approaches include:

• Cricket [52], a low-cost decentralised location awareness system that uses RF

signals to determine user location.

• Smart Floor [53] where users are identified based on their footstep force

profiles. It uses a biometric user identification system collecting information

from floor tiles that are fitted with force measuring sensors. The biometric

identification system is based on the uniqueness of each person’s footstep (e.g.

every human walks in a different way).

• The GETA Sandals [54] project, like Smart Floor, identifies the user based on

his footstep. RFID tags and accelerometer sensors are attached on sandals and

transmit their data to a central computer that extract footstep biometric

information based on the accelerometer values.

Ioannis Barakos – MPhil Thesis

 45

3.5.1.2 User Task Modelling

User task models specify the tasks that someone performs using an application and

how they relate to each other. They capture a user’s task and system’s behaviour with

respect to the task-set to identify what the user does or wants to do and why. User task

modelling can be used to enable user interfaces to be adapted to users’ own ways of

working.

Gaffar, et. al. in [55] attempt to build, link and instantiate generic task models by

using task patterns. They propose an XML Schema for the specification of task

patterns and a mark-up language called Task Pattern Markup Language (TPML) in

order to model task patterns into a re-usable manner for HCI frameworks.

Another attempt to generate concrete user interfaces is the KnowiXML [56] project. It

is a knowledge based system that models user tasks by applying design rules to

abstract models. KnowiXML uses UsiXML4 [57] to store the user task models and

allow them to be reused by user interfaces.

The creation of various task models and the process of linking them to each other is a

tedious, time-consuming activity. Current model-based frameworks lack the

flexibility of reusing already modelled solutions, while very few approaches offer a

simple form of copy-paste reuse. Gaffar’s TPML presents a more disciplined

approach for modelling patterns to supplement current model-based approaches by

facilitating the construction and transformations of models as well as formatting them

to encourage reuse. On the other hand, KnowiXML approach defines an interactive

model that is easy to learn and (re)use model tasks for helping users in performing

their daily tasks. However, the KnowiXML’s knowledge acquisition process is

performed semi-automatically (information is gathered by HCI designers and experts)

resulting in a difficult and time-consuming process.

4 A user interface markup language (UIML)

Ioannis Barakos – MPhil Thesis

 46

3.5.1.3 User Activity Recognition

User activity is another property that can be extracted from the user domain of the

context. The challenge in user activity recognition is to identify what activities are

undertaken and who is involved.

The Wearable Sensor Badge & Sensor Jacket project [58] proposes an activity

recognition system using two types of sensors: accelerometer and knitted stretched

sensors. Two accelerometer sensors, one horizontal and one vertical are placed on a

belt (Sensor Badge). These sensors can reflect the g-force and the direction of the

user’s current state when a user wears the belt. Knitted stretched sensors are fitted on

a wearable jacket to detect the postures and movements of the user. Seon-Woo Lee et

al. in [59] and [60] extended the above user activity recognition techniques by

proposing the recognition of walking behaviour through counting steps.

Figure 3-3: Sensor Badge orientation during different user positions (standing, sitting, lying)

Ling Bao et al. [61]argue that with only two sensors, a system is not able to capture

user activities. They proposed a system consisting of five biaxial accelerometers

worn simultaneously on different parts of a user’s body. The results of their research

suggest that their sensor model can achieve recognition rates for some activities of

over 80% for 20 every day activities (such as walking, running, sitting, climbing

stairs) and the user does not have to train the system. Nicky Kern et al. [62] and

Kristof Van Laerhoven et al. [64] suggest that a user activity recognition system

should include between 12 and 32 3D acceleration sensors attached on the user in

order to model the user activity.

Ioannis Barakos – MPhil Thesis

 47

3.5.2 Physical Environment Context-awareness

Context Aware applications must extract, interpret and use context information and

adapt its functionality to the current context. The challenge for such

applications/systems lies in the complexity of capturing, representing, managing

(e.g., storing and retrieving huge volumes of context information efficiently) and

processing contextual data [65], [66].

3.6 Multi-Device Orchestration

Home devices are distributed in the home network as nodes that are able to join or

leave at any time at any place in the network. Thus the home network is a Distributed

Transient Network or DTN that has the following properties:

• Decentralised network architecture

• Heterogeneity of network node resources

• Self-managing/healing network

• Node discovery

Two well-known distributed transient networks are ad-hoc and the Peer-to-Peer (P2P)

computer networks. A P2P network does not include clients or servers but

every node in the network is an equal peer node that simultaneously acts as

both client and server to the other peer nodes on the network. An example of a

Peer-to-Peer network is any file sharing network such as BitTorrent, Gnutella

and Kazza, while a non-P2P network is for example a FTP network between a

FTP server and FTP clients.

An ad-hoc network usually is associated with mobile and wireless devices. The

connections in that network are established only for the duration of one session and

require no central server. Service discovery is implemented in devices so they can

discover others within range to form a network with those devices. For example an

ad-hoc network can consist of a network of different mobile phones and PDAs that

use Bluetooth or Wi-Fi to discover each other and to communicate.

Service Oriented Architectures (SOAs) [17] and their characteristics provide social

organisation models such as multi-agent systems (MAS) with the aim to better build

Ioannis Barakos – MPhil Thesis

 48

on conventional information technology and do so in a standardized manner so that

tools can facilitate the practical development of large-scale systems. Some of the

service oriented computing limitations are due to the centralised design of their core

services. They provide a single point of failure. For example, if the component that is

responsible to discover services (service discovery component) goes offline in the

SOA network, then the discovery service will remain unavailable until that

component goes online again. A typical life-cycle of a SOA is summarised in Figure

3-4.

2. EXECUTION 4. DISSOLUTION

3. MAINTENANCE

1. CREATION

1.1 Service Proposal
1.2. Service Discovery
1.3 Service Selection
1.4 Plan (WF), contract
Formation

2.1 Joint Action: execute &
orchestrated WF that
adheres to contract
(policies)

4.1 Close Contract
4.2 Remove advertisements
of service descriptions

3.1 Update Plans
3.2 Service Update
3.3 Service Management

Figure 3-4: Service Oriented Architecture Life Cycle model

In a Service-Oriented Architecture, distributed applications are built by orchestrating

or choreographing reusable services using high-level workflows or business

processes. The complexity of developing and maintaining these processes is

addressed by SOA development cycles that identify the roles of participants at each

stage.

In ICT home networks, orchestration models include the types of workflow that

contain a centralised control system, where a central station manages and defines or

updates (in dynamic workflows) the processes of the surrounding devices. Elting et al.

[18] and Kray et al. [19] propose an architecture for orchestrating multi-device

networks which generates Synchronized Multimedia Integration Language (SMIL)

[20] presentations for multi-display environments.

Ioannis Barakos – MPhil Thesis

 49

In Choreography workflow models, each device includes its own workflow

management system. Languages such as the Web services Choreography Description

Language (WS-CDL) defined by W3C [21] aims to strictly define observable

interactions between services from a global point of view.

3.6.1 Planning

Planning is arguably one of the most important capabilities for an intelligent system to

possess. In almost all cases, the tasks which these systems must carry out are

expressed as goals to be achieved. Goal-based intelligent agents of these systems must

then develop a series of actions designed to achieve this goal.

The ability to plan is closely linked to the agent's representation of the world.

Effective planning requires that knowledge of the world is available to the planner

agent. Typically, this knowledge contains information about possible actions in the

world, which is then used by the planner in constructing a sequence of actions.

Gat's ATLANTIS planner [25] is used for task planning and navigation. The design of

the ATLANTIS architecture was based on the observation that there are differing

levels of activity in the environment. These levels require different mechanisms for

dealing with them, depending on what is important at what level. At some levels,

planning might be important, and at others, a quick reaction time. Its architecture is an

instance of a layered architecture. There are three main layers: control, sequencing,

and deliberation. The planning is done at the deliberation layer by using a symbolic

world model; however the planning algorithm used is unclear.

Theo’s [26] architecture uses a global world representation and a search based

planner. It stores all of its data into a frame-based system that gives the ability to store

a large knowledge base and to access this knowledge efficiently. The frame-based

nature of this planner allows it to be tested with different planning algorithms (e.g.

STRIPS, linear planner).

In the SOAR [27] architecture, a problem solving process attempts to find a set of

operators that lead from a given state to a goal state. This set of operators can be

considered as a plan to move the intelligent agent from the initial state to the goal

state. If SOAR reaches a conflict or a state where it does not know the next operator,

Ioannis Barakos – MPhil Thesis

 50

it forms a sub-goal to choose the next operator. Within this sub-goal it can perform a

look-ahead search, simulating the effect of different operators on the current state, in

order to determine which operator to apply next.

In goal-oriented management systems, policies are used to constrain how tasks can be

partially ordered to lead to a goal-state. Lieberman et al. in [28] approach this

challenge by introducing Roadie, a user interface agent that provides intelligent

context-sensitive help and assistance for consumer devices. Roadie’s main objectives

are to provide its user with proactive advice, automate complex tasks and provide

debugging help when something goes wrong. To address these objectives, Roadie

combines two AI techniques: the Openmind Commonsense knowledge base [29] and

a planner. Roadie uses the knowledge queried from the ConceptNet knowledge base

to understand a user’s actions and goals. Then these actions are mapped into Roadie’s

planner recogniser called EventNet and sent to planner. The role of planner is to

create a set of actions needed to configure or manipulate a specific device satisfying

the user’s goals, while EventNet presents this set of actions to the user and maps

device configuration actions into a format that the device can understand. Roadie’s

planner is based on the standard Graphplan planning structures [30].

The Graphplan planning approach applies to STRIPS-like domains including a

planner that tries to create a shortest possible partial-order plan and if cannot manage

it states that a valid plan does not exist. STRIPS [31], [32] is a planner but it also uses

a formal language to describe the inputs to this planner and its states: “the initial

state”, “the goal state” and “operators”.

Elting et al. in [33] and Andre et al. in [37] propose two different planners that

produce interactive presentations and user interfaces on the basis of an abstract system

goal. Using the Open Agent Architecture their systems start from this abstract goal

and generate a user interface presentation in real-time using animated presentation

agents and speech synthesis.

3.6.2 Rule-based and Policy-based Management of Dev ices

Policy-based management is needed to constrain the combinations and operation of

multiple devices.

Ioannis Barakos – MPhil Thesis

 51

In a policy-based system, policies or rules are defined to govern or constrain the

behaviour of a system. Policies are executed using a policy engine that analyses

trigger events to examine if guard conditions cause further actions to be triggered and

to deal with policy prioritisation and conflict when several policies apply. In a

reactive policy-based system, policies are triggered solely by incoming trigger events.

3.7 Discussion

In this chapter, research projects have been surveyed that support pervasive device

interaction (section 3.1), device interoperability and gateways (section 3.2), device

portals (section 3.3), planned activities that span multiple devices (section 3.4),

context driven activities (section 3.5) and finally multi-device orchestration (section

3.6).

The general issues have already been analysed in the previous sections. The focus of

this section is to justify which solutions are the best to use in designing the proposed

framework for this research project.

3.7.1 Message exchange between Services (OSGi/ Web Services)

When devices interoperate for executing a process in combination to provide a

common goal, messages should be transferred between the interoperated devices. The

two standards for message exchange between different hosts (devices) often used are

OSGi RMI/RPC (Remote Method Invocation / Remote Procedure Calls) and Web-

Service SOAP/WSDL (Simple Object Application Protocol / Web Service

Specification Language).

On top of the OSGi framework, the OSGi Alliance has specified many services. They

are specified by a Java interface. OSGi bundles implement this interface and register

the service with the Service Registry. Clients of the service can find it in the registry,

or react to it when it appears or disappears. OSGi uses the Java RMI API to

implement RPCs. Java RMI allows an object running in one Java virtual machine to

invoke methods on an object running in another Java virtual machine.

