
S E C U R I T Y A N D P R I VA C Y F O R I O T E C O S Y S T E M S

vom Fachbereich Informatik
der Technische Universität Darmstadt

genehmigte Dissertation
zur Erlangung des akademischen Grades

Doktor-Ingenieurin (Dr.-Ing.)

von jiska dorothee classen, m . sc .

geboren am 26. Februar 1990 in Kassel, Deutschland.

Erstreferent: Prof. Dr.-Ing. Matthias Hollick
Korreferent: Assoc. Prof. Paul Patras (Ph.D.)

Tag der Einreichung: 6. Dezember 2019

Tag der Disputation: 20. Januar 2020

Darmstadt 2020

Hochschulkennziffer D17



Jiska Dorothee Classen, Security and Privacy for IoT Ecosystems, Dissertation, Technische
Universität Darmstadt, 2020.

Fachbereich Sichere Mobile Netze
Fachbereich Informatik
Technische Universität Darmstadt
Jahr der Veröffentlichung: 2020

Tag der mündlichen Prüfung: January 20, 2020

URN: urn:nbn:de:tuda-tuprints-114229
URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/11422

Veröffentlicht unter CC BY-NC-ND 4.0 International
(Namensnennung – Nicht kommerziell – Keine Bearbeitung)
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de

Licensed under CC BY-NC-ND 4.0 International
(Attribution – Non-Commercial – No Derivatives)
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

https://tuprints.ulb.tu-darmstadt.de/id/eprint/11422
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


A B S T R A C T

Smart devices have become an integral part of our everyday life. In contrast to smart-
phones and laptops, Internet of Things (IoT) devices are typically managed by the ven-
dor. They allow little or no user-driven customization. Users need to use and trust IoT
devices as they are, including the ecosystems involved in the processing and sharing of
personal data. Ensuring that an IoT device does not leak private data is imperative.

This thesis analyzes security practices in popular IoT ecosystems across several price
segments. Our results show a gap between real-world implementations and state-of-the-
art security measures. The process of responsible disclosure with the vendors revealed
further practical challenges. Do they want to support backward compatibility with the
same app and infrastructure over multiple IoT device generations? To which extent can
they trust their supply chains in rolling out keys? Mature vendors have a budget for
security and are aware of its demands. Despite this goodwill, developers sometimes fail
at securing the concrete implementations in those complex ecosystems. Our analysis of
real-world products reveals the actual efforts made by vendors to secure their products.
Our responsible disclosure processes and publications of design recommendations not
only increase security in existing products but also help connected ecosystem manufac-
turers to develop secure products.

Moreover, we enable users to take control of their connected devices with firmware
binary patching. If a vendor decides to no longer offer cloud services, bootstrapping a
vendor-independent ecosystem is the only way to revive bricked devices. Binary patch-
ing is not only useful in the IoT context but also opens up these devices as research plat-
forms. We are the first to publish tools for Bluetooth firmware and lower-layer analysis
and uncover a security issue in Broadcom chips affecting hundreds of millions of devices
manufactured by Apple, Samsung, Google, and more. Although we informed Broadcom
and customers of their technologies of the weaknesses identified, some of these devices
no longer receive official updates. For these, our binary patching framework is capable
of building vendor-independent patches and retrofit security.

Connected device vendors depend on standards; they rarely implement lower-layer
communication schemes from scratch. Standards enable communication between de-
vices of different vendors, which is crucial in many IoT setups. Secure standards help
making products secure by design and, thus, need to be analyzed as early as possible.
One possibility to integrate security into a lower-layer standard is Physical-Layer Se-
curity (PLS). PLS establishes security on the Physical Layer (PHY) of wireless transmis-
sions. With new wireless technologies emerging, physical properties change. We analyze
how suitable PLS techniques are in the domain of mmWave and Visible Light Communi-
cation (VLC). Despite VLC being commonly believed to be very secure due to its limited
range, we show that using VLC instead for PLS is less secure than using it with Radio
Frequency (RF) communication.

The work in this thesis is applied to mature products as well as upcoming standards.
We consider security for the whole product life cycle to make connected devices and IoT
ecosystems more secure in the long term.

iii



Z U S A M M E N FA S S U N G

Intelligente Geräte sind fester Bestandteil unseres täglichen Lebens geworden. Im Ge-
gensatz zu herkömmlichen Handys und Laptops, werden Geräte im Internet der Din-
ge (IdD) in der Regel vom Hersteller gesteuert. Nutzer haben meist keinerlei Möglich-
keit, an solchen Geräten Anpassungen vorzunehmen. Stattdessen müssen Nutzer IdD-
Geräten vertrauen und diese so nutzen, wie sie sind; inklusive allen hiermit verbunde-
nen Ökosystemen zur Datenverarbeitung. Es muss deshalb in jedem Fall sichergestellt
werden, dass ein IdD-Gerät ausspähsicher ist.

Diese Dissertation analysiert Sicherheitspraktiken in weit verbreiteten IdD-Ökosyste-
men über verschiedene Preissegmente hinweg. Unsere Ergebnisse zeigen eine Lücke
zwischen tatsächlichen Implementierungen und dem aktuellen Stand der Technik auf.
Bei der Kommunikation von Sicherheitslücken an Hersteller sind uns grundlegende
praxisnahe Problemstellungen aufgefallen. Möchten Hersteller Rückwärtskompatibili-
tät innerhalb einer Handy-Anwendung mit mehreren Gerätegenerationen ermöglichen?
Können sie ihrer Lieferkette die Installation von Schlüsselmaterial anvertrauen? Herstel-
ler, die schon länger am Markt sind, sind sich über diesen Problembereich bewusst, und
haben deshalb ein Budget für Produktsicherheit. Trotz dieses Bewusstseins scheitern
Entwickler manchmal daran, Sicherheit in komplexen Ökosystemen korrekt anzuwen-
den. Unsere Analyse diverser Produkte am Markt zeigt auf, wie Hersteller Sicherheit
praktisch umsetzen. Unsere offene Kommunikation über Sicherheitsproblematiken und
unsere Empfehlungen helfen sowohl, die Sicherheit der direkt betroffenen Produkte zu
erhöhen, als auch den Herstellern vernetzter Ökosysteme sichere Produkte zu entwi-
ckeln.

Darüber hinaus ermöglichen wir Anwendern mit Hilfe von Binärcodeänderungen, die
Firmware ihrer vernetzten Geräte zu modifizieren. Sobald ein Hersteller seine Cloud-
Dienste einstellt, können hierdurch unbrauchbar gewordene Geräte nun wiederverwen-
det werden, indem ein alternatives herstellerunabhängiges Ökosystem aufgezogen wird.
Binärcodeänderungen sind nicht nur im IdD-Kontext nützlich – sie können auch da-
zu genutzt werden, herkömmliche Geräte für Forschungszwecke umzufunktionieren.
Wir sind die ersten, die Werkzeuge für Bluetooth-Firmware zur Untersuchung der un-
teren Netzwerkschichten zur Verfügung stellen. Bei der Firmwareanalyse ist uns eine
Schwachstelle aufgefallen, welche mehrere Hunderte Millionen von Broadcom-Chips be-
traf, die unter anderem von Apple, Samsung und Google verbaut wurden. Wir haben
Broadcom und ihre betroffenen Kunden informiert, damit diese Lücken geschlossen wer-
den können. Allerdings erhalten einige der betroffenen Geräte keine Updates mehr.
Auch bei diesen können Binärcodeänderungen eingesetzt werden, um herstellerunab-
hängig Sicherheitsupdates für alte Geräte herauszubringen.

Hersteller vernetzter Geräte sind von Standards abhängig. Nur selten implementie-
ren sie neue Kommunikationsschemata für die unteren Netzwerkschichten selbst, denn
Standards ermöglichen die Kommunikation zwischen Geräten unterschiedlicher Her-
steller, was in IdD-Installationen häufig benötigt wird. Sichere Standards helfen dabei,
Produkte von Grund auf sicher zu machen, und sollten deshalb frühestmöglich analy-
siert werden. Eine Methode, Sicherheit in Standards für die unteren Netzwerkschichten

iv



zu implementieren, ist Sicherheit für die physikalische Schicht. Hierbei werden physi-
kalische Eigenschaften drahtloser Übertragungen dazu genutzt, diese abzusichern. Mit
neuen drahtlosen Technologien ändern sich solche physikalischen Eigenschaften. Wir
analysieren, wie gut sich Sicherheit auf der physikalischen Schicht für Millimeterwellen-
und Lichtkommunikation anwenden lässt. Trotz der allgemeinen Annahme, dass Licht-
kommunikation aufgrund der begrenzten Reichweite sehr sicher ist, zeigen wir auf, dass
sich Lichtkommunikation wegen ihrer anderen Eigenschaften insgesamt schlechter für
Sicherheit auf der physikalischen Schicht eignet als herkömmliche Radiowellenkommu-
nikation.

Diese Dissertation beschäftigt sich sowohl mit weit verbreiteten Produkten als auch
mit bekannten Standards. Wir betrachten Sicherheit im gesamten Produktlebenszyklus
um Sicherheit in vernetzten Geräten und IdD-Ökosystemen langfristig sicherer zu ma-
chen.

v





A U T H O R ’ S P U B L I C AT I O N S A N D C O L L A B O R AT I O N S

Research on advanced topics is often a joint effort. In the following, I will give a de-
tailed statement on collaborations for my primary and co-authored publications. I want
to thank my supervisor Matthias Hollick and co-supervisor Paul Patras; my colleagues,
students and collaborators at TU-Darmstadt Robin Klose, Matthias Schulz, Daniel Stein-
metzer, Fabian Ullrich, Daniel Wegemer, Max Weller, Johannes Eger, Dennis Mantz, Jan
Ruge, Jan-Pascal Kwiotek, Martin Pfeiffer, Ahmad-Reza Sadeghi, Hossein Fereidooni,
Markus Miettinen; Tom Spink from University of Edinburgh; and Edward Knightly and
Joe Chen from Rice University. In addition to scientific papers, we published at non-
academic venues. Some publications also resulted in open-source software. A detailed
list and statement on my publications and work at SEEMOO are listed below.

statement on scientific publications

My Master thesis topic was very different from my PhD topics. When I started at
SEEMOO, I was still in contact with my Master thesis supervisors Florian Volk (team of
Max Mühlhäuser) and Johannes Braun (group of Johannes Buchmann). We published
my results as a paper and as part of a journal article [5; 19].

The first student under my supervision, Martin Pfeiffer, did a great job in localizing
Terrestrial Trunked Radio (TETRA) transmissions. Since this work turned out to be
more on the PHY than expected, Robin Klose also assisted us a lot. Together with
TETRA fuzzing results on the link layer by my student Jan-Pascal Kwiotek, this work
was published [15].

Matthias Schulz and I investigated how to implement covert channels on off-the-shelf
devices [7]. I implemented the first version using raw Orthogonal Frequency-Division
Multiplexing (OFDM) frames, which he re-implemented to work on standard Wi-Fi
frames anyone can receive. My additional focus was the detectability of these covert
channels.

During the end of my first year, from March to June 2015, I visited Edward Knightly’s
group at Rice University in Houston for three months. We had working in tandem
with Daniel Steinmetzer focusing on mmWave eavesdropping [16; 17; 18], Joe Chen
continuing mmWave work for localization [13], and me analyzing VLC eavesdropping [6;
7].

Being interested in building security on top of new communication standards, Richard
Meister, a Master’s Degree student I supervised, built a VLC testbed [10]. We got sup-
port from Marcos Katz and Muhammad Saad Saud for the Universal Software Radio
Peripheral (USRP)-based implementation.

Paul Patras from the University of Edinburgh visited our group in summer 2016.
We started our work on the Fitbit ecosystem and analyzed hardware and web compo-
nents [14]. The team of Hossein Fereidooni, Ahmad-Reza Sadeghi, Markus Miettinen,
and Mauro Conti specialized in the hardware parts, whom I also assisted in soldering
and reverse engineering the hardware design. The team of Paul Patras and Tom Spink

vii



analyzed web communication, and I helped them in reverse engineering essential parts
of the proprietary protocol. Together with Daniel Wegemer, Paul Patras, and Tom Spink,
I continued reverse-engineering the Fitbit firmware [2]. My focus was on the firmware
update process, including its encryption, while Daniel Wegemer supported me in patch-
ing new functionality into the firmware.

Dennis Mantz started a thesis on Broadcom Bluetooth chips under the supervision of
Matthias Schulz. When Matthias Schulz finished his PhD, I took over the supervision
of Dennis Mantz. We published the resulting framework InternalBlue [9]. Based on
InternalBlue, I reverse-engineered the Broadcom Bluetooth diagnostics protocol [1].

Fabian Ullrich, Johannes Eger, and I analyzed the Neato vacuum cleaner ecosystem [11].
My main focus was the hardware part—I bypassed secure boot and extracted firmware
from various Neato and Vorwerk robots. Moreover, I did the initial analysis of the
firmware image and uncovered the static log and core dump encryption key.

Due to my other work in the area of IoT, Erik Tews asked me to join him in analyzing
Bluetooth finders, a work currently under submission [12]. Max Weller implemented
PrivateFind, a secure and privacy-preserving finder protocol. Discussions on how the
protocol of PrivateFind should look like were a joint effort. Fabian Ullrich did the security
review of the Tile ecosystem, which he found to be insecure despite a previous analysis
which did not find any security issues. I wrote the initial draft of the whole paper.

primary and co-first author

1 Jiska Classen and Matthias Hollick. “Inside Job: Diagnosing Bluetooth Lower Lay-
ers Using Off-the-Shelf Devices.” In: 12th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec). Replicability label. 2019. doi: 10.1145/3317549.
3319727. Part of this thesis.

2 Jiska Classen, Daniel Wegemer, Paul Patras, Tom Spink, and Matthias Hollick.
“Anatomy of a Vulnerable Fitness Tracking System: Dissecting the Fitbit Cloud,
App, and Firmware.” In: PACM on Interactive, Mobile, Wearable and Ubiquitous Tech-
nologies (IMWUT). 2018. Part of this thesis.

3 Jiska Classen, Daniel Wegemer, Paul Patras, Tom Spink, and Matthias Hollick.
Demo. Modified Fitbit Firmware: Reach your Daily Goals within Seconds. Singapore,
2018. url: http://ubicomp.org/ubicomp2018/program/demo-schedule.pdf.

4 Jiska Classen, Daniel Steinmetzer, and Matthias Hollick. “Opportunities and Pit-
falls in Securing Visible Light Communication on the Physical Layer.” In: Proceed-
ings of the 3rd Workshop on Visible Light Communication Systems. ACM. 2016. Part of
this thesis.

5 Jiska Classen, Johannes Braun, Florian Volk, Matthias Hollick, Johannes Buchmann,
and Max Mühlhäuser. “A Distributed Reputation System for Certification Author-
ity Trust Management.” In: Proceedings of IEEE TrustCom. Vol. 1. IEEE. 2015.

6 Jiska Classen, Joe Chen, Daniel Steinmetzer, Matthias Hollick, and Edward Knightly.
“The Spy Next Door: Eavesdropping on High Throughput Visible Light Commu-
nications.” In: Proceedings of the 2nd International Workshop on Visible Light Commu-
nications Systems. ACM. 2015. Part of this thesis.

viii

https://doi.org/10.1145/3317549.3319727
https://doi.org/10.1145/3317549.3319727
http://ubicomp.org/ubicomp2018/program/demo-schedule.pdf


7 Jiska Classen, Matthias Schulz, and Matthias Hollick. “Practical Covert Channels
for WiFi Systems.” In: IEEE Conference on Communications and Network Security.
IEEE. 2015.

co-author

8 Michael Spörk, Jiska Classen, Carlo Alberto Boano, Matthias Hollick, and Kay
Römer. “Improving the Reliability of Bluetooth Low Energy Connections.” In: In-
ternational Conference on Embedded Wireless Systems and Networks (EWSN). 2020.

9 Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias Hollick. “InternalBlue
- Bluetooth Binary Patching and Experimentation Framework.” In: The 17th Annual
International Conference on Mobile Systems, Applications, and Services (MobiSys). 2019.
doi: 10.1145/3307334.3326089. Part of this thesis.

10 Richard Meister, Jiska Classen, Muhammad Saad Saud, Marcos Katz, and Matthias
Hollick. “Practical VLC to WiFi Handover Mechanisms.” In: CoWireless. 2019.

11 Fabian Ullrich, Jiska Classen, Johannes Eger, and Matthias Hollick. “Vacuums in
the Cloud: Analyzing Security in a Hardened IoT Ecosystem.” In: The 13th USENIX
Workshop on Offensive Technologies (WOOT). 2019. Part of this thesis.

12 Max Weller, Jiska Classen, Fabian Ullrich, Erik Tews, and Matthias Hollick. “Lost
and Found: Stopping Bluetooth Finders from Leaking Private Information.” In:
Under submission. 2019. Part of this thesis.

13 Joe Chen, Daniel Steinmetzer, Jiska Classen, Edward Knightly, and Matthias Hol-
lick. “Pseudo Lateration: Millimeter-Wave Localization Using a Single RF Chain.”
In: Wireless Communications and Networking Conference. IEEE. 2017.

14 Hossein Fereidooni, Jiska Classen, Tom Spink, Paul Patras, Markus Miettinen, Ah-
mad-Reza Sadeghi, Matthias Hollick, and Mauro Conti. “Breaking Fitness Records
without Moving: Reverse Engineering and Spoofing Fitbit.” In: International Sympo-
sium on Research in Attacks, Intrusions, and Defenses (RAID). Springer, Cham. 2017.

15 Martin Pfeiffer, Jan-Pascal Kwiotek, Jiska Classen, Robin Klose, and Matthias Hol-
lick. “Analyzing TETRA Location Privacy and Network Availability.” In: Proceed-
ings of the 6th Annual ACM CCS Workshop on Security and Privacy in Smartphones and
Mobile Devices. ACM. 2016.

16 Daniel Steinmetzer, Jiska Classen, and Matthias Hollick. “Exploring Millimeter-
Wave Network Scenarios with Ray-tracing based Simulations in mmTrace.” In:
IEEE Infocom 2016 Poster Presentation. IEEE. 2016.

17 Daniel Steinmetzer, Jiska Classen, and Matthias Hollick. “mmTrace: Modeling Milli-
meter-wave Indoor Propagation with Image-based Ray-tracing.” In: Millimeter-wave
Networking Workshop. IEEE. 2016.

18 Daniel Steinmetzer, Joe Chen, Jiska Classen, Edward Knightly, and Matthias Hol-
lick. “Eavesdropping with Periscopes: Experimental Security Analysis of Highly
Directional Millimeter Waves.” In: IEEE Conference on Communications and Network
Security (CNS). IEEE. 2015.

ix

https://doi.org/10.1145/3307334.3326089


19 Johannes Braun, Florian Volk, Jiska Classen, Johannes Buchmann, and Max Mühl-
häuser. “CA Trust Management for the Web PKI.” In: Journal of Computer Security
22.6 (2014).

non-academic publications and talks

Academic publications are significant in a scientific context. However, many of these fail
in publishing results with open access and recording videos. Scientific papers are often
invisible to the press and the public.

Thus, I often decided to publish work in progress as a result of public events. I
especially want to thank the Chaos Communication Congress (C3) organization teams
for supporting the growth of the events and allowing me to talk in lecture halls as big
as 3000 seats in Hamburg [37] and 5000 seats in Leipzig [31]. The C3 Video Operation
Center (C3VOC) did a fantastic job in recording the talks, streaming them live, and
publishing recordings within hours. Despite not being scientifically recognized, 35C3

had over 600 submissions, of which only 150 were accepted. 36C3 had 690 submissions,
194 of those in security, and only 39 of the security talks were taken [12]. DEF CON 27

in Las Vegas had an acceptance rate of less than 10%.

20 Jiska Classen. All Wireless Communication Stacks are Equally Broken. Leipzig: 36.
Chaos Communication Congress, 2019.

21 Jiska Classen. Vacuums in the Cloud. Karlsruhe: OWASP, 2019.

22 Jiska Classen and Johannes Eger. Smart Vacuum Cleaners as Remote Wiretapping De-
vices. Wien: Easterhegg, 2019. url: https://media.ccc.de/v/eh19-157-smart-
vacuum-cleaners-as-remote-wiretapping-devices.

23 Jiska Classen and Dennis Mantz. Bluetooth, Does it Spark Joy? Heidelberg: TROOP-
ERS, 2019. url: https://www.troopers.de/troopers19/agenda/smsm3l/.

24 Jiska Classen and Dennis Mantz. Playing with Bluetooth. Darmstadt: MRMCD, 2019.
url: https://media.ccc.de/v/2019-185-playing-with-bluetooth.

25 Jiska Classen and Dennis Mantz. Reversing and Exploiting Broadcom Bluetooth. Mon-
treal: REcon, 2019. url: https://cfp.recon.cx/reconmtl2019/talk/EQTRGU/.

26 Fabian Ullrich and Jiska Classen. Vacuum Cleaning Security—Pinky and the Brain
Edition. Las Vegas: DEF CON 27, 2019. url: https://www.defcon.org/html/
defcon-27/dc-27-speakers.html#jiska.

27 Daniel Wegemer, Carolin Groß, and Jiska Classen. A Security Researchers Guide
into the Fitbit Ecosystem. Las Vegas: IoT Village at DEF CON 27, 2019. url: https:
//www.iotvillage.org/.

28 Jiska Classen. Pinky & Brain are Taking Over the World with Vacuum Cleaners. Darm-
stadt: MRMCD, 2018. url: https://media.ccc.de/v/2018-124-pinky-brain-are-
taking-over-the-world-with-vacuum-cleaners.

29 Jiska Classen. Praktische IoT-Sicherheit am Beispiel von Wearables und Smart Home.
Frankfurt: Deka Bank, 2018.

30 Jiska Classen. ma1lm4n.mp4. Leipzig: 35. Chaos Communication Congress, 2018.
url: https://media.ccc.de/v/35c3-9566-lightning_talks_day_2#t=219.

x

https://media.ccc.de/v/eh19-157-smart-vacuum-cleaners-as-remote-wiretapping-devices
https://media.ccc.de/v/eh19-157-smart-vacuum-cleaners-as-remote-wiretapping-devices
https://www.troopers.de/troopers19/agenda/smsm3l/
https://media.ccc.de/v/2019-185-playing-with-bluetooth
https://cfp.recon.cx/reconmtl2019/talk/EQTRGU/
https://www.defcon.org/html/defcon-27/dc-27-speakers.html#jiska
https://www.defcon.org/html/defcon-27/dc-27-speakers.html#jiska
https://www.iotvillage.org/
https://www.iotvillage.org/
https://media.ccc.de/v/2018-124-pinky-brain-are-taking-over-the-world-with-vacuum-cleaners
https://media.ccc.de/v/2018-124-pinky-brain-are-taking-over-the-world-with-vacuum-cleaners
https://media.ccc.de/v/35c3-9566-lightning_talks_day_2#t=219


31 Jiska Classen and Dennis Mantz. Dissecting Broadcom Bluetooth. Leipzig: 35. Chaos
Communication Congress, 2018. url: https://media.ccc.de/v/35c3- 9498-
dissecting_broadcom_bluetooth. Talk in a lecture hall with 5000 seats and Blue-
tooth live demos.

32 Jiska Classen and Daniel Wegemer. Create your own Fitness Tracker Firmware. Mon-
treal: REcon, 2018. url: https://recon.cx/2018/montreal/schedule/events/118.
html.

33 Jiska Classen and Daniel Wegemer. Hacking your Fitbit. Würzburg: Easterhegg,
2018. url: https://media.ccc.de/v/TNYPFB.

34 Jiska Classen. Leaking and Modifying Fitbit Data. Frankfurt: Continental AG, 2017.

35 Jiska Classen and Daniel Wegemer. Doping your Fitbit. Leipzig: 34. Chaos Commu-
nication Congress, 2017. doi: 10.5446/34791. url: https://media.ccc.de/v/34c3-
8908-doping_your_fitbit.

36 Jiska Classen and Daniel Wegemer. Leaking and Modifying Fitbit Data. Darmstadt:
MRMCD, 2017. url: https://media.ccc.de/v/3T9E8Y.

37 Jiska Classen. Building and Breaking Wireless Security. Hamburg: 32. Chaos Commu-
nication Congress, 2015. url: https://media.ccc.de/v/32c3-7119-building_
and_breaking_wireless_security. Talk in a lecture hall with 3000 seats.

38 Jiska Classen. Wireless Physical Layer Security. Darmstadt: MRMCD, 2015. url: https:
//media.ccc.de/v/MRMCD15-7011-wireless_physical_layer_security.

software

A lot of work in the scope of this thesis focuses on real-world IoT ecosystems. To enable
users to take control of their devices and add custom behavior, we published various
software. This software supports modified and privacy-preserving usage of Fitbit fitness
trackers [43; 41], as well as experimentation with Broadcom Bluetooth chips [39; 42; 40].
In contrast to the original software provided by those vendors, our software is open
source.

39 Jiska Classen. Bluetooth H4 Broadcom Wireshark plugin from the InternalBlue project.
https://github.com/seemoo-lab/h4bcm_wireshark_dissector. 2019.

40 Jiska Classen and Kristoffer Schneider. Nexmon for Bluetooth. https://github.com/
seemoo-lab/nexmon/tree/bluetooth-wip. 2019.

41 Jiska Classen and Daniel Wegemer. Fitbit Firmware Modifications. https://github.
com/seemoo-lab/fitness-firmware. 2019.

42 Dennis Mantz and Jiska Classen. InternalBlue Broadcom Bluetooth Experimentation
Framework. https://github.com/seemoo-lab/internalblue. 2019.

43 Steffen Kreis, Johannes Riedel, Tobias Krichel, Jiska Classen. Fitbit Open Source
Android App. https://github.com/seemoo-lab/fitness-app. 2019.

xi

https://media.ccc.de/v/35c3-9498-dissecting_broadcom_bluetooth
https://media.ccc.de/v/35c3-9498-dissecting_broadcom_bluetooth
https://recon.cx/2018/montreal/schedule/events/118.html
https://recon.cx/2018/montreal/schedule/events/118.html
https://media.ccc.de/v/TNYPFB
https://doi.org/10.5446/34791
https://media.ccc.de/v/34c3-8908-doping_your_fitbit
https://media.ccc.de/v/34c3-8908-doping_your_fitbit
https://media.ccc.de/v/3T9E8Y
https://media.ccc.de/v/32c3-7119-building_and_breaking_wireless_security
https://media.ccc.de/v/32c3-7119-building_and_breaking_wireless_security
https://media.ccc.de/v/MRMCD15-7011-wireless_physical_layer_security
https://media.ccc.de/v/MRMCD15-7011-wireless_physical_layer_security
https://github.com/seemoo-lab/h4bcm_wireshark_dissector
https://github.com/seemoo-lab/nexmon/tree/bluetooth-wip
https://github.com/seemoo-lab/nexmon/tree/bluetooth-wip
https://github.com/seemoo-lab/fitness-firmware
https://github.com/seemoo-lab/fitness-firmware
https://github.com/seemoo-lab/internalblue
https://github.com/seemoo-lab/fitness-app


cves and acknowledged vulnerabilities

The practical work with deployed systems and off-the-self-hardware uncovered several
vulnerabilities. All vulnerabilities were responsibly disclosed. Some of these were sub-
mitted as Common Vulnerabilities and Exposure (CVE) or got public acknowledgments
by the vendor. I want to thank Fitbit, Neato, Broadcom, Cypress, Google, and Apple for
properly handling my disclosure requests and allowing me to publish results.

cve-2019-18614 A buffer size misconfiguration in the CYW20735 evaluation board
firmware leads to a heap overflow that can be triggered as a local user and over the air.

cve-2019-15063 On Broadcom Bluetooth Wi-Fi combo chips, an attacker who has ex-
ecution within the Bluetooth chip can crash Wi-Fi. This crash is persistent until the
complete smartphone/device reboots; without a reboot, the user cannot re-enable Wi-
Fi. Some Android and iOS systems produce a kernel panic due to this and immediately
reboot on their own. To trigger this behavior, the attacker needs to write to the global co-
existence registers. This vulnerability shows that Bluetooth and Wi-Fi are not adequately
isolated, despite running on different ARM cores.

cve-2019-6994 An issue was discovered on Broadcom BCM4335C0 chips as used with
the Nexus 5 phone. The attacker initiates Secure Simple Pairing (SSP) on classic Blue-
tooth. The device under attack does nothing, or at least the user does not immediately
accept/reject the pairing request. The device under attack has no established pairing to
another device. While the confirmation display for the pairing is still open, the attacker
sends an LMP_start_encryption_req, which causes the Bluetooth stack of the device
under attack to crash. The crash happens within the bignum_xormod calculation.

cve-2018-19860 Broadcom Bluetooth firmware built before summer 2014, as well as
some later builds, does not properly restrict Link Manager Protocol (LMP) commands
with opcode 0 and executes particular memory contents upon receiving an LMP com-
mand, as demonstrated by executing an Host Controller Interface (HCI) command.

Broadcom did not further specify which devices are affected, but we can confirm
at least the following devices: MacBook Pro early 2011 BCM4331, MacBook Pro mid
2012 BCM20702A3, MacBook Pro early 2015, MacBook Pro 2016, iPhone 5, iPhone 5s
BCM43342, iPhone 6 BCM4345, Nexus 5 BCM4335C0, Xperia Z3 Compact BCM4335C0,
Xperia Z5 BCM4356A2, Raspberry Pi 3 BCM43438A1, Huawei Honor 8, Samsung Galaxy
Note 3 BCM4335C0. iOS update 12.1.3 fixed iPhones.

cve-2018-20785 A secure boot bypass and memory extraction exists in Neato Bot-
vac Connected 2.2.0 devices and later. Firmware is stored in a signed and encrypted
format on a flash chip. Regular firmware updates contain the same secure format.
During startup, AM335x secure boot decrypts and executes firmware. Secure boot
can be bypassed by connecting to the Neato USB serial and entering TestMode On fol-
lowed by SetSystemMode PowerCycle. This power cycle does not completely reset the
chip—memory contents are still in place. Yet, it restarts into a boot menu that enables
XMODEM upload and execution of an unsigned QNX Image File System (IFS), thereby

xii



bypassing secure boot. Moreover, the attacker can craft a custom QNX IFS and locate
it to unused memory to extract all memory contents that were present before. Memory
contents include the original firmware and sensitive information, such as Wi-Fi creden-
tials. Boot menu and system upload are accessible via a secondary unlabeled serial
interface with three wide pins in the back on the right-hand side.

cve-2018-17177 An issue was discovered on Neato Botvac Connected 2.2.0 and Botvac
85 1.2.1 devices. Static encryption is used for the copying of so-called “black box” logs
(event logs and core dumps) to a USB stick. These logs are RC4-encrypted with a 9-
character password of *^JEd4W!I that is obfuscated by hiding it within a custom /bin/r

c4_crypt binary.

ios and android The iOS 13 updates additionally recognize us for our work on
Bluetooth [App19a]. Moreover, the Android updates recognize our Bluetooth CVEs [And19a].

fitbit Fitbit acknowledges our results [Cla+18a; Fer+17a] and cooperation with the
following statement: “Thank you to the teams from the University of Padua, Technische
Universität Darmstadt, and the University of Edinburgh for their assistance.” [Fit18]

Fitness tracker firmware updates with this acknowledgment: Alta 21.40.2, Alta HR
26.63.2, Blaze 17.8.402.1, Charge 8.124, Charge 2 22.55.2, Charge HR 18.128, Flex 2 24.30.2,
Flex 7.88, One 6.64, Surge 16.34.6.1.

xiii





T E A C H I N G A N D P R E S S A C T I V I T Y

Besides publications, this work also reached out to students and public media. In the
following, an overview of supervised theses, courses, and lectures, as well as press
activity, is provided. In total, I supervised or co-supervised 21 successfully finished
Bachelor and Master theses.

supervised students

I want to thank all students for their excellent work and collaboration. They gave me
new perspectives and enabled me to work on multiple topics in parallel.

Some of the theses and works of students were published in a scientific context. Max
Weller’s work as HiWi on Bluetooth finders is under review [12]. Fabian Ullrich contin-
ued to work at SEEMOO after his thesis, co-supervised Johannes Eger, and we published
our work on Neato vacuum cleaners at WOOT [11]. Dennis Mantz’ thesis resulted in a
MobiSys publication [9]. Moreover, I continued his research, leading to a WiSec pub-
lication [1], and further collaborations with the University of Brescia and TU Graz are
ongoing. His great work was awarded the CAST Förderpreis and the Datenlotsenpreis.
The results of Richard Meister, Jan-Pascal Kwiotek and Martin Pfeiffer were published
at workshops [10; 15].

To give outstanding results appropriate to the audience, I also supported my students
in presenting their work on public events. Johannes Eger and I presented work in
progress results on the Neato vacuum cleaning robots in Vienna [22]. Dennis Mantz
and I gave a talk, including a Bluetooth live demo in a lecture hall with 5000 seats [31].
We were invited to give this talk a second time at TROOPERS [31] and presented an
updated talk at REcon [25]. Fabian Ullrich presented his work on Nello door openers
in Darmstadt [Ull18b]. Daniel Wegemer and I presented our Fitbit results along with
further findings of Matthias Hanreich at REcon in Montréal [32].

Some of my students even went abroad for collaborations and research experiences.
Jan Ruge got funding to attend DEF CON 27 in Las Vegas. Carolin Groß got a CROSS-
ING Female Student Mentoring and Networking travel grant and joined me for the Ubicomp
conference in Singapore. Richard Meister visited the University of Oulu in Finland dur-
ing his thesis. Sven Neubauer and Jannik Jürgens both used equipment in Köln provided
by Dr. Ralf Reckenfelderbäumer, until we got our TETRA base station.

44 Patrick Dworski. “A Study on Proprietary Communication Protocols Used in TETRA
Hardware Components.” Supervised by Jiska Classen. Bachelor thesis. TU Darm-
stadt, 2019.

45 Johannes Eger. “Analyzing Firmware and Cloud Security of a Premium IoT Ecosys-
tem.” Supervised by Fabian Ullrich and Jiska Classen. Master thesis. TU Darm-
stadt, 2019.

46 Carolin Gross. “A researcher’s guide to the Fitbit Ionic smartwatch.” Supervised
by Jiska Classen and Daniel Wegemer. Master thesis. TU Darmstadt, 2019.

xv



47 Uwe Müller. “PowerPC Binary Patching and dissecting of TETRA Base Station.”
Supervised by Jiska Classen. Master thesis. TU Darmstadt, 2019.

48 Florentin Putz. “Secure Device Pairing Using Short-Range Acoustic Communica-
tion.” Supervised by Flor Álvarez and Jiska Classen. Master thesis. TU Darmstadt,
2019.

49 Jan Ruge. “Dynamic Bluetooth Firmware Analysis.” Supervised by Jiska Classen.
Master thesis. TU Darmstadt, 2019.

50 Tim Walter. “Fuzzing the Linux Bluetooth Stack.” Supervised by Jiska Classen.
Master thesis. TU Darmstadt, 2019.

51 Matthias Hanreich. “Security Analysis and Firmware Modification of Fitbit Fitness
Trackers.” Supervised by Jiska Classen. Master thesis. TU Darmstadt, 2018.

52 Dennis Mantz. “InternalBlue - A Bluetooth Experimentation Framework Based on
Mobile Device Reverse Engineering.” Supervised by Matthias Schulz and Jiska
Classen. Master thesis. TU Darmstadt, 2018.

53 Sven Neubauer. “Angriffsanalyse einer TETRA-Basisstation.” Supervised by Jiska
Classen. Bachelor thesis. TU Darmstadt, 2018.

54 Marco Plaue. “Sicherheit funkferngesteuerter Rangierlokomotiven.” Supervised by
Jiska Classen. Master thesis. TU Darmstadt, 2018.

55 Fabian Ullrich. “Analysing and Evaluating Interface, Communication, and Web
Security in Productive IoT Ecosystems.” Supervised by Jiska Classen and Max
Maass. Master thesis. TU Darmstadt, 2018.

56 Muneeb Ahmed. “Improving a Linux Device Driver for Visible Light Communica-
tion.” Supervised by Jiska Classen. Master thesis. TU Darmstadt, 2017.

57 Serafettin Ay. “Detecting WiFi Covert Channels.” Supervised by Jiska Classen.
Master thesis. TU Darmstadt, 2017.

58 Jannik Jürgens. “TETRA Security Analysis by Fuzzing.” Supervised by Jiska Clas-
sen. Master thesis. TU Darmstadt, 2017.

59 Tim Kornhuber. “Implementation of a physical layer for visible light communica-
tion using the OpenVLC platform.” Supervised by Jiska Classen. Bachelor thesis.
TU Darmstadt, 2017.

60 Felix Kosterhon. “Absicherung von SCADA-Protokollen.” Supervised by Jiska Clas-
sen. Bachelor thesis. TU Darmstadt, 2017.

61 Michael Kümpel. “Implementierung des unteren MAC-Layers für die OpenVLC-
Hardware.” Supervised by Jiska Classen. Bachelor thesis. TU Darmstadt, 2017.

62 Richard Meister. “Design and Evaluation of a Hybrid SDR Testbed For Visible
Light Communication and Wi-Fi.” Supervised by Jiska Classen. Master thesis. TU
Darmstadt, 2017.

63 Jan-Pascal Kwiotek. “TETRA Fuzzing.” Supervised by Jiska Classen. Master thesis.
TU Darmstadt, 2016.

64 Martin Pfeiffer. “Location Privacy of Digital Trunked Radio.” Supervised by Jiska
Classen and Robin Klose. Master thesis. TU Darmstadt, 2016.

xvi



own master thesis

65 Jiska Classen. “Reputation Systems for Trust Management in the Web PKI.” Super-
vised by Johannes Braun and Florian Volk. Master thesis. TU Darmstadt, 2014.

teaching

SEEMOO does an exceptional amount of teaching and is well-known for this among stu-
dents. When joining SEEMOO, I decided to start a new course from scratch, which en-
ables computer scientists to understand the basics of wireless communication, building
simple radio circuits, and experimenting with Software-Defined Radios (SDRs). Design-
ing a new course and providing all the materials was very time-consuming, especially
during my first year.

wireless network for emergency response : fundamentals , design, and

build-up from scratch Full course on crisis communication each winter term
(WS14/15, WS15/16, WS16/17, WS17/18, WS18/19) including teaching with teaching
permit, organization of labs and HiWis, and excursions.

physical-layer security in wireless systems Two lectures on jamming, in-
tegrity, and authentication on the PHY each winter term (since WS14/15).

network security One lecture on IoT security each summer term (since SS18).

secure mobile systems One lecture on VLC security each summer term (since
SS15).

seminars and labs Each semester I offered multiple seminar and lab topics.

public television and media

IoT devices are used by a lot of users who care about their data. Thus, the media has a
high interest in IoT. Hackaday covered our findings on Fitbit fitness trackers [74], and ZDF
also featured these in television [72]. MDR had a more general show on IoT espionage
in everyday living and interviewed us on Chinese vacuum cleaners [69]. For a television
feature on emergency communication, Hessenschau also included these vacuum cleaners
in their show [68]. Neato and Vorwerk vacuum cleaners are more relevant to the German
market, and we were interviewed for the podcast Netzagent by SWR [67] as well as by
the local newspaper Darmstädter Echo [66].

Despite being more technical, our work on Bluetooth also got media attention, because
it affects hundreds of millions of devices. We were interviewed by Golem, Hackaday, and
dpa [70; 71; 73].

66 Sabine Schiner. Hacker im Wohnzimmer - Wissenschaftler der TU Darmstadt decken
Schwachstellen bei Vorwerk-Saugroboter auf. 2019. url: https://www.echo-online.

xvii

https://www.echo-online.de/panorama/wissenschaft/wissenschaft/wissenschaftler-der-tu-darmstadt-decken-schwachstellen-bei-vorwerk-saugroboter-auf_20434863
https://www.echo-online.de/panorama/wissenschaft/wissenschaft/wissenschaftler-der-tu-darmstadt-decken-schwachstellen-bei-vorwerk-saugroboter-auf_20434863


de/panorama/wissenschaft/wissenschaft/wissenschaftler-der-tu-darmstadt-

decken-schwachstellen-bei-vorwerk-saugroboter-auf_20434863.

67 Kirsten Tromnau. Die Spione im eigenen Haus. 2019. url: https://www.swr.de/
swraktuell/radio/netzagent/Die- Spione- im- eigenen- Haus, av- o1150171-

100.html.

68 Hessenschau. Kommunikation trotz Netzausfall. 2018. url: https://www.hessenschau.
de/tv-sendung/hessenschau---ganze-sendung,video-77832.html.

69 Wolfram Huke. Spion im Wohnzimmer. 2018. url: https://www.mdr.de/video/mdr-
videos/c/video-175524.html.

70 Moritz Tremmel. DoS-Angriff auf Bluetooth-Chips von Broadcom. 2018. url: https:
//www.golem.de/news/sicherheitsluecke-dos-angriff-auf-bluetooth-chips-

von-broadcom-1901-138454.html.

71 Elliot Williams. 35C3: Finding Bugs In Bluetooth. 2018. url: https://hackaday.com/
2018/12/30/finding-bugs-in-bluetooth/.

72 Markus Wolsiffer. Datenschutz bei Wearables - Wie sicher sind meine Daten bei Smart-
watch und Co.? 2018. url: https://www.zdf.de/verbraucher/volle- kanne/
datenschutz-bei-wearables-102.html.

73 Peter Zschunke. Forscher warnen vor Bluetooth auf älteren Smartphones. 2018.

74 Brian McEvoy. 34C3: Fitbit Sniffing and Firmware Hacking. 2017. url: https : / /

hackaday.com/2017/12/29/34c3-fitbit-sniffing-and-firmware-hacking/.

xviii

https://www.echo-online.de/panorama/wissenschaft/wissenschaft/wissenschaftler-der-tu-darmstadt-decken-schwachstellen-bei-vorwerk-saugroboter-auf_20434863
https://www.echo-online.de/panorama/wissenschaft/wissenschaft/wissenschaftler-der-tu-darmstadt-decken-schwachstellen-bei-vorwerk-saugroboter-auf_20434863
https://www.echo-online.de/panorama/wissenschaft/wissenschaft/wissenschaftler-der-tu-darmstadt-decken-schwachstellen-bei-vorwerk-saugroboter-auf_20434863
https://www.swr.de/swraktuell/radio/netzagent/Die-Spione-im-eigenen-Haus,av-o1150171-100.html
https://www.swr.de/swraktuell/radio/netzagent/Die-Spione-im-eigenen-Haus,av-o1150171-100.html
https://www.swr.de/swraktuell/radio/netzagent/Die-Spione-im-eigenen-Haus,av-o1150171-100.html
https://www.hessenschau.de/tv-sendung/hessenschau---ganze-sendung,video-77832.html
https://www.hessenschau.de/tv-sendung/hessenschau---ganze-sendung,video-77832.html
https://www.mdr.de/video/mdr-videos/c/video-175524.html
https://www.mdr.de/video/mdr-videos/c/video-175524.html
https://www.golem.de/news/sicherheitsluecke-dos-angriff-auf-bluetooth-chips-von-broadcom-1901-138454.html
https://www.golem.de/news/sicherheitsluecke-dos-angriff-auf-bluetooth-chips-von-broadcom-1901-138454.html
https://www.golem.de/news/sicherheitsluecke-dos-angriff-auf-bluetooth-chips-von-broadcom-1901-138454.html
https://hackaday.com/2018/12/30/finding-bugs-in-bluetooth/
https://hackaday.com/2018/12/30/finding-bugs-in-bluetooth/
https://www.zdf.de/verbraucher/volle-kanne/datenschutz-bei-wearables-102.html
https://www.zdf.de/verbraucher/volle-kanne/datenschutz-bei-wearables-102.html
https://hackaday.com/2017/12/29/34c3-fitbit-sniffing-and-firmware-hacking/
https://hackaday.com/2017/12/29/34c3-fitbit-sniffing-and-firmware-hacking/


A C K N O W L E D G M E N T S

Special thanks for giving helpful advice while
writing this thesis goes to Matthias Hollick and

Paul Patras.

