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i

Deep below the surface of oceans and rivers, dragons are at home. Serpent
like creatures of various sizes, in control of currents, rain and waves alike.
Feared and encountered often by medieval sailors all over the world, they
seem to have no place in our modern world. But appearances are deceitful.
Revered as gods and worshiped by many they stay merely out of sight.

Only for those among us who need them, they make their presence known
by mysterious fires and lights that appear as a mark of their powers.

Dubbed St. Elmo’s fires in modern times they had many names in history.
Be it the Helene in ancient Greece, the Mǎzǔ huǒ of ancient china, or the
welsh spirit candles canwyll yr ysbryd, sailors have both feared and longed
for mark of the dragons across cultures and time. In Japan those fires are
simply known as Ryūtō. You may still search for them and maybe even find

the dragon beneath.

Also, there is a sloth.
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Abstract

Great efforts have been devoted to decipher the sequence composition of the genomes
and transcriptomes of diverse organisms. Continuing advances in high-throughput
sequencing technologies in the recent decades have led to a steady decline in
associated costs, facilitating a rapid increase in the amount of available genetic
data. Short-read sequencers produce very short but accurate reads. Long-read
sequencing on the other hand allows the creation of very long but error-prone reads.
Sequence assembly denotes the computational task of reconstructing a sequence
from a set of shorter, imperfect subsequences. Interest in algorithms for sequence
assembly remains high, especially related to emerging long-read sequencers.

In particular genome studies have undergone a fundamental paradigm shift in
recent years. With steadily decreasing sequencing costs, genome projects are no
longer limited by the cost of raw sequencing data, but rather by computational
problems associated with genome assembly. There is an urgent demand for more
efficient and more accurate methods in particular with regard to the highly complex
and often very large genomes of animals and plants. Most recently, “hybrid”
methods that integrate short- and long-read data have been devised to address this
need.

LazyB is a new, low-cost hybrid genome assembler designed specifically with
an emphasis on utilizing low-coverage short and long reads. LazyB starts from a
bipartite overlap graph between long reads and restrictively filtered short-read unitigs.
This graph is translated into a long-read overlap graph. By design, unitigs are both
unique and almost free of assembly errors. As a consequence, only few spurious
overlaps are introduced into the graph. Instead of the more conventional approach
of removing tips, bubbles, and other local features, LazyB extracts subgraphs whose
global properties approach a disjoint union of paths in multiple steps. First, a
consistently oriented subgraph is extracted, which in a second step is reduced to a
directed acyclic graph. In the next step, properties of proper interval graphs are
used to extract contigs as maximum weight paths. These paths are translated
into genomic consensus sequences. A prototype implementation of LazyB, entirely
written in Python, not only yields significantly more accurate assemblies of the
yeast, fruit fly, and human genomes compared to state-of-the-art pipelines, but also
requires much less computational effort. An optimized C++ implementation of the
pipeline under the name MuCHSALSA further significantly reduces resource demands.

Although RNA is derived from a DNA template, historic attempts to predict
transcriptomes based on sequence motifs of a genome have consistently failed. The
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complex nature of transcriptomes especially in eukaryotes requires the development
of dedicated algorithms. The advance of high-throughput sequencing of RNA
(RNA-seq) has facilitated tremendous insights into the transcriptomes of diverse
species. It enabled the detection and reconstruction of both expressed coding
and non-coding RNA transcripts. Yet, the complete and accurate annotation of
the complex transcriptional output of eukaryotic cells, including model organisms
such as human and mice, has remained elusive. One of the critical bottlenecks
in this endeavor is the computational reconstruction of transcript structures. Due
to technological constraints, RNA-seq can only produce reads significantly shorter
than the average distance between related splice events. Alternative splicing is
therefore not generally well represented. RNA-seq underlies a great number of
further challenges due to high noise levels and other biases influencing results,
especially regarding transcript coverage.

Ryūtō is an original framework for reference based transcriptome assembly
and quantification. Reads are not assembled as they are, but rather mapped to
a pre-existing genomic reference genome to improve accuracy. Ryūtō introduces
several new and improved algorithms in a novel workflow. Using common splice
graphs, information on reads spanning multiple splice sites or on paired-end reads
bridging distant transcript parts is lost. Ryūtō implements an extension of the
common splice graph framework that combines aspects of overlap and bin graphs
and makes it possible to efficiently use such additional information content to
the fullest extent. Graph features are unambiguously labeled by their respective
coverage. Coverages are made uniform via heuristics followed by min-cost network-
flows. Any network-flow like path decomposition now yields a possible set of
transcripts and their coverage. Using phasing information from multi-splice and
paired-end reads, nodes with uncertain connections are decomposed step-wise via
Linear Programming. The most likely path-set is extracted out of the such simplified
graph. Ryūtōs performance compares favorably with state-of-the-art methods on
both simulated and real-life datasets. Despite ongoing research and our own
contributions, progress on traditional single sample assembly has brought no major
breakthrough. Results appear to be locked at a reasonable but unsatisfactory level.
Multi-sample RNA-Seq experiments provide more information than single sample
datasets and thus constitute a promising area of research. Yet, this advantage
is challenging to utilize due to the large amount of accumulating errors. An
extension to Ryūtō enables the reconstruction of consensus transcriptomes from
multiple RNA-seq data sets, incorporating consensus calling at low level features.
Benchmarks show stable improvements already at 3 replicates. Ryūtō outperforms
competing approaches, providing a better and user-adjustable sensitivity-precision
trade-off. Ryūtō consistently improves assembly on replicates of the same tissue
independent of filter settings, even when mixing conditions or time series. Benefits
can also be demonstrated for differential expression analysis. Ryūtōs approach
towards guided assembly, i.e. utilizing a user defined set of known, likely true,
transcripts to increase accuracy, is equally unique. It allows the user not only to
adjust results based on the quality of the guide, but also enables the use of a
reference for multi-sample assembly.
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Figure 1: A timeline of important milestones in genome assembly, illustrating major achievements ranging from the
very first partial sequenced strand of DNA to complex and large genomes in the present day.

1.1 Assembly: A vast and fast evolving field

Ever since deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) had been
established as the carrier of genetic information in the 1940s and subsequently
structurally described and linked to the make-up of proteins in the 1950s, the
decoding of first genes and soon whole genomes has become a focal point of
research. Since then, our knowledge of the molecular basis of life has increased
tremendously by technical breakthroughs from physics, chemistry, biology, and
computer science. Steady improvements in methodology allowed the sequencing of
genomes of increasing complexity and size (Fig. 1). Demands on accuracy increased
simultaneously. While early assembly efforts relied solely on manual data handling,
automated systems were developed in tandem to cope with the surge in produced
data. With the advent of high throughput technologies and sinking associated costs,
sequencing has become ubiquitous in research of biological systems and researchers
can choose from a vast library of bioinformatics tools and pipelines. As of this
thesis, computational aspects may well even dominate the costs associated with
projects, especially for larger and complex genomes.

The assembly of DNA or RNA genomes is a core task for modern genomics,
with numerous applications relying on preferably accurate and complete sequence
references. This includes also the annotation of genomes, in itself an important
foundation for many tools. Notably, the related task of transcriptome assembly
also benefits greatly from an existing genomic reference. Combined, genome and
transcriptome serve as the corner stones of genomics. Applications for sequencing
and assembly are thus both extensive and varied. Following, we will give a broad,
but in no way complete, overview of relevant topics:

● comparative genomics: Genomes can be compared both on an inter- as well
as intra-species level to study evolutionary changes and taxonomic relation.
Common genes in model organism are linked to human equivalents for medical
testing. Sets of universal genes for whole classes of organisms are routinely
used to estimate genome completion. The minimal core set of genes has long
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been an object of research to broaden our understanding of the origin of life.

● disease detection and modeling : A predisposition to illnesses such as for many
forms of cancer and diabetes has been linked to genetic markers. Differences
in gene expression between tissues can serve as early warning systems in
preventive medicine and suggest mechanisms of illnesses. On the way to
personalized medicine, accurate annotation of sites and changes is vital. The
classification of cancer genomes to determine treatment has become common
practice. Pathogen genomes yield insights into interactions to the host and
boost development of treatments or vaccines.

● ancestral studies: The reconstruction of phylogenetic trees yields valuable
insights into evolution. Measuring population and species variation gives
insight into among others migration, environmental pressure, and past random
drift events.

● genomic regulation and interaction: Not just the presence of a gene is relevant
for its function but also its abundance and linked interactions. Determining the
transcriptome structure and quantifying gene expression is an essential direct
measure for activity. Numerous mechanisms exist for gene regulation including
DNA methylation, DNA-protein interactions and regulatory (noncoding)
RNA. Tissues differentiate based on regulatory elements and also embryonic
development is guided by regulatory processes.

The methods developed in this thesis can directly or indirectly benefit all tasks
listed above.

1.2 Structure of this Work

The contributions of this work are manifold. In broader strokes, this thesis is
concerned with the topic of assembly. In more detail, this entails the development
of two novel methods, one for each genome and transcriptome assembly.

LazyB is a tool developed for the cost effective de novo assembly of genomes.
It was designed as a hybrid assembler combing short-read and long-read data,
specializing on low-coverage projects.

Ryūtō enables the assembly of eukaryotic transcriptomes based on short-read
RNA-seq and a reference genome. Next to standard single dataset assembly, Ryūtō
seamlessly integrates also the functionality of a meta assembler, combining multiple
datasets into a consensus assembly.

The structure of this thesis is organized as follows. The first Chapter (In-
troduction) introduces relevant mathematical, technical and biological concepts.
Algorithms for assembly depend on the biological nature of target transcriptomes
and genomes. Sequencing technologies, in themselves dependent on the chemical
and biological properties of genetic material, play an integral role in algorithm
design. This chapter offers a brief overview of these aspects. Furthermore, the
introduction gives an overview of available algorithms and tools for both transcrip-
tome and genome assembly, next to a discussion of essential metrics and procedures
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for benchmarking results. A brief introduction to transcript expression analysis is
included as a typical application of transcriptome assembly.

Chapter 3 (From LazyB to MuCHSALSA - Fast and Cheap Genome Assembly)
gives a detailed description of the LazyB pipeline. Benchmarks for key model
organism are provided. Lastly, MuCHSALSA as a user friendly and fast continuation
of the LazyB concept is introduced. This chapter is based on publications Gatter,
Löhneysen, Drozdova, et al. (2020) and Gatter, Löhneysen, Fallmann, et al. (2021).

Chapter 4 (Ryūtō - Versatile, Fast, and Effective Transcript Assembly) describes
the Ryūtō pipeline in two parts. The Ryūtō core method pertains to the assembly
of single datasets. A straight forward extension enables the assembly of multiple
datasets into a consensus transcriptome. Although firmly rooted in its reference-
driven framework, Ryūtō can be augmented by de novo concepts. A novel concept
for guided assembly allows to adjust methods to the quality of the presented
transcriptome reference, both for single and meta assembly. Benefits for follow up
applications are demonstrated for differential expression analysis. Benchmarks for
all parts are provided accordingly. This chapter is based on the publications Almo
et al. (2020) and Gatter and Stadler (2019, 2021).

Finally, a summary of results is presented in Chapter 5 (Conclusion & Future
Work), highlighting novel contributions to the field. Open questions and associated
perspectives for future research are discussed.

The publications Bašić et al. (2019), Parra-Rincón et al. (2021), and Prohaska
et al. (2017) were created in the course of PhD studies, but do not contribute
significantly towards the here presented content.

1.3 Available

The software developed in the course of this thesis is available via public repositories
and other public channels. Ryūtō is available on GitHub https://github.com/
studla/RYUTO and as a BioConda package ryuto. LazyB is available on GitHub
https://github.com/TGatter/LazyB.

https://github.com/studla/RYUTO
https://github.com/studla/RYUTO
https://github.com/TGatter/LazyB
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The central dogma of molecular biology describes the flow of genetic information
within biological systems. Coined in the 1950s and refined by Crick (1970), it was
first derived from bacteria (and therefore prokaryotic organisms). The cornerstones
can be summarized as follows: Every living cell comprises desoxyribonucleic acid
(DNA). Information is stored in units as disjoint regions called genes. DNA genes
are transcribed to ribonucleic acid (RNA) which is in turn translated to proteins.
Of course, the reality is more complex. As was already suggested in the original
papers and by now confirmed by a vast number of experiments, a myriad of
interactions regulate, control, or even modify this core process. Examples include
reverse transcription (Verma, 1977), were RNA is transferred back to DNA, DNA-
DNA interaction (Yoo and Aksimentiev, 2016), and RNA replication without the
involvement of DNA (Ahlquist, 2002). A subclass of duly dubbed non-coding RNA
is not translated to proteins but rather acts as regulatory elements (Cech and Steitz,
2014). Gene regions may overlap. Notably, eukaryotic genes are complex and might
encode for multiple distinct RNAs due to post-transcriptional modification.

While this work is only indirectly concerned with regulation, the diversity of
genomic features needs to be carefully considered during method design, especially
relating to RNA research. While many optimizations can be made for specific
classes of genomic elements, most prominently subtypes of RNA, such applications
generally strictly limit the use case to respective features. Furthermore, such
optimizations are only available for few, well studied cases. The aim of this thesis is
to explore the general case, rather than specialized areas. While it is currently not
conceivable to develop methods without any technological or computational bias,
choices need to be made consciously and open to the user. Consequently, as a key
design goal, we aim to remain agnostic to genomic context whenever reasonable.
While aiming to combine known restrictive optimizations for RNA classes into a
common framework might be a worthwhile area of research, this approach would
inevitable incorporate the existing bias of these methods and exclude the detection
of novel features.

To understand the fundamentals of assembly for both RNA and DNA, we first
need to visit the biological basis of both. Assembly methods are further dependent
on available sequencing technologies, whose output are the primary basis for method
design.

2.1 Mathematical Background

Assembly algorithms in general and the methods developed in this thesis in specific
rely heavily on graph theory among other mathematical concepts. This chapter will
introduce needed definitions and concepts to be applied to biological applications
in the course of this thesis.

2.1.1 Strings
Genetic data is commonly represented as strings, defined as a sequence of characters
over an alphabet Σ. For a string s ∈ Σl of length l we write ∣s1∣ = l1. The i-th
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position of a string may be accessed as s[i]. A substring is an interval from i-th to
including the j-th position of s with 1 ≤ i ≤ j ≤ ∣s∣. We write s[i, j] or simply the
interval [i, j] in context. We say a string v is a substring of another string w if
there exists a region w[i, j] = v. A suffix of s is a substring s[i, ∣s∣]. A prefix is a
substring s[1, i]. Two strings v and w overlap if there exists a non-empty substring
that is a suffix of v and a prefix of w or vice versa. A complement exists for each
string based on biological sequences, defined as a bijective function c ∶ Σ→ Σ. The
reverse of a string inverts its character order, i.e. sr ∶= s[∣s∣]s[∣s∣ − 1] . . . s[1]. The
reverse complement applies both function s ∶= c(sr).

2.1.2 Graphs
Graphs are formally defined as tuples G = (V,E) of sets, where V is a set of
vertices, and E a set of associated edges. A graph G′(V ′,E′) is called a subgraph
of G if V ′ ⊆ V and E′ ⊆ E. It is an induced subgraph if all edges in E connecting
nodes in V ′ are retained in E′. In undirected graphs the elements of E consist
of 2-element subsets of V . For directed graphs E ⊆ V × V . An edge from u
to v (u, v ∈ V ) is written as uv ∈ E. On undirected graphs uv = vu. Both
nodes and edges may be assigned labels, for assembly typically linking them to
a string of the represented genetic sequence or observed counts of respective
features. The degree of a node is its number of connected edges. For directed
graphs indegree and outdegree can be differentiated, respectively counting incoming
and outgoing edges. We define the neighborhood of a node as the set of nodes
connected to it N(v) = {u∣uv ∈ E or vu ∈ E}, and accordingly the in-neighborhood
N−(v) = {u∣uv ∈ E} and out-neighborhood N+(v) = {u∣vu ∈ E}. A walk is a
sequence of nodes p = v1, . . . , vn such that all consecutive nodes are connected by
an edge. In a path we additionally requiere that no node is contained twice. A
cycle is a path of at least 3 vertices with an additional edge vnv1 connecting both
ends. We call graphs without cycles acyclic. A graph is connected if for every pair
of nodes there exists a path connecting both. G is a tree if it is both connected
and acyclic.

For assembly as explored in this thesis, graph theoretical questions fall into 3
broader categories. (i) Biological function and available types of data motivate
the core design of the graph used for assembly. Computational resources may put
further constraints on feasible designs. (ii) Based on bias and noise in the biological
background, graphs need to be edited to reduce errors, i.e. false positive edges and
nodes are identified and removed. (iii) Typically, assembly products are represented
as walks or paths in the graph that are determined by some mathematical model.

Naturally, design in (i) informs viable choices for (ii) and (iii). Choices for graph
trimming in (ii) are typically made based on data labeled to nodes or edges rather
than on graph theoretical concepts alone. Nevertheless we require a set of more
advanced definitions in the course of this thesis.

A spanning tree is a subgraph of an undirected graph G that is a tree and
contains all vertices in V . For every edge e = uv not included in the spanning tree
T a unique cycle is induced including e and the unique path in T from u to v. In
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fact, this set of cycles defines a basis enabling the enumeration of all possible cycles
in the graph.

The topological order of a directed, acyclic graph defines a linear ordering of
its nodes such that for every edge uv the node u appears before v.

We call an edge uw transitive if the graph contains a path from u to w via a
third node v (u ≠ v, v ≠ w,u ≠ w). The transitive reduction of G is a subgraph G′

containing all nodes and exactly all non-transitive edges. Inversely, the transitive
closure of G is a graph G∗ with the same node set, but all edges uv iff there is a
path from u to v in G.

An in particularly important class of graphs in this thesis are interval graphs and
proper interval graphs. True to their name, interval graphs encompass the class
of all graphs that can be constructed from a set of intervals as follows: A node is
created representing each interval. Edges connect two nodes if their corresponding
intervals overlap. An interval graph is denoted proper if no interval is contained
in another. Although defined on undirected graphs, proper interval graphs allow a
directed interpretation. Given a total order between intervals, edges are created
as before and directed towards the greater interval. The biological interpretation
is straight forward. During assembly fragments of a genome are combined to
recreate its full content (see Chapter 2.3). As genomes are generally represented as
a linear sequence, each fragment represents an interval in this system. An overlap
in genomic coordinates signifies also an overlap between fragments.

A second useful concept is that of flow networks. Typically, each edge (and
possibly also node) in assembly graphs is associated by an integer value relevant to
the assembly based on the count of how often a feature was observed. Network
flows serve to estimate or correct these values.

We define a non-negative function c ∶ V ×V → N0 as the capacity of each edge.
For a directed graph G, we choose nodes s as the source and t as sink. The flow
network then is a 4-tupel (G, c, s, t). A function f ∶ V × V → N0 is called a flow in
this network if the following two conditions are met: (1) 0 ≤ f(e) ≤ c(e) ∶ ∀e ∈ E
and (2) ∑

u∶uv∈E
f(uv) = ∑

w∶vw∈E
f(vw) ∶ ∀v ∈ V ∖ {s, t}. Typically a maximal flow is

sought.
For minimum-cost flows a function a ∶ (V × V ) × N0 → R is added and we

seek a maximal flow minimizing ∑e∈E a(e, f(e)). If a is linear, a solution can be
found efficiently in polynomial time. Convex cost functions are admissible by a
pseudo-polynomial graph transformation to a multi graph allowing multiple edges
between the same pairs of nodes. For example assume a simple quadratic function
a(e, x) = x2. We transform the optimization problem to an equivalent with linear
costs per edge. For this, we replace each edge by c(e) new edges e1, . . . , ec(e) and
define c′(ei) = 1 for each. The new cost function a′(ei, x) = xi2 is linear as i is a
constant for each edge.

Based on flow conservation as required in (2), each flow can be decomposed to
a set of path. Formally, a set of paths P1, . . . , Pn, each starting in s and ending in
t, exists with associated weights w1, . . . ,wn such that for every edge uv ∈ E the
following condition holds:

f(uv) = ∑
i∶uv∈Pi

wi
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This property is especially useful in step (iii).
Other methods instead require a path cover, a set of directed paths such that

every node is contained in at least one path, for (iii). Please note that a flow
decomposition does not necessarily define a path cover due to the possibility of
0-flow edges.

2.1.3 Linear Programming
Linear programming (LP) allows the optimization (minimization or maximization)
of a linear function, constrained by a set of linear equalities and inequalities. Every
LP formulation may be transformed to the canonical form:

maximize cT x
subject to Ax ≤ b
and x ≥ 0

Here x is a vector of variables to be determined. The vector c defines the coefficients
of the objective function, whereas A and b define the set of constraints. General
LPs may be solved in polynomial time. In practice the simplex algorithms that was
suggested by G. B. Dantzig in 1947 is commonly used. Although its worst case is
exponential, it behaves like a fast polynomial algorithm in practice (Bertsimas and
Tsitsiklis, 1997).

In this thesis we use LP to decompose a network flow to a set of paths,
constrained to a set of known, local connections. Flows naturally require the use of
integer values. However, LP constrained to integer values has been shown to be
NP-Hard (Bertsimas and Tsitsiklis, 1997). We therefore approximate the solution
by standard LP in R and then round values to the next smaller integer.