This process is similar to the service oriented architecture used by Web services. The

main difference between Web services and OSGi framework is that Web services

often use the SOAP messages in a WSDL format (including header elements for

Ioannis Barakos – MPhil Thesis

 52

transport information and body elements for the actual data to be transferred), which

makes it thousands of times slower than OSGi-RMI services that use method

invocation. Also, OSGi components can directly react on the appearance and

disappearance of services.

Davis and Parashar in [39] evaluate the latency performance between SOAP over

HTTP and compare these results with the performance of Java RMI. Their results

show that Java RMI is much faster than SOAP protocols (Table 3-7).

Table 3-7 SOAP – RMI Evaluation - GetIntegers() use between a client and server

Considering the above advantages of OSGi over Web Services, OSGi is preferred as

the gateway to access home services in conjunction with the UPnP standard that

supports service discovery and selection.

3.7.2 Planned Activities that Span Multiple Devices

Planning activities that span multiple devices require fulfilling two objectives: the

planning of user activities and multiple device interoperability.

The ACHE and Cohen’s systems attempt to understand user activities regarding their

interaction with various home appliances (e.g. adjusting thermostats, turn on devices)

while monitoring the physical environment changes. These systems only sense the

user activity using interfaces although Cohen’s system allows users to interact with

Ioannis Barakos – MPhil Thesis

 53

speech and gesture commands. It is also unclear if these systems manage more than

one device simultaneously in order to allow device interoperability.

In order to achieve multi device interoperability, a method should exist that will direct

the operations of the devices.

Managing multiple devices in an ICT home includes two different management

architecture types: centralised management architecture (orchestration) and de-

centralised management architecture (choreography). Considering that in a home

there are a number of mobile devices that enter or exit the home’s network boundaries

and also there are devices with limited capabilities, a de-centralised architecture for

device management seems to have disadvantages over a centralised architecture.

OSGi and UPnP frameworks surveyed in this thesis, show that they are the state-of-

the-art technologies for device interoperability and management of services in the

home:

• OSGi allows multi device configuration, synchronising and control.

• OSGi uses Java RMI to invoke RPC processes which is faster than other RPC

frameworks.

• UPnP enables devices that enter the home networks boundaries to be

discovered and their settings and capabilities to be quoted.

However, OSGi and UPnP do not solve the problem of multi device interaction as

there are devices that are not compatible with these two frameworks. UPnP may

include device capabilities and settings but this is limited. It is not “open”. It has been

written by the manufacturer at design time and cannot be changed by the user. It does

not contain user profiles (user personalised information to adapt that device.

ATLANTIS, Theo and SOAR surveyed in this chapter are planning architectures that

use different planner to lead activities from a given state to a goal state. ATLANTIS

uses a symbolic representation of it environment, while Theo attempts to plan its

actions using a global world representation. SOAR requires a global knowledge of the

world is available to the planner and it limits its use in the home since most ICT

homes are reasonably complex environments.

Among the other planning models and planner projects surveyed, Roadie was

designed to assist user interaction with home devices and appliances. Although

Ioannis Barakos – MPhil Thesis

 54

Roadie provides context-sensitive device management, it does not sense the home

environment (context) and user activities. It requires its users to input any preferred

action (goal) and it provides them with proactive advice.

3.7.3 Context-Driven Activities

There are various solutions available today for user or object tracking and location

discovery. These include active or passive electromagnetic trackers, optical trackers,

ultrasound trackers and RF trilateration algorithms. In the systems surveyed, the BAT

and Active Badge systems are centralised architectures while Cricket is decentralised.

These systems use RF and ultrasound techniques to find user location but may

introduce privacy concerns.

Active or passive electromagnetic and optical trackers are expensive and their

performance is affected by the presence of metallic or magnetic obstacles in the

environment. Wi-Fi signal strength techniques may not be very accurate because of

obstacles and interference from other networks and devices. Ultrasound tracking

techniques proposed in the BAT project are immune to obstacles and network

interference but require the use of special equipment such as ultrasound transmitters

and receivers. Furthermore, ultrasound tracking techniques require the

synchronisation of the transmitters and receivers and it makes this technique more

complex. The Smart Floor project uses an expensive infrastructure because it requires

custom made floors and floor tiles. User identification requires users to wear an ID

track sensors such as RFID. Location tracking can be performed by comparing Wi-Fi

signal strengths.

The main problem with wireless (Wi-Fi) location detection is mainly attenuation,

change of environments and different radio strengths used by manufacturers.

There are ways to find people’s location, state (actions) and identification (e.g. who is

the person sitting on the sofa) but how can this information be used? How can the

goals of the user that performs the actions be predicted?

Key challenges in modelling the user context are:

• User context may be incorrectly or incompletely determined. For example, a

user location system may provide inaccurate data to exactly locate the user.

Ioannis Barakos – MPhil Thesis

 55

• Difficulty to determine the user location indoors. Traditional GPS techniques

do not work inside buildings. Other techniques such as location detection

based on imaging (face recognition) are expensive and need high computer

resources.

Ioannis Barakos – MPhil Thesis

 56

4 Framework

This section specifies a framework to support the execution of planned user tasks and

unplanned user tasks situated in a smart home environment. Two main models of

systems are designed: a general life-cycle operational model for creating and

maintaining services (Section 4.3, 4.4) and service oriented architecture whose service

components will support planned tasks and unplanned tasks (Section 4.5, 4.6, 4.7).

4.1 Iterative System Development

The service oriented architecture model has been constructed in phases. The four

main phases of system development to-date are as follows.

System 1: user device portal that supports dynamic device discovery and

orchestration. The system communicates with devices using the OSGI model (Section

4.4.1)

System 2: adds support for an OSGi gateway, to interface to devices, and supports a

planner system, to execute tasks that span multiple devices (Section 4.4.2).

System 3: adds support for context-based awareness and simple context-based task

initiation (Section 4.6).

System 4: a framework to support a complete SOA lifecycle model. It orchestrates the

lifecycle of services using policies and workflows (Section 4.7).

Ioannis Barakos – MPhil Thesis

 57

4.2 Service Architecture Overview

Figure 4-1: Generic System Architecture

The system architecture is shown in Figure 4-1. The main parts of this model are the

five layers used between the input content and the Knowledge Base that act as the

middleware. The four bottom layers are part of the CCI. At the bottom the Messaging

layer allows information sharing and exchange between services. Above it, the

Discovery layer searches, finds and registers any new services found in the

environment. The Mediator layer enables service and content interaction. The

Management layer at the top manages the other layers using predefined rules and

policies. At the top of the CCI layers there is the CHI layer which acquires knowledge

from user activities and context. Policies, Plans and Directory Services interact only

with the CCI layers. A vertical layer called the device, services and content

component represents the application specific versions of these that are interfaced to

the system using device gateways such as an OGSi device gateway.

D
ev

ic
es

, S
er

vi
ce

s
&

C

on
te

nt
 a

cc
es

s

Messaging

Discovery

Mediator

Management

CCI

CHI

Knowledge Base

Policies

Plans

DS

Activities

Context

Physical
World

Device Portal

Location
Tracking

Activity
Recognition

Physical World
awareness

Situated Actions Planning

Ioannis Barakos – MPhil Thesis

 58

4.3 Core system

4.3.1 OSGi Gateway

The home environment to OSGi gateway relation is shown in Figure 4-2. It is clearly

shown that OSGi can read from every domain in the home environment (Users,

Devices, and Physical world) but it can only write (control) the device domain. In

some cases, changing the status of a device in the service domain may affect the

properties of another domain. For example, a change of the heating service thermostat

status will probably affect the internal temperature.

The home environment domain includes a variety of sensors that can take physical

environment readings such as temperature and humidity.

Figure 4-2: Home Environment domain to OSGi Gateway domain Interaction

4.3.2 Service Discovery and Addition

The life of a service in the home environment begins from the moment that a device

or devices that produce a service are configured and start to operate in an

environment. In order for the service to exist and be registered to the service registry,

each of the required devices should be discovered and configured. The device

Location

Gesture

Identification

People

Physical
World

Temperature

Air/ Light
Condition

Services

Query

Control

Configuration

OSGi

Gateway

Ioannis Barakos – MPhil Thesis

 59

discovery and configuration is driven by the UPnP framework mechanisms. When a

device enters the home environment, UPnP queries its capabilities and when the

discovered capabilities meet a service’s required capabilities then UPnP informs the

service registrant that the service is in a ready state.

4.4 User Device Portal

Two applications have been built to demonstrate the two different CCI framework

designs. The first framework supports service combination and the second framework

supports service discovery, combination and dynamic interfaces. These are based

upon the OSGI framework.

4.4.1 Device Orchestration (Prototype 1)

In this prototype we have built an application using web services and the OSGi

framework. The home services are presented in an OSGi gateway as bundles while

the CCI framework runs as a J2EE application on our web server (Figure 4-3).

New services and their capabilities are discovered by the service discovery OSGi

bundle and each new service is then installed on the OSGi gateway. The web

application queries the installed services and presents the available services to the user

who defines service combinations. A demonstrator implementation can combine two

services. The combination process to do this is as follows:

• There are two empty slots (slot 1 and slot 2) for the user to select the two

different services to combine.

• The user may select a service to add to slot 1 from a list of discovered

services. The list only contains services that their capabilities and

configuration allows them to be combined with other services.

• When the slot 1 service is selected the second slot (slot 2) is enabled to allow

the user to select the service to be combined. Slot 2 only lists the services

whose capabilities and configuration allow them to connect to slot 1’s service.

• When the slot 2 is filled up with the desired service a simple interface is

presented to the user to let him configure the new combined service.

Ioannis Barakos – MPhil Thesis

 60

• The user now has two options. One is to install and start the new (combined)

service in the OSGi gateway and the second option is to save the configuration

for the two services.

• Finally, when the user triggers the installation and execution of services, the

web application sends the configuration information to the OSGi discovery

bundle and a new bundle is created, installed and starts running.

OSGi service discovery bundle holds a list of existing services with their capabilities

in an XML-based (W3C XML schema) data source. This data source (e.g.

services.xsd) has been created manually and contains the services as elements with

their settings and capabilities as shown on the next XML file listing:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:serviceVO="http://www.bt.com/osgi/xmlvos/base"
targetNamespace="http://www.bt.com/osgi/xmlvos/base" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:complexType name="service">
 <xs:sequence>
 <xs:element name="serviceName" type="xs:string"/>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="serialNo" type="xs:string"/>
 <xs:element name="compatibleServices" type="serviceVO:KNOWN_SERVICES"
minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="interfaceClass" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="KNOWN_SERVICES">
 <xs:restriction base="xs:string">
 <xs:enumeration value="timer"/>
 <xs:enumeration value="light"/>
 <xs:enumeration value="camera"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="serviceDiscovered">
 <xs:complexType>
 <xs:all>
 <xs:element name="SERVICE_DISCOVERY_INFO" type="serviceVO:service"
minOccurs="0" maxOccurs="1"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

From the above service discovery XSD file, the discovery mechanism accepts

configuration data from a user to generate the following XML data that is used by the

system to understand the existing services, functions and interoperability between

them.