I also want to thank my colleagues, who supported
me during my research. Our secretary Doris

Müller helped me with the almost infinite amounts
of paperwork caused by my travels and hardware
orders. Max Maass was proofreading most of my

papers. Lars Almon was always there for technical
support. Despite not yet resulting in publications,
we were discussing a lot of cryptographic concepts

with the Cryptoplexity group.

I want to thank Matthew Lloyd, Flor Alvarez,
Milan Stute, Philipp Tiesel, and Tim Walter for

proofreading my thesis. Moreover, I want to thank
Oliver Pöllny and Bianca Mix for proofreading my
papers and the interesting discussions on Bluetooth

and fitness trackers.

Last but not least, my black unicorn was always
traveling with me.

xix





C O N T E N T S

i introduction 1

1 introduction 3

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 End of Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Goals, Approaches, and Contributions . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Public Security Awareness . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Vendor Support and Fixes . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 User Support and Fixes . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.4 Regulations, Specifications, and Standardization Improvements . . 14

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

ii practical iot security 17

2 iot ecosystems 19

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Ecosystem Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Wireless Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Transparent Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Data-Modifying Gateway . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Fitbit Fitness Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Neato and Vorwerk Vacuum Cleaners . . . . . . . . . . . . . . . . . . . . . 22

2.5 Bluetooth Location Finders . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Analysis of Practical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 fitbit fitness trackers 25

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Firmware Update Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Understanding Encryption . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Firmware Update Process . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Responsible Disclosure and Outlook . . . . . . . . . . . . . . . . . . . . . . 33

4 neato and vorwerk vacuum cleaners 35

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Bypassing Secure Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Hardware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Hidden Boot Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.3 Memory Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Static Firmware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Responsible Disclosure and Outlook . . . . . . . . . . . . . . . . . . . . . . 43

xxi



xxii contents

5 bluetooth location finders 45

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Basic Bluetooth Finder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Reverse Engineering of the Nut Finder Firmware . . . . . . . . . . . . . . 47

5.5 Responsible Disclosure and Outlook . . . . . . . . . . . . . . . . . . . . . . 48

iii modifying off-the-shelf devices 51

6 binary patching 53

6.1 Source Code Patching vs. Binary Patching . . . . . . . . . . . . . . . . . . 53

6.2 Platform Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Identifying Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 fitbit fitness tracker firmware 55

7.1 Static Firmware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Modifying the Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.1 Security Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2.2 Dynamic Analysis and GDB Support . . . . . . . . . . . . . . . . . 58

7.2.3 Raw Accelerometer Data Access . . . . . . . . . . . . . . . . . . . . 59

7.3 Binary Patching Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 broadcom and cypress bluetooth firmware 61

8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.2 Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.3 Background on Bluetooth Analysis . . . . . . . . . . . . . . . . . . . . . . . 63

8.3.1 MITM Bluetooth Sniffing . . . . . . . . . . . . . . . . . . . . . . . . 63

8.3.2 Bluetooth Firmware Binary Patching . . . . . . . . . . . . . . . . . 65

8.4 The InternalBlue Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.4.1 Broadcom Diagnostics Protocol . . . . . . . . . . . . . . . . . . . . . 67

8.4.2 Patching Broadcom Controllers . . . . . . . . . . . . . . . . . . . . . 68

8.5 Testing for Known Security Issues . . . . . . . . . . . . . . . . . . . . . . . 70

8.5.1 Establishing Connections to “Invisible” Devices . . . . . . . . . . . 71

8.5.2 No Input No Output Pairing . . . . . . . . . . . . . . . . . . . . . . 71

8.5.3 ECDH Device Pairing Vulnerability Scan . . . . . . . . . . . . . . . 72

8.5.4 KNOB Attack Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.6 Discovering and Fighting New Vulnerabilities . . . . . . . . . . . . . . . . 74

8.6.1 Remote Code Execution Vulnerability . . . . . . . . . . . . . . . . . 74

8.6.2 Firmware Emulation and Fuzzing . . . . . . . . . . . . . . . . . . . 77

8.6.3 MAC Address Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.7 Responsible Disclosure and Outlook . . . . . . . . . . . . . . . . . . . . . . 80

iv future wireless standards 83

9 eavesdropping visible light and mmwave connections 85

9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2 VLC Testbed and Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . 85

9.2.1 Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2.2 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.2.3 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.3 Practical VLC Eavesdropping . . . . . . . . . . . . . . . . . . . . . . . . . . 87



contents xxiii

9.3.1 Door Gap Eavesdropping . . . . . . . . . . . . . . . . . . . . . . . . 89

9.3.2 Keyhole Eavesdropping . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.3.3 Window Eavesdropping . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.3.4 Wall Eavesdropping . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.4 Practical mmWave Eavesdropping . . . . . . . . . . . . . . . . . . . . . . . 95

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10 physical layer security for visible light communication 97

10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.2 Wireless Physical Layer Security . . . . . . . . . . . . . . . . . . . . . . . . 97

10.3 Applying Physical Layer Security to Visible Light Communication . . . . 98

10.3.1 What is Visible Light Communication? . . . . . . . . . . . . . . . . 98

10.3.2 Visible Light Properties Compared to Radio Frequency Properties 99

10.4 Security Mechanisms and Aspects . . . . . . . . . . . . . . . . . . . . . . . 100

10.4.1 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.4.2 Localization and Authentication . . . . . . . . . . . . . . . . . . . . 102

10.4.3 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10.5 Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10.5.1 User Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.5.2 Better Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.5.3 Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.5.4 Active Attackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.6.1 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10.6.2 Localization and Authentication . . . . . . . . . . . . . . . . . . . . 106

10.6.3 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.6.4 Attack Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

v discussion and conclusions 111

11 discussion and future work 113

11.1 Public Security Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.2 Vendor Support and Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.3 User Support and Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.4 Regulations, Specifications, and Standardization Improvements . . . . . . 115

12 conclusions 117

bibliography 119



L I S T O F F I G U R E S

Figure 1 Product life cycle from a security perspective aligned with the
contributions of this thesis. . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2 Generic ecosystem overview. . . . . . . . . . . . . . . . . . . . . . 20

Figure 3 Fitbit fitness tracker ecosystem overview. . . . . . . . . . . . . . . 22

Figure 4 Neato and Vorwerk vacuum cleaning robots ecosystem overview. . 23

Figure 5 Bluetooth finder ecosystem overview. . . . . . . . . . . . . . . . . 24

Figure 6 Fitbit vulnerability analysis results. . . . . . . . . . . . . . . . . . . 25

Figure 7 Fitbit authentication model. . . . . . . . . . . . . . . . . . . . . . . 29

Figure 8 Client-side firmware update process. . . . . . . . . . . . . . . . . . 31

Figure 9 Neato/Vorwerk vulnerability analysis results. . . . . . . . . . . . . . 36

Figure 10 Part of the Neato BotVac Connected motherboard. . . . . . . . . . . 40

Figure 11 Unlabeled serial interface. . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 12 Core tasks running on a Neato vacuum cleaner. . . . . . . . . . . . 42

Figure 13 Bluetooth finder vulnerability analysis results. . . . . . . . . . . . 45

Figure 14 Memory layout of a disassembled Fitbit Flex. . . . . . . . . . . . . 55

Figure 15 Fitbit Charge HR with modified step count. . . . . . . . . . . . . . 57

Figure 16 Received Signal Strength Indicator (RSSI) scan output from the
nRF Connect app at an airport. . . . . . . . . . . . . . . . . . . . . . 62

Figure 17 Bluetooth sniffing setups compared. . . . . . . . . . . . . . . . . . 63

Figure 18 InternalBlue architecture. . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 19 “Just Works” pairing on iOS 12.1.4. . . . . . . . . . . . . . . . . . . 73

Figure 20 KNOB attack during connection setup with a previously paired
device since iOS 12.4. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 21 Jumping from LMP to HCI handler. . . . . . . . . . . . . . . . . . 75

Figure 22 Device under test mode exploit. . . . . . . . . . . . . . . . . . . . . 79

Figure 23 VLC setup based on WARPs. . . . . . . . . . . . . . . . . . . . . . 86

Figure 24 Eavesdropping setups. . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 25 Reflection zone measurement by moving a mirror inside. . . . . . 88

Figure 26 Acrylic glass at different heights. . . . . . . . . . . . . . . . . . . . 90

Figure 27 Different tile orientation eavesdropping performance. . . . . . . . 90

Figure 28 Door gap eavesdropping on different flooring materials. . . . . . 92

Figure 29 Eavesdropping keyhole setup. . . . . . . . . . . . . . . . . . . . . . 92

Figure 30 Eavesdropping through a keyhole. . . . . . . . . . . . . . . . . . . 92

Figure 31 Eavesdropping impact of partially covering a window. . . . . . . 94

Figure 32 Setup for measuring reflections inside a room. . . . . . . . . . . . 94

Figure 33 Eavesdropping on wall reflections. . . . . . . . . . . . . . . . . . . 94

Figure 34 mmWave setup based on WARPs and VubIQs. . . . . . . . . . . . 95

Figure 35 Wyner’s wiretap channel. . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 36 Friendly jamming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 37 Key streaming to reduce Wi-Fi range to VLC. . . . . . . . . . . . . 103

Figure 38 Attack on friendly jamming. . . . . . . . . . . . . . . . . . . . . . . 106

xxiv



Figure 39 Eavesdropping and spoofing the polarization. . . . . . . . . . . . 108

L I S T O F TA B L E S

Table 1 Neato/Vorwerk firmware comparison. . . . . . . . . . . . . . . . . 39

Table 2 Bluetooth H4 types. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 3 Vendor-specific diagnostic logging features. . . . . . . . . . . . . . 67

Table 4 Devices vulnerable to CVE-2018-19860. . . . . . . . . . . . . . . . 76

Table 5 Floor material sizing and description. . . . . . . . . . . . . . . . . 91

Table 6 Security against attackers. . . . . . . . . . . . . . . . . . . . . . . . 109

L I S T I N G S

Listing 1 Tracepoint in lm_HandleLmpReceivedPdu. . . . . . . . . . . . . . . . 77

Listing 2 Call trace starting at lm_HandleLmpReceivedPdu. . . . . . . . . . . 78

Listing 3 Remote jammer attack. . . . . . . . . . . . . . . . . . . . . . . . . . 78

xxv



A C R O N Y M S

ADB Android Debug Bridge

AFH Adaptive Frequency Hopping

AoA Angle of Arrival

API Application Programming Interface

ARM Advanced RISC Machine

BER Bit Error Rate

BLE Bluetooth Low Energy

BPCS Broadcom Proprietary Control Signaling

BSI Bundesamt für Sicherheit in der Informationstechnik

C3 Chaos Communication Congress

C3VOC C3 Video Operation Center

CCC Chaos Computer Club

CERT Computer Emergency Response Team

CLI Command Line Interface

CMAC Cipher-based Message Authentication Code

CSI Channel State Information

CSK Color-Shift Keying

CVE Common Vulnerabilities and Exposure

DCO Direct Current Offset

DoS Denial of Service

EAX Encrypt-then-Authenticiate-then-Translate

ECDH Elliptic Curve Diffie-Hellman

EEPROM Electrically Erasable Programmable Read-Only Memory

FPGA Field-Programmable Gate Array

GATT Generic Attribute Profile

GDB GNU Debugger

GDPR EU General Data Protection Regulation

GPIO General-Purpose Input/Output

xxvi



acronyms xxvii

GPS Global Positioning System

HCI Host Controller Interface

IdD Internet der Dinge

IFS Image File System

IM Intensity Modulation

IO Input-Output

IoT Internet of Things

IPL Initial Program Load

IQ In-phase and Quadrature

ISM Industrial, Scientific and Medical

JSON JavaScript Object Notation

KNOB Key Negotiation of Bluetooth

LCP Link Control Protocol

LED Light-Emitting Diode

LE SC LE Secure Connections

LMP Link Manager Protocol

LOS Line-of-Sight

LTE Long-Term Evolution

MAC Media Access Control

MITM Machine-in-the-Middle

NAT Network Address Translation

NDA Non-Disclosure Agreement

NFC Near-Field Communication

NLOS Non-Line-of-Sight

OB Orthogonal Blinding

OFDM Orthogonal Frequency-Division Multiplexing

OOK On-Off Keying

OTP One-Time Pad

PCIe Peripheral Component Interconnect Express



xxviii acronyms

PD Photo Diode

PGP Pretty Good Privacy

PHY Physical Layer

PLS Physical-Layer Security

PoC Proof of Concept

PPC PowerPC

PSIRT Product Security Incident Response Team

RAM Random Access Memory

RF Radio Frequency

RFCOMM Radio Frequency Communications

ROM Read-Only Memory

RSA Rivest–Shamir–Adleman

RSSI Received Signal Strength Indicator

SDK Software Development Kit

SDR Software-Defined Radio

SNR Signal-to-Noise Ratio

SRAM Static RAM

SSP Secure Simple Pairing

SWD Serial Wire Debug

TETRA Terrestrial Trunked Radio

TLS Transport Layer Security

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

UUID Universal Unique Identifier

VLC Visible Light Communication

WARP Wireless Open-Access Research Platform

XOR eXclusive OR

XTEA eXtended Tiny Encryption Algorithm

ZFBF Zero-Forcing Beamforming



acronyms xxix

ZLL Zigbee Light Link





Part I

I N T R O D U C T I O N

Chapter 1 introduces this thesis by motivating the key research challenges.
Connections between the investigated topics are drawn, and practical rele-
vance is highlighted. It also details the structure of the thesis.





1
I N T R O D U C T I O N

1.1 problem statement

Recent smart devices require connectivity to external services for basic functionality.
The leading Internet of Things (IoT) devices we analyzed all depend on an external
cloud [Cla+18a; Ull+19]. Cloud dependency poses various threats to privacy and se-
curity. On average, a smartphone connects to tracking-enabled services every 2 sec-
onds [Elv18]. Even devices as simple as connected television are known to be used for
governmental espionage [Wik14]. Opting out from connected services comes with huge
drawbacks for users, if possible at all. Despite the growing importance of IoT and high
user dependency on IoT devices, there is almost no regulation. Customers buy interest-
ing gadgets and entrust them with highly privacy-sensitive information such as health
data, details about their social life, and habits. As smart and connected devices have
become an integral part of our everyday life, their security matters to everyone.

As of now, there is too little security research on connected devices for the common
good. Intelligence services do a lot of security research, and there are popular platforms
like Zerodium that sell zero-days [Zer19]. These zero-days might never become public.
Despite a lot of security analysis being non-public, some research also gets intentionally
published as part of responsible disclosure with the vendor, and privacy breaches or
security incidents due to malicious attacks get media attention. Only this fraction of
published security issues reaches regular users. While some users might not know
about the risks, most users will ignore them and continue using connected devices.
There remain open questions: What can research do to improve the situation? Are there
tools that will even help the users? Can researchers push vendors to make their products
more secure?

In the following, we outline why the current situation is alarming from a customer
perspective, as well as how new standards need to be considered when designing secure
solutions. We go through the whole life cycle of a device from a vendor and customer
perspective, as illustrated in Figure 1, and show where security is relevant and can
be improved. We consider three significant phases in a product’s life cycle, which are
product design (Section 1.1.1), release (Section 1.1.2), and end of life (Section 1.1.3).
Throughout this thesis we then address pertinent challenges to all phases of this life
cycle.

1.1.1 Design

The design phase is the most fundamental phase to guarantee a decent level of privacy
and security in a product. The fact that fixing bugs later costs a lot is well-known, and
a study by the IBM System Science Institute dating back to 2010 estimates costs to be
100 times higher when fixing a bug after release than during design [Daw+10].

3



4 introduction

When security and privacy breaches become public, this is considered as a marketing
disaster from a vendor perspective, which might lead to dramatic reputation loss or
severe financial consequences [Cox19]. Depending on the leaked data’s sensitivity, users
of the product might experience economic and social damage, such as rising health
insurance rates or love affairs becoming public [Tho15].

Still, the egregious state of IoT security in practice due to fundamental security issues
indicates that the design phase and initial testing are often underestimated by device
vendors. Possible explanations include the cost of security considered to be prohibitive
while designing a product on a budget, as well as security concerns trailing feature re-
quests in the race to be first in the market. Even though many issues can be fixed in soft-
ware after the product release, it is hard to impossible to change the overall ecosystem
and trust assumptions for a connected device later. Even specifications and regulations
sometimes fail to ensure a basic level of privacy and security.

architectural decisions and failures Communication paradigms and pro-
tocols, including trust anchors, should be designed carefully. The rollout of secure keys
and certificates can be done in the factory. Trusted keys assist device and software up-
date verification after product release. Moreover, depending on the radio equipment
within a product’s hardware, only specific communication standards can be used at the
lower layers. If a vendor decides to use a technology that is not commonly available in
smartphones, an additional gateway has to be part of the ecosystem (Chapter 2).

C
us

to
m

er
us

es
pr

od
uc

t

Custom
er still uses product

Ven

dor tests
product

V
en

do
r

im
pr

ov
es

pr
od

uc
t

Design

Release

End of life

IoT device analysis (Part ii)
Independent security research
Responsible disclosure
Vendor relations

Binary patching (Part iii)
Open-source fitness tracker
Bluetooth firmware research platform

Upcoming standards (Part iv)
Security against eavesdropping
Physical-layer security
Public security awareness

Updates

Product idea

Figure 1: Product life cycle from a security perspective aligned with the contributions of this
thesis.



1.1 problem statement 5

Note that some architectural decisions incur additional costs in infrastructure and
during rollout. While a high price does not guarantee the security of a product, low price
products cannot provide costly security mechanisms. Especially mechanisms based on
hardware such as secure boot and trusted elements increase costs.

As the time to market is vital for many IoT products, and the initial development
investment is low, the basic functionality is usually prioritized over a secure architecture.
Poor architectural decisions in a connected ecosystem can lead to almost impossible to
fix legacy issues, as detailed in the following.

poor mitigation of legacy issues Throughout the work on multiple connected
products within this thesis, we noticed that even mature products suffer from legacy
issues introduced during the design of an early release. Fixing trust assumptions in
devices that cannot be trusted is almost impossible.

For example, Fitbit failed to enforce encryption on older trackers, despite the rollout
of proper encryption keys in the factory. To mitigate this issue after product shipment,
they invented a trial encryption scheme that probes if trust can be established, yet relies
on the assumption that the tracker and its Internet connection have not already been
compromised (Chapter 3). Neato vacuum cleaning robots use secure boot and encrypted
firmware updates to prevent attackers from firmware extraction. Still, once an attacker
obtained a plaintext image from one robot, she can impersonate arbitrary robots (Chap-
ter 4). Broadcom Bluetooth chips trust the host and accept malicious firmware patches,
even in the most recent devices (Chapter 8). We noticed that Apple introduced an addi-
tional signature for Broadcom patch files in macOS, but as the chips themselves do not
employ any checks, this signature can only be checked on the host side and thus be
bypassed. Such issues as present in Fitbit, Neato, and Broadcom devices can only be fully
fixed by releasing a new generation of devices that break with the old ecosystem.

issues in standards and regulations Vendors have to deal with official regu-
lations, which means that they must give statements on those aspects of their products
covered by these regulations [Cou16]. Moreover, if there are best practices or well-
designed specifications and frameworks, they are likely to adopt those [Eur19]. These
guidelines are emerging and are a good step, but as of now, they are insufficient and
not legally binding. Thus, it is significant to test upcoming technologies before they are
widely deployed.

Even mature specifications can be error-prone, e.g., the Bluetooth specification had
various vulnerabilities that enabled eavesdropping throughout multiple versions (Chap-
ter 8). We specifically looked into upcoming specifications on the lower layers that
have valuable Physical Layer (PHY) properties for IoT applications. We found that
mmWave and Visible Light Communication (VLC) were claimed to be secure against
eavesdropping by design, due to their physical properties, although not being the case
in practice (Chapter 9). Besides, various schemes for Physical-Layer Security (PLS) in
VLC were designed by other researchers, but lack security properties against common
attacks (Chapter 10).



6 introduction

1.1.2 Release

When a product becomes publicly available, anyone can analyze its security—for good
and bad purposes. As researchers, it is our responsibility to use our knowledge for prod-
uct improvements and customer protection. Products might not fulfill regulations and
lack internal vulnerability testing prior to release. Issues found by external parties can
stay unpatched for a long time, and in some scenarios, security updates are infeasible
or cannot be enforced.

discrepancy between products and regulations The issues originating from
the design phase occurred despite various existing recommendations, specifications,
standards, and regulations. Our practical experience shows that working on the spec-
ification and regulation side is indeed necessary—but does not guarantee privacy and
security in released products.

Laws in the form of EU General Data Protection Regulation (GDPR) were put into
practice to counteract data collection and processing without customer knowledge. How-
ever, this is only a legal restriction and might differ a lot from the technical reality. When
analyzing Bluetooth finders and informing vendors (Chapter 5), we found one of them
making false claims about how often position data is sent to their servers. They did not
claim this on purpose—they outsourced smartphone app and server daemon develop-
ment, and they never received the smartphone app’s source code.

This example emphasizes that even if there are official regulations, connected products
need to be analyzed after release to identify security and privacy flaws. There is no
legal guarantee that a product only does what it is supposed to do and implements this
functionality securely.

the urgency of external tests IoT vendors are allowed to decide their security
investments on their own. There are no market restrictions for IoT, which differs from
the regulated banking and medical sectors [Cou93; Org15]. Customers will not know
how thoroughly a product was tested and by whom. So far, there is no precise testing
and labeling scheme to make products comparable.

As there is no effective regulation during the design phase, it becomes necessary that
external parties test products after release. Our analysis of various IoT related products
shows that they indeed lack security (Chapters 3, 4, 5, 8). However, most users cannot
perform security testing on their own. Users have to trust data protection within cloud
services, the security of the smartphone app, as well as the security of devices they install
in their smart home Wi-Fi. They need to rely on the vendor and security researchers who
publish their work.

security bugfixing delays Identifying security issues is only the first step. After
a vendor is informed about a problem, they must take the report seriously and act upon
the findings.

During responsible disclosure, we encountered positive and negative experiences.
Overall, in practice, responsible disclosure is no easy task. The worst example is a
Bluetooth finder vendor, who did not react to contact by email, mail, Chinese email to a
developer, various social media, telephone, and relayed communication via CERT/CC.



1.1 problem statement 7

Customer data is still leaking through their servers, one year after our first contact at-
tempt (Chapter 5). Moreover, although disclosing to the Neato developers about security
issues with their vacuum cleaning robots on March 12 2018, it took repeated contact
attempts until they answered on November 27 2018 (Chapter 4).

Even if a company provides a security contact and has a dedicated team working
on security, responsible disclosure can take a while. Broadcom has a dedicated Product
Security Incident Response Team (PSIRT) but it took them one month to reply to our de-
scription of the first vulnerability we found within their Bluetooth firmware (Chapter 8).
They argued that the malicious payload was not standard compliant and had forwarded
the initially Pretty Good Privacy (PGP) encrypted mail in plaintext internally. It took
them another two weeks to set up a phone call, and even longer until they confirmed
that the vulnerability is genuine. While the Cypress PSIRT was faster in answering
our emails, they also forwarded them in plaintext, including attachments. Interestingly,
even the Apple security team who usually encrypts and signs their mails was asking us
in plaintext about Bluetooth related slides of an upcoming conference.

impractical security updates The update process should be as simple as pos-
sible. Otherwise, devices might stay unpatched despite updates.

One example of poor usability in software updates is the first generation of connected
Neato vacuum cleaners (Chapter 4). Despite app support and cloud connection, the only
way to update them is to download a software update to a Universal Serial Bus (USB)
stick, use a special connector cable, remove the trash bin, and start the update via the
few buttons on the vacuum cleaner. We assume that most owners of this robot series
never updated their devices. Neato could enforce updates by blocking robots with legacy
software for communicating with their cloud. However, many users might lack technical
tools and skills to perform an update.

1.1.3 End of Life

Once a vendor decides to stop support of a product or goes bankrupt, IoT products that
rely on external Internet services are bricked. For example, when the GDPR became
effective, Yeelight decided to shut down services in Europe instead of fixing their privacy
issues, leaving smart light bulbs in many homes dysfunctional [Liu18]. While these
are rather extreme edge cases, vendors usually decide to stop software updates after the
warranty ends. The software update period is comparably short, considering a product’s
actual lifetime—when users replace the battery of a device, it can last for many years.
Neato releases software updates only for two years, and Apple provides updates for a
comparably long period of guaranteed four years, with some models even reaching
six years [Zep19]. For devices that are still somewhat functional and connected to the
Internet, missing updates become a security risk.

bricked forever Devices are locked to the vendor’s ecosystem in terms of availabil-
ity. Since each vendor invents their own proprietary IoT ecosystem, the central cloud
component within it cannot easily be replaced. Usually, there is no alternate ecosystem
for a connected device (Chapters 3, 4). How much an IoT product depends on external



8 introduction

infrastructure and apps is not advertised by most vendors and hard to figure out for the
user.

If a vendor goes bankrupt or decides to restrict certain features to paying the premium
accounts, the user has to invest money despite owning a technically functional product.
Moreover, old devices might no longer get software updates, which is not only a prob-
lem for the functionality of the device itself but also interoperability with smartphone
apps and ecosystems. A smart lighting system, fridge, or washing machine could stop
working from one day to the next. Short-term outages of the vendor’s ecosystem can
already be critical, i.e., smart door locks could neither open nor close apartments for a
couple of hours.

insecure zombies Some devices continue to work without further maintenance for
years. They are still in use and connected to other devices, but do no longer receive
security updates (Chapter 8). These devices are not fully bricked but very dangerous.
They might run malware without their users taking any notice of it. While users will im-
mediately notice a non-working device, it is hard to determine when a device becomes
highly insecure due to missing updates for well-known security issues.

1.2 goals , approaches , and contributions

The previous section introduced several problems that this thesis addresses. Users, ven-
dors, governmental institutions, and standardization committees must work together to
make IoT devices more secure. Thus, we identify the following four topics that need
action:

1. Increasing public security awareness of all involved parties,

2. enhancing vendor support and bugfixes,

3. enabling users to take over control of their devices, and

4. working on regulations, specifications, and standards.

In the following, the goals and approaches of this thesis are outlined. We then describe
how we contributed to these goals.

1.2.1 Public Security Awareness

Goals and Approaches

Public security awareness is our first goal. Without knowledge, users will not demand
increased security, and vendors will not harden their systems and products. While
security awareness is rather generic at first sight, it has individual aspects outlined in
the following.

Users must demand security and privacy. Only if security and privacy become inte-
gral product requirements, they will already be considered by the vendor during the
product design phase. However, many users are not aware of what exactly security and
privacy in a product imply. As of now, there still is a market for insecure IoT products.



1.2 goals , approaches , and contributions 9

While vendors might not be interested in public disclosure and press releases, this
is required to raise public security awareness. Moreover, public disclosure forces ven-
dors to fix their issues within products that are released and actively used. Vendors
having similar problems in their products that have not been publicly disclosed might
nonetheless choose to fix them. Being in the news for commonly known security is-
sues meanwhile is considered a marketing disaster [Tho15; Cox19]. Data leakage due to
non-compliance to the GDPR can cost a company up to several millions of e [Bra19].

Ideally, the vendor is responsibly informed about the issues before they become public.
Responsible disclosure reduces the risk of attacks being exploited in the wild. When a
security issue is discovered by a researcher, it might have been previously known to less
responsible parties. Especially popular products are also popular targets and exposed to
non-public security analysis. While public disclosure is discussed controversially [Dul19;
May19], users who demand security against advanced attackers and regularly update
their devices are more secure after responsible disclosure took place.

Contributions

Public security awareness requires outreach to non-scientific media, such as news arti-
cles, radio stations, public television, and collaborations with companies. During our
research, it was not just us contacting journalists, but even the press who contacted us
on their initiative. Their interaction shows that there is a demand for information about
the current state of security for the devices we use every day.

talks During the work on this thesis, I contributed to 19 presentations at non-scientific
venues. The talks “Building and Breaking Wireless Security” (2015), “Doping your
Fitbit” (2017), and “Dissecting Broadcom Bluetooth” (2018) were presented on large
stages at the Chaos Communication Congress and recorded. Recordings are available
on https://media.ccc.de and https://youtube.com. Combining views of the English
recordings in December 2019, the oldest talk on wireless PLS has 77 089 views, the
presentation on Fitbit fitness trackers has 8066 views, and the Broadcom Bluetooth vul-
nerability demonstration has 7463 views. Topic-wise, “Building and Breaking Wireless
Security” is the most fundamental talk relevant to a product’s design phase. The view
statistics indicate a high interest in wireless and IoT security topics within a more tech-
nical community. Based on these talks, I was invited for press interviews and presen-
tations at companies, which enabled me discussing these topics with a broader, less
technical audience.

news articles Our work on Fitbit fitness trackers got published on Hackaday [McE17],
while a local newspaper covered our work on Neato and Vorwerk vacuum cleaners, as
well as a radio podcast [Sch19; Tro19]. Issues in Broadcom Bluetooth chips got even more
media attention. We gave interviews to Golem and Hackaday before our talk and got
a great news report from a journalist at dpa [Wil18; Tre18; Zsc18]. Many newspapers
copied the dpa press release and translated it into multiple languages. We cannot pro-
vide any statistics on view numbers, as they are not listed within the corresponding
articles. However, we estimate the audience of news articles, especially if published by
dpa, to go way beyond the impact of talk recordings and scientific publications.

https://media.ccc.de
https://youtube.com


10 introduction

public television Public television is very interested in IoT and consumer elec-
tronics. ZDF made a full feature on fitness trackers, including an interview with me
on their security [Wol18]. MDR published a short clip, including some vacuum clean-
ing security information and an interview with me [Huk18]. Hessenschau published a
story about emergency communication and filmed within our university, also briefly
mentioning our vacuum cleaning robots [Hes18].

presentations at companies A major bank decided to do Security Awareness
Days for their staff. I was invited to give two talks and a live demonstration about IoT
security, with a non-expert audience and unconcerned IoT users [Cla18b]. Moreover,
I gave a talk at an automotive company about a connected IoT device with similar
properties as they face during development [Cla17]. While these companies do not
provide insights on their internal security processes without Non-Disclosure Agreement
(NDA), their invitations show nonetheless that our work is of high relevance to them.

1.2.2 Vendor Support and Fixes

Goals and Approaches

Responsible disclosure raises public security awareness, but also leads to the second
goal, which is coordination with vendors to provide proper fixes. We consider vendor
support and fixes as a separate goal, as public disclosure of a bug does not automatically
lead to good software quality. Often, a security researcher’s perspective on a product
is very different from a developer’s perspective. This difference leads to varying patch
quality.

Starting at the design phase and until the end of life, it is the vendor’s responsibility
to patch products. During the design phase, the vendor will potentially follow specifica-
tions and regulations but has a lot of freedom. This freedom leads to highly customized
and complex ecosystems that are prone to bugs. Thus, typical bugs especially in regard-
ing IoT ecosystem design should become well-known.

Many security problems discovered after release are architectural and originate from
the design phase. Specific issues can be fixed quite easily, i.e., by introducing a length
check to prevent a buffer overflow as Neato did to fix an authentication bypass. However,
the exploitability of such bugs depends highly on the overall system architecture. In
connected systems, it is vital to review trust assumptions between components. Some
interfaces may be required to support substantial product features, while others might
not be necessary or can be hardened.

During responsible disclosure, it is essential to highlight the overall architectural is-
sues and, if possible, review changes with the vendor. Vendors might silently close
issues or accidentally re-introduce them [New19]. Thus, regular testing after reporting a
bug is required. Moreover, vendors who depend on third-party components might not
be adequately equipped to perform tests themselves, e.g., one of Broadcom’s customers
claimed they thought they had been patched against CVE-2018-19860.



1.2 goals , approaches , and contributions 11

Contributions

In the following, we cover how we decided which products to test for security, how we
informed the vendors, and how we still stay in contact with them.

independent security research We select mature devices that were not yet
publicly analyzed for security and lack a bug bounty program. While this does not
mean that such products are not tested internally, there is little or no open knowledge
about these products. In contrast to most security analysts, we are independent of the
companies whose products we test. We can spend as much time on a product as we
think is necessary. Even if our analysis would not return any vulnerabilities, our results
enable users to make a more informed decision when purchasing a product.

Our pre-selection enables us to spot widely used IoT devices, using recent and mul-
tifaceted technologies. This selection for testing is very different from vendors actively
considering testing their products. The usual approach is that they hire an external com-
pany to test specific interfaces and provide them with documentation. Some of their
components might also go through a certification process. We appreciate that vendors
do this kind of testing. Yet, some vendors choose not to test their products and save
money in the short run.

Most of the time, security testing and improvements are kept private. For example,
we saw that Broadcom added security measures to their Bluetooth chips, despite there
being only a few documented incidents on their Wi-Fi chips. Our research pushed them
to add even more security to their newer chips.

Some vendors have a bug bounty program but exclude interesting components within
their ecosystem. Fitbit has a bug bounty program, but they exclude fitness tracker
firmware vulnerabilities from it. Their newer smartwatches became part of their bug
bounty program later. In their initial threat model, they never considered the owners of
trackers to have malicious intents, such as spoofing a step count.

Within the work on this thesis and the Bachelor and Master thesis supervision, we
identified six Common Vulnerabilities and Exposures (CVEs) in Broadcom and Cypress
Bluetooth chips (Chapter 8), four CVEs on Neato and Vorwerk vacuum cleaning robots
(Chapter 4), and one issue in the QNX operating system running on those robots [Ege19].
We reported one incident that affected critical infrastructure across Europe [Pla18]. More-
over, we identified various issues in Bluetooth finders of that one got assigned a CVE
(Chapter 5), and were acknowledged by Fitbit for our work on their fitness trackers
(Chapter 3). The iOS 13 security updates additionally recognized us for our work on
Bluetooth [App19a], and our Broadcom related CVEs appear in the Google and Samsung
security advisories [And19a]. Responsible disclosure with Apple on further security is-
sues is still ongoing, as well as the responsible disclosure with three vendors of intercom
door opening systems. These issues would likely persist without our research and pos-
sibly be sold on the black market.

responsible disclosure improvements and benefits Since our selection does
not include asking or informing the vendor that we are performing tests in advance,
responsible disclosure is not straightforward. Especially for smaller companies, respon-
sible disclosure was new, and they often did not have a security contact and process



12 introduction

for this. Despite these struggles during initial contact, we do have personal contacts at
Neato, Cypress, and Broadcom by now, with short response times.

Along with contacting the vendors, we also provide them a timeline of when we aim
to publish our findings. This timeline allows them a reasonable time to fix vulnerabilities
but also pushes them to move forward. In our papers and within this thesis, we also pub-
lish bugfix and disclosure timelines. These timelines are valuable for other researchers
who want to disclosure bugs to similar companies and to find reasonable deadlines in
disclosure processes. Anguelkov also published a responsible disclosure timeline with
Broadcom [Ang19]. Similar to our experience, replies by Broadcom and their customer
Apple took a long time, and we both were asked by Broadcom if we would be willing to
sign an NDA. In contrast to Anguelkov, we directly communicated the venues on that
we are going to present the vulnerabilities and did not follow any requests to extend
these deadlines.

vendor relations Within our work, security awareness at the vendors increased.
For example, the new Fitbit smartwatches have a different security architecture, and ex-
cept compatibility features, none of the issues the trackers had applied [Gro19]. Also,
Neato is considering a redesign of their security architecture and adding new protocols
to their ecosystem. Overall, reactions by the vendors were very positive, and their cus-
tomers will benefit from the increased product security.

Neato invited us to visit their campus while we were around for presenting our paper
about their ecosystems. Our security contact from Fitbit visited Paul Patras while he
was in Europe, and we met them at DEF CON 27 in Las Vegas. Detecting vulnerabilities
in Broadcom chips got us in contact with Apple, Cypress, Google, and Samsung. We ad-
ditionally contacted them because they use Broadcom chips and have affected products
that are still receiving security updates. Moreover, we have a local contact at Cypress in
Langen.

1.2.3 User Support and Fixes

Goals and Approaches

Another aspect of security awareness leads to the third goal, which is user support.
Users need the possibility to act and make decisions. Solely informing them that the
product they are currently using is insecure does not provide them with any solution.

From an economic perspective, users can primarily act by avoiding specific products.
To support the users in decision making, press releases about security issues and pri-
vacy leaks enable them to compare products by incidents. Products that have been
under public analysis and review will usually be improved afterward. While this is no
guarantee, users can still make decisions on the hardware capabilities, i.e., if they buy a
vacuum cleaning robot with or without a camera module. Besides, it might also make a
difference to users in which country their private data is hosted. Since IoT products typ-
ically require support from the vendor, users can also decide on past software updates
and security fixes to estimate if the vendor will provide good support in the future. The
absence of updates and security patches is usually a bad sign because it does not imply
that a product never had any flaws.



1.2 goals , approaches , and contributions 13

Surveys show that users demand security and privacy in a product when they are
given the choice. They are even willing to pay a limited amount for this. However, the
actual costs to ensure features like encrypted storage and certifications can be higher for
the vendor [MWZH17].

While monetary aspects are important for newly released products, users might want
to customize devices and keep them over a long time. Missing features and support
can especially become relevant in later stages of a product’s life cycle, especially at the
end of life. Users can customize and re-purpose devices themselves if provided with
proper tools. However, most IoT ecosystems are closed-source with undefined Appli-
cation Programming Interfaces (APIs). As researchers, we can open up these systems
and provide alternate ecosystems. Advanced users might decide to flash an unofficial
research firmware if this helps them to keep their data private instead of sharing it to
the vendor. While such tools and their open-source releases require additional efforts
that go beyond bug hunting in products, they are of high value for the community.
Off-the-shelf devices might even be re-purposed for research.

Contributions

Opening up closed-source firmware is an integral part of providing control over devices
to their users. We integrate Nexmon [Sch18], a binary patching framework, into two very
different types of devices: Fitbit fitness trackers (Chapter 7), and Broadcom and Cypress
Bluetooth chips (Chapter 8). Since both of them are Advanced RISC Machine (ARM)
based, most parts of Nexmon can be used as they are.

While we had access to the firmware of various IoT devices throughout our work,
we decided to patch these two. Fitbit fitness trackers have a large user base and are
embedded into a complex IoT ecosystem; thus, we considered it valuable to make them
cloud-independent and their sensors accessible. Back in 2017, Fitbit was amongst the
few vendors who applied end-to-end encryption on fitness data [Fer+17b], which made
reverse-engineering their technologies interesting. The Bluetooth firmware is part of
hundreds of millions of devices, and our main motivation was to make it modifiable for
other researchers due to the lack of proper Bluetooth analysis tools.

open source fitbit smartphone app and firmware First of all, we use Nex-
mon for the Fitbit Flex and Fitbit Charge HR fitness trackers. This firmware is overall more
high-level but lacks symbols. With binary patching, we can change step counts on both
devices, while keeping the remaining firmware functional. Moreover, on the Fitbit Flex,
we can re-enable debugging at runtime and readout raw accelerometer data. We also
build an Android app to flash pre-built firmwares and interact with our new features.

We publish the firmware patching frameworks along with exemplary patches. Pro-
grammers without reverse engineering knowledge can extend these patches in C with
Nexmon. For example, the Fitbit accelerometer patch currently only copies readings to an
output buffer, but the readings could also be interpreted locally to recognize gestures.

bluetooth firmware research platform Second, we integrate Nexmon for
various Broadcom Bluetooth chips. Patches can be either generated to be executed at
runtime with InternalBlue or as operating system level .hcd and .bin files loaded during



14 introduction

driver initialization. Both patching formats are different from rewriting a complete
binary blob; thus, adjustments to the Nexmon patching framework are required.

For the Bluetooth firmware, we provide patches that enable users to test their devices
against publicly known attacks against pairing [ATR19; Eli18]. Thus, users can now
check for themselves if their car or smartwatch uses a secure and up-to-date pairing
implementation. Moreover, we implement a patch against a vulnerability we found on
a device that is no longer receiving updates, as well as a Media Access Control (MAC)
address filter that protects from more generic attacks.

1.2.4 Regulations, Specifications, and Standardization Improvements

Goals and Approaches

The last goal is to go beyond specific products. Regulations, specifications, and stan-
dardization can achieve this. Any findings and proposals on this level apply to the early
design phase. Thus, research in this area has a high potential to make contributions that
will later be integrated into a variety of products.

Many issues arise because the underlying specifications and standards make false
security assumptions. Vendors will follow these specifications, meaning that any vul-
nerability on this level is likely to affect the entire device base utilizing the standard in
question. The time it takes from specification to actual products allows testing upcoming
technologies before they get widely applied.

Furthermore, governmental regulations can force vendors to provide a certain level of
security and privacy. Before bringing a product to the market, vendors need to provide
statements about compliance with those, and sometimes even undergo additional test-
ing. However, due to the sheer quantity, IoT devices cannot be tested in detail. While
regulations provide a legal framework to claim what is wrong with a product, they do
not replace public security research.

Contributions

Most solutions for short-range IoT connections operate in the 2.4GHz Industrial, Sci-
entific and Medical (ISM) band, such as Wi-Fi, Bluetooth, and Zigbee. However, tech-
nologies that are based on different PHYs enable new communication paradigms and
possibilities. For example, mmWave communication in the unlicensed 60GHz band of-
fers high throughput that can replace cables. Moreover, VLC uses ambient light sources
and, thus, is an ideal candidate for IoT smart home applications. We take a deeper look
into those upcoming technologies and analyze claims on their security properties.

security against eavesdropping With the first VLC and mmWave development
kits available, it is possible to test these upcoming technologies. One of the most com-
mon claims is that their range is much easier to control, thereby making eavesdropping
harder [Pov11; Fre13; Yan+15]. We experimentally show that eavesdropping is still pos-
sible despite the different propagation characteristics (Chapter 9).

wireless physical-layer security assumptions Furthermore, the first wire-
less PLS approaches have been transferred to the domain of VLC [LMGGB15; ML14;



1.3 outline 15

Zha+14]. We show that these approaches are as broken as in existing Radio Frequency
(RF) and Wi-Fi implementations, and sometimes even worse, because visible light does
not contain phase information (Chapter 10).

1.3 outline

This thesis is makes contributions within the whole product life cycle, and thus, is also
structured by this life cycle. In Part ii, we cover IoT products and their ecosystems
after their release. Specifically, we analyze Fitbit fitness trackers (Chapter 3), Neato and
Vorwerk vacuum cleaners (Chapter 4), and various Bluetooth finders (Chapter 5). When
a product reaches the end of life and the vendor stops support, the only possibility to
modify it is binary patching, which we cover in Part iii. After explaining the concept
of binary patching (Chapter 6), we change the firmware of Fitbit fitness trackers for
cloud independence (Chapter 7), and enable monitoring and injection capabilities on
Broadcom Bluetooth chips (Chapter 8). Finally, Part iv provides an outlook on how future
wireless standards can be used to design secure wireless connections. We experimentally
evaluate if it is hard to eavesdrop on VLC connections (Chapter 9), and then expand the
scope to PLS for VLC applications in general (Chapter 10). Results are discussed in
Part v, where we also conclude this work.