2.1.4 Recall and Precision
Assembly (in particular for transcriptomes) as implemented in this thesis can
be interpreted as a classification task. We can therefore rely on the associated
performance measures for benchmarking. Let TP be the number of true positive
predictions, i.e. in the context of this thesis the number of correctly assembled
sequences relating to a reference. The number of false positive FP predictions
equates to the number of assembled sequences not present in the reference. Last,
we define FN as the number of sequences in the reference not included towards
TP .
Then we define:

Precision = TP

TP + FP

Recall = TP

TP + FN
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The F-Measure can be used as a compound metric of both. In this thesis we restrict
use to the F1-measure acting as a harmonic mean of recall and precision:

F1 =
2

recall−1 + precision−1 = 2 ⋅ precision ⋅ recall
precision + recall

= TP
TP + 1

2(TP + FN)

2.2 High-Throughput Sequencing

The term high-throughput sequencing (HTS) has emerged as a collective descriptor
for diverse sequencing technologies that have evolved continuously for the past
decades. In its core stands the promise of low cost sequencing of DNA compared
to preceding technologies based on dye-terminators such as Sanger sequencing
(Schuster, 2008) that found their limits with the advance of the human genome
project (Collins, Morgan, and Patrinos, 2003). To highlight this change, the labels
of next-generation sequencing (NGS) or second-generation sequencing have been
assigned to emerging methods. While properties of NGS platforms vary, they
generally produce shorter (35-700 base-pairs (bp)) reads. In the past decade,
long-read sequencing has emerged to overcome this limitation, albeit at increased
cost and at lower sequencing accuracy and depth. While the label NGS is rarely also
used for long-read sequencers, the term third-generation sequencing (TGS) is more
commonly found. HTS is sometimes restrictively used to only include short-read
sequencing. To avoid confusion in this thesis we restrict use of NGS and TGS to
refer to only short-read sequencing and long-read sequencing, respectively, with
HTS including both.

2.2.1 The building blocks of life
DNA

Genetic information within cells is encoded as DNA, consisting of a sequence of
only four nucleotides Adenine (A), Cytosine (C), Guanine (G), and Thymine (T).
Patterns of nucleotides encode for all functionality of organisms. DNA sequencing
describes the process of determining the exact arrangement of nucleotides for a
given sample of DNA. Genome sizes are frequently measured as the number of
nucleotide basepairs, often shortened to a unit as bp (basepairs) or just b (bases)
with unit prefix.

Next to physical and chemical limitations, a number of characteristics of genomes
need to be taken into account for the design of sequencers and thereupon dependent
assemblers. The following paragraphs give a brief overview over the most relevant
considerations among needed terminology.

DNA is organized as a double-helix with two complementary strands. Nucleotides
form consistent bonds at A pairing T and G pairing C. Strands have a fixed, to each
other inverse, reading direction by convention named 5’ to 3’ as respectively start
to end. Strands, and paired regions, are therefore reverse complements of each
other. Sequencers will arbitrarily sequence either strand for each DNA fragment.
Genes may derive from either strand.
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DNA is arranged in long molecules called chromosomes. Eukaryotic organisms,
but also other sexually reproducing organisms and some retroviruses, store multiple
homologous sets of chromosome per (somatic) cell. Such organisms are referred
to as polyploid. Most eukaryotes, among them humans, are diploid, therefore
containing two sets. Examples of higher ploidy include coffee (tetraploid), tobacco
(tetraploid) and bread wheat (hexaploid). Homologous chromosomes may (locally)
differ significantly depending on species. Sequenced reads may originate from all
chromosomes.

Genome sizes vary widely between organism (Gregory, 2005). Even within
animals the known range is vast with the nematode Pratylenchus coffeae at 19.67
Mbp (Burke et al., 2015) and the lungfish Protopterus aethiopicus 130 Gb (Hidalgo
et al., 2017) at the currently known ends of the spectrum. Eukaryotic genomes
vary by more than a factor of 60,000 (Garcia et al., 2014). The human genome
is with 3.1 Gb of average size in this spectrum. Computational and technological
demands rise strongly with increasing genome sizes.

Genomes are subject to a variety of evolutionary pressures. Commonly, genomes
consist of sequence stretches that are nearly identical to sequences present elsewhere
in the genome. Examples include gene duplication, but also genomic repeats of
unknown function and of highly diverse sizes and repetition counts. The human
genome is estimated to be comprised to more than 50% of such repetitive ele-
ments. When sequenced fragment sizes are smaller than repeating motives, correct
assignment of reads in the genome during assembly is challenging. Ideally, reads
should span whole repeat regions rather than only a single repeat or even less. Long
repeats are therefore naturally particularly hard to resolve. As sequencers generally
do not provide uniform coverage, this metric is not sufficiently informative towards
read assignment.

RNA

In RNA molecules Thymine is replaced by Uracil (U). RNA is commonly single
stranded and less stable. It degrades rapidly as an important function of cell
regulation. Eukaryotic genes are complex sites. Composition and elements vary,
depending on a great number of factors. Most essentially and common to most
eukaryotic transcripts, translated or otherwise active regions called exons are
interrupted by introns. Primary transcripts are transcribed without changes from
their respective template DNA and further processed to mature RNA. Introns
are excised and the respective ends of the neighboring exons ligated to close the
nascent gaps in a process called splicing (see also Fig. 4). If multiple possible
arrangements of exons exist for one gene, we say variation derives of alternative
splicing (AS), and each variant mature transcript constitutes an isoform. The
splicing process is non-random and well regulated by complex ‘splicing programs’.
Commonly, sub-regions may be both intronic and exonic, meaning they can be both
spliced out or retained depending on a respective isoform. Examples for AS include
alternative start- or end-sites, extending, shortening, skipping, or including exons,
or retaining intron sequences (see Fig. 2). AS has been established as a key factor
in cell regulation, e.g. in gene regulation in embryonics (Salomonis et al., 2010)
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Figure 2: Examples of prevalent alternative splicing categories. Exons are represented by colored boxes and introns
by a black line. Splices are indicated by dashed lines at the top or bottom of each exon chain. Black and red
lines constitutive alternative splicing events. The final products after splicing are represented to the right. Multiple
categories of alternative splicing may be present in the same isoform and different isoforms on the same set of exons
exhibiting different categories of alternative splicing often overlap in realistic genes.

or diseases (E. Kim, Goren, and Ast, 2008; Morillon and Gautheret, 2019; Tazi,
Bakkour, and Stamm, 2009; Z. Wang, Gerstein, and Snyder, 2009).

Eukaryotic transcriptomes exhibit a high degree of diversity (Blencowe, 2006)
that is not limited to higher Eukaryotes (Z. Xu et al., 2009). Genome-wide studies
on human tissue revealed that 95% of protein coding multi-exon genes and 30%
of non-coding RNAs undergo alternative splicing (Cabili et al., 2011; Pan et al.,
2008). Similar ratios have been found also for non-human targets, such as mice
(Mortazavi et al., 2008).

While the abundance of DNA remains constant1 – and errors in coverage
uniformity only arise within the execution of the sequencing protocol – the abundance

1Constant here is used in the sense that the amount of available DNA for sequencing does
not vary depending on the genomic position or feature. Reads are accordingly produced uniformly
over all genomic positions. Based on duplications and deletions within the genome some sequence
motifs will appear to have higher or lower coverage, although regions have the same base coverage.
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Figure 3: Schematic overview of DNA-Seq. DNA is extracted and fragmented. Resulting fragments are prepared
according to the library and reads are sequenced, e.g. by paired-end sequencing. Details such as optional amplification
are omitted.

of RNA transcripts varies naturally. Differences in the abundance are both diverse
and often substantial, even between isoforms of the same gene. Transcription
and arising copy numbers of isoforms are governed by a complex set of regulatory
elements and conditional among others to environmental stress, developmental
status, celltypes, or illness. Actively transcribed genes are said to be expressed at
the level of their abundance. Lowly expressed transcripts may not be captured by a
typical sequencing setup, even at high coverages. RNA-seq experiments indicate
that many rare isoforms have evaded annotation, and typically sized RNA-seq
experiments miss out significant portions of low abundant spliceforms (Nellore et al.,
2016; Sen, Doose, and Stadler, 2017).

Under ideal conditions sequencing protocols should only produce reads from
mature transcripts. However, contamination with incompletely spliced, un-mature
RNA is common and problematic. True intron retention events may be indistin-
guishable to such noise. Furthermore, splicing errors and other aberrant products
of the transcription process may create misleading, but e.g. due to maladaption
consistent, signals (Saudemont et al., 2017; Van Bakel et al., 2010). The generally
high number of very low abundant spliceforms has been attributed to such effects,
disputing their functional significance (Morillon and Gautheret, 2019). Yet, aberrant
splicing has been established as a key factor in diseases including cancer (Cummings
et al., 2017; Sveen et al., 2016).

When multiple conditions are sequenced, differentially expressed transcripts,
and therefore also genes, can be identified by statistical evaluation.

2.2.2 Short-read Sequencing
Researchers can rely on a great variety of available platforms for short-read sequenc-
ing, including HiSeq and NovaSeq from Illumina, SOLiD and Ion Torrent from
Thermofischer, 454 from Roche, and GeneReader from Qiagen. Despite technical



16 Chapter 2. Introduction

Figure 4: Schematic overview of RNA-Seq. A gene is transcribed, including introns, from a single strand of double
stranded DNA to pre-RNA. Introns are removed – spliced – to derive mature RNA. Mature RNA is extracted from
the cell and fragmented before reverse transcription to cDNA. The resulting cDNA framents are sequenced like
genomic DNA would, e.g. by a paired-end sequencing. See also Section 2.2.1.

differences (see Goodwin, McPherson, and McCombie (2016) for a comprehensive
review), the overall workflow is consistent for all providers (Fig. 3): (1) First, the
sample is collected and DNA is extracted. (2) Molecules are fragmented, as they
would otherwise be too long for sequencing. (3) Fragments are amplified, e.g. via
PCR, to increase the level of available material. (4) Reads of a fixed size and layout
are produced from the amplified material by the respective sequencing platform.
Although RNA cannot be directly sequenced by either platform, the workflow can be
extended for this purpose. RNA is reverse-transcribed to cDNA before amplification
(Fig. 4). Due to the already shorter size of molecules, fragmentation may be
skipped in some protocols or only carried out on longer transcripts. Amplification
free sequencing protocols (Kozarewa and Turner, 2011) have also been suggested,
but remain rare as a large amount of initial DNA is required. Details like adapter
ligation are omitted here as they are only of secondary relevance for this thesis.

Next to typical, and especially cheap, single-end sequencing where only one
read is produced per DNA template, nearly all platforms also allow paired-end
sequencing. Reads here are created in strict pairs, as the name suggest, with reads
originating from opposite ends and strands of the DNA template (Fig. 5). The
connecting region between read-pairs remains unsequenced, but the approximate
distance between them, the insert size, is known. Paired-end reads are indispensable
for assembly, owing to the observation that pairs by construction originate in close
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Figure 5: During paired-end sequencing reads are produced from both strands of the fragment in opposite directions.
Fragment length determines the distance between both reads, we say their insert size. The unsequenced region
between a read-pair is affected by read length and insert size.

proximity and from the same genomic region (more in Chapters 2.3.2 and 2.3.3).
Effective transcriptome assembly and quantification relies on the correct assign-

ment of transcripts to their strand of origin. Yet, this information is lost in default
RNA-sequencing protocols. Specialized, strand-specific kits allow to retain this
information.

Short-read sequencing platforms, although fairly diverse, do not only share a
basic workflow, but also deliver comparable results. In a typical project, reads
between 50 - 200 bp in length are produced, although Illumina states 300 bp as
the technical maximum. Platforms such as 454 and Ion Torrent can reach an
average read length of 700 bp and 400 bp, respectively, but only at associated
cost increases. The accuracy of platforms is equally similar. The error rate for all
methods is commonly stated at < 1% (Fox et al., 2014; Goodwin, McPherson, and
McCombie, 2016). However, error types differ. On 454 and Ion Torrent insertion
and deletion (InDel) errors dominate, a major drawback for followup applications.
Illumina produces predominantly general base substitutions. SOLiDs error rate
has been stated to be as low as 0.01%, and therefore on average well below the
competition. This improvement is possible as each base is probed multiple times.
However, there is evidence of a sensitivity and specificity trade-off purging rare true
variants (Goodwin, McPherson, and McCombie, 2016). SOLiD also shows a general
error bias for AT-rich regions. Consensus sequencing strategies to improve base
accuracy by re-sequencing the same fragment multiple times – here also suitable for
rare variant discovery – exist also for other short-read platforms (Salk, Schmitt, and
Loeb, 2018). Due to increased costs their use is generally limited to few applications
where accuracy is essential. Overall, error rates have been found to vary more
strongly between samples on the same platform than between platforms (Stoler
and Nekrutenko, 2021).

It is worth to take note that reads of all platforms are both shorter and less
accurate than the preceding standard Sanger sequencing which could manage up
to 1, 000 bp per read at only a 0.001% per base error rate (Shendure and Ji, 2008).
Yet the increase in throughput at reduced costs has made this switch necessary.

Throughput and associated costs pose the strongest distinguishing category
between methods. Illumina dominates the current market, not only because of
its stable technology, but also because it offers a wide range of platforms for the
diverse needs of researchers at a competitive price point.

Investigating optimal error correction or reduction strategies for individual
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sequencing platforms is an important and ongoing research goal. However, this
topic is outside of the scope of this thesis. The error profile introduced by short-read
assemblers is ultimately affected not only by sample handling and storage, but also
the specific steps of the sequencing protocol and the countless variations thereof,
combined with influences of the organism itself, such as genomic composition.
Furthermore, sequencing is only one of many sources of noise for both genome and
transcript assembly. Assemblers need to take a conservative but robust approach
to sequencing bias and noise to handle data from a broad set of available platforms
and organisms.

2.2.3 Long-read Sequencing
Although short-read platforms delivered on their promise to enable the cost-effective
sequencing of large genomes, read lengths even for paired-end technologies are
insufficient to bridge and therefore resolve complex elements such as long repeats,
gene clusters, or copy number alterations. Long-read platforms seek to overcome
these limitations. As a further notable difference, long-read sequencers do not
generally rely on amplification, and therefore avoid related biases and allow to
sequence also base modifications. Long range PCR may nevertheless be used, albeit
at the cost of a possible degradation of read lengths.

Pacific Biosciences (PacBio), as the first available platform to produce reads
exceeding several kilobases, has sparked high hopes to revolutionize sequence as-
sembly. Single-molecule real-time (SMRT) sequencing, such as used by PacBio,
utilizes zero-mode waveguides, a structure small enough to observe the polymerase
activity on individual bases. A single strand of DNA is moved through the waveg-
uide and polymerase activity is monitored continuously with a laser and camera
system. Bases are recorded depending on the color profile induced by the fluores-
cent modification of incorporated nucleotides. Sequencing quality has increased
significantly over the last decade. Commonly, PacBio is noted to produce reads
at an average length of 10-16kb (e.g. Ardui et al. (2018)), with newer platforms
and chemistry increasing the average up to 30kb (Amarasinghe et al., 2020). The
accuracy of single-pass reads is estimated at an, especially in comparison to short
reads, high error rate of 13% (Amarasinghe et al., 2020; Ardui et al., 2018). Errors
are randomly distributed, with dominating insertions and deletions. Consequently,
PacBios ambition has shifted towards improving the accuracy of produced reads.
Current benchmarks indicate that a consensus accuracy of more than > 99% is
achievable for coverages of 5-fold or more. HiFi PacBio reads (Wenger et al., 2019)
derived from repeated sequencing of circularized elements rival short-read accuracy
(<1% errors). However, as all repetitions need to be sequenced in a single pass,
HiFi reads were historically much shorter, averaging approximately 3 kb (Goodwin,
McPherson, and McCombie, 2016). According to the manufacturer, with the latest
chemistry an average read length of 100kb is possible for consensus sequencing,
massively improving the average HiFi consensus read-length to up to 25 kb. To
this date, this is only possibly at vastly increased costs, however, and such data
remains rare.
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As an alternative and competing platform, the first commercially available
sequencer using Nanopore technology was introduced in 2014 with the MinION
by Oxford Nanopore Technologies (ONT). This method relies on measuring the
changes in electrical conductivity generated as DNA or RNA strands pass through
a biological pore. Availability, speed and high affordability by, in comparison, cheap
consumables, have attracted much research within the genomics and bioinformatics
communities in recent years (e.g. Jain et al. (2018) and Lu, Giordano, and Ning
(2016)). Other companies, namely Quantapore and Stratos, currently attempt to
create their own nanopre based solutions, but have not released their products to the
public as of this thesis. As all components are still undergoing rapid development,
regular improvements in the production cycle can be expected, with older ONT
datasets exhibiting slightly worse quality than newer ones. ONT currently produces
reads at an average length of 10-30 kbp in practice, with some reads exceeding
> 100 kbp (Amarasinghe et al., 2020). Reads above 1 Mbp occur frequently, with
a current record observation of 2.3 Mbp (Payne et al., 2019). Feasible read lengths
are largely limited by the ability to provide long intact molecules, posing unique
challenges for sample preparation. Benchmarks show a high variance between 25%
to 5% in per base error rates for single pass reads, but an average accuracy at
around 90% depending on the used basecaller, i.e., similar to PacBio (Wick, Judd,
and Holt, 2019). With the very recent release of the “R10” chemistry ONT has
announced another step towards improving single pass accuracy, claiming only an
average error rate of 5%. Like on PacBios SMRT, errors are mainly characterized
by inserts and deletes (in homopolymer regions). They occur primarily random,
but not uniformly distributed. Nevertheless, consensus accuracy is also comparable
to PacBio. As a notable difference, ONT does not support proper consensus
sequencing for individual reads. As molecules cannot be circularized before entering
the Nanopore, at most two passes over the same DNA template are possible by
connecting both strands with a hairpin connector (Salk, Schmitt, and Loeb, 2018).

2.3 Assembly

With over two decades of research, assembly methods constitute a well studied topic.
Nevertheless, many open questions remain, especially pertaining to advancements in
computing and sequencing technologies. Within this thesis, we will explore several
advancements to previous assembly approaches. Assembly methods are not only
dependent on their target organism and molecules (DNA or RNA), but also on
available types and the sequenced volume of reads. As we explored briefly in the
last chapters, properties of reads are diverse, depending on the chosen technologies.
While increasing read numbers give more evidence for assembly, computational
demands also rise. This trade-off needs to be considered in efficacy measures.

Genomic sequences can be represented as strings over an alphabet Σ, defined as
Σ = {A,C,G,U} for RNA and Σ = {A,C,G,T} for DNA, respectively. A genome
(or transcriptome) G is defined as a set of strings over the same alphabet. Reads
are drawn as random but due to sequencing errors imperfect substrings of G, thus
constitute a set of strings themselves. Formally, we write S = {s1, s2, . . . , sn} with
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lengths L = {l1, l2, . . . , ln} such that si ∈ Σli for either set. Each string si has a
reverse complement string si. Sequenced reads may relate to the genome either
as imperfect subsequences of G or as their reverse complements. Due to method
bias, read distribution is generally non-uniform, and reads are inexact copies as
already mentioned here and as was quantified in the error models of sequencers
in the previous chapters. The assembly problem is to reconstruct G given a set of
reads R.

Methods can be broadly classified into two categories:

● Reference based : When available, a reference genome is used as a template
for assembly. Genomes are overwhelmingly similar within species and even
between closely related species. Reads can be mapped to the reference and
post-processed to a consensus sequence. For instance, mappings reduce the
complexity of a subsequent de novo-like assembly by identifying continuously
covered regions (Lischer and Shimizu, 2017). A reference may also be used
to correct and orient reads prior to de novo assembly, e.g. in Bao, Jiang, and
Girke (2014) and Kolmogorov, Armstrong, et al. (2018). Reference based
approaches are especially useful for transcriptome assembly. Transcript-derived
reads are mapped against often well established genomes using specialized
tools that consider the complex intron-exon structure of eukaryotes.

● De-novo: Without a reference, no prior knowledge of the correct sequence
or order of reads can be utilized. Accordingly, reads are assembled based on
only their mutual overlaps. De-novo assembly is essential for the discovery of
genomes of new species.

The methodological advancements made in this thesis concern mainly to de-novo
genome assembly and reference based transcriptome assembly. For the sake of
brevity, this introduction will be limited to mainly those topics. Terms will be used
in context without further qualifiers according to this restriction.

2.3.1 Alignment
Alignments are used to determine local or global similarity between strings, here
representing DNA or RNA in Σ. Thus, they are a fundamental part of most assembly
workflows. In the wider field of bioinformatics, similarity indicates a functional,
structural, or evolutionary relationship between sequences. In the context of
assembly, alignments are utilized in order to establish sets of reads (likely) belonging
to the same genomic position. False matches due to high sequence homology
are unwanted but hard to discriminate and therefore a common source of errors.
Sequence alignments are used in a wide range of applications and consequently
cover also a wide range of methods. This chapter will give a brief introduction to
the concepts and tools necessary for this thesis.

Alignment is an essential component of and is used throughout multiple phases
of classic assembly pipelines.

Given two reads, on perfect data their overlap is defined by a shared maximal
substring. In practice, the shared sequence statistically diverges according to the
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error profile of the used sequencing platform and protocol. Local alignments are
designed to establish pairwise similar regions in otherwise divergent sequences, and
are therefore also ideal to establish pair-wise overlaps.

For reference based assembly strategies, especially in the context of transcript
assembly, effective alignment of reads to a reference is of utmost importance. RNA
reads are produced from predominantly mature transcripts, therefore only contain
the sequence of concatenated exons. Introns manifest as large gaps in the alignment
to the reference. In other words, reads align to the reference in multiple blocks,
precisely one per exon. Specialized split-read assembler were developed to handle
this task effectively.

During assembly, reconstruction of the optimal sequence is a non-trivial task.
Among other reasons, sequencing errors and true genomic variance introduce
uncertainty on individual genomic positions. This variation needs to be properly
assessed by methods. During bubble reduction (see next Chapter 2.3.2 for details) in
assembly graphs, alternative paths between two shared nodes indicate essentially the
same region of the genome, differentiated by sequencing errors. Multiple sequence
alignments enable the inclusion of more than 2 sequences into the same alignment.
Hence, the induced sequence-strings for each path in a (super-)bubble are included
in a single global alignment. The consensus sequence can then be produced by
majority call on each resulting base position. Alternatively, assemblers may produce
the sequence by arbitrary choice at each variant position. For some applications,
such introduced errors or rare variants may be uncritical and the sequence can
remain as is. However, it may also serve as an unrefined reference to which reads
are re-aligned utilizing repeated local pairwise alignments. Every position of the
reference is then corrected, again by consensus calling of all reads aligned to a
respective position.

A number of pre-existing tools were used in the context of this thesis.
Minimap2 is a versatile tool to align DNA or RNA reads against a large reference.

We choose Minimap2 explicitly for its support of long, erroneous reads produced
in TGS. According to the developers, it can handle base error rates up to 15%,
although our own benchmarks indicate a lower threshold for reliable and satisfactory
results.