<?xml version="1.0" encoding="UTF-8"?>
<serviceVO:serviceDiscovered xsi:schemaLocation="http://www.bt.com/osgi/xmlvos/base
Untitled2.xml" xmlns:serviceVO="http://www.bt.com/osgi/xmlvos/base"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <serviceVO:SERVICE_DISCOVERY_INFO>
 <serviceVO:serviceName>timer</serviceVO:serviceName>
 <serviceVO:description>This is a simple timer</serviceVO:description>
 <serviceVO:serialNo>1234567890</serviceVO:serialNo>
 <serviceVO:compatibleServices>light</serviceVO:compatibleServices>
 <serviceVO:interfaceClass>TimerInterface.class</serviceVO:interfaceClass>

Ioannis Barakos – MPhil Thesis

 61

 </serviceVO:SERVICE_DISCOVERY_INFO>
 <serviceVO:SERVICE_DISCOVERY_INFO>
 <serviceVO:serviceName>light</serviceVO:serviceName>
 <serviceVO:description>This is a simple light control</serviceVO:description>
 <serviceVO:serialNo>1111</serviceVO:serialNo>
 <serviceVO:compatibleServices>timer</serviceVO:compatibleServices>
 <serviceVO:interfaceClass>LightInterface.class</serviceVO:interfaceClass>
 </serviceVO:SERVICE_DISCOVERY_INFO>
</serviceVO:serviceDiscovered>

After loading this XML service configuration, the system knows what service

combinations it can accept. In this scenario, the timer is compatible with the light

service. Also this XML provides the Java Interface class that the system should use in

order to load specific user interface and control operations for each service (e.g.

LightInterface.class).

The next task of the system is to load each of the services Java Interface class and also

to load and initialise each OSGi service bundle. When the OSGi bundles have been

initialised can exchange control messages (as they are compatible).

In a later version of this prototype, an attempt is made to make the interface simpler to

use by non-expert user. To enable, users can specify how to combine services using

plain English text. The application only understands a number of words that the user

inputs as text as the vocabulary we use is a simple one. A system that understands

user input text and translates it into service configuration data may be possible using

common sense logic techniques but this is out of the scope of this project.

Service
Discovery
Bundle

Service
Combination
Process

Service
Configuration
Interface

Bundles of
OSGi Installed Services

OSGi

Gateway

Figure 4-3: Process diagram of Demonstrator 1

Ioannis Barakos – MPhil Thesis

 62

4.4.1.1 Evaluation of Demonstrator 1

Screenshots of the first demonstrator can be found in Appendix. In the following three

examples a typical run of the demonstrator is evaluated.

Example 1: A user wants to combine two services. In that case service 1 is the home

lights service and service 2 is a timer. The simple lights service demonstrated here has

two states: set the lights on or off. When the two services are selected the service

combination process queries the capabilities of each service and the configuration

interface adapts to these capabilities by displaying a configuration interface. The user

selects the time when the lights should be turned on and the time for the lights to turn

off.

Example 2: In this example a service is selected where its capabilities does not allow

it to be linked with another service.

Example 3: In this last example the user inputs service configuration information as

plain text. A configuration a user may input is: “turn on the lights at 8:25 and turn off

the lights at 12:32”. When the string is set the configuration interface process extracts

the actions (e.g. turn on the lights at 8:25) and adapts a device accordingly.

This demonstrator has a number of limitations that are listed below:

• Allows only two services to be linked.

• Configuration interfaces for each service are not dynamically generated but

are hard coded into applications.

• The user must input configuration strings in a standard format for the web

application to understand it. A number of errors occurred when

configuration text is input using a slightly different syntax. In a real world

situation each person has a different way to input configuration information

using plain English.

Some of the above limitations have been addressed and solved in the next

demonstrator.

Ioannis Barakos – MPhil Thesis

 63

4.4.2 Device Discovery (Prototype 2)

The second demonstrator focuses on service discovery and HCI. It is a Java

application that lets the user link two or more services into one service and is

configured using a dynamic interface.

As in the first demonstrator the application queries the OSGi gateway for installed

services and their capabilities. The new services are listed and the user may select

which of these is installed. A list of the installed services shows the service name and

lets the user pick services to be combined. In this second demonstrator the limitation

of the first demonstrator where only two services could be combined, have been

solved. Now the user can combine two or more services together. The main

components of the Demonstrator 2 framework are shown in Figure 4-4.

Service
Discovery
Bundle

Service

Combination

Process

Dynamic

Interface

Bundles of

OSGi Installed Services

OSGi

Gateway

uPnP

Common

Interface

Controls

Figure 4-4: Main components of the Demonstrator 2

Ioannis Barakos – MPhil Thesis

 64

When the user picks services for combination a dynamic user interface presents

configuration controls for the combined service. There are two places where these

controls can be found:

• In devices. Some devices have interface information in their UPnP (universal

Plug and Play) configuration data

• In a database: controls for the operation of common and typical services are

stored in XML format.

Finally, when the interface of the combined service has been set up, the user can use it

to control the two or more services as one.

The evaluation and examples for Demonstrator 2 are placed in the Appendix.

Home devices, mobile devices and sensors connect and interoperate in the home’s

environment based on the OSGi specification. Devices and sensors produce one or

more services (bundles in OSGi terminology) that are discovered by the UPnP

framework. They are registered in the OSGi service registry. The OSGi gateway

manages each service’s life-cycle as instructed by the planner (Figure 4-5).

Each service’s life-cycle includes four main processes:

OSGi Gateway
Planner

Service
Registry

Install
Service

Configure
Service

Control
Service

Remove
Service

Profile
Registry

Figure 4-5: The OSGi gateway system architecture

Ioannis Barakos – MPhil Thesis

 65

• Install service process. This process searches for any already installed and

active services that match service descriptions sent by the planner to the

service registry. If a suitable service is already active it gets its reference. If no

suitable services are found, the process triggers the UPnP framework to query

for new services. If a service is found then, it is installed as a bundle in the

OSGi framework.

• Configure service process. The next process of the OSGi framework is the

configuration of the service. This process configures the selected service based

on users’ preferences (user profiles) and resolves any conflicts that may occur

by its installation.

• Control service process. This is the process that manages a service’s

operations. Service operations take place in one or more device hardware and

include commands such as turn on, set and get methods, etc.

• Remove service process. The last process in the OSGi framework lifecycle is

the disposal of an inactive service when it is not needed anymore or when the

service has become unavailable (e.g. when a PDA providing the service has

been moved out of home network coverage). This process removes the

reference of the service from the service registry and resolves any conflicts

that may occur.

4.5 User Tasks or Activity Planner

The proposed system architecture is presented in this section. An abstract model is

presented in Figure 4-6 to introduce the main components of the

Ioannis Barakos – MPhil Thesis

 66

framework.

Figure 4-6: General view of the proposed framework

In this abstract view of the system architecture the three main domains are: the Home

Environment, the OSGi gateway and the Planner. The Home Environment includes

the context that is all the information that is available and can be used to feed the

planner. Home environment includes humans who are placed inside the physical

home environment, devices either situated in certain places in the house or mobile

devices such as PDAs, mobile phones and laptops. Also, the home environment

includes physical world variables and constraints: house and room boundaries, current

minimum and maximum room temperature, quality of air, daylight and outside

temperature is an example of these.

The OSGi gateway acts as a device access control point and as middleware between

the devices and the planner. As a device access control point, the OSGi gateway

allows device and service interoperability. Devices built based on OSGi standards can

be connected, registered, configured, interact with other devices or services and

uninstalled if necessary. As a home environment to planner middleware, the OSGi

gateway’s role is to enable the planner to have access to context from sensors

readings, user ids, user location information and device context (e.g. the light in room

2 is on, the TV is on channel 4, etc.). Also, the OSGi gateway accepts device control

messages from the planner and changes the device configuration or controls the

device accordingly as instructed by the planner in order to reach a specific goal.

Home
Environment

Planner

Sensors

Device control

A1 A2 A3

People Devices

Physical World

O

S

G

i

Ioannis Barakos – MPhil Thesis

 67

The planner continually senses the home environment. When a user goal is identified,

the planner creates a plan, which is a set of actions that must be performed either by

the devices or the home users, in order to reach this goal. Each plan action is a

different device control message that is sent to the corresponding device through the

OSGi gateway.

4.5.1 Planner System Design

There are two main challenges for the proposed planner framework. The first

challenge is to identify the user goal following the user activity and the second

challenge is to create a plan that manages a number of services in order to reach the

user goal.

Figure 4-7 presents a diagram showing the flow of information between the main

proposed planner components. The user produces some actions (user activity) that are

captured by the home sensors. The user actions are modelled and are compared with

predefined action models until the goal is identified (see next section). When the goal

has been identified, a forward chain planner creates a plan to reach that goal

considering the state of the home environment (context). Finally, the plan actions are

sent to the OSGi gateway that takes care of the service management.

Ioannis Barakos – MPhil Thesis

 68

Figure 4-7: The two phases in proposed planner framework: Goal Identification and Plan

Creation.

4.5.1.1 Phase 1- Goal Identification

User activities are sensed by a number of sensors located in the house environment

and also carried by the user (e.g. RFID tags, Sun SPOTs, etc.). When the user

performs an action, this action is captured and compared with the set of predefined

actions from an action database. If this action is mapped to only one goal, then this

goal description is sent to the Phase 2 of the planner framework. If an action cannot

determine a goal, or the action determines more than one goal, a user is asked to select

a goal out of a number of determined goals.

User Action to
Goal Mapping User

Activity
Goal Found

Have Goal
Backward
Chaining planner OSGi

Context

Hardware

Ioannis Barakos – MPhil Thesis

 69

Figure 4-8: The structure of a Hierarchical Goal Determination Process based on action

mapping. (a) Action maps to a single goal, (b) action maps to multiple goals until a third action is

performed.

In Figure 4-8, the goal “Watch movie” in (a) consists of the simple sequence of two

actions: “sit on couch” and “point to the movie player”. The action “sit on couch”

may lead to a number of possible actions such as watch movie, listen to the radio, read

a book, just relax, make a phone call, etc. These actions are not listed on the diagram

of Figure 4-8 in order to simplify the diagram.

In (b) the goal determination process is more complicated because on the second user

action: “point to the TV” the action-to-goal structure cannot map to a single goal and

needs another user action to identify the goal. The third action: “Points to window”

triggers the goal determination process to identify the goal as “watch the weather

forecast”.

4.5.1.2 Phase 2- Plan Creation

The plan creation and execution takes place inside a rule engine mechanism. Rule

engines implement a forward, backward or bi-directional chaining mechanism.

User sits on couch

Point to the movie player

Watch movie

User sits on couch

Point to the TV

Watch TV
Control
Lights

Watch
Weather

Point to the window

(a) Two actions determine a
single goal

(b) Three actions are needed
to determine the goal

Hold a book

Ioannis Barakos – MPhil Thesis

 70

Forward chaining: When one or more conditions are shared between rules, they are

considered "chained." Chaining refers to sharing conditions between rules, so that the

same condition is evaluated once for all rules.

Backward chaining: Backward chaining is very similar to forward chaining with one

difference. Backward chaining engines query for new facts, whereas forward chaining

relies on the application asserting facts to the rule engine. Backward chaining rule

engines implicitly create sub-goals and use those sub-goals to execute queries.

Bi-directional chaining: When rule processing operates in both modes, it is

considered to be bi-directional.

In this proposed planner framework version, a number of predefined plans have been

modelled and stored. Each of these plan models contains a number of paths and nodes

with service control information (e.g. service LIGHTS_ROOM1:TURN_ON).

Each node can have two states: satisfied or unsatisfied based on the outcome of its

control information and service availability. When a node of a predefined plan can be

satisfied then the route to this node and the node is copied to the current (new) plan. If

a node of the predefined plan cannot be satisfied then the planner mechanism moves

to the next node. The following example describes this planning process.