Part II

P R A C T I C A L I O T S E C U R I T Y

In this part, existing IoT ecosystems are analyzed regarding security. A gen-
eral overview of those ecosystems is provided in Chapter 2. Practical studies
include Fitbit fitness trackers (Chapter 3), Neato and Vorwerk vacuum cleaners
(Chapter 4), and a large selection of Bluetooth finders (Chapter 5). Despite
finding very diverse implementations, all ecosystems share common con-
cepts. Findings are generalized, and applicability to all kinds of distributed
systems is shown.





2
I O T E C O S Y S T E M S

This chapter covers structural and technical similarities throughout different real-world
Internet of Things (IoT) ecosystems. Section 2.1 motivates our approach to analyze exist-
ing systems instead of designing new and perfect solutions from scratch. In Section 2.2,
common concepts of all IoT ecosystems are introduced. Sections 2.3 to 2.5 show where
these concepts exist in real-world IoT ecosystems. A detailed analysis of these systems,
as outlined in Section 2.6, follows in Chapters 3 to 5.

2.1 motivation

IoT devices have become far more than just fancy gadgets. They are part of our everyday
lives. In the past, the IoT component of devices has been optional, i.e., a smart fridge
with a built-in camera would still work without the Internet. Nowadays, more and more
IoT devices on the market must always be online. Fitbit fitness trackers can store data
for up to a week but need to be synchronized with the cloud before the data is visible
to the user. Neato and Vorwerk vacuum cleaners work quite well without the cloud, but
some features require a cloud connection. For example, the user can draw no-go lines on
the plan view of her apartment using the smartphone app, as an alternative to installing
magnetic stripes. Bluetooth finders with crowd search functionality require the user to
be always online and connected to the finder, a simple empty smartphone battery would
mark a finder as lost.

The requirement of an Internet connection to make devices smart comes with two
significant drawbacks. First, the device is no longer functional if an IoT vendor goes
bankrupt, decides to no longer support an old device, has server or network infrastruc-
ture issues, or legal requirements such as the EU General Data Protection Regulation
(GDPR) no longer allow operation. Second, user privacy is at risk because data is up-
loaded to the cloud. For example, fitness tracker users trust the vendor not to abuse
their health data. Vendors who sell this data to third parties or even give incentives to
their users to share their data with other services are not the only risk. Security issues
in the product and cloud implementation often lead to data breaches in practice.

The first issue, vendor infrastructure dependency, raises the question if smart devices
can be built in a cloud-minimal or even cloud-independent fashion. If this requirement
is part of the system design, this is possible, as we have shown with a reference design
for Bluetooth finders [Wel+19]. Removing the cloud from a system becomes more chal-
lenging for products where the vendor did not have this in mind. Cloud-independence
often requires binary patching of the device firmware and modifying or rewriting the
smartphone app. Such techniques are related to IoT ecosystems, and the unique meth-
ods they require will be covered in more detail in Part iii, with Fitbit fitness trackers
being one example.

The second issue, user privacy and security, is also a major concern. Trusting the
vendor not to leak customer data is something that can be covered by the law. Moreover,

19



20 iot ecosystems

this is a decision the user might still have in mind when choosing between vendors of a
similar device. In contrast, security is often advertised but hard to confirm for the user.
If a device is very low-cost, this hints to the user’s data being sold or that there was no
money spent on the device’s security. However, there is no guarantee that this is not the
case for a high-end product.

Analyzing real-world systems shows restrictions during development and deploy-
ment. Results represent common practice in the industry. Low-cost products have
more restrictions than high-cost products. Security in IoT systems ranges from basic
user authentication in the cloud to hardened hardware. Underlying problems can be
found across all classes of devices.

In the following, after explaining basic IoT ecosystem concepts, we compare the de-
sign of three real-world systems. Bluetooth finders are the most low-end; some of them
are available for just 2e. Fitbit fitness trackers are in the range of 50e–100e. The most
sophisticated devices are vacuum cleaning robots. Even though some connected robots
are as cheap as 250e, we decided to analyze the high-end Neato and Vorwerk robots,
which are in the range of 600e–950 e.

2.2 ecosystem concepts

Figure 2 depicts a generic IoT ecosystem overview. Data can be transferred using var-
ious technologies, as explained in Section 2.2.1. Data from the IoT gadget can either
be passively relayed by an access point or forwarding smartphone app to a server, or
the gadget can actively communicate with a smartphone app. We categorize the first
as a transparent gateway (Section 2.2.2), and the second as a data-modifying gateway (Sec-
tion 2.2.3).

Server
App

Gadget 1Gadget 2

/ / Wireless data

/ / /? Wireless data

Server data

Transparent gateway transmission//

Figure 2: Generic ecosystem overview.

2.2.1 Wireless Data Transfer

There are plenty of wireless standards and sub-protocols present in IoT products. Most
gadgets use technologies available on off-the-shelf smartphones: Fitbit fitness trackers
use Bluetooth ( ), Neato vacuum cleaners use Wi-Fi ( ), and Nello door openers use
Visible Light Communication (VLC) ( ) with the smartphone’s flashlight [Ull18a].

Note that gadgets might also communicate using a separate network using a differ-
ent protocol, only supported by the gateway. This can be seen in many smart home
appliances. Lighting systems, such as IKEA TRÅDFRI, use Zigbee Light Link (ZLL) on
2.4GHz to communicate between components. Some vendors even develop their wire-
less physical layer protocol. A setup with a protocol not supported by smartphones



2.2 ecosystem concepts 21

requires all gadgets to communicate with the gateway. Setups with a unique wire-
less gateway do not necessarily require a remote server. The IKEA TRÅDFRI gateway
supports direct communication with Wi-Fi to the smartphone app and can optionally
connect to a remote server via Ethernet.

2.2.2 Transparent Gateway

A transparent gateway is required when data needs to be transferred over the Internet,
and information is not modified on its way. An IoT device might not have the capability
to connect directly to the Internet if it is using wireless protocols such as Bluetooth. Due
to energy constraints, limiting IoT device connectivity to Bluetooth Low Energy (BLE)
is a common practice. In such a scenario, a Wi-Fi access point or smartphone can be
a transparent gateway. IoT devices with built-in Long-Term Evolution (LTE) modules
( ) bring their own transparent gateway. A user will not be aware of data passing
transparent gateways. By design, transparent gateway transmission requires either a
separate server data channel or an additional wireless data channel to display data to
the user.

In the Fitbit ecosystem, the smartphone app or a Windows program connects via Blue-
tooth to the tracker, collects its data, and forwards it to the server. The server data to
the app contains fitness records for the user. A minimal subset of data can also be re-
trieved over the wireless data channel in a so-called live mode. Neato has fewer power
constraints, and their robots directly connect to the servers using Wi-Fi. Only initial con-
figuration and a very restricted manual drive mode are available over the local wireless
data connection. Afterward, even if the user’s smartphone and the robot are within the
same Wi-Fi, command and status messages are always forwarded to and processed by
an external server.

2.2.3 Data-Modifying Gateway

A data-modifying gateway takes information from the IoT device and adds new infor-
mation before forwarding it to the server. This additional information is required by the
ecosystem to provide a functional service, just taking the data extracted from the IoT
device is not sufficient.

This kind of setup is required for Bluetooth finders: Identification information is on
the finder itself, but only the smartphone app can add Global Positioning System (GPS)
information to this. Devices such as the Bluetooth finder can also be implemented
without a cloud connection if the gadget is not encrypting or signing its data. The
smartphone app can store the last GPS position data and inform the user where the
finder has been seen last. However, this restricts the user to use her smartphone to find
the last location of an item. Moreover, crowd search by multiple users for a lost item
does not work without cloud connectivity.

In general, data-modifying gateways are very interesting from an attacker perspective.
They add information that will be interpreted and stored on the cloud component of an
IoT ecosystem.



22 iot ecosystems

2.3 fitbit fitness trackers

The Fitbit fitness tracker ecosystem shown in Figure 3 is the most similar to the generic
system.

Wireless data between the app and Fitbit is exchanged using Bluetooth. Security is
based on a symmetric end-to-end encryption key, which is unique for each device and
setup in the factory. Any Fitbit↔server message that leaves either the server or the Fitbit
is encrypted with this key. Two transparent gateway implementations exist: Fitbits can
be synchronized using a smartphone app or a Windows program. A user typically only
uploads her own Fitbit’s messages to the server, but in practice, the server accepts any
Fitbit message without additional user authentication.

Server
App

Fitbit App-authenticated live mode
User authentication

Fitness data history

End-to-end encrypted fitness data and tracker configuration/

Figure 3: Fitbit fitness tracker ecosystem overview.

During initial pairing with a Fitbit, the user proves ownership to the server. A user
can retrieve all fitness data from the server by using the app or logging in to the Fitbit
website. Even for tracker models with a display, connecting to the server is the only
supported way to get sleeping statistics, detailed step counts, and heart rate history.

For live monitoring of the heart rate, the transparent gateway requires requesting the
current fitness date from the Fitbit, sending data over the app to the server, decrypting it,
saving it, issuing another request from the app to get the heart rate and finally displaying
it to the user. Since this would be a lot of overhead, Fitbit decided to implement a so-
called live mode. It requires an authentication token issued by the server. With this token,
the app can request live data, which includes the step summary of the day and current
heart rate.

It is essential to add that the new Fitbit smartwatch series introduces a lot of compo-
nents to this infrastructure [Gro19]. The Fitbit Ionic smartwatch has Bluetooth, Wi-Fi,
and Near-Field Communication (NFC). While NFC is only used for payments, Wi-Fi
adds a whole new smartwatch ecosystem. With Wi-Fi, apps can be downloaded directly
from the Fitbit servers that run as JavaScript on the smartwatch. The Fitbit smartphone
app runs a separate companion app that communicates with the smartwatch. Nonethe-
less, the Bluetooth interface is still used to transmit fitness data and also features a live
mode.

2.4 neato and vorwerk vacuum cleaners

The Neato and Vorwerk ecosystem depicted in Figure 4 shares many concepts with the
Fitbit ecosystem. The two significant structural differences are that (1) the robot has
a Wi-Fi interface to communicate directly with servers and (2) there are two separate
cloud infrastructures for account information and robot control.



2.5 bluetooth location finders 23

?

Account information

Robot commands & status replies

Initial setup: user_id,
secret

_key, mac, ...

Robot commands & status replies

WebSocket information

Manual robot commands

Neato/Vorwerk
robot

Nucleo

Beehive

App

Figure 4: Neato and Vorwerk vacuum cleaning robots ecosystem overview.

During the initial setup, the robot spawns a separate Wi-Fi to which the user connects.
The user creates a new account. The robot sends a list of visible Wi-Fis to the app, and
the user selects one and enters the Wi-Fi password. The app sends the user’s user_id

and Wi-Fi configuration to the robot. From this point on, the Wi-Fi access point is used
as transparent gateway. The robot generates a fresh secret_key and then initiates a
connection with the Beehive cloud. After this setup, the robot is linked to the user’s
account.

Robot commands can be sent from the app via the Nucleo cloud transparently over
the Wi-Fi access point to the robot. Commands include starting a new cleaning cycle,
configuring cleaning schedules, and setting no-go lines on an apartment map.

Similar to the Fitbit live mode, robots have an authenticated manual drive mode without
any server involved. This mode is very restricted and allows users to set the direction of
the robot manually and to start and stop the motor. Except from demos and tests, this
mode is not useful.

2.5 bluetooth location finders

Figure 5 shows a generalized Bluetooth finder architecture that can be found across
multiple vendors, i.e., the market leaders Nut and Tile.

Bluetooth finders help to locate lost items. They require a permanent Bluetooth con-
nection to a smartphone and alarm the owner when the connection is lost. An applica-
tion for this is not to leave the house without a purse. Moreover, the last position with
connectivity can be stored in the app or on the server. If the item is able to move or
get moved, it might no longer be at the last known location. In this case, the owner can
mark an item as lost and ask other users with the app to search for the finder. Other
users will then report the item’s position to the server once found.

Bluetooth finders are very cheap devices. Their owner will typically buy multiple
finders and attach them to all essential items. In contrast to Fitness trackers and vacuum
cleaners, they are even more battery-constrained. Ideally, they can be powered with a
button cell battery for more than a year. Thus, they cannot rely on an on-board GPS
module. Instead, the smartphone adds its GPS position to the finder’s information,



24 iot ecosystems

Owner

Reporter
Finder

Server

Finder information

Initial setup and nearby detection

GPSGPS

Lost finder report

Location history

Figure 5: Bluetooth finder ecosystem overview.

thereby being a data-modifying gateway. The only wireless data exchanged over BLE
usually is a unique identifier. Depending on the concrete implementation, this identifier
can be additionally secured or bound to a user account.

2.6 analysis of practical systems

Apart from the common concepts shown in this chapter, IoT ecosystems are very diverse.
They need to be tested individually to answer if user data is appropriately processed.
While testing can provide impressive results, it needs to be done carefully. Otherwise, as
we look into production systems, data of actual users could leak, and the infrastructure
could experience downtimes.

For an initial analysis, a Machine-in-the-Middle (MITM) attack can be launched on the
various gateways, if not prevented by proper encryption. Even with encryption enabled,
data can often be ex-filtrated from the IoT device itself. Results from such initial mostly
passive analysis already give a clear picture of the infrastructure similar to Figures 3–5.

What follows is an in-depth analysis of the underlying protocols and logic. The re-
maining chapters of this part will cover this for the Fitbit fitness trackers, Neato and
Vorwerk vacuum cleaners, and various Bluetooth finders.

my contribution

I completely wrote this chapter clarifying IoT ecosystem structures.
Figure 4 is based on Figure 1 from [Ull+19], Figure 5 is based on Figure 1 from

[Wel+19]. Both were adapted to represent information flow better.



3
F I T B I T F I T N E S S T R A C K E R S

We demonstrate why looking into the Fitbit ecosystem offers exciting insights in Sec-
tion 3.1. Possible attack scenarios based on these vulnerabilities are discussed in Sec-
tion 3.2. Client-side analysis of the tracker with a focus on changing its firmware behav-
ior is described in Section 3.3, as my main focus within this work was re-implementation
of the Fitbit firmware update process. The actual means of binary patching to modify
the firmware will be shown later in Chapter 7. We refer to related work in Section 3.4.
Section 3.5 provides insights to the responsible disclosure process.

3.1 motivation

When we looked into Fitbit in 2017, Apple, Xiaomi, and Fitbit dominated the wearables
market [IDC17]. In 2019, Fitbit has sold more than 89 million devices since their incep-
tion [Fit19b].

We decided to analyze Fitbit in more detail because they turned out to be secure at first
sight in a study comparing 17 different fitness trackers [Fer+17b]. While Xiaomi was still
sending plaintext data over Bluetooth in 2017, Fitbit already had a competitively secure
product on the market.

Compared to a smartwatch, such as the Apple Watch, a fitness tracker is smaller,
cheaper, and thus more constrained in hardware and software. It is interesting to ana-
lyze what is doable in such a limited product. Fitbit employs a rather complex ecosystem
with exchangeable components. That means that they support different tracker models,
and then synchronize either using a smartphone app or a Windows desktop program.

While Fitbit has a public bug bounty program, they exclude the trackers from it. They
only consider the server components to be critical. Incidents they experienced before
2017 were mainly data leaks on their cloud components. Thus, we assumed that the
hardware might be less secure, which turned out to be accurate, as shown in the follow-
ing sections. Initially, they never considered the user of a fitness tracker to have cheating

Server
App

Fitbit

Custom firmware update
Encryption key extraction
App authentication replay
Plaintext live mode

Downgrade to plaintext
Checksum feedback

Replay (data and association)

Debug options

Debug pins

Figure 6: Fitbit vulnerability analysis results.

25



26 fitbit fitness trackers

incentives. With social network add-ons and health insurance discounts, attacker incen-
tives changed, but their security model stayed the same.

Figure 6 shows an overview of all vulnerabilities found throughout our analysis. They
affect all sorts of components of the system, starting from the firmware on the tracker
itself, going to the smartphone app, and even reaching to all kinds of communication
between the ecosystem’s components.

3.2 attack scenarios

We categorize adversary goals into (1) spying targeting a victim’s privacy, (2) financial
interests such as ransomware or monetary rewards, (3) denial of service affecting ser-
vice availability any of the parties involved, and (4) cloud independence from Fitbit’s
official services. We also discuss (5) non-adversarial applications such as the exploita-
tion of fitness data for medical research. The following paragraphs describe the concrete
attack scenarios that can be achieved based on our findings, as well as their implications
to both users and the Fitbit business model.

(1) spying : The spectrum of spying attackers interested in fitness data is broad since
the information that trackers collect could be exploited for private, political, or financial
motives. Attack scenarios range from stalking to health analysis and user profiling.

• Sniffing Ongoing Communication — Spies can sniff ongoing traffic during routine
tracker and app interaction. Local wireless Bluetooth Low Energy (BLE) com-
munication is plaintext, and only selected data types transmitted over BLE are
encrypted end-to-end. Remote Transport Layer Security (TLS) connections can be
tampered with if any part of the network connection used is under an attacker’s
control. We observe that the smartphone app does not employ certificate pinning,
and the login credentials transferred over TLS connections are not further secured.
Usage of non-hashed login credentials enables later re-using intercepted creden-
tials for espionage purposes.

• Proximate Espionage — Fitbit does not currently recognize proximate wireless espi-
onage, though it is possible to infer, for instance, if someone was jogging outside.
We find that eavesdroppers can connect to any tracker in wireless range and re-
quest stored data. Typically, this data is end-to-end encrypted, but encrypted
dumps contain metadata revealing the number of synchronizations performed,
user activity levels, and the tracker’s serial number. In many scenarios, a spy
can issue authenticated commands to obtain information in plaintext live mode,
or sniff live mode data currently being exchanged with the victim. We further
observe that some trackers allow full reading of their memory.

• Remote Espionage — Spies can obtain all locally encrypted data that trackers store
by associating them to a controlled Fitbit account and then triggering synchroniza-
tion. The server then decrypts user activity dumps while the attacker can be lo-
cated virtually anywhere on the Internet. In the case of trackers in plaintext mode,
the association is only limited to knowing a valid serial number. Trackers that
implement encryption must initially be either within wireless or physical range
(depending on the model) for an attacker to capture and replay an association.



3.2 attack scenarios 27

The victim can re-associate her tracker to a personal account, limiting the espi-
onage period between the last legitimate data synchronization and re-association.
Full-featured, persistent espionage can be mounted by configuring an alternative
server address inside a victim’s smartphone app. This is a more sophisticated
Machine-in-the-Middle (MITM) attack that does not require any control over the
victim’s network.

• Spyware — Modified firmware can also enable full-featured, persistent espionage
on trackers that have been in the attacker’s wireless range for minutes. Indeed, we
find that spies can flash malware without the victim’s interaction, compromising
critical security and privacy functions. Trackers that work in plaintext mode ac-
cept plaintext firmware updates, which are neither signed nor device-specific. For
encrypted trackers, the spy requires a valid device-specific encryption key, which
we have been able to extract wirelessly on Fitbit Flex and One.

(2) financial interests : Next, we consider attacks that can directly generate
monetary value.

• Selling Fitness Data — Attackers can sell activity records that falsely certify “healthy”
lifestyles, as third parties, including insurance companies, offer rewards to users
who prove physically fit by sharing Fitbit trackers data [PwC16]. Flashing a firm-
ware that randomly multiplies all step counts or reports a healthier heart rate
produces enhanced fitness records. Consumers interested in fake fitness services
would allow the attacker to analyze or tear-down their tracker to extract all tracker-
specific information and automatically generate plausible activity records.

• Ransomware — Victims can be extorted to have a compromised tracker working
again by exploiting one of the following vulnerabilities. While in wireless range,
an attacker can disrupt tracker functionality via an unauthenticated “set date”
command, which can make fitness records appear erratic and potentially alert
an employer of unusual employee behavior. Likewise, we find that an attacker
can set alarms with prior authentication to wake up the victim at arbitrary times.
Repeated remote association with the attacker’s account stops the victim from col-
lecting any activity summaries. Similar to spyware, ransomware that disables offi-
cial Fitbit firmware updates and limits tracker functionality can be flashed without
user consent.

(3) denial of service : Attacks resulting in Denial of Service (DoS) not only frus-
trate users but also harm Fitbit’s reputation, if such attacks can develop at scale.

• Local Wireless Commands — Beyond ransomware, dates and alarms on trackers can
be manipulated to deny service to Fitbit end-users. For instance, an attacker can
exploit authentication replay and local commands to turn a reliable fitness tracker
into a vexing random alarm clock.

• False Firmware Updates — A malicious firmware update can be used to permanently
make trackers non-working by removing the wireless flashing option and other



28 fitbit fitness trackers

useful functions. It is also possible to harm the Fitbit cloud by flashing mischievous
firmware that sends randomized tracker data to the backend servers, which might
be hard to filter automatically.

• Virtually Stealing Trackers — Vulnerabilities we identify concerning the remote as-
sociation procedure can be leveraged to “steal” trackers from the currently as-
sociated accounts, thereby disabling synchronization until the victim performs
re-association. Such attacks can be performed at scale, since an attacker can re-
associate a tracker multiple times using previously recorded traces, as long as the
tracker is temporally within wireless range. Besides, association information for
plaintext trackers can be deduced from the original packing, or attackers could
bruteforce plaintext associations.

(4) cloud independence : Making a device independent of the Fitbit cloud can
be regarded as an attack on the brand’s business model since users would no longer
synchronize their data to the official servers.

• Full-Featured Separate Infrastructure — Currently, Fitbit users are constrained to up-
load their data to the official cloud to be able to monitor their activity. This is not
intrinsic to the Fitbit business model; it is a general practice in the fitness tracker
industry [Fer+17b]. A custom firmware could feature different encryption func-
tions and keys, hence enabling the user to synchronize data with other custom
services different from Fitbit. We also observe that the official Android smartphone
app has a hidden option that can allow configuring alternative servers. In such a
scenario, the look and feel of the app will not change, while older trackers could
be migrated to solutions that provide superior encryption solutions. Users could
also run such servers themselves or allow someone they trust to do so.

• Cloud Independence with Reduced Function Set — Authentication credentials, which
are valid for an unlimited time, enable an attacker to issue a subset of commands,
including live mode operation. This can be used to extract daily activity sum-
maries and average heart rates, and redirect such statistics to an independent
cloud while preserving some interaction with the Fitbit cloud. Users of the newest
tracker models, which are not yet wholly reverse engineered, could still prefer this
reduced feature cloud independence over synchronizing all their data with Fitbit.

(5) non-adversarial applications : Finally, we consider scenarios where there
is not necessarily a malicious intent or a personal incentive.

• Medical Research Sensors — Trackers have an interesting selection of sensors, rang-
ing from unsophisticated accelerometers to fancier heart rate monitors and GPS
receivers. Activity records contain only interpreted sensor data, for example, the
accelerometer only saves aggregated data that includes step counts and floors
climbed. While medical research is not an attack vector per se, it can benefit from
inexpensive platforms that can record and transmit raw personal sensor data. In
the case of fitness trackers this, could be achieved using firmware modifications.
Raw tracker sensor data is more verbose than the output of the public sensor in-
terface of even the most recent Fitbit Ionic smartwatch, which for example only
provides the overall heart rate but not the pulse curve [Fit19a].



3.3 firmware update process 29

• IoT Security Research — Given Fitbit’s market lead and the reputation of their de-
vices for being relatively secure, we expect other industry players and academic
researchers have incentives to continue investigating their security and privacy
properties. On the one hand, competitors could learn from Fitbit’s mistakes (if
identified) to strengthen the robustness of their products from initial designs and
enlarge the customer base. On the other hand, researchers may seek to discover
vulnerabilities that can be exploited in different gadgets and expand the body of
knowledge in the area of Internet of Things (IoT).

3.3 firmware update process

Fitbit trackers implement most logic internally. They already compute step counts and
sleep states from the accelerometer locally. Fitness trackers are required to do this by
design—transferring raw accelerometer data over the air would not be energy-efficient.
Getting control over the firmware, therefore, enables to open up the whole system and
understanding major parts of the protocols.

The encrypted communication between server and tracker needs to be reversed to
extract and install arbitrary firmware. Back in 2017, when initially taking a look at the
Fitbit Flex fitness trackers, they had a security bug that allowed attackers to extract the
encryption key over the air. We briefly describe this bug in Section 3.3.1. The remaining
part explained in Section 3.3.2 is about the firmware update process itself.

3.3.1 Understanding Encryption

The encryption key can be extracted by using an authenticated command for memory ex-
traction. Authenticated commands are a subset of commands the app can issue directly
without contacting the server. Authenticated memory readout was found by Schellevis
et al. when comparing updates for the Fitbit Charge HR [Sch+16].

Steps required to issue authenticated commands are shown in Figure 7. The user (1)
logs into the server, (2) connects to her Fitbit, and (3) during setup confirms to own the
tracker by tapping it physically. Trackers with a display require the user to enter a num-
ber from the screen instead of tapping. We call this step association since it initiates the
link between a Fitbit and a user account. Only one user account can be associated with a
Fitbit, linking a new account will remove it from the previous account. After association,
(4) any app, including third-party apps, can request authentication credentials. These

Server
App & User

Fitbit

Kdev
Kdev

1) User login

2) Local connection

3) Remote association to logged-in user

4) Authentication credentials

5) Authenticated commands

Figure 7: Authentication model: local wireless connection vs. association of a tracker to a user
account. Local BLE commands (marked in red) are not cryptographically secured.



30 fitbit fitness trackers

credentials are stored in the app and reusable forever since they are only bound to the
device-specific encryption key Kdev. Anyone with authentication credentials for a
particular Fitbit can run authenticated commands on it forever.

Authenticated live mode is partially by design, as Fitbit supports a serverless live
mode for current statistics. Usually, fitness records would be sent encrypted with

Kdev to the server, which decrypts and stores them. The app can then request
this data over an encrypted connection for the currently logged in user. This approach
would not scale for displaying current data, such as the heart rate, and therefore, the
live mode was invented. Since the live mode is there to reduce traffic to and load on the
server, making authentication credentials reusable is intended.

The non-intended use case, however, is to issue other authenticated commands. On
older firmware versions, these include a memory readout, which should only be avail-
able for development purposes. The memory range is not restricted. Thus, data that can
be requested include the encryption key and all firmware.

3.3.2 Firmware Update Process

We reverse engineer and implement flashing custom firmware for the Fitbit Flex and
Fitbit Charge HR. Our Android app, which performs firmware updates, is publicly avail-
able [Ste19]. Flashing custom firmware over the air requires the tracker either to be in
plaintext mode or to have the encryption key extracted, as described in the previous
section. The latter requires the tracker not to be patched with the security updates from
October 2017. Note that in 2019, these trackers are still shipped without any patches.
Hence, any “fresh” tracker can go through the steps shown in Figure 8, which are ex-
plained in the following. If there is neither plaintext mode nor encryption key available,
i.e., because the fitness tracker is up to date, firmware updates can still be installed by
opening the case, connecting a wire, and flashing via Serial Wire Debug (SWD).

original app update procedure Available firmware updates are shown in the
smartphone app. The original smartphone app requires the user to initiate an update.
User interaction ensures that the tracker stays in range and is charged during the pro-
cess since flashing firmware over BLE onto the tracker takes a few minutes. Firmware
updates are requested by the tracker from the server with a microdump payload, such
that only firmware for this specific tracker can be retrieved. A firmware update is en-
capsulated into a (typically encrypted) microdump response, which can be sent to the
tracker directly after local pairing without authentication.

Initiating firmware updates does not require authentication or user interaction. Plain-
text updates and downgrades can be retransmitted to any tracker of the same model that
is also in plaintext mode. We use this in our open implementation to provide original
firmware images for any tracker in plaintext mode.

custom firmware installation Fitbit employs a two-stage update process
shown in Figure 8, which we reverse-engineered from the firmware binary itself. In
the first stage, the BSL is flashed, which contains enough functionality to enable the
main application update procedure. In the second stage, the tracker reboots to the BSL



3.3 firmware update process 31

Custom appFitbit

Kdev Kdev (leaked)
Flash firmware (BSL)

Decryption and validation

Write to flash

Reboot to BSL

Acknowledgment

Wait for reconnect
Flash firmware (APP)

Decryption and validation

Write to flash

Reboot to APP

Acknowledgment

Figure 8: Client-side firmware update process.

and flashes the APP, which provides the full functionality of the tracker.1 The update
process is finished by rebooting into the APP.

A firmware update must pass several validity and integrity checks before being writ-
ten to the persistent flash memory. First, generating valid firmware is difficult since a
checksum is contained in an intermediate field inside the firmware, and before creating
the checksum, a bit in the firmware must be flipped. This basic check prevents one from
simply exchanging strings in the sniffed firmware update. Second, the firmware needs
to be transferred in the firmware dump format—which was first observed in [Sch+16],
but with vital information to reproduce firmware flashing missing. Notably, the first
header contains the firmware length and destination memory address; the firmware
segments start with the tracker’s model number, continue with the action (rebootToBSL,
writeToFlash, etc.) and end with segment length and checksum. Reboot actions have
length and checksum set to zero, and they can be issued stand-alone. Third, if the tracker
is in encrypted mode, the firmware needs to be encrypted with eXtended Tiny Encryp-
tion Algorithm (XTEA) in Encrypt-then-Authenticiate-then-Translate (EAX) mode.

Firmware updates have three fail-safe features. First, the separate update stages pre-
vent flashing non-functioning firmware into both sections—as long as one of them is
still working, the broken one can be repaired. Second, each firmware update segment
starts with the first byte of the serial number, which is the tracker model number, to pre-
vent from flashing incompatible firmware, in case the smartphone app would mix up
connected trackers. Last, the firmware checks if the address range of the new firmware

1 The Fitbit internal naming scheme distinguishes between firmware APP and smartphone app, which interact
with each other.



32 fitbit fitness trackers

is within the flash region. Fail-safe features can be circumvented by two rounds of flash-
ing, where the first round is malware disabling them. BSL and APP separation can be
removed to make more room for malicious functionality.

Despite these fail-safe features, it is still possible to soft-brick a Fitbit fitness tracker
within one round of firmware flashing. A bricked firmware can be the result when
the flashed firmware crashes immediately due to invalid register access, which causes a
reboot loop that always stays within the APP firmware.

The BLE communication setup only allows for a 20 byte transmission length per frame,
which are acknowledged by the tracker individually, making the firmware update pro-
cess last several minutes. Faster flashing can be enabled by only flashing the APP, or by
reducing firmware size at the cost of functionality.

Attackers can wirelessly flash malware on trackers that are in plaintext mode, or that
are vulnerable to authenticated memory readout.

3.4 related work

We confine consideration to related work that delves deeper into the Fitbit ecosystem,
and omit research on fitness trackers and IoT ecosystems in general. To the best of our
knowledge, there is no scientific analysis of big real-world IoT ecosystems, including all
their heterogeneous components. Fitbit puts many security measures in place where oth-
ers employ no security at all, as a comprehensive study looking into 17 fitness trackers
from various vendors except Fitbit shows [Fer+17b].

Cyr et al. were the first to research Fitbit security mechanisms by reverse-engineering
the smartphone app [Cyr+14]. They found that cryptographic mechanisms are indeed
used to secure the communication between tracker and server but did not reveal an
in-depth understanding of these mechanisms and whether they may be compromised.
The closest work to our contributions is by Schellevis et al., who used tracker↔app au-
thentication to extract memory at chosen addresses and undertook app and firmware
analysis to understand in detail the encryption mechanisms implemented [Sch+16]. The
memory readout vulnerability was found by comparing Fitbit Charge firmware updates,
though this is fixed in the current firmware version. However, we still encountered this
issue in the most current Fitbit One and Flex firmware. Despite understanding the basics
of the firmware update, important gaps exist in their findings, which would need to
be covered to generate custom updates. Schellevis recently extended the open-source
Galileo software with authentication and megadump XTEA decryption features [Sch17],
but the correct EAX Cipher-based Message Authentication Code (CMAC) mode is miss-
ing. A different firmware analysis also found the test command menu and integrated
it in a Unicorn/Radare2-based emulation, which is an interesting toolchain for further
investigations, but this analysis has not yet been continued [Rei16].

On the Galileo mailing list, it was claimed that trackers in encrypted mode could be
switched back to plaintext by sending a valid plaintext server response [Dan17]. We
tried this for the same tracker model, Flex, with both firmware versions. Still, it did
not work, because the encryption options are not only “enable encryption” and “disable
encryption”. There is also a “trial encryption” when the tracker tries to initiate an end-to-
end encrypted communication with the server and still switches back to plaintext if the



3.5 responsible disclosure and outlook 33

server response is plaintext. The observed attack works for trackers in “trial encryption”
but not for trackers in the wild with persistently enabled encryption.

AV-Test discovered that with older Fitbit Charge firmware versions, the live mode
could be accessed by any device nearby after a recent authentication from a smartphone,
obfuscating their finding by only listing the associated UUID [CSM16]. Goyal et al.
revealed that a denial of service attack on a selected tracker is possible via BLE [GDS16].
Galileo recently implemented an experimental BLE synchronization, supporting local
pairing and dump retrieval. The community does not yet know our commands to use
the live mode, and set alarms and date.

In [Apv17], Apvrille summarizes everything recently found about the Fitbit protocols.
Note that most of the commands documented are already implemented in the open
Galileo tools or her fittools. Apvrille proposed to use random numbers generated
by the tracker for the authentication challenges and published fittools implement this
feature [Apv15], certainly authentication challenges are not random but cryptographi-
cally generated from partially predictable parameters and should not be used for such
purposes. Moreover, Apvrille found a simple 20 byte echo command and claimed that
this could already be an attack vector for firmware modifications—however, Fitbit stated
this is not possible with this command, which we confirm with our firmware reverse-
engineering [For15].

Earlier work focused on the security of old Fitbit Ultra models, which use an ANT
protocol stack instead of BLE, and thus are not supported by the smartphone app. In-
stead, synchronization requires a Windows tool that was last updated in 2012 [Fit17].
The Ultra security model is fragile, as demonstrated by Rahman et al., who documented
the security and privacy issues encountered and proposed a FitLock tool to add authen-
tication and encryption [RCB13]. Zhou et al. later highlighted security issues pertaining
to the FitLock [ZP14], which prompted Rahman et al. to revisit Fitbit Ultra security and
propose SensCrypt as a remedy [RCT16]. The Fitbit Ultra system is now only supported
by the manufacturer for legacy reasons, and the current Fitbit infrastructure already
employs encryption and authentication.

3.5 responsible disclosure and outlook

In retrospect: two years after our responsible disclosure process with Fitbit, we still
have a good working relationship with them. They have a team working on security
and communicate encrypted. Whenever we report issues to them, they respond with
a comprehensive list of findings in their own words and with their criticality levels
assigned.

Any issue that can be fixed by changing the server’s behavior was fixed immediately.
Fitbit employed strict server-side filters, that block anyone upon invalid requests for in-
creasing periods. Externally exploiting their infrastructure got very hard. Downgrades
from encrypted communication to plaintext and checksum feedback are no longer pos-
sible.

Fitbit supports various generations of fitness trackers and smartwatches within the
same smartphone app. Thus, the Bluetooth based communication is similar throughout
all models, including the Fitbit Ionic. While this is great in terms of usability and requires
Fitbit to only maintain one app, this also introduces legacy issues in new devices.



34 fitbit fitness trackers

With recent firmware updates, users can decide if they want to disable live mode. Live
mode transmits a summary of current activity in plaintext between app and tracker. It
is based on the replayable app authentication. Even the recent Fitbit Ionic smartwatch
supports live mode. We assume this feature is kept for performance reasons. Further
authenticated commands, such as the memory readout, were consequently removed.

Hardware-related issues are harder to fix. Debug pins are part of the hardware layout
and cannot be removed. Indeed, Fitbit did not update firmware on trackers coming out
of the factory. Thus, even in 2019, they can still be flashed over the air with custom
firmware. Assuming that users have installed security updates since 2017, this can
only be exploited on purpose. However, health insurers are still offering discounts for
customers with high step counts. To the best of our knowledge, health insurers do not
force customers to have the most recent fitness tracker models.

my contribution

My main contribution was the analysis of the firmware update process and firmware
itself. The results of this chapter were already published in [Fer+17a] and [Cla+18a].
Text for Section 3.2 is already published in [Cla+18a, Sec. 3.2]. Figures Figure 7 and
Figure 8 are adapted versions from [Cla+18a, Fig. 2, Fig. 6]. Section 3.3 based on
[Cla+18a, Sec. 4.5]. Section 3.4 is taken from [Cla+18a, Sec. 8].



4
N E AT O A N D V O RW E R K VA C U U M C L E A N E R S

We outline how Neato vacuum cleaning robots are different from many Internet of
Things (IoT) devices from a technological perspective and why they are interesting to
analyze in Section 4.1. Section 4.2 describes attack scenarios based on the vulnerabilities
we found. Local attacks, which include bypassing secure boot to extract the firmware
and then analyzing this firmware, are described in detail in Section 4.3 and Section 4.4.
We reference related work in Section 4.5. Findings and bug-fixing are concluded in
Section 4.6.

4.1 motivation

Vorwerk sold their first vacuum cleaner in 1930 in Germany, and since then is leading
in vacuum cleaning technology in Germany [Vor19]. Neato released their first vacuum
cleaning robot XV-11 in 2010, followed by an enhanced version of this model for Vor-
werk in 2011, the VR100. To the best of our knowledge, Neato’s XV-11 was the first
vacuum cleaning robot with a laser scanner for environmental mapping. This concept
was copied later by other vendors such as Xiaomi. Vorwerk’s VR200 and VR300 both won
test comparisons in Germany [Sti19]. In 2016, Vorwerk acquired Neato. Nonetheless, the
marketing strategy remains similar: there are still cheaper Neato models and the more
mature, expensive Vorwerk models for sale.

Feature-wise Vorwerk and Neato were leading vacuum cleaning robots in 2018 and still
are as of now. They run very similar firmware on slightly different hardware. Yet, their
cloud infrastructures are hosted separately. Features are usually released to Neato a little
bit earlier for testing purposes and then pushed to Vorwerk. In the following, we will
only refer to Neato, but this also includes Vorwerk.

From a technological perspective, Neato is very different from most IoT vendors.
Neato’s first models were running on Linux, which is common amongst many vacuum
cleaning robots, including Xiaomi [Gie19]. However, all of Neato’s connected models are
based on the QNX operating system. The operating system change allows them to fit the
whole uncompressed firmware, including autonomous cleaning logic and user interface,
into just 20MB, while Xiaomi comes with a full Ubuntu installation. Neato integrates a
lot of security in their firmware. Firmware updates can be downloaded without own-
ing a vacuum cleaner from their website, but they are encrypted and signed. To gain
initial access to the QNX operating system and the vacuum cleaning services running
on it, we used a secure boot bypass on the physical device. Overall, Neato sticks out on
the connected device market for a rare software combination that is more common in
industrial setups.

In contrast to Fitbit, Neato had the hardware attacker in mind when designing their
product. We think that their threat model additionally includes the protection of their
intellectual property since there is a lot of advanced logic in the autonomous vacuum
cleaning process. However, they never considered an attacker would succeed in breaking

35



36 neato and vorwerk vacuum cleaners

their protection mechanisms and gain full control over just one of their robots. They also
never considered their robots might be fake devices that could attack their cloud.

An overview of all vulnerabilities found in the Neato ecosystem is shown in Figure 9.

Neato/Vorwerk
robot

Nucleo

Beehive

App

Debug pins
Secure boot bypass
Static RSA keys
Non-random secret key
Static log and coredump key

Unauthenticated buffer overflow

Unauthenticated manual drive
Wi-Fi name bootloop

Robot re-linking

Figure 9: Neato/Vorwerk vulnerability analysis results.

4.2 attack scenarios

We follow the same categorization of attack scenarios as for Fitbit in Section 3.2.

(1) spying : The Neato ecosystem opens many attack vectors to espionage. An at-
tacker might be motivated to spy on a user due to personal, political, or financial rea-
sons.

• Sniffing Ongoing Communication — Communication between the vacuum cleaner
and both cloud services is secured with Transport Layer Security (TLS). All robots
have the same Rivest–Shamir–Adleman (RSA) keys for authentication. This makes
it impossible to sniff this communication as an outside attacker. However, a secu-
rity analyst with debugging access can access the session key to see the plaintext
data.

• Proximate Espionage — An attacker located nearby the same Wi-Fi can always infer
metadata, even if traffic is encrypted. Specific actions, such as sending a cleaning
report map, are unique. Moreover, the direct mode between the robot and the
smartphone app is not encrypted adequately encrypted and authenticated. Some-
one with physical access can use a secure boot bypass to extract memory, which
contains current account and Wi-Fi credentials. Less complicated than the secure
boot bypass is the possibility of obtaining the debug logs and core dumps, which
is a functionality of the original firmware, and only secured with a static encryp-
tion key that has been the same for years. Depending on the crashed process. Also,
core dumps may contain sensible data.

• Remote Espionage — A particular risk with Wi-Fi usage is that most users will
probably use the same Wi-Fi for all their other devices. This means that an attacker
who can get access to a robot over the cloud can sniff traffic and take over other



4.2 attack scenarios 37

machines within the same network. This is feasible even if there are a firewall or
Network Address Translation (NAT) in place.

• Cloud Espionage — Access to Nucleo cloud data, such as maps, requires knowledge
of a robot’s identifier and secret key. Due to missing randomness during secret
key generation, an attacker can infer the secret key based on the robot’s identifier
and cloud linking date.

• Spyware — For an attacker with physical access, it is possible to boot a temporary
spyware image on a robot. To make spyware on the robot persistent, an attacker
would have to break secure boot and not just bypass it temporarily. A hardware
add-on that always secretly boots an alternate firmware image would be feasible
to program and install.

(2) financial interests : Users themselves cannot gain any financial rewards for
their data in the current Neato business model. Nonetheless, data recorded by vacuum
cleaning robots might be of interest to external companies for advertising purposes.
Criminals might even misuse data against users.

Monetary value can potentially not be used for the advantage of the user because
there are currently no business models to reward them. Companies and criminals still
have several financial interests.

• Selling Map Data — Vacuum cleaner data is precious for marketing purposes. From
the map, the size of the apartment and kind of furniture can be inferred. Data also
includes information about moving objects, thereby giving hints on how many
persons live in a household and when they are home. The latter is also valuable
information for burglars.

• Ransomware — Assuming that an attacker cannot permanently install ransomware,
a user can always disable her Wi-Fi access point and reboot the robot. The robot
can still vacuum without the cloud, but cannot report maps or respect virtual no-
go lines. A user who does not know about this technical background might still
be tricked by ransomware. This ransomware would need to be rolled out over the
cloud, meaning that Neato could easily filter it out. So, in principle, ransomware is
a possible scenario, but hard to be put into practice.

(3) denial of service : In the Neato ecosystem, Denial of Service (DoS) is more
critical to the servers than to the vacuum cleaners themselves. Robots without Wi-Fi
connection still provide basic functionality, unless they get permanently bricked by an
attacker.

• Local Wireless Commands — An attacker in the same Wi-Fi can control the robot
in direct mode. Even though an authentication header is sent from the legitimate
user’s smartphone, this is not checked by the robot. This can be used to move the
robot towards the wrong direction.

• Virtually Stealing Vacuum Cleaners — Currently, secret keys are generated locally on
the robot each time it is linked to an account. The only security mechanism that
ensures a robot is authentic is an RSA key, which is the same on all robots. An



38 neato and vorwerk vacuum cleaners

attacker can link any robot identifier to her account, which removes the link to the
legitimate account. Neato plans to replace the current secret key mechanism to no
longer only depend on information generated by the robot.

• Abusing Cloud Infrastructure — Anyone in possession of the static robot RSA key
used among all robots can connect to the cloud services and exchange data using
them. This makes the Neato infrastructure susceptible to being misused by botnets,
as well as being exposed to high amounts of traffic that slow down services.