We use TopHat2 (D. Kim, G. Pertea, et al., 2013), STAR (Dobin et al., 2013),
and HISAT2 (D. Kim, Langmead, and Salzberg, 2015) for spliced transcript align-
ment. All three tools operate only on short RNA-seq reads. All support stranded
sequencing protocols, as well as assigning strands based on the consensus sequence
motif of splice sites.

Although BWA H. Li and Durbin, 2009 can also be used for split-read alignment,
it is more typically used for alignment of full DNA or RNA short-reads to a reference.

2.3.2 Algorithms for Genome Assembly
The assembly of genomic sequences from high throughput sequencing data has
turned out to be a difficult and resource expensive computational problem.

Accordingly, a vast number of assemblers have been developed that differ
in targeted read-types and methodological approach, and consequently also in
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Figure 6: Example of a simple repeat region in assembly graphs. a) Reads of two regions (A) and (B) with a shared
sequence motif, each of 6 bp length. Some reads (C) cannot be uniquely assigned to one region. Unique and shared
sequence motives are color coded for convenience. b) The same data represented as an edge-centric de Bruijn Graph
with kmer-size k = 4. c) Reads represented in an overlap graph at a minimum overlap length of 4 bp. Dashed lines
represent transitive edges to be removed in conversion to a string graph.

performance and outcome. Nevertheless, almost every pipeline, including our own,
follows the same 3 steps: (1) optional correction of reads, (2) construction of an
assembly graph, and (3) contig assembly and scaffolding.

Traditional assembly strategies can be classified into two general categories
(Z. Li et al., 2012; Rizzi et al., 2019) based on step (2) (see also Fig. 6).

The Overlap-layout-consensus (OLC) assembly model attempts to find all
pairwise matches between reads, using sequence similarity as a metric for overlaps.
A general layout is constructed and post-processed. Most notably, overlaps can be
transformed into assembly graphs such as string graphs (E. W. Myers, 2005). This
method is flexible with respected to read length and overlaps can be adapted to
the diverse error models of sequencing technologies. However, establishing a set of
overlaps is very expensive, in particular as read-lengths and the number of reads
per experiment increase.

In de Bruijn graph strategies (Compeau, Pevzner, and Tesler, 2011; Idury and
Waterman, 1995), reads are deconstructed to fixed length k-mers, representing
nodes or edges depending on the chosen definition. With the help of specialized
hashing strategies, k-mers can be efficiently stored and constructed. Thus, de
Bruijn graphs require much less memory than OLC strategies. An overall speed up
can be attributed to the absence of an all-vs-all comparison step. However, as k
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has to be chosen smaller than read size, information on contiguity is lost. With
increasing error rates in reads, de Bruijn graphs tend to become less useful, as
k-mers become also less accurate.

Despite the apparent conceptional differences of both types of assembly graphs,
realistic implementations follow similar strategies for assembly in the third step and
will therefore be discussed together.

Overlap-Layout-Consensus (OLC) and String Graphs

Overlap graphs (E. W. Myers, 1995) and related string graphs (E. W. Myers,
2005) (Fig. 6 c) have been adopted by a great number of state-of-the-art short-
read assemblers, including Celera (E. W. Myers et al., 2000), SGA (Simpson and
Durbin, 2012), and Newbler (Margulies et al., 2005). In an overlap graph reads are
represented as nodes. Edges are created between nodes with a significant overlap
in their respective sequence (or the reverse complements thereof), i.e. an imperfect
suffix of one read matches the prefix of a second or vice versa. As the name suggests
OLC operates in three steps: (1) computing the overlaps between all reads, (2)
determining the layout of reads in contigs as paths in the overlap graph and (3)
inferring the consensus sequence for each contig. Computational challenges are
located predominantly in the first two steps. Full all-vs-all comparison of reads,
although polynomial, is prohibitive in practice due to the high number of reads
produced by HTS. Short reads, with their generally very low error rate, allow the
use of efficient datastructures to pre-process the set of reads into a searchable
database at a reasonable overhead. The FM-index (Ferragina and Manzini, 2000),
a compressed substring index based on the Burrows-Wheeler transform, allows to
search overlaps in linear time with respect to length of individual reads (Simpson
and Durbin, 2012). For long reads the situation is more complex. Based on higher
error rates and higher costs of pairwise alignments, established datastructures are
less reliable. Instead, tools use various heuristics to either directly compute overlaps
or pre-filter possible read pairs. A common choice is the use of shared k-mers as a
similarity metric between reads before exact alignment. Popular methods include
MinHash (Berlin et al., 2015; Broder, 1997), Dalinger(G. Myers, 2014), and thereon
based extension, but many unique solutions exist, also without the use of k-mers
such as the methods developed in this work. Of course, reads may be error corrected
before assembly. However, this equally necessitates the computation of overlaps,
creating a hen and egg problem. Correction is therefore commonly included into the
overlapping phase utilizing already existing datastructures. For example, FM-index
and MinHash both enable k-mer frequency based read correction (or read filters).

String graphs can be derived from an overlap graph following 3 simple steps:
(1) removal of duplicate reads with same (or reverse complement) sequence, (2)
removal of contained reads that are a substring of another, and (3) removal of
transitive edges. We say the remaining edges are irreducible. Accordingly, a string
graph is a subgraph of the overlap graph with unique nodes and only irreducible
edges. It may nevertheless be built without explicitly creating the overlap graph.

In theory and on ideal data, contigs can be retrieved as a traversal of the graph
that visits every node exactly once (or at least once), i.e. as a Hamiltonian path
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per component. The Hamiltonian Path Problem is NP-complete (Garey and D. S.
Johnson, 1979), and no efficient solutions are known. This purely theoretic model
for assembly, furthermore, does not hold well on realistic data, not just because of
its complexity. Hamiltonian cycles in general are not unique, therefore implying the
existence of multiple optimal solutions of the assembly problem consistent to the
set of reads. It seems redundant to state that this is not a sane assumption for any
practical application.

de Bruijn Graph-based Methods

The use of de Bruijn graphs (Fig. 6 b) was first proposed by Pevzner, H. Tang,
and Waterman (2001) to address the perceived computational intractability of
optimal solutions in the OLC approach. It was refined by a number of publications,
including leading state-of-the-art short-read assemblers SOAPdenovo (R. Li et al.,
2010), Velvet (Zerbino, McEwen, et al., 2009) and ABySS (Jackman et al., 2017;
Simpson, Wong, et al., 2009). Several unique variations of standard de Bruijn
graphs have been suggested, e.g. in ALLPATHS (Butler et al., 2008) and SPADES.
In this section, we will focus on common methods and general problems with these
approaches.

In an edge-centric de Bruijn graph nodes are created for every string of length
k−1 from Σk−1. Edges are inserted between two nodes u and v when the (k−1)-mer
represented by v occurs immediately after the (k − 1)-mer for u, i.e. they share all
but their first or last base respectively. The edgeset is easily produced by iteration
over all possible k-mers, connecting each (k − 1) prefix and suffix. Each k-mer is
treated as identical to its reverse compliment. Therefore, graphs represent both
reading directions of chromosomes. As an alternative definition, in a node-centric
de Bruijn graph nodes are created for every string of length k from Σk. Edges are
inserted between nodes that overlap on (k − 1)-mers.

For assembly, reads are decomposed to all possible substrings of length k in
either variant. Frequency based read corrections or graph filters follow naturally.
Infrequent k-mers (below the expected sequenced coverage) likely arise due to
errors and can be trivially discarded for graph construction.

A major challenge in the implementation of de Bruijn graph is the choice of
datastructure. Using our nucleotide alphabet 4k possible k-mers and therefore
edges may exist. In practice, however, the space of existing k-mers is sparse and
limited by genome size. Effective compression strategies (Conway and Bromage,
2011) as well as probabilistic storage of k-mers, e.g. via bloom filters (Chikhi and
Rizk, 2013), can further reduce the necessary space for graph representation. Also
datastructures more common to OLC such as the FM-index may be effectively
applied (Chikhi, Limasset, et al., 2015).

In edge-centric de Bruijn graphs chromosomes can be modeled as a path visiting
each edge exactly once (an Eulerian path) or at least once (Chinese Postman
Problem). Although a solution can be computed in polynomial time, an exponential
number of solutions may exists and read-consistency is not guaranteed. It should
therefore not come as a surprise that this model is not of practical importance.
Pevzner, H. Tang, and Waterman (2001) therefore suggested an alternative approach
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Figure 7: Schematic overview of Y-V reductions.

to limit solutions to only plausible Eulerian paths. Every read represents a path of
k-mers. The assembly then represents a superwalk including all read paths. This
problem is also NP-hard unfortunately (Medvedev et al., 2007).

Unitig Assembly

Despite their apparent differences, both OLC and de Bruijn graphs represent overlaps
between reads, respectively approximate full overlaps or perfect overlaps of substrings.
Methods differ mainly by the inclusion or exclusion of edges in assembly paths,
corresponding to their theoretical background. Similarities transcend conceptional
disparities. Indeed, contigs and errors manifest in a very similar fashion in both
types of graphs. Regardless of the choice of node-centric (string graphs) or edge-
centric (de Bruijn) approaches, assemblers therefore share a common strategy in
practice. The idea to establish safe paths in the assembly graph that are (almost)
guaranteed to contain no errors can be traced back to Kececioglu and E. W. Myers
(1995). A common choice is to establish unitigs: paths in the assembly graph
that can be mathematically proven to occur in all possible assemblies. In its most
simple interpretation, unitigs can be defined to the set of path consisting only
of internal nodes with in-degree and out-degree 1. More simply put, unitigs are
stretches in the graph where no decision has to be made on how to continue. On
perfect data, unitigs are limited by two factors. Regardless of formalism, repeats
will be collapsed, or “glued together”, to be represented by the same path that is
traversed multiple times in the assembly. Unitigs therefore cannot cross repeats.
Polymorphisms, derived of true genetic variation between chromosomes, will create
alternative paths between two nodes. Separating a unitig at a single polymorphism
site is unnecessary, however, as both path choices would lead to a true and safe, yet
different, assembly. A more natural definition therefore allows unitigs to extend over
one-to-many (1 incoming and > 1 outgoing edges) and respectively many-to-one
nodes. Lets us say v is incident to u on one and to w1, . . . ,wn on the other side.
A Y-V reduction (Medvedev et al., 2007) removes any such nodes v, replacing
v by group of nodes v1, . . . , vn with edges uvi and viwi for 1 ≤ i ≤ n. Edge
directions are kept consistent to the original edge uv (see Fig. 7). If multiple
consecutive branching polymorphisms occur on a stretch of the assembly graph that
is unobstructed by repeats, the order in which nodes are reduced determines the
position of the break points between them, therefore leading to different co-optimal
unitigs. More advanced concepts such as omnitigs (Tomescu and Medvedev, 2017)
have been proposed to extend the unitig concept to include further safe paths.
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Figure 8: . Given two nodes in an assembly graph s, t ∈ G, an s − t path is a path starting in s and ending in t. A
simple bubble consists of two vertex disjoint s − t paths. This construct can be extended to super-bubbles, defined
as a set of s − t paths, exactly including all nodes reachable from s without passing t and vice versa. Bubbles and
superbubbles are primarily the result of unrecognized overlaps. Tips are short “side branches” that do not reconnect
with the main path and thus have distinct end-points. Crosslinks, finally, are connecting edges between two main
paths, i.e. two paths associated to true fragments of the genome.

Sequencing errors may introduce structures into the graph that, if unaddressed,
will create additional breakpoints for unitigs (see Fig. 8). Errors near the border of
reads will create diverging paths that cannot be further extended due to missing
extending reads consistent to the error, therefore creating relatively short “dead
ends” branching off the main contig path. Such features are referred to as tips. If
errors occur near the center of a read, k-mers or reads may still correctly overlap and
therefore create short alternative branches, called bubbles, connected at both ends.
True single nucleotide polymorphisms and the collapse of highly similar repetitive
regions introduce indistinguishable structures, complicating effective removal based
on only the sequence motif. Further, bubbles may be nested into superbubbles
and tips can branch off bubbles. More complex errors can occur especially on
string-graphs due to spurious overlaps creating improper edges in the assembly
graph, often not introducing any recognizable structures. As a subclass of such
errors, we define crosslinks as edges connecting two true contig paths. Nearly all
competitive assemblers will try to amend the graph prior to unitig detection, often
referred to as graph cleaning. Next to the sequence itself, further metrics can be
employed for error removal. Each node or edge can be labeled by its coverage,
more difficult in string graphs but available as a natural consequence of the k-mer
histogram in de Bruijn graphs. Removal of low coverage features is a natural and
effective strategy. Tips are characterized by their short length and can be removed
solely based on this property. Bubbles and Superbubbles can be addressed e.g.
by the Tour Bus algorithm (Zerbino and Birney, 2008): Whenever a bubble is
encountered, find the closest common ancestors and extract the corresponding
sequences for each path. If the sequences are similar enough, the paths can be



Chapter 2. Introduction 27

merged. Iterative application will resolve also superbubbles. Biological variants are
commonly removed as only a consensus sequence is sought and polymorphisms may
still be identified post-assembly. Bubble removal may result in an over-simplification
of variants if repeats are removed. However, such errors can be also addressed in
post-processing.

After graph cleaning, unitigs can be identified as described above. Although
not strictly necessary in implementations, graphs may be simplified such that every
unitig corresponds to exactly one node. Then, only many-to-many nodes with
unclear connectivity and blunt ends remain in the graph. With the use of paired-end
information, or other bridging elements, unitigs are connected to longer contigs.
First, reads are mapped to the established unitigs. Then, for every node the set of
links between incoming and outgoing edges is computed and evaluated. Methods
choose the final assembly paths with respect to these constraints e.g. via graph
simplification or maximum-likelihood methods.

Although scaffolding is not part of our own assembly pipelines, it should not
go without mention for the sake of completeness as a potential last step of the
assembler. Regions for which no sequence information can be identified may still
be characterized by their adjourning contigs and the length of this gap. Put more
simply, scaffolding describes the task of ordering and orienting a set of established
contigs. Depending on the available data, optical mapping (Howe and Wood, 2015)
or paired-end short reads (Gao, Sung, and Nagarajan, 2011) are utilized for this
purpose.

Long-read and Hybrid Assemblers

Recent approaches combine cheap short-read data (typically using Illumina technol-
ogy) with long reads produced by PacBio or Nanopore technologies as explored in
the previous sections. Highly accurate short reads are complemented well by less
accurate but long reads, enabling methods e.g. to resolve repetitive elements where
short reads alone are insufficient even at (very) high coverage. While assembly
with only long reads is both feasible and common, very high coverage is needed to
match the base-accuracy of short-read assembly. This not only increases the costs
of sequencing itself, but also the resources needed for assembly.

Like the short-read only assemblers explored in the previous sections, long-read-
only and hybrid assembly strategies align well into OLC and de Bruijn methods,
although some more unique methods have emerged over the years.

This section will give a brief overview over the broad spectrum of available
tools, starting at long-read-only assemblers. Canu (Koren, Walenz, et al., 2017)
and Falcon (Chin et al., 2016) implement the classic OLC approach, albeit both
error-correct long reads before creating a string graph. MinHash filters such as
used in e.g. Canu can significantly reduce the cost of comparisons, but overall
complexity remains high. Wtdbg2 (Ruan and H. Li, 2020) also follows OLC, but
utilizes de Bruijn-like graphs based on sparse k-mer mapping for comparison. It
avoids all-vs-all mapping by matching reads that share k-mers under the assumption
that even under high error rates correct pairs share more k-mers than those with
spurious matches. Shasta (Shafin et al., 2019) implements a full de Bruijn graph
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strategy by transforming k-mers into a run-length encoding that is more robust to
sequencing errors in long reads. Newer versions of Canu also implement a similar
encoding (Nurk et al., 2020).

Classic de Bruijn methods have been adapted to combine both long and short
reads into a hybrid assembly. Long reads can serve as “bridging elements” in
the same way as read pairs to resolve paths in (short-read) assembly graphs as
implemented e.g. by hybridSPAdes (Antipov et al., 2016) and Unicycler (Wick,
Judd, Gorrie, et al., 2017).

Under the assumption that short-read assemblies are cheap and reliable, various
workflows have been proposed to integrate both kinds of data also for OLC-like
approaches. As a general goal, these programs avoid the costly all-vs-all comparison
to create the assembly graph with the help of various heuristics. MaSuRCA (Zimin
et al., 2013) attempts to join both long and short reads into longer super-reads by
chaining unique k-mers, thereby reducing the number of reads that need to be tested
for overlap. WENGAN (Di Genova et al., 2020) first creates full short-read contigs
that are then scaffolded by synthetic mate pairs generated out of the long reads.
Flye (Kolmogorov, Yuan, et al., 2019), even more uniquely, assembles intentionally
erroneous contigs that are concatenated to a common sequence. Self-mapping then
reveals repeats that can be resolved much like in a traditional assembly graph.

HASLR (haghshenas20haslr) defines an assembly-graph-like structure, that
includes both short and long reads. Short reads are assembled into contigs that,
after k-mer filtering to remove repeats, are aligned to long reads. In the resulting
backbone graph, short-read contigs serve as nodes that are connected by an edge if
they map onto the same long read. While different to e.g. string graphs, standard tip
and bubble removal algorithms are applied to remove noise. Contigs are extracted
as paths. TULIP (Jansen et al., 2017) implements a very similar strategy, however,
does not assemble short reads into full contigs. Instead, the gaps between mate-pairs
are closed if possible with sufficiently rare k-mers, resulting in relative short but
unique seeds that serve in the same capacity. In both cases, consensus construction
of the resulting sequence is trivial. Edges define fixed regions on groups of long
reads that can be locally aligned for each edge along a path.

DBG2OLC (Ye et al., 2016) is methodologically most closely related to LazyB,
the method developed in this thesis. The two approaches, however, differ in several
key features as will become apparent later. DBG2OLC assembles short reads to
full contigs, thereby avoiding repeat resolving techniques such as gap closing or
scaffolding because these introduce too many errors. The short-read contigs are
then aligned against the long reads. Each long read implies a neighborhood of
contigs. Mappings are corrected prior to graph construction via consistency checks
over all neighborhoods for each contig, i.e., contigs are required to map in the same
order on all long reads. This technique can help to remove both spuriously matched
contigs and chimeric long reads, but requires sufficient coverage to allow effective
voting. Long reads serve as nodes in the DBG2OLC graph, with edges representing
contigs mapping to two long reads. Nodes that map a subset of contigs of another
node are removed as they are redundant. The resulting graph is error corrected by
classic tip and bubble removal, after which paths are extracted as contigs, following
the edge with the best overlap at each step.
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Quality Metrics

The quality of genome assemblies can be assessed by a number of well established
metrics. In particular, accuracy, completeness and contiguity of produced contigs
need to be made quantifiable. This task is especially challenging if no stable and
complete reference genome is available. Thus, to avoid such complications, within
this thesis benchmarks will be strictly limited to only well studied organism. QUAST
(QUality ASsessment Tool; Gurevich et al. (2013)) was developed for the expressed
purpose of reference based quality assessment. Contigs are aligned to the reference
using minimap2 (H. Li, 2018). The resulting alignments are filtered and processed
to a set of reliable metrics.

In particular we are interested in the following statistics.

● Number of Contigs: The number of contiguous sequences produced by the
assembler.

● N50 : The length of the shortest contig necessary to cover 50% of the
assembled genome.

In an ideal assembly, the number of contigs is identical to the number of sequenced
chromosomes. In practice, this value is only relevant in combination with a set
of related metrics. In theory, a lower number of contigs would indicate a higher
contiguity of the assembly. However, this metric can be easily manipulated by
concatenating unrelated contigs. The same is true for the in practice more useful
N50 value.

With the help of QUAST, both statistics can be complement by reference based
metrics.

● Number of Misassemblies: The number of breakpoints where a contig
could not be continuously aligned to the reference.

● Number of correctly aligned Fragments: The number of sub-sequences
out of all contigs that can be continuously aligned to the reference.

The number of misassemblies offers a corrective term to compute the number of
correctly aligned fragments out of the number of contigs. Misassembly events can
be further classified by the distance of fragments on the reference, and whether
opposite strand fragments were erroneously joined.

● Genome fraction: The percentage of the genome that was correctly recov-
ered. NA50 : NA50 is defined similar to N50, but instead of full contigs their
correctly aligned subfragments are utilized as the base unit.

Genome fraction is of equal importance for interpretation. It is of course trivial to
reduce the number of both total contigs and misassemblies by reducing the size of
the reported assembly. QUAST offers the NA50 value as another advanced metric.
It comprises a (non-comprehensive) mixture of previously defined statistics.
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● Error Profile: The rates of base-substitutions (missmatches) and insertions
or deletions relative to the length of the assembly.

● Duplication Ratio: The total number of aligned bases in the assembly
divided by total number of aligned bases in the reference genome.

Given the alignments, an error profile of the assembly can be computed. Lastly, a
number of trivial metrics may be considered, including the length of the longest
(aligned) contig, the number of unaligned contigs and the duplication ratio.

2.3.3 Algorithms for Transcriptome Assembly
At a cursory glance, algorithms introduced for genome assembly appear to be well
suited also for transcript assembly. Indeed, we gave the shared definition for both
tasks in Chapter 2.3. However, the biological nature of RNA as described in Chapter
2.2.1 necessitate succinct changes to existing strategies or the use of novel methods.

Next to those “natural” concerns, biases from subsequent processing steps
or deriving out of the sequencing protocol have to be considered. While factors
such as GC content bias are shared also by DNA sequencing protocols, many are
unique to RNA (Y. Huang et al., 2013; A. Roberts et al., 2011). As a well known
example, both Ribo-Zero as well as Poly-A selection will result in deviations in the
read distribution (Lahens et al., 2014). The sampling bias on start- and end-sites
complicates the detection of exact exon borders.

The assumption of reasonably uniform coverage along single isoforms is generally
violated. Methods have to account for and correct such errors whenever possible.
Missing and misleading evidence routinely leads to false predictions even if all
exons have been correctly identified (Steijger et al., 2013). Even if the transcripts
are known, quantification remains difficult. Exon sharing and ambiguous read
assignments, e.g. because of close paralogs, and low coverage are all known to
limit quantification (Garber et al., 2011).

