9 research outputs found

    From condition-specific interactions towards the differential complexome of proteins

    Get PDF
    While capturing the transcriptomic state of a cell is a comparably simple effort with modern sequencing techniques, mapping protein interactomes and complexomes in a sample-specific manner is currently not feasible on a large scale. To understand crucial biological processes, however, knowledge on the physical interplay between proteins can be more interesting than just their mere expression. In this thesis, we present and demonstrate four software tools that unlock the cellular wiring in a condition-specific manner and promise a deeper understanding of what happens upon cell fate transitions. PPIXpress allows to exploit the abundance of existing expression data to generate specific interactomes, which can even consider alternative splicing events when protein isoforms can be related to the presence of causative protein domain interactions of an underlying model. As an addition to this work, we developed the convenient differential analysis tool PPICompare to determine rewiring events and their causes within the inferred interaction networks between grouped samples. Furthermore, we present a new implementation of the combinatorial protein complex prediction algorithm DACO that features a significantly reduced runtime. This improvement facilitates an application of the method for a large number of samples and the resulting sample-specific complexes can ultimately be assessed quantitatively with our novel differential protein complex analysis tool CompleXChange.Das Transkriptom einer Zelle ist mit modernen Sequenzierungstechniken vergleichsweise einfach zu erfassen. Die Ermittlung von Proteininteraktionen und -komplexen wiederum ist in großem Maßstab derzeit nicht möglich. Um wichtige biologische Prozesse zu verstehen, kann das Zusammenspiel von Proteinen jedoch erheblich interessanter sein als deren reine Expression. In dieser Arbeit stellen wir vier Software-Tools vor, die es ermöglichen solche Interaktionen zustandsbezogen zu betrachten und damit ein tieferes Verständnis darüber versprechen, was in der Zelle bei Veränderungen passiert. PPIXpress ermöglicht es vorhandene Expressionsdaten zu nutzen, um die aktiven Interaktionen in einem biologischen Kontext zu ermitteln. Wenn Proteinvarianten mit Interaktionen von Proteindomänen in Verbindung gebracht werden können, kann hierbei sogar alternatives Spleißen berücksichtigen werden. Als Ergänzung dazu haben wir das komfortable Differenzialanalyse-Tool PPICompare entwickelt, welches Veränderungen des Interaktoms und deren Ursachen zwischen gruppierten Proben bestimmen kann. Darüber hinaus stellen wir eine neue Implementierung des Proteinkomplex-Vorhersagealgorithmus DACO vor, die eine deutlich reduzierte Laufzeit aufweist. Diese Verbesserung ermöglicht die Anwendung der Methode auf eine große Anzahl von Proben. Die damit bestimmten probenspezifischen Komplexe können schließlich mit unserem neuartigen Differenzialanalyse-Tool CompleXChange quantitativ bewertet werden

    New Algorithms for Fast and Economic Assembly: Advances in Transcriptome and Genome Assembly

    Get PDF
    Great efforts have been devoted to decipher the sequence composition of the genomes and transcriptomes of diverse organisms. Continuing advances in high-throughput sequencing technologies have led to a decline in associated costs, facilitating a rapid increase in the amount of available genetic data. In particular genome studies have undergone a fundamental paradigm shift where genome projects are no longer limited by sequencing costs, but rather by computational problems associated with assembly. There is an urgent demand for more efficient and more accurate methods. Most recently, “hybrid” methods that integrate short- and long-read data have been devised to address this need. LazyB is a new, low-cost hybrid genome assembler. It starts from a bipartite overlap graph between long reads and restrictively filtered short-read unitigs. This graph is translated into a long-read overlap graph. By design, unitigs are both unique and almost free of assembly errors. As a consequence, only few spurious overlaps are introduced into the graph. Instead of the more conventional approach of removing tips, bubbles, and other local features, LazyB extracts subgraphs whose global properties approach a disjoint union of paths in multiple steps, utilizing properties of proper interval graphs. A prototype implementation of LazyB, entirely written in Python, not only yields significantly more accurate assemblies of the yeast, fruit fly, and human genomes compared to state-of-the-art pipelines, but also requires much less computational effort. An optimized C++ implementation dubbed MuCHSALSA further significantly reduces resource demands. Advances in RNA-seq have facilitated tremendous insights into the role of both coding and non-coding transcripts. Yet, the complete and accurate annotation of the transciptomes of even model organisms has remained elusive. RNA-seq produces reads significantly shorter than the average distance between related splice events and presents high noise levels and other biases The computational reconstruction remains a critical bottleneck. Ryūtō implements an extension of common splice graphs facilitating the integration of reads spanning multiple splice sites and paired-end reads bridging distant transcript parts. The decomposition of read coverage patterns is modeled as a minimum-cost flow problem. Using phasing information from multi-splice and paired-end reads, nodes with uncertain connections are decomposed step-wise via Linear Programming. Ryūtōs performance compares favorably with state-of-the-art methods on both simulated and real-life datasets. Despite ongoing research and our own contributions, progress on traditional single sample assembly has brought no major breakthrough. Multi-sample RNA-Seq experiments provide more information which, however, is challenging to utilize due to the large amount of accumulating errors. An extension to Ryūtō enables the reconstruction of consensus transcriptomes from multiple RNA-seq data sets, incorporating consensus calling at low level features. Benchmarks show stable improvements already at 3 replicates. Ryūtō outperforms competing approaches, providing a better and user-adjustable sensitivity-precision trade-off. Ryūtō consistently improves assembly on replicates, demonstrable also when mixing conditions or time series and for differential expression analysis. Ryūtōs approach towards guided assembly is equally unique. It allows users to adjust results based on the quality of the guide, even for multi-sample assembly.:1 Preface 1.1 Assembly: A vast and fast evolving field 1.2 Structure of this Work 1.3 Available 2 Introduction 2.1 Mathematical Background 2.2 High-Throughput Sequencing 2.3 Assembly 2.4 Transcriptome Expression 3 From LazyB to MuCHSALSA - Fast and Cheap Genome Assembly 3.1 Background 3.2 Strategy 3.3 Data preprocessing 3.4 Processing of the overlap graph 3.5 Post Processing of the Path Decomposition 3.6 Benchmarking 3.7 MuCHSALSA – Moving towards the future 4 Ryūtō - Versatile, Fast, and Effective Transcript Assembly 4.1 Background 4.2 Strategy 4.3 The Ryūtō core algorithm 4.4 Improved Multi-sample transcript assembly with Ryūtō 5 Conclusion & Future Work 5.1 Discussion and Outlook 5.2 Summary and Conclusio