• Wi-Fi Name Brick — A robot can be bricked permanently by configuring it to use
a malicious Wi-Fi name. This issue can only be fixed by sending in the robot to
customer service.

(4) cloud independence : Due to secure boot, cloud independence is hard to
achieve. Proper malware protection leads to high user dependence in this case.

• Full-Featured Separate Infrastructure — Data exchanged with the cloud is encoded
in JavaScript Object Notation (JSON) in both directions, which makes it easy to
reverse engineer. Secure boot makes it nevertheless very hard to become indepen-
dent from the cloud infrastructure. Each time the robot reboots, it needs to be
exploited again. If a robot has a vulnerability that allows exploitation over the
local network and the user does not install updates, this vulnerability can be used
to exploit the robot over and over again, such that a separate infrastructure can be
used.

• Cloud Independence with Reduced Function Set — The features provided in direct
mode are not very useful. They can be used to turn on the vacuum cleaning
robot’s engine and move it into directions. However, there is no possibility of
getting sensor feedback to drive it autonomously. The robot would need to use
random strategies similar to those that can be found in low-cost robots without
sensors.

(5) non-adversarial applications : Opening up the Neato ecosystem can have
further applications that are not for personal advantage.

• Laser and Ultrasonic Sensors — The sensors in vacuum cleaners are very interesting.
People even dissect Neato robots to analyze their laser system. A robot can not
only be used for vacuum cleaning but also to sense its environment in general and
move around. Additional sensors or actuators can be attached to a robot over the
Universal Serial Bus (USB) interface, to customize it further.

The following Sections 4.3 and 4.4 focus on local attacks, as these were my main
contribution to this topic. These local attacks were the entry point for advanced analysis
of cloud components.

4.3 bypassing secure boot

Access to the firmware running on the robot is required for more advanced security
research. This includes but is not limited to the analysis of mutually authenticated



4.3 bypassing secure boot 39

Table 1: Neato/Vorwerk firmware comparison.

Product Name Firmware Version Build Date

Neato BotVac Connected 2.2.0-296 Dec 12 2016

Neato BotVac Connected D7 4.2.0-102 Jul 12 2018

4.4.0-72 Dec 22 2018

Vorwerk Kobold VR300 4.2.2-137 Aug 30 2018

4.2.5-166 Jan 11 2019

TLS connections and debugging applications while they are running. Neato is using a
custom AM335x chip with secure boot enabled [MG18]. This means that the flash chip
only contains an encrypted and signed system image; a physical attacker cannot merely
unsolder the chip to obtain it. Firmware updates use the same encrypted and signed
format. Changing and debugging firmware on a robot, therefore, requires bypassing
secure boot.

We start with a hardware analysis in Section 4.3.1, which leads to a hidden boot menu
in Section 4.3.2. We exploit this to extract Neato’s system image (see Section 4.3.3). The
described security issue, which was assigned CVE-2018-20785, has been fixed in the
Neato BotVac Connected D7 firmware version 4.4.0-72, all other versions listed in Table 1

are vulnerable. The Vorwerk firmware has a more recent release date, but features are
tested first on Neato and rolled out later for Vorwerk.

4.3.1 Hardware Analysis

After teardown of the Neato BotVac Connected, further analysis of all components is re-
quired. The motherboard has many testing points and undocumented chips, with essen-
tial parts depicted in Figure 10. We connected all testing points to a logic analyzer, and
rebooted the robot multiple times. Most of the testing points do not show any exciting
output. Some might be for sensors and other features not relevant for system access. In
addition to test points, the right front of the motherboard contains three extra-large un-
labeled pins, which are a serial interface with clock, read, and write. The ground needs
to be taken from another source, such as the internal USB port. It prints the following
text during startup and remains silent afterward:

BotVac Connected "<Fast Memory>"(84038)

The Neato BotVac Connected D7 features a similar serial port, it is located on the mother-
board’s left and has four connection pins. Access to the Vorwerk Kobold VR300 serial port
does not require disassembling it; it is located next to the USB port. By default, these
serial interfaces do not enable any access. Moreover, they do not leak any information
about the main chip or operating system.

The main chip on the Neato Botvac Connected is the SNI20952608ZCE in the center of
Figure 10. Since it is a custom chip, there is no information or documentation available.
The form factor 962B leads to the AM335x chip family manufactured by Texas Instruments.
The Neato BotVac Connected D7 is using the same form factor and chip family, but the
chip is labeled SNI5095260BZCZ.



40 neato and vorwerk vacuum cleaners

4.3.2 Hidden Boot Menu

During startup, QNX first loads an Initial Program Load (IPL), which then loads an
Image File System (IFS) containing the operating system. Instead of a QNX IPL, Linux
typically uses the more conventional setup of MLO and U-Boot on AM335x. Either way,
these setups enable booting an operating system. Neato is using secure boot, which
means that encryption keys configured on the AM335x chip decrypt and verify both,
IPL and IFS, prior to execution.

Neato’s standard setup is to boot the IFS containing the firmware from the external
flash chip without showing any options. While testing the partially documented Neato
USB command line [Nea15], we found that TestMode On followed by SetSystemMode

PowerCycle enables a hidden IPL boot menu on the serial interface shown in Figure 11.
After entering these commands, it shows the following boot options:

BotVac Connected "<Fast Memory>"(84038)

Press enter twice within the next 2 seconds for boot menu

AM335xAM335x

Figure 10: Part of the Neato BotVac Connected motherboard.

Figure 11: Unlabeled serial interface.



4.4 static firmware analysis 41

**Commands:

Press ’M’ to load IFS from main image flash

Press ’X’ for serial download, using XModem-1k

Press ’1’ for XModem-1k download at 1Mb/s

Press ’S’ to scan existing memory without download

Note that XModem-1k download makes the robot download a system image from the
serial port and boot it. This does not enable system image extraction. On uploading a
valid QNX IFS no secure boot checks are performed, representing a bypass. Loading
a BeagleBone QNX IFS from Foundry27 for AM335x works in principle, it prints some
information on the serial interface but crashes when initializing processors.

The original AM335x Foundry27 board support package includes a very similar IPL
procedure in src/hardware/ipl/ boards/am335x/main.c. It enables sending an IFS over
the QNX serial protocol sendnto. Neato’s implementation represents a variation, and
more AM335x-based products might be affected by the secure boot bypass. The more
common setup of MLO and U-Boot also allows loading arbitrary images by default. In
general, vendors relying on secure boot should carefully check for such contradicting
setups.

4.3.3 Memory Extraction

We exploit the secure boot bypass to launch a cold boot attack, which is possible as
neither the AM335x chip nor the IPL reset memory contents during startup.

With QNX SDP 6.5 the Foundry27 AM335x image can be altered. The main issue here
is that hardware cannot be initialized. This is since memory is mapped to different
addresses on the Neato chip variant, and any invalid memory access freezes the chip.
The address space is 32 bit (4GB), and therefore it is not possible to guess all addresses
required to boot a fully functional QNX system.

At this stage, an attacker can print memory contents until an invalid memory access is
made. The serial interface is very slow in default settings (baud rate 115200), upgrading
it to 1Mbit s−1 worked in our setup. Despite the slow speed and partially unknown
memory layout, this poses a large attack surface for cold boot attacks.

By default, QNX is located at address 0x81000000. First memory dumps show that
despite booting our own QNX IFS this memory region still contains some of the original
Neato IFS contents. We relocate our custom QNX IFS to an address between 0x80000000

and 0x81000000 and perform a full memory dump of the upper 2GB of the address
space. This area contains the same 256MB, which are mapped 8 times to the memory
region. Each mapping contains the full Neato IFS and any Random Access Memory
(RAM) contents that were present before the reboot, including Wi-Fi credentials.

4.4 static firmware analysis

Neato’s IFS is a rich source for information and enables static firmware analysis. It
contains all important binaries and the shell scripts coordinating them. For example
/bin/robot is called by a script /etc/brain.sh and the watchdog /bin/pinky is started
via /etc/pinky.sh. An overview of the main tasks and their most important interactions
is shown in Figure 12. robot is the largest binary and responsible for the main features,



42 neato and vorwerk vacuum cleaners

starting at the interactive command line and ending at all cleaning logic. It receives
Nucleo cloud commands from astro and generates replies. The manual drive mode,
which is issued locally via the smartphone app, is first redirected from webserver to
astro and then processed similarly. conman manages Wi-Fi connections. Messages are
exchanged via proprietary libNeatoIPC calls, as well as standard QNX message queues.
In the following, we focus on those components relevant for further findings.

Testing the robot’s wireless interfaces produced core dumps that are separate files in
the so-called “Blackbox Logs”, which can be copied to a USB stick connected to the Neato
USB interface. Such a core dump is the entry point for our buffer overflow analysis that
allows unauthenticated privileged remote access on any robot [Ull+19].

For security reasons, these core dumps are encrypted. A key question for further re-
search is how this encryption works. Shell scripts in the Neato IFS copy and rotate these
logs, encryption is performed by /bin/rc4_crypt called without arguments. Reverse en-
gineering rc4_crypt reveals the hard-coded password *^JEd4W!I. This password is valid
for each of the three tested robots. We assume the same password is used throughout
all firmware versions. CVE-2018-17177 was assigned to this issue.

The robot also features a number of encrypted private RSA keys, which are located in
/var/keys/. One of the keys is named vendorPrivateKeyProduction (or serverPrivate
KeyProduction in the most recent robots) and is used for authenticating the robot against
the cloud components. By examining the key decryption procedure in the robot binaries,
we were able to decrypt the keys ourselves and launched several tests. Due to the high
confidentiality of these keys, we agreed not to disclose details on the decryption process.

4.5 related work

Even though vacuum cleaning robots are a target of interest, not much security research
has been published on Neato, except for an exploit chain for attackers in the same lo-
cal network [Kie18a; Kie18b]. For Vorwerk robots, which are re-branded Neato robots
with minor hardware and settings upgrades, not a single Common Vulnerabilities and
Exposure (CVE) number is known.

Nucleo

/bin/webserver /bin/astro

/bin/conman/bin/robot

/bin/pinky

Watchdog

Manual commands

Commands & status replies

Figure 12: Core tasks running on Neato BotVac Connected and their most important actions.



4.6 responsible disclosure and outlook 43

4.6 responsible disclosure and outlook

Neato vacuum cleaners are high-cost, but customers get proper hardware and software
in return. IoT security analysis often focuses on cheap products, which do not have any
budget for security. Analysts tend to uncover low-hanging vulnerabilities in those prod-
ucts since externals like press and social media often cannot determine the difference
between product types and complexity. However, high-cost products with a security
budget have many more interesting internals, that are valuable for IoT developers.

It took us quite some time to get into contact with the actual product developers since
customer care ignored our requests for months. After establishing initial contact, we had
excellent cooperation with Neato. They claim to have fixed all security issues we found
in the Vorwerk 4.4.1 software, as well as the end of June software release for Neato robots.
We can only confirm that they fixed the secure boot issue, because we would need the
secure boot bypass to extract the firmware for further tests. However, we assume that
they also fixed the remaining issues.

my contribution

My contribution was analyzing hardware and bypassing secure boot. I did the initial
static firmware analysis and revealed how core dumps are encrypted. Section 4.3 is
based on [Ull+19, Sec. 3.1]. Section 4.4 is already published in [Ull+19, Sec. 3.2]. Sec-
tion 4.5 was taken from [Ull+19, Sec. 1].





5
B L U E T O O T H L O C AT I O N F I N D E R S

Section 5.1 explains how Bluetooth location finders are different from the previously
shown fitness tracking and vacuum cleaning ecosystems, and explains why they are
interesting to analyze. Attacks based on the vulnerabilities we found are discussed in
Section 5.2. Functions implemented by all Bluetooth finders listed in Section 5.3 can be
found in reverse-engineered firmware, as explained in Section 5.4. Section 5.5 concludes
our findings and the responsible disclosure process.

5.1 motivation

Bluetooth finders are connected to a smartphone. Once the Bluetooth Low Energy (BLE)
connection is lost, an app on the smartphone will issue a sound. While the connec-
tion is established, the app regularly updates the last seen location of the finder to the
smartphone’s current Global Positioning System (GPS) position.

As the minimum requirement for a functional Bluetooth finder is to maintain a con-
nection, these devices are relatively cheap. Some are available for less than 2e, advanced
finders from well-known vendors start at around 15e. Finders that include a GPS re-
ceiver are conceptionally different and more expensive and thus are excluded in the
following.

Their simple technology enables Bluetooth finders to run for a year powered by a
standard button cell. This restricts their technology a lot compared to other finder
systems such as Apple’s upcoming FindMy, which runs on smartphones and laptops
that are powered by a large battery that is charged regularly [Gre19].

Many Bluetooth finders come with an integrated Internet of Things (IoT) ecosystem.
Their last seen position is not only saved locally in the app but also reported to a server.
The app does not only maintain a connection to the user’s finders but also scans for

Reporter/
Owner

Finder
Server

Static API certificate/key

Customer data leakagePrivacy-invasive defaults

No identity protection

Figure 13: Bluetooth finder vulnerability analysis results in various products.

45



46 bluetooth location finders

currently disconnected and thus potentially lost finders. Last known position of lost
finders are reported to the server, which in turn alerts the owner of the lost finder. This
feature is sold under various names, such as crowd search.

Bluetooth finders became famous in 2013, when Tile raised $ 2.6 million with a crowd-
funding campaign [Lom13]. Since then, various finders appeared on the market. We an-
alyzed top-ranked finders sold online worldwide: Nut Find3, Tile Mate, Tile Pro, musegear
finder, Pearl Callstel Key Finder, Gigaset g-tag, and a couple of no-name finders based on
the ST17H26 chip that can be managed over various smartphone apps including iTracing,
iSearching, and FindELFI. An overview of generic vulnerabilities found across all kinds
of Bluetooth finders is shown in Figure 13.

5.2 attack scenarios

We follow the same categorization of attack scenarios as for Fitbit in Section 3.2 and
Neato in Section 4.2.

(1) spying : Bluetooth finders are predestined for spying since they broadcast their
identity and are associated with GPS locations. Because their firmware is very simplistic
and does not know privacy-sensitive information itself, it is immune to spyware, sniffing,
and similar attacks.

• Proximate Espionage — Most finders reveal their identity to anyone nearby. The
owner of the item a finder is attached to can be tracked. Besides continuous track-
ing, it might also be interesting for the attacker to know if the victim is at home or
at work.

• Cloud Espionage — Data leakage in the cloud is a high risk for Bluetooth finders.
Usually, the cloud not only keeps the last location but also saves a location history.
Cloud-based Bluetooth finders require a large user base for crowd search; thus, a
leak in a popular finder system will concern a lot of data.

(2) financial interests : As of now, Bluetooth finders do not expose location
histories of items to third parties. Thus, there is no business model where a user can take
economic advantage from uploading fake histories. However, companies or criminals
might still have financial interests in this data. Bluetooth finders are very cheap. Thus,
ransomware is not considered to be a threat.

• Selling Position Data — Finders are very cheap and often only work with a cloud in-
frastructure. It might be that especially the more affordable finders on the market
can only survive if they make money out of position data.

(3) denial of service : Loss detection depends on an always-on Bluetooth connec-
tion, and ideally, the smartphone should continuously save and maybe even report the
last GPS position to the cloud. This makes this hardware susceptible to denial of service
attacks.

• Wireless Jamming and Injection — BLE jamming is supported by the cheap btlejack

open source solution. This can be potentially used to disable selected Bluetooth
finders to inject false commands and identifiers.



5.3 basic bluetooth finder 47

• Finder Forgery — Finders without security properties can easily be duplicated by
copying their Generic Attribute Profile (GATT) services and values. This might
confuse other users or cause misleading location reports.

• Abusing Cloud Infrastructure — Assuming that the validity of finder identifiers is
not checked or new identifiers can easily be generated, and if the finder does not
have proof of belonging to the vendor, an attacker can spawn and register new
finders and cause a high load on the cloud infrastructure. Another way to slow
down the infrastructure is the generation of false lost finder location reports.

(4) cloud independence : Due to the privacy-sensitive location information, cloud
independence is vital for users.

• Full-Featured Separate Infrastructure — Some finders do not employ encryption and
simply broadcast an identifier. They could be ported to any other infrastructure.
However, trackers without security are, by default, not privacy-sensitive anyway.

(5) non-adversarial applications : Bluetooth finders do not have any interest-
ing sensors, so there are no applications that would not already be available on various
platforms. Due to their beaconing functionality, they could be used for non-malicious
applications such as indoor navigation.

5.3 basic bluetooth finder

In general, a Bluetooth finder is straightforward to implement. We assume this to be one
of the reasons why there are so many finders on the market. Without security, functions
found across various finders are:

1. Playing a sound on the finder once the Bluetooth connection is lost,

2. playing a sound on the finder when the user pages for it via the smartphone app,

3. playing a sound in the smartphone app when the user presses a button on the
finder, and

4. sending BLE advertisements, including an identifier once the connection to the
smartphone is lost so that it can be found by anyone.

Most of these functions are standard GATT services [Blu19b]. (1) is defined as Link
Loss service, (2) as Immediate Alert service, and (4) is the generic behavior of any BLE
device. Many Software Development Kits (SDKs) for BLE devices already contain those
services. Only the functionality to page the smartphone itself (3) needs to be imple-
mented in the app, as well as all additional cloud features.

5.4 reverse engineering of the nut finder firmware

During our analysis of Nut, we found that firmware for all finder models can be down-
loaded from their server. Firmware images are encrypted, but with a static encryption
key. This enables us to analyze their firmware without a finder teardown.



48 bluetooth location finders

Their newest model, which is not yet available on the market, includes GPS and a
baseband modem. It works without smartphone connection. We do not further analyze
this firmware, because there is no available hardware, and the communication paradigm
is substantially different.

The firmware of the Nut find 3 contains no symbols. Its structure is still comparably
straight forward to reverse engineer. From the firmware file name, it is already known
that the underlying hardware is an nRF51422 chip. The finder implements multiple
BLE GATT services [Blu19b]. These GATT services can be listed over the air and are
identified by Universal Unique Identifiers (UUIDs). Functions implementing a service
can be found in the firmware by searching for these UUIDs. The only non-standard
UUIDs are for playing a custom sound upon loss and getting the finder’s identifier.

The SDK for the nRF51 series already comes with several examples. These include a
basic Bluetooth finder, that triggers an action on connection loss [Nor19a]. Most UUIDs
are simply implemented the same as in the example. We assume similar examples exist
across various Bluetooth SDKs, because checking a connection status is a substantial
functionality.

Since there is development hardware and an SDK with a Bluetooth finder example, we
do not consider binary patching a proper method for experimentation and modification.
Porting a Bluetooth finder firmware to be compatible with binary patching is more effort
than implementing the missing services in an nRF51 chip.

5.5 responsible disclosure and outlook

The Nut firmware example shows that there is only a little logic in the finder. All
finders had little or no security, which is reasonable regarding the hardware power and
price constraints. Most features are implemented in the smartphone app and cloud.
During our research, we found issues in various cloud implementations and informed
the vendors.

The worst customer data leakage was found in the Nut infrastructure. As of now, we
did not publish the vulnerability itself. We and Computer Emergency Response Team
(CERT)/CC attempted to reach the vendor, to get the vulnerability fixed, for more than
a year.

We wrote Nut an email on October 7 2018. On January 18 2019 we sent a letter to their
mailbox in California. We also sent them a Twitter direct message on February 4 2019.
Due to our unsuccessful attempts, we reported the issue to Bundesamt für Sicherheit
in der Informationstechnik (BSI) CERT on March 5 2019 who then forwarded it to US
CERT without further response. Thus, BSI forwarded the information to CERT/CC on
April 30 2019. We contacted Nut again over Facebook on April 3 2019 and gave them
a phone call to the number listed on their Facebook site but were not able to contact
them. We were also able to obtain a mail address from one of the developers—we sent
him an email in Chinese on April 5 2019. CERT/CC replied on August 21 2019 that
they also could not reach Nut, and that we should obtain Common Vulnerabilities and
Exposure (CVE) numbers to publish our findings. However, only missing encryption
in the app got assigned a CVE on September 12 2019, as the remaining issues are Nut
specific programming bugs on the server-side.



5.5 responsible disclosure and outlook 49

Bluetooth finders are an excellent example of “deploy and forget” IoT devices. Due to
their simple firmware and hardware, they remain functional for a long time. They are
potentially insecure by design, and their primary purpose is to collect privacy-sensitive
data.

my contribution

In this project, my contribution was firmware reverse engineering of Nut and commu-
nicating our findings to various vendors. The original idea came from Erik Tews. Max
Weller designed and implemented PrivateFind. Max Weller did most of the security
analysis, and Fabian Ullrich assisted him with analyzing the more sophisticated Tile
ecosystem.





Part III

M O D I F Y I N G O F F - T H E - S H E L F D E V I C E S

The previous part on IoT outlined many examples where the user is depen-
dent on the software provided by vendors. Many devices can be unleashed
by reverse-engineering the update process and firmware itself to add new
functionality. Since proprietary products ship without source code, binary
patching is required to modify off-the-shelf devices (Chapter 6).

Fitbit fitness trackers are one example of an IoT device where binary patching
has power over most functionality. It can be used for malicious purposes
such as arbitrary step count generation, as well as non-malicious research
applications such as raw accelerometer data access (Chapter 7).

Modification of firmware that is closer to hardware is typically even more
powerful, but harder to apply in practice. This is the case for Bluetooth
firmware. Only a few open solutions in the area of Bluetooth analysis exist,
and they do not implement the full feature set of the Bluetooth specification.
Modified proprietary Bluetooth firmware can be used to monitor and inject
link-layer traffic, i.e., to analyze communication in an IoT scenario. We re-
purpose firmware of the wide-spread Broadcom and Cypress Bluetooth chips
in Chapter 8.





6
B I N A RY PAT C H I N G

Binary patching is a technique that enables the modification of proprietary firmware
images. It does not require any source code or symbols, even though these help to
locate functions that are to be patched. Section 6.1 compares the standard approach of
patching firmware with known source code to binary patching. Platform requirements
are listed in Section 6.2. How to identify functions is briefly explained in Section 6.3, as
this also depends a lot on the specific firmware. The following Chapters 7 and 8 cover
practical examples in more detail.

6.1 source code patching vs . binary patching

A vendor with the source code of a firmware can add arbitrary changes, re-build the
whole firmware and install it on a target device. Under the assumption that a build is
reproducible, it will always generate the same binary from the same source code. Note
that this is not necessarily the case in practice. However, just changing a small detail
and recompiling the firmware, such as adding a new branch condition, will typically
rearrange most function locations in the resulting firmware image. Without access to
the source code, performing the same kind of optimization and rearrangement as a
compiler is practically impossible.

Most firmware is not signed and the target device has free space, this allows for bi-
nary modification using a different process. A typical use case is to add debug print
statements to get a better understanding of the firmware. Assuming there is a func-
tion call to weird_function(), this call can be replaced by a call to a custom function
debug_weird_function(). Both function calls require the same length on architectures
like Advanced RISC Machine (ARM), i.e., replacing one function call with another only
changes 4B within the proprietary part of the firmware binary. The new instructions for
the custom function debug_weird_function() are inserted at the end of the firmware
binary. This new function could print information to a debug port first and then call
the original weird_function(). This way, binary patching provides a mechanism to in-
troduce changes into a binary, while keeping the modifications to the original firmware
image minimal.

Binary patches can be written in C if the whole patching process is properly integrated
into a compiler. Thus, the patches become readable, and a previously closed-source
firmware can be extended with open-source code.

6.2 platform requirements

Within our group, Nexmon was developed to support the patching of ARM binaries [Sch18].
While the focus of the initial project was to patch Broadcom Wi-Fi firmware, we ported
it to the Fitbit Flex and Charge HR (Chapter 7) and the Broadcom and Cypress Bluetooth
firmware (Chapter 8).

53



54 binary patching

The Broadcom Bluetooth firmware has a fundamentally different patching mechanism
compared to the Wi-Fi firmware. In principle, it is possible to compile patches with
Nexmon for both of them. Significant parts of the Wi-Fi firmware are loaded to Random
Access Memory (RAM) during driver initialization, which allows rewriting most of it.
The Bluetooth patching mechanism does not allow rewriting the whole firmware binary,
as the firmware is located in Read-Only Memory (ROM). However, it has a transpar-
ent overlay, called Patchram, that allows for patching a limited number of 4B slots—
which correspond to one branch instruction each. On the one hand, since the Bluetooth
patching mechanism is constrained in the number of patches that can be applied to the
firmware, the quantity of function calls that get overwritten needs to be reduced com-
pared to the standard Nexmon approach. On the other hand, the Bluetooth chip can even
be patched during runtime, which allows for self-modifying firmware even within the
ROM. One example of this is the tracepoint mechanism that we implemented within the
InternalBlue framework, which adds a hook that first prints out debug information upon
a function call and then deletes itself (see Section 8.6.2.1).

In principle, binary patching also works on platforms that are significantly different
from ARM, such as PowerPC (PPC) [Mü19]. However, different calling and branching
conventions on PPC require a lot of the patching logic to be redefined. In the PPC
firmware, we patched one restriction was the maximum length of a jump, which is too
short to reach a free memory area containing further instructions. Thus, an intermediate
jump location must be added to the firmware. A binary patcher must be aware of such
individual cases and handle them properly.

6.3 identifying functions

Prior to patching a function, it must be identified correct. Most desktop and smart-
phone applications ship with symbols, or at least definitions of function and memory
locations. This is rarely the case for embedded firmware. The only advantage in em-
bedded firmware is that the environment they typically run in does not have sufficient
hardware capabilities to handle sophisticated obfuscation techniques.

The first step when obtaining a firmware image is to identify the correct memory
location where it is loaded and executed. Function calls and variable references are a
mix of relative and absolute calls, and thus will break if the firmware is loaded to a false
location. Getting the firmware image into a state where disassembly looks correctly is a
fundamental requirement to do further analysis and function matching.

If the firmware still contains some debug prints, these can be used to name functions
initially. Furthermore there might be constants that hint to encryption algorithms or
other publicly available source code and specifications. Moreover, tools like BinDiff
and Diaphora can be used to compare unknown functions to other binaries with known
symbols [Zyn19; Kor19].

The Broadcom Bluetooth firmware has around 11 000 functions, whereas the Fitbit
firmware only has about 1500 functions. Both firmwares do not have any symbols.
However, symbols of some Bluetooth chips are contained in a Software Development
Kit (SDK), and the Bluetooth specification explains a lot of details.



7
F I T B I T F I T N E S S T R A C K E R F I R M WA R E

In the following, we explain why and how we analyzed the firmware in Section 7.1, to
then apply patches with Nexmon as described in Section 7.2. We discuss the capabilities
of binary patching on a fitness tracker in Section 7.3.

7.1 static firmware analysis

While Fitbit officially documents most of the Web Application Programming Interface
(API) communication, we were able to extract missing details from the analysis of the
smartphone app. In contrast, the proprietary wireless tracker commands sent via Blue-
tooth Low Energy (BLE)/Generic Attribute Profile (GATT) are undocumented. Reverse-
engineering the tracker’s firmware is required to fully understand command interpre-
tation and dump generation. Firmware can be extracted from trackers themselves or a
sniffed firmware update [Fer+17a; Sch+16]. In the following, we go beyond firmware
extraction, and we reverse-engineer and modify the firmware internals.

Static and dynamic analyses provide further insights. We follow protocol parsing and
error handling and identify undocumented commands. We modify the firmware and
enable support for GNU Debugger (GDB) to facilitate dynamic analysis. We successfully
change security-relevant functions inside the original firmware code to disable authen-
tication and encryption in the Fitbit Bluetooth protocol. We also open the firmware for
better security mechanisms and raw accelerometer data readout.

The analyzed firmware are the Flex versions 7.64, 7.81, and 7.88, as well as the Charge
HR version 18.32 and 18.128. These versions do not contain function names or strings
in the main part, which complicates reverse-engineering. We use IDA Pro [Hex17] for
static analysis of the firmware binaries.

memory layout Knowing the main processing chip used (STM32L151UC based on
an ARM Cortex M3 [Fer+17a]), we can infer which purpose certain memory areas serve.

STM32STM32 0x20007fff

0x20000000

0x8082000

0x8080000

0x8040000

0x8000000

SRAM

EEPROM

Flash

0x8040000

0x800a000

0x8000200

0x8000000

APP

BSL

start

Figure 14: Memory layout of a disassembled Fitbit Flex.

55



56 fitbit fitness tracker firmware

This explains all the addresses we show in the left part of Figure 14 [STM17a]. A closer
inspection reveals that a firmware update targets two memory areas, BSL and APP. The
start area is never updated and contains code which either boots into BSL or APP. While
APP contains all functions used during regular operation, BSL contains a reduced set of
functions that are required for upgrading the APP code. We show the structure of this
flash memory on the right-hand side of Figure 14.

The remaining two regions are the Electrically Erasable Programmable Read-Only
Memory (EEPROM) and Static RAM (SRAM). Data with long-term persistence, such as
the Kdev, the serial number, and encryption options are stored in the EEPROM. The
EEPROM also contains data that should survive an empty battery, such as time zone
settings, information about the user, and not yet synchronized fitness data. The short-
term memory required for parsing and generating frames is effectively mapped to the
SRAM.

Note that the memory layout is very similar within different tracker models. For
example, the Fitbit Charge HR has the same BSL and APP separation, the same base
addresses and just slightly higher offsets.

bluetooth chip The BLE chip used in the Fitbit Flex is the nRF 8001 from Nordic
Semiconductor [iFi17]. The product specification [Nor19b] states that one byte long com-
mands that must be used to communicate with the chip. We use these commands to
locate the functions responsible for the Fitbit’s BLE communication. Further investiga-
tion reveals that the library in the firmware is almost identical to an open-source library
used for an Arduino BLE Breakout Board [Ada17]. Therefore, all BLE related function
names can be carried over to the tracker’s firmware. This helps us to identify the execu-
tion path that is used by incoming BLE frames. From there on, we can follow the frame
processing through the firmware.

command line We discover that Fitbit firmware exposes an internal command line
interface, not secured by authentication credentials, and probably used in the factory for
testing and initialization of trackers. The commands available on this interface can be
listed with a helper function, which is built around a list of function references and a
string that describes their behavior. This convenient mapping gave us the ability to label
many functions in the firmware.

fitbit frames and commands The firmware code contains a central switch-case
statement, which determines whether to parse a command (starting with c0) or a chunk
of data (everything else). Starting from this decision, we find the actual command and
frame parsing structure, as well as the command response generation routine. After each
successful wireless command, an acknowledgment is generated by the firmware. If the
tracker receives completely invalid commands, it will stop responding and require a
BLE reconnect to restore its operation. We extract a complete list of wireless commands,
including date and alarm modifications.

encryption We identify eXtended Tiny Encryption Algorithm (XTEA) by its charac-
teristic 64-bit delta string. By comparing open source libraries to the decompiled code,
we find that LibTomCrypt is used, and compare it to further functions, thereby find-



7.2 modifying the firmware 57

ing that XTEA is used in Encrypt-then-Authenticiate-then-Translate (EAX) mode [Lib].
With the debugger enabled, we find all the required parameters. In contrast to the
first research on Fitbit decryption [Sch17], we can generate valid encrypted messages
containing a Cipher-based Message Authentication Code (CMAC).

7.2 modifying the firmware

We use the Nexmon framework [SWH17] to apply modifications to the firmware used
by the ARM chip. Nexmon allows writing firmware patches in C. These patches can be
compiled into a firmware binary, which can then be flashed onto a tracker’s microcon-
troller either via an ST-Link debugger or via BLE as explained in Section 3.3. We adapted
the Nexmon framework to the memory layout in the Fitbit Flex. Since the APP and BSL

memory regions are not completely used for code, we use the free areas to introduce
changes to the firmware.

Code changes between the Fitbit Flex firmware versions are minimal; most functions
are not modified. Reverse engineered functions from version 7.64 were easy to port to
7.81 and 7.88. As a proof of concept, we published a hook that multiplies the step count
by 100 in the most recent firmware version 7.88 released in October 2017 [Jis19]. The
same applies to the Fitbit Charge HR firmware, as shown in Figure 15. Fitbit is probably
using the same codebase within all tracker models.

Even in the Fitbit Ionic, which is a smartwatch, has similar parsing behavior of the pro-
prietary BLE protocol [Gro19]. The Fitbit Ionic comes with a completely new ecosystem
and a different operating system. However, Fitbit might still be using the same libraries
for protocol parsing. Since we have not yet extracted the firmware, we can only make
assumptions here.

Most of our firmware modifications are only available for the Fitbit Flex. The essential
modifications are described in the following. We disable authentication and encryption
in Section 7.2.1, enable GDB support in Section 7.2.2, and build raw accelerometer data
access in Section 7.2.3.

Figure 15: Fitbit Charge HR with 30 300 steps that are actually 303 steps.



58 fitbit fitness tracker firmware

7.2.1 Security Mechanisms

Security is enforced by requiring authentication for specific commands and by enforcing
encryption of data. Both can be easily skipped with modified firmware. An attacker who
wants to disable these security features as a backdoor can also introduce a hidden BLE
command.

disabling authentication In Section 3.3.1, a multi-step replay authentication
was shown. Patching the firmware allows us to permanently disable authentication,
which enables us to skip the authentication step when using, for example, live mode.
We identify the function responsible for the authentication by the byte value of the error
message issued to signal that authentication is required (that was previously extracted
from the Android app). The function called before the error is raised returns true—if
the authentication was successful. Therefore, we can disable authentication by always
returning true without performing the checks of the original function.

disabling encryption The method we use to disable authentication can also be
applied to encryption. A central function is used in the firmware to check if the com-
munication is encrypted or not. Disabling encryption this way makes it impossible for
the server to force a tracker to switch back to encryption mode. Hence, microdumps
and megadumps will always be transmitted in plaintext. This poses a substantial risk of
privacy leaks.

improving security Modifying the tracker’s firmware opens the door for more ad-
vanced changes to the firmware. For example, instead of completely disabling authen-
tication and encryption, one could introduce more secure algorithms for authentication
and encryption.

7.2.2 Dynamic Analysis and GDB Support

We gain further insights by dynamically analyzing the firmware during its runtime. The
ST-Link debugger can be used as an interface to a GDB server [GNU17]. This allows
setting breakpoints as well as memory watchpoints. We use the GDB server, which is
included in the Atollic TrueSTUDIO [Ato17].

Connecting the debugger with the original firmware is only possible directly after
a hard reset of the ARM microcontroller. Continuing execution causes the debugger
to disconnect because of the General-Purpose Input/Output (GPIO) port configuration
after firmware initialization. Directly after reset, GPIO pins 13 and 14 in group A are
assigned to SWCLK and SWDIO, respectively, which enables debugging. When continuing
execution, the Fitbit firmware reconfigures these pins to analog mode, thereby disabling
debugging. To restore the debugging capability, we sought to reconfigure the pins to
their original functionality. Finding and disabling the responsible code in the Fitbit
firmware can prove tedious. We used the Nexmon framework to add a function to
the firmware, which is executed after initialization and resets the pins to their original
purpose. The appropriate addresses that must be used are specified in the reference
manual [STM17b].



7.3 binary patching capabilities 59

The reconfiguration of the GPIO pins, however, comes with side effects, as the pins
were intended to be used for a different purpose during the runtime of the Fitbit code.
To minimize the risk of side effects, we implemented an additional BLE command that
triggers the reconfiguration of the GPIO pins. Being able to debug the tracker during
runtime enables us to verify assumptions made during the static analysis.

7.2.3 Raw Accelerometer Data Access

Development platforms with an accelerometer often fail to be light-weight and water-
resistant. This makes access to the Fitbit Flex accelerometer attractive as an experimen-
tation and development platform. This functionality is implemented in [Han18] and is
described in the following.

The Fitbit Flex accelerometer is an LIS2DH. It is configured to take measurements on
all three axes at a rate of 100Hz. A 2B value represents each axis acceleration. The
firmware copies the three values to a 6B buffer each time a new measurement is taken.

The normal GATT service that responds to c0 commands with 20B values is very
inefficient in transmitting this data. Therefore we decide to modify the live mode GATT
service. Usually, live mode does not permanently send the current date and step count
information, but only if there is new data. To implement an accelerometer mode within
the same function, we add a command switch that can either activate live mode or
accelerometer mode. In accelerometer mode, the check for new data is skipped, and
data is overwritten by the last 6B accelerometer reading. By sending a separate GATT
frame in each round, a measurement transmission rate of 66Hz can be achieved. This
means that some measurements from the original 100Hz readings are missing, but this
rate is still sufficient to measure human activities.

Streaming accelerometer data with GATT is excellent for developing new functions,
such as gesture recognition. However, permanent transmissions drain battery power.
For getting the full 100Hz performance, features initially developed with the new GATT
service should be ported to the Fitbit firmware itself using Nexmon.

7.3 binary patching capabilities

Binary patching enables us to access sensors on the Fitbit Flex and Charge HR, as demon-
strated by the accelerometer patch. The Charge HR includes a heart rate sensor, and the
factory test functions expose a few hints on locations in the binary that handle these
sensor readings.

In theory, a completely cloudless implementation of a fitness tracker firmware on a
Fitbit would be possible. However, we did not reverse engineer all fields in the propri-
etary dump format, i.e., sleep analysis is still missing. Due to the missing source code
of the proprietary firmware, this requires a lot of effort.

Fitbit realized that there are useful applications for lower layer access, and they expose
sensor readings such as the accelerometer and heart rate on their newer smartwatches
through an API [Fit19a].



60 fitbit fitness tracker firmware

my contribution

Daniel Wegemer ported the Wi-Fi Nexmon project for the Fitbit Flex firmware [Jis19].
Assembly instructions for both projects are ARMv7 little-endian, so most of the Nexmon
project could just be copied. I did the reverse engineering of the complete firmware
and also located the step counting function. Daniel wrote the first patch to multiply
all steps by 100 just before our presentation at 34C3. The step counter hack was quite
simple, yet very impressive and even made it to the media. Later, I ported the wireless
firmware flashing capabilities to the Fitbit Charge HR, and also used the step count
example as the first test. Daniel also enabled debugging, which was very useful for
Matthias Hanreich later, who did some fuzzing on the Fitbit Flex protocol. For his
Master thesis, Matthias implemented a function that copies the raw accelerometer data
into Bluetooth frames [Han18].

Section 7.1, the Section 7.2 introduction, Section 7.2.1, and Section 7.2.2 were adapted
from [Cla+18a, Sec. 6]. Section 7.2.3 is a summary of [Han18].



8
B R O A D C O M A N D C Y P R E S S B L U E T O O T H F I R M WA R E

We show why Bluetooth security analysis matters in Section 8.1 and provide an attack
model in Section 8.2. Section 8.3 gives an overview of InternalBlue use cases and how
it differs from standard Bluetooth sniffing setups. Technical details on the architecture
of InternalBlue are explained in Section 8.4. As a first application, we use InternalBlue to
test for already known issues within the Bluetooth standard and its implementations in
Section 8.5. We then go beyond this and uncover previously unknown implementation
issues in popular chipsets in Figure 8.6. We provide an outlook on future work and
security patches in Section 8.7.

8.1 motivation

In this chapter, InternalBlue is introduced and used for various Bluetooth analyses. Inter-
nalBlue is designed not only to support firmware patching but also provides an interac-
tive interface that allows for firmware modification and traffic analysis during runtime.
While we ported the patching mechanism from InternalBlue for static C code compila-
tion with Nexmon, InternalBlue does not depend on Nexmon per se. Its primary purpose
are Bluetooth testing scenarios where one of the devices within a connection is under
the control of a researcher. InternalBlue is highly flexible and currently runs on various
platforms, such as Linux, Android, macOS, and iOS. All Apple devices running macOS or
iOS are shipped with a Broadcom Bluetooth chip supported by InternalBlue. This is also
true for some Android and Linux devices, and for Linux devices, support can be added
by connecting a Cypress evaluation board.

All major smartphone vendors support both Bluetooth protocols, classic Bluetooth
and Bluetooth Low Energy (BLE). Classic Bluetooth is present in most wireless headsets
and some peripherals like keyboards. Its BLE variant has lower hardware and battery
requirements and thus is integrated into a majority of Internet of Things (IoT) devices.
The application itself does not automatically determine which of these protocols is used,
e.g., some keyboards also use BLE and Android supports audio over BLE for hearing
aids [And19b].

Bluetooth application trends cause many users to enable Bluetooth all the time by
default. Recent smartphones do no longer have an audio jack, and many users switched
to wireless headphones. Moreover, smartwatches and fitness trackers work best with
a permanent connection to a smartphone. Cars provide a smooth handover of calls
from smartphones. Overall, Bluetooth provides a great user experience and draws little
battery power when running in the background.

8.2 attack scenarios

The application-driven trend to enable Bluetooth all the time is worrisome from a se-
curity perspective. While some BLE devices stop sending advertisement packets once

61



62 broadcom and cypress bluetooth firmware

Figure 16: Received Signal Strength Indicator (RSSI) scan output from the nRF Connect app at an
airport.

they are connected to a smartphone, many continue advertising their identity. Figure 16

shows the output of the nRF Connect app while running at an airport, shortly before the
app crashes due to the large amount of BLE devices that are around. Even on flight,
more than 80 devices were reported in the scan results. In addition to IoT devices, all
Apple devices broadcast their identity over BLE. Since iOS 13, their advertisements no
longer include the device name, and all iPhones are called iPhone. Nonetheless, they
remain connectable and will answer to Generic Attribute Profile (GATT) requests.

For classic Bluetooth, the situation is slightly better. Most devices do not permanently
advertise their identity, but only when the user initiates pairing. Some devices restrict
certain protocol functions prior to successful pairing, such as L2Ping Echo Replies with
a payload. The actual behavior varies a lot with the operating system configuration.
For example, Xiaomi Mi smartphones will always advertise their static classic Bluetooth
identity as long as Bluetooth is enabled—a behavior that we could not observe on other
Android smartphones.

If an attacker wants to attack a random device, she will always find various targets
in crowded places like airports, train stations, and offices. Due to the limited Bluetooth
range, it is feasible to launch an attack against a specific group of people, e.g., next to
a company building. While address randomization in BLE makes device tracking and
targeted attacks harder, it does not prevent an attacker from connecting to a random
device. Moreover, it is also possible to infer the Bluetooth address of a device without
advertisements when sniffing traffic with a Software-Defined Radio (SDR) [Mic09].

Trust is established on first use, and no Internet connection is required. While this
makes it convenient to use in many scenarios, this poses a large attack surface for ex-
ploitation. On all iOS and Android devices we tested, knowledge of the Bluetooth ad-
dress was sufficient to connect to a device and initiate a pairing request, even if the



8.3 background on bluetooth analysis 63

screen of a smartphone was locked. A lot of messages, including a chip-specific version
number, are exchanged before the user of a target device accepts or cancels the pairing
request. While this is excellent for user experience, this is worrisome from a security per-
spective. Pairing can be initiated at any point in time without any third party checking
validity of requests.

8.3 background on bluetooth analysis

Despite the success of Bluetooth and its comparably large attack surface, there is a lack
of functional and open Bluetooth analysis tools. Common Bluetooth sniffing setups
use an external device as Machine-in-the-Middle (MITM). Analysis based on binary
patching requires changes in the firmware of one of the devices involved in a Bluetooth
connection. In the following, we compare these two approaches, which are also depicted
in Figure 17.

8.3.1 MITM Bluetooth Sniffing

While the PHY of classic Bluetooth and BLE differ, both follow a hopping scheme. Clas-
sic Bluetooth hops on 79 1MHz wide channels, and BLE hops on 40 2MHz wide chan-
nels [Blu19a, p. 350, 2660]. A sniffer is required to either follow the hopping sequence

Headset

Sniffer

Car

Observe/manipulate
initial pairing to sniff

and modify connection

(a) Bluetooth sniffing setup with passive or active MITM.