Some events of AS are especially hard to detect in assembly and their detection
should be, if possible, complemented by other methods. In particular this pertains
to alternative start- or end-sites, weakly expressed transcripts, and RNA deriving of
distant fusion or circularization.

Nevertheless, compared to previous attempts to model genes de novo based
on signals in the genome sequence in terms of coding regions and splice sites,
RNA-seq offers a much more nuanced view of the actual structure of transcribed
products and how they are processed. Regardless, the accurate classification of the
transcriptional output remains a very challenging task.

Like genome assembly, transcript assembly methods follow one of two general
strategies. If a genome assembly is available, the RNA-seq reads are aligned
against the reference by specialized state-of-the-art split alignment tools. As already
addressed in Chapter 2.3.1, common choices include TopHat2, STAR, or HISAT2.
If no reference exists or is incomplete, a de novo approach can be chosen, where
reads are directly assembled into transcripts. Pure de novo methods are usually
less accurate and computationally more complex. Thus they are avoided wherever
possible (Zhao et al., 2011).
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While an increasing number of methods have been published to solve both
reference based (Bernard et al., 2014; Guttman et al., 2010; J. Liu, Yu, et al.,
2016; R. Liu and Dickerson, 2017; M. Pertea et al., 2015; Shao and Kingsford,
2017; Tomescu, Kuosmanen, et al., 2013; Trapnell et al., 2010), as well as de
novo (Bushmanova et al., 2019; Kannan et al., 2016; J. Liu, G. Li, et al., 2016;
Robertson et al., 2010; Xie et al., 2014) assembly, none of these existing approaches
are truly satisfactory in terms of robustness, speed, and at the same time accuracy
of the results. Progress appears to be locked at a reasonable but insufficient level.

Yet, many analytic tasks rely on accurate and fast predictions of all transcripts
as a basic first step of their pipelines, e.g. in gene regulation studies in embryonics
(Salomonis et al., 2010) and diseases (Cummings et al., 2017; E. Kim, Goren, and
Ast, 2008; Sveen et al., 2016; Tazi, Bakkour, and Stamm, 2009; Z. Wang, Gerstein,
and Snyder, 2009). While the methods and algorithms described in this thesis are
also interesting for their own sake, improved predictions using our methods can
therefore be useful for a number of tasks.

de novo Assembly

Although de novo transcript assemblers have been proposed based on OLC, most
contemporary and competitive options rely on de Bruijn graphs as introduced in
Chapter 2.3.2. However, here, RNA sequences correspond to a set of shorter paths
in the graph. Isoforms may share nodes if they share a common exon region or
exons include repeating genomic content.

Common genomic error features in de Bruijn graphs need to be re-interpreted.
Most importantly, tips or longer branches can now arise both from sequencing errors
as well as true alternative start- or end-sites. Bubbles derived of low frequent k-
mers may stem from low abundant isoforms. Graph trimming, therefore, is handled
differently or at much more conservative parameters. Nevertheless, a number of
genome assembly tools have been adapted also for use on RNA, e.g. Trans-ABySS
(Robertson et al., 2010), rnaSPAdes (Bushmanova et al., 2019), or SOAPdenovo
(Xie et al., 2014).

While proposed methods are highly diverse, despite the commonality of their
underlying graphs, there are a number of recurring concepts. Transcript assembly
is particularly sensitive to the choice of k-mer length. Under the assumption that
true transcripts remain stable in a majority of varied k, consensus approaches
over multiple assemblies can be used to improve the overall reliability (Robertson
et al., 2010). As established in Chapter 2.3.2, many-to-many nodes remain in
assembly graphs after trimming and simplifications. This assertion also holds true
on transcriptomes. Here, however, such nodes signify primarily overlaps between
isoforms, and only to a lesser degree repeats or spurious overlaps. Resolving nodes
by connecting regions likely belonging to the same isoform is a crucial task, as
false choices will result in erroneous, chimeric assemblies. Paired-end or long reads
can be used to bridge nodes and therefore inform choices. Assuming reasonable
uniformity of coverage within individual isoforms, abundances of flanking edges
are also highly informative. Assuming a simple scenario where isoforms do not
share exons locally in either direction of the problematic node, edges with similar
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coverage are matched. In the general case, superimposing abundances need to be
decomposed to sets of matches where each edge may appear several times. Similar
concepts are also adapted by reference based assemblers.

Given this semblance, the conversion of de novo assembly graphs to splice
graphs or overlap-based graphs, as defined in the following chapter and as used by
reference based methods, has also been proposed by J. Liu, G. Li, et al. (2016).

Although alignment tools also struggle to correctly assign reads to a reference
due to e.g. similar regions in multi-copy gene families, sequencing errors or repeats,
these issues are aggravated in de novo assemblies.

Reference based Assembly

Mapping split-reads against a reference results in a set of intervals of genomic
coordinates within which reads provide evidence for (partial) segments of one or
more exons. Specifically, exons are identified as consecutive stretches of mapped
regions, with splices, i.e. reads covering splice junctions, indicating introns. Graphs
are not based on read sequences or k-mers thereof, but rather utilize the such
established exon structure as a means for complexity and memory reduction. There
is no consensus on an optimal design for assembly graphs, and methods implement
diverse datastructures (see Fig. 9).

Cufflinks (Trapnell et al., 2010), the historically most widely used transcript
assembler, employs an overlap graph to consolidate this data. Here each read is
represented by an individual node and nodes are connected if the implied exons
overlap and are compatible in their splice signals, both represented as an ordered
set of genomic intervals. This structure does well in conserving both evidences
from reads spanning more than two exons, as well as paired-end connections, two
commonly underused sources of information.

The average exon length of many eukaryotic organisms, including human and
mouse, is smaller than 200bp (L. Zhu et al., 2009). Thus, not only reads spanning
1 or 2 exons, but also reads covering > 2 exons are abundant in many datasets.
The latter category, which we will refer to as multi-splice, can be used to resolve
ambiguities among alternative splicing events. However, as reads with less splice
evidence are given the same importance in the graph, incorrect transcripts may still
be chosen in practice, depending on the details of the post-processing procedure.

Additional evidence to resolve alternative splice sites can be found in paired-end
information. However, in an overlap graph, reads of the same pair cannot be
represented in the same node due to their unknown insert context. The reads
themselves, on the other hand, can be tested for compatibility. Thus, an edge is
added only if the reads themselves as well as their “partners” agree in intron motive.
While removing some complexity, this additional condition fails to resolve many
cases, as ambiguous junctions remain in the unsequenced region between partners.

Splice (or connectivity) graphs provide an alternative mathematical framework.
Here, full or partial exons are the nodes, and edges represent either splices or
neighboring partial exons. Transcripts are represented as paths in the graph.
Commonly, artificial source and drain nodes are added such that all full transcript
paths start and end at the same nodes. Although several extension have been
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Figure 9: Overview of core algorithms of the most popular tools for transcript assembly. Core datastructures are
illustrated using the same set of isoforms (Top Left) on a shared gene. (Partial) Exons are identified by Letters A to
K. Reads have the same length r. Be ∣X ∣ the number of basepairs in exon X, then: ∣A∣, ∣C ∣, ∣D∣, ∣E∣, ∣F ∣, ∣G∣ < r and
∣C ∣ + ∣D∣ < r. Exon lengths are not drawn to scale. A set of potential paired reads as depicted. All methods start
with a set of RNA-seq reads that have been mapped to a reference and been reduced to a set of exon and intron
borders. All assemble transcripts as paths in the respective graph structure. FlipFlop uses a unique bin-graph
design. A penalized maximum likelihood problem is solved to find optimal abundances and their decomposition to a
set of transcripts. Traph, Scallop, and StringTie all use basic splice graphs. Traph does not utilize multi-splice
or paired-end reads. A min-cost flow is determined in an offset network to denoise abundances prior to graph
decomposition. Scallop converts multi-splice and paired-end reads to a set of paths in the assembly graph to retain
their connecting information. If the unknown context between two paired reads is not unique, all possible paths
closing this gap are added with equal significance. Nodes are resolved to a set of transcripts constrained to these
paths. Stringtie iteratively extracts the heaviest path compatible to multi-splice and paired-end reads, constructs
a flow network to estimate abundance, and then updates the splice graph by removing reads associated with the flow.
Cufflinks uses an overlap graph where each read is presented as a node. Nodes are connected if reads overlap and
potential paired partners are consistent. Transcripts are extracted as a minimum path cover.
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proposed for this type of graph, it is typically employed in its basic definition. The
implied coverage of each node and edge can be leveraged for transcript extraction.
Diverse methods have been proposed towards this goal. Scallop (Shao and
Kingsford, 2017) uses a complex weight-system based on coverage to evaluate
graph features. Nodes are decomposed such that any path u,x, v crossing a node x
is simplified to u, v whenever evidence permits. Connections are chosen in a fashion
that minimizes overall coverage deviation. Hence, the node is replaced by a subset
of local paths previously crossing it. Weights are updated as they appear in this
step-wise graph decomposition until only full transcript paths remain. Decisions
on which node to resolve next are optimized towards several objectives, including
coverage based measures. StringTie (M. Pertea et al., 2015) successively removes
the heaviest path according to coverage from a splice graph. Abundances for each
path are estimated in a separate flow network that is constructed for each individual
path. Traph uses a min-cost flow to denoise coverage values in the raw graph. The
accordingly created network flow is decomposed into a minimal pathset, each path
corresponding to an isoform.

All tools use coverage based strategies to trim likely false features in the assembly
graph and will filter assembled transcripts according to predicted abundances.

While abundance alone acts as a good classifier, evidence from multi-splice and
paired-end reads is often neglected. Scallop preserves the evidence of multi-splice
reads as a set of paths in the splice graph. Paired reads are connected in a common
path with unknown center context. Nodes are decomposed constrained to the
connecting evidence provided by the set of paths overarching respective nodes via
Linear Programming (LP). Strawberry (R. Liu and Dickerson, 2017) uses a similar
technique, albeit modifying the splice graph to find a Minimum Path Cover under
phasing constraints using network flows. StringTie preserves full multi-splice
reads in its network flow step. The heaviest path is not extended to the most
abundant neighboring exon or splice site, but rather only allows (multi-splice) reads
compatible to the current path in each step. Multi-splice reads therefore provide a
partial guiding capability. Read-pairs are particularly challenging to include in this
approach. M. Pertea et al. (2015) pioneered the use of de novo assembly strategies
to close the gap of unknown context between read-pairs. Reads are extended in both
directions if a border has a unique following k-mer using the specialized MaSuRCA
assembler (Zimin et al., 2013). The resulting so called “super-reads” are filtered to
those containing both reads of a pair. Super-reads are by construction longer, while
containing the same sequence information as the original reads. Therefore, they
are more likely to provide multi-splice evidence and bridge complex nodes. Thus
modified, read-pairs are effectively included in the central heaviest path step of
StringTie.

The use of so called bin graphs has been proposed as a more direct inclusion of
multi-splice reads. Reads are abstracted as (ordered) sets of the (partial) exons
they overlap. Reads with the same evidenced set are grouped into bins. Most
prominently, FlipFlop (Bernard et al., 2014) proposes a generalization of splice
graphs where nodes are represented by bins. An edge is added between nodes u and
v if the bin of v can be produced by adding an exon to the end or by removing the
first exon of the bin set of u. A penalized maximum likelihood problem is solved
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using convex costs network flows to find an optimal path decomposition according
to bin abundances.

Early versions of Strawberry also implemented bin-based graphs for quantifi-
cation, but this concept was dropped in later publications.

While methods can likely be further improved, both pair distance and read
length of short-read sequencers are ultimately limited in magnitude. Naturally,
distant splice events are unlikely to be adequately connected by small read and
insert sizes, to the detriment of the overall quality of the assembly.

Hence, interest has turned to long-read sequencing (Kovaka et al., 2019; Tung,
Shao, and Kingsford, 2019) or even hybrid methods advocating the use of additional
data stemming from long reads that can serve as guides in the traditional assembly
(Prjibelski et al., 2020). Yet, at reasonable additional cost, only very abundant,
and therefore more likely already annotated, transcripts can be reliably resolved.
Aside of unfavorable properties for expression studies, long-read RNA sequencing to
date is considered rare, expensive and likely impossible to add to existing datasets
retroactively for re-analysis. Hence, research on further sources for improvement is
a worthwhile and necessary endeavor.

Multi-Sample Reference based Assembly

Technical replicates are the norm both for current and older datasets. The increased
information content of replicates is well suited to improve transcript reconstruction.
Thus, utilizing replicates towards this goal has become a long standing area of
research. Somewhat contradictory, many assembly pipelines nevertheless forgo this
option. A possible explanation for this may be found in the complex setup and the
performance of existing tools. As we will see in Chapter 4.4, improvements may
not be reliable or come at a trade-off in quality measures with traditional methods.

The classic and most widespread multi-sample assemblers, TACO (Niknafs et al.,
2017) and StringTie-Merge (M. Pertea et al., 2015), operate in two phases.
Samples are assembled independent of each other and are only subsequently joined.
Transcripts that were only partially predicted in individual sets are consolidated
and false predictions removed whenever possible by various heuristics. While
StringTie provides its own single sample assembler, it can operate on results
created by other tools. TACO relies solely on existing assemblies. Tools may also use
additional information for specific classes of transcripts to improve results. MIKADO
(Venturini et al., 2018), for instance, was designed to favor coding transcripts
and tends to remove others, depending on a user provided scoring scheme. We
do not examine this subclass because of their specialization, and instead regard
only general assemblers. A second class of multi-assemblers handles the assembly
without prior single assembly. FlipFlop (Bernard et al., 2014) utilizes samples for
coverage estimation over the set of all possible isoforms as a penalized regression
problem. This work is a direct extension of the FlipFlop single input algorithm,
although the use of network flows is prohibitive here. MITIE (Behr et al., 2013)
employs a similar approach, only maximizing a likelihood function using mixed
integer programming with a regularization penalty. ISP (Tasnim et al., 2015)
creates a probability weighted connectivity graph, iteratively removing the most
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likely transcript via linear programming. All tools of this class (including older
alternatives) perform poorly compared to state-of-the-art competition. They are
cumbersome to use as they require hand-scripted pipelines. The use of samples
is strictly limited to (often very costly) coverage estimation, with limited effects
to assembly correctness. A third option, PsiCLASS (L. Song et al., 2019), acts
as a hybrid of the first two, predicting individual transcripts, then merging them
itself via specialized consensus voting on features. Other than in StringTie, both
steps are conjoined and alternative single assemblers cannot be used. Specifically,
PsiCLASS assembles transcripts from all inputs on a shared splice graph created as
a consensus of all samples. Transcripts are then predicted independently, before
combining them as a meta-assembly via feature voting.

Quality Metrics

Benchmarking the quality of transcript assemblies is a complex tasks. Sources
disagree on both ideal metrics and test design. While accordingly no clear cut
consensus could be reached by the community on how to approach this task, 3 basic
strategies have emerged: (i) Tools such as TransRate (Smith-Unna et al., 2016)
facilitate the de novo assessment of assemblies. Metrics already used for genome
assembly such as N50, the number of contigs (here transcripts), or transcript
size statistics, are informative, but of limited use due to the scattered nature
of the transcriptome. Application should be limited to basic sanity checks. In
the absence of a reference or other, additional, data, only the set of reads used
for assembly itself is available for validation. Raw reads are re-mapped to the
assembly and results are evaluated according to various metrics such as mapping
quality, the number of unmatched reads, read distribution, and completeness of
matched contig regions. De-novo metrics will struggle to accurately assess contigs
where assembly was already difficult, as an unavoidable consequence of a shared
data base. Chimeric transcripts in particular arise during assembly when distant
splice sites can not be correctly resolved due to low evidence and will therefore
also be missed in benchmarks. (ii) Manual and automated annotation efforts
aim to create a hopefully complete catalog of transcripts for a growing set of
organisms. While the completeness of such references remains up for debate, they
can serve as a reasonable approximation of the truth. While false positives may be
overestimated, it is fairly safe to assume that a prediction that matches a curated
gene is true. While gene-level expression can be measured experimentally e.g. by
qPCR, practicable options to the level of isoforms are less satisfactory. Therefore,
true abundance cannot be known but only estimated based on read counts via
specialized tools such as Salmon (Patro et al., 2017). (iii) Sequencing may be
simulated such that both the full set of isoforms and their abundances are known.
However, creating a viable reference for simulation is subject to a similar dilemma.
If the reference is incomplete, potentially essential information may be missing in
benchmarks. Statistical assumptions made for an artificial abundance distribution
may also introduce simulation bias. Of course, read simulation itself is not perfect
and may misrepresent important features of the biological truth. Even advanced
state-of the art tools such as Polyester do not model all known sources of bias
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(Frazee et al., 2015).
The work of this thesis is based firmly on reference based transcriptome assembly.

We found de novo assessments less informative in this context and therefore did
not include it for benchmarks.

The accuracy and completeness of available gene catalogs has been a topic of
controversial debate. The sheer number of new publications in this regard suggest
that catalogs are far from complete even for well studied model organisms (Frankish
et al., 2019). Automated and standardized assembly and annotation systems are
essential for improved reporting (Pruitt et al., 2014). Current catalogs rely mainly on
Poly-A libraries. Alternative selection protocols have revealed previously undetected
transcripts (Morillon and Gautheret, 2019) A large study of splice junctions in
publicly available human RNA-seq libraries from SRA revealed over 3 Million splice
sites classifiable as reasonable supported (Nellore et al., 2016), roughly 9 times
more than annotated in Gencode. As already established in Chapter 2.2.1, AS has
been identified as a major factor in disease, but condition specific transcripts are
not commonly included in references. The transcriptome exhibits a high degree
of individual variation, ranging from changes due to aging or illness, to sequence
polymorphisms and rearrangements. Transcript activity and (post-transcriptional)
regulation is specific to cell type, cell state, cell compartment, organism development,
and even environmental conditions. This diversity is particularly challenging to
capture in reference sets. Yet, some researchers have suggested that (most) non-
reference transcripts may be ignored as noise, as lowly expressed transcripts are
unlikely to be of regulatory importance (Morillon and Gautheret, 2019).

Transcripts themselves exhibit a high degree of diversity, contributing strongly
to the functional complexity of biological systems. This diversity also translates to
composition and structure. Transcripts differ in key features such as length, the
number of exons, and the nature of their activity (e.g. protein coding, functional
by structure or by sequence motif, etc). Other factors include the number and the
complexity of superimposing isoforms, their composition of abundances, and the
presence or absence of complex elements such as alternative start- and end-sites or
intron retention.

While the completeness of references can be assumed to be sufficient for general
benchmarking over the full set of annotated transcripts in the sense that error
margins from missed isoforms or classes of transcripts are likely slim and therefore
unlikely to influence rankings, implications are less clear for more detail-oriented
analysis. Effects of reference and simulation bias on sequencing bias, mapping bias
or alternative splicing itself are poorly understood. Most contemporary assemblers
remain agnostic to these differences but may still exhibit bias towards classes or
properties of (low abundant) transcripts.

Evaluating potential biases towards specific subgroups of transcripts for indi-
vidual tools, unsurprisingly, are subject to an enormous set of parameters which is
impracticable if not impossible to explore. Tools generally implement a wide range
of explicit filters through user-defined options whose detailed impact on assemblies
remains understudied or unpublished. Worse, we found tools to implement implicit
filters that are often not even reported in the methods of respective publications.
Tool-chaining, e.g. for meta-assembly of single input assemblies, only increase the
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complexity of this matter. To date, the author is not aware of any curated datasets
which allow to systematically study biases while remaining close to biological truth
and diversity.

A further distinction needs to be made regarding the features of general bench-
marks. Metrics may be resolved to the level of nucleotides, exons and introns,
transcripts, or full genes. Accuracy on the exon or intron level implicates that
individual features could be reconstructed correctly during assembly, but yields
no insights on correctness at isoform level. Further, lower level metrics may be
artificially inflated by allowing transcripts of dubious quality, especially chimeric
transcripts, to remain in the assembly. Conversely they are negatively impacted
by filters that improve specificity and precision of assembled isoforms. Gene level
statistics such as completeness are especially difficult to estimate for real datasets
where the full set of expressed isoforms cannot be known. As most downstream
applications operate at isoform level, we restrict benchmarks accordingly.

A combination of recall (sensitivity) vs. precision was chosen as a key statistic.
F-Measure acts as a compound of both, assuming both measures are equally
important. Generally, higher recall necessitates a loss in precision and vice versa,
unless additional data is provided. Otherwise, method design should be carefully
considered and possibly redesigned to avoid apparent over-filtering. From a user
perspective, tools should implement a single parameter to reliably and consistently
adjust the recall-precision trade-off, with possibly other minor adjustment options.
All tools investigated in this paper adhere to this standard. As a matter of philosophy,
some tools set no standard value for this option while most set a reasonable default
value. To date, no proper studies have been conducted to examine the influence
of such choices on subsequent tools in an analysis pipeline. Optimal parameters
are left to personal preference. A frequent choice assumes both measures to be of
equal importance and accordingly seeks an even compromise.

We consider benchmarks in two alternative scenarios. First, we regard tools
from a user perspective and measure performance at default parameters, therefore
at a reasonable trade-off between recall and precision. Second, the full spectrum
of possibilities may be explored by systematic variation of the central parameter,
therefore computing recall-precision curves for each tool. Curves may be evaluated
in their progression or as a whole, e.g. as Area Under Curve (AUC), to test
versatility.

