4,427 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    E-Health business models prototyping by incremental design

    Get PDF
    User-Driven Healthcare: Concepts, Methodologies, Tools, and Applications provides a global discussion on the practice of user-driven learning in healthcare and connected disciplines and its influence on learning through clinical problem solving. This book brings together different perspectives for researchers and practitioners to develop a comprehensive framework of user-driven healthcare.Postprint (published version

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Strategic Roadmaps and Implementation Actions for ICT in Construction

    Get PDF

    Efficiency and Patient-Reported Outcome Measures From Clinic to Home: The Human Empowerment Aging and Disability Program for Digital-Health Rehabilitation

    Get PDF
    Background: The recent exponential growth of Digital Health (DH) in the healthcare system provides a crucial transformation in healthcare, answering to alarming threats related to the increasing number of Chronic Neurological Diseases (CNDs). New long-term integrated DH-care approaches, including rehabilitation, are warranted to address these concerns. Methods: The Human Empowerment Aging and Disability (HEAD) rehabilitation program, a new long-term integrated care including DH-care system, was evaluated in terms of efficiency and patient-reported outcome measures (PROMs) in 107 CND patients (30 with Parkinson's Disease, PD; 32 with Multiple Sclerosis, MS; 45 with stroke in chronic stage). All participants followed 1-month of HEAD rehabilitation in clinic (ClinicHEAD: 12 sessions, 3/week), then 1:3 patient was consecutively allocated to 3-months telerehabilitation at home (HomeHEAD: 60 sessions, 5/week). Efficiency (i.e., adherence, usability, and acceptability) and PROMs (i.e., perceived functioning in real-world) were analyzed. Results: The rate of adherence to HEAD treatment in clinic (≥90%) and at home (77%) was high. Usability of HEAD system was judged as good (System Usability Scale, median 70.00) in clinic and even more at home (median 80.00). Similarly, administering the Technology Acceptance Model 3 questionnaire we found high scores both in clinic/at home (Usefulness, mean 5.39 ± 1.41 SD/mean 5.33 ± 1.29 SD; Ease of use, mean 5.55 ± 1.05 SD/ mean 5.45 ± 1.17 SD, External Control, mean 4.94 ± 1.17 SD/mean 5.07 ± 1.01 SD, Relevance, mean 5.68 ± 1.29 SD/mean 5.70 ± 1.13 SD and Enjoyment, mean 5.70 ± 1.40 SD/mean 6.01 ± 1.08 SD). After ClinicHEAD, participation and autonomy in daily routine was maintained or even ameliorated (PD and stroke > MS). Whereas, increased functionality and participation in the MS group was found only after HomeHEAD intervention. Discussion: Our results suggest that a tele-health-based approach is both feasible and efficient in providing rehabilitation care to CNDs from clinic to home. Increasing and maintaining participation as well as autonomy in daily routine are promising findings that open up scenarios for the continuity of care at home through DH-care for CNDs

    Audit-based Compliance Control (AC2) for EHR Systems

    Get PDF
    Traditionally, medical data is stored and processed using paper-based files. Recently, medical facilities have started to store, access and exchange medical data in digital form. The drivers for this change are mainly demands for cost reduction, and higher quality of health care. The main concerns when dealing with medical data are availability and confidentiality. Unavailability (even temporary) of medical data is expensive. Physicians may not be able to diagnose patients correctly, or they may have to repeat exams, adding to the overall costs of health care. In extreme cases availability of medical data can even be a matter of life or death. On the other hand, confidentiality of medical data is also important. Legislation requires medical facilities to observe the privacy of the patients, and states that patients have a final say on whether or not their medical data can be processed or not. Moreover, if physicians, or their EHR systems, are not trusted by the patients, for instance because of frequent privacy breaches, then patients may refuse to submit (correct) information, complicating the work of the physicians greatly. \ud \ud In traditional data protection systems, confidentiality and availability are conflicting requirements. The more data protection methods are applied to shield data from outsiders the more likely it becomes that authorized persons will not get access to the data in time. Consider for example, a password verification service that is temporarily not available, an access pass that someone forgot to bring, and so on. In this report we discuss a novel approach to data protection, Audit-based Compliance Control (AC2), and we argue that it is particularly suited for application in EHR systems. In AC2, a-priori access control is minimized to the mere authentication of users and objects, and their basic authorizations. More complex security procedures, such as checking user compliance to policies, are performed a-posteriori by using a formal and automated auditing mechanism. To support our claim we discuss legislation concerning the processing of health records, and we formalize a scenario involving medical personnel and a basic EHR system to show how AC2 can be used in practice. \ud \ud This report is based on previous work (Dekker & Etalle 2006) where we assessed the applicability of a-posteriori access control in a health care scenario. A more technically detailed article about AC2 recently appeared in the IJIS journal, where we focussed however on collaborative work environments (Cederquist, Corin, Dekker, Etalle, & Hartog, 2007). In this report we first provide background and related work before explaining the principal components of the AC2 framework. Moreover we model a detailed EHR case study to show its operation in practice. We conclude by discussing how this framework meets current trends in healthcare and by highlighting the main advantages and drawbacks of using an a-posteriori access control mechanism as opposed to more traditional access control mechanisms

    Med-e-Tel 2017

    Get PDF

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects
    • …
    corecore