Headset

Car

Smartphone

Smartphone
(modified firmware)

Observe/manipulate
any active connection

(b) Bluetooth analysis with firmware binary patching.

Figure 17: Bluetooth sniffing setups compared.



64 broadcom and cypress bluetooth firmware

or acquire and analyze 80MHz bandwidth at once, to successfully record a Bluetooth
connection.

Another challenge for sniffers is encryption. To break encryption, a sniffer needs
to overhear the initial pairing. Depending on the Bluetooth version and pairing mode
used [Blu19a, p. 257], the attacker also needs to manipulate the pairing procedure
actively:

secure simple pairing If one of the devices has no input and no output capabilities
(i.e., a headset), “Just Works” pairing is used, which is susceptible to active MITM
attacks. Otherwise, numeric comparison is used, and both parties are required to
ignore a non-matching confirmation number to make an active MITM attack work.
Secure Simple Pairing (SSP) was introduced for classic Bluetooth with the 2.1 +
EDR specification, and for BLE with the 4.2 specification as LE Secure Connections.

le legacy pairing has a similar look and feel as SSP [Blu19a, p. 2423], while in fact
not being secure against passive MITM attacks. Many IoT devices still use an older
Bluetooth version with LE Legacy Pairing and smartphones do not indicate to the
user which kind of pairing mode is used.

entering 4 digit pin This legacy method, supported by classic Bluetooth 2.0, was
already shown to be broken in 2005 [Sha05]. Nonetheless, it can still be found in
some devices with a longer lifetime, such as cars.

Since BLE has a simpler hopping scheme and insecure pairing methods, plenty of very
cheap and open-source sniffers exist. One example is the BLE 4.0 Bluefruit LE Sniffer
for $25 [Ada19], and the microbit based tool btlejack that costs around $10 [Dam19].
btlejack can also follow the new Bluetooth 5 hopping scheme.

One of the first projects that claimed to have solved Bluetooth sniffing challenges
is Ubertooth [Oss11]. It can even be used to access lower layers since Ubertooth is an
SDR with extended Bluetooth capabilities. It is still fairly cheap and costs around
$120 [Gre19]. However, for classic Bluetooth, Ubertooth only supports sniffing of some
management frames [SB07]. There is no possibility to sniff encrypted traffic.

For full-featured Bluetooth analysis, expensive commercial products are required. El-
lisys is a well-known vendor in this sector. Their products are in a price range of $10k–
$20k. This is reasonable for anyone involved in Bluetooth hardware development but
out of scope for most researchers.

Assuming that an eavesdropper has a working implementation of an MITM sniffer, this
technique of sniffing still has the following drawbacks:

• If encryption is used, initial pairing needs to be overheard, and

• if a secure pairing mode is used, the MITM must be active and both parties will
be aware of sniffing, and

• data injection requires successful jamming of the original signal, and

• changing small parts in the logic requires re-implementation of the Bluetooth stan-
dard within the MITM.



8.4 the internalblue framework 65

However, a commercial Bluetooth sniffer is likely to work out of the box on any con-
nection between all kinds of devices. This is the primary advantage compared to the
approach explained next.

8.3.2 Bluetooth Firmware Binary Patching

By design, the host itself is not aware of the internals of the Bluetooth link layer and
Physical Layer (PHY). For example, to establish a connection, the Bluetooth host can
issue a connection request using the Host Controller Interface (HCI). The Bluetooth
controller, which is a hardware chip that runs a Bluetooth firmware, will then try to
establish a connection. Establishing a connection might succeed or fail for various rea-
sons. The Bluetooth controller is aware of all steps during connection setup including
over-the-air management traffic, and thus, can determine the success or fail reason it-
self. In contrast, the host is not aware of these internals, and over-the-air management
traffic is not forwarded. However, the host gets feedback via HCI if a connection was
successfully created or not.

The concept of Bluetooth firmware binary patching is to go beyond HCI. This can
be used to sniff any active connection, even if pairing already took place. The Blue-
tooth controller is aware of encryption and hopping. Thus, all required information is
available and already applied correctly by the controller.

Some vendors already expose their firmware functions in a way that makes them
easy to patch. This is the case for Nordic Semiconductor BLE products, and btlejack

takes advantage of this to support sniffing, jamming, and injection into active BLE con-
nections [Dam19]. However, what is available there depends a lot on the Application
Programming Interfaces (APIs) vendors expose. It is important to note that the btlejack

setup is used as MITM sniffer, with the drawbacks mentioned in the previous section.
btlejack requires additional hardware on the host used for sniffing.

Reverse-engineering a chip that supports both, classic Bluetooth and BLE, can go be-
yond this. For a sniffing setup, the actions performed on the physical and link layer are
not changed, but information about them is forwarded to the host using non-standard
HCI events or similar. The host can run any operating system–Linux, Android, macOS,
iOS–as long as it supports the given chip. Software on the host will not be aware of
changes inside the controller. Drawbacks of patching Bluetooth firmware to analyze the
behavior of other devices are as follows:

• One of the devices in the connection must be under full control (root access), and

• patches depend a lot on the chip vendor and also need to be changed for each
firmware revision.

Application scenarios for firmware binary patching are not limited to sniffing and in-
jection of link-layer frames. Anything accessible by the firmware—no matter if intended
by the vendor or not—can be changed. The behavior of the chip can be modified to be
no longer standard-compliant, for example, to test new security mechanisms or increase
performance.



66 broadcom and cypress bluetooth firmware

RFCOMM SDP

L2CAP

Host Controller Interface (HCI)
via UART

Device Manager Link Manager

Baseband Resource Manager

Link Controller

Bluetooth PHY

Android Host

Controller

Remote DeviceInternalBlue

ADB

Figure 18: Architecture of the Bluetooth protocol stack with InternalBlue control.

8.4 the internalblue framework

InternalBlue is a Bluetooth firmware binary patching framework for Broadcom and Cypress
chips.1

Many popular devices use a Broadcom Bluetooth chip. Broadcom is ranked market
leader for wireless communication chips, followed by Qualcomm and MediaTek [RE18].
Every Apple product we tested—iPad, iPhone, iMac, MacBook, Watch—had a Broadcom
chip. The only exceptions we have seen so far are the Apple Watch 5 and the AirPod Gen-
eration 2, which have a new chip manufactured by Apple, internally called Marconi. Since
2015, Apple sold more than 200 000 000 iPhones annually [Sta19]. Moreover, Samsung
smartphones tend to have a Broadcom chip, i.e., Galaxy S6/S6 edge/S7/S8/S9/Note9/S10e
/S10/S10+/Note 10. Other IoT hardware has a Broadcom chip, too, including the Fitbit
Ionic. The cheap Raspberry Pi 3/3+/4 platform also has one. The popularity of Broadcom
Bluetooth chips makes InternalBlue applicable to many types of devices, suitable for all
kinds of research projects.

InternalBlue currently supports Bluetooth sockets on Linux out of the box, patched
Android Bluetooth drivers, jailbroken iOS 12.1.4, and macOS including Catalina. An
overview is shown in Figure 18.

The InternalBlue front-end is written in Python and currently runs on Linux and macOS
only. This is because some features are easier to maintain on Linux and macOS, such as
displaying traces in Wireshark and translating Assembly patches. Except for this tool
support, InternalBlue could be easily ported to run on any platform natively. For Android
support, InternalBlue connects to the Android host using Android Debug Bridge (ADB).
On Linux, HCI sockets provided by BlueZ are used directly. The iOS solution creates a
new socket for the existing serial Bluetooth device. macOS does not expose HCI over an
official API, but it can be attached to the non-documented IOBluetooth interface that is
also used internally by macOS.

1 Cypress acquired the IoT department of Broadcom in 2016 [Cyp16], which means that their chips are tech-
nically similar. Whenever we refer to Broadcom specific techniques, they also apply to recent Cypress chips.
Another name change is likely because Cypress is in the process of acquisition by Infineon in late 2019 [Inf19].



8.4 the internalblue framework 67

HCI is the lowest layer available on the host. An HCI socket only exists locally be-
tween host and controller. In hardware, it can be Universal Asynchronous Receiver-
Transmitter (UART), Universal Serial Bus (USB), or similar. This differs from other
socket types, such as Radio Frequency Communications (RFCOMM). RFCOMM sockets
provide a logical link between two Bluetooth hosts that can on top exchange data over
a serial protocol. However, the serial service they support has nothing to do with the
controller hardware.

InternalBlue only uses the HCI. Broadcom extends the HCI with an additional diag-
nostic message type, used primarily for link-layer sniffing, described in Section 8.4.1.
Besides, Broadcom provides vendor-specific HCI commands, with many applications in-
cluding firmware patching, described in Section 8.4.2.

8.4.1 Broadcom Diagnostics Protocol

Broadcom chips have a diagnostic protocol to log link-layer management packets for
classic Bluetooth and BLE, which use Link Manager Protocol (LMP) respectively Link
Control Protocol (LCP). Diagnostic logging is available within various chips. We can
confirm it is present in chips with build dates ranging from 2008 to 2018. This means,
regardless of the specific firmware version, logging LMP and LCP traffic will always
work on a Broadcom chip.

The diagnostic protocol is partially supported by BlueZ on Linux [Hed15], and Apple’s
Packet Logger for macOS, which is part of the additional tools for Xcode. Both solu-
tions sometimes fail in accurately detecting that a chip has this feature. For example,
Linux seems to apply a different detection mechanism depending on the chip’s inter-
face, which can be USB or UART. By reverse-engineering the Packet Logger as well as

Table 2: H4 field bytes indicating UART traffic types.

H4 Type Command Direction

HCI Command 0x01 Host→ Controller

ACL Data 0x02 Host↔ Controller

SCO Data 0x03 Host↔ Controller

HCI Event 0x04 Host← Controller

Broadcom Diagnostics 0x07 Host↔ Controller

Table 3: Diagnostic logging features and their command codes on CYW20735B1. Further diag-
nostic features are redacted.

Diagnostic Feature Command Direction

LMP Sent 0x00 Host← Controller

LMP Received 0x01 Host← Controller

LCP Sent 0x80 Host← Controller

LCP Received 0x81 Host← Controller

Toggle LMP/LCP Logging 0xf0 Host→ Controller



68 broadcom and cypress bluetooth firmware

the CYW20735B1 evaluation board, we can now also provide the Broadcom diagnostic
protocol on Android devices.

The diagnostic protocol uses the same UART interface as HCI. By default, it is not
interpreted or forwarded by the operating system driver, because it is not using the
standard H4 types 0x01–0x04. Instead, a new message type 0x07 is used, as listed in
Table 2. Note that Broadcom could also use vendor-specific HCI commands and events,
which would be compliant to the Bluetooth specification. Instead, they hide this feature
from common HCI loggers by inventing the new message type. Moreover, to get those
diagnostic messages, the sequence 0x07f001 must be sent, which is a diagnostic message
that switches diagnostic logging on. Afterward, LMP and LCP traffic can be received,
with traffic type prefixes encoded as listed in Table 3.

The diagnostic protocol has additional features, which allows entering a test mode,
getting connection statistics, or reading and writing memory. Our complete reverse
engineering of this protocol can be found in [CH19]. Most functionality provided by
the diagnostic protocol is also exposed as vendor-specific HCI commands. Since HCI
commands have better host support than the diagnostic protocol, InternalBlue is using
HCI by default if available. Only connection statistics as well as LMP and LCP sniffing
are using the diagnostic protocol.

In the context of LMP, one of the interesting vendor-specific HCI commands is Send
LMP PDU (0xfc58). It injects valid LMP traffic into existing connections. To also inject
LCP traffic or send invalid data, neither the diagnostic protocol nor vendor-specific HCI
commands can be used. Security analysis that requires non-compliant traffic modifica-
tion requires binary patching, which is explained in the next section.

8.4.2 Patching Broadcom Controllers

Broadcom Bluetooth chips store all their firmware in a static Read-Only Memory (ROM).
Thus, they require a Patchram mechanism to modify ROM, either during setup or during
runtime.

patchram overlay The Patchram is a unique mechanism that enables changing the
program flow inside ROM. It allows overwriting 4B slots in ROM. The number of slots
varies depending on the chip type, i.e., the Nexus 5 has 128 slots, while evaluation boards
and newer devices have up to 256 slots. 4B are sufficient to encode a branch instruction
on Advanced RISC Machine (ARM). Usually, these branches point to Random Access
Memory (RAM) sections, which have fewer restrictions in being written, and contain
the actual code for patches. There is no execution prevention for memory that can be
written.

system patches In principle, the Bluetooth firmware works without any patches.
Yet, some Broadcom chips even require firmware patches to run on Linux host systems.
Patches are not only required for compatibility and new features but are also the only
way to fix security issues in the Bluetooth firmware.

Broadcom is using the .hcd format to ship patches. A .hcd file contains vendor-specific
HCI commands. The following happens when .hcd patches are applied, with the accord-
ing HCI commands noted in brackets:



8.4 the internalblue framework 69

• The host starts the patching procedure by entering the so-called Download Minidri-
ver mode (0xfc2e). This is usually done during driver initialization after reset
(0x0c03), i.e., Linux and Android provide a special routine that starts this mode [Lin19].

• The controller enters Download Minidriver mode. This has two effects. First, exe-
cution of all other threads and interrupts is paused. Second, only a subset of HCI
commands is accepted. Both are required to ensure a smooth firmware patching
process.

• All HCI commands of the .hcd file are applied. This file includes multiple Write
RAM commands (0xfc4c) that write to RAM and Patchram. The final command
executes a Launch RAM (0xfc4e) to the non-existing address 0xffffffff, which
quits Download Minidriver mode and continues executing the normal Bluetooth
threads.

It is important to note that the newest chips, which are connected via Peripheral
Component Interconnect Express (PCIe), use a different file format ending with .bin.
While the .hcd file contains HCI commands that are applied one after each other, the
.bin file is copied in one piece. Its header contains checksums, lengths, and locations for
the memory areas the data is copied into by the controller. On the iPhone 11 series, these
memory regions are two areas for patch code and one area for configuration. While the
iOS bluetoothd takes care of appropriately copying this data, the Bluetooth chip itself
is still using the same Patchram mechanism internally.

Surprisingly, .hcd and .bin patch files do not contain any security mechanisms like
vendor signatures or encryption. There are multiple ways to obtain a patch file. They
are often shipped with the operating system. In Android 9, they are readable by the non-
privileged local user and located in /vendor/firmware/. The .bin and .hcd files can
be extracted from iOS images without jailbreak, and be accessed on any macOS system.
The iPhone 11 firmware has 4B checksums but no signatures, and the PCIe firmware for
the newest MacBook only added a signature for host-side verification.

It is possible to generate custom .hcd files. Cypress provides the WICED Studio tool
suite to write patches for evaluation boards, which compiles C code into .hcd files.
Within Nexmon, we also integrate Bluetooth chips and support C code but are not limited
to evaluation boards [CS19].

live patches It is possible to issue the Write RAM (0xfc4e) and Launch RAM (0xfc4c)
any time outside of the Download Minidriver context. This is very useful when develop-
ing code since no restart of the Bluetooth driver is required. However, it is also less
reliable and potentially unstable. For example, applying a Patchram patch to a function
that is currently being used might crash the firmware. Moreover, executing something
via Launch RAM that relies on switching threads might also crash the firmware. The
actual implementations of Launch RAM differ a lot between chips, and all seem to have
their individual bugs. On the Nexus 6P, Launch RAM is almost not usable: If any other
HCI command is issued after Launch RAM within the next 6 s, the firmware will crash.

symbols and documentation When writing a patch for an existing firmware
binary, the most valuable information is the position of symbols. Symbols are function
and variable names. While the names potentially stay the same over various firmware



70 broadcom and cypress bluetooth firmware

revisions, their position will change each time the firmware is compiled. The compiler
tends to keep libraries in one non-fragmented region, which means that symbols of one
library will usually be nearby.

Without any prior knowledge about the firmware, reverse engineering of symbol posi-
tions is not trivial. Bluetooth firmware implements the Bluetooth specification [Blu19a],
which can be used to identify standard-compliant functions. Vendor-specific HCI com-
mands are partially documented in datasheets. We spent months with only this informa-
tion available to reverse engineer functions in the Nexus 5, prior to finding other sources
of symbols.

WICED Studio, available for some Bluetooth evaluation boards, contains all symbols in
a patch.elf file for the supported boards. These symbols make the firmware almost as
readable as C code with meaningful function and global variable names—but without
comments and structs. From WICED Studio 6.2 we extracted symbols for the CYW20719
and CYW20735 boards, as well as the BCM20703A2 firmware. The latter is included
in a different format and actively used in MacBooks between 2015 and 2016. Cypress
switched to ModusToolbox for newer evaluation boards. ModusToolbox 1.1 still contains a
patch.elf for the CYW20819 chip. This means that we have correct symbols for various
firmware compiled between October 22 2015 and May 22 2018. Matching unknown
functions of a firmware without symbols to firmware with symbols is way more straight
forward than using the Bluetooth standard and datasheets.

Correct symbols still lack documentation, but some of the libraries are documented.
The most important documentation is for the firmware’s underlying operating system,
which is ThreadX [Exp19]. While older firmware versions contain a copyright note,
this was removed from newer firmware. For example, the BCM20702A1 firmware con-
tains the copyright notice Copyright (c) 1996-2003 Express Logic Inc. * ThreadX

ATMEL/Green Hills Version G4.0b.4.0c *. Since older firmware versions lack a build
date, we do not know when exactly the copyright notice was removed. Newer firmware
versions use similar function names, meaning ThreadX is still the operating system.

8.5 testing for known security issues

Inside the InternalBlue Command Line Interface (CLI), we implement the feature to con-
nect to any device by its Media Access Control (MAC) address even without prior pair-
ing, as described in Section 8.5.1. As a demonstration of security research, we implement
device testing for the so-called Niño attack—pairing devices without input and output—
in Section 8.5.2 as well as an attack on Elliptic Curve Diffie-Hellman (ECDH) device
pairing key exchange in Section 8.5.3. After our first release of InternalBlue, Antonioli,
Tippenhauer, and Rasmussen used it to test an attack against the Key Negotiation of
Bluetooth (KNOB), as shown in Section 8.5.4.

Implementations of the Niño, ECDH, and KNOB tests are not contained as InternalBlue
commands but as example files2 that use functions of InternalBlue as a library. The
smartphone itself performs the attacks and is already involved in the connection, and
the attack is not carried out as MITM. Therefore, these implementations are only suitable
for testing how other Bluetooth stacks react to Niño, ECDH, and KNOB attacks—we do
not provide active attacks on a victim’s established connections.

2 https://github.com/seemoo-lab/internalblue/tree/master/examples

https://github.com/seemoo-lab/internalblue/tree/master/examples


8.5 testing for known security issues 71

8.5.1 Establishing Connections to “Invisible” Devices

Bluetooth devices can be invisible during scanning but still accept connections. Accept-
ing connections in the background is required to support automatic reconnect an already
paired smartphone and headset without user interaction. They know each other’s MAC
address from the previous pairing, and the headset tries to connect to the smartphone
once it is turned on. Surprisingly to most users, initiating a connection request to a
device does not require a previous pairing. All that needs to be known is a valid MAC
address [Mic09]. InternalBlue can list the array of all current connections and initiate
new connections with the command syntax connect de:ad:be:ef:00:00.

The existence of a connection inside the firmware’s list is required to send LMP pack-
ets. This list differs from the list of known devices on the host, and it is just meant
to manage connection states of ongoing connections. A connection is not required to
be established to appear in this list—it is sufficient to initiate a connection. If a con-
nection cannot be established successfully, it will remain around half a minute inside
the firmware’s list until it is deleted. This allows sending arbitrary LMP commands to
arbitrary devices without successful pairing.

8.5.2 No Input No Output Pairing

Bluetooth provides pairing based on ECDH key exchange with Secure Simple Pairing
(SSP) to be secure against passive and active MITM attacks. Security against active
MITM is provided by visual number comparison or entering a number shown on one de-
vice with a keyboard on the other device. This protection requires both devices to have
Input-Output (IO) capabilities, which is often not the case for IoT gadgets and headsets.
The fallback option in case of missing IO capabilities is to perform key exchange without
active MITM protection, the so-called “Just Works” mode. The Bluetooth 5.1 specifica-
tion explicitly marks this as being insecure but does not suggest showing any warnings
to the user. The exact implementation is up to the product manufacturer [Blu19a, p.
260].

Exchange of IO capabilities supported by the devices takes place before pairing. Since
there is no established root of trust between them at this stage IO capabilities are prone
to active attacks themselves—an active MITM can replace capabilities by no input no
output, also known as the Niño attack [HH07].

We patch the SSP state machine and claim our Nexus 5 has no display and no keyboard.
Our question is if vendors accept a “Just Works” pairing without asking a “yes/no” mes-
sage or warning the user to check if the device they are pairing to has no IO capabilities.
We find that neither Android nor iOS devices warn users about missing IO capabilities,
even though our Nexus 5 advertises itself as smartphone, which should always have
IO capabilities. However, users are required to confirm the pairing with a “yes/no”
message.

Figure 19 shows a modified Nexus 5 pairing with an iPhone 6. The only modification in
the SSP state machine function located at 0x303D4 is to always set the IO capabilities to
0x03 in variable 0x20387D, with 0x03 resembling no input and no output according to the
Bluetooth 5.1 specification [Blu19a, p. 865]. Algorithms within Nexus 5 are not coded
to consider the case of no longer having a display with such a change and continue



72 broadcom and cypress bluetooth firmware

passing a code to Android, which actually works because keys are derived either way
similarly. iPhone 6 simply displays a “yes/no” message and pairing is achieved. Yet,
operating systems seem to cache some of this information locally, making tampering
with IO capabilities hard if not applied within each pairing. To ensure a Niño attack
works, an attacker should be present during the initial pairing. In our experiments,
users were not be displayed any warnings if a Niño attack fails due to the detection of
inconsistent IO capabilities, but the pairing was aborted.

8.5.3 ECDH Device Pairing Vulnerability Scan

Another application of InternalBlue is a security test for the fixed coordinate invalid
curve attack CVE-2018-5383 [Eli18]. This attack affects device pairing based on Elliptic
Curve Diffie-Hellman (ECDH), both SSP used in classic Bluetooth and LE Secure Con-
nections (LE SC) used in BLE. The underlying protocol vulnerability exists if a Bluetooth
implementation does not check for invalid curve parameters in the key. Since the Blue-
tooth 5 specification did not consider countermeasures against this attack mandatory,
vulnerable implementations are widespread. Testing for this attack is not straightfor-
ward, though, as the authors did not release any tools and the attack requires special
hardware.

We implement the semi-passive fixed coordinate invalid curve attack, which zeroes
the y-coordinates of both public keys belonging to the InternalBlue smartphone and the
device under test. If the device under test does not perform an invalid curve parameter
check, this semi-passive attack would be successful in 25% of all device pairing attempts
under the original attack’s assumptions [Eli18]. In contrast, the InternalBlue success rate
is raised to 50% by setting an even smartphone private key, which is possible since the
attack model is not a wireless link under control but the actual smartphone initiating a
connection. Although not performing this attack as MITM, testing other smartphones is
fast and portable with our solution.

InternalBlue could also help to fix this vulnerability in older Broadcom Bluetooth chips.
Applying security patches this way is feasible if a vendor is no longer supporting old
chips or reacts slowly in publishing updates.

8.5.4 KNOB Attack Test

After SSP, every time two devices connect, they perform a key negotiation. During
this key negotiation, the key entropy can be reduced from 16B to a lower value upon
request of the master or the slave. This attack is compliant with the Bluetooth 5.1 specifi-
cation [Blu19a, p. 598]. The attacker has to inject a request to reduce the entropy, which
is called LMP_encryption_key_size_req. Note that despite this name the key length re-
mains 16B, but the entropy can be reduced to as low as 1B on many devices. Hence, the
effective key size will be 1B. This attack, called Key Negotiation of Bluetooth (KNOB)
attack, has been discovered and tested recently [ATR19]. The authors tested this attack
with our first InternalBlue release, and most devices accepted the minimal key size.

After the publication of the initial KNOB paper, we ported the attack from the Nexus
5 to further devices, including the popular Raspberry Pi 3/3+/4 and the more recent
Samsung Galaxy S8. As shown in Figure 20, this attack is detected on recent iOS devices.



8.5 testing for known security issues 73

Nexus 5 with IO capabilities iPhone 6

Pairing request
without IO capabilities

Figure 19: “Just Works” pairing on iOS 12.1.4.

iPhone 6

Figure 20: KNOB attack during connection setup with a previously paired device since iOS 12.4.



74 broadcom and cypress bluetooth firmware

Users can still decide to accept the connection, but the default option is to not allow the
connection.

8.6 discovering and fighting new vulnerabilities

While exploring command handlers in the Broadcom firmware, we have found a severe
vulnerability affecting a variety of devices, as described in Section 8.6.1. To analyze
the vulnerability’s impact, we implement runtime testing and emulation solutions, as
detailed in Section 8.6.2. Besides, these can also be used to detect further bugs or simply
to locate and dissect more functions and realize more features. In Section 8.6.3, we come
up with a solution that can help against even more attacks.

8.6.1 Remote Code Execution Vulnerability

In the following, we explain how we discovered CVE-2018-19860, a vulnerability allow-
ing over-the-air attackers to execute a subset of functions within a large set of Broadcom
firmware. The vulnerability only requires the device under attack to have Bluetooth
enabled, no previous pairing or visibility to the attacker is required.

8.6.1.1 Vulnerability Description

While dissecting the LMP dispatcher and analyzing its functions, we found vendor-
specific commands. The Bluetooth standard only defines vendor-specific commands on
the HCI layer, which can only be executed locally on the host as superuser. However,
Broadcom uses LMP opcode 0x00 for Broadcom Proprietary Control Signaling (BPCS)
mapped by lm_BPCS_getLmpInfoType. Exploring this unusual LMP handler, we discov-
ered that it accepts 256 input values in the field following opcode 0x00. Broadcom only
intended to implement BPCS commands 0x0000–0x0005. Because of a missing range
check commands 0x0006–0x00ff interpret memory located after the intended BPCS han-
dler table similarly.

As BPCS is a proprietary feature, a Broadcom chip only answers these requests if they
originate from a connection to another Broadcom device. The attack can also be launched
from a Cypress evaluation board, if the vendor identifier is changed from Cypress (0x0131)
to Broadcom (0x000f) in the LMP_version_res.

Compilers tend to put similar library functions close to each other. Even though
compiling is hard to predict and contents are different for each Broadcom chip, handler
tables are very likely to be put after each other. On Nexus 5 other handler tables are
indeed put after the BPCS handler table and include an interesting selection of HCI
commands shown in Figure 21 that should never be launched from a remote host, such
as Launch_RAM. Function arguments are passed in different only partially controllable
registers when called over this path, for example, Launch_RAM is executed but always
launches an invalid address. Execution of invalid commands or accessing invalid mem-
ory just crashes the Bluetooth firmware and has no further side effects. On some op-
erating systems, the driver restarts Bluetooth automatically within a minute, but even
in this case, ongoing connections are interrupted. In general, chances of crashing the
Broadcom firmware are high.



8.6 discovering and fighting new vulnerabilities 75

Interpreting out of bounds commands in Figure 21 also results in extremely long
LMP packets, i.e., the handler for command 0x0095 has a length of 219 bytes. When
trying to use InternalBlue’s sendlmp 00 95, the packet seems to be sent according to the
monitoring hooks but is never actually sent because the LMP packet buffer is limited
to 32 bytes. When attacking other smartphones with a Nexus 5, the attacker first needs
to patch the vulnerable BPCS handler locally to change the length and option fields. A
Nexus 5 under attack will not wait to receive all 219 bytes and interprets the LMP packet
with the wrong length.

BCM4339 on Nexus 5 is a combo chip using a shared antenna for Bluetooth and Wi-Fi.
Further investigating crashes on Nexus 5 shows that they result in 2–5 s interrupts on
2.4GHz Wi-Fi only. 5GHz Wi-Fi is not affected. Similar Wi-Fi interrupts also happen
during normal Bluetooth pairing. However, they do not seem to happen when regularly
exchanging data. The default configuration of many systems is to restart Bluetooth
after a crash, and an attacker can reduce Wi-Fi performance multiple times by attacking
again when the Bluetooth of the victim reappears. Analyzing possible causes for this
behavior is complicated—it could range from incorrect sharing of the antenna up to
Android-specific issues.

8.6.1.2 Affected Devices

Vulnerable devices are easy to detect as they do not answer BPCS commands with
LMP_not_accepted. Very old Broadcom chips do not implement these commands at all
and are not vulnerable. Broadcom did not share a list of vulnerable devices after we
reported the issues, but we found an interesting selection listed in Table 4 by testing de-

LMP input: 00 95 ...

LMP BPCS handler table
00 00 Features request
01 01 Features response
02 02 ...
05 05 BFC accept

Next (unknown) handler table
06 00 ...

HCI link control handler table
HCI link policy handler table
HCI host controller handler table
HCI info parameter handler table
HCI status parameter handler table
HCI test handler table

95 03 Enable device under test mode
HCI vendor-specific handler table

BD 4E Launch RAM (wrong parameters)

Figure 21: Jumping from one handler to another, example handlers picked from BCM4339
firmware.



76 broadcom and cypress bluetooth firmware

vices we had access to. A major version number of 5 or lower seems to be secure against
our attack but corresponds to the outdated Bluetooth 3 standard [Blu19c]. Only some of
the chips with major version 8 were vulnerable, which corresponds to Bluetooth 4.2.

Before pairing, devices exchange their version number within a LMP_version_req and
LMP_version_res to know which version of the Bluetooth specification is supported by
each other. This request also includes a subversion that further specifies the firmware
version running on the chip. This gives the attacker hints which payload could execute
meaningful functions.

We extracted firmware from various vulnerable and non-vulnerable devices to fur-
ther track down when the function lm_BPCS_getLmpInfoType was fixed and if handlers
located behind are indeed HCI or similar interesting functions. Firmware internals of
those versions that give most insights about patching are listed below.

raspberry pi 3 / BCM43430A1 is vulnerable, and its build date is June 2 2014. It has
a few callback function tables located in the vulnerable memory region, but most
of the memory is filled with encryption constants.

raspberry pi 3+ / BCM4345C0 is not vulnerable and its build date is August 19 2014.

macbook pro 2016 / BCM20703A2 is vulnerable and its build date is October 22 2015.
Various callback and HCI function tables are located in the vulnerable memory
region.

We assume that Broadcom internally discovered this bug in summer 2014, but was not
aware of its criticality at all when adding the missing BPCS opcode check. Moreover,
a newer build date does not necessarily mean that a firmware has the newest library
versions, as the BCM20703A2 example shows.

As firmware development cycles are quite long—even the evaluation board is shipped
with a one-year-old firmware—devices released in 2016 are still vulnerable. We estimate

Table 4: Devices vulnerable to CVE-2018-19860.

Device Name Chip Version SubVersion

MacBook Pro 13” mid 2012 BCM4331 6 8859

iPhone 5 BCM4334 7 16653

iPhone 5s BCM4334 7 8707

Xperia Z5 BCM43xx 7 8975

Nexus 5, Xperia Z3,
Samsung Galaxy Note 3

BCM4339 7 24841

Raspberry Pi 3 BCM43430A1 7 8713

Huawei Honor 8 BCM4345 8 24857

iPhone 6 BCM4345 8 16649

MacBook Pro 13” early 2015 BCM20703A1 8 8609

MacBook Pro 13” early 2015 #2 BCM20703A1 8 8614

Fitbit Ionic BCM20707 8 8715

MacBook Pro 2016 A1707 BCM20703A2 8 8752

MacBook Pro 2016 BCM20703A2 8 8774



8.6 discovering and fighting new vulnerabilities 77

around half of the devices with Broadcom Bluetooth chips actively used in December
2018 to be vulnerable.

8.6.2 Firmware Emulation and Fuzzing

Exploring abilities gained with the BPCS vulnerability is hard. To analyze crash causes
and impact of non-crashing functions, we develop a toolchain that allows analyzing
crashes, debugs functions dynamically on the chip, and explores the information flow
throughout the firmware based on emulation.

8.6.2.1 Software Tracepoints

Functions are reached over long call graphs with parameters depending on many dy-
namic inputs. On the Nexus 5, the function lm_HandleLmpReceivedPdu, which processes
LMP packets, is located at 0x3f3f4.

The InternalBlue command tp add 0x3f3f4 adds a tracepoint to this function. Each
tracepoint is realized as Patchram hook. Once a tracepoint is called, it is deleted from
Patchram to prevent the firmware from being stuck in tracepoints while debugging. A
tracepoint imitates the behavior of the original Broadcom fault handler contained in the
firmware and dumps all register contents as well as stack and heap but continues opera-
tion afterward. Multiple tracepoints can be observed in a row, e.g., to check the behavior
of multiple functions called for a given input.

Example output for lm_HandleLmpReceivedPdu is shown in Listing 1. The link register
points to a function Broadcom named lm_handleLmpMsg, r0 points to lm_curCmd.

8.6.2.2 Emulation with Unicorn and Radare2

To investigate the LMP handler remote code execution, we use registers from a trace-
point of lm_HandleLmpReceivedPdu but install the second tracepoint in the handler for
BPCS itself to dump the corresponding stack and heap contents of a BPCS payload.
With a combination of Unicorn and Radare2, we modify a Python script that emulates
lm_HandleLmpReceivedPdu [pan19; QV19; Rei16]. BPCS commands are passed by chang-
ing the corresponding blocks in the stack and heap memory region. Emulation of an
LMP command stops if the end of lm_HandleLmpReceivedPdu is reached or a timeout is
exceeded.

A call trace for lm_HandleLmpReceivedPdu is given in Listing 2. In this case, the func-
tion is passed an LMP packet containing 0x000a. Following handler tables as in Fig-
ure 21, position 0x0a in the misinterpreted BPCS handler table calls a NULL pointer that
is then interpreted as a function address, and ROM contents at 0x00000 are executed.

[*] Tracepoint 0x3f3f4 was hit and deactivated:

pc: 0x0003f3f4 lr: 0x00008c33 sp: 0x0021734c cpsr: 0x00000000

r0: 0x00200478 r1: 0x002179a8 ... r12: 0x40000000

Listing 1: Tracepoint in lm_HandleLmpReceivedPdu.



78 broadcom and cypress bluetooth firmware

This trace is still very short because it crashes immediately. However, traces can become
very complex and hard to analyze.

8.6.2.3 Call Trace and Memory Interpretation

The emulator recognizes branches and extracts addresses when entering a new block
after a branch to generate a detailed call trace. Moreover, it dumps memory after finish-
ing execution, which can later be compared to the original state. BPCS commands that
depend on arguments passed to the handler can be located by emulating the same com-
mands multiple times with different inputs and then searching for traces with different
execution paths or by memory differences.

8.6.2.4 Crafting Exploits: Turn Remote Devices Into Jammers

One function standing out in memory analysis changes the content of a very high mem-
ory section, which turns out to be responsible for test mode configuration. Further
investigation reveals that the LMP payload 0x0095 calls the HCI handler function en-
abling device under test mode. Without being embedded into HCI logic, the function
gets executed but never appears in HCI Snoop Log on the host. Therefore, a host under
attack will not be able to filter or observe this event.

After enabling test mode with the malicious payload, LMP_test_activate and LMP_te

st_control can be used to run tests. The master controls test mode, and the slave is the
device under test. Each test is performed for multiple seconds. During a test, master
and slave usually hop over all channels defined in their Adaptive Frequency Hopping
(AFH) configuration. In conjunction with LMP_set_AFH, AFH can be disabled on the
attacked device; thus, causing it to jam a selected frequency, which could be pilots of
a Wi-Fi signal the attacker wants to block. The LMP_set_AFH payload must contain a
valid Bluetooth clock to enable jamming of a single frequency, which requires writing
an assembly patch. A sequence of frames successfully turning a Nexus 5 and Xperia Z3

0x3f3f4, 0x3f400, 0x42c04, 0x42c0a, 0x3f406, 0x3f40e, 0x3f418, 0x4a868, 0x4a87a,

0x3f41e, 0x3f426, 0x3f44c, 0x3f44e, 0x3f34c, 0xd30d0, 0xd3152, 0xd315e, 0xd3188,

0xd3192, 0xd3130, 0x3f456, 0x3f458, 0x3f464, 0x00000,

invalid memory 0x661e1000, invalid memory 0x65f7f3c0

Listing 2: Call trace starting at lm_HandleLmpReceivedPdu.

# LMP_set_AFH to disable hopping

sendlmp 60 0000000000ffffffffffffffff0000

# Enable test mode via exploit

sendlmp 00 95

# LMP_test_activate

sendlmp 56 00

# LMP_test_control, TX frequency 2433 MHz

sendlmp 57 545575755555555255

Listing 3: Remote jammer attack.



8.6 discovering and fighting new vulnerabilities 79

f
MHz

t

2431 2432 2433 2434 2435 2436 2437 2438 2439

Starting test...Starting test...

AFH disabledAFH disabled

Figure 22: Device under test mode exploit.

into a remote jammer is given in Listing 3. Note that LMP_set_AFH is not under perfect
control of the attacker without passing a proper Bluetooth clock. AFH is not stopped
on the attacking device but the device under attack nevertheless temporarily accepts
the AFH configuration. With the presented payloads, the device under attack keeps
hopping on all Bluetooth channels most of the time, as shown in Figure 22.

8.6.3 MAC Address Filter

As a basic defense against devices injecting malicious frames, a MAC address filter can
be used. Typically, users only use a few devices they trust, such as a headset. We imple-
ment a whitelist inside lm_HandleLmpReceivedPdu. Untrusted devices are rejected within
LMP—an attacker not imitating a valid MAC address cannot establish connections or
even tamper with any of the LMP handlers or protocols above. To successfully imitate a
MAC address, attackers need to analyze traffic with an SDR for a while to calculate the
target address from demodulated signal chunks [Mic09]. In contrast to Wi-Fi, Bluetooth
chunks do not contain full MAC addresses, therefore guessing these is harder than in
Wi-Fi.

Currently, the MAC address filter is implemented as a simple Python proof of concept
executed at runtime by using InternalBlue as a library. It can be integrated into more user
friendly solutions, such as an Android app that automatically generates a permanent
HCD file allowing only connections from devices that were successfully paired at the
time of its generation.

A MAC address filter is no longer required to defend against CVE-2018-19860, as
most vendors have rolled out patches. Broadcom did not include us in the feedback loop
after informing vendors in December 2018, but we tested previously affected devices



80 broadcom and cypress bluetooth firmware

and can confirm that our vulnerability was fixed in iOS 12.1.3. The macOS update fixing
the vulnerability increases the LMP subversion by one.

8.7 responsible disclosure and outlook

Broadcom and Cypress chips are shipped in hundreds of millions of devices annually. This
popularity comes with responsibility. Indeed, Broadcom seems to do a lot of security
testing. Issues found in older ROMs were often patched in newer ROMs. However,
we observed these patches are not included in the corresponding .hcd patch files for
older chips. The supply chain for patches after releasing a ROM firmware image is very
complex. Usually, the ROM build date is a year behind the product release date, i.e.,
the iPhone 7 ROM is from September 2015, while the product was released in September
2016. Even evaluation boards lag a year behind. Low-cost products like the Raspberry
Pi 3+ are multiple years behind. Any issue found during the development cycle must
be fixed through .hcd files—this not only applies to security but any feature. Once
the product is live, Broadcom still needs to inform all their customers about patches
and provide these. Applying a patch means rolling out a new .hcd file with the next
operating system update. Patching capabilities inside the chip are limited by the amount
of Patchram slots and free RAM, which means that at some point, the vendors must
choose between patches. Vendors might not prioritize patches for security issues that are
not publicly known. In addition, since .hcd files are plaintext, the actual vulnerability
might just leak by patching a not yet publicly known security issue.

From firmware build dates, we can deduce that Broadcom found CVE-2018-19860 in-
ternally. Probably they were not aware of the vulnerability’s criticality. They likely
informed vendors at the end of November or the beginning of December 2018. Apple
silently patched the issue in January 2019 in iOS devices, their first advisory mention-
ing this Common Vulnerabilities and Exposure (CVE) is a macOS update from July
2019 [App19b]. They only have a few chips in their ecosystem, and it is comparably
easy for them to roll out custom .hcd patches. In contrast, Google mentions the issue in
their May advisory [And19a], and usually, these patches will only be applied afterward
by affected vendors like Samsung. We are not aware of any patches for Linux—in that
ecosystem, it is usually hard to find up-to-date .hcd files.

The security impact of Bluetooth is often underestimated. Users allow headsets to
share their contacts and Android enables users to set up a paired device for a restricted
unlock. Assuming the Bluetooth driver on the host has security issues, an attacker
could escape to the host with high privileges, as was the case in recent attacks on Wi-
Fi [GP19; Ang19]. On systems with a Broadcom Bluetooth/Wi-Fi combo chip, we ran
first experiments on a Nexus 5 that show an attacker with control over Bluetooth can
slow down or disable Wi-Fi and vice versa. IoT devices that run their application within
the Bluetooth chip have a special risk. This setup is typical of how WICED Studio enables
IoT applications on Cypress evaluation boards. On such systems, an attacker can directly
escalate into the IoT application without permission restrictions.



8.7 responsible disclosure and outlook 81

my contribution

Credit to the first version of InternalBlue goes to Dennis Mantz, who chose Bluetooth
binary patching for his Master thesis topic [Man18]. He was initially supervised by
Matthias Schulz, who handed over supervision to me. Dennis wrote clean code and
with good documentation, thereby enabling others to start with Bluetooth analysis and
binary patching. Before I found symbols for the Cypress evaluation kits, we both invested
months in reverse engineering functions according to the Bluetooth standard in the
Nexus 5 firmware. With these initial symbols, we were able to write Proof of Concepts
(PoCs) for known Bluetooth vulnerabilities. Just after submission of Dennis’ thesis, an
attack on the ECDH key exchange was published, which he then implemented as a first
demo and used for security testing of other Bluetooth chipsets. Reverse engineering
Nexus 5 symbols lead me to CVE-2018-19860.

A publication on all the security-relevant findings was published at MobiSys [Man+19].
Later I found that LMP monitoring and injection capabilities implemented as Assembly
patches by Dennis were already supported by a diagnostics protocol [CH19].

After finishing his thesis, Dennis still had some time in continuing development and
research with InternalBlue. We gave talks together at 35C3, TROOPERs, REcon, and
MRMCD [CM18; CM19a; CM19c; CM19b].

Analysis of Broadcom Bluetooth chips is an ongoing project. The latest features include
a port of InternalBlue to iOS by Dennis Heinze, and to macOS by Davide Toldo. Together
with Michael Spörk and the team at TU Graz, we added link-layer feature extraction
to improve the reliability BLE connections [Spö+20]. Jan Ruge developed an emulation
and fuzzing framework Frankenstein that can run Bluetooth firmware binaries [Rug19].
He discovered further arbitrary code execution vulnerabilities. Together with Francesco
Gringoli, I exploited Bluetooth coexistence with Wi-Fi (CVE-2019-15063), which even
caused a full device reboot on various iOS and Android devices.

External entities are also interested in InternalBlue. We are involved in responsible
disclosure processes with Broadcom, Cypress, Apple, Samsung, and Google, as well as col-
laborations with other universities that are interested in performance improvements and
security analysis.

Section 8.5 is based on [Man+19, Sec. 4]. Figure 8.6 is adapted from [Man+19, Sec. 5].
The tables in Section 8.4.1 are based on [CH19].