We consider transcripts to match if all introns were correctly predicted and the
start- and end-exons fall within 100bp of their true location. We use Cuffcompare
(Trapnell et al., 2010) or the internal evaluation script of the BEERS simulation
study (K. E. Hayer et al., 2015) with respect to the used testsets. While transcript
assemblers are designed with multi-exon transcripts in mind, especially those
underlying alternative splicing, also single exon transcripts can be called by all tools.
Single exon transcripts are generally assembled independent of the tool-specific
core methods as no alternative splicing can occur. Rather, contiguous stretches
of mapped reads need to be identified and evaluated. Single exon transcripts are
therefore in particular sensitive to filter parameters and assumptions independent of
other tool biases. This difference should be considered in test designs. We therefore
provide benchmarks both including and excluding single exon transcripts.
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2.4 Transcriptome Expression

Expression is an important and highly informative element of transcript analysis,
allowing insights into the regulation of function of different cell types, developmental
states, disease, treatment, sex, environmental responses, and more. As already
mentioned in Chapters 2.2.1 and 2.3.3 Alternative Splicing is essential for biological
diversity and function. This extends not only to spliceforms unique to a condition,
but also to changes in expression. Commonly, two or more experimental conditions
are contrasted and statistical analysis is performed to discover quantitative changes
in expression levels. Experimental design and the type of samples examined differ
vastly based on research goals, with no universal optimal pipeline. Genes or
transcripts, especially those associated with basic biological function, are consistently
re-purposed across conditions and accordingly may be differentially expressed in a
large set of experiments (Crow et al., 2019). Pairwise comparison, consequently,
does not reveal the whole picture but is well suited to establish a catalog of
important loci. In this thesis, we will not be concerned with the wider implications
of differential expression (DE), but rather take an abstract stance to it for evaluation
of our own methods.

2.4.1 Transcript Expression Quantification
RNA-seq has become the system of choice for transcriptome expression studies,
offering both better accuracy and flexibility than previous technologies. It allows
both discovery and quantification in a single step. It is well suited to resolve
feature counts on all exon, isoform, and gene level. To date, the majority of
expression studies is carried out at gene or even exon level. While not without merit,
such simplifications disregard complex isoform switches, common e.g. in human
cancer (Vitting-Seerup and Sandelin, 2017). Although one may only speculate
on individual decisions for research design, a major reason for this is routed in
practicality and action-ability. While genes may be knocked down within reasonable
effort, removal of individual isoforms is much harder. Quantification of exons and
genes from RNA-seq is perceived more accurate and especially more robust from
a computational perspective. In a typical setup, reads produced by a short-read
sequencer are aligned to a genomic or transcriptomic reference, using specialized
split-read aligners such as STAR and HISAT2, or more general short-read aligners
such as BWA, respectively. As full alignment does not scale well with increasing
input sizes and the fast production rates of RNA-seq, focus has shifted towards
more lightweight methods for quantification. In order for a read to be counted
towards the expression of an exon, only its location on the reference is needed, but
not its base-accurate base-wise relation to the reference. Alignment-free methods
exploit this finding, computing only the likelihood of a read belonging to an exon (or
genomic position) e.g. by establishing sequence similarity via k-mer statistics, thus
enabling an order-of-magnitude improvement in speed. Common choices include
Salmon (Patro et al., 2017) and Kallisto (Bray et al., 2016). Expression of exons
is established as the number (count) of reads mapping to them, either by traditional
alignment or alignment-free methods. Genes by definition encompass all isoforms of
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a common locus. Accordingly, gene counts are determined as the sum over all exons.
As exons are shared between isoforms, reads cannot be generally uniquely assigned at
this level. While mapping uncertainty, e.g. due to repeat sequences, hinders count
accuracy also on exon and gene level, isoform quantification is much more complex
due to the aforementioned reason. Modern quantification tools rely on complex
statistical models to nevertheless achieve this task. The quality of results is not
only sufficient for high quality isoform level DE analysis, but advantages also persist
at gene-level analysis when gene counts are aggregated over all isoforms (Love,
Huber, and Anders, 2014; Patro et al., 2017). As basic counts are proportional to
transcript length and sequencing depth, measures are commonly normalized by the
number of total reads sequenced as well as transcript length. Common units include
RPKM (Reads Per Kilobase Million; Mortazavi et al. (2008)), FPKM (Fragments
Per Kilobase Million) and TPM (Transcripts Per Kilobase Million; Wagner, Kin,
and Lynch (2012)).

As an alternative to specialized tools, quantification of isoforms is performed
during assembly in most state-of-the-art transcript assemblers, including Cufflinks,
StringTie, and our own method Ryūtō. Here, coverage on features of the splice or
overlap graph are resolved to counts along transcript paths (see also Chapter 2.3.3).
Results are typically less accurate, as may be expected due to errors introduced by
the detection of novel spliceforms. Quantification tools require the input of a fixed
set of isoforms to avoid such problems.

Older techniques such as microarrays and reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) also allow isoform-level expression analysis,
but require prior knowledge about the transcriptome and come with their own biases
(Dapas et al., 2017; C. Wang et al., 2014). For practical reasons, the resolution of
experiments is limited on both platforms.

2.4.2 Differential Expression Analysis
For differential expression analysis, expression is estimated independently for each
sample on a shared set of transcripts. Typically, multiple replicates are produced
per condition. While increasing the number of replicates positively affects the
statistical stability of the results, projects are often limited by external rather then
methodological concerns. A typically sized project can only include a limited number
of replicates, often as low as 2-3 per condition. DE performs two basic tasks: (i)
Determining the statistical significance of changes in expression and (ii) estimating
the magnitude of expression changes, commonly reported as the fold-change or
log-fold-change of counts. Read counts per gene or isoform are modeled and fitted
to a distribution assumed to be close the biological truth – most commonly a
negative binomial distribution – using regression-based models. A statistical test
based on the null hypothesis that the difference in expression is near zero, i.e. no
difference in expression exists between conditions, reveals differential expression.
Fold changes are estimated based on fitted means.

Among the various competing state-of-the-art tools available to researchers,
DESeq2 (Love, Huber, and Anders, 2014) will be used for benchmarks in this thesis.
As we are only interested in DE as a benchmark for transcript assembly but not
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on exact biological implications, a full exploration of methods is not necessary.
Although tools naturally differ in results, changes can be assumed to be small and
the overall ranks and behavior of transcript assemblers are unlikely to change.

2.4.3 Quality Metrics
The quality of expression estimation and DE analysis are particularly challenging to
assess, underlying the same restrictions already discussed in Chapter 2.3.3. Without
an exhaustive catalog of isoforms, the full truth set can only be estimated, even
before expression analysis. Additionally, even for well established isoforms, true
expression cannot be known. Microarrays, RT-qPCR and even alignment tools on
RNA-seq data (A. Srivastava et al., 2020) all have their own biases. Counts may
be inter-compared, but no gold standard exists. Therefore, expression benchmarks
are commonly exclusively based on simulation. This issue perpetuates also to
DE, were neither the exact expression can be known for both conditions nor their
fold-changes. Again, simulation serves as the best option. In order to estimate
a conceivably realistic set of fold-changes, differential expression analysis would
need to be performed on two conditions. This inevitably would introduce a strong
statistical bias into the simulation, even if executed by a tool not in the candidate
set for tests. Therefore, given the lack of alternatives, more artificial conditions
are created. Commonly, base expression is estimated based on true data for one
condition. A subset of genes or isoforms is randomly chosen to be differentially
expressed and fold-changes are accordingly generated. Sources disagree on both the
percentage of differentially expressed elements as well as the range and distribution
of fold-changes, e.g. Germain et al. (2016), Patro et al. (2017), Pimentel et al.
(2017), and Teng et al. (2016).
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3.1 Background

As already explored in the introduction (Chapter 2.3.2), hybrid assemblers have
been the topic of extensive research. They have been demonstrated to be typically
advantageous when both sufficient long-read and short-read data is available. While
individual approaches are highly diverse, the combination of both types of data
facilitate major advantages compared to single data type assemblies. Typical setups
avoid the computational demands of long-read-only assembly while a lower coverage,
especially of long reads, is required to achieve comparable results.

Our method LazyB1 aims to fill a vital so far unaddressed niche in the ecosystem
of hybrid assemblers. It was developed in particular to address assembly of datasets
with very low abundance, although we predict its usefulness also for higher abundance
scenarios.

LazyB implements an alternative approach to assembling genomes from a
combination of long-read and short-read data. It not only avoids the expensive,
direct all-vs-all comparison of the error-prone long-read data, but also the difficult
mapping of individual short reads against the long reads, and the conventional
techniques to error-correct de Bruijn or string graphs. As we shall see, its step-wise
approach of processing the long-read overlap graph adds the benefit of producing
quite good assemblies with surprisingly low requirements on the coverage of both
short and long reads. Even at just 2× coverage of long reads the contiguity of
assemblies of complex genomes can be significantly improved using our method. It
lends itself in particular to the exploratory assembly of a large number of species,
where cheap identification of functional islands is required rather then expensive
finishing.

LazyB shares several concepts with DBG2OLC (Ye et al., 2016) as the closest
related tool. Most notably, both utilize long reads as nodes in the assembly graph,
with edges representing short contigs or unitigs mapping to pairs of long reads. Yet,
the main assembly steps differ significantly.

This chapter is organized as follows. First, a brief outline of the overall strategy
of LazyB is presented for the convenience of the reader. As the integral initial step
of the LazyB assembly pipeline, short-read data is pre-processed and assembled to
unitigs. As already stated, overlaps between long reads are established based on
unitig alignments. The main innovation in LazyB is the processing of the overlap
graph, which proceeds by a series of heuristics inspired by properties of overlap and
interval graphs derived from ideal data, and avoids the commonly used techniques
to correct assembly graphs. We address the unique use of path decomposition
of the overlap graph for assembly and reduction of paths to consensus sequences.
Benchmarking results are reported for the assembly of yeast, fruitfly, and human
genomes. An efficient implementation of the prototype and the methods presented
here was realized as MuCHSALSA.

1Named after the Bradypus, a very lazy but very effective animal.



Chapter 3. From LazyB to MuCHSALSA - Fast and Cheap Genome Assembly 45

3.2 Strategy

LazyB does not pursue a “total data” approach. Instead, it identifies “anchors” that
are nearly guaranteed to be correct and implements an, overall, greedy-like workflow
to obtain very large long-read contigs. To this end, the initial overlap graph is
first oriented and then edited in several consecutive steps to graph classes that
more closely approach the desired final results, i.e., a union of paths. Conceptually,
therefore, LazyB does not attempt to solve a single global optimization problem
but instead approximates the solution as a sequence of graph editing problems.
This strategy of LazyB is outlined in Fig. 10.

The key idea to obtain the overlap graph is to start from a collection S ∶= {si}
of pre-assembled, high-quality sequences that are unique in the genome. These
are obtained from accurate short-read sequencing data and serve as “anchors” to
determine overlaps among the long reads R ∶= {rj}. In practice, S can be obtained
by assembling Illumina data with low or moderate coverage to the level of unitigs
only. The total genomic coverage of S only needs to be large enough to provide
anchors between overlapping long reads. This data is therefore rigorously filtered
to be devoid of repetitive and highly similar sequences. Mapping a sequence s ∈ S
against the set R of long reads implies (candidate) overlaps r1 − r2 between two
long reads (as well as their relative orientation) whenever s ∈ S maps to both r1
and r2. Thus we obtain a undirected overlap graph G of the long reads without an
all-vs-all comparison of the long reads.

A series of linear-time filtering and reduction algorithms then prunes first the
underlying undirected overlap graph and then the directed version of the reduced
graph. Its connected components are reduced to near-optimal directed acyclic
graphs (DAGs) from which contigs are extracted as best-supported paths. In the
following sections the individual steps will be described in detail. In comparison
to DBG2OLC we avoid global corrections of short-read mappings, but instead rely
on the accuracy of assembled unitigs and a series of local corrections. For this,
we utilize previously unreported properties of the class of alignment graphs used
by both tools. This allows LazyB to operate reliably even on very low coverage.
Variations of the dataset dependent assembly options have little impact on the
outcome. In contrast to the complicated setup of options required for tools such as
DBG2OLC, LazyB comes with robust defaults.

3.3 Data preprocessing

A known complication of both PacBio and Nanopore technologies are chimeric
reads formed by the artificial joining of disconnected parts of the genome (Martin
and Leggett, 2019) that may cause misassemblies (Wick, Judd, and Holt, 2018).
Current methods dealing with this issue heavily rely on raw coverage (Marijon,
Chikhi, and Varré, 2019) and hence are of little use for our goal of a low-coverage
assembler. In addition, start- and end-regions of reads are known to be particularly
error-prone (Dohm et al., 2020). We pre-filter low quality regions, but only consider
otherwise problematic reads later at the level of the overlap graph.
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Figure 10: Overview of the LazyB assembly pipeline. a) Short Illumina reads are filtered to remove overabundant
k-mers and subsequently assembled into unambiguous unitigs. Long Nanopore reads (ONT) can be optionally
scrubbed to include only regions consistent to at least one other read. For larger data sets scrubbing can be handled
on subsets efficiently. Mapping unitigs against Nanopore reads yields unique “anchors” between them b). An
undirected graph c) is created by adding Nanopore reads as nodes and edges between all pairs of reads sharing an
“anchor”. Each edge is assigned a relative orientation, depending on whether the “anchor” maps in the same direction
on both Nanopore reads. Cycles with a contradiction in orientation have to be removed before choosing a node at
random and directing the graph based on its orientation. As Nanopore reads that are fully contained within another
do not yield additional information, they can be collapsed. Contigs are extracted as maximally supported paths for
each connected component d). Support in this context is defined by the number of consistent overlaps transitive to
each edge. Final contigs e) can be optionally polished using established tools.
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Figure 11: Assembly statistics as a function of the k-mer size used to construct unitigs from the short-read data
for yeast. Top: Illumina unitigs (Left: number of unitigs; Middle: fraction of the reference genome covered; Right:
N50 values); Bottom: final LazyB assembly at ∼11× long reads (Left: number of unitigs; Middle: fraction of the
reference genome covered; Right: number of misassemblies).

Instead of the removal of errors in the assembly graph as is common to most
competing tools, LazyB avoids the introduction of errors already during graph
creation. As such, we seek a fine balance between loss of data and correctness.
Fine-tuned settings especially for short-read assembly to unitigs and the alignment
of unitigs to long reads are essential for the quality of the resulting assembly. Due
to the lack of other metrics, we judge the quality of settings by applying LazyB
itself, and reference results to previous LazyB assemblies. In other words, we used
LazyB to benchmark itself and optimize each component individually by circular,
progressive updates. The result is a local optimum that further changes have to be
benchmarked against. We use this comparison also as justification for the status
quo in the following chapters.

3.3.1 Short-read unitig-level assembly
Short-read (Illumina) data is preprocessed by adapter clipping and trimming. The
set S of high quality fragments is obtained from a restricted assembly of the
short-read data. The conventional use case of assembly pipelines aims to find a
minimal set of contigs in trade-off to both correctness and completeness. For our
purposes, however, completeness is of less importance and fragmented contigs are
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Table 1: Impact of short-read filtering strategies on LazyB assembly quality in fruit fly. Column descriptions:
completeness of the assembly, #ctg number of contigs, #MA number of misassemblies (breakpoints relative to the
reference assembly).

Filter strategy compl.[%] #ctg #MA
no filter 82.81 457 302
k-mer filter 80.66 567 104
unitig filter 80.71 563 108
k-mer and unitig filter 80.11 596 99

not detrimental to our workflow, as long as their lengths stay above a statistical
threshold. Instead, correctness and uniqueness are crucial. We therefore employ
two initial filtering steps:

(1) Using a k-mer profile, we remove all k-mers that are much more abundant
than the expected coverage since these are likely part of repetitive sequences. This
process can be fully automated.

(2) In order to avoid ambiguities, only branch-free paths are extracted from the
short-read assembly graph. This feature is implemented e.g. in the de Bruijn graph
assembler ABySS (Simpson, Wong, et al., 2009), which allows to assemble up to
unitig stage. Moreover, a minimal path length is required for a unitig to serve as a
reliable anchor.

Since repeats in general lead to branch-points in the de Bruijn graph, repetitive
sequences are strongly depleted in unitigs. While in theory, every such assembly
requires a fine-tuned k-mer size, a well known factor to be influential on assembly
quality, we found overall results to be mostly invariant of this parameter. To test
this, we systematically varied the k-mer-size for ABySS. Nevertheless, we found
little to no effect on the results of LazyB (Fig. 11). As assembly stops at unitigs,
error rates and genome coverage stay within a narrow range as long as the unitigs
are long enough.

The strategies for filtering short-read data have a larger impact than the choice
of the k-mer size for unitig assembly (Fig. 12). This is not surprising given that
both chimeric unitigs and unitigs that harbor repetitive DNA elements introduce
spurious edges into the long-read overlap graph G and thus negatively influence the
assembly. In order to exclude short reads that contain highly frequent k-mers, the
maximal tolerated occurrence has to be set manually and is dependent on the k-mer
size. Setting the cut-off right next to the main peak in the profiles has turned out
to be a good estimate. After assembling short reads, unitigs are mapped to long
reads and a coverage profile over the length of every unitig is calculated. Unitigs
with maximal coverage above interquartile range IQR × 1.5 +Q3 are considered
outliers. However, regions below coverage threshold (Q3) spanning more than 500
bp can be “rescued”. This filter step effectively reduces ambiguous regions, in
particular when no previous filtering has been applied (Fig. 13). Combining both
short-read filters improves the assembly quality; see Tbl. 1.
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Figure 12: Assembly statistics of yeast as a function of the k-mer size and maximal occurrence cut-off used to
remove very frequent k-mers from short reads prior to unitig assembly. a) k-mer profiles for k=50 bp and k=75 bp.
Cut-offs restrict short reads to different degrees. Note logarithmic axes. b) Illumina unitigs (Left: percentage of
remaining short-read data; Middle: fraction of the reference genome covered; Right: number of unitigs mapping
multiple times to reference). c) final LazyB assembly (Left: number of unitigs; Middle: fraction of the reference
genome covered; Right: number of misassemblies). x: not enough data to assemble.
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Figure 14: Consistency test of anchor-linked long-read overlaps to direct alignments of both reads on fruit fly. a)
Frequencies of shifted offsets (% of the longer read); changes up to 5% are tolerated; note logarithmic axis. b)
Frequencies of the percentage at which the direct alignment covers the overlap. A minimum of 75% is set for
consistency. c) Long-read pairs where no direct alignment is possible tend to have shorter anchor-indicated overlaps.
Connections that cannot be confirmed via direct alignments despite an expected overlap of at least 1 kbp are
excluded.

3.3.2 Anchor alignments
The set R of long reads is mapped against the unitig set. At present we use
minimap2 (H. Li, 2018) for this purpose. Regions or whole unitigs significantly
exceeding the expected coverage are removed from S, as described in the last
section, because they most likely are repetitive or at least belong to families of very
similar sequences such as coding sequences of multi-gene families. Note that all
repetitive elements connected to a unique region within a single long read may still
be correctly assembled.

Classic alignment tools perform poorly in the presence of high rates of insertions
and deletions (InDels) (Pervez et al., 2014). Even methods specifically advertised for
this purpose rely on scoring schemes that cannot accurately represent the extreme
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Table 2: Assessment of different parameters to verify long-read overlaps and their impact on LazyB assembly quality
on fruit fly. Overlaps are indicated by anchors and evaluated by pairwise long-read alignments. They are considered
valid if: the relative direction suggested by the anchor matches that of the pairwise alignment (direction); the offset
is sufficiently similar for both methods (offset); at least 75% of the overlap is found as direct alignment (incomplete
mapping); the overlap indicated by the anchor is less than or equal to 1 kbp or a pairwise alignment is possible
(no mapping). Column descriptions: completeness of the assembly, #ctg number of contigs, #MA number of
misassemblies (breakpoints relative to the reference assembly).

Varification parameters compl.[%] #ctg #MA
direction 80.13 608 111
direction + offset 80.08 622 103
direction + offset + incomplete mapping 80.04 1263 121
no mapping 80.15 801 113

abundance of InDels in long-read data. Instead, they rely on seeds of high quality
matches that are then chained with high error tolerance. Currently, minimap2
(Gamaarachchi, Parameswaran, and Smith, 2019; H. Li, 2018) is one of the most
commonly used tools for this purpose. Since we do not have a gold standard set of
perfect data, we can only roughly estimate the influence of this heuristic on the
LazyB alignment quality in a related experiment. Specifically, we tested consistency
of anchor alignments on pairs of long reads to direct alignments of both reads
for fruit fly. Consistency is validated at the level of relative orientation, the offset
indicated by both alignment methods, the portion of overlap that can be directly
aligned and whether direct alignment of the long reads is possible at all. Different
relative orientations were observed only in very small numbers. Changes in the
offset by more then 5% of the longer read length are equally rare (Fig. 14).

However, requiring a direct alignment of at least 75% of the overlap region
marks 4.6% of the anchor links as incorrect. Removing these “incorrect” anchors,
surprisingly, has a negative effect on the final LazyB assembly and in particular
tends to break correct contigs apart; see Tbl. 2. In our test set 7.7% of direct
alignments of two anchor-linked long reads gave no result. In these cases, expected
overlaps are rather short (Fig. 14). We therefore tested whether the assembly
could be improved by excluding those connections between long reads for which
no alignment could be calculated despite the presence of an overlap of at least 1
kbp (3.7%). We found, however, that this procedure also causes the loss of correct
edges in G.

Summarizing, we observe three facts: (i) The overwhelming number of pairs is
consistent and therefore true. (ii) Removing inconsistent edges from the assembly
not only does not improve the results but results are worse on average. (iii) While
we can manually identify some incorrect unitig matches, the mappings produced by
minimap2 are too inconsistent for proper testing. Since we have no proper methods
to identify such false positives we also cannot properly estimate the number of false
negatives, i.e., missing matches in the graph Ð⇀G , e.g. by computing a transitive
completion (see Chapter 3.4.3 for context and definitions).

Overall, out tests indicate that a high level of trust in the anchor-mapping is
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warranted. We also conclude that minimap2 is sufficient for our purposes. However,
the data also suggest that the assembly would profit substantially from a more
accurate handling of the overlap alignments. This remains a problem for future
research at this point.

3.3.3 Long Read Overlap Graph
As a result of mapping the short-read unitig to the long reads, we obtain a set
of significant matches V ∶= {(s, r) ∈ S ×R ∣ δ(s, r) ≥ δ∗} with matching scores
δ(s, r) that exceed a user-defined threshold δ∗. The long-read overlap graph G has
the vertex set R. Conceptually, two long reads overlap, i.e., there should be an
undirected edge r1r2 ∈ E(G) if and only if there is an s ∈ S such that (s, r1) ∈ V
and (s, r2) ∈ V . The choice of δ∗ therefore has an immediate effect on the resulting
graph. Setting δ∗ too low will allow more false-postive edges to be introduced into
the graph, as spurious matches become more likely. Higher values of δ∗ improve
the confidence of matches but may remove true edges. In the current prototype, we
set the matching score as the number of exactly aligned basepairs in the match and
require at least 500 such exact basepairs. With increasing accuracy of long-read
basecallers, long-read mappers, unitig assembly, and possibly also dependent on
the organism, this value is subject to change. In practice, we employ an overall
more restrictive but robust procedure to introduce edges in order to reduce the
danger of introducing false-positive edges into G, mitigating also effects of slightly
sub-optimal choices of δ∗.

For two distinct long reads r1, r2 ∈R with a common s ∈ S, i.e., (s, r1), (s, r2) ∈
V , we denote by [i, j] and [k, l], respectively, the sequence intervals on s that
match intervals on r1 and r2. The intersection [i, j] ∩ [k, l] is the interval
[max{i, k},min{j, l}] if k ≤ j and the empty interval otherwise. A non-empty
intersection [i, j]∩ [k, l] corresponds to a direct match of r1 and r2. The expected
bit score for the overlap is estimated as

ω(s, r1, r2) ∶=
1
2
(min{j, l} −max{i, k} + 1)×

( δ(s, r1)
(j − i + 1)

+ δ(s, r2)
(l − k + 1)

)
(3.1)

if [i, j] ∩ [k, l] ≠ ∅. For [i, j] ∩ [k, l] = ∅ we set ω(s, r1, r2) ∶= 0. For a given
edge r1r2 ∈ E(G) there may be multiple significant matches, mediated by a set of
unitigs Sr1r2 ∶= {s ∈ S ∣ (s, r1), (s, r2) ∈ V }. In ideal data all these matches are
co-linear and consistent with respect their orientation. In real data, however, this
may not be the case. It is necessary, therefore, to handle inconsistencies.

For each significant match (s, r) ∈ V we define the relative orientation θ(s, r) ∈
{+1,−1} of the reading directions of the short-read scaffold s relative to the long
read r. The relative reading direction of the two long reads (as suggested by s) is
thus θs(r1, r2) = θ(s, r1) ⋅ θ(s, r2).

The position of a significant match (s, r) defined on the unitig s on interval
[i, j] corresponds to an interval [i′, j′] on the long read r that is determined by
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Figure 15: Construction of the overlap of two long reads r1 and r2 (long black arrows) from all unitigs Sr1r2 ∶=
{s1, ..., s5} (short black bars) that match to both r1 and r2. A significant match (s, r) of s ∈ Sr1r2 on r ∈ {r1, r2}
is illustrated by blue and green thick arrows on r. The relative orientation of (s, r) is indicated by the direction
of its arrow, that is, θ(s, r) = +1 (resp. θ(s, r) = −1) if its arrow points to the right (resp. left). The subsets
S 1

r1r2 ∶= {s1, s3, s5} (unitigs with blue significant matches) and S 2
r1r2 ∶= {s2, s4} (unitigs with green significant

matches) of Sr1r2 are both inclusion-maximal and consists of pairwise consistent unitigs. The set S 1
r1r2 maximizes

Ω(r1, r2) and thus determines the overlap. It implies θ(r1, r2) = +1. Moreover, ir1 (resp. jr1) is the minimal (resp.
maximal) coordinate of significant matches of unitigs from S 1

r1r2 on r1. The corresponding coordinates on r2 are
kr2 and lr2 , respectively. The spanning intervals [ir1 , jr1] and [kr2 , lr2] define the overlap of r1 and r2. In this
example we have ir1 > kr2 and ∣r1∣ − jr1 > ∣r2∣ − lr2 , implying that r2 extends r1 neither to the left or right and thus,
edge r1r2 is contracted in G.

the alignment of s to r. Due to the large number of randomly distributed InDels in
the Nanopore data, the usual dynamic programming alignment strategies fail to
produce accurate alignments. This is also the case for minimap2 (H. Li, 2018), our
preliminary choice, as it only chains short, high quality matches into larger intervals.
Although more accurate alignments would of course improve the local error rate of
the final assembled sequence, we expect very little impact on the overall assembly
structure of the assembly from local details of the sequence alignments at (s, r)
matches. We therefore record only the matching intervals and use a coordinate
transformation τr that estimates the position τr(h) ∈ [i′, j′] for some h ∈ [i, j] by
linear interpolation:

τr(h) ∶=
⎧⎪⎪⎨⎪⎪⎩

j′ − (j − h) j′−i′+1
j−i+1 if j − h ≤ h − i;

i′ + (h − i) j′−i′+1
j−i+1 if j − h > h − i.

(3.2)

The values of τr(h) are rounded to integers and used to determine intersections of
matches. We write [i, j]r ∶= [τr(i), τr(j)] for the interval on r corresponding to
an interval [i, j] of s.

Definition 1. Two unitigs s, s′ in Sr1r2 are consistent if (i) θs(r1, r2) = θs′(r1, r2),
(ii) the relative order of [is, js]r1 , [ks′ , ls

′

]r1 on r1 and [is, js]r2 , [ks′ , ls
′

]r2 on r2
is the same.

For distinct long reads r1, r2 ∈R, Definition 1 enables us to determine m ≥ 1
subsets S 1

r1r2
, ...,S m

r1r2
of Sr1r2 such that each is maximal with respect to inclusion
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and contains only unitigs that are pairwise consistent with respect to r1 and r2. In
addition, we may require that the difference between the distances of consecutive
corresponding intervals on r1 and r2, respectively, is sufficiently similar (see also
Appendix A Fig. 39). Computing the set S ∈ {S 1

r1r2
, ...,S m

r1r2
} that maximizes

the total bit score ∑s∈S ω(s, r1, r2) amounts to a classical chaining problem. It can
can be solved by dynamic programming (Morgenstern, 2002) in quadratic time w.r.t.
the number ∣Sr1r2 ∣ of unitig-mediated matches. An edge r1r2 is inserted into G
if the optimal total bit score Ω(r1, r2) ∶= ∑s∈S ω(s, r1, r2) exceeds a user-defined
threshold. The signature θ(r1, r2) of the edge r1r2 ∈ E(G) is the common value
θs(r1, r2) for all s ∈ S .

For each edge r1r2 ∈ E(G) we furthermore determine s, s′ ∈ S such that
τr1(is) is the minimal and τr1(js′) is the maximal coordinate of the matching
intervals on r1. Hence, the interval [is, js′]r1 spans all matching intervals on r1.
The corresponding pair of coordinates, τr2(ks) and τr2(ls

′

), spans the matching
intervals on r2. In particular, the interval [ks, ls

′

]r2 (resp. [ls
′

, ks]r2) spans both
matching intervals on r2 if θ(r1, r2) = 1 (resp. θ(r1, r2) = −1). For the sake of a
clear notation, let [ir1 , jr1] ∶= [is, js′]r1 and [kr2 , lr2] be the “spanning” interval
on r2, i.e., either [kr2 , lr2] ∶= [ks, ls

′

]r2 or [kr2 , lr2] ∶= [ls
′

, ks]r2 . Intervals [ir1 , jr1]
and [kr2 , lr2] specify the known overlapping regions between r1 and r2, see also
Fig. 15 for an illustration. If θ(r1, r2) = +1 then r1 extends r2 to the left if ir1 > kr2

and to the right if ∣r1∣ − jr1 > ∣r2∣ − lr2 . For θ(r1, r2) = −1 the corresponding
conditions are ir1 > ∣r2∣− kr2 and ∣r1∣− jr1 > lr2 , respectively. If r1 does not extend
r2 to either side then r1 is completely contained in r2 and does not contribute to
the assembly. Similarly, if r1 extends r2 on both sides, r2 is fully contained in r1. In
both cases we contract the edge between r1 and r2 in G. Otherwise, if r1 extends
r2 to the left and r2 extends r1 to the right we record r1 → r2 and analogously, we
set r1 ← r2 if r2 extends r1 to the left and r1 extends r2 to the right.

The result of this construction is a long-read-overlap graph G whose vertices
are the non-redundant long reads and whose edges r1r2 record (1) the relative
orientation θ(r1, r2), (2) the bit score Ω(r1, r2), (3) the local direction of extension,
and (4) the overlapping interval.

3.4 Processing of the overlap graph

3.4.1 Consistent orientation of long reads
For perfect data it is possible to consistently determine the reading direction of
each read relative to the genome from which it derives. This is not necessarily the
case in real-life data. The relative orientation of two reads is implicitly determined
by the relative orientation of overlapping reads, i.e., by the signature θ(r1, r2) of
the edge r1r2 ∈ E(G). To formalize this idea we consider a subset D ⊆ E(G) and
define the orientation of D as θ(D) ∶= ∏r1r2∈D θ(r1, r2). For a disjoint union of
two edge sets D and D′ we therefore have θ(D ⊍D′) = θ(D′)θ(D) and, more
generally, their symmetric different D ⊕D′ satisfies θ(D ⊕D′) = θ(D)θ(D′) since
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the edges in D ∩D′ appear twice in θ(D)θ(D′) and thus each of these edges
contributes a factor (±1)2 = 1.

Definition 2. Two vertices r1, r2 ∈ V (G) are orientable if θ(P ) = θ(P ′) holds for
any two paths P and P ′ connecting r1 and r2 in G. We say that G is orientable if
all pairs of vertices in G are orientable.

Lemma 1. G is orientable if and only if every cycle C in G satisfies θ(C) = 1.

Proof. Let r, r′ be two vertices of G and write C (r, r′) for the set of all cycles that
contain r and r′. If r = r′ or C (r, r′) = ∅, then r and r′ are orientable by definition.
Now assume r ≠ r′, C (r, r′) ≠ ∅, and consider a cycle C ∈ C (r, r′). Clearly, C can
be split into two edge-disjoint path C1 and C2 both of which connect r and r′. If
r and r′ are orientable, then θ(C1) = θ(C2) and thus θ(C) = θ(C1)θ(C2) = 1. If r
and r′ are not orientable, then there is a pair of paths P1 and P2 connecting r and
r′ such that θ(P1) = −θ(P2). Since P1 ⊕ P2 = ⊍k

i=1Ci is an edge-disjoint union of
cycles Ci we have −1 = θ(P1)θ(P2) =∏k

i=1 θ(Ci) and thus there is least one cycle
Ci with θ(Ci) = −1 in G.

The practical importance of Lemma 1 is the implication that only a small set
of cycles needs to be considered, because every cycle in G can be obtained as
an ⊕-sum of cycles in a cycle basis (Kavitha et al., 2009; Liebchen and Rizzi,
2007). Every graph G with c connected components has a cycle basis comprising
∣E∣ − ∣V ∣ − c cycles. Particular cycles bases, known as Kirchhoff bases, are obtained
from a spanning tree T of G as the set B of cycles Ce consisting of the edge
e ∈ E ∖T and the unique path in T connecting the endpoints of e (Kirchhoff, 1847).
Every cycle C of G can then be written as C =⊕e∈C∖T Ce, see e.g. Kavitha et al.
(2009).

Theorem 1. Let G be a graph with signature θ ∶ E(G) → {−1,1} on its edges,
and let B be a cycle basis of G. Then G is orientable if and only if θ(C) = 1 for
all C ∈ B.

Proof. The theorem follows from Lemma 1 and the fact that every cycle C in G
can be written as an ⊕-sum of basis cycles, i.e., θ(C) = 1 for every cycle in C if
and only if θ(C ′) = 1 for every basis cycle C ′ ∈ B.

Thm. 1 suggests the following, conservative heuristic to extract an orientable
subgraph from G:

(1) Construct a maximum weight spanning tree TG of G by using the Ω-scores as
edge weights. Tree TG can easily be obtained using, e.g., Kruskal’s algorithm
(Kruskal, 1956).

(2) Construct a Kirchhoff cycle basis B from TG.

(3) For every cycle C ∈ B, check whether θ(C) = −1. If so, find the Ω-minimum
weighted edge ê ∈ C and remove it from E(G) and (possibly) from TG if
ê ∈ E(TG).
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We delete the offending edge because it is very unlikely that the preprocessing
correctly identified that two long reads overlap but failed to determine the correct
relative orientation. The edge deletion is simplified by the following observation:

Lemma 2. If T is maximal Ω-weight spanning tree of G and end e is a non-tree
edge, then Ω(e) = mine′∈Ce Ω(e′).

Proof. Let e′ ∈ Ce ∖ {e} by a tree edge in the cycle Ce. Then T ′ = T ∖ {e′} ∪ {e}
is again a spanning tree of G since the vertex set V (Ce) is still connected and T ′
contains not cycle. Its weight it weight is Ω(T ′) = Ω(T ) −Ω(e′) +Ω(e) ≤ Ω(T ),
since T is a maximum weight spanning tree by assumption. Thus Ω(e) ≤ Ω(e′),
i.e., e has minimum Ω-weight.

As a consequence, the minimum weight edge of an offending cycle is always the
non-tree edge. Step (3) above therefore reduces to finding the basis edges ê with
negative signature cycles Cê and to remove these edges. The removal of ê leaves
TG unchanged and thus does not affect the contiguity of the assembly. The end
result of the procedure outlined above is therefore a connected subgraph G′ and a
spanning forest TG′ = TG for G′.

Lemma 3. Let G be an undirected connected graph with signature θ and let G′ be
the residual graph produced by the heuristic steps (1)-(3). Then (i) G′ is connected,
(ii) G′ is orientable, and (iii) TG is an Ω-maximal spanning tree of G′.

Proof. (i) By Lemma 2, TG ⊆ E(G′), hence TG is a spanning tree of G′ and
thus G′ is connected. (ii) Since the heuristic removes all non-tree edges e with
θ(Ce) = −1, Thm. 1 implies that G′ is orientable. (iii) Since TG ⊆ E(G′), Kruskal’s
maximum weight spanning tree algorithm will pick the same spanning tree edges
again from E(G′), and TG is an Ω-maximal spanning tree.

In order to expedite the identification of edges that violate orientability in G,
we define an orientation ϕ for the vertices of G, i.e., the long reads. To this end,
we pick an arbitrary r∗ ∈ V (G) as reference and set ϕ(r∗) ∶= +1. Denote by PT (r)
the unique path from r∗ to r and define ϕ(r) ∶= θ(PT (r)).

Lemma 4. If G is a connected orientable graph with signature θ, then the vertex
orientation ϕ with reference ϕ(r∗) ∶= +1 is independent of the choice of the spanning
tree T .

Proof. Let P be an arbitrary path connecting r and r∗. By connectedness, such a
path exists and since G is orientable w.r.t. θ we have θ(P ) = θ(PT ). Furthermore r
and r∗ are connected by the backbone of any spanning tree of T , ϕ is independent
of the choice of T .

As an immediate consequence we observe:

Corollary 1. If G is an orientable graph with signature θ and vertex orientation ϕ,
then every pair of adjacent vertices satisfies ϕ(r′)ϕ(r′′) = θ(r′r′′).
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It follows that the heuristic to extract an orientable subgraph can be implemented
in linear time:

(1) An Ω-maximal spanning tree TG is obtained in O(∣V ∣+∣E∣) time using Kruskal’s
algorithm.

(2) The vertex orientation ϕ is computed by traversal of the spanning tree TG in
O(∣V ∣) time.

(3) For each e ∈ E∖TG, one checks in constant time whether ϕ(r′)ϕ(r′′) ≠ θ(r′r′′)
and if so deletes the edge r′r′′. The total effort is therefore O(∣E∣).

We remark that one could now define a graph G̃, obtained from G by inverting
all long-reads r with a negative orientation ϕ(r) = −1. This amounts to replacing
each long read r by its reverse complement. Since processing of the overlap graph
does not explicitly consider the sequence information, it would be sufficient to
replace the coordinates [p, q] of a match interval by [`−q+1, `−p+1] and to invert
the directionality of extension by another long read. The bit scores of matches,
of course, remain unchanged. In G̃ all edge signatures are θ̃(e) = +1. It is not
necessary, however, to construct G̃ explicitly. Instead, we simply keep track of the
vertex orientations ϕ(r).

From here on, we again write G for the orientable graph G′.

3.4.2 Reduction to a directed acyclic graph
We next make use of the direction of extension of long read r1 and r2 defined by
the mutual overhangs in the case that r1r2 is an edge in G (see also Appendix A
Fig. 40). We write G⃗ for the directed version of a connected component G of the
residual graph G′ constructed above. For each edge r1r2 ∈ E(G) we create the
corresponding edge e ∈ E(G⃗) as

e ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r1r2 if ϕ(r1) = +1 and r1 → r2 or
ϕ(r1) = −1 and r1 ← r2;

r2r1 if ϕ(r1) = +1 and r1 ← r2 or
ϕ(r1) = −1 and r1 → r2.

(3.3)

Suppose the data used to construct G⃗ are free of repetitive sequences and contain
no false-positive overlaps. In such perfect data, G⃗ is a directed interval graph.
Since we have contracted edges corresponding to nested reads (i.e., intervals), G⃗
is in fact a proper interval graph or indifference graph (F. S. Roberts, 1969). In
addition G⃗ is directed in a manner consistent with the ordering of the intervals.
More precisely, there is an ordering ≺ of the vertices (long reads) that satisfies the
umbrella property (Heggernes, Meister, and Papadopoulos, 2009): r1 ≺ r2 ≺ r3
and r1r3 ∈ E(G⃗) implies r1r2, r2r3 ∈ E(G⃗). We can interpret r1 ≺ r2 to mean
that r1 extends r2 to the left, i.e., towards smaller coordinate values in the final
assembly. A “normal interval representation” and a linear order ≺ of the reads
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can be computed in O(∣R∣) time (Gardi, 2007; Mertzios, 2008) for proper interval
graphs.

Due to the noise in the data, however, we have to expect that the original
overlap graph only approximates a proper interval graph. On the other hand, we
have already obtained an orientation of the edges that – in ideal data – would
be consistent with interval order. We therefore consider necessary conditions for
directed indifference graphs and set out to enforce them.

First, we observe that G⃗ should be acyclic. Orientability w.r.t. a signature θ,
does not guarantee acyclicity since G⃗ still may contain some spurious “back-linking”
edges due to unrecognized repetitive elements. The obvious remedy is to remove
a Ω-minimal set of directed edges. This amounts to solving an Feedback Arc
Set problem, which is known to be NP-complete in both weighted and unweighted
versions, see Baharev, Schichl, and Neumaier (2015) for a recent overview. We
therefore resort to a heuristic that makes use of our expectations on the structure
of G⃗: In general we expect multiple overlaps of correctly placed reads, i.e., r is
expected to have several incoming edges from its predecessors and several outgoing
edges exclusively to a small set of succeeding reads. In contrast, we expect incorrect
edges to appear largely in isolation. This suggests to adapt Khan’s topological
sorting algorithm (Kahn, 1962). In its original version, it identifies a source u, i.e.,
a vertex with indegree 0, appends it to the list W of ordered vertices, and then
deletes all its out-edges. It stops with “fail” when no source can be found before
the sorting is complete, i.e., W does not contain all vertices of the given graph,
indicating that a cycle has been encountered. We modify this procedure in two
ways:

First, if multiple sources are available in a given step, we always pick the one with
largest total Ω-weight of edges incoming from the sorted set W . As a consequence,
incomparable paths in G⃗ are sorted contiguously, i.e., a new path is initiated only
after the previous one cannot be continued any further. Note that keeping track of
the total input weight from W does not alter the O(∣V ∣ + ∣E∣) running time of the
Kahn’s algorithm.

Second, we replace the “fail” state by a heuristic to find an “almost source” to
continue the sorting. Denote by N+(W ) the out-neighborhood of the set W that
has been sorted so far and consider the set K ∶= N+(W ) ∖W the not-yet-sorted
out-neighbors of W . These are the natural candidates for the next source. For each
u ∈K we distinguish incoming edges xu from x ∈W , x ∈K, and x ∈ V ∖ (W ∪K)
and consider two cases:

(1) There is a u ∈ K without an in-edge xu from some other x ∈ K. Then we
choose among all vertices of this type the vertex û with the largest total Ω-
weight incoming from W because û then overlaps with most of the previously
sorted reads.

(2) If for each u ∈ K there is an in-edge xu from some other x ∈ K, then the
candidate set K forms a strongly connected digraph. In this case we choose
the candidate û ∈K with the largest difference of Ω-weights incoming from
W and K, i.e., û ∶= arg maxu∈K ∑w∈W Ω(w,u) −∑k∈K∖{u}Ω(k, u).
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In either case, we add the edges incoming from V ∖W into û to the set F of
edges that violate the topological order. It is clear from the construction that (i) F
remains empty if G⃗ is a DAG since in this case a source is available in each step,
and (ii) the graph Ð⇀G obtained by from G⃗ by deleting the edges in F is acylic since
all in-edges to u in Ð⇀G emanate from W , the set of vertices sorted before u, and all
out-edges from u point to the as yet unsorted set. Thus F is a feedback arc set for
G⃗.

Lemma 5. The modified Kahn algorithm can be implemented to run in O(∣E∣ +
∣V ∣ log ∣V ∣) time.

Proof. Our modified Kahn algorithm keeps the not-yet-sorted vertices in a priority
queue instead of a simple queue. The priority of a vertex u ∈ V ∖W depends on the
number of total Ω-scores of the in-edges wu with w ∈W ∩N−(u)∣, w ∈K ∩N−(u),
and w ∈ N−(u) ∩ V ∖ (W ∪K) respectively. Every time a vertex v is added to W ,
these values have to be updated for the out-neighbors u ∈ N+(v). Each update
only comprises of the addition or subtraction of Ω(v, u) and the decision whether
the second and/or third values are zero, and thus require total time O(E(G⃗)).
Highest priority is given to vertices u with N−(u) ⊆ W , i.e., true sources, next
vertices u ∈K with N−(u) ∩K = ∅, and the last tier is formed by the remaining
vertices. Assuming an efficient implementation of the priority queue as a heap,
the total effort for its maintenance is O(E) plus O(∣V ∣ log ∣V ∣) for the dequeuing
operations, see e.g. Brodal (1996) and Brodal, Lagogiannis, and Tarjan (2012).