A goal is identified from the previous process and a predefined plan (see Figure 4-9)

is queried from the predefined plan database. The planner mechanism moves to the

first node of the predefined plan (Service 1). This service is available thus this node

can be set to a satisfied state. It is copied to the current plan and the planner

mechanism moves to the next set of nodes (Service 3, Service 4). Service 3 is not

available and returns an unsatisfied state result. The planner moves to the next node

(Service 4) which is available and is copied to the current plan. This process continues

until all the nodes of the predefined plan have been checked and a new plan, the

current plan, has been created. The created plan then is sent to the OSGi gateway that

will process every plan’s node in order to manage the plan’s services based on the

plan.

Ioannis Barakos – MPhil Thesis

 71

Figure 4-10: Forward chain plan for the Watch Weather Forecast goal

Figure 4-10 shows the plan created based on the activity-to-goal mapping of Figure

4-8 (b). The goal “Watch Weather Forecast” triggers the weather service to take

weather information from the Internet and from the local weather sensors. The

weather service formats this information and selects Television as the output method

for the weather data.

Watch Weather
Forecast

Weather
Service

Internet
Forecast

Input

Local
Weather
Station

Input

 PDA Television Desktop
PC

Output

Goal

Service 1 Service 2

Service 3 Service 4 Service 5

Service 8

Service 7 Service 6

Figure 4-9: Forward chain plan

Ioannis Barakos – MPhil Thesis

 72

4.6 Context-Awareness

In this research project the user context domain extraction focuses on the following

user information:

• User identification. Who is the user that performs the activity?

• User location. Where is the user?

• User state. What is the user activity status? E.g. sleeping, walking, running,

sitting.

Different types of sensors are needed for context extraction. In this proposed user

context extraction methodology the Sun SPOT sensor platform [3] is selected.

Sun SPOT is a small wireless-enabled devices based on a 32 bit ARM-7 CPU and an

11 channel 2.4 GHz radio. They consist of a board that includes a number of sensors

such as 3-axis accelerometer, temperature and light sensors. The device is

programmable in Java. Developers can write Sun SPOT applications that get sensor

information, perform some pre or post processing in the Sun SPOT platform and then

send this information to a base station for further processing. Sun SPOTs also consist

of 9 I/O pin port that enables peripheral sensors to be connected to the Sun SPOT.

These characteristics make the Sun SPOTs a suitable choice for a sensor network for

context extraction.

4.6.1 Indoor User Location Determination using RSSI

Location determination is very important for an infrastructure of a ubiquitous

computing environment such as a smart home. Outdoor location determination

technology such as GPS is already developed and is widely used. For indoor location

determination, there are several technologies (Section 3.5.1.1) but they are not widely

used.

Assuming that home users wear or carry Sun SPOTs, their location can be determined

by triangulating the signal strength of their Sun SPOT and each of the base stations

that are located in the room. Figure 4-11 shows the experiment environment where the

experiments of location determination using the signal strength took place. Three base

stations were placed in certain room positions. A person holds a Sun SPOT and

Ioannis Barakos – MPhil Thesis

 73

follows a path as shown in Figure 4-11. A person takes 50cm steps. After each step

the Sun SPOT broadcasts a signal that is collected by the three base stations.

Figure 4-11: Experiment environment floor plan showing the base station position and the path

followed by the Sun SPOT

The Sun SPOT platform upon receiving a radio data packet, can extract the signal

strength information of that packet. The Received Signal Strength Indication (RSSI)

value shows how strong or weak the radio signal is. The results collected by this

experiment are presented on the next graph (Figure 4-12).

 User (Sunspot)

 Base Stations (Antenna)

 Path Followed

 Obstacles

Ioannis Barakos – MPhil Thesis

 74

Figure 4-12: RSSI values collected from the 3 Base Stations

In order to calculate distances from the extracted RSSI values, a free space

propagation model was used. This model assumes the ideal propagation condition that

there is a line-of-sight path between the transmitter and the receiver (Sun SPOT and

Base Station). It does not consider any effect of multipath fading and other signal

strength loss. In indoor environments, where line-of-sight is not always available,

multiple objects and humans may alter RSSI values, a free space model is not precise

but it is still appropriate to determine distances if there are many base stations in the

space.

Figure 4-13: Relation between RSSI and Distance on the free space propagation model

In the free space propagation model the relation between RSSI and distance is

measured (Figure 4-13) and is described as:

Ioannis Barakos – MPhil Thesis

 75

[]dBm
d

PdPr

−=
λ
π4

log20)(100

Where:

Empirical constant

[]
[]GHz

sm

f

c

4.2

/103 8×
==λ

=0P 50 dB

Further experiments with RSSI values and combinations with different techniques and

methodologies for extracting the position of an object in indoor environments led to a

joint project [63] that better determines the user location and also the orientation of a

user in an indoor environment.

4.6.2 Indoor User Mobility and Activity Determinati on Using

Accelerometer Sensors

RSSI measurements during the location awareness experiments show that RSSI

location determination techniques give accurate values in open space environments

when no people and objects are between the transmitters and receivers. However, in

more complex environments containing multiple objects, obstacles and people such as

home environments, radio signals can get reflected or deflected by obstacle objects

making location tracking inaccurate.

As humans move in and between house rooms, they produce acceleration which can

be used to calculate position and to track them. Obtaining this information can be

done through the use of three-axis accelerometer sensors that are attached on the body

that needs tracking. Signals obtained by accelerometer sensors require pre and post

processing as there is no direct conversion between acceleration and position.

Acceleration a is the rate of change of the velocity vof an object. Also, the velocity

is the rate of change of the position s of the same object:

=0P

Ioannis Barakos – MPhil Thesis

 76

dt

dv
a =

dt

ds
v =

The velocity is the derivative of the position and the acceleration is the derivative of

the velocity.

2

)(

dt

dsd
a =

When the acceleration of an object is known, the position of this object at each time

can be measured by applying a double integration:

∫=→= dtav
dt

dv
a)(

∫=→= dtvs
dt

ds
v)(

Thus:

()∫ ∫= dtdtas)(

a. acceleration b. velocity c. position

Figure 4-14; a. acceleration: actual acceleration data as obtained using an accelerometer sensor,

b. velocity: velocity after single integration, c. position: distance travelled from zero after a

double integration

Ioannis Barakos – MPhil Thesis

 77

Figure 4-14 shows the accelerometer data of an object that accelerates and decelerates

(a), its calculated velocity (b) and its calculated position (c) from a zero starting point.

An implementation of the double integration algorithm is used to process the obtained

accelerometer data in order to apply the algorithm in a real world scenario. This

processing of accelerometer data includes calibration and filtering.

Filtering is needed as accelerometer sensors may acquire noisy data. A digital filter is

applied based on a moving average: the average value of a certain number of samples

is processed.

Calibration also takes place before the processing of the accelerometer values (pre-

processing). The calibration is needed to eliminate the sensor offsets at the beginning

of a measurement when there is no movement. In other words, during the calibration,

the algorithm finds the sensor values when the object is in a stand still position. After

the calibration takes place, the real acceleration data is the data obtained by the

sensors minus the calibration offset.

Experiments from section 4.6.1 and this section (4.6.2) led on a better position

determination system that adapts to both dynamic physical environmental conditions

and human movement changes in order to find estimated user locations and their

orientation.

4.6.3 User Identification

Other information that can be extracted from the user context is the identity of the

user. The identity of the user can provide information to a number of different

applications in the smart home, in which, a user can be identified by the context and

these application adapt to the user, e.g. only the adults of the family have access to the

house garage; healthcare applications can sense who the user that performs an action

is such as falling down and where this occurs and store this information or raise an

alarm.

In this project a simple user identification algorithm identifies the user by the way he

walks in the house. Gait biometrics can produce an accurate classification if the data

is obtained accurately for a small group. The gait recognition algorithm proposed in

this project uses accelerometer data along a 3-axis. It models the gait of each person

with respect to his weight, step frequency and step speed.

Ioannis Barakos – MPhil Thesis

 78

Each user is equipped with an accelerometer sensor (e.g. Sun SPOT). A user spends

some time to teach the algorithm by performing everyday activities in the home. Then

the algorithm models the user’s gait and stores it in a gait biometric database. When a

user starts walking in the house, the identification algorithm compares its gait with the

already stored biometric information and finds the best match.

4.6.4 User Status Recognition

The user activity level can also be extracted from the user context. The term “user

activity level” in this project includes a number of actions that show how active is the

user in the home, e.g. sleeping, relaxing, walking in a hurry, etc.

The user activity level recognition algorithm determines the user state by sensing

accelerometer values from sensors attached to the user (e.g. accelerometer values

change rapidly may indicate that the user is walking in a hurry). Through sensing the

device context domain for changes in devices (e.g. the volume of the TV recently

changed means that the user is still watching TV and has not fallen asleep).

4.7 Policy-based and Workflow-based Management of

Devices

In this framework, service oriented life-cycles of devices and services in a home

network are supported by workflows. This framework is placed between the device

application frameworks and the OSGi messaging framework. This way the OSGi

gateway is extended by enabling device and service orchestration using dynamic

workflows adapted to the current home environment (context) using rules and

policies. Rules are static and pre-defined set of restrictions or commands while

policies are dynamic rules. Policies may be changed by users or other services during

the service life-cycle in order to adopt with the current context.

4.7.1 Framework Requirements

The requirements of this prototype are described in Table 4-1.

Ioannis Barakos – MPhil Thesis

 79

Requirement Description

Device discovery Devices that enter the home network are discovered and their

capabilities and settings are made available to the system

Device selection Based on the device capabilities and settings, a device is

selected if it is needed by a service

Device registration After device selection, the device must be registered with the

ICT home service directory. It is configured based on the

current system configuration and context

Service selection and

registration

A service is complete and can be registered only when the

required devices for that specific service have been registered.

During service registration, the user is asked if a service can

be registered or dropped. Then devices that support these

services registered are re-configured (on demand) based on the

service configuration demands

Service execution -

orchestration

After service registration, a service execution workflow is

loaded that is specific for each service. The service execution

workflow (jobflow) supports the execution life-cycle of the

service by orchestrating the devices registered with it using

sets of rules and policies.

Table 4-1 System requirements of System 4

4.7.2 Architecture Overview

This framework consists of three main workflow processes that support the

installation and maintenance life-cycles of the SOA architecture and are displayed in

Figure 4-15. The installation life-cycle is supported by the “device registration” and

“service registration” processes and the maintenance life-cycle is supported by the

“execution” process.

Ioannis Barakos – MPhil Thesis

 80

Figure 4-15: Overview of the 3rd Framework architecture displaying the three main processes

and their main subsystems.

These three workflows are driven by four sub-systems described in the next sections:

a device knowledgebase including information for device capabilities, a service

knowledgebase including information required for service adaptation and generation,

a policy manager holding and executing the rules and policies and a jobflow manager

that stores the execution workflows for each of the available services.

The intelligent model proposed in this framework contains the following properties:

• Reactive: The environment events are sensed. Events then trigger action

selection that may lead to actuators changing their environments.

• Rule or Policy-based: The framework uses a rule engine and a set of policies

to orchestrate the operation of its distributed devices.

• Adaptive: It adapts to environmental changes and improves its own

performance.

• Collaborative: Multiple devices and services share tasks and information in

order to achieve shared and common goals.

Policies

and rules

Service

Knowledgebase

Device

Knowledgebase

Service
execution

Service
registration

Device
registration

OSGi

gateway

Jobflow

Manager

Ioannis Barakos – MPhil Thesis

 81

• Orchestrated: Distributed services are controlled and ordered by designating

some leader who acts as a central-planer.

• Shared Knowledge: The context information and system knowledge is shared

between the distributed services.