    The role of visual adaptation in cichlid fish speciation

    Get PDF
    D. Shane Wright (1) , Ole Seehausen (2), Ton G.G. Groothuis (1), Martine E. Maan (1) (1) University of Groningen; GELIFES; EGDB(2) Department of Fish Ecology & Evolution, EAWAG Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum AND Institute of Ecology and Evolution, Aquatic Ecology, University of Bern.In less than 15,000 years, Lake Victoria cichlid fishes have radiated into as many as 500 different species. Ecological and sexual sel ection are thought to contribute to this ongoing speciation process, but genetic differentiation remains low. However, recent work in visual pigment genes, opsins, has shown more diversity. Unlike neighboring Lakes Malawi and Tanganyika, Lake Victoria is highly turbid, resulting in a long wavelength shift in the light spectrum with increasing depth, providing an environmental gradient for exploring divergent coevolution in sensory systems and colour signals via sensory drive. Pundamilia pundamila and Pundamilia nyererei are two sympatric species found at rocky islands across southern portions of Lake Victoria, differing in male colouration and the depth they reside. Previous work has shown species differentiation in colour discrimination, corresponding to divergent female preferences for conspecific male colouration. A mechanistic link between colour vision and preference would provide a rapid route to reproductive isolation between divergently adapting populations. This link is tested by experimental manip ulation of colour vision - raising both species and their hybrids under light conditions mimicking shallow and deep habitats. We quantify the expression of retinal opsins and test behaviours important for speciation: mate choice, habitat preference, and fo raging performance

    Sterile Insect Technique

    Get PDF

    Proteomics

    Get PDF
    Biomedical research has entered a new era of characterizing a disease or a protein on a global scale. In the post-genomic era, Proteomics now plays an increasingly important role in dissecting molecular functions of proteins and discovering biomarkers in human diseases. Mass spectrometry, two-dimensional gel electrophoresis, and high-density antibody and protein arrays are some of the most commonly used methods in the Proteomics field. This book covers four important and diverse areas of current proteomic research: Proteomic Discovery of Disease Biomarkers, Proteomic Analysis of Protein Functions, Proteomic Approaches to Dissecting Disease Processes, and Organelles and Secretome Proteomics. We believe that clinicians, students and laboratory researchers who are interested in Proteomics and its applications in the biomedical field will find this book useful and enlightening. The use of proteomic methods in studying proteins in various human diseases has become an essential part of biomedical research

    Annual Report

    Get PDF

    From Ecological Epitome to Medical Model: An investigation into Applications for the use of Daphnia in Heart Science.

    Get PDF
    The primary aim of this research was to determine whether Daphnia might become a model for cardiovascular concentration-response trials. This would provide a high throughput means of testing cardiac therapeutics without resort to small mammal trials. We found Daphnia are inappropriate in this context due to high population variance and sensitivity to small, subtle, environmental changes. A new aim was developed to determine whether beat-to-beat variation could be correlated with an individual’s response to toxic insult. Further, to develop more accurate and efficient means of gathering heart rhythm data by recording heart movement from whole live Daphnia. This opens the way to individualising cardio therapeutics; by correlating the stability of individual hearts with response to cardiac insult, regression analysis provides a means of finding a prediction tool. Daphnia are a convenient example here, but successful scoring systems might also be applied to the human heart via analysis of ECG readouts. Collecting signals from whole live Daphnia did not fulfil the goal of gathering heart data as this instead recorded limb movement. However, this provides a means of improving toxicology testing in aquatic ecology. This thesis offers three contributions to knowledge: 1. Daphnia are an inappropriate model for cardiovascular therapeutic dose-response trials due to extreme environmental sensitivities. 2. Baseline heart rhythm can be correlated with paired response to cardiac insult, with significance at the 0.01 alpha level, using an adjusted version of the Lyapnov equation; Finite Time Growth (Wessel, 2010). However, this is only if population variation is adequate. It is better applied to a natural in situ population than a homegenic lab population. 3. A novel technique for measuring Daphnia electromechanical movement records feeding limbs rather than the heart. This offers a novel and more efficient technique for aquatic ecotoxicology, where visual observation or films of the same are currently used
    corecore