It is possible that Ð⇀G is not connected. In this case, each connected component
can be processed independently in subsequent processing steps. If the feedback set
F is disjoint from TG, then TG is still a Ω-maximal spanning tree of Ð⇀G . Otherwise,
edges in F ∩TG need to be replaced. Lemma 2 that the replacement edges have to
be drawn from non-tree edges between the vertex sets spanned by the connected
components of TG ∖ F . In principle, this can be done efficiently with specialized
data structures for dynamic connectivity queries, in particular if F ∩ TG is small
(Henzinger and King, n.d.). However, the effort to run Kruskal’s algorithm again
on Ð⇀G is by no means prohibitive, since the update has to be done only once.

3.4.3 Golden Paths
For perfect data, the directed proper interval graph Ð⇀G = G⃗ has a single source and
a single sink vertex, corresponding to the left-most and right-most long reads r′ and
r′′, respectively. Furthermore, every directed path connecting r′ and r′′ is a golden
path, that is, a sequence of overlapping intervals that covers the entire chromosome.
Even more stringently, every read r ≠ r′, r′′ has at least one predecessor and
at least one successor in Ð⇀G . An undirected graph is a proper interval graph if
there is a set of intervals, corresponding to the vertices, such that (i) no interval
is properly contained within another, and (ii) two vertices are adjacent iff their
intervals intersect. For perfect data, therefore, the overlap graph is a proper interval
graph.
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Lemma 6. (Deng, Hell, and J. Huang, 1996) A connected proper interval graph
has a unique vertex order (other than the reversal of the order).

The vertex order of a connected proper interval graph is therefore completely
determined by fixing the orientation of single edge. In our case, the orientation is
fixed by r∗. We choose the ascending vertex order, i.e., r1 ≺ r2 for every directed
edge r1r2. A proper interval graph with such an orientation of edges is a directed
proper interval graph.

For perfect data, therefore, G⃗ is directed proper interval graph and thus it would
suffice to compute the unique topological sorting of G⃗. For real-life data, however,
we cannot expect that even the acyclic graph Ð⇀G is a directed proper interval
graph. Ploidy in eukaryotes may constitute a valid exception to this assumption, as
differences in chromosomes ideally also cause diverging structures. However, given
the high error rate of long reads, low sequence variation can only be differentiated
in very high coverage scenarios or with the help of known ancestral relationships
(Koren, Rhie, et al., 2018); both are explicitly not targeted by LazyB. In practice,
ploidy is commonly reduced even when sufficient coverage is available but can
be recovered via variant calling (Voshall and Moriyama, 2020). High accuracy
short-read assemblies originating from different alleles can be expected to match
equally well to the same long reads given their low quality. Therefore, also ploidy
variation will normally be merged to a single consensus. Accordingly, we did not
detect any major duplication issues in the human, fly, or yeast.

Our aim now is to approximate the DAG Ð⇀G by a disjoint union of connected
directed proper intervals graphs. To gain some intuition for this task, we first
consider reductions of directed graphs that expose longest paths.

A transitive reduction H⃗○ of some directed graph H⃗ is a subgraph of H⃗ with as
few edges as possible such that two vertices x and y are connected by a directed
path in H⃗○ if and only if they are connected by a directed path in H (Aho, Garey,
and Ullman, 1972; Moyles and G. L. Thompson, 1969). It is well-known that every
directed acyclic graph has a unique transitive reduction Aho, Garey, and Ullman,
1972, Thm. 1. This property allows us to call an edge e of an acyclic digraph H⃗
redundant if e ∉ E(H⃗○). Unfortunately, computation of the transitive reduction
requires O(∣V ∣ ∣E∣) time in sparse graphs and O(∣V ∣ω), where ω ≈ 2.3729 is the
matrix multiplication constant. This is impractical for our purposes.

As a simpler analog of transitive reduction, we define the triangle reduction H⃗△

of H as the digraph obtained from H⃗ by removing all edges uw ∈ E(H⃗) for which
there is a vertex v with uv, vw ∈ E(H⃗).

Lemma 7. If H⃗ is a connected directed proper interval graph then (i) H⃗△ is a
path, and (ii) H⃗△ = H⃗○.

Proof. By Lemma 6, H⃗ has a unique topological sorting, i.e., ≺ is a unique total
order. Property (ii) now is an immediate consequence of the umbrella property,
and (iii) follows from the fact the transitive reduction is a subgraph of the triangle
reduction and preserves connectedness.
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As an immediate consequence of Lemma 7 we observe that if F⃗ is a connected
induced subgraph of a directed proper interval graph H⃗, then F⃗△ is an induced
path in the triangle reduction H⃗△ of H⃗. Of course, Lemma 7 does not imply that
the triangle reduction Ð⇀G△ is a path. It serves as motivation, however, to identify
long-read contigs as maximal paths in the triangle reduction Ð⇀G△ of the directed
acycling graph Ð⇀G . Since the topological sorting along any such path is unique, it
automatically identifies all redundant non-triangle edges along a path.

We note that it is not necessary to first compute the transitive or triangle
reduction if one is only interested in the maximal paths.

Lemma 8. Let H⃗ be a directed acyclic graph with triangle reduction H⃗△ and
transitive reduction H⃗○. Then P is a maximal path in H⃗ if and only if it is a also
maximal path in H⃗△ or H⃗○.

Proof. Every maximal path in H⃗ connects a source with a sink, since otherwise
it could be extended at one the the ends. Now suppose that a longest path P
contains an edge e = r′r′′ that this not contained in the transitive reduction. By
definition, then there is a path Pr′r′′ of length at least 2 from r′ and r′′, and since
H is acyclic, no vertex in Pr′r′′ lies along the path P . Thus P ′ obtained from P by
replacing e with Pr′r′′ is again a path, which is strictly longer then P , contradicting
the assumption that P was maximal. Thus P is contained H⃗△ and H⃗○. Since H⃗△

and H⃗○ is a subgraph of H⃗ and P is maximal in H⃗, it is also maximal in H⃗△ and
H⃗○.

We note, furthermore, that the modified Kahn algorithm described above has the
useful side effect of producing long runs of consecutive vertices ri, ri+1, . . . rj−1, rj .
These can be used to effectively reduce the graph Ð⇀G by removing all arcs connecting
non-consecutive vertices with any such run.

The longest path terminating in a given vertex x can be computed with O(∣E∣)
effort (Mati, Dauzère-Pérès, and Lahlou, 2011), suggesting that the explicit com-
putation of reductions will not be helpful in practice. It also does not address the
issue that the triangle-reduction Ð⇀G△ differs from a unique golden path by bubbles,
tips, and crosslinks. Fig. 8 in the introduction Chapter 2.3.2 applies also to Ð⇀G△.
Tips and bubbles predominantly are caused by edges that are missing e.g. due to
mapping noise between reads that belong to a shared contig region. Remember that
ploidy is collapsed to one haplotype due to the high error rates of long reads. Hence,
any path through a bubble or superbubble yields essentially the same assembly of
the affected region and thus can be chosen arbitrarily whereas tips may prematurely
end a contig. Node-disjoint alternative paths within a (super-)bubble (Paten et al.,
2018) start and end in the neighborhood of the original path. Tips either originate
or end in neighborhood of the chosen path. As tips themselves may also be subject
to mild noise, and crosslinks may occur near the start- or end-sites of the true paths,
both are not always easily distinguished. Crosslinks represent connections between
two proper contigs by spurious overlaps, caused, e.g., by repetitive elements that
have escaped filtering. As crosslinks can occur at any position, a maximal path
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may not necessarily follow the correct connection and thus may introduce chimeras
into the assembly.

We therefore have to expect that solving the longest path problem on Ð⇀G will
sometimes follow spurious edges rather than locally more plausible choices since
these may lead to overall shorter paths. As a remedy, we therefore aim to resolve
the path choices based on local information. More precisely, we measure how well
an edge e fits into a local region that forms an induced proper interval graph. Recall
that a tournament is an orientation of a complete graph, and is called transitive if
and only if it is acyclic (Moon, 1968).

Lemma 9. If H⃗ is a directed proper interval graph, then the subgraph H⃗[N+(r)]
induced by the closed out+neighborhood N+(r) ∶= N+(r) ∪ {r} is a transitive
tournament.

Proof. By definition there is an arc from r to every u ∈ N+(r). Furthermore, we
already know that H⃗ has a unique topological ordering. The umbrella property
therefore implies that there is an arc from u to v whenever u preceeds v in the
unique topological ordering. Thus H⃗[N+(r)] is a transitive tournament.

For ideal data, the out-neighborhoods Ð⇀G[N+(r)] form transitive tournaments,
and their triangle reductions form induced subpath of Ð⇀G○. In fact, collecting results
from the literature, it can be shown that is also necessary:

Theorem 2. A connected directed graph H is a directed proper interval graph
if and only if the out-neighorhood N+(r) is complete (and hence a transitive
tournament) for every r ∈ V and forms an interval in the (unique) vertex order.

Proof. The equivalence of proper interval graphs and so-called closed graphs is
shown in Crupi and Rinaldo (2014). By definition, H is closed if it has so-called
closed vertex ordering equivalent to the umbrella property Crupi and Rinaldo (2014).
Prop.2.2 in Cox and Erskine (2015) states that a vertex ordering ≺ is closed if and
only if the out-neighborhood is complete and forms an interval w.r.t. ≺. Together
with the forward-orientation of the edges of H w.r.t. ≺, this in particular implies
that N+(r) is transitive tournament.

An analogous result holds for the in-neighbors. Equivalently, proper interval
graphs are also characterized by the fact that they admit a straight vertex order
in which the in-neighbors of r, r itself, and then the out-neighbors of r appear
consecutively (Deng, Hell, and J. Huang, 1996).

For real data the subgraph Ð⇀G[N+(r)] induced by the out-neighbors of r will
in general violate the transitive tournament property. The problem of finding
the maximum transitive tournament in an acyclic graph is NP-hard (Dutta and
Subramanian, 2014). An approximation can be obtained, however, using the
fact that a transitive tournament has a unique directed Hamiltonian path. Thus
candidates for transitive tournaments in Ð⇀G[N+(r)] can be retrieved efficiently as
the maximal path Prq in Ð⇀G[N+(r)] that connects r with an endpoint q, i.e., a
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vertex without an outgoing edge within Ð⇀G[N+(r)]. Using the topological order
of Ð⇀G , the maximal paths Prq can be traced back in O(∣N+(r)∣) time for each
endpoint Prq.

For Prq we compute the number hrq ∶= ∣E(
Ð⇀
G[Prq])∣. The subgraph Ð⇀G[Prq∗]

with the largest value of hrq serves as approximation for the maximal transitive
tournament with r as its top element. Its edge set Hr ∶= E(

Ð⇀
G[Prq∗]) is used to

define the interval support of an edge e ∈ E(
Ð⇀
G) as

ν(e) ∶= ∑
r∈V (

Ð⇀
G)∶e∈Hr

(∣Hr ∣ − d(r, e) − 1) . (3.4)

Here, d(r, e) is the minimal number of edges in the unique path from r to e in the
path formed by the edges in Hr. The interval support can be interpreted as the
number of triangles that support e as lying within an induced proper interval graph.
Importantly, it suffices to compute ν(e) for e ∈ E(

Ð⇀
G△). The idea is now to choose,

at every vertex r with more than one successor or predecessor in Ð⇀G△ the edges in
N+(r) and N+(r) that have the maximal interval support. We observed empirically
that determining the best path by greedily optimizing ν(e) at branch points results
in contigs with a better solution quality compared to optimizing the weight Ω(e) of
the spanning tree edges of TG. Taken together, we arrive at the following heuristic
to iteratively extract meaningful paths:

(i) Find a maximal path p = r1, . . . , rn in Ð⇀G△ such that at every junction, we
choose the incoming and outgoing edges e with maximal interval support
ν(e).

(ii) Add the path p to the contig set if it is at least two nodes long and neither
the in-neighborhood N−(r1) nor the out-neighborhood N+(rn) is already
marked as “visited” in Ð⇀G . Otherwise, we have found a tip if one of N−(r1)
or N+(rn) was visited before and a bubble if both were visited. Such paths
are assumed to have arisen from more complex crosslinks and can be added
to the contig set if they exceed a user-defined minimum length.

(iii) The path p is marked “visited” in Ð⇀G and all corresponding nodes and edges
are deleted from Ð⇀G△.

(iv) The procedure terminates when Ð⇀G△ is empty.

As the result, we obtain a set of paths, each defining a contig.

3.5 Post Processing of the Path Decomposition

3.5.1 Consensus Sequence
The final step is the retrieval of a consensus sequence for each path p. This step
is more complicated than usual due to the nature of our initial mappings. While



64 Chapter 3. From LazyB to MuCHSALSA - Fast and Cheap Genome Assembly

we enforce compatible sets of unitigs for each pair of long reads, a shared unitig
between edges does not necessarily imply the same genomic coordinate. We have
to consider four distinct situations: (i) Unitigs can be long enough that we gain
triples ri, ri+1, ri+2 ∈ V (p) such that an s ∈ Sriri+1 ∩Sri+1ri+2 exists but ri and
ri+2 share no interval on s. Such triples can occur chained. (ii) Unitigs of genomic
repeats may remain in the data. Such unitigs may introduce pairwise distinct edges
ei, ej , ek that appear in this order, denoted by ei ≺ ej ≺ ek, along the path p such
that s ∈ Sei and s ∈ Sek

but s ∉ Sej , therefore creating disconnected occurrences
of s. (iii) Similarly, proximal repeats may cause inversions in the order of two unitigs
s, s′ ∈ Sei ∩Sek

, w.l.o.g ei ≺ ek. This scenario cannot appear on neighboring edges,
as the shared node has a unique order of s and s′. Hence, either s or s′ must be
missing in an intermediary edge el due to the consistency constraints in the original
graph, resulting in a situation as described in (ii). (iv) Finally, true matches of
unitigs may be missing for some long reads due to alignment noise, which may also
yield a situation as in (ii).

To address (i), we collect all instances of a unitig in the path independent
of its context. We create an undirected auxiliary graph Us with a vertex set
V (Us) ∶= {e ∈ E(p) ∣ s ∈ Se}. We add edges for all edge-pairs that share an
overlap in s. Any clique in this graph then represents a set of edges that share a
common interval in s. We assign each edge a unique cluster index ce

s, according to
a minimal size clique decomposition. As finding a set of maximal cliques is NP-hard,
we instead resort to a O(∣V ∣/(log ∣V ∣)2) heuristic (Boppana and Halldórsson, 1992).
We address (ii-iv) with the help of a second index ge

s , where gei
s ≠ gek

s for two edges
ei, ek if and only if an edge ej exists such that ei ≺ ej ≺ ej and s ∉ Sej

.
Finally, we can now create a multigraphM consisting of vertex triples {(s, ce

s, g
e
s) ∣

s ∈ Se with e ∈ E(p)}. We add edges (s, ce
s, g

e
s)→ (s′, c′es , g′es ) if and only if s ≺ s′

on an edge e and no element s′′ exists such that s ≺ s′′ ≺ s′. The resulting graphM
is cycle free and thus uniquely defines the positions of all unitigs. Nodes represent
the sequence of the common interval on the unitig s as attributed to the clique
ce

s. Edges represent the respective sequence of long reads between s and s′, or a
negative offset value if unitigs overlap. We take an arbitrary node in M and set its
interval as the reference point. Positions of all other nodes are progressively built
up following a topological order in this graph. If multiple edges exist between two
nodes in this process an arbitrary but fixed edge is chosen to estimate the distance
between nodes.

At this point, all sequence features are embedded in the same coordinate system.
The reference contig is obtained as an in principle arbitrary projection of the read
sequences. In practice, the short-read unitigs are used wherever available because
of their much higher sequence quality. At the same time, we can map the features
of each long read to their respective position in this newly constructed reference.
This information can be directly fed into consensus based error correction systems
such as racon (Vaser et al., 2017).
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Table 3: Assessment of assembly qualities for LazyB, Canu Wtdbg2, HASLR, Wengan and short-read only assemblies
for two model organisms. LazyB outperforms Canu and Wtdbg2 in all categories, while significantly reducing contig
counts compared to short-read only assemblies. While HASLR is more accurate, it covers significantly lower fractions
of genomes at a higher contig count and drastically lower NA50. DBG2OL produces few contigs at a high NA50
for higher coverage cases, but calls significantly more misassemblies. Wengan performs well for yeast, but produces
more misassemblies at a higher contig count on fruit fly. Merging LazyB assemblies to the set of short-read contigs
(+QM) has a positive effect at 5× long-read coverage but negligible influence at higher coverage. Mismatches and
InDels are given per 100kb. Accordingly, errors in LazyB’s unpolished output constitute < 1% except for human.
Wtdbg2 assemblies were not polished. Column descriptions: X coverage of sequencing data, completeness of the
assembly. #ctg number of contigs, #MA number of misassemblies (breakpoints relative to the reference assembly)
MisMatches and InDels relative to the reference genomes. NA50 of correctly assembled contigs. We follow the
definition of QUAST: Given a set of fragments as the sub-regions of the original contigs that were correctly aligned
to the reference, the NA50 (also named NGA50) is defined as as the minimal length of a fragment needed to cover
50% of the genome. This value is omitted when < 50% is correctly recalled.

Org. X Tool compl.[%] #ctg #MA MM InDels NA50
yeast ∼5× LazyB 90.466 127 9 192.56 274.62 118843

LazyB+QM 94.378 64 12 174.77 245.05 311094
Canu 14.245 115 5 361.47 2039.15 -

Wtdbg2 22.237 177 0 849.07 805.31 -
HASLR 64.158 111 1 14.87 34.86 60316
DBG2OLC 45.645 53 20 2066.64 1655.92 -
Wengan 95.718 41 11 49.14 68.47 438928

∼11× LazyB 97.632 33 15 193.73 300.20 505126
LazyB+QM 94.211 34 14 234.59 329.4 453273

Canu 92.615 66 15 107.00 1343.37 247477
Wtdbg2 94.444 42 8 420.96 1895.28 389196
HASLR 92.480 57 1 7.89 33.91 251119
DBG2OLC 97.689 38 25 55.06 1020.48 506907
Wengan 96.036 37 4 32.35 53.04 496058

∼80× ABySS 95.247 283 0 9.13 1.90 90927
fruit fly ∼5× LazyB 71.624 1879 68 446.19 492.43 64415

LazyB+QM 75.768 1164 79 322.49 349.29 167975
Canu - - - - - -

Wtdbg2 6.351 2293 2 916.77 588.19 -
HASLR 24.484 1407 10 31.07 58.96 -
DBG2OLC 25.262 974 141 1862.85 969.26 -
Wengan 81.02 2129 192 105.35 123.33 77215

∼10× LazyB 80.111 596 99 433.37 486.28 454664
LazyB+QM 80.036 547 100 416.34 467.14 485509

Canu 49.262 1411 275 494.66 1691.11 -
Wtdbg2 41.82 1277 155 2225.12 1874.01 -
HASLR 67.059 2463 45 43.83 84.89 36979
DBG2OLC 82.52 487 468 739.47 1536.32 498732
Wengan 84.129 926 237 114.96 154.03 221730

∼45× ABySS 83.628 5811 123 6.20 8.31 67970
human ∼10× LazyB 67.108 13210 2915 1177.59 1112.84 168170

∼43× Unitig 69.422 4146090 252 93.07 13.65 338
∼43× ABySS 84.180 510315 2669 98.53 25.03 7963
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3.6 Benchmarking

To demonstrate the feasibility of our assembly strategy we applied LazyB to data
sets from previously published benchmarks of Nanopore assemblies. For yeast (S.
cerevisiae) we used Nanopore sets ERR1883389 for lower coverage, ERR1883399 for
higher coverage, and short-reads set ERR1938683, all from bioproject PRJEB19900
(Giordano et al., 2017). For comparison we used the reference genome R64.2.1 of
strain S288C from the SGD. For fruit fly (D. melanogaster) we used the Oxford
Nanopore and Illumina raw data of bioproject PRJNA433573 (Solares et al., 2018),
and the FlyBase reference genome 6.30 (http://www.flybase.org). For Human
we uses accession SRX6356866-8 of bioproject PRJNA549351 (H.-S. Kim et al.,
2019) for long reads and SRA292482 (Cho et al., 2016) for short reads. Assemblies
are compared against the NCBI reference genome GRCh38.p13.

Sequencing data was downsampled to approximately 5× and 10× Nanopore
coverage for long reads, respectively, and Illumina coverage sufficient for short-
read anchors. We compare results to the most widespread competing assembler
Canu (Koren, Walenz, et al., 2017) and the faster Wtdbg2 (Ruan and H. Li,
2020), both demonstrating the disadvantages of long-read-only strategies especially
in low coverage scenarios, although Wtdbg2 requires considerately less coverage
in comparison. Additionally, we benchmarked two tools implementing the most
closely related concept: DBG2OLC (Ye et al., 2016) and most recent competitor
HASLR (haghshenas20haslr). Finally, we added Wengan (Di Genova et al., 2020)
as a leading but conceptually very unique alternative. Wengan uses long reads to
scaffold a short-read assembly and therefore exhibits very high levels of completeness
even when presented with very few reads. It defaults to the pre-existing contigs or
statistically insignificant scaffolds when nothing else can be done. This behavior can
be mimicked partially with LazyB by merging our assembly to the same short-read-
only assembly as used by Wengan. However, we strictly limit merging to regions with
strong support from long-read contigs to avoid spurious scaffolds. While not ideal,
we used the pre-existing tool Quickmerge (Chakraborty et al., 2016) to investigate
such effects. At very low long-read coverage, integration with a short-read assembly
is generally advisable to close gaps in long reads unavoidably arising on complex
genomes. For reference, we also provide the statistics for short-read only assemblies
created with ABySS (Simpson, Wong, et al., 2009) on the same sets of reads used
to create the “anchors” to show the advantage of hybrid assembly even at a low
coverage of long reads. The same short-read assembly was used also for Wengan
and Quickmerge on LazyB. Quality was assessed via alignment to a reference
genome by the QUAST tool (Gurevich et al., 2013).