Part IV

F U T U R E W I R E L E S S S TA N D A R D S

New wireless standards are highly relevant for security research, as they
might enable new security mechanisms. Especially the lower layers change
with wireless technology. In this part, we focus on wireless Physical-Layer
Security (PLS) for Visible Light Communication (VLC) and relate it to find-
ings for mmWave communication. Chapter 9 shows that VLC and mmWave
connections can be eavesdropped in real-world setups despite their direction-
ality and short-range. Applicability of PLS techniques to VLC is discussed
in Chapter 10.





9
E AV E S D R O P P I N G V I S I B L E L I G H T A N D M M WAV E C O N N E C T I O N S

This chapter is structured as follows. In Section 9.1, we explain why it is crucial
to research eavesdropping in narrow-beam Visible Light Communication (VLC) and
mmWave transmissions. Our VLC testbed is explained in Section 9.2. We perform prac-
tical VLC measurements in Section 9.3. The findings are compared to a similar mmWave
eavesdropping setup in Section 9.4. Section 9.5 concludes our measurement results.

9.1 motivation

VLC ( )transmits data using everyday light sources. Light is blocked on its way by
walls and almost any obstacle. Humans can intuitively observe the VLC transmission
range. In contrast, Radio Frequency (RF) transmissions can pass through multiple walls
depending on the material and frequency. For a human without measurement equip-
ment, it is hard to predict and impossible to infer the range of an RF transmission. For
example, a standard 2.4GHz Wi-Fi ( ) might be receivable outside a house or apartment
where it is located, yet sometimes it will be hard to receive in a neighboring room inside
the same building.

The mmWaves ( ) we experiment with operate in the 60GHz range. Due to their
small wavelength, they behave in a quasi-optical manner and are easily blocked by
obstacles. Moreover, to increase transmission range to a couple of meters, they need
directional transmission.

Both technologies, VLC and mmWaves, are claimed to be hard to eavesdrop due
to blockage and directionality [Pov11; Fre13; Yan+15]. We consider passive attackers
hiding in Non-Line-of-Sight (NLOS) paths that attempt to intercept the communication
stream by exploiting the structure of the physical environment. For VLC eavesdropping,
we focus on materials used in buildings, windows, keyholes, and doors. Our mmWave
eavesdropping setup considers reflections on small-scale objects and reflections on the
intended receiver device itself. To avoid being detected and blocking the main signal
beam, the attacker must exploit secondary and non-ideal propagation paths and contend
with degraded Signal-to-Noise Ratio (SNR).

Our results show that nearby attackers, the “spy next door”, can often intercept VLC
and mmWave signals, potentially revealing information on personal habits in smart
home applications or even sensitive health data. Indoors, VLC reflections on walls
are sufficient for eavesdropping, thus also affecting Internet of Things (IoT) and smart
home applications. mmWaves are reflected perfectly on smartphone and laptop displays,
making the intended receiver herself an additional risk for eavesdropping.

9.2 vlc testbed and evaluation setup

In the following, we present a VLC attack model in Section 9.2.1. To succeed, an eaves-
dropper must decode an advanced modulation scheme from a non-optimal position

85



86 eavesdropping visible light and mmwave connections

(Section 9.2.2). Due to this modulation scheme, in contrast to modulation schemes like
on-off keying, an attacker is not successful merely by detecting if the light is on or off.
Instead, a higher-order modulation based on Orthogonal Frequency-Division Multiplex-
ing (OFDM) must be decoded. Our practical hardware testbed and software setup are
described in Section 9.2.3.

9.2.1 Attack Scenarios

We consider that Alice transmits to Bob using VLC. Alice attempts to prevent eavesdrop-
ping by relying on visible light’s directionality and blockage characteristics. However,
Eve aims to undermine this privacy and eavesdrops on Alice’s transmission. We con-
sider NLOS positions where Alice and Bob might not expect eavesdroppers because they
are considered to have poor or no reception outside of the room. Eve takes advantage
of the gap underneath a door, keyholes, and windows. Inside the room, she can rely on
environmental reflections to eavesdrop, even if she is not located within the light beam.
In all scenarios, we assume that Bob is near the reflector or opening but not blocking
the signal to Eve. We use Eve’s Bit Error Rate (BER) to quantify the success of attacks.
In our experiments, no error coding is used. Hence, we assume that Eve can still de-
code signals with a BER lower than 10%. Yet, as long as the BER stays below 50%, Eve
receives parts of the conversation, which can be sufficient to reconstruct the message.

Note that the modulation scheme is important for successful eavesdropping—since
Eve has a potentially worse path to Alice than Bob, and she might not be able to decode
information that is still received by Bob. In general, Eve could improve her eavesdrop-
ping capabilities by using more advanced hardware that has better sensitivity. While
Eve can infer whether a light is on or off through a door gap from a large distance, we
evaluate if this leakage is sufficient for decoding higher modulation order signals.

Sender
(WARP analog board)

DC offset, TX driver
Receiver

(WARP analog board)RX driver

Transmission control
(MATLAB)

Switch

VLC transmission

Eavesdropping

Figure 23: VLC setup based on Wireless Open-Access Research Platforms (WARPs).



9.3 practical vlc eavesdropping 87

9.2.2 Modulation

Light sources installed in buildings and public spaces are designed to illuminate the
greater environment and thus have a large beamwidth. In comparison to legacy radio
Wi-Fi systems, VLC signals feature a more distinct area of reception and do not encode
phase information [LSK11]. Furthermore, VLC is different from optical communication
with lasers, in which coherent signals propagate on a narrow path from sender to re-
ceiver, thereby restricting eavesdropping to a few locations [LMGGB15].

We use a white Light-Emitting Diode (LED) as a sender and therefore cannot use
Color-Shift Keying (CSK) as defined in IEEE 802.15.7 [The11]. Instead, we modulate our
data with DCO-OFDM as in the setup in [QHK14]. DCO-OFDM is similar to OFDM in
the IEEE 802.11a/g Wi-Fi baseband [The12], and efficiently uses the limited bandwidth
of our LED, which has a linear operation range of only 2 MHz. Since we modulate the
light intensity of incoherent light, there are two restrictions: first, the light intensity can
only be positive in contrast to an electromagnetic field; and second, incoherent light has
no consistent carrier phase that could be used for modulation. Therefore, the symbol
representation must be real-valued and positive. DCO-OFDM meets these requirements
by using only half of the total subcarriers to obtain a real-valued OFDM signal and then
adds a constant Direct Current Offset (DCO) to produce a positive intensity.

9.2.3 Hardware Setup

An overview of our hardware setup for VLC is shown in Figure 23. It is based on
Software-Defined Radios (SDRs), namely the Wireless Open-Access Research Platform
(WARP) v1.2 [WAR19]. We use an array of white Bridgelux BXRA-40E0950-B-03 LEDs
as a sender and an LEC-RP0508 Photo Diode (PD) as a receiver. WARP is made for
rapid prototyping wireless communication systems in combination with MATLAB. By
using the WARPLab Field-Programmable Gate Array (FPGA) design, a computer en-
codes the signals and triggers the transmission on multiple connected WARP boards.
This WARP-based setup is highly flexible and can be extended to drive multiple senders
and receivers simultaneously.

We extend the WARPs, which typically output Wi-Fi carrier signals, with analog
boards interfacing arbitrary baseband signals as required for DCO-OFDM. This setup
provides a sampling rate of 40MHz that is sufficient for transmission with LEDs that
typically have a modulation bandwidth of 2–3MHz. We modulate 128 subcarriers, but
only 64 carry the data to obtain a real-valued OFDM output from the analog boards. A
DCO is added by another circuit, and its voltage can be adjusted to enhance the optical
power. The driver circuit converts the voltage to a current, which alternates the LED
brightness and thus modulating the signal onto the LED. At the receiver, the photodi-
ode converts light to current, which is amplified by the VLC receiver, and converted to
a voltage by the driver circuit.

9.3 practical vlc eavesdropping

In the following, we conduct various experiments to evaluate VLC eavesdropping per-
formance in real-world scenarios. These scenarios are eavesdropping through a door



88 eavesdropping visible light and mmwave connections

Alice

Eve

Door

Eve

Bob

0
.5

1
m

2.54 m 45 mm 30 mm

(a) Eavesdropping setup through a door gap.

Alice

Eve

Bob

0
.5

1
m

2.64 m 55 mm 25 mm

0
.4

6
m

0
.1

5
m

Eve

(b) Eavesdropping setup for window and keyhole.

Figure 24: Eavesdropping setups.

0 1 2 3 4 5 6

0

0.2

0.4

0.6

Mirror inside room [cm]

BE
R

64-QAM
4-QAM

Figure 25: Reflection zone measurement by moving a mirror inside.



9.3 practical vlc eavesdropping 89

gap with multiple flooring materials (Section 9.3.1), a keyhole (Figure 9.3.2), and a win-
dow with various covers (Section 9.3.3), as well as eavesdropping a reflection from a
wall (Section 9.3.4).

Each experiment is conducted with 100 repetitions to determine the median and con-
fidence bounds. Boxplots represent the 25

th and 75
th percentiles using a box while the

whiskers extend to the non-outliers. We vary sender and receiver positions and place
obstacles in between, as described in detail in the following.

9.3.1 Door Gap Eavesdropping

We examine if eavesdropping based on floor reflections through a door gap from a
4.83m× 2.73m room is possible. Alice is transmitting from a chair facing the door with
a 37° cone, which is slightly focusing her light. Eve is located outside the room at the
door’s center on the ground. She is not facing Alice directly but exploiting reflections,
as depicted in Figure 24a. We find that Eve’s location is optimal at a 30mm distance
from the gap.

First, we record a regular receiver baseline with an open door. Then we measure
the optimal scenario for Eve using mirrors as well as typical flooring materials listed in
Table 5. Our floor samples have a limited size. Thus, we first inspect the influence of
reflector sizes in Section 9.3.1.1. The original flooring is a gray carpet leaving a 15mm

gap between the door and the floor. When testing with different materials, the gap
size narrows based on the thickness of the material under test. Hence, we investigate
the impact in Section 9.3.1.2. Afterward, we focus on materials with clear grooves and
surface structures in Section 9.3.1.3. Finally, we compare different flooring materials and
their effectiveness for eavesdropping in Section 9.3.1.4.

9.3.1.1 Reflection Zone

We measure the impact of reflection zone dimensions in the following setup: Eve is
located on top of a mirror in 3 cm distance to the door. The mirror is moved inside
centimeter-wise towards the transmitter, while Eve’s distance to the door remains 3 cm

in all experiments. Since the original carpet is a poor reflector (which will be shown
in Section 9.3.1.4), the small-sized floor samples give us an upper bound on the BERs.
The measurement at 0 cm is taken at alignment with the inner surface of the door, and
1 cm means that the mirror is already inside the room. As shown in Figure 25, Eve’s
4-QAM BER significantly drops when the mirror is 2 cm inside the room while she
requires around 5 cm to achieve an excellent eavesdropping performance for 64-QAM.
This suggests that Eve only needs little of the reflector to be inside the room to eavesdrop,
even for higher-order modulation schemes. She could place a tiny reflector underneath
the door if the existing flooring material is not sufficient for eavesdropping.

To validate these findings with other materials, we use a rectangular piece of parquet
with a shiny surface as a reflector and measured Eve’s BER for different orientations of
the parquet. As Figure 27 shows, the parquet # 11 has the lowest BER when aligning the
longer side along the path towards the transmitter. This corresponds to a larger reflec-
tion zone size on the NLOS path and means that our measurements in the remainder
of this paper indicate an upper bound BER for a room completely filled with the floor
material under test.



90 eavesdropping visible light and mmwave connections

9.3.1.2 Gap Size

Many of the tested samples are of different thicknesses and thus alter the door gap size.
To analyze if this has a significant bias on our measurement results, we raise a test layer
of acrylic glass to different heights to reduce the available eavesdropping gap size and
then measure the BER at each of these heights. As seen in Figure 26, a narrow gap
size especially raises the BER for higher modulation orders. Hence, our measurement
results are upper bound BERs for each material, which can be decreased with larger
gap sizes. Although a particular material may cause better reflections in general, the
performance gains may be dwarfed by the additional losses from reducing the door gap
size. For eavesdropping, this means that there is a trade-off between using the existing
floor material and maliciously placing another material under the door.

9.3.1.3 Material Surface

Intuitively, surface structures on materials block light on the way to Eve. To exclude
the source of different BERs from being material differences or the size, we rotate the
same squared vinyl plank # 5 with wooden structure crosswise and lengthwise towards
Eve—since it is squared, we are only changing its orientation but not the reflection zone.
Figure 27 shows the difference between the orientations: even though it is the same
square sized material, the mean BER drops from 36.23% to 31.01% for the lengthwise
orientation of the wooden structure, due to having fewer ripples from the vinyl on the
way to Eve. This difference is even more significant for lower order modulation schemes

10 6.5 3
0

0.2

0.4

0.6

Door gap height [mm]

BE
R

64-QAM
4-QAM

Figure 26: Acrylic glass at different heights.

Vinyl square # 5

lengthwise
Vinyl square # 5

crosswise
Parquet rect # 11

short edge
Parquet rect # 11

long edge

0

0.2

0.4

0.6

BE
R

(6
4
-Q

A
M

)

Material

Figure 27: Different tile orientation eavesdropping performance.



9.3 practical vlc eavesdropping 91

(e.g., 9.81% vs. 17.35% for 4-QAM). This means that Eve can noticeably improve her
performance by optimizing her position with regards to the flooring material’s structure,
even if she cannot change the flooring material itself.

9.3.1.4 Flooring Comparison

In this experiment, we compare all materials in their optimal orientation and positioning
with a 30mm distance in front of the door’s center front. Since the original flooring has
the second-worst BER, all better BERs exclusively originate from the support of the
flooring materials. Note that these results are an upper bound on the BERs that would
be reduced by a completely filled floor of the material with a constant 15mm gap size.
In the case of surface structure, we turned tiles in the optimal orientation.

The results are shown in Figure 28. We find that the non-typical flooring materials—
mirrors, metal, and acrylic glass—are the best reflectors. Even at 64-QAM, their BERs
stay below 5.6%. Note that the mirror in this experiment is slightly better than in prior
experiments, because it is as far in Alice’s room as possible, allowing it to reflect more
of her signal beam towards Eve. The shiny glazed tiles perform better than the struc-
tured tile, but all tiles work well at 4-QAM. Even the structured tile has a 2.8% mean
BER. For laminate and parquet, the gap size was reduced by at least 8mm respectively
10mm. Yet, their mean BERs are 0.6% and 3.6% for 4-QAM. We assume that the other
laminates and parquets are also good reflectors for larger gap sizes. A defense against
VLC eavesdropping is carpet; the original carpet has 41.5% BER, and the 10mm carpet
under test has 46.6% BER. This result is counterintuitive—even though one can see if

Table 5: Floor material sizing and description.

# Image Material Height Length Width

0 Baseline with open door — — —

1 Metal sheet 0.5mm 750mm 406mm

2 Mirror 4.5mm 302mm 302mm

3 Acrylic glass 5mm 209mm 406mm

4 Vinyl plank “Antique Elm” 1.5mm 100mm 100mm

5 Vinyl plank “Rosewood Ebony” 1.5mm 100mm 100mm

6 Vinyl plank “Corfu” 1.5mm 100mm 100mm

7 Laminate “Whitewashed Oak” 8mm 126mm 88mm

8 Carpet “Antique Bone” 10mm 103mm 103mm

9 Black shiny glazed tile 7mm 106mm 16mm

10 White shiny glazed tile 7mm 106mm 106mm

11 Parquet “Character Maple” 10mm 128mm 89mm

12 Parquet “Mahogany Natural” 11mm 127mm 87mm

13 Laminate “Middlebury Maple” 12mm 134mm 91mm

14 Gray structured dull glazed tile 8mm 147mm 147mm

15 Original carpet 0mm — —



92 eavesdropping visible light and mmwave connections

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

Material

BE
R

(4
-Q

A
M

)

(a) 4-QAM eavesdropping.

0 1 2 3 4 5 6 7 9 10 11 12 14
0

0.2

0.4

0.6

Material (high BER materials ommitted)

BE
R

(6
4

-Q
A

M
)

(b) 64-QAM eavesdropping.

Figure 28: Door gap eavesdropping on different flooring materials.

19 mm

7 mm

open
0
◦ 90

◦
180

◦

Figure 29: Eavesdropping keyhole setup.

open 90
◦

180
◦

0
◦0

0.2

0.4

0.6

Key position

BE
R

(6
4
-Q

A
M

)

Figure 30: Eavesdropping through a keyhole.



9.3 practical vlc eavesdropping 93

the light is on or off in the room from the position of Eve’s photodiode, carpet reflections
are insufficient for decoding higher-order modulation schemes.

9.3.2 Keyhole Eavesdropping

Keyholes are a similar target as door gaps and attackers can also use these to eavesdrop
on transmissions from outside the room, but from a different angle. In the following, we
test if Eve can eavesdrop an ongoing transmission with Bob being located by a keyhole.
We setup Alice and Eve as shown in Figure 24b, with the actual keyhole aligned 51mm

from the bottom of the opening surrounded by 55mm thick black foam and align Eve
so that her photodiode is directly behind the keyhole opening. We use a brass Victorian
lockset with a keyhole depth of 26mm. We assume that Bob is not blocking any of the
signals from Eve.

We measure Eve’s BER when the keyhole is open when the key is blocking the keyhole,
when the key is turned 90°, and when the key is turned 180° as illustrated in Figure 29.
The results in Figure 30 show that partially blocking a keyhole has almost no effect
on Eve. However, completely blocking the keyhole prevents eavesdropping. In the 90°
and 180° positions, the key handle blocks slightly different amounts of light in the path.
These results show that small holes are sufficient for eavesdropping on Line-of-Sight
(LOS) paths.

9.3.3 Window Eavesdropping

Intuitively, windows allow eavesdropping on VLC. We investigate if common window
add-ons—including a privacy foil—reduce information leakage. The experimental setup
is the same as in Figure 9.3.2, but we mount a 2mm thick glass window pane in front
of the black foam 15 cm× 15 cm opening.

As a baseline, we first measure the 4-QAM and 64-QAM BER at Eve, without and
with glass. Afterward, we attach a window film and insect screen to the glass window.
The window film is an Artscape “etched glass” film that is advertised to provide UV
protection and create privacy. One could think that this material blocks a significant
amount of light, since objects behind the window with this film are hard to recognize.
The insect screen is a black screen intended for 4.1mm or 4.6mm spline sizes. Each
rectangle in the screen’s mesh is approximately 1.2mm× 2mm.

Neither the mesh nor the privacy screen offer any protection against eavesdropping
when using 4-QAM; the mean BERs for all combinations stay below 1.6%. As shown in
Figure 31, even using 64-QAM, these window add-ons only reduce Eve’s signal quality
minimally, and Eve can still decode with a small BER of a maximum 3.2% mean for
combining these two modalities.

9.3.4 Wall Eavesdropping

In smart homes and IoT application scenarios, many devices are equipped with commu-
nication interfaces and cameras. Depending on the modulation scheme, even cameras
can decode VLC. In the following experiment, we analyze if devices that are nearby but
in NLOS can eavesdrop. For this, we mount Alice on a rotor, resulting in 0.97m height



94 eavesdropping visible light and mmwave connections

open glass mesh foil foil+mesh
0

0.05

0.1

Window material

BE
R

(6
4
-Q

A
M

)

Figure 31: Eavesdropping impact of partially covering a window.

Eve
Alice

3.20m
0
◦

4.83m

2
.7

3
m

D
oo

r

Figure 32: Setup for measuring reflections inside a room.

0 30 60 90 120 150 180 210 240 270 300 330
0

0.2

0.4

0.6

Sender orientation [angle]

BE
R

(4
-Q

A
M

)

Figure 33: Eavesdropping on wall reflections.



9.4 practical mmwave eavesdropping 95

Sender
(WARP analog board)

VubIQ transmitter

Receiver
(WARP analog board)

VubIQ receiver

Transmission control
(MATLAB)

Switch

mmWave transmission

Eavesdropping

Figure 34: mmWave setup based on WARPs and VubIQs.

in total, and take 20 measurements in 5° steps. We replace her reflector with a narrower
17° cone instead of the 37° cone in the previous experiments to get higher directionality,
which is required to refine the reflections’ origins further. Eve is positioned at the other
side of the room, as shown in Figure 33, and Bob is assumed to be in the direction that
Alice is pointed in. The results show that the white wall and the blue painted wooden
door generate sufficient reflections for eavesdropping in 4-QAM when Alice is sending
in the opposite direction.

9.4 practical mmwave eavesdropping

When eavesdropping mmWave communication, we find similar results [Ste+15]. Every-
day objects reflect signals of higher modulation orders sufficiently for eavesdropping.

The setup for mmWave eavesdropping shown in Figure 34 is very similar to the VLC
setup. For the sender and the receiver, WARP analog boards are used [WAR19]. Their
analog baseband signal is mixed to 60GHz with the VubIQ development system [Pas13].
Due to incompatible signals between the WARP and VubIQ system, we employ an ad-
ditional circuit in between to make the required baseband adjustments. We mount the
antenna with 7° beamwidth (the narrowest available) throughout all experiments.

Indeed, mmWaves propagate in a similar manner to visible light. An iPhone display
produces good reflections, and a larger laptop display results in perfect reflections. An-
other very good reflector is a metal block. Acrylic glass is an interesting material, as
it reflects mmWaves quite well while almost not blocking them. Moreover, round sur-
faces like a cup scatter the signal in all directions. Thus, round objects reduce the signal
strength but allow the eavesdropper to be variable in her location.

Due to the materials, most electronic devices are made of and the environment they
are used in, mmWaves can be eavesdropped in practice despite their directionality.



96 eavesdropping visible light and mmwave connections

9.5 conclusion

In scenarios where devices are nearby, neither VLC nor mmWaves should be considered
secure against eavesdropping by their physical nature. Blocking VLC information leak-
age through windows while keeping them functional seems to be impossible; privacy
films offer almost no protection. mmWaves can be reflected by the intended receiver,
such as a smartphone. Even though blockage is a challenge for high throughput in
VLC and mmWave applications, an eavesdropper who carefully selects a position or
places reflecting materials can be successful. Eavesdroppers might be able to compen-
sate for their disadvantaged position by employing better photodiodes or antennas. In
IoT deployments and smart homes, where trusted and untrusted devices are nearby,
directionality and blockage of signals should never be the only security measure.

my contribution

My main project during my stay in Houston at Rice University in Edward Knightly’s
group was VLC eavesdropping [Cla+15b]. Daniel Steinmetzer joined me in writing
the paper, and Joe Chen assisted me in performing experiments. Daniel did similar
experiments to mine for mmWave communication, with him leading the project [Ste+15].

Section 9.1 is partially taken from [Cla+15b, Sec. 1]. Section 9.2 is based on [Cla+15b,
Sec. 2]. Section 9.3 is based on [Cla+15b, Sec. 3]. Section 9.4 is a summary of [Ste+15].



10
P H Y S I C A L L AY E R S E C U R I T Y F O R V I S I B L E L I G H T
C O M M U N I C AT I O N

In this chapter, we survey existing Visible Light Communication (VLC) Physical-Layer
Security (PLS) solutions and specify a new attack model, which uncovers many attacks
that have not been considered. Section 10.1 motivates PLS as security solution and why
to re-evaluate it for VLC. Section 10.2 briefly explains what wireless PLS is and links
it to Internet of Things (IoT) environments. In Section 10.3, we outline the prospects
of PLS in VLC and explain how VLC differs from Radio Frequency (RF) transmissions.
Section 10.4 categorizes and surveys existing work on VLC PLS. We define a new attack
model in Section 10.5 for threats in VLC PLS and use it to evaluate the security of
existing solutions in Section 10.6. This chapter is concluded in Section 10.7.

10.1 motivation

Wireless transmissions come with numerous physical properties that can be useful to
reach security goals. This field of research is also called PLS.

The previous chapter focused on security provided by the limited range of VLC and
mmWave transmissions, which is a special case of PLS. Transmission range is the most
intuitive physical property that can be integrated into solutions to reach security goals
like confidentiality, authentication, and integrity. For example, if a transmission’s range
is appropriately limited, this ensures confidentiality and integrity. A location or the
proximity can be used as authentication factor. While the previous chapter showed that
VLC can be eavesdropped by Non-Line-of-Sight (NLOS) attackers in certain scenarios,
the VLC Physical Layer (PHY) might still provide additional information to take into
account.

PLS is well-known in the RF domain, and many solutions based on 2.4GHz Wi-Fi
exist. While RF and VLC both enable wireless communication, some of their physical
properties differ. This includes but is not limited to the different propagation character-
istics. Adapting RF solutions to VLC is technically possible, and the related work we
review mainly follows this approach. However, this might lead to security degradation
compared to the original solution. Security guarantees depend on the PHY and need to
be reconsidered once the PHY changes.

10.2 wireless physical layer security

The following paragraphs introduce the most interesting features and limitations of
wireless PLS.

re-purposing existing information Wireless communication between devices
includes various characteristics, which are mostly not forwarded to upper layers. Phys-
ical properties of a signal come with a minimal overhead as they are already included

97



98 physical layer security for visible light communication

in a transmission. Thus, many solutions based on these properties are comparably
light-weight. However, most PHY properties are discarded on reception by commodity
hardware. Available information on the wireless PHY includes a highly environment
and location-dependent communication channel as well as hardware-specific variations.

information-theoretic security PLS can provide information-theoretic secu-
rity. While typical cryptographic solutions rely on computationally hard problems, infor-
mation-theoretic secure systems are built on assumptions that cannot be broken by at-
tackers with unlimited computation power. Since computation power increases over
time, users should think of encrypted data sent over the Internet as “confidential for
the next 20 years”. The Vernam One-Time Pad (OTP) prevents computational attacks
by using an encryption key that has the same length as the plaintext. Since the encryp-
tion key is a bitstream that is never reused and applied with eXclusive OR (XOR), it is
possible to calculate the encryption key from known plain- and cyphertext. However,
knowledge of the plaintext is useless to the attacker for decrypting further messages.

Even though the Vernam OTP is well-known and information-theoretic secure, prac-
tical systems still rely on encryption keys way shorter than the plaintext, which makes
them vulnerable to computational attacks. Considering the number of messages ex-
changed between current systems and the hardware limitations for consumer and IoT
devices, as well as initial key distribution, the Vernam OTP cannot be applied.

A model similar to the Vernam OTP but for wireless communication is Wyner’s wire-
tap channel [Wyn75]. It relies on the assumption that wireless channels between all
communicating devices are always slightly different, and this difference can be encoded
to transmit confidential information. It is more light-weight and suitable for IoT devices.

limitation to direct links PLS can only be used between devices with a phys-
ical link since wireless properties cannot be measured via multiple hops. This is suffi-
cient in many IoT environments with directly interconnected components. Some link
properties can be passed to and processed by upper layers—for example, the individual
wireless channel can be used to extract symmetric keys due to its reciprocity.

10.3 applying physical layer security to visible light communication

In Section 10.3.1, we re-introduce what VLC is from a more signal and implementation
focused point of view. In Section 10.3.2 we detail the most important properties on the
PHY that change in comparison to RF communication.

10.3.1 What is Visible Light Communication?

For a better understanding of how PLS can be applied to VLC, we need to define VLC
and its applications.

visible light transmissions In VLC systems, data is modulated on visible light
that is emitted by common illumination sources. Being dimmed below eye sensitiv-
ity [RRL12], VLC becomes typically invisible for the human eye. Hardware require-
ments on transceivers are low: common Light-Emitting Diodes (LEDs) facilitate data



10.3 applying physical layer security to visible light communication 99

transmission, and receivers use Photo Diodes (PDs) or simple camera sensors. With
optical propagation characteristics and a large spectrum of available bandwidth, VLC
promises to overcome significant bottlenecks in future wireless applications and the IoT,
as for example aircraft cabin communication, location-based services, and health moni-
toring [TC14].

visible light implementations VLC concepts fundamentally differ from those
of RF. Ideally, VLC uses off-the-shelf light sources that simultaneously illuminate the
environment [Sch+14]. Even a standard smartphone display and camera sensor can be
leveraged for data transmission, not perceivable by human eyes [Li+15]. In the following,
we outline the aspects that need to be considered when adopting wireless communica-
tion concepts from legacy Wi-Fi to VLC.

10.3.2 Visible Light Properties Compared to Radio Frequency Properties

Communication paradigms differ when comparing RF communication to VLC, which
also influences security considerations. Many existing RF PLS concepts can be adapted
to VLC, such as securing the communication by leveraging radio wave propagation char-
acteristics to achieve information-theoretic security [Wyn75]. However, optical propaga-
tion is fundamentally different from radio waves: light is highly susceptible to reflections
and blockage and less sensitive to scattering or diffraction. Properties of light are highly
interesting to PLS, i.e., the blockage can be a security advantage, polarization is easier
to change, and users are well aware of light propagation. Though, also the attacker
capabilities change, leading to pitfalls in securing VLC.

In the following, we will discuss the most different physical aspects when compared
to RF communication, which are coherence, intensity, reciprocity, polarization, and prop-
agation.

no coherence Coherence is an essential characteristic of light that limits the achiev-
able throughput. The coherence time τc of a light wave determines the duration of corre-
lated phase fluctuations. As light propagates with speed-of-light c, the coherence length
lc = cτc defines the distance in which meaningful phase information can be retrieved
and should be longer than the optical path. However, the typical coherence length of
LEDs is 20µm, which is too short in practice [STS91]. Hence, phase information cannot
be used for data modulation in VLC.

intensity-based modulation schemes Without the possibility of modulating
the phase, amplitude only Intensity Modulation (IM) is required for data transmission
in VLC. Averaging the light intensity as a square magnitude over a time longer than one
optical period [STS91] achieves only positive values, which can be leveraged for encod-
ing. On-Off Keying (OOK) encodes bits by switching a light source on and off. By alter-
nating the light amplitude in the baseband over time, sine waves with a Direct Current
Offset (DCO) can be represented. In comparison to legacy Wi-Fi, this achieves a lower
spectral efficiency but allows for modified versions of Orthogonal Frequency-Division
Multiplexing (OFDM). The missing phase information also implies that Channel State



100 physical layer security for visible light communication

Information (CSI) between transmitter and receiver, typically denoted as channel matrix
H, only contains real intensities without complex phase shifts.

missing reciprocity RF systems use the same antenna for reception and trans-
mission. Achieving a similar behavior in both communication directions, this results in
channel reciprocity, meaning that one channel becomes the inverse of the other channel.
In VLC, the channels are spatially separated: the LEDs for transmission and the PDs
for reception are located in different positions. These two unidirectional channels are
independent of each other and hence suppress channel reciprocity.

polarization Polarization filters are easy to implement for light and already in-
tegrated into monitor screens and camera optics. Using filters at transceivers allows
separating specific light components. With unmatched polarization, however, filters
cause high attenuation of light intensity.

propagation Visible light has different propagation properties compared to RF in
the 2.4GHz range. Light does not penetrate most obstacles; it typically propagates
throughout a single room over multiple reflections. Eavesdroppers can exploit these
reflections or gaps between obstacles, as shown in the previous chapter; blockage alone
should not be considered as a security feature.

10.4 security mechanisms and aspects

In this section, we reference related work on VLC security for the goals confidentiality
(Section 10.4.1), localization (Section 10.4.2), and integrity (Section 10.4.3). We categorize
visible light security approaches and relate them to existing legacy Wi-Fi PLS solutions.

10.4.1 Confidentiality

The majority of existing work on PLS related to VLC focuses on achieving confidentiality.
Confidential information is missed by unintended receivers on the PHY, for example,
due to the eavesdropper’s location or artificial noise.

Alice (TX)

Eve (RX)

Bob (RX)

HAB

HAE

Figure 35: Wyner’s wiretap channel (simplified).



10.4 security mechanisms and aspects 101

wyner’s wiretap channel In Wyner’s wiretap channel, Alice and Bob commu-
nicate with each other while Eve attempts to eavesdrop, as shown in Figure 35. The
channels HAB and HAE have different CSIs, such that Eve misses information and Bob
achieves a secrecy capacity. Based on Wyner’s wiretap channel, various work for estab-
lishing confidentiality on VLC links has been published.

The two confidentiality schemes by Zhang et al. assume that Eve misses information
displayed on screens [Zha+14]. In their first approach, two smartphone screens facing
each other at 0.1m distance and a view angle of 2° cannot be eavesdropped if a single
location attacker is more than 1.4m away. Their second approach adds further security
as the user has to actively rotate the screen within a certain angle, which further limits
possible eavesdropping positions.

Another wiretap channel implementation is Orthogonal Blinding (OB), where Zero-
Forcing Beamforming (ZFBF) is used to transmit data towards Bob and noise in all
other directions, such that eavesdroppers at unknown positions have a bad Signal-to-
Noise Ratio (SNR) [ALK12]. For ZFBF a zero-forcing filter, which is the pseudo-inverse
channel, is applied by Alice before sending data to Bob. HAB and HAB

−1 cancel out
each other, and Bob receives data without channel distortions. This effect does not cancel
out at Eve’s position, and her data is affected by normal channel distortions:[︄

RXBob

RXEve

]︄
=

[︄
HAB

HAE

]︄ [︂
HAB

]︂−1 [︂
Data

]︂
(1)

For OB, this concept is extended with a transmitter having two antennas, one transmit-
ting the same signal as above, and another transmitting noise to an orthogonal channel.
This noise does not harm Bob, but Eve receives a higher amount of noise:[︄

RXBob

RXEve

]︄
=

[︄
HAB

HAE

]︄[︄
HAB

⊥ HAB

]︄−1 [︄
Data

Noise

]︄
(2)

The dimension of the channels increases with the number of antennas, but the overall
system is similar. Mostafa and Lampe first introduced an OB variant for VLC by using
zero-forcing and artificial noise [ML14]. They extend their work to a massive array with
thousands of LEDs [ML15]. Zaid et al. improve the model to achieve a higher secrecy
rate [Zai+15]. Le Minh et al. combine multiple CSI matrices to one filter, which makes
it harder to guess [LM+14].

friendly jamming A friendly jammer sends a pseudo-random signal only known
by legitimate receivers, as illustrated in Figure 36. Eavesdroppers cannot subtract the
jamming signal from the data, resulting in a poor SNR. In contrast to ZFBF, the channel
HAB is not required to be known or measured by trusted parties. Confidential communi-
cation only requires sufficient coverage by the friendly jammer. As a side effect, parties
without knowledge of the pseudo-random jamming signal also cannot communicate.

Chow et al. create a trusted communication zone with four data and four jamming
LEDs, which emit random binary signals [Cho+15]. As a proof of concept, the reception
outside a trusted communication zone is compared, which shows that jammers can
restrict the zone.



102 physical layer security for visible light communication

key-based encryption In RF PLS, it is possible to derive symmetric encryption
keys based on channel reciprocity [Jan+09]. There is no reciprocal channel in VLC, as
PDs are receive only and LEDs are transmit only. However, it is possible to broadcast
pre-existing encryption keys with VLC.

Okuda et al. build a system that regularly changes standard Wi-Fi keys and broad-
casts key updates using VLC [Oku+11]. Ho, Duan, and Chen propose a central instance
continuously streaming key material through VLC, which is used to secure Wi-Fi trans-
missions [HDC15]. Both approaches lower the effective Wi-Fi communication range to
that of VLC, as shown in Figure 37. While eavesdropping VLC is possible as previously
stated in Chapter 9, an eavesdropper is now required to be at a location where VLC and
Wi-Fi can be received. In most cases, VLC range is shorter than Wi-Fi range.

10.4.2 Localization and Authentication

Location information is a useful second authentication factor. In scenarios that require
physical presence, a location or distance proof can be included. For example, to unlock a
door with a key card, the key card should be next to the door and contain the correct key
material. Localization and authentication in VLC systems can be classified into systems
with and without data transmission, and systems that recognize or ignore multipath
effects.

localization by known patterns Gu et al. detect and compensate multipaths
in an OOK-based system [Gu+16]. Aminikashani, Gu, and Kavehrad perform position-
ing with high data throughput [AGK15]. They compare the positioning performance
of OFDM to OOK. Since OFDM is using more bandwidth and has a higher sampling
rate, more multipath effects can be detected, resulting in higher precision. Both papers
simulate empty rooms; multipaths would be less predictable in a real environment.

Kuo et al. propose a practical system locating smartphones with multiple LEDs at
known locations, transmitting one out of 16 tones [Kuo+14]. Their method is based on
optical Angle of Arrival (AoA) information and multiple optimizations, allowing for
additional data transmissions.

Alice (TX Data)

Jammer (TX Noise)

Bob (RX)

Figure 36: Friendly jamming.



10.5 attack scenarios 103

Bob (RX)

Wi-Fi Router

Eve (RX)

Key stream

Figure 37: Key streaming to reduce Wi-Fi range to VLC.

10.4.3 Integrity

In the following, solutions that enable integrity on the PHY are referenced. Note that
some of the previously mentioned confidentiality solutions also enable integrity. For
example, if a key is streamed via VLC to protect Wi-Fi confidentiality as in [HDC15],
injecting Wi-Fi signals without knowledge of that key is also impossible. Thus, only one
remaining approach is listed in the following.

integrity by polarization Javidi and Nomura implement an optical verification
system that adds a mask of 128× 128 linear polarization filters to a transmitted im-
age [JN00]. Normal cameras do not interpret polarization. Hence, unaware receivers
cannot recognize a pattern. The modified camera has a reference polarization mask, en-
abling a correlation to the encoding polarization mask, to check if the transmitted image
has the same polarization.

In addition to this specific optical verification scenario, polarization filters add another
degree of freedom to the system that could be used for message integrity verification or
encryption in general. This is the opposite effect of the missing phase information in
VLC.

10.5 attack scenarios

Attackers might hold more abilities than considered in the initial design phase of a PLS
mechanism. Even in a theoretically secure system, users might fail to use it properly
and thus violate security assumptions (Section 10.5.1). Especially PLS mechanisms that
rely on assumptions about the attacker’s hardware and other physical constraints might
break in a slightly different attack model, i.e., if the attacker has more sensitive PDs
than the intended receivers (Section 10.5.2). Moreover, attackers can exploit additional
information, such as partially known plaintexts (Section 10.5.3). Furthermore, active
attackers who tamper with ongoing transmissions are missing in many attack models
(Section 10.5.4). In the following, we categorize these attacker capabilities and describe
the corresponding threats.



104 physical layer security for visible light communication

10.5.1 User Failures

Many approaches assume a trusted zone within which users can eliminate or iden-
tify eavesdroppers. This trusted zone can be limited by certain view angles as well
as blockage by objects. If there are view angle variations introduced by users that are
hard to predict, the eavesdropper needs receivers at multiple locations to ensure recep-
tion [Zha+14]. Yet, users might fail at appropriately changing the angle. Just relying on
blockage without taking further actions can become an issue: light propagates through
windows and can be eavesdropped on by an invisible spy next door, as previously de-
scribed in Chapter 9. Building environments that are non-eavesdroppable is challenging
and not practical for everyday scenarios. Hence, we need to assume that users make mis-
takes in detecting eavesdroppers within a trusted zone.

10.5.2 Better Equipment

Related work often assumes that attackers have similar hardware as the intended re-
ceivers. However, eavesdroppers might invest in more advanced hardware to achieve a
sufficient SNR outside of a trusted zone. Additionally, multiple synchronized eavesdrop-
ping receivers can purge coding scheme effects [SLH14; Tip+13]. Therefore, we assume
an “arms race” between legitimate transceivers and eavesdroppers, which cannot be
won by either side—only an increase defense and attack efforts.

10.5.3 Additional Information

An attacker can include additional information sources that were not considered during
design. Such information can be but is not limited to: known or partially known plain-
text, the location of transceivers, and an estimation of the CSI. Note that the CSI entropy
in VLC systems is lower than in RF systems because the phase information is missing—
this is similar to the entropy reduction in legacy Wi-Fi systems if the signal strength is
considered only [Jan+09]. We, therefore, assume that attackers gain a context-specific
advantage over legitimate receivers by exploiting additional information sources.

10.5.4 Active Attackers

Active attackers can interfere with ongoing transmissions. By default, receivers adjust
to the strongest received signal and reject remaining information as noise. Hence, sig-
nals can be overridden by injecting a stronger signal. We assume transmissions can be
blocked or spoofed.

10.6 evaluation

In this section, we follow the structure from the previously introduced security mecha-
nisms in Section 10.4. We discuss attacks on confidentiality (Section 10.6.1), localization
(Section 10.6.2), and integrity (Section 10.6.3). We provide an overview of the attack
success in Section 10.6.4.



10.6 evaluation 105

10.6.1 Confidentiality

Many existing RF PLS attacks are not considered when designing visible light security.
We apply these attacks to the VLC domain and also introduce an optimized attack for
an OOK-based jamming scheme.

wyner’s wiretap channel The main problem of Wyner’s wiretap channel is the
unknown eavesdropper’s position. Certainly, the eavesdropper has at least a slightly
different channel. However, it remains unknown how different this channel is and how
much information the eavesdropper is missing in a practical setup. For example, the
view angle dependent approaches by Zhang et al. assume that the user properly per-
forms an angle variation [Zha+14]. Checking if an eavesdropper is nearby might not
be trivial in IoT environments. When manually changing the view angle to exclude
eavesdroppers with a limited set of receivers, the user needs to perform rotations cor-
rectly. User mistakes, i.e., failing in moving the screen in a secure manner, and unlimited
hardware resources are not considered. However, an eavesdropper armed to the teeth
might be more easily spotted by the user. Thus, the overall approach still features good
security.

As already shown in recent work for RF communication, approaches based on ZFBF
and OB are vulnerable to various attacks. An eavesdropper equipped with the same
quantity of antennas as the transmitter can perform a known-plaintext attack [SLH14].
Even though the visible light channel only contains light intensities and no phase in-
formation, the same aspects hold true for VLC. Solving Equation 2 by using partially
known plaintext reveals the unknown filter HAB that allows equalizing the OB. In noisy
environments, multiple rounds of training might be required to achieve good perfor-
mance. This attack affects the approaches from Mostafa and Lampe, Zaid et al., and
Le Minh et al. [ML14; Zai+15; LM+14]. Introducing a second channel as in [LM+14] still
results in a filter of the same dimensions and does not add further security. Increasing
the amount of transmitting LEDs as in [ML15]—by using cameras as arrays of thousands
of receivers—only increases the efforts to launch this attack but cannot fundamentally
prevent it.

friendly jamming Friendly jamming approaches are vulnerable to eavesdropping
with additional antennas, as shown in the setup depicted in Figure 38. An attacker can
place two antennas with equal distances towards a jammer, resulting in equal channels
HJE1

= HJE2
. However, the data channels become different: HDE1

̸= HDE2
. When

subtracting the signals received on both antennas, the attacker receives the following:

RXE1 − RXE2

= (HJE1
TXJ +HDE1

TXD) − (HJE2
TXJ +HDE2

TXD)

= (HDE1
−HDE2

)TXD

(3)

The original data can be reconstructed from the data signals with a small time and
amplitude offset. If the jammer has a synchronization sequence, one can even assume
known channels for oblivious antenna positions. This makes it possible to reconstruct
data despite the presence of a strong jamming signal, as shown in [Tip+13].



106 physical layer security for visible light communication

Alice (TX Data)

Jammer (TX Noise)

Bob (RX)

Eve (RX1) Eve (RX2)

Figure 38: Attack on friendly jamming.