4.7.3 Device and Service Repository

The device repository stores the device information, capabilities and settings that are

queried from a device when the device is discovered by the system. This information

is usually queried by a device using the UPnP discovery mechanism. In this project

the UPnP profile of each device can be extended by the user. For example, when a

device is discovered in the home network, the user enters more information that does

not exist in the UPnP, such as device location, device friendly name, etc.

Services are defined in the service repository which stores the service names linked

with the required and the optional capabilities that are needed to generate a service.

When the combinations of devices that meet the required capabilities for a service are

registered, then this service is ready for execution, while adding devices that offer

optional service capabilities can extend this service configuration and execution.

4.7.4 Policy Management Subsystem

The policy manager stores the policies to drive the service registration workflows and

the service execution workflows. For the service registration workflows, the policies

are general and orchestrate the workflow by allowing the registration of a device

when these device capabilities meet a service requirement (see section 5.5.3). In the

service execution workflows the policy manager holds different policies and rules for

each of the service that is being executed (section 5.5.4).

4.7.4.1 Rules

The Rule-based model of this framework is a mechanism for utilising a knowledge

base’s information and then applies logic reasoning to service operations. This model

contains a rule engine determining how rules constructed for an IF-fact THEN-fact.

When new events are generated, they are represented as new facts. The knowledge

base uses the fact in the IF portion of the rule and matches this with current facts

contained in the working memory part of the knowledge base. When a match is

Ioannis Barakos – MPhil Thesis

 82

confirmed, the action rule gets activated and its THEN statements are added to the

working memory. These new facts added to the working memory can also cause other

rules to fire.

In this framework the Rule-based model is combined with a workflow model in order

to allow orchestration and knowledge sharing between distributed services in a

complex topology, for example where a number of different services interoperate to

generate a new virtual service.

4.7.4.2 Rule Generation and Execution

A rule engine searches the knowledge base using forward or backward chained

searches. Backward chaining starts with a list of goals (or a hypothesis) and works

backwards from the consequent to the antecedent to determine if there is information

available that will support any of these consequents. On the other hand, forward

chaining starts with the available information (data in knowledge base) and uses

inference rules to extract more data (from an end user for example or the physical

environment) until a goal is reached.

Forward-chaining may be regarded as progress from a known state (the original

knowledge) towards a goal state. Backward-chaining means that no rules are fired

upon assertion of new knowledge. The proposed framework uses a forward chaining

search because the current activities and situated actions in a home environment are

driven by the context (e.g. sensors). This fires rules from a known state, i.e., the

current context. The final goal may not also be pre-determined, it may be

opportunistic. Furthermore, in forward-chaining the reception of new data can trigger

new inferences, which makes the engine better suited to dynamic situations in which

conditions are likely to change.

4.7.4.3 Rete Algorithm

Forward-chaining systems can become cumbersome if the problem space becomes too

large. As the rule-base and working memory grow, a brute-force method that checks

every rule condition against every assertion in the working memory can become quite

computationally expensive.

There are ways to reduce this complexity, thus making a system of this nature far

more feasible for use with real problems. An effective solution to this is the Rete

Ioannis Barakos – MPhil Thesis

 83

algorithm [67]. The Rete algorithm reduces the complexity by reducing the number of

comparisons between rule conditions and assertions in the working memory. To

accomplish this, the algorithm stores a list of rules matched or partially matched by

the current working memory. Thus, it avoids unnecessary computations in re-

checking the already matched rules (they are already activated) or un-matched rules

(their conditions cannot be satisfied under the existing assertions in the working

memory). Only when the working memory changes, does it re-check the rules, and

then only against the assertions added or removed from working memory.

4.7.4.4 Rule Properties

The rule-based model of the proposed framework has the properties of Table 4-2.

Property Description

Passive or Active rule generation A rule can be generated either when a

rule administrator defines a rule using a

rule interface (e.g. GUI) or automatically

by the rule engine

Passive or Active rule execution The execution of a rule may happen when

a context event is triggered (passive) or

when a user or a device activate the rule

Re-usable rule templates Rules generated automatically (passive

rule generation) are stored in the

knowledgebase for re-use

Rule priorities In order to avoid rule engine operation

conflicts and user personalisation, rules

are prioritised

Permitted or non-permitted rules This property enables the permission to

execute a rule based on the current

context

Table 4-2 Rule properties

Ioannis Barakos – MPhil Thesis

 84

The properties of each rule are stored in the knowledge base along with the rule itself

and are executed in the Home Gateway (OSGi). Thus, the Home Gateway is the

planer. A generic knowledge base is used. This method decreases the number of rule

conflicts as the Home Gateway:

• Has access to the whole knowledgebase and may use more specific matches

rather than more general matches

• May use a high priority rule over a lower priority rule

• Use a conflict-resolution template

4.7.5 Workflow Process

The three main processes of this framework, device registration, service registration

and service execution, are orchestrated by two types of workflow: the registration

workflow and the service execution workflow.

4.7.5.1 Service Workflows versus Device Workflows

It is important to make the following assumptions at this point. A device is defined as

an actual piece of hardware in the ICT home environment. Devices are divided into

two subtypes: a dumb device and a smart device. Dumb devices do not have any

networking capabilities, usually have an already programmed PIC (Peripheral

Interface Controller) microprocessor with very limited or no memory and can execute

basic operations and cannot be altered. ICT or smart devices are networked devices

usually running an operating system (e.g. OpenBSD, Linux, or Windows ME, etc.) or

a virtual machine. They have a faster processor and more memory than dumb devices

and thus they are able to execute code as add-ons to their already installed firmware.

Examples of dumb devices include lights and light switches, microwave, some video

players, etc. Examples of smart devices include mobile phones, set-top boxes (e.g.

Dreambox, IPBox running Linux), PCs, some LCD TVs, etc.

A service is the result of one or more processes that executes in one or more devices.

A service has 4 typical steps or loops as they are defined in the SOA: The service

registration, service execution, service maintenance and the service de-registration.

One or a set of devices need to be combined to complete a virtual service. In turn, this

virtual service must follow the SOA specification.

Ioannis Barakos – MPhil Thesis

 85

 A device workflow is an ordered list of processes that a device is programmed to do.

A device workflow usually is triggered by a switch or button (e.g. start heating food

in a microwave), by a sensor (e.g. motion sensor in an alarm system) or by a timer

(e.g. alarm clock). Device workflows are usually hard-coded in the actual device

firmware or PIC.

Service workflows are an ordered set of actions that run in an ICT home gateway that

the home devices are network connected to. As the service workflow is not placed

inside the actual device hardware, it is considered as a virtual workflow.

4.7.5.2 Workflow Types

Workflows include actions, event triggers and rules or policies. They can have three

types as they are defined in the next figure (Figure 4-16).

Figure 4-16: a. Simple sequence workflow, b. Branched workflow, c. Parallel-process workflow

In Figure 4-16, three workflows are shown: a simple sequence workflow (a); a

workflow also may have one or more branches that change the activity flow based

upon events coming in and other variables (b); activities may also spawn multiple

thread on a part of the activity, e.g. parallel process workflow.

As services usually include a number of devices, a service workflow (virtual

workflow) is used to combine device workflows. Thus a service workflow can be a

set of device workflows (e.g. D1 and D2 workflows) where the flow is distributed in

Action 2.2

End

Start

Action 1.1

Action 1.1

Event wait

Event wait

Action 2 End

XOR

a

b

c

Start Action 1 Action 2 Event wait End

Start Action 1

Action 2.1

Action 3

Ioannis Barakos – MPhil Thesis

 86

each of the device workflows. There are three dimensions in flow distribution

between two or more device workflows (Figure 4-17).

Figure 4-17 a. Nesting synchronous service workflow, b. service workflow through pipe, c. multi-

threaded synchronised service workflow

In a nested synchronous service workflow, one device may request the results of an

activity or executes an activity on another device and then continue its original flow

(a). The service workflow pipe directs the flow of a device workflow to continue on

another device (b). Finally, the synchronised service workflow allows activities

between two or more devices to be executed and to exchange information in a

synchronised way.

4.7.5.3 Registration Workflow

In the registration workflow there are two main loops: the “device registration/service

complete” loop and the “service selection” loop. The “device registration/service

complete” loop is on a wait state until a device enters the home network. Then the

loop takes three actions: 1. executing a number of pre-actions for configuring this

device before it is registered, 2. evaluating a device registration rule, that is checking

the device capabilities and registers the device with a service only if the device is

needed, and 3. executing a number of post-actions. The pre and post actions of each

device type are stored in the knowledge base. A simple representation of the rule that

evaluates the registration of a device is:

D1 D2

Action

Action

Action

Action

End

End

D1 D2

Action
Action

Action

End

D1 D2

Action

Action

Action

End

Action

Action

Action

End

Synchronised

a b c

Ioannis Barakos – MPhil Thesis

 87

When
device.capabilities[] are needed by service s

Then
register device to s

else
 drop device

Another rule in the registration loop is to evaluate if a service has been completed and

is ready for execution. A complete service is the service that has all of its required

devices registered with it. For example a light service is complete only when a light

device and a motion sensor device have been registered under this service. This rule

checks if the service needs more devices to be ready for execution and if all the

devices are registered with it, then it asks the user to accept or deny this service. This

is the last step of service registration workflow and when the user accepts a newly

created service, the “service accept” rule loads a job workflow (will be called

jobflow) that has actions and rules for executing the created service.

4.7.5.4 Service Execution or Jobflow Workflow

A jobflow is a set of actions, event notifiers and rules that are used to orchestrate the

execution time of a service. Each service has its own jobflow which is stored in the

Knowledge Base. When the registration workflow registers and the user accepts a

service, the “jobflow” is then loaded and starts. The event notifiers and actions in the

jobflow are active during the time the service is in its “running mode”. A simple

jobflow for the light service is:

Start ---> Event trigger: Motion detector device is on -->

Action: Turn light device on --> Timer: wait 60 seconds -->

Action: turn light device off --> End

The above jobflow executes a light service with two devices: the light and the motion

detector device. The jobflow starts executing when an event from the motion detector

is triggered. It triggers an action to turn the light on and then an internal timer waits

for 60 seconds before the device is turned off again. Then the job flow enters the

event wait state again.

Ioannis Barakos – MPhil Thesis

 88

4.7.6 Implementation and Evaluation

This prototype was implemented in Java using the Drools rule management system.

Drools is a business rule management system (BRMS) and an enhanced Rules Engine

implementation based on Charles Forgy’s Rete algorithm. Benefits of using a Drools

implementation includes: declarative programming, graphical editing tools and use of

an open source license.

• It implements a forward-chaining search model

• It uses the Rete algorithm.

A graphical representation of the registration workflow is shown in Figure 4-18.

Figure 4-18 Graphical representation of the registration workflow

Service
selection
loop

Service
registration
loop

Ioannis Barakos – MPhil Thesis

 89

The service registration process is a workflow loop that includes an event wait, a rule

management object and action objects. The event wait “Device Entered” is triggered

when a new device is entered and discovered by the discovery mechanisms. Then the

workflow continues to the “Device/Service register” rule manager object. At this

point, a set of rules examines the new device’s capabilities and if they match the

capabilities required by a service in the service knowledgebase, the device is selected

and registered with the system. The workflow then moves to the “Device/Service post

actions” action object where a configuration message is sent to the device if needed to

be configured for the particular service. This loop runs continuously as the devices

may enter the home environment at any time.

When a service’s required capabilities met by devices have been registered, the

workflow moves to the service selection loop without terminating the registration

loop. The selection loop has an “Event Wait” action that requires the user to either

select and accept the new service or dissolve it (drop it). Finally, if the user accepts

the service, the “Register to Jobs” action loads the execution workflow for this

particular service and begins its process.