Tbl. 3 summarizes the benchmarking results. Unsurprisingly, LazyB produced
consistently better results than Canu and Wtdbg2, increasing genomic coverage at
a lower contig count. Due to our inclusion of accurate short-read unitigs, overall
error counts are also significantly lower than on Canu. Most notably, Canu was
unable to properly operate at the 5× mark for both data sets. Only insignificant
portions of the yeast genome could be assembled, accounting for less than 15% of
the genome. Canu completely failed for fruit fly, even after adapting settings to
low coverage. Wtdbg2 performed only marginally better, although it managed to

http://www.flybase.org


Chapter 3. From LazyB to MuCHSALSA - Fast and Cheap Genome Assembly 67

assemble 6% of fruit fly at low coverage. Even at 5×, LazyB already significantly
reduces the number of contigs compared to the respective short-read assemblies,
while retaining a reasonably close percentage of genome coverage. At only 10×
coverage for fruit fly, we were able to reduce the contig count 10-fold at better error
rates. For human, LazyB manages at 39-fold decrease of the number contigs, albeit
at a loss of greater 10% coverage. This difference appears to be a consequence of
the high fragmentation of unitigs in the abundant repeat regions of the genome,
rendering them too unreliable as anchors. Results are indeed in line with unitig
coverage. While HASLR produced the fewest misassemblies, it creates significantly
more and shorter contigs that cover a much smaller fraction of the genome. As a
consequence it has the least favorable NA50 values of all tools. For fruit fly at 10×,
it results in four times as many contigs and covers 10% less of the genome, with a
12 times lower NA50. While an improvement to Canu, it also struggles on datasets
with low Nanopore coverage. DBG2OLC shows great promise compared to our own
method, but similarly fails to operate well on very low coverage datasets. For yeast
at 5×, less then 50% the genome can be reconstructed. In fruit fly even less then
25% can be assembled at about 2 times the error rate of LazyB. At 10×, DBG2OLC
reconstruct a similar proportion of the genome, albeit at high error rates. While it
produces about 100 fewer contigs for fruit fly, this achievement is offset by over
350 (4.7 times more) misassemblies.

A Comparison with Wengan is more complex due to its unique method. Integra-
tion of the ABySS short-read assembly has little effect on LazyB at 10×, as the
genomes of both yeast and fruit fly are already well covered. At 5×, contigs are
around halved with negligible adverse consequence to misassemblies, furthering our
advantage. Since the merging step cannot significantly increase genome coverage,
we did not consider it for other tools. On yeast, Wengan improves LazyB results
marginally both at 5× and 10×. On fruit fly, in turn, LazyB produced substantially
better assemblies. At 5×, 250 fewer contigs (11%) were created at nearly 3 times
fewer misassemblies, although 10% less of the genome is covered. Integration of
the short-read assembly widens the gap to 965 (45%) fewer contigs and increases
the fraction of covered reference by an additional 5%. At 10× LazyB calls over
1.5-times fewer contigs with less than half the number of misassemblies out of the
box.

In order to establish the limits of suitable coverage for our method, we set up two
simple range tests: coverage of either long reads and short reads is systematically
varied while the other remains fixed; see Fig. 16 and 17. Unsurprisingly, the
quality of LazyB assemblies increases with coverage, for both short and long reads.
Short-read coverage is positively correlated to assembly quality with only some
notable saturation in fruit fly. Conversely, long read coverage reaches its optimum
at 10× in both organism. While no notable improvements can be achieved after
this point, also no negative trend can be seen in the tested range up to 30×. At 5×
long reads the number of contigs increases, but genome coverage remains nearly
stable. Only at 2.5x also a notable drop in coverage. The quality of the assembly
remains respectable even then, however.

We chose human for further testing of this threshold since it is the largest
and most complex genome with a high quality reference for which suitable Oxford
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Figure 16: Variation of short- (Top) and long-read (Bottom) coverage for yeast. Long-read coverage is set fixed at
10× or short-read coverage at maximum (∼82×) respectively. Result are given as the statistics of LazyB assembly :
(Left) number of contigs, (Middle) fraction of the reference genome covered, and (Right) the number of misassemblies.
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Figure 17: Variation of short- (Top) and long-read (Bottom) coverage for fruit fly. Long-read coverage is set
fixed at 10× or short-read coverage at maximum (∼43×) respectively. Result are given as the statistics of LazyB
assembly: (Left) number of contigs, (Middle) fraction of the reference genome covered, and (Right) the number of
misassemblies
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Table 4: Assessment of assembly qualities for very low coverage of long reads at maximum short-read coverage
(∼43×) on human. Column descriptions: X coverage of sequencing data, completeness of the assembly. #ctg
number of contigs, #MA number of misassemblies (breakpoints relative to the reference assembly) MisMatches and
InDels relative to the reference genomes.

X Tool compl.[%] #ctg #MA MM InDels
1× LazyB 10.329 38342 109 831.14 773.86

LazyB+QM 19.023 39588 280 418.26 332.60
Wtdbg2 0.285 6724 21 1477.08 313.01
DBG2OLC 0.771 9475 10 1050.82 202.51
Wengan 67.220 116201 4057 208.38 142.51

2× LazyB 25.865 69043 432 938.26 814.44
LazyB+QM 35.151 68180 693 648.35 521.57
Wtdbg2 2.069 24346 126 1334.25 384.36
DBG2OLC 3.904 34069 58 959.98 492.63
Wengan 72.915 90784 4954 259.42 195.63

2.5× LazyB 32.126 70690 692 978.28 825.80
LazyB+QM 39.796 69053 917 753.19 606.78
Wtdbg2 3.702 32031 163 1202.70 412.21
DBG2OLC 7.104 42864 170 1044.31 679.40
Wengan 74.835 80605 5115 271.25 211.36

∼43× ABySS 84.180 510315 2669 98.53 25.03
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Figure 18: Length distribution of contigs for the human short-read assembly of ABySS at 43× contrasted to LazyB
assemblies at 1×, 2× and 2.5× coverage. Counts for ABySS at low contig lengths have been cut off to allow better
visibility of the desired region. LazyB surpasses total counts.
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Nanopore data were available to us. In line with our previous tests, we consider even
lower long-read coverage than before (1-2.5×; see Tbl. 4). Wtdbg2 and DBG2OLC
failed to assemble significant regions of the genome. Canu had to be excluded as
the pipeline failed completely. Wengan’s results appear impressive at first glance,
calling up to nearly 75% of the genome correctly, at over 6 times fewer contigs
than the short-read assembly.

However, the mystery behind this result is hidden in the vastly increased number
of misassemblies, close to doubling the already high misassembly rate of the
underlying short-read assembly. While LazyB produces shorter contigs and covers
much less of the genome (up to 32%) in comparison, it does so at an error rate
proportional to or better than the short-read assembly. At this level of coverage, it
seems unlikely to recover the genome both completely and correctly, but rather, a
trade-off between both occurs. Unfortunately, we were not able to adjust settings
on either tool to match the behavior of the other for a direct comparison. Yet,
we can conclude that LazyB is well suited to improve the contiguity of short-read
assemblies ad hoc. LazyB produces significantly larger contigs at 2× and 2.5×.
Total counts of large contigs increase despite covering significantly less of the
genome (84% vs 25-32%); see Fig. 18. Merging short- and long-read assemblies
with Quickmerge improves recall and reduces the number of contigs (except for
1×) at the cost of a commensurate increase of misassemblies.

To address our assertion that ploidy is effectively reduced to a mixed haplotype
by our method, we can follow two general strategies for verification. Given a
reference, the presence of separated haplotypes will appear as duplicate overlapping
alignments against the reference. None of the QUAST statistics gathered for LazyB
show duplication beyond 2%. As a secondary, reference independent, method, copy
number spectrum plots can be used. The multiplicty of k-mers in the short-read
data is gathered and colored by the number of times it is found in a given assembly.
In diploid assemblies, we would expect two peaks: at 2 times base coverage for
shared stretches of the genome and at base coverage for unique regions. Analysis
with Merqury (Rhie et al., 2020) revealed only a single peak (Fig. 19) at twice
the coverage for the most complex assembly on human created in this thesis, thus
indicating a mixed haplotype as predicted.

The resource footprint of LazyB is small enough to run on an off-the-shelf
desktop machine or even a laptop. The total effort is, in fact, dominated by
the computation of the initial unitig set from the short reads. Compared to the
competing Canu assembler, the combination of ABySS and the Python-prototype
of LazyB is already more than a factor of 60 faster. In terms of memory, given
precomputed unitigs LazyB also requires 3 − 18 times less RAM than Canu, see
Tbl. 5. LazyB is also significantly faster than the more resource efficient Wtdbg2
and Wengan. Most notably, we were able to assemble the human genome within only
3 days, while Canu could not be run within our resource constraints. HASLR shows a
similar distribution of running times between tasks, overall operating slightly faster.
We could not process our human test set with HASLR, however. A human DBG2OLC
assembly can be estimated to take several weeks without manual parallelization for
a single set of parameters, with authors recommending several possible alternatives
for optimization. We therefore include only the results for LazyB here, and leave
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Table 5: Assessment of running times for all tools. Resource consumptions for LazyB are shown for the complete
assembly process comprising (1) ABySS unitig assembly; (2) Mapping of unitigs to long reads and (3) running
LazyB itself, denoted by A+m+LazyB, and the the last step only, denoted by LazyB. Step (1) is often not needed as
short-read assemblies are available for many organisms. Similarly, Wengan requires a full ABySS assembly as a its
basis. Resources are only compared for yeast and fruit fly, because Canu cannot be run for human in acceptable time
and resource-constraints on our equipment. As all tools except LazyB and DBG2OL are parallelized, running times are
given as the sum of time spent by all CPUs. Therefore, computational effort is measured rather than wallclock time.
ABySS greatly dominates the LazyB pipeline and to a lesser degree also Wengan. Nevertheless, LazyB is faster by a
factor of > 60 compared to Canu, ≈ 3 compared to DBG2OL, and ≈ 2.5 to Wengan.

× Tool Time RAM (MB)
yeast

ABySS unitig 00:00:11:03 2283
ABySS full 00:00:20:01 2283

∼5× Mapping 00:00:00:05 540
LazyB 00:00:00:30 136
A+m+LazyB 00:00:11:38 2283
Canu 00:10:23:55 2617
Wtdbg2 00:00:13:08 698
HASLR 00:00:06:44 4922
DBG2OL 00:00:31:46 1141
Wengan 00:00:06:45 4400
A+Wengan 00:00:26:46 4400

∼11× Mapping 00:00:00:15 1544
LazyB 00:00:01:46 362
A+m+LazyB 00:00:13:04 2283
Canu 00:13:44:16 6779
Wtdbg2 00:00:29:28 1142
HASLR 00:00:08:09 4922
DBG2OL 00:00:51:13 1264
Wengan 00:00:14:29 4421
A+Wengan 00:00:34:30 4421

fruit fly
ABySS untig 00:02:32:39 25344
ABySS full 00:04:56:03 25346

∼5× Mapping 00:00:02:43 6433
LazyB 00:00:08:33 613
A+m+LazyB 00:02:43:55 25344
Canu 02:13:51:39 7531
Wtdbg2 00:01:37:41 3395
HASLR 00:01:30:33 5531
DBG2OL 00:07:58:22 6151
Wengan 00:01:41:26 5394
A+Wengan 00:06:10:29 25346

∼10× Mapping 00:00:06:11 9491
LazyB 00:00:11:57 2241
A+m+LazyB 00:02:50:47 25344
Canu 07:04:08:28 7541
Wtdbg2 00:04:02:43 5024
HASLR 00:01:43:21 5553
DBG2OL 02:07:32:01 17171
Wengan 00:02:28:51 5323
A+Wengan 00:07:24:54 25346
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Figure 19: Copy number spectrum plot generated by Merqury as k-mers (k = 21 as recommended) plotted as
stacked histograms colored by the copy numbers found in the 10× long-read coverage assembly of LazyB. The typical
peak generated at slightly less than twice the short-read coverage (2 ⋅ 43× = 86×) in concordance with the absence of
higher copy numbers clearly indicate the presence of only a single mixed haplotype. The small elevation of k-mers
only found in reads at the level short-read coverage can be attributed to few haplotype regions not fitting well to the
mixture. The slight shift in short-read coverage versus k-mers arises out of the uncorrected high error rate of long
reads.

a more detailed comparison of the performance for very complex genomes for a
proper follow-up experiment, then using MuCHSALSA.

3.7 MuCHSALSA – Moving towards the future

While the LazyB prototype served well to demonstrate the capabilities of our
method, resource use was not optimized. Although the overall time and memory
consumption are acceptable and already competitive due to the low complexity
of all steps, implementation strategies were aimed at variability and modularity
for rapid prototyping rather than optimization. LazyB is fully implemented in
Python. Python as an interpreted high-level language is well documented to be
a bottleneck in performance compared to low-level languages such as C, C++, or
Rust. NetworkX, the central library used for graph representation in this project,
implements only general purpose datastructures, and thus exhibits a high memory
footprint. Most detrimental, the prototype does not implement parallelization, thus
rendering the use on larger genomes impracticable.

For assembly in general and our method in particular, genetic data is naturally
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organized into independent components. Under ideal conditions we gain exactly one
graph component per chromosome, each of which may be assembled individually
and independently. In realistic data, this count of subproblems may diverge based
on two classes of errors: (i) Missing data may leave gaps in the assembly and
therefore create more than one component for a chromosome. (ii) Erroneous
overlaps may link otherwise correct and independent components together, therefore
reducing parallel structures. An increase in components has no negative influence
on parallelization, but indicates a locally fragmented assembly caused by a lack of
data. The introduction of errors causing larger and fewer components has strongly
varying consequences depending on the respective assembly step:

● The initial construction of the long read overlap graph (Chapter 3.3.3) out
of the list of unitig to long read overlaps is not dependent on the number
of resulting connected components. Edges are independently constructed in
parallel.

● Although sub-methods such as sorting edges for Kruskal’s algorithm could
be parallelized, computing a consistent orientation (Chapter 3.4.1), the
subsequent reduction to a directed acyclic graph (Chapter 3.4.2), as well as
decomposition to a set of path are handled at the level of full components
only. Accordingly, parallel execution here is strictly limited by the number of
components.

● Each path may be assembled and converted to a consensus assembly indepen-
dently. False links introduced into the graph are likely ignored during path
selection, compensating for such errors. Parallelization is therefore executed
at the level of paths and largely unaffected by the number of components.

A full version of our prototype was implemented in C++ in the course of a
Masters Thesis by Kevin Klein, now dubbed Multi-Core Hybrid Short- And Long-
read Sequence Assembler (MuCHSALSA). MuCHSALSA is fully optimized and
includes full support for parallelization on natural data boundaries.

Benchmarks show significant and consistent improvements to the prototype
(see Fig. 20, 21). The computational effort measured as the sum of time spent on
all CPUs is drastically reduced (2.2-7.7× less). Peak demand of RAM is at least
nearly halved (1.8-7.1× difference). Due to effective parallelization, wall-clock times
are even further reduced (up to 29× less). Advantages in assembly time compared
to competing tools (see Chapter 3.6 and Tbl. 5) further increase, accordingly.
Runtimes of the LazyB pipeline are dominated by the unitig assembly step. This
fact is accordingly amplified for MuCHSALSA.

Exploiting natural parallel structures appears to be sufficient and very effective
for large genomes at very low coverage assembly (Fig. 21). Gains through parallel
execution unsurprisingly increase with genome size (see Appendix A Fig. 41, 42).
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Figure 20: Running time and memory improvements achieved by MuCHSALSA on yeast and fruitfly. Runtimes of
LazyB are contrasted to the minimal runtime of MuCHSALSA (Left). Peak memory use for LazyB and MuCHSALSA is
contrasted using a single CPU core for each tool (Right). The factor of improvement is given for each pair. Time
benchmarks were computed up to a maximum of 20 CPU cores, although minimal times were achieved at lower
numbers. Runtimes were measured as wall-clock time spent.

Figure 21: Running time and memory use of MuCHSALSA at increasing numbers of CPU cores available for assembly
of a human dataset at 2.5× coverage. Benchmarks for LazyB are included for contrast. The factor of improvement is
given related to the respective best result of MuCHSALSA. While runtimes significantly improve at increasing numbers
of available CPU cores, peak memory use is not significantly affected.
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CHAPTER 4
Ryūtō - Versatile, Fast, and

Effective Transcript Assembly
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4.1 Background

Despite the advancing availability and affordability of competing technologies in
recent years, the number of conducted short-read RNA-seq studies has been steadily
on the rise. Consequently, research efforts on methods for transcript assembly have
yielded an equally steady stream of novel methods – to varying degrees of success.
Yet, non of these existing approaches have let to a truly satisfactory solution, and
progress appears to have stalled (see also Chapter 2.3.3).

In this work we present a significant iteration in method development, improving
both on accuracy and versatility of previous approaches. Our tool Ryūtō1 was
designed as a general framework for reference based transcript assembly, with the
intention of further development beyond this thesis and the functional capability of
current competing tools.

This chapter is organized into two parts. First we present the core algorithms
of Ryūtō and highlight its capabilities for traditional assembly on single short-read
RNA-Seq datasets. In the second part we demonstrate a natural extension towards
multi-input assembly. We report stable improvements for a great variety of datasets
and scenarios, regardless of organism. Ryūtō can be used with optional super-reads
derived from de novo assembly of a single input as pioneered by StringTie. It
includes a complex framework for guided assembly, uniquely able to handle both
single- and multi-input assembly. Ryūtō provides a simple user-defined parameter
for guided assembly that can help adjust predictions according to annotation quality
and user preference as another novelty.

The integration of non-co-linear transcript or trans-splicing events in a future
update is left for discussion.

4.2 Strategy

Ryūtō’s core method was created as a flexible framework and encompasses a
versatile set of use cases to be explored within this chapter.

As a principal design goal, we aim to increase the transparency of choices made
during assembly for the user – although the sheer complexity of needed systems
renders the creation of accessible and comprehensive summaries near impossible.
Thus, all relevant options are exposed to the user and may be adjusted by them.

As a further key advantage Ryūtō has the ability to identify likely areas of errors
in the assembly process as a starting point for rationally designing post-processing
procedures.

Ryūtō is set within a reference-driven framework, but also incorporates de novo
concepts. In particular, Ryūtō can be used on mixed sets of inputs. M. Pertea
et al. (2015) first introduced a pipeline that assembled RNA-seq data into contigs
that are then aligned against the same reference. Mixing contig alignments and

1Our tool was named after spirit fires that appear as signs of the workings of water gods
based in Japanese folklore, thus denoting our use of networks-flows as will become apparent later.
As animistic creatures tend to, we presume their presence also in virtual water.
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conventional split-read alignments can improve predictions. Due to its advanced
use of longer, here artificial, reads, Ryūtō can make effective use of such data.

Ryūtō combines aspects of overlap and bin graphs (see also Chapter 2.3.3)
with the aim of maximizing the use of both multi-splice and paired-end information
to the fullest extent. To this end, we utilize a novel bin graph where multi-splice
information stays maximally intact, while each read can still be matched to a unique
path in the graph. It therefore retains the desirable properties of overlap graphs and
at the same time provides access to the coverage values that have been proven to
be effective in choosing transcripts. Non-uniformities are resolved using a minimum-
cost flow problem that satisfies a minimum-square optimization criterion similar to
the approach proposed by Tomescu, Kuosmanen, et al. (2013). Flow-conservation
allows us to simplify the graph followed by a setup of LP optimization similar to
but more general than Scallop.

4.3 The Ryūtō core algorithm

The Ryūtō core algorithms consists of 3 essential steps: (1) Inputs are read and
converted into a set of exons and splice junctions, which are in turn filtered and
converted to an extended splice graph. Exons and splices are labeled by coverage;
see also Fig. 22. (2) Coverages are made uniform via heuristics followed by min-cost
network-flows. (3) Any network-flow like path decomposition now yields a possible
set of transcripts and their coverage. Generally, the smallest set is seen as the most
parsimonious solution. However, we found that a bias towards longer transcripts
improves precision, as well es resolving ambiguous connections via bridging elements,
i.e. multi-splice and paired reads, prior to decomposition. In the following section
we will explore each step in more detail.

4.3.1 Identification of Exons and Bins
Similar to other reference based transcript assemblers, Ryūtō relies on the output
of a specialized spliced-alignment algorithm. Exons are identified as consecutive
stretches of mapped regions, with splices indicating introns. If the intron of one
isoform starts or ends within the boundaries of the exon of another, this exon needs
to be split at this position and handled as two parts.

We use 1D-clustering to resolve possible errors in alignments around junctions
(H. Wang and M. Song, 2011). We first identify the smallest set of n exon ranges
X = x1, . . . , xn, ordered by genome positions, that can explain all found splice sites
(Fig. 22a). We define a bin to be an ordered set of (partial) exons. Every read is
assigned to a bin corresponding to all overlapping exon ranges in genomic order. Two
partnered paired-end reads r1 = xr1

1
, . . . xri

1
and r2 = xr1

2
, . . . xrj

2
, ∣r1∣ = i, ∣r2∣ = j,

are treated as a single read z = r1∪r2 if ri
1 ≥ r1

2 or ri
1+1 = r1

2, i.e., if they overlap or
are consecutive without an intervening gap. Otherwise, paired information between
reads will be stored for later steps. As a special feature of Ryūtō, genomic start-
and end-positions of every read are stored in each bin in a compressed format. We
keep detailed information of each read only for (usually small) connected regions
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Figure 22: Overview of the most important steps of the transcript assembly pipeline. In a) an example set of
transcripts over the same gene identical to Fig, 9 is shown, together with potential paired-end reads leading to
them. Reads have the same length r, but varying insert lengths. Be ∣X ∣ the number of basepairs in exon X, then:
∣A∣, ∣C ∣, ∣D∣, ∣E∣, ∣F ∣, ∣G∣ < r and ∣C ∣+ ∣D∣ < r. All other conditions are > r. The commonly used split graph b) removes
all evidence from reads spanning more than two exons and paired-end information. Instead, an exon-bin based subset
— adding edges between bins when a bin is a subset of another bin — and overlap — adding edges when a bin’s
suffix is prefix of other bin — graph c) is created (trivial subsets omitted). After removing transitive components, a
directed acyclic splice graph is created that allows each bin to be uniquely mapped to a set of edges, but minimizes
the number of ambiguous connections d). Any maximum- or minimum-flow implementation can be used to establish
transcript expressions on each edge. Due to flow conservation, paths of nodes with indegree 1 and/or outdegree 1
can be reduced without loss of information. Flow decomposition into final transcripts can be improved by using
evidences e) from multi-exon-spanning single reads or paired-