Friendly jamming with OOK as in [Cho+15] causes a single PD to receive the follow-
ing intensity levels In:

RXE =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I0 if TXJam = 0 and TXData = 0

I1 if TXJam = 1 and TXData = 0

I2 if TXJam = 0 and TXData = 1

I3 if TXJam = 1 and TXData = 1

(4)

An eavesdropper can always separate the two intensity levels I0 and I3. If the distances
to the jammer or data source are different, I1 and I2 also become different for a single
PD eavesdropper. This means that for OOK friendly jamming attacks, a single PD is
sufficient, which is even worse than in the original attack on friendly jamming [Tip+13],
and corresponds to the proposed “secure” scheme in Figure 36.

key-based encryption If the system proposed by Ho, Duan, and Chen is stream-
ing a key with the same length as the plaintext, this is similar to the Vernam OTP and
proven information-theoretically secure [HDC15; Ver19]. Even though the Wi-Fi com-
munication range is lowered to the range of VLC, one should have eavesdroppers in
mind that are still in range but not detected by users or extend their range by using bet-
ter hardware. Nevertheless, considering only the information-theoretically secure range
restriction, this is an interesting and secure VLC building block.

10.6.2 Localization and Authentication

A general problem in localization are active attackers. As soon as they obtain the under-
lying secret information identifying a location, they can likely spoof arbitrary locations.



10.6 evaluation 107

localization by known patterns Systems transmitting known illumination
patterns require honest users and non-modified location beacons. Otherwise, active
attackers knowing which illumination pattern belongs to which location can reply in-
correct location information and even install their own transmitters to provide false
locations. This sketch is similar to the Skyhook attack by Tippenhauer et al., a Wi-
Fi localization system relying on publicly available access points and their location
database [Tip+08]. Fake access points can impersonate access points providing location
information.

localization by random patterns Random illumination patterns are more se-
cure against impersonation. Attackers are required to capture and reply to such a ran-
dom pattern. While attackers located slightly outside the reception area could improve
their reception with better hardware, this only means that some location accuracy is lost.
The located device then needs to send the received pattern back to the central random
pattern instance to get its actual location, adding more dependencies to the system. To
the best of our knowledge, such a system has not been implemented yet for VLC.

Distance bounding is also a randomness based solution, with honest entities proving
their minimum distance by challenge-response [HK05]. Challenges are random, and
responses depend on the key of a user. Thus, the distance proof is associated with an
identity. The challenge-response round-trip time determines the distance between the
location prover and verifier. Distance bounding can also be used in the VLC domain. In
contrast to random illumination patterns, only users with a previously established key
can proof their location. While this reduces attack vectors, not all application scenarios
support previously established keys.

10.6.3 Integrity

Since integrity and confidentiality can be achieved similarly on the PHY, similar attack
vectors exist for both. Hence, we only discuss attacks on polarization-based approaches
in the following.

integrity by polarization Approaches based on polarization appear promising,
such as adding polarization information [JN00]. In general, polarization variations are
harder to eavesdrop than intensity variations. Moreover, polarization can change or get
lost on NLOS paths, because reflections—even on plane surfaces in incidence direction—
depolarize except for horizontal and vertical linear polarization. Circular polarization
might change into elliptic polarization. Besides, lateral scattering on rough surfaces re-
duces the polarization factor, which is very likely to appear in real environments [BS87].

Polarization can be eavesdropped with the more advanced hardware setup shown in
Figure 39. Linear polarization can be in the range from 0–90°, and the better the match
between the light polarization and filter polarization, the more light will pass. To detect
polarization in a single polarized light source, an attacker requires one receiver with a
polarization filter at 0° and another at 90°. Linear polarization angles in between will
cause both filters to receive a reduced amount of light, which can be mapped to the angle.
In case that not only the polarization but also the brightness is varied, an additional
PD is required to compensate for the brightness changes that are not introduced by



108 physical layer security for visible light communication

polarization. This polarization detection setup requires multiple polarization filters and
PDs, but it is not too costly for an attacker.

After eavesdropping the polarization, an active attacker can block the original signal
and spoof a signal containing the correct polarization. The attacker needs to adjust a
polarization filter to the same polarization as Alice. Eve introduces a small time delay,
depending on her processing time, as well as her polarization filter adjustment speed.
Either way, delays could also be introduced by a larger distance between Alice and Bob
or other signal processing operations, and thus are hard to detect.

10.6.4 Attack Robustness

We summarize the attack robustness in Table 6. Three attack robustness categories cat-
egorize the vulnerability of a VLC system. Already one successful attacker type makes
an approach insecure. Attackers having better equipment can break most approaches,
or at least lower their security to some extent, depending on a hardware competition

Alice (TX)

Bob (RX)

Eve (RX1) Eve (RX2) Eve (RX3)

Eve (TX)

Random
polarization

Known
polarization

Random
polarization

Figure 39: Eavesdropping and spoofing the polarization.



10.7 conclusion 109

between attack and defense. Attackers having additional information, such as plaintext
or a location database, can break the entire system design. Active attackers often need
complicated hardware installations and operate within more constraints, but also can be
very successful. As long as security does not depend on user interaction, it is not prone
to user failures.

Table 6: Security against attackers.

C
:W

ir
et

ap
ch

an
ne

l

C
:J

am
m

in
g

C
:K

ey
s

A
:K

no
w

n
pa

tt
er

ns

A
:R

an
do

m
pa

tt
er

ns

I:
Po

la
ri

za
ti

on

User failures × ✓ ~ ✓ ✓ ✓

Better equipment × × ~ ~ ~ ×
Additional information × ✓ ✓ × ✓ ✓

Active attackers ✓ ✓ ✓ × ✓ ×

Legend
× Attack available.
~ Attack possible, but not completely breaking the mechanism.
✓ Attacker not successful in this setting.

10.7 conclusion

This chapter shows that the actual security for existing VLC PLS approaches needs to be
reconsidered. Simply adapting PLS mechanisms from RF technologies for VLC is insuf-
ficient. Changing propagation characteristics and different hardware designs must be
considered to avoid opening new vulnerabilities. Our attack model provides an intuition
on how to design secure visible light applications on the PHY. In our evaluation, we out-
line VLC specific attacks, such as anti-jamming in OOK systems and eavesdropping on
polarized light. With this contribution, we aim to raise the awareness of vulnerabilities
in VLC systems and support future work in designing stronger security solutions.

my contribution

This chapter is a survey of discussions on how to properly build security into VLC on
the PHY. While our result was that VLC is not very suitable to build PLS despite its
short transmission range, the reasoning for this is still valuable and interesting. Existing
research on that topic mainly followed the approach to switch the PHY from RF to VLC
and keep everything else unchanged. With the PHY changes introduced by VLC, this
leads to insecure solutions. My main contribution to this part was to survey all existing



110 physical layer security for visible light communication

related work to search for interesting or vulnerable approaches, as well as analyzing
their security.

Section 10.3 is adapted from [CSH16, Sec. 1–2]. Section 10.4 is based on [CSH16, Sec.
3]. Section 10.5 is adapted from [CSH16, Sec. 4]. Section 10.6 is based on [CSH16, Sec.
5]. Section 10.7 is based on [CSH16, Sec. 6]. All figures are re-drawn.



Part V

D I S C U S S I O N A N D C O N C L U S I O N S

We discuss the results and additional interesting aspects in Chapter 11. Fi-
nally, we conclude this work in Chapter 12.





11
D I S C U S S I O N A N D F U T U R E W O R K

In this section, we reflect on the implications of the findings of this thesis. We discuss
the future research directions that follow from our results. We apply the same structure
as in Chapter 1 to review our goals, approaches, and contributions.

11.1 public security awareness

acceptance of surveillance A topic out of the scope of this thesis is the psy-
chological aspect of users continuing using devices that are insecure and may enable
surveillance. There is a break-even point where devices become that useful and conve-
nient that users no longer care about their privacy. The smartphones everybody carries
around nowadays allow telecommunication providers tracking movements continuously.
While it would be possible to apply k-anonymity to those datasets [GF15] or disable lo-
cation logging completely, legislation requires telecommunication providers to log pre-
cise information and share it with law enforcement [BM18]. Nonetheless, most people
choose to use a smartphone and always be connected. The continually growing Inter-
net of Things (IoT) market also shows that users prioritize the functionality, e.g., their
vacuum cleaners and fitness trackers, over their privacy. Giving up privacy towards an
almost invisible party—the vendor and probably further governmental organizations—
has become the norm.

11.2 vendor support and fixes

testing methodology When we responsibly disclose issues to a company, this
happens quite late within the product’s development cycle. The product has likely
passed several internal test stages, but the details of these stay unknown to us external
testers. For us, it is often impossible to differentiate if a bug should have previously
been found internally, or if internal tests were not in place at all. During responsible
disclosure, we informally asked how security testing has been done within the company.
Answers vary but are interesting nonetheless: “We hired some nerd from Chaos Com-
puter Club (CCC) two years ago.”, “Red teaming is new to us, but we recently hired a
new team of three people.”, “We organized a hackathon and have an open bug bounty
program.”, or “We already had external professional penetration testers who took a look
at our product.”

These citations are anonymous on purpose, and also cover statements from companies
with whom we interacted but are not part of this thesis. A study considering factors as
company size, code complexity, bug severity, and security budget would be interesting.
Such a study would probably be easy to perform by companies that offer external pene-
tration tests, though they are usually bound to Non-Disclosure Agreements (NDAs).

Besides, we found that our testing capabilities are comparably advanced. For exam-
ple, due to bugs we uncovered with Frankenstein [Rug19], we know that Broadcom and

113



114 discussion and future work

Cypress are limited to over-the-air testing and do not have an emulation-based fuzzing
toolchain. Based on our findings and knowledge, it would be possible to develop further
automated testing frameworks for connected products and collaborate with industry to
get these into their device testing process.

research tools InternalBlue, our Bluetooth research tool, is under active develop-
ment. For a tool with such a narrow use case, it has surprisingly many clones and other
Github activities [MC19]. InternalBlue fills a gap in Bluetooth testing tools and is used by
a technical audience.

The initial version of InternalBlue was used to demonstrate the Key Negotiation of
Bluetooth (KNOB) attack, as there were no other affordable and functional tools avail-
able to test this attack in practice [ATR19]. It is important to note that InternalBlue is not
capable of working as Machine-in-the-Middle (MITM). Instead of attacking an ongoing
communication between two other devices, it enables altering traffic on a device that
is legitimately involved in information exchange. Thus, it can only be used to test if
a device, which is currently connected to a test device, is vulnerable to the KNOB or
Elliptic Curve Diffie-Hellman (ECDH) fixed coordinate attacks [Eli18] but not to carry
them out on active connections. We published Proof of Concepts (PoCs) to test for these
vulnerabilities without endangering any users, and we know that these tests are used
by industry.

As future work, we aim at integrating InternalBlue and Frankenstein to provide an even
more powerful Bluetooth testing toolchain. This can be expanded on the host side as
well as for over-the-air testing. For example, as of now, InternalBlue supports testing
of Broadcom chips on Android, Linux, macOS, and iOS devices. With Frankenstein, it
can be used in reverse direction to test these operating systems’ host implementations.
Moreover, Frankenstein might be attachable to a Software-Defined Radio (SDR) for over-
the-air testing with a fully controllable Bluetooth stack.

company structures and responsibilities Acquisitions and outsourcing can
lead to severe bugs and low-quality code maintenance. Mature products require proper
documentation and experienced developers. However, this kind of knowledge can get
lost during acquisitions, or is never established when development is outsourced. The
decision of acquisition or outsourcing does not fit into any of the phases in the life cycle.
This can happen at any point in time and severely break the quality and the security of
a product.

One example for acquisitions is Broadcom, who sold their IoT related Bluetooth branch
to Cypress in 2016 [Cyp16]. As of now, in late 2019, Cypress is in the process of acquisition
by Infineon [Inf19]. Cypress has at least two different Bluetooth codebases, which are
the ones acquired from Broadcom, as well as their own Bluetooth Low Energy (BLE)
only series, which is shipped in low-power IoT devices. Infineon was at least shipping
Bluetooth chips in the past [Inf03], but less successful. Thus, there will be two or three
technically different Bluetooth stacks within one company that have to be maintained.
In practice, this leads to bugs that should be found during initial testing of a device but
are missed. For example, CVE-2019-18614 is a heap overflow that prevents a significant
part of classic Bluetooth from working at all on the CYW20735 evaluation board.



11.3 user support and fixes 115

Outsourcing can lead to even worse problems. During responsible disclosure with
one of the Bluetooth finder vendors, we uncovered that their app was violating their EU
General Data Protection Regulation (GDPR) statements: they based those statements
on their observations of the app, as they did not have the source code for it. This
uncontrollable app then connected to their server infrastructure. They were aware of
the general problem and already working on an internal app rewrite to gain control
over the ecosystem they are running.

A recent study surveyed factors that led to security misconfigurations [Die+18]. The
study considers the operator’s perspective and human factors. It investigated root
causes for unfixed known issues, and finds that sufficient structural and procedural mit-
igations already exist but often are not in place in practice. Based on their results, they
propose six immediate action items, which include documentation, clear responsibilities,
and processes and procedures. Further surveys on human and operator factors would
be exciting, for example: Do employees think that product quality was maintained dur-
ing and after an acquisition? Does a company’s website list a security contact? Does
this security contact answer if confronted with a plausible (real or fake) responsible dis-
closure request? Such questions could be answered by asking employees directly or by
testing their responsible disclosure process.

11.3 user support and fixes

replacing commercial apps Pebble launched as a Kickstarter project to provide a
smartwatch that does not depend on an external, commercial ecosystem. In February
2017, Fitbit acquired Pebble and merged existing devices into their ecosystem [Hea17].
Users who bought a Pebble smartwatch for their privacy started sharing their data with
Fitbit. In November 2019, Google acquired Fitbit [Ost19]. Users who entrusted Fitbit with
their health data now have to share this data with Google instead. As Google also owns
a lot of other data, they could now correlate fitness records with further information
about the users, even retrospectively. Fitbit and Google claim that they will not merge
this data—however, this would be technically feasible. This example shows that it is
advantageous for users to not share their data with any vendor, despite the burden of
not using the officially supported app.

Thus, an open research question remains on how to develop alternate IoT apps that
store information locally or on trusted devices [Dat19], and how to encourage users to
use these apps. Given that commercial app developers have an interest in user data
and more resources, this problem can only be solved by highly motivated users and an
open-source community tackling this issue. New legislation that enforces IoT vendors
providing their data in open formats would support this process.

11.4 regulations , specifications , and standardization improvements

practical physical-layer security Considering their impact, contributions on
Physical-Layer Security (PLS) are twofold. On the one hand, PLS can solve fundamental
problems in secure device-to-device communication. On the other hand, most works
that propose PLS mechanisms are theoretical. To implement these, SDRs are required,
since off-the-shelf hardware typically does not decode the required wave properties.



116 discussion and future work

Once proven to work in practice, PLS mechanisms can be built into the hardware. This
enables light-weight security solutions in IoT environments.

This highly theoretical and otherwise SDR dependent deployment chain raises two
issues: First, theoretical PLS mechanisms are often not secure in practice. They are
proven to be secure but under simplistic assumptions, such as a single antenna attacker.
Second, even suitable PLS mechanisms require years to become readily available in
commodity hardware. The most wide-spread solution is distance bounding, but more
sophisticated mechanisms rarely seen in the wild.

In general, it is possible to implement PLS on off-the-shelf smartphones. Depending
on the wireless chip, binary patching can be used to send raw In-phase and Quadrature
(IQ) samples [Sch18]. Binary patching and Physical Layer (PHY) changes are tailored to
specific wireless chips. Transferring well-working PLS solutions into actual products re-
quires collaborations with industry and standardization institutes. In contrast, the audio
chips in smartphones can send and receive audio waves without binary patching [Put19].
Both technologies can be used to prototype practical PLS solutions and improve their
adaption in widely used products in the future.

individual solutions versus open standards The IoT ecosystem architec-
ture of various vendors is similar. Yet, they differ a lot in their concrete implementa-
tions. Hardware is highly customized for its specific purpose. On top, vendors often
use proprietary protocols. Internals are not publicly documented, and without exten-
sive analysis and reverse engineering, security issues remain undiscovered. An initial
comparison as part of a Master’s thesis within our group that includes our findings on
Fitbit and Neato found that penetration testing guides do not cover most of our specific
security issues [Kaz19].

We encourage vendors to use standard protocols. Obscurity of proprietary solutions
does not only complicate adversarial testing, but it also prevents vendors from using
standard tools for internal testing. In general, open standards experience better test-
ing by the public. An attacker who wants to break a specific system will invest the
time reverse engineering requires. Security by obscurity is not sufficient against such
attackers.

From a research perspective, widely applied and open protocols are the most relevant.
Scientific knowledge and industrial needs can be merged in this area. For example,
researchers can apply formal methods to proof protocol security [CS07]. The effort of
scientifically verifying protocols and their implementations only pays off for popular
standards but not individual solutions.

Many topics of this discussions implicate that vendors should be more open to the
scientific community, but science should also be more open to industry. Only this way,
relevant problems in actual products can be solved together. Moreover, governmental
organizations have responsibility in leading the market to produce privacy-providing,
secure products.



12
C O N C L U S I O N S

In this thesis, we analyzed various security aspects throughout a product’s life cycle
of Internet of Things (IoT) devices. We tested the security of recent IoT devices after
their release to the public, enhanced patching technologies for end-of-life products, and
checked experimentally if claims on upcoming technologies hold.

Part i introduced the product life cycle and challenges associated with it.
In Part ii, we analyzed multiple complex IoT ecosystems regarding their architecture

and security. Their technology stacks differ a lot, despite having many goals and com-
munication paradigms in common. Because of their common architecture, similar attack
models apply. In general, IoT vendors underestimate the damage that can be done by
modified or copied devices. Thus, attackers who successfully mimic any component
in an ecosystem are potent. For example, information stored on Vorwerk/Neato vacuum
cleaning robots enables attackers access to the cloud infrastructure and spawning new
devices. At least, Fitbit limits this damage to individual devices with device-specific
keys. Our results show that trust assumptions made during the initial design of a prod-
uct matter a lot—trust defines the impact of a single component attack on the whole
ecosystem, as well as the complexity of bugfixes in production.

When a vendor decides to not patch certain bugs, binary patching enables modifica-
tion of firmware without having its source code. This technique becomes interesting
once a product reaches the end of life or if the users are interested in features that the
vendor will not release. With proper reverse engineering efforts, binary patching turns
closed-source lower-level implementations almost into open-source projects. These ef-
forts are worth the results, as they allow device analysis and integrating functionality
into those devices that are not available on the market. In Part iii, we applied binary
patching in two very different systems, specifically, Fitbit fitness trackers and Broadcom
Bluetooth chips. We extended the Fitbit fitness trackers to expose their raw accelerom-
eter readings. Moreover, we are the first to make Bluetooth accessible on commodity
hardware through binary patching on both, classic Bluetooth and Bluetooth Low Energy
(BLE). For Bluetooth, we demonstrated that binary patching could be used for security
analysis of the firmware itself and of remote devices. External researchers already made
use of our tools, and we already used them to analyze and increase BLE connection
reliability.

While binary patching can fix end-of-life products, security can already be enhanced
before there is any concrete product. Security mechanisms can be put in place in
Physical Layer (PHY) specifications, as shown in Part iv. As new PHY technologies
emerge, their different properties change what can be realized with Physical-Layer Secu-
rity (PLS). However, most implementations fail in practice and do not consider realistic
attack scenarios. We have experimentally demonstrated that Visible Light Communica-
tion (VLC) is still susceptible to eavesdropping, despite being blocked by many objects.
Moreover, VLC is less suitable for most traditional PLS approaches because the wave-
form does not contain any phase information.

117



118 conclusions

When designing an ecosystem, security should be considered in all phases of the
product’s life cycle. Proper security requires a full-stack approach, going from the hard-
ware itself up to servers and applications, and our findings cover all these aspects. Our
results and following responsible disclosure had direct impact on the security of various
popular products on the market.



B I B L I O G R A P H Y

[Spö+20] Michael Spörk, Jiska Classen, Carlo Alberto Boano, Matthias Hollick, and
Kay Römer. “Improving the Reliability of Bluetooth Low Energy Connec-
tions.” In: International Conference on Embedded Wireless Systems and Net-
works (EWSN). 2020.

[Ada19] Adafruit. Bluefruit LE Sniffer—Bluetooth Low Energy (BLE 4.0)—nRF51822.
2019. url: https://www.adafruit.com/product/2269.

[And19a] Android Open Source Project. Android Security Bulletin—May 2019. May
2019. url: https://source.android.com/security/bulletin/2019-05-
01.

[And19b] Android Open Source Project. Hearing Aid Audio Support Using Bluetooth
LE. 2019. url: https://source.android.com/devices/bluetooth/asha.

[Ang19] Hugues Anguelkov. Reverse-engineering Broadcom Wireless Chipsets. Quark-
slab, 2019. url: https://blog.quarkslab.com/reverse-engineering-
broadcom-wireless-chipsets.html.

[ATR19] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen. “The
KNOB is Broken: Exploiting Low Entropy in the Encryption Key Ne-
gotiation Of Bluetooth BR/EDR.” In: 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA: USENIX Association, Aug. 2019.
isbn: 978-1-939133-06-9. url: https : / / www . usenix . org / conference /

usenixsecurity19/presentation/antonioli.

[App19a] Apple. About the security content of iOS 13. 2019. url: https://support.
apple.com/en-us/HT210606.

[App19b] Apple. About the security content of macOS Mojave 10.14.6, Security Update
2019-004 High Sierra, Security Update 2019-004 Sierra. July 2019. url: https:
//support.apple.com/en-us/HT210348.

[Blu19a] Bluetooth SIG. Bluetooth Core Specification 5.1. Jan. 2019. url: https://www.
bluetooth.com/specifications/bluetooth-core-specification.

[Blu19b] Bluetooth SIG. GATT Services. 2019. url: https://www.bluetooth.com/
specifications/gatt/services/.

[Blu19c] Bluetooth SIG. The Link Manager Version Parameter. Bluetooth, 2019. url:
https://www.bluetooth.com/specifications/assigned-numbers/link-

manager.

[Bra19] Mathias Brandt. Statistik der Woche: Wer für DSGVO-Verstöße zahlte. 2019.
url: https://www.heise.de/tr/artikel/Statistik-der-Woche-Wer-
fuer-DSGVO-Verstoesse-zahlte-4601473.html.

[CCC19] CCC Event Blog. 36C3 content teams running full steam. 2019. url: https:
//events.ccc.de/2019/10/29/36c3- content- teams- running- full-

steam/.

119

https://www.adafruit.com/product/2269
https://source.android.com/security/bulletin/2019-05-01
https://source.android.com/security/bulletin/2019-05-01
https://source.android.com/devices/bluetooth/asha
https://blog.quarkslab.com/reverse-engineering-broadcom-wireless-chipsets.html
https://blog.quarkslab.com/reverse-engineering-broadcom-wireless-chipsets.html
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://support.apple.com/en-us/HT210606
https://support.apple.com/en-us/HT210606
https://support.apple.com/en-us/HT210348
https://support.apple.com/en-us/HT210348
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/gatt/services/
https://www.bluetooth.com/specifications/gatt/services/
https://www.bluetooth.com/specifications/assigned-numbers/link-manager
https://www.bluetooth.com/specifications/assigned-numbers/link-manager
https://www.heise.de/tr/artikel/Statistik-der-Woche-Wer-fuer-DSGVO-Verstoesse-zahlte-4601473.html
https://www.heise.de/tr/artikel/Statistik-der-Woche-Wer-fuer-DSGVO-Verstoesse-zahlte-4601473.html
https://events.ccc.de/2019/10/29/36c3-content-teams-running-full-steam/
https://events.ccc.de/2019/10/29/36c3-content-teams-running-full-steam/
https://events.ccc.de/2019/10/29/36c3-content-teams-running-full-steam/


120 bibliography

[Cla19a] Jiska Classen. All Wireless Communication Stacks are Equally Broken. Leipzig:
36. Chaos Communication Congress, 2019.

[Cla19b] Jiska Classen. Bluetooth H4 Broadcom Wireshark plugin from the InternalBlue
project. https://github.com/seemoo-lab/h4bcm_wireshark_dissector.
2019.

[Cla19c] Jiska Classen. Vacuums in the Cloud. Karlsruhe: OWASP, 2019.

[CE19] Jiska Classen and Johannes Eger. Smart Vacuum Cleaners as Remote Wiretap-
ping Devices. Wien: Easterhegg, 2019. url: https://media.ccc.de/v/eh19-
157-smart-vacuum-cleaners-as-remote-wiretapping-devices.

[CH19] Jiska Classen and Matthias Hollick. “Inside Job: Diagnosing Bluetooth
Lower Layers Using Off-the-Shelf Devices.” In: 12th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec). Replicability
label. 2019. doi: 10.1145/3317549.3319727. Part of this thesis.

[CM19a] Jiska Classen and Dennis Mantz. Bluetooth, Does it Spark Joy? Heidelberg:
TROOPERS, 2019. url: https://www.troopers.de/troopers19/agenda/
smsm3l/.

[CM19b] Jiska Classen and Dennis Mantz. Playing with Bluetooth. Darmstadt: MRMCD,
2019. url: https://media.ccc.de/v/2019-185-playing-with-bluetooth.

[CM19c] Jiska Classen and Dennis Mantz. Reversing and Exploiting Broadcom Blue-
tooth. Montreal: REcon, 2019. url: https://cfp.recon.cx/reconmtl2019/
talk/EQTRGU/.

[CS19] Jiska Classen and Kristoffer Schneider. Nexmon for Bluetooth. https://
github.com/seemoo-lab/nexmon/tree/bluetooth-wip. 2019.

[Cox19] Kate Cox. Equifax to pay USD 575M for data breach, promises to protect data
next time. 2019. url: https://arstechnica.com/tech-policy/2019/07/
equifax-to-pay-575m-for-data-breach-promises-to-protect-data-

next-time/.

[Dam19] Damien Cauquil. Bluetooth Low Energy Swiss-army knife. https://github.
com/virtualabs/btlejack. 2019.

[Dat19] Databox Project. EPSRC Project on Privacy-Aware Personal Data Platform.
2019. url: https://www.databoxproject.uk.

[Dul19] Thomas Dullien. Rashomon of disclosure. 2019. url: http://addxorrol.
blogspot.com/2019/08/rashomon-of-disclosure.html.

[Dwo19] Patrick Dworski. “A Study on Proprietary Communication Protocols Used
in TETRA Hardware Components.” Supervised by Jiska Classen. Bachelor
thesis. TU Darmstadt, 2019.

[Ege19] Johannes Eger. “Analyzing Firmware and Cloud Security of a Premium
IoT Ecosystem.” Supervised by Fabian Ullrich and Jiska Classen. Master
thesis. TU Darmstadt, 2019.

[Eur19] European Telecommunications Standards Institute. CYBER; Cyber Security
for Consumer Internet of Things; ETSI TS 103 645 V1.1.1. 2019.

https://github.com/seemoo-lab/h4bcm_wireshark_dissector
https://media.ccc.de/v/eh19-157-smart-vacuum-cleaners-as-remote-wiretapping-devices
https://media.ccc.de/v/eh19-157-smart-vacuum-cleaners-as-remote-wiretapping-devices
https://doi.org/10.1145/3317549.3319727
https://www.troopers.de/troopers19/agenda/smsm3l/
https://www.troopers.de/troopers19/agenda/smsm3l/
https://media.ccc.de/v/2019-185-playing-with-bluetooth
https://cfp.recon.cx/reconmtl2019/talk/EQTRGU/
https://cfp.recon.cx/reconmtl2019/talk/EQTRGU/
https://github.com/seemoo-lab/nexmon/tree/bluetooth-wip
https://github.com/seemoo-lab/nexmon/tree/bluetooth-wip
https://arstechnica.com/tech-policy/2019/07/equifax-to-pay-575m-for-data-breach-promises-to-protect-data-next-time/
https://arstechnica.com/tech-policy/2019/07/equifax-to-pay-575m-for-data-breach-promises-to-protect-data-next-time/
https://arstechnica.com/tech-policy/2019/07/equifax-to-pay-575m-for-data-breach-promises-to-protect-data-next-time/
https://github.com/virtualabs/btlejack
https://github.com/virtualabs/btlejack
https://www.databoxproject.uk
http://addxorrol.blogspot.com/2019/08/rashomon-of-disclosure.html
http://addxorrol.blogspot.com/2019/08/rashomon-of-disclosure.html


bibliography 121

[Exp19] Express Logic, Inc. ThreadX G4.0c Documentation. 2019. url: http://www.
ece.ualberta.ca/~cmpe490/documents/ghs/405/threadxug_g40c.pdf.

[Fit19a] Fitbit. Fitbit Sensors API. https://dev.fitbit.com/reference/device-
api/sensors/. 2019.

[Fit19b] Fitbit. Q2’19 Earning Summary. 2019.

[Gie19] Dennis Giese. “Security Analysis of the Xiaomi IoT Ecosystem.” Master
thesis. TU Darmstadt, 2019.

[GP19] Xiling Gong and Peter Pi. “Exploiting Qualcomm WLAN and Modem
Over The Air.” In: DEF CON 27. 2019. url: https://media.defcon.org/
DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Xiling-

Gong- Peter- Pi- Exploiting- Qualcomm- WLAN- and- Modem- Over- The-

Air.pdf.

[Gre19] Great Scott Gadgets. Ubertooth One—Your BLE Hacking Tool. 2019. url:
https://www.attify-store.com/products/ubertooth-one-your-ble-

hacking-tool.

[Gre19] Andy Greenberg. The Clever Cryptography Behind Apple’s ’Find My’ Feature.
WIRED, 2019. url: https://www.wired.com/story/apple- find- my-
cryptography-bluetooth/.

[Gro19] Carolin Gross. “A researcher’s guide to the Fitbit Ionic smartwatch.” Su-
pervised by Jiska Classen and Daniel Wegemer. Master thesis. TU Darm-
stadt, 2019.

[Inf19] Infineon. Infineon to acquire Cypress, strengthening and accelerating its path of
profitable growth. 2019. url: https://www.infineon.com/cms/en/about-
infineon/press/press-releases/2019/INFXX201906-074.html.

[Jis19] Jiska Classen and Daniel Wegemer. Fitbit Firmware Modifications. https:
//github.com/seemoo-lab/fitness-firmware. 2019.

[Kaz19] Philip Kazmeier. “Applicability of Penetration Testing Guides for the In-
ternet of Things.” Supervised by Max Maass and Fabian Ullrich. Master
thesis. TU Darmstadt, 2019.

[Kor19] Joxean Koret. Diaphora. 2019. url: https://github.com/joxeankoret/
diaphora.

[Lin19] Linux Kernel. linux/drivers/bluetooth/btbcm.c:btbcm_patchram. 2019.
url: https : / / github . com / torvalds / linux / blob / master / drivers /

bluetooth/btbcm.c#L108.

[MC19] Dennis Mantz and Jiska Classen. InternalBlue Broadcom Bluetooth Experi-
mentation Framework. https://github.com/seemoo- lab/internalblue.
2019.

[Man+19] Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias Hollick. “In-
ternalBlue - Bluetooth Binary Patching and Experimentation Framework.”
In: The 17th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys). 2019. doi: 10.1145/3307334.3326089. Part of this
thesis.

http://www.ece.ualberta.ca/~cmpe490/documents/ghs/405/threadxug_g40c.pdf
http://www.ece.ualberta.ca/~cmpe490/documents/ghs/405/threadxug_g40c.pdf
https://dev.fitbit.com/reference/device-api/sensors/
https://dev.fitbit.com/reference/device-api/sensors/
https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Xiling-Gong-Peter-Pi-Exploiting-Qualcomm-WLAN-and-Modem-Over-The-Air.pdf
https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Xiling-Gong-Peter-Pi-Exploiting-Qualcomm-WLAN-and-Modem-Over-The-Air.pdf
https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Xiling-Gong-Peter-Pi-Exploiting-Qualcomm-WLAN-and-Modem-Over-The-Air.pdf
https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Xiling-Gong-Peter-Pi-Exploiting-Qualcomm-WLAN-and-Modem-Over-The-Air.pdf
https://www.attify-store.com/products/ubertooth-one-your-ble-hacking-tool
https://www.attify-store.com/products/ubertooth-one-your-ble-hacking-tool
https://www.wired.com/story/apple-find-my-cryptography-bluetooth/
https://www.wired.com/story/apple-find-my-cryptography-bluetooth/
https://www.infineon.com/cms/en/about-infineon/press/press-releases/2019/INFXX201906-074.html
https://www.infineon.com/cms/en/about-infineon/press/press-releases/2019/INFXX201906-074.html
https://github.com/seemoo-lab/fitness-firmware
https://github.com/seemoo-lab/fitness-firmware
https://github.com/joxeankoret/diaphora
https://github.com/joxeankoret/diaphora
https://github.com/torvalds/linux/blob/master/drivers/bluetooth/btbcm.c#L108
https://github.com/torvalds/linux/blob/master/drivers/bluetooth/btbcm.c#L108
https://github.com/seemoo-lab/internalblue
https://doi.org/10.1145/3307334.3326089


122 bibliography

[May19] René Mayrhofer. Disclosing Proof-of-Concept (PoC) exploits for vulnerabilities:
A defender’s point of view. 2019. url: https://www.mayrhofer.eu.org/
post/vulnerability-disclosure-is-positive/.

[Mei+19] Richard Meister, Jiska Classen, Muhammad Saad Saud, Marcos Katz, and
Matthias Hollick. “Practical VLC to WiFi Handover Mechanisms.” In: Co-
Wireless. 2019.

[Mü19] Uwe Müller. “PowerPC Binary Patching and dissecting of TETRA Base
Station.” Supervised by Jiska Classen. Master thesis. TU Darmstadt, 2019.

[New19] Lily Hay Newman. You Can Jailbreak Your iPhone Again (But Maybe You
Shouldn’t)–Apple reintroduced a previously fixed bug in iOS 12.4, which has
led to a jailbreak revival. 2019. url: https://www.wired.com/story/ios-
jailbreak-new/.

[Nor19a] Nordic Semiconductor. nRF5 SDK Documentation. 2019. url: https://
developer.nordicsemi.com/nRF5_SDK/doc/.

[Nor19b] Nordic Semiconductor. nRF8001 Bluetooth Chip Product Specification. http:
//www.nordicsemi.com/eng/nordic/download_resource/17534/16/

6078997/2981. 2019.

[Ost19] Rick Osterloh. Helping more people with wearables: Google to acquire Fitbit.
Google, Nov. 2019. url: https : / / blog . google / products / hardware /

agreement-with-fitbit.

[Put19] Florentin Putz. “Secure Device Pairing Using Short-Range Acoustic Com-
munication.” Supervised by Flor Álvarez and Jiska Classen. Master thesis.
TU Darmstadt, 2019.

[QV19] Nguyen Anh Quynh and Dang Hoang Vu. Unicorn Engine. 2019. url:
https://github.com/unicorn-engine/unicorn.

[Rug19] Jan Ruge. “Dynamic Bluetooth Firmware Analysis.” Supervised by Jiska
Classen. Master thesis. TU Darmstadt, 2019.

[Sch19] Sabine Schiner. Hacker im Wohnzimmer - Wissenschaftler der TU Darmstadt
decken Schwachstellen bei Vorwerk-Saugroboter auf. 2019. url: https://www.
echo-online.de/panorama/wissenschaft/wissenschaft/wissenschaftler-

der-tu-darmstadt-decken-schwachstellen-bei-vorwerk-saugroboter-

auf_20434863.

[Sta19] Statista. Unit sales of the Apple iPhone worldwide from 2007 to 2018 (in mil-
lions). 2019. url: https : / / www . statista . com / statistics / 276306 /

global-apple-iphone-sales-since-fiscal-year-2007/.

[Ste19] Steffen Kreis, Johannes Riedel, Tobias Krichel, Jiska Classen. Fitbit Open
Source Android App. https://github.com/seemoo-lab/fitness-app. 2019.

[Sti19] Stiftung Warentest. Nur zwei Staubsauger-Roboter reinigen gut. 2019. url:
https://www.test.de/Saugroboter-im-Test-4806685-0/.

[Tro19] Kirsten Tromnau. Die Spione im eigenen Haus. 2019. url: https://www.swr.
de/swraktuell/radio/netzagent/Die-Spione-im-eigenen-Haus,av-

o1150171-100.html.

https://www.mayrhofer.eu.org/post/vulnerability-disclosure-is-positive/
https://www.mayrhofer.eu.org/post/vulnerability-disclosure-is-positive/
https://www.wired.com/story/ios-jailbreak-new/
https://www.wired.com/story/ios-jailbreak-new/
https://developer.nordicsemi.com/nRF5_SDK/doc/
https://developer.nordicsemi.com/nRF5_SDK/doc/
http://www.nordicsemi.com/eng/nordic/download_resource/17534/16/6078997/2981
http://www.nordicsemi.com/eng/nordic/download_resource/17534/16/6078997/2981
http://www.nordicsemi.com/eng/nordic/download_resource/17534/16/6078997/2981
https://blog.google/products/hardware/agreement-with-fitbit
https://blog.google/products/hardware/agreement-with-fitbit
https://github.com/unicorn-engine/unicorn
https://www.echo-online.de/panorama/wissenschaft/wissenschaft/wissenschaftler-der-tu-darmstadt-decken-schwachstellen-bei-vorwerk-saugroboter-auf_20434863
https://www.echo-online.de/panorama/wissenschaft/wissenschaft/wissenschaftler-der-tu-darmstadt-decken-schwachstellen-bei-vorwerk-saugroboter-auf_20434863
https://www.echo-online.de/panorama/wissenschaft/wissenschaft/wissenschaftler-der-tu-darmstadt-decken-schwachstellen-bei-vorwerk-saugroboter-auf_20434863
https://www.echo-online.de/panorama/wissenschaft/wissenschaft/wissenschaftler-der-tu-darmstadt-decken-schwachstellen-bei-vorwerk-saugroboter-auf_20434863
https://www.statista.com/statistics/276306/global-apple-iphone-sales-since-fiscal-year-2007/
https://www.statista.com/statistics/276306/global-apple-iphone-sales-since-fiscal-year-2007/
https://github.com/seemoo-lab/fitness-app
https://www.test.de/Saugroboter-im-Test-4806685-0/
https://www.swr.de/swraktuell/radio/netzagent/Die-Spione-im-eigenen-Haus,av-o1150171-100.html
https://www.swr.de/swraktuell/radio/netzagent/Die-Spione-im-eigenen-Haus,av-o1150171-100.html
https://www.swr.de/swraktuell/radio/netzagent/Die-Spione-im-eigenen-Haus,av-o1150171-100.html


bibliography 123

[UC19] Fabian Ullrich and Jiska Classen. Vacuum Cleaning Security—Pinky and the
Brain Edition. Las Vegas: DEF CON 27, 2019. url: https://www.defcon.
org/html/defcon-27/dc-27-speakers.html#jiska.

[Ull+19] Fabian Ullrich, Jiska Classen, Johannes Eger, and Matthias Hollick. “Vacu-
ums in the Cloud: Analyzing Security in a Hardened IoT Ecosystem.” In:
The 13th USENIX Workshop on Offensive Technologies (WOOT). 2019. Part of
this thesis.

[Vor19] Vorwerk. Vorwerk Unternehmenspräsentation 15. Oktober 2019. 2019. url:
https://corporate.vorwerk.de/fileadmin/data/master_corporate/

04_Presse/Publikationen/Vorwerk_Unternehmenspraesentation_2019.

pdf.

[WAR19] WARP. WARP Project. 2019. url: http://warpproject.org.

[Wal19] Tim Walter. “Fuzzing the Linux Bluetooth Stack.” Supervised by Jiska
Classen. Master thesis. TU Darmstadt, 2019.

[WGC19] Daniel Wegemer, Carolin Groß, and Jiska Classen. A Security Researchers
Guide into the Fitbit Ecosystem. Las Vegas: IoT Village at DEF CON 27, 2019.
url: https://www.iotvillage.org/.

[Wel+19] Max Weller, Jiska Classen, Fabian Ullrich, Erik Tews, and Matthias Hol-
lick. “Lost and Found: Stopping Bluetooth Finders from Leaking Private
Information.” In: Under submission. 2019. Part of this thesis.

[Zep19] Danny Zepeda. Here’s how long Apple supports older iPhone models—The
iPhone 5s got six years of yearly iOS updates before it was cut off. 2019. url:
https://www.imore.com/apples-continual-software-support-iphones-

major-reason-theyre-popular.

[Zer19] Zerodium. Our Exploit Acquisition Program. 2019. url: https://zerodium.
com/program.html.

[Zyn19] Zynamics. BinDiff. 2019. url: https://www.zynamics.com/bindiff.html.

[pan19] pancake. radare2. 2019. url: https://github.com/radare/radare2.

[BM18] Ulf Buermeyer and Andre Meister. Funkzellenabfrage: Die alltägliche Raster-
fahndung unserer Handydaten. Leipzig, 2018. url: https://media.ccc.de/
v/35c3-9972-funkzellenabfrage_die_alltagliche_rasterfahndung_

unserer_handydaten.

[Cla18a] Jiska Classen. Pinky & Brain are Taking Over the World with Vacuum Cleaners.
Darmstadt: MRMCD, 2018. url: https://media.ccc.de/v/2018-124-
pinky-brain-are-taking-over-the-world-with-vacuum-cleaners.

[Cla18b] Jiska Classen. Praktische IoT-Sicherheit am Beispiel von Wearables und Smart
Home. Frankfurt: Deka Bank, 2018.

[Cla18c] Jiska Classen. ma1lm4n.mp4. Leipzig: 35. Chaos Communication Congress,
2018. url: https://media.ccc.de/v/35c3-9566-lightning_talks_day_
2#t=219.

https://www.defcon.org/html/defcon-27/dc-27-speakers.html#jiska
https://www.defcon.org/html/defcon-27/dc-27-speakers.html#jiska
https://corporate.vorwerk.de/fileadmin/data/master_corporate/04_Presse/Publikationen/Vorwerk_Unternehmenspraesentation_2019.pdf
https://corporate.vorwerk.de/fileadmin/data/master_corporate/04_Presse/Publikationen/Vorwerk_Unternehmenspraesentation_2019.pdf
https://corporate.vorwerk.de/fileadmin/data/master_corporate/04_Presse/Publikationen/Vorwerk_Unternehmenspraesentation_2019.pdf
http://warpproject.org
https://www.iotvillage.org/
https://www.imore.com/apples-continual-software-support-iphones-major-reason-theyre-popular
https://www.imore.com/apples-continual-software-support-iphones-major-reason-theyre-popular
https://zerodium.com/program.html
https://zerodium.com/program.html
https://www.zynamics.com/bindiff.html
https://github.com/radare/radare2
https://media.ccc.de/v/35c3-9972-funkzellenabfrage_die_alltagliche_rasterfahndung_unserer_handydaten
https://media.ccc.de/v/35c3-9972-funkzellenabfrage_die_alltagliche_rasterfahndung_unserer_handydaten
https://media.ccc.de/v/35c3-9972-funkzellenabfrage_die_alltagliche_rasterfahndung_unserer_handydaten
https://media.ccc.de/v/2018-124-pinky-brain-are-taking-over-the-world-with-vacuum-cleaners
https://media.ccc.de/v/2018-124-pinky-brain-are-taking-over-the-world-with-vacuum-cleaners
https://media.ccc.de/v/35c3-9566-lightning_talks_day_2#t=219
https://media.ccc.de/v/35c3-9566-lightning_talks_day_2#t=219


124 bibliography

[CM18] Jiska Classen and Dennis Mantz. Dissecting Broadcom Bluetooth. Leipzig:
35. Chaos Communication Congress, 2018. url: https://media.ccc.de/
v/35c3-9498-dissecting_broadcom_bluetooth. Talk in a lecture hall
with 5000 seats and Bluetooth live demos.

[CW18a] Jiska Classen and Daniel Wegemer. Create your own Fitness Tracker Firmware.
Montreal: REcon, 2018. url: https://recon.cx/2018/montreal/schedule/
events/118.html.

[CW18b] Jiska Classen and Daniel Wegemer. Hacking your Fitbit. Würzburg: Easter-
hegg, 2018. url: https://media.ccc.de/v/TNYPFB.

[Cla+18a] Jiska Classen, Daniel Wegemer, Paul Patras, Tom Spink, and Matthias
Hollick. “Anatomy of a Vulnerable Fitness Tracking System: Dissecting
the Fitbit Cloud, App, and Firmware.” In: PACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies (IMWUT). 2018. Part of this thesis.

[Cla+18b] Jiska Classen, Daniel Wegemer, Paul Patras, Tom Spink, and Matthias Hol-
lick. Demo. Modified Fitbit Firmware: Reach your Daily Goals within Seconds.
Singapore, 2018. url: http://ubicomp.org/ubicomp2018/program/demo-
schedule.pdf.

[Die+18] Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias
Fiebig. “Investigating System Operators’ Perspective on Security Miscon-
figurations.” In: Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM. 2018, pp. 1272–1289.

[Eli18] Eli Biham and Lior Neumann. Breaking the Bluetooth Pairing: Fixed Coordi-
nate Invalid Curve Attack. 2018. url: http://www.cs.technion.ac.il/
~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf.

[Elv18] Simon Elvery. My devices are sending and receiving data every two seconds,
sometimes even when I sleep. 2018. url: https://www.abc.net.au/news/
2018-11-16/datalife-i-spied-on-my-phone-and-here-is-what-i-

found/10496450.

[Fit18] Fitbit. What’s changed in the latest Fitbit device update? 2018. url: https:
//help.fitbit.com/articles/en_US/Help_article/1372.

[Han18] Matthias Hanreich. “Security Analysis and Firmware Modification of Fit-
bit Fitness Trackers.” Supervised by Jiska Classen. Master thesis. TU Darm-
stadt, 2018.

[Hes18] Hessenschau. Kommunikation trotz Netzausfall. 2018. url: https://www.
hessenschau.de/tv- sendung/hessenschau--- ganze- sendung, video-

77832.html.

[Huk18] Wolfram Huke. Spion im Wohnzimmer. 2018. url: https://www.mdr.de/
video/mdr-videos/c/video-175524.html.

[Kie18a] Jason Kielpinski. Security in a Vacuum: Hacking the Neato Botvac Connected,
Part One. 2018. url: https : / / www . nccgroup . trust / us / about - us /

newsroom - and - events / blog / 2018 / march / security - in - a - vacuum -

hacking-the-neato-botvac-connected-part-1/.

https://media.ccc.de/v/35c3-9498-dissecting_broadcom_bluetooth
https://media.ccc.de/v/35c3-9498-dissecting_broadcom_bluetooth
https://recon.cx/2018/montreal/schedule/events/118.html
https://recon.cx/2018/montreal/schedule/events/118.html
https://media.ccc.de/v/TNYPFB
http://ubicomp.org/ubicomp2018/program/demo-schedule.pdf
http://ubicomp.org/ubicomp2018/program/demo-schedule.pdf
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
https://www.abc.net.au/news/2018-11-16/datalife-i-spied-on-my-phone-and-here-is-what-i-found/10496450
https://www.abc.net.au/news/2018-11-16/datalife-i-spied-on-my-phone-and-here-is-what-i-found/10496450
https://www.abc.net.au/news/2018-11-16/datalife-i-spied-on-my-phone-and-here-is-what-i-found/10496450
https://help.fitbit.com/articles/en_US/Help_article/1372
https://help.fitbit.com/articles/en_US/Help_article/1372
https://www.hessenschau.de/tv-sendung/hessenschau---ganze-sendung,video-77832.html
https://www.hessenschau.de/tv-sendung/hessenschau---ganze-sendung,video-77832.html
https://www.hessenschau.de/tv-sendung/hessenschau---ganze-sendung,video-77832.html
https://www.mdr.de/video/mdr-videos/c/video-175524.html
https://www.mdr.de/video/mdr-videos/c/video-175524.html
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/march/security-in-a-vacuum-hacking-the-neato-botvac-connected-part-1/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/march/security-in-a-vacuum-hacking-the-neato-botvac-connected-part-1/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/march/security-in-a-vacuum-hacking-the-neato-botvac-connected-part-1/


bibliography 125

[Kie18b] Jason Kielpinski. Security in a Vacuum: Hacking the Neato Botvac Connected,
Part Two. 2018. url: https : / / www . nccgroup . trust / uk / about - us /

newsroom - and - events/ blogs / 2018/ april / security - in - a - vacuum-

hacking-the-neato-botvac-connected-part-2/.

[Lib] LibTomCrypt. https://github.com/libtom/libtomcrypt. 2018.

[Liu18] John Liu. Europe’s GDPR causes malfunction of smart home devices: Report.
2018. url: https://www.asmag.com/showpost/26577.aspx.

[Man18] Dennis Mantz. “InternalBlue - A Bluetooth Experimentation Framework
Based on Mobile Device Reverse Engineering.” Supervised by Matthias
Schulz and Jiska Classen. Master thesis. TU Darmstadt, 2018.

[MG18] Amrit Mundra and Hong Guan. Secure Boot on Embedded Sitara Processors.
2018. url: http://www.ti.com/lit/wp/spry305a/spry305a.pdf.

[Neu18] Sven Neubauer. “Angriffsanalyse einer TETRA-Basisstation.” Supervised
by Jiska Classen. Bachelor thesis. TU Darmstadt, 2018.

[Pla18] Marco Plaue. “Sicherheit funkferngesteuerter Rangierlokomotiven.” Su-
pervised by Jiska Classen. Master thesis. TU Darmstadt, 2018.

[RE18] Bill Ray and Jon Erensen. “Market Share Analysis: Wireless LAN, Blue-
tooth, GPS and NFC Semiconductors, Worldwide, 2017.” In: Gartner, Inc.
G00360119 (2018).

[Sch18] Matthias Schulz. “Teaching Your Wireless Card New Tricks: Smartphone
Performance and Security Enhancements Through Wi-Fi Firmware Modi-
fications.” PhD thesis. Technische Universität, 2018.

[Tre18] Moritz Tremmel. DoS-Angriff auf Bluetooth-Chips von Broadcom. 2018. url:
https://www.golem.de/news/sicherheitsluecke-dos-angriff-auf-

bluetooth-chips-von-broadcom-1901-138454.html.

[Ull18a] Fabian Ullrich. “Analysing and Evaluating Interface, Communication, and
Web Security in Productive IoT Ecosystems.” Supervised by Jiska Classen
and Max Maass. Master thesis. TU Darmstadt, 2018.

[Ull18b] Fabian Ullrich. Nello (nicht ganz) allein zu Haus. Darmstadt: MRMCD, 2018.
url: https://media.ccc.de/v/2018-123-nello-nicht-ganz-allein-zu-
haus.

[Wil18] Elliot Williams. 35C3: Finding Bugs In Bluetooth. 2018. url: https://hackaday.
com/2018/12/30/finding-bugs-in-bluetooth/.

[Wol18] Markus Wolsiffer. Datenschutz bei Wearables - Wie sicher sind meine Daten bei
Smartwatch und Co.? 2018. url: https://www.zdf.de/verbraucher/volle-
kanne/datenschutz-bei-wearables-102.html.

[Zsc18] Peter Zschunke. Forscher warnen vor Bluetooth auf älteren Smartphones. 2018.

[Ada17] Adafruit. Adafruit nRF8001. 2017. url: https://github.com/adafruit/
Adafruit_nRF8001/tree/master/utility.

[Ahm17] Muneeb Ahmed. “Improving a Linux Device Driver for Visible Light Com-
munication.” Supervised by Jiska Classen. Master thesis. TU Darmstadt,
2017.

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/april/security-in-a-vacuum-hacking-the-neato-botvac-connected-part-2/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/april/security-in-a-vacuum-hacking-the-neato-botvac-connected-part-2/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/april/security-in-a-vacuum-hacking-the-neato-botvac-connected-part-2/
https://github.com/libtom/libtomcrypt
https://www.asmag.com/showpost/26577.aspx
http://www.ti.com/lit/wp/spry305a/spry305a.pdf
https://www.golem.de/news/sicherheitsluecke-dos-angriff-auf-bluetooth-chips-von-broadcom-1901-138454.html
https://www.golem.de/news/sicherheitsluecke-dos-angriff-auf-bluetooth-chips-von-broadcom-1901-138454.html
https://media.ccc.de/v/2018-123-nello-nicht-ganz-allein-zu-haus
https://media.ccc.de/v/2018-123-nello-nicht-ganz-allein-zu-haus
https://hackaday.com/2018/12/30/finding-bugs-in-bluetooth/
https://hackaday.com/2018/12/30/finding-bugs-in-bluetooth/
https://www.zdf.de/verbraucher/volle-kanne/datenschutz-bei-wearables-102.html
https://www.zdf.de/verbraucher/volle-kanne/datenschutz-bei-wearables-102.html
https://github.com/adafruit/Adafruit_nRF8001/tree/master/utility
https://github.com/adafruit/Adafruit_nRF8001/tree/master/utility


126 bibliography

[Apv17] Axelle Apvrille. “Research on Fitbit Flex.” In: Available at: http://www.
fortiguard.com/events/1869/research-on-fitbit-flex, 2017.

[Ato17] Atollic. TrueSTUDIO. https://atollic.com/truestudio/. 2017.

[Ay17] Serafettin Ay. “Detecting WiFi Covert Channels.” Supervised by Jiska
Classen. Master thesis. TU Darmstadt, 2017.

[Che+17] Joe Chen, Daniel Steinmetzer, Jiska Classen, Edward Knightly, and Mat-
thias Hollick. “Pseudo Lateration: Millimeter-Wave Localization Using a
Single RF Chain.” In: Wireless Communications and Networking Conference.
IEEE. 2017.

[Cla17] Jiska Classen. Leaking and Modifying Fitbit Data. Frankfurt: Continental AG,
2017.

[CW17a] Jiska Classen and Daniel Wegemer. Doping your Fitbit. Leipzig: 34. Chaos
Communication Congress, 2017. doi: 10.5446/34791. url: https://media.
ccc.de/v/34c3-8908-doping_your_fitbit.

[CW17b] Jiska Classen and Daniel Wegemer. Leaking and Modifying Fitbit Data. Darm-
stadt: MRMCD, 2017. url: https://media.ccc.de/v/3T9E8Y.

[Dan17] Dany. “Fitbit Flex: switching between encrypted and unencrypted mode.”
In: Available at: https://www.freelists.org/post/galileo/Fitbit-
Flex-switching-between-encrypted-and-unencrypted-mode, 2017.

[Fer+17a] Hossein Fereidooni, Jiska Classen, Tom Spink, Paul Patras, Markus Miet-
tinen, Ahmad-Reza Sadeghi, Matthias Hollick, and Mauro Conti. “Break-
ing Fitness Records without Moving: Reverse Engineering and Spoofing
Fitbit.” In: International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID). Springer, Cham. 2017.

[Fer+17b] Hossein Fereidooni, Tommaso Frassetto, Markus Miettinen, Ahmad-Reza
Sadeghi, and Mauro Conti. “Fitness Trackers: Fit for Health but Unfit
for Security and Privacy.” In: IEEE International Workshop on Safe, Energy-
Aware, & Reliable Connected Health (CHASE workshop: SEARCH). 2017.

[Fit17] Fitbit. Fitbit Ultra Setup. https://www.fitbit.com/de/setup/ultra. 2017.

[GNU17] GNU Operating System. GDB: The GNU Project Debugger. https://www.
gnu.org/software/gdb/. 2017.

[Hea17] Brian Heater. Fitbit reveals it paid $23 million to acquire Pebble’s assets. Ver-
izon Media, 2017. url: https://techcrunch.com/2017/02/22/fitbit-
pebble-acquisition/.

[Hex17] Hex-Rays. IDA Pro. https://www.hex-rays.com/. 2017.

[IDC17] IDC. Worldwide Quarterly Wearable Device Tracker. 2017.

[Jü17] Jannik Jürgens. “TETRA Security Analysis by Fuzzing.” Supervised by
Jiska Classen. Master thesis. TU Darmstadt, 2017.

[Kor17] Tim Kornhuber. “Implementation of a physical layer for visible light com-
munication using the OpenVLC platform.” Supervised by Jiska Classen.
Bachelor thesis. TU Darmstadt, 2017.

http://www.fortiguard.com/events/1869/research-on-fitbit-flex
http://www.fortiguard.com/events/1869/research-on-fitbit-flex
https://atollic.com/truestudio/
https://doi.org/10.5446/34791
https://media.ccc.de/v/34c3-8908-doping_your_fitbit
https://media.ccc.de/v/34c3-8908-doping_your_fitbit
https://media.ccc.de/v/3T9E8Y
https://www.freelists.org/post/galileo/Fitbit-Flex-switching-between-encrypted-and-unencrypted-mode
https://www.freelists.org/post/galileo/Fitbit-Flex-switching-between-encrypted-and-unencrypted-mode
https://www.fitbit.com/de/setup/ultra
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://techcrunch.com/2017/02/22/fitbit-pebble-acquisition/
https://techcrunch.com/2017/02/22/fitbit-pebble-acquisition/
https://www.hex-rays.com/


bibliography 127

[Kos17] Felix Kosterhon. “Absicherung von SCADA-Protokollen.” Supervised by
Jiska Classen. Bachelor thesis. TU Darmstadt, 2017.

[Kü17] Michael Kümpel. “Implementierung des unteren MAC-Layers für die Open-
VLC-Hardware.” Supervised by Jiska Classen. Bachelor thesis. TU Darm-
stadt, 2017.

[McE17] Brian McEvoy. 34C3: Fitbit Sniffing and Firmware Hacking. 2017. url: https:
//hackaday.com/2017/12/29/34c3-fitbit-sniffing-and-firmware-

hacking/.

[Mei17] Richard Meister. “Design and Evaluation of a Hybrid SDR Testbed For
Visible Light Communication and Wi-Fi.” Supervised by Jiska Classen.
Master thesis. TU Darmstadt, 2017.

[MWZH17] Cristina Mihale-Wilson, Jan Zibuschka, and Oliver Hinz. “About User
Preferences and Willingness to Pay for a Secure and Privacy Protective
Ubiquitous Personal Assistant.” In: (2017).

[STM17a] STMicroelectronics. STM32L141UC datasheet. 2017. url: www.st.com/resource/
en/datasheet/stm32l151cc.pdf.

[STM17b] STMicroelectronics. STM32L141UC reference manual. www.st.com/resource/
en/reference_manual/cd00240193.pdf. 2017.

[Sch17] Maarten Schellevis. Maarten committed 3601372: Add a utility to decrypt
older dumps. https : / / bitbucket . org / benallard / galileo / commits /

3601372658e5e6da271300656d4ec503c5c87ddc. 2017.

[SWH17] Matthias Schulz, Daniel Wegemer, and Matthias Hollick. Nexmon: The C-
based Firmware Patching Framework. https://nexmon.org. 2017.

[iFi17] iFixit. Fitbit Flex teardown. https://www.ifixit.com/Teardown/Fitbit+
Flex+Teardown/16050. 2017.

[CSH16] Jiska Classen, Daniel Steinmetzer, and Matthias Hollick. “Opportunities
and Pitfalls in Securing Visible Light Communication on the Physical
Layer.” In: Proceedings of the 3rd Workshop on Visible Light Communication
Systems. ACM. 2016. Part of this thesis.

[CSM16] Eric Clausing, Michael Schiefer, and Maik Morgenstern. “AV-TEST Anal-
ysis of Fitbit Vulnerabilities.” In: https://www.av-test.org/fileadmin/
pdf/avtest_2016-04_fitbit_vulnerabilities.pdf, 2016.

[Cou16] Council of the European Union. Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC. 2016.

[Cyp16] Cypress. Cypress to Acquire Broadcom’s Wireless Internet of Things Business.
2016. url: https://www.cypress.com/news/cypress-acquire-broadcom-
s-wireless-internet-things-business-0.

[GDS16] Rohit Goyal, Nicola Dragoni, and Angelo Spognardi. “Mind the Tracker
You Wear: A Security Analysis of Wearable Health Trackers.” In: Proceed-
ings of the 31st Annual ACM Symposium on Applied Computing. Pisa, Italy,
2016.

https://hackaday.com/2017/12/29/34c3-fitbit-sniffing-and-firmware-hacking/
https://hackaday.com/2017/12/29/34c3-fitbit-sniffing-and-firmware-hacking/
https://hackaday.com/2017/12/29/34c3-fitbit-sniffing-and-firmware-hacking/
www.st.com/resource/en/datasheet/stm32l151cc.pdf
www.st.com/resource/en/datasheet/stm32l151cc.pdf
www.st.com/resource/en/reference_manual/cd00240193.pdf
www.st.com/resource/en/reference_manual/cd00240193.pdf
https://bitbucket.org/benallard/galileo/commits/3601372658e5e6da271300656d4ec503c5c87ddc
https://bitbucket.org/benallard/galileo/commits/3601372658e5e6da271300656d4ec503c5c87ddc
https://nexmon.org
https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050
https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050
https://www.av-test.org/fileadmin/pdf/avtest_2016-04_fitbit_vulnerabilities.pdf
https://www.av-test.org/fileadmin/pdf/avtest_2016-04_fitbit_vulnerabilities.pdf
https://www.cypress.com/news/cypress-acquire-broadcom-s-wireless-internet-things-business-0
https://www.cypress.com/news/cypress-acquire-broadcom-s-wireless-internet-things-business-0


128 bibliography

[Gu+16] Wenjun Gu, Mohammadreza Aminikashani, Peng Deng, and Mohsen Ka-
vehrad. “Impact of multipath reflections on the performance of indoor
visible light positioning systems.” In: Journal of Lightwave Technology 34.10

(2016).

[Kwi16] Jan-Pascal Kwiotek. “TETRA Fuzzing.” Supervised by Jiska Classen. Mas-
ter thesis. TU Darmstadt, 2016.

[Pfe16] Martin Pfeiffer. “Location Privacy of Digital Trunked Radio.” Supervised
by Jiska Classen and Robin Klose. Master thesis. TU Darmstadt, 2016.

[Pfe+16] Martin Pfeiffer, Jan-Pascal Kwiotek, Jiska Classen, Robin Klose, and Mat-
thias Hollick. “Analyzing TETRA Location Privacy and Network Avail-
ability.” In: Proceedings of the 6th Annual ACM CCS Workshop on Security
and Privacy in Smartphones and Mobile Devices. ACM. 2016.

[PwC16] PwC. The Wearable Life 2.0. https://www.pwc.com/ee/et/publications/
pub/pwc-cis-wearables.pdf. 2016.

[RCT16] Mahmudur Rahman, Bogdan Carbunar, and Umut Topkara. “Secure Man-
agement of Low Power Fitness Trackers.” In: IEEE Transactions on Mobile
Computing 15.2 (2016).

[Rei16] Hugo Reinaldo. “Hello Quark! Fitbit firmware reversing (Lessons learned).”
In: AlligatorCon (2016).

[Sch+16] Maarten Schellevis, Bart Jacobs, Carlo Meijer, and Joeri de Ruiter. “Getting
access to your own Fitbit data.” MA thesis. Radboud University, 2016.

[SCH16a] Daniel Steinmetzer, Jiska Classen, and Matthias Hollick. “Exploring Milli-
meter-Wave Network Scenarios with Ray-tracing based Simulations in
mmTrace.” In: IEEE Infocom 2016 Poster Presentation. IEEE. 2016.

[SCH16b] Daniel Steinmetzer, Jiska Classen, and Matthias Hollick. “mmTrace: Mod-
eling Millimeter-wave Indoor Propagation with Image-based Ray-tracing.”
In: Millimeter-wave Networking Workshop. IEEE. 2016.

[AGK15] Mohammadreza Aminikashani, Wenjun Gu, and Mohsen Kavehrad. “In-
door positioning in high speed OFDM visible light communications.” In:
arXiv preprint arXiv:1505.01811 (2015).

[Apv15] Axelle Apvrille. “Fitness Tracker: Hack In Progress.” In: Available at: https:
//hackinparis.com/data/slides/2015/axelle_aprville_hackinparis.

pdf, 2015.

[Cho+15] Chi-Wai Chow, Yang Liu, Chien-Hung Yeh, Chung-Yen Chen, Chao-Nan
Lin, and Dar-Zu Hsu. “Secure communication zone for white-light LED
visible light communication.” In: Optics Communications 344 (2015).

[Cla15a] Jiska Classen. Building and Breaking Wireless Security. Hamburg: 32. Chaos
Communication Congress, 2015. url: https://media.ccc.de/v/32c3-
7119-building_and_breaking_wireless_security. Talk in a lecture hall
with 3000 seats.

[Cla15b] Jiska Classen. Wireless Physical Layer Security. Darmstadt: MRMCD, 2015.
url: https://media.ccc.de/v/MRMCD15- 7011- wireless_physical_
layer_security.

https://www.pwc.com/ee/et/publications/pub/pwc-cis-wearables.pdf
https://www.pwc.com/ee/et/publications/pub/pwc-cis-wearables.pdf
https://hackinparis.com/data/slides/2015/axelle_aprville_hackinparis.pdf
https://hackinparis.com/data/slides/2015/axelle_aprville_hackinparis.pdf
https://hackinparis.com/data/slides/2015/axelle_aprville_hackinparis.pdf
https://media.ccc.de/v/32c3-7119-building_and_breaking_wireless_security
https://media.ccc.de/v/32c3-7119-building_and_breaking_wireless_security
https://media.ccc.de/v/MRMCD15-7011-wireless_physical_layer_security
https://media.ccc.de/v/MRMCD15-7011-wireless_physical_layer_security


bibliography 129

[Cla+15a] Jiska Classen, Johannes Braun, Florian Volk, Matthias Hollick, Johannes
Buchmann, and Max Mühlhäuser. “A Distributed Reputation System for
Certification Authority Trust Management.” In: Proceedings of IEEE Trust-
Com. Vol. 1. IEEE. 2015.

[Cla+15b] Jiska Classen, Joe Chen, Daniel Steinmetzer, Matthias Hollick, and Ed-
ward Knightly. “The Spy Next Door: Eavesdropping on High Through-
put Visible Light Communications.” In: Proceedings of the 2nd International
Workshop on Visible Light Communications Systems. ACM. 2015. Part of this
thesis.

[CSH15] Jiska Classen, Matthias Schulz, and Matthias Hollick. “Practical Covert
Channels for WiFi Systems.” In: IEEE Conference on Communications and
Network Security. IEEE. 2015.

[For15] Forbes. Fitbit Disputes Claim Fitbit Trackers Can Be Hacked And Infect PCs.
2015.

[GF15] Marco Gramaglia and Marco Fiore. “Hiding Mobile Traffic Fingerprints
with GLOVE.” In: Proceedings of the 11th ACM Conference on Emerging Net-
working Experiments and Technologies. ACM. 2015, p. 26.

[Hed15] Johan Hedberg. Release of BlueZ 5.36. 2015. url: http://www.bluez.org/
release-of-bluez-5-36/.

[HDC15] Siu-Wai Ho, Jialong Duan, and Chung Shue Chen. “Location-based in-
formation transmission systems using visible light communications.” In:
Transactions on Emerging Telecommunications Technologies (2015).

[Li+15] Tianxing Li, Chuankai An, Andrew T. Campbell, and Xia Zhou. “HiLight:
Hiding Bits in Pixel Translucency Changes.” In: SIGMOBILE Mob. Comput.
Commun. Rev. 18.3 (2015).

[LMGGB15] F Javier Lopez-Martinez, Gerardo Gomez, and José María Garrido-Balsells.
“Physical-Layer Security in Free-Space Optical Communications.” In: IEEE
Photonics Journal (2015). issn: 1943-0655. doi: 10.1109/JPHOT.2015.2402158.

[ML15] A. Mostafa and L. Lampe. “Pattern synthesis of massive LED arrays for
secure visible light communication links.” In: International Conference on
Communication Workshop (ICCW). 2015.

[Nea15] Neato. Programmer’s Manual v3.1. 2015. url: https://github.com/jero%
65nterheerdt/neato-serial/blob/master/XV-ProgrammersManual-3_1.

pdf.

[Org15] Organisation Internationale de Normalisation. IEC 60601-1-11:2015: Med-
ical electrical equipment – Part 1-11: General requirements for basic safety and
essential performance – Collateral standard: Requirements for medical electrical
equipment and medical electrical systems used in the home healthcare environ-
ment. 2015.

[Ste+15] Daniel Steinmetzer, Joe Chen, Jiska Classen, Edward Knightly, and Matthias
Hollick. “Eavesdropping with Periscopes: Experimental Security Analysis
of Highly Directional Millimeter Waves.” In: IEEE Conference on Communi-
cations and Network Security (CNS). IEEE. 2015.

http://www.bluez.org/release-of-bluez-5-36/
http://www.bluez.org/release-of-bluez-5-36/
https://doi.org/10.1109/JPHOT.2015.2402158
https://github.com/jero%65nterheerdt/neato-serial/blob/master/XV-ProgrammersManual-3_1.pdf
https://github.com/jero%65nterheerdt/neato-serial/blob/master/XV-ProgrammersManual-3_1.pdf
https://github.com/jero%65nterheerdt/neato-serial/blob/master/XV-ProgrammersManual-3_1.pdf


130 bibliography

[Tho15] Simon Thomsen. Extramarital affair website Ashley Madison has been hacked
and attackers are threatening to leak data online. 2015. url: https://www.
businessinsider . com / cheating - affair - website - ashley - madison -

hacked-user-data-leaked-2015-7?IR=T.

[Yan+15] Nan Yang, Lifeng Wang, Giovanni Geraci, Maged Elkashlan, Jinhong Yuan,
and Marco Di Renzo. “Safeguarding 5G wireless communication networks
using physical layer security.” In: IEEE Communications Magazine 53.4 (2015).

[Zai+15] Hajar Zaid, Zouheir Rezki, Anas Chaaban, and Mohamed Slim Alouini.
“Improved achievable secrecy rate of visible light communication with
cooperative jamming.” In: IEEE Global Conference on Signal and Information
Processing (GlobalSIP). 2015.

[Bra+14] Johannes Braun, Florian Volk, Jiska Classen, Johannes Buchmann, and
Max Mühlhäuser. “CA Trust Management for the Web PKI.” In: Journal of
Computer Security 22.6 (2014).

[Cla14] Jiska Classen. “Reputation Systems for Trust Management in the Web
PKI.” Supervised by Johannes Braun and Florian Volk. Master thesis. TU
Darmstadt, 2014.

[Cyr+14] Britt Cyr, Webb Horn, Daniela Miao, and Michael Specter. “Security Anal-
ysis of Wearable Fitness Devices (Fitbit).” In: Massachusets Institute of Tech-
nology (2014).

[Kuo+14] Ye-Sheng Kuo, Pat Pannuto, Ko-Jen Hsiao, and Prabal Dutta. “Luxapose:
Indoor Positioning with Mobile Phones and Visible Light.” In: Proceedings
of the 20th Annual International Conference on Mobile Computing and Network-
ing. MobiCom. ACM, 2014. doi: 10.1145/2639108.2639109.

[LM+14] Hoa Le Minh, Anh T Pham, Zabih Ghassemlooy, and Andrew Burton. “Se-
cured communications-zone multiple input multiple output visible light
communications.” In: Globecom Workshops (GC Wkshps), 2014. IEEE. 2014.

[ML14] Ayman Mostafa and Lutz Lampe. “Physical-layer Security for Indoor Vis-
ible Light Communications.” In: IEEE International Conference on Commu-
nications. 2014. doi: 10.1109/ICC.2014.6883837.

[QHK14] Yijun Qiao, Harald Haas, and Edward Knightly. “Demo: A Software-defin-
ed Visible Light Communications System with WARP.” In: 1st ACM Work-
shop on Visible Light Communication Systems. 2014.

[Sch+14] Stefan Schmid, Josef Ziegler, Giorgio Corbellini, Thomas R. Gross, and
Stefan Mangold. “Using Consumer LED Light Bulbs for Low-cost Visi-
ble Light Communication Systems.” In: Proceedings of the 1st ACM Mobi-
Com Workshop on Visible Light Communication Systems. Maui, Hawaii, USA:
ACM, 2014. isbn: 978-1-4503-3067-1. doi: 10.1145/2643164.2643170. url:
http://doi.acm.org/10.1145/2643164.2643170.

[SLH14] Matthias Schulz, Adrian Loch, and Matthias Hollick. “Practical Known-
Plaintext Attacks against Physical Layer Security in Wireless MIMO Sys-
tems.” In: NDSS. 2014.

https://www.businessinsider.com/cheating-affair-website-ashley-madison-hacked-user-data-leaked-2015-7?IR=T
https://www.businessinsider.com/cheating-affair-website-ashley-madison-hacked-user-data-leaked-2015-7?IR=T
https://www.businessinsider.com/cheating-affair-website-ashley-madison-hacked-user-data-leaked-2015-7?IR=T
https://doi.org/10.1145/2639108.2639109
https://doi.org/10.1109/ICC.2014.6883837
https://doi.org/10.1145/2643164.2643170
http://doi.acm.org/10.1145/2643164.2643170


bibliography 131

[TC14] Yee-Yong Tan and Wan-Young Chung. Mobile health–monitoring system through
visible light communication. Bio-medical materials and engineering, 2014.

[Wik14] Wikileaks. Weeping Angel—Smart TV Surveillance. 2014. url: https : / /

wikileaks.org/ciav7p1/cms/page_12353643.html.

[Zha+14] Bingsheng Zhang, Kui Ren, Guoliang Xing, Xinwen Fu, and Cong Wang.
“SBVLC: Secure Barcode-based Visible Light Communication for Smart-
phones.” In: Proceedings IEEE INFOCOM. 2014. doi: 10.1109/INFOCOM.
2014.6848214.

[ZP14] Wei Zhou and Selwyn Piramuthu. “Security/privacy of wearable fitness
tracking IoT devices.” In: Proceedings of the 9th Iberian Conference on Infor-
mation Systems and Technologies (CISTI). IEEE. Barcelona, Spain, 2014.

[Fre13] Louis E Frenzel. “Millimeter Waves Will Expand the Wireless Future.” In:
Electronic Design 04/2013 (2013).

[Lom13] Natasha Lomas. Tile Grabs $2.6M Via Selfstarter For Its Lost Property-Finding
Bluetooth Tags Plus App. Verizon Media, 2013. url: https://techcrunch.
com/2013/07/24/tile-grabs-2-6m-via-selfstarter-for-its-lost-

property-finding-bluetooth-tags-plus-app/.

[Pas13] Pasternack Enterprises. Pasternack 60 GHz Transmit/Receive (Tx/Rx) Devel-
opment System (PEM003-KIT). http : / / www . pasternack . com / 60 - ghz -

development-systems-category.aspx. 2013.

[RCB13] Mahmudur Rahman, Bogdan Carbunar, and Madhusudan Banik. “Fit and
Vulnerable: Attacks and Defenses for a Health Monitoring Device.” In:
Proceedings of the 13th Privacy Enhancing Technologies Symposium (PETS).
Bloomington, Indiana, USA, 2013.

[Tip+13] Nils Ole Tippenhauer, Luka Malisa, Aanjhan Ranganathan, and Srdjan
Capkun. “On limitations of friendly jamming for confidentiality.” In: Sym-
posium on Security and Privacy (SP). IEEE. 2013.

[ALK12] Narendra Anand, Sung-Ju Lee, and Edward Knightly. “Strobe: Actively
securing wireless communications using zero-forcing beamforming.” In:
INFOCOM. IEEE. 2012.

[RRL12] Sridhar Rajagopal, Richard D Roberts, and Sang-Kyu Lim. “IEEE 802.15.7
visible light communication: modulation schemes and dimming support.”
In: IEEE Communications Magazine 50.3 (2012).

[The12] The Institute of Electrical and Electronic Engineers, Inc. “IEEE standard
802.11-2012.” English. In: IEEE Standard for Information Technology (2012).

[LSK11] Cen B. Liu, Bahareh Sadeghi, and Edward W. Knightly. “Enabling Vehic-
ular Visible Light Communication Networks.” In: Proceedings of the Eighth
ACM International Workshop on Vehicular Inter-networking. VANET. Las Ve-
gas, Nevada, USA: ACM, 2011. isbn: 978-1-4503-0869-4. doi: 10.1145/
2030698.2030705. url: http://doi.acm.org/10.1145/2030698.2030705.

https://wikileaks.org/ciav7p1/cms/page_12353643.html
https://wikileaks.org/ciav7p1/cms/page_12353643.html
https://doi.org/10.1109/INFOCOM.2014.6848214
https://doi.org/10.1109/INFOCOM.2014.6848214
https://techcrunch.com/2013/07/24/tile-grabs-2-6m-via-selfstarter-for-its-lost-property-finding-bluetooth-tags-plus-app/
https://techcrunch.com/2013/07/24/tile-grabs-2-6m-via-selfstarter-for-its-lost-property-finding-bluetooth-tags-plus-app/
https://techcrunch.com/2013/07/24/tile-grabs-2-6m-via-selfstarter-for-its-lost-property-finding-bluetooth-tags-plus-app/
http://www.pasternack.com/60-ghz-development-systems-category.aspx
http://www.pasternack.com/60-ghz-development-systems-category.aspx
https://doi.org/10.1145/2030698.2030705
https://doi.org/10.1145/2030698.2030705
http://doi.acm.org/10.1145/2030698.2030705


132 bibliography

[Oku+11] K. Okuda, M. Murata, T. Nakamura, W. Uemura, and T. Yamamoto. “Pro-
posal and development of encryption key distribution system using vis-
ible light communication.” In: IEEE International Conference on Consumer
Electronics -Berlin (ICCE-Berlin). 2011.

[Oss11] Ossmann, Michael and Spill, Dominic. Project Ubertooth: Open Source Wire-
less Development Platform Suitable for Bluetooth Experimentation. 2011. url:
https://github.com/greatscottgadgets/ubertooth.

[Pov11] Gordon Povey. Top 10 Visible Light Communications Applications. 2011. url:
http://visiblelightcomm.com/top-10-visible-light-communications-

applications/.

[The11] The Institute of Electrical and Electronic Engineers, Inc. IEEE standard for
local and metropolitan area networks–part 15.7: Short-range wireless optical com-
munication using visible light. Std 802.15.7, 2011.

[Daw+10] Maurice Dawson, Darrell Norman Burrell, Emad Rahim, and Stephen
Brewster. “Integrating Software Assurance into the Software Development
Life Cycle (SDLC).” In: Journal of Information Systems Technology and Plan-
ning 3.6 (2010).

[Jan+09] Suman Jana, Sriram Nandha Premnath, Mike Clark, Sneha K Kasera, Neal
Patwari, and Srikanth V Krishnamurthy. “On the effectiveness of secret
key extraction from wireless signal strength in real environments.” In:
Proceedings of the 15th annual international conference on Mobile computing
and networking. ACM. 2009.

[Mic09] Michael Ossmann and Dominic Spill and Mark Steward. Bluetooth, Smells
Like Chicken. DEFCON 17. 2009. url: https://www.youtube.com/watch?
v=9WAmMwUyzMc.

[Tip+08] Nils Ole Tippenhauer, Kasper Bonne Rasmussen, C Popper, and Srdjan
Capkun. “iPhone and iPod location spoofing: Attacks on public WLAN-
based positioning systems.” In: System Security Group, ETH Zürich Univ.,
Zürich, Switzerland, Tech. Rep 599 (2008).

[CS07] Richard Chang and Vitaly Shmatikov. “Formal Analysis of Authentication
in Bluetooth Device Pairing.” In: FCS-ARSPA07 (2007).

[HH07] Konstantin Hypponen and Keijo MJ Haataja. ““Nino” man-in-the-middle
attack on bluetooth secure simple pairing.” In: 3rd IEEE/IFIP International
Conference in Central Asia on Internet. IEEE. 2007.

[SB07] Dominic Spill and Andrea Bittau. “BlueSniff: Eve Meets Alice and Blue-
tooth.” In: WOOT 7 (2007).

[HK05] Gerhard P Hancke and Markus G Kuhn. “An RFID distance bounding
protocol.” In: First International Conference on Security and Privacy for Emerg-
ing Areas in Communications Networks (SECURECOMM). IEEE. 2005.

[Sha05] Shaked, Yaniv and Wool, Avishai. “Cracking the Bluetooth PIN.” In: Pro-
ceedings of the 3rd International Conference on Mobile Systems, Applications,
and Services. ACM. 2005.

https://github.com/greatscottgadgets/ubertooth
http://visiblelightcomm.com/top-10-visible-light-communications-applications/
http://visiblelightcomm.com/top-10-visible-light-communications-applications/
https://www.youtube.com/watch?v=9WAmMwUyzMc
https://www.youtube.com/watch?v=9WAmMwUyzMc


bibliography 133

[Inf03] Infineon. Infineon reports Second Quarter and First Half Year Results for Fis-
cal Year 2003. 2003. url: https://www.infineon.com/cms/en/about-
infineon/press/press-releases/2003/95690.html.

[JN00] Bahram Javidi and Takanori Nomura. “Polarization encoding for optical
security systems.” In: Optical Engineering 39.9 (2000).

[Cou93] Council of the European Union. Council Directive 93/42/EEC of 14 June 1993
concerning medical devices. 1993.

[STS91] Bahaa EA Saleh, Malvin Carl Teich, and Bahaa E Saleh. Fundamentals of
photonics. Vol. 22. Wiley New York, 1991.

[BS87] P. Beckmann and A. Spizzichino. The scattering of electromagnetic waves from
rough surfaces. 1987.

[Wyn75] A. D. Wyner. “The Wire-tap Channel.” In: Bell Systems Technical Journal
54.8 (1975).

[Ver19] Gilbert Sandford Vernam. Secret signaling system. US Patent 1,310,719. 1919.

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2003/95690.html
https://www.infineon.com/cms/en/about-infineon/press/press-releases/2003/95690.html




E R K L Ä R U N G Z U R D I S S E RTAT I O N S S C H R I F T

gemäß § 9 der Allgemeinen Bestimmungen der Promotionsordnung der
Technische Universität Darmstadt vom 12. Januar 1990 (ABI. 1990, S. 658)

in der Fassung der 8. Novelle vom 1. März 2018

Hiermit versichere ich, Jiska Dorothee Classen, die vorliegende Dissertationsschrift oh-
ne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu
haben. Alle Stellen, die Quellen entnommen wurden, sind als solche kenntlich gemacht
worden. Eigenzitate aus vorausgehenden wissenschaftlichen Veröffentlichungen werden
in Anlehnung an die Hinweise des Promotionsausschusses Fachbereich Informatik zum
Thema “Eigenzitate in wissenschaftlichen Arbeiten” (EZ-2014/10) in Kapitel “Previous-
ly Published Material” auf Seiten vii bis xiii gelistet. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen. In der abgegebenen Disserta-
tionsschrift stimmen die schriftliche und die elektronische Fassung überein.

Darmstadt, 6. Dezember 2019

Jiska Dorothee Classen

135


	Abstract
	Zusammenfassung
	Publications
	Teaching and Press Activity
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	1 Introduction
	1.1 Problem Statement
	1.1.1 Design
	1.1.2 Release
	1.1.3 End of Life

	1.2 Goals, Approaches, and Contributions
	1.2.1 Public Security Awareness
	1.2.2 Vendor Support and Fixes
	1.2.3 User Support and Fixes
	1.2.4 Regulations, Specifications, and Standardization Improvements

	1.3 Outline


	Practical IoT Security
	2 IoT Ecosystems
	2.1 Motivation
	2.2 Ecosystem Concepts
	2.2.1 Wireless Data Transfer
	2.2.2 Transparent Gateway
	2.2.3 Data-Modifying Gateway

	2.3 Fitbit Fitness Trackers
	2.4 Neato and Vorwerk Vacuum Cleaners
	2.5 Bluetooth Location Finders
	2.6 Analysis of Practical Systems

	3 Fitbit Fitness Trackers
	3.1 Motivation
	3.2 Attack Scenarios
	3.3 Firmware Update Process
	3.3.1 Understanding Encryption
	3.3.2 Firmware Update Process

	3.4 Related Work
	3.5 Responsible Disclosure and Outlook

	4 Neato and Vorwerk Vacuum Cleaners
	4.1 Motivation
	4.2 Attack Scenarios
	4.3 Bypassing Secure Boot
	4.3.1 Hardware Analysis
	4.3.2 Hidden Boot Menu
	4.3.3 Memory Extraction

	4.4 Static Firmware Analysis
	4.5 Related Work
	4.6 Responsible Disclosure and Outlook

	5 Bluetooth Location Finders
	5.1 Motivation
	5.2 Attack Scenarios
	5.3 Basic Bluetooth Finder
	5.4 Reverse Engineering of the Nut Finder Firmware
	5.5 Responsible Disclosure and Outlook


	Modifying Off-the-Shelf Devices
	6 Binary Patching
	6.1 Source Code Patching vs. Binary Patching
	6.2 Platform Requirements
	6.3 Identifying Functions

	7 Fitbit Fitness Tracker Firmware
	7.1 Static Firmware Analysis
	7.2 Modifying the Firmware
	7.2.1 Security Mechanisms
	7.2.2 Dynamic Analysis and GDB Support
	7.2.3 Raw Accelerometer Data Access

	7.3 Binary Patching Capabilities

	8 Broadcom and Cypress Bluetooth Firmware
	8.1 Motivation
	8.2 Attack Scenarios
	8.3 Background on Bluetooth Analysis
	8.3.1 MITM Bluetooth Sniffing
	8.3.2 Bluetooth Firmware Binary Patching

	8.4 The InternalBlue Framework
	8.4.1 Broadcom Diagnostics Protocol
	8.4.2 Patching Broadcom Controllers

	8.5 Testing for Known Security Issues
	8.5.1 Establishing Connections to ``Invisible'' Devices
	8.5.2 No Input No Output Pairing
	8.5.3 ECDH Device Pairing Vulnerability Scan
	8.5.4 KNOB Attack Test

	8.6 Discovering and Fighting New Vulnerabilities
	8.6.1 Remote Code Execution Vulnerability
	8.6.2 Firmware Emulation and Fuzzing
	8.6.3 MAC Address Filter

	8.7 Responsible Disclosure and Outlook


	Future Wireless Standards
	9 Eavesdropping Visible Light and mmWave Connections
	9.1 Motivation
	9.2 VLC Testbed and Evaluation Setup
	9.2.1 Attack Scenarios
	9.2.2 Modulation
	9.2.3 Hardware Setup

	9.3 Practical VLC Eavesdropping
	9.3.1 Door Gap Eavesdropping
	9.3.2 Keyhole Eavesdropping
	9.3.3 Window Eavesdropping
	9.3.4 Wall Eavesdropping

	9.4 Practical mmWave Eavesdropping
	9.5 Conclusion

	10 Physical Layer Security for Visible Light Communication
	10.1 Motivation
	10.2 Wireless Physical Layer Security
	10.3 Applying Physical Layer Security to Visible Light Communication
	10.3.1 What is Visible Light Communication?
	10.3.2 Visible Light Properties Compared to Radio Frequency Properties

	10.4 Security Mechanisms and Aspects
	10.4.1 Confidentiality
	10.4.2 Localization and Authentication
	10.4.3 Integrity

	10.5 Attack Scenarios
	10.5.1 User Failures
	10.5.2 Better Equipment
	10.5.3 Additional Information
	10.5.4 Active Attackers

	10.6 Evaluation
	10.6.1 Confidentiality
	10.6.2 Localization and Authentication
	10.6.3 Integrity
	10.6.4 Attack Robustness

	10.7 Conclusion


	Discussion and Conclusions
	11 Discussion and Future Work
	11.1 Public Security Awareness
	11.2 Vendor Support and Fixes
	11.3 User Support and Fixes
	11.4 Regulations, Specifications, and Standardization Improvements

	12 Conclusions
	Bibliography