The service execution workflow (jobflow) for a typical light service is presented in

Figure 4-19. This service comprises three devices: a motion detection sensor (user

context – user movement), a timer (physical world context) and a light. At the first

action of the workflow loop, the “pre-actions” re-set the timer and moves to the

“Event Wait” state where the workflow halts until an “Event” is triggered. In this

jobflow the “Event” is registered with the motion detection sensor and it is triggered

when the sensor is activated. Then, the workflow moves to the “LightRules” rule

management object where a set of rules orchestrate this simple service:

WHEN sensor is triggered AND timer > 0

THEN set light = 1 AND wait for timer.seconds

Ioannis Barakos – MPhil Thesis

 90

Figure 4-19 Light service execution workflow (job flow)

In the fourth framework and prototype, workflows are combined with rules to support

home services life-cycles that follow SOA specifications. Service registration is based

on rules directed by a device via a service knowledgebase. This enables automatic

service registration. Service selection requires the user to select or drop a generated

service.

Service execution uses workflows to orchestrate the various devices that comprise the

service. Workflows contain: actions, switch (if/otherwise) statements, joins and event

listeners. The context is acquired by these event listeners. A hardware sensor is

sensing the physical world (in case of the physical world context), or a device/ service

message triggers an event (in case of ITC Context) or a set of sensors in combination

of a set of rules and policies understand the goal of a user and triggers an event (in

case of the user context).

 At this point the execution workflows are based in simple home service scenarios and

demonstrate simple service execution including multiple devices. Also the context

acquired is limited to find the user movement rather than understanding the user-goal,

or to sense the current weather using a weather station rather than downloading the

forecasting data from weather web services and learning the weather forecast.

Ioannis Barakos – MPhil Thesis

 91

5 Discussion

In this research project a number of other research projects and technologies were

surveyed in order to design and implement a ubiquitous, context-aware framework

that orchestrates devices and services in a home environment.

The proposed solution and framework used the OSGi service framework to support

the life-cycles and messaging between the home services, as it provides better service

discovery mechanisms and is much faster than the typical web services technologies.

The framework proposed in this research project was built on the top of the OSGi

layers. That way it extends the OSGi functionality by adding support for autonomous

device combination and interoperability, dynamic user interfaces, context awareness

and finally device orchestration using planers and pre-defined rules.

The following sections discuss the achievements and novel parts of this project in

more detail.

5.1 Achievements & Novelty

During this research project progress the following were achieved.

5.1.1 Device Integration

A middleware framework has been developed that enables device combination using

a web interface allowing users to enter simple pseudo-English sentences (e.g. Turn on

the lights at 10.00 in the morning) to configure and control a combination of two

devices. This framework orchestrates device configuration and operation using the

OSGi framework.

Service adaptation and combination (novelty): Services are provided by devices. A

device provides at least one service but there are devices that can provide two or more

services. For example, a digital satellite box can provide 6 different kinds of services:

accurate time service (each satellite transponder sends time signals taken from a

satellite’s atomic clock), video service, audio service, record/playback service,

Teletext service and electronic program guide service. A service combination process

enables two or more different services to adapt and combine to create one or more

other services.

Ioannis Barakos – MPhil Thesis

 92

Demonstrator Evaluation: The demonstrator 1 implemented during this project,

implements a method where different services provided by multiple devices can

interact each other by exchanging messages. OSGi framework was used and services

were easily converted into OSGi bundles, however in this demonstrator someone has

to pre-define each service capabilities and its compatible services. This

demonstrator’s experiments showed that UPnP was not very efficient. For this reason

UPnP tends to be used only during the only service discovery phase of the service

life-cycle.

5.1.2 Dynamic Interface Generation – Device Portals

The above framework was extended to support more than two device combination and

an interface generator that creates a dynamic control interface for the device

integrated service.

Dynamic interface generation for device integration (novelty): Multiple devices

combined into a new virtual service raises the problem of how a user interacts with a

new service as there is no pre-defined interface. This framework solves this problem

by providing methods to generate a new dynamic interface based on the capabilities

of each of the devices needed to generate the virtual service.

Demonstrator Evaluation: The second demonstrator implements this framework

successfully with the limitation that each device user-interface must be pre-designed.

A first approach to this framework was to automate the virtual interface creation by

creating a service-to-interface data source that would match a service with a number

of user-interface components. For example the video player service would match with

the play, stop, pause, next, previous, interface components. Then the UPnP discovery

mechanism would acquire the service name and capabilities and the service-to-

interface data source would push only the valid interface components for each service

combination. However, this was not efficient as the UPnP information of each service

was not complete enough in order to correctly match a service with its interface

components.

 The final virtual interface of the device combination is not pre-defined and is

constructed at the time the devices are combined.

Ioannis Barakos – MPhil Thesis

 93

5.1.3 Context-aware Device Control

Sensors located on a user’s body allow tracking of a user in a 3-D space. 3-axis

accelerometers provide acceleration, velocity and position of the user. Processing of

these measurements can sense additional activities such as sleeping, relaxing, walking

fast, running, etc.

User tracking in indoor environments (novelty): The user location measured by

combining the signal strength of networked sensors carried by the user with

acceleration data produced by the user as he moves around the home. RSSI (received

signal strength indicator) comparison and ranking techniques and acceleration data

alone do not provide precise results for obtaining the user location. However, RSSI

can be used to locate the user in certain house locations (e.g. places close to the base

stations) and then accelerometer tracking techniques can be used to track the user’s

movement and provide better tracking information as the user moves away from the

base stations where RSSI value readings get sensitive to object reflections. A virtual

map of the room contains a number of areas where it is known that RSSI value

readings are correct without getting errors from object reflections. When the RSSI

readings match these areas a new tracking session is initiated from that point. Then

the user is being tracked by the accelerometer readings until another known RSSI

value is reached.

Demonstrator Evaluation: This approach was implemented in the third system

(demonstrator). This system implements user-cantered context awareness methods to

find and track user movement indoors. Sensor limitations and efficiency led to a

number of different approaches in order to complete this framework. Beginning from

RSSI readings and triangulation using three antennas to extensions of up to 8 antennas

and combinations of RSSI with compass and acceleration sensors, the final

demonstrator was efficient and capable of locating the user in a room within a radius

of less than a meter.

Gesture-based scalable physical device control (novelty): Devices to be controlled

may be identified into a 3-D space when the user is pointing to it. The selected device

then can be controlled by predefined gestures (e.g. a tilt on the left of the user’s hand

may increase the volume of an audio device).

Ioannis Barakos – MPhil Thesis

 94

An extension to the third system was another system that gets the position of the hand

of a person along with its gesture. A simple approach to this is implemented. It uses

the location determination technique of section 4.6.1 together with a compass sensor

that acquires the hand’s direction.

5.1.4 Policy Based Device Control

A policy based device control framework, identifies the user activities and goals

based on context driven and situated action models. User and device actions are

captured by sensors as events that trigger actions to control devices based on policies

in an Event-Condition-Action model.

5.1.5 Device Orchestration using Workflows and Pre- defined rules

Proposed SOA lifecycle extensions develop and manage the orchestration of reusable

services in home environments. A set of pre-defined rules and workflows drive a

device-service lifecycle from the moment a device enters the home environment until

it is removed from it.

Planning device orchestration using rules/workflows (novelty): Service discovery,

selection and configuration, during the first phase of a service life-cycle, involves

querying UPnP information and pre-defined rules. Different workflows manage the

service operation and maintenance (e.g. update, reconfigurations) where the user’s

input is necessary only when something unexpected happens (e.g. something that is

not defined in a rule). Finally, when the service is not needed any more, another

workflow dissolves it from the home environment and re-configures dependent

services.

Demonstrator Evaluation: The last demonstrator was a combination of the

frameworks defined plus a new framework adding orchestration of discovered

services. The orchestration workflow was designed, built and evaluated in two phases:

the service registration / de-registration and the service operation and maintenance.

The scenarios that were evaluated for this demonstrator successfully show that rules

and policies are essential to orchestrate and automate multi-services in the home with

minimum user-direction. The demonstrator’s experiments show that complexity is

increased as the services workflow combines more services, however fault control

frameworks can be used to decrease the number of errors this complexity occurs.

Ioannis Barakos – MPhil Thesis

 95

5.2 Future Work

In this section the future work of this research project is presented.

5.2.1 Service Orchestration and Planning

The service orchestration planning process described in this document has been

limited to goal identification, plan creation phases and simple plan execution. There

are two missing phases that the service orchestration planner requires in order to be

complete: a plan execution phase and a re-planning phase. In current work, the

orchestration planner identifies the user goal and creates a plan with the actions that

should be performed in order to reach that goal. This plan includes actions such as:

automatic or manual device configuration, device combination, service operation and

user tasks. When the plan has been built it then needs an executor, a set of operations

that executes each action of the path (e.g. the action “turn heating off” should be

translated into a controlled message that will instruct the OSGi gateway to turn off the

heating). Re-planning is another phase that is missing from the current service

orchestration planning. It is the process that is triggered when a configuration in the

environment has been altered (e.g. a service used to participate in the plan execution

is no longer available) or an unexpected situation has arisen.

Some challenges that arise in a complete service orchestration planning process and

will be addressed in the future work are listed in the following table (Table 5-1).

Service Orchestration Planning Phase Challenges
Plan Execution During the plan execution a device may

not be OSGi enabled and cannot be
accessed by the OSGi gateway (e.g. the
user may need to operate the device
manually)
A device may have crashed and provide
information that is not correct

Re-Planning Sensing that a device or service
configuration has been altered and there
is a need for re-planning.

Table 5-1: Future Service orchestration planning challenges

While service choreography across multiple devices requires planning algorithms to

execute in each device or each home network’s access node, service orchestration

requires the planning algorithms to execute in a gateway from where the service is

Ioannis Barakos – MPhil Thesis

 96

controlled and from where the properties are visible. Considering that service

choreography planning algorithms require an “open” OS, some storage and a

processing power and, as many devices in the home have limited processing and

storage capabilities and they may not allow third party applications (such as planning

algorithms) to be executed, it is difficult for choreographic algorithms to run in every

home device. Thus, the best approach in managing multiple devices in the home is

device orchestration.

Service orchestration across multiple devices needs an execution environment, a place

where the orchestration algorithms will run and where plans will be created, executed

and stored. For the future work of this project, service orchestration algorithms could

be built and evaluated in a home service gateway. This gateway must follow these

requirements:

• “Open” OS architecture: The OS of the gateway must allow third party

applications to run.

• Storage: The gateway should contain sufficient memory for plan storage.

• Accessibility. The gateway must be visible to the devices and the devices must

be visible to the gateway. ICT resource demanding devices include various

networking technologies such as Bluetooth, ZigBee, Wi-Fi, Ethernet and USB.

They can communicate with the gateway assuming that both the device and

the gateway have the same networking technology. However, other home

devices that have low ICT resource requirements do not include networking.

The future work of this project investigates techniques for planning execution

with these devices.

• Service discover: The gateway should be able to discover devices that enter

the home environment and remove devices that exit, as there are mobile

devices in the home.

Previous work in this project used an emulator to experiment with simple service

planning algorithms. The plan was created after the user has input a rule or policy for

one or more specific services. The plan then was executed on an OSGi emulator

running on a computer and was stored until the emulator is shutdown. This work

could be extended in further work through the use of a more complex planning

algorithm that allows automatic plan creation based on policies and pre-defined

Ioannis Barakos – MPhil Thesis

 97

constraints. The orchestration planning algorithm evaluation will take place in an

OSGi gateway situated in a house environment (testbed).

5.2.1.1 Orchestration using Business Process Execution Language

A business process is a collection of related, structured activities or tasks that

produce a specific service (serve a particular goal) for users. Considering this

definition of a business process, home tasks and activities can be considered as

business processes that can be orchestrated using the Business Process Execution

Language (WS-BPEL) [68].

In a future work scenario, an OSGi gateway could invoke Web services for each

device event or action that is imported into a BPEL orchestration flow. The flow then

orchestrates a set of devices by invoking other Web services that are received from

the OSGi gateway and translated into device control messages.

5.2.2 Universal Service Controller

 Conventional methods to control devices require users to interact with the device

using its build-in user interface or using a remote control to access the device

functions. Although there are universal remote controls introduced in the market that

can be used to remotely operate a group of devices, these universal controls can

access only a specific type of devices (mostly AV devices).

A universal portal controller framework is introduced to this project. This not only

enables remote control of a wide area of services and devices, but also enables

gesture-based control of devices and queries of the physical environment. A portal

controller could be a device that includes a number of sensors and buttons that can be

wirelessly connected to a home gateway (e.g. Sun SPOT).

For gesture-based scalable physical device control, the device to be controlled may be

identified in 3-D space when a user is points to it using the controller. The selected

device then can be controlled by gestures, for example a tilt on the left of the user’s

hand may increase the volume of an audio device. Another application of a gesture-

based controller is the device combination in a “drag n drop” manner. For example a

user points with the controller to a room light, presses and holds the button on the

controller and move the controller towards the TV while holding the button. Then he

Ioannis Barakos – MPhil Thesis

 98

releases the button while pointing the TV and a GUI on TV to display the house lights

configuration.

Table 5-2 lists some of the challenges that arise when using a device control as a

gesture identifier.

Challenge Examples
Location of the controller in the
environment

X, Y and Z location of the controller

State of the controller Is it pointing up or down? What is the
angle? Where is it heading? North or
South?

Accuracy of the controller When the user points to an object, how
accurate is this?
What happens when two or more devices
are very close and the controller accuracy
is not very good?
What happens when a device is on the
back of another device?

Table 5-2: Gesture-based universal controller challenges

Some of these challenges can be addressed by calculating the location variables out

from the controller’s (Sun SPOT) sensors, others can be calculated and others need

additional sensors that are not found on the Sun SPOT. The Y axis is easily retrieved

by the Sun SPOT accelerometer by measuring the gravity force G on the Y axis. The

Sun SPOT’s location can be found by using 3 Sun SPOT base stations and

determining its position by measuring the signal strength. The heading of the Sun

SPOT can be found by using a magnetic compass as an extra sensor attached to the

spot’s input ports. These magnetic compass sensors can provide us with accurate

measurements of the spot’s angle with an accuracy of 0.1°.

Ioannis Barakos – MPhil Thesis

 99

The Figure 5-1 shows some of the components that could be built in a future work of

this project. Sun SPOTs send raw data to their bases stations where the sensor fusion

component filters and computes context information from the sensor raw data (e.g.

location). This context data can help determine user goals. For example the user

points to window, presses and holds the Sun SPOT button, moves the Sun SPOT to

point to TV and releases the button can lead to goal: show the weather forecasting on

TV screen.

These goals then are sent to the Planner module that will create a set of actions to

reach the user goal (e.g. show the weather forecast on the TV screen). These actions

finally are sent to the application logic module which communicates with the device

services.

sunspot

Base station

Sensor
Fusion

Planner

Application
logic

User GUI

Service

Provider

Service

Provider

Service

Provider

Figure 5-1: Universal device and service controller model

Ioannis Barakos – MPhil Thesis

 100

6 Conclusion

This thesis presents the research work towards a ubiquitous context-aware

management of services in the ICT home. Survey of the current pervasive and

context-aware computing environments presents the state-of-the-art technologies and

architectures. However, the survey shows that limitations exist in supporting device

life-cycles, device collaboration and orchestration. In addition, the technologies for

context acquisition, for example for user context acquisition, do not provide accurate

results or they require expensive equipment. Devices are not aware of each other and

are not aware of the services available in the home environment, making it impossible

for devices to adapt to a dynamic user goal.

To solve the above problems some methods have been proposed in this document.

These methods can be divided into two categories, the first category proposed

methods to identify a user goal based on the current context and any corresponding

situated actions while the second category proposed methods to make a plan of

actions distributed in devices, services and users in order to reach the goal specified

from the first category. A number of algorithms have been proposed that support

device orchestration, device selection and dynamic interface generation that will lead

to more ubiquitous operation of current home services. These algorithms include the

rules/workflow design and implementation of device orchestration framework, the

XML-XSD Schema for device discovery and interoperability and the UPnP extension

with custom user interface components that lead to virtual user interfaces. Also, some

methods have been proposed regarding the context acquisition mostly on the user’s

domain. Some examples include methods to identify the user identity and user

location. The future work of this project presents the system architecture and the

framework that will support the current architecture in order to meet the requirements

of this project.

Ioannis Barakos – MPhil Thesis

 101

Appendix A

Demonstrator 1:

The first demonstrator of this project presents a device interoperability framework

where a description of services exposed by devices is stored into a simple XML

knowledge base. The system queries this knowledge base to make service-to-service

matches. The next figure shows how the lights service can be matched with the timer

service.

Figure A-1: Demonstrator 1. Two services are combined and configuration information has been

entered

On another run of the demonstrator, a service that has not compatibility with any

service is selected. The system interface does not allow any match.

Ioannis Barakos – MPhil Thesis

 102

Figure A-2: Demonstrator 1. Camera service cannot be combined with other services

Finally, another approach for a more automated interoperability system was to allow a

user to input a command that matches the two services as a phrase in English. The

following figure shows a simple scenario of this approach.

Figure A-3: Demonstrator 1. Input service configuration expressed in natural language.

Ioannis Barakos – MPhil Thesis

 103

Prototype 2:

This prototype extended the Prototype 1 by adding UPnP discovery methods and

virtual user-interface capabilities after the multi device combination. As the next

figure shows, the Service Discovery section presents every service publishes itself

through UPnP. By adding the service its UPnP description (XML message) is stored

in memory and the service is moved to the Configuration section.

Figure A-4: Demonstrator 2. Initial state where the services have been discovered

When one of the available services is added to the right list, its status changes to

active and the virtual-interface mechanism draws its interface. On the next figure only

one service is selected thus only its interface is presented on the interface section.

Ioannis Barakos – MPhil Thesis

 104

Figure A-5: Demonstrator 2. One of the discovered services is selected and its interface is

displayed.

Later the Television Service is selected together with the DVD Player service. The

TV Service adds more settings and capabilities to the already existing DVD user-

interface. Next figure presents a screen capture of the demonstrator after two

compatible services are selected.

Ioannis Barakos – MPhil Thesis

 105

Figure A-6: Demonstrator 2: When two of the discovered services are selected, a dynamic

interface containing components of both the two services interfaces is displayed.

Ioannis Barakos – MPhil Thesis

 106

Glossary of Terms

Bundle A bundle is an OSGi term for an application or component. It is a

discreet software component. Some of this project frameworks’

application layer is a set of OSGi bundles.

CCI Computer-to-Computer Interaction. It is the interaction process

that takes place between two services.

CHI Computer-to-Human Interaction. The interaction between users

and computers. Users may interact with the computer by using a

user-interface or the computer may sense the user’s actions using

sensors.

Orchestration /

Choreography

Co-ordination of events in a process. Overlapping with the related

concept of choreography, orchestration directs and manages the

on-demand assembly of multiple component services, to create a

composite application or business process. Orchestration tends to

imply a single co-coordinating force, whereas choreography also

applies to shared co-ordination across multiple autonomous

systems. After evaluating several competing specifications,

mainstream sentiment is now converging on BPEL4WS as the

core standard for web services orchestration.

OSGi Open Services Gateway Initiative. A Java-based specification that

describes a runtime and component model. This research project’s

prototypes run on an OSGi implementation called Knopflerfish.

RMI Remote Method Invocation — a specification for RPC (remote

procedure calls). The client can invoke methods on objects

remotely residing in the server, possibly passing it primitives or

objects as parameters and receiving a primitive or object as a result

RPC A method a program can use to make a call to another program

across a network without specifically dealing with network

protocols. It is often used for printing across a network.

SOAP SOAP is a protocol defining how XML-encoded information can

Ioannis Barakos – MPhil Thesis

 107

be passed using the web-standard hypertext transfer protocol

(HTTP).

Sun SPOT Sun Small Programmable Object Technology is a wireless sensor

network (WSN) developed by Sun Microsystems. The device is

built upon the IEEE 802.15.4 standard. Unlike other available

mote systems, the Sun SPOT is built on the Squawk Java Virtual

Machine.

UDDI Universal Description, Discovery and Integration. A specification

for development of global online directories and registries of Web

services. UDDI allows organizations to register their technical

specifications (such as integration profiles and capabilities) and

then identify the specifications of others.

WSDL Web Services Description Language. A standard by which a web

service can tell clients what messages it accepts and which results

it will return. WSDL is an XML language which is used by service

interfaces and protocol agreements, among others, for describing

access to Web Services. WSDL is independent from the underlying

service implementation language or component model.

XML Extensible Mark-up Language. XML is a specification developed

by the W3C and is a mark-up language for structured documents

XSD XML Schema Definition (language). Used to define the schema for

an XML document. An XSD file will have a .xsd file extension.

Ioannis Barakos – MPhil Thesis

 108

References

[1] M. Weiser, “The Computer for the Twenty-First Century,” Scientific American,

vol. 265, 1991, pp. 94-104.

[2] S. Poslad, Ubiquitous Computing: Smart Devices, Environments and Interaction,

Wiley, ISBN-13 9780470035603.

[3] Sun SPOT (Sun Small Programmable Object Technology),

http://research.sun.com/spotlight/Sun SPOTSJune30.pdf, retrieved on 10/05/08

[4] R. Want, A. Hopper, V. Falcao and J. Gibbons, “The active badge location

system,” ACM Trans. Inf. Syst., vol. 10, 1992, pp. 91-102.

[5] D. Gerlan, D.P. Siewiorek and A. Smailagic, “Project Aura: towards distraction-

free pervasive computing,” IEEE Pervasive Computing, vol. 1, 2002, pp. 22-31

[6] N. Gershenfeld, R. Krikorian and D. Cohen, “The Internet of Things,” Scientific

American, vol. 291, 2004, pp. 76-81.

[7] R. Harper, T. Rodden, Y. Rogers and A. Sellen, Being Human: Human

Computer Interaction in 2020, Microsoft Research Ltd, ISBN-13

9780955476112.

[8] G. D. Abowd, “Classroom 2000: an experiment with the instrumentation of a

living educational environment,” IBM Syst. J., vol. 38, 1999, pp. 508-530.

[9] W.K. Edwards and R. E. Grinter, “At Home with Ubiquitous Computing: Seven

Challenges,” 3rd International Conference on Ubiquitous Computing, Atlanta,

Georgia, vol. 2201, pp. 256 – 272.

[10] D. Dearman and J.S. Pierce, “It's on my other computer!: computing with

multiple devices,” Proceeding of the twenty-sixth annual SIGCHI conference on

Human factors in computing systems, Florence, Italy: ACM, 2008, pp. 767-

776.

[11] M. Mateas, T. Salvador, J. Scholtz and D. Sorensen , “Engineering ethnography

in the home,” Conference companion on Human factors in computing systems:

common ground, Vancouver, British Columbia, Canada: ACM, 1996, pp. 283-

284.

Ioannis Barakos – MPhil Thesis

 109

[12] M. Mozer, “The neural network house: An environment that adapts to its

inhabitants,” Proceedings of the American Association for Artificial

Intelligence, 1998.

[13] P. Cohen , J. Clow, M. Johnston, D. McGee, J. Pittman amd I. Smith,

“Quickset: A Multimodal Interface for Distributed Interactive Simulation,”

Proceedings of the UIST'96 demonstration, 1996, pp. 217-24.

[14] P.R. Cohen, M. Wang and S. C. Baeg, “An open agent architecture,” Journal of

Autonomous Agents and Multi-Agent Systems, vol. 4, 1994, pp. 1-8.

[15] O. Lemon, A. Gruenstein and S. Peters, “Multi-tasking and collaborative

activities in dialogue systems,” Proceedings of the 3rd SIGdial workshop on

Discourse and dialogue - Volume 2, Philadelphia, Pennsylvania: Association for

Computational Linguistics, 2002, pp. 113-124.

[16] D. Marples and P. Kriens, “The Open Services Gateway Initiative: An

Introductory Overview,” IEEE Communications Magazine, vol. 39, issue 12,

2001, pp. 110-114

[17] M.P. Papazoglou and W. Heuvel, “Service oriented architectures: approaches,

technologies and research issues,” The VLDB Journal, vol. 16, 2007, pp. 389-

415.

[18] C. Elting, “Orchestrating output devices: planning multimedia presentations for

home entertainment with ambient intelligence,” Proceedings of the 2005 joint

conference on Smart objects and ambient intelligence: innovative context-aware

services: usages and technologies, Grenoble, France: ACM, 2005, pp. 153-158.

[19] C. Kray, A. Krüger and C. Endres, “Some Issues on Presentations in Intelligent

Environments,” Ambient Intelligence, 2003, pp. 15-26.

[20] SMIL, “Synchronized Multimedia Integration Language”;

http://www.w3.org/AudioVideo, retrieved on 12 March 2009.

[21] W3C, Web Services Choreography Description Language, Version 1.0;

http://www.w3.org/TR/ws-csl-10, retrieved on 07 February 2009

[22] B. Schilit and U. Sengupta, “Device ensembles [ubiquitous computing],”

Computer, vol. 37, 2004, pp. 56-64.

Ioannis Barakos – MPhil Thesis

 110

[23] M. W. Newman, T. Smith and B. Schilit, “Recipes for digital living [ubiquitous

computing in consumer electronics],” Computer, vol. 39, 2006, pp. 104-106.

[24] OSGi Alliance, OSGi Service Platform, IOS Press, 2003.

[25] Gat's ATLANTIS: http://ai.eecs.umich.edu/cogarch2/specific/gat.html, retrieved

on 19 February 2009.

[26] T.M. Mitchell, J. Allen, P. Chalasani, J. Cheng, O. Etzioni, M. Ringuette and

J.C. Schlimmer, "Theo: A framework for self-improving systems," in K.

VanLehn (ed.), Architectures for Intelligence, pp. 323-355, Lawrence Erlbaum

Associates, Hillsdale, NJ, 1991.

[27] J. E. Laird, A. Newell and P. S. Rosenbloom, “SOAR: an architecture for

general intelligence,” Artif. Intell., vol. 33, 1987, pp. 1-64.

[28] H. Lieberman and J. Espinosa, “A goal-oriented interface to consumer

electronics using planning and commonsense reasoning,” Knowledge - Based

Systems, vol. 20, 2007, pp. 592-606.

[29] H. Lieberman, A. Faaborg, J. Espinosa and T. Stocky, “Commonsense on the

Go,” BT Technology Journal, vol. 22, Oct. 2004, pp. 241-252.

[30] A. L. Blum and M. L. Furst, “Fast planning through planning graph analysis,”

Artificial Intelligence, vol. 90, 1997, pp. 281-300.

[31] R. Fikes and N. Nilsson, “STRIPS: A new approach to the application of

theorem proving to problem solving,” Artificial Intelligence, vol. 2, 1971, pp.

189-208.

[32] S. J. Russell and P. Norvig, Artificial Intelligence: Modern Approach, Prentice

Hall, 1995.

[33] C. Elting and G. Michelitsch, “A multimodal presentation planner for a home

entertainment environment,” Proceedings of the 2001 workshop on Perceptive

user interfaces, Orlando, Florida: ACM, 2001, pp. 1-5.

[34] W3C Web Service Activity home page, http://hwww.w3.org/2002/ws/, retrieved

on 02 May 2010.

[35] Web Service Description Language (WSDL), http://www.w3.org/TR/wsdl,

retrieved on 02 May 2010.

Ioannis Barakos – MPhil Thesis

 111

[36] Simple Object Access Protocol (SOAP), http://www.w3.org/TR/soap/, retrieved

on 02 May 2010.

[37] E. André, J. Müller and T. Rist, “WIP/PPP: automatic generation of personalized

multimedia presentations,” Proceedings of the fourth ACM international

conference on Multimedia, Boston, Massachusetts, United States: ACM, 1996,

pp. 407-408.

[38] M. D. Brouwer-Janse, R. W. Bennett, T. Endo, F. L. van Nes, H. J. Strubbe and

D. R. Gentner, “Interfaces for consumer products: "how to camouflage the

computer?",” Proceedings of the SIGCHI conference on Human factors in

computing systems, Monterey, California, United States: ACM, 1992, pp. 287-

290.

[39] D. Davis and M. Parashar, “Latency Performance of SOAP Implementations”,

CCGRID ’02 Proceedings of the 2nd IEEE/ACM International Symposium on

Cluster Computing and the Grid, Washington, DC, United States, 2002, pp.

407.

[40] J. Piesing, “The DVB Multimedia Home Platform (MHP) and Related

Specifications,” Proceedings of the IEEE, vol. 94, 2006, pp. 237-247.

[41] J. Nichols, B. Myers, M. Higgins, J. Hughes, T. Harris, R. Rosenfeld and M.

Pignol, “Generating remote control interfaces for complex appliances,”

Proceedings of the 15th annual ACM symposium on User interface software

and technology, Paris, France: ACM, 2002, pp. 161-170.

[42] T. D. Hodes, R. Katz, E. Servan-Schreiber and L. Rowe, “Composable ad-hoc

mobile services for universal interaction,” Proceedings of the 3rd annual

ACM/IEEE international conference on Mobile computing and networking,

Budapest, Hungary: ACM, 1997, pp. 1-12.

[43] J. Dan R. Olsen, S. Jefferies, T. Nielsen, W. Moyes and P. Fredrickson, “Cross-

modal interaction using XWeb,” Proceedings of the 13th annual ACM

symposium on User interface software and technology, San Diego, California,

United States: ACM, 2000, pp. 191-200.

Ioannis Barakos – MPhil Thesis

 112

[44] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan and T. Winograd, “ICrafter: A

service framework for ubiquitous computing environments,” In Ubicomp, vol.

2201, 2001, pp. 56-75.

[45] H. Lieberman and J. Espinosa, “A goal-oriented interface to consumer

electronics using planning and commonsense reasoning,” Proceedings of the

11th international conference on Intelligent user interfaces, Sydney, Australia:

ACM, 2006, pp. 226-233.

[46] B. Schilit, N. Adams and R. Want, “Context-aware computing applications,” In

Proceedings of the Workshop on Mobile Computing Systems and Applications,

1994, pp. 85-90.

[47] K. Finkenzeller, Rfid Handbook: Radio-Frequency Identification Fundamentals

and Applications, John Wiley & Sons, 2000.

[48] A. Harter, A. Hopper, P. Steggles, A. Ward and P. Webster, “The Anatomy of a

Context-Aware Application,” In Mobile Computing and Networking, 1999, pp.

59-68.

[49] A. Ward, A. Jones and A. Hopper, “A new location technique for the active

office,” Personal Communications, IEEE [see also IEEE Wireless

Communications], vol. 4, 1997, pp. 42-47.

[50] P. Bahl and V. Padmanabhan, “RADAR: an in-building RF-based user location

and tracking system ,” INFOCOM 2000. Nineteenth Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 2,

2000, pp. 775-784.

[51] V. Seshadri, G. V. Zaruba and M. Huber, “A Bayesian Sampling Approach to

In-Door Localization of Wireless Devices Using Received Signal Strength

Indication,” Proceedings of the Third IEEE International Conference on

Pervasive Computing and Communications, IEEE Computer Society, 2005, pp.

75-84

[52] N.B. Priyantha, A. Chakraborty and H. Balakrishnan, “The cricket location-

support system,” null, 2000, pp. 32-43.

Ioannis Barakos – MPhil Thesis

 113

[53] R.J. Orr and G.D. Abowd, “The smart floor: a mechanism for natural user

identification and tracking,” CHI '00 extended abstracts on Human factors in

computing systems, The Hague, The Netherlands: ACM, 2000, pp. 275-276.

[54] S. Yeh, “GETA sandals: a footstep location tracking system,” Personal

Ubiquitous Comput., vol. 11, 2007, pp. 451-463.

[55] A. Gaffar, D. Sinnig, A. Seffah and P. Forbrig, “Modeling patterns for task

models,” Proceedings of the 3rd annual conference on Task models and

diagrams, Prague, Czech Republic: ACM, 2004, pp. 99-104.

[56] E. Furtado, V Furtado and J. Vanderdonckt, “KnowiXML: a knowledge-based

system generating multiple abstract user interfaces in USIXML,” Proceedings

of the 3rd annual conference on Task models and diagrams, Prague, Czech

Republic: ACM, 2004, pp. 121-128.

[57] Q. Limbourg, B. Michotte, L. Bouillon, M. Florins and D. Trevisan, “UsiXML:

A User Interface Description Language for Context-Sensitive User Interfaces,”

in Proceedings of the ACM AVI'2004 Workshop "Developing User

Interfaces with XML: Advances on User Interface Description Languages,

2004, pp. 55-62.

[58] J. Farringdon, “Wearable Sensor Badge and Sensor Jacket for Context

Awareness,” Proceedings of the 3rd IEEE International Symposium on

Wearable Computers, IEEE Computer Society, 1999, p. 107.

[59] S. Lee and K. Mase, “Activity and location recognition using wearable sensors,”

IEEE Pervasive Computing, vol. 1, 2002, pp. 24-32.

[60] Seon-Woo Lee and K. Mase, “Recognition of walking behaviors for pedestrian

navigation,” Control Applications, 2001. (CCA '01). Proceedings of the 2001

IEEE International Conference on, 2001, pp. 1152-1155.

[61] L. Bao and S.S. Intille, “Activity recognition from user-annotated acceleration

data,” 2004, pp. 1-17.

[62] N. Kern, B. Schiele and A. Schmidt, “Multi-sensor activity context detection for

wearable computing,” In Proc. EUSAI, LNCS, vol. 2875, 2003, pp. 220-232.

Ioannis Barakos – MPhil Thesis

 114

[63] Zekeng Liang, Ioannis Barakos and Stefan Poslad, “Indoor Location and

Orientation Determination for Wireless Personal Area Networks,” MELT 2009,

2009, pp. 91-105

[64] K. Van Laerhoven, A. Schmidt and H. Gellersen, “Multi-sensor context aware

clothing,” Wearable Computers, 2002. (ISWC 2002). Proceedings. Sixth

International Symposium on, 2002, pp. 49-56.

[65] K.K. Khedo, “Context-Aware Systems for Mobile and Ubiquitous Networks,”

Proceedings of the International Conference on Networking, International

Conference on Systems and International Conference on Mobile

Communications and Learning Technologies, IEEE Computer Society, 2006, p.

123.

[66] A. Schmidt, “Ubiquitous Computing- Computing in Context,” 2002.

[67] R.B. Doorenbos, “Production matching for large learning systems,” Carnegie

Mellon University, 1995

[68] B. Margolis, SOA for the Business Developer: Concepts, BPEL, and SCA

(Business Developers series), MC Press, ISBN-978-158347-065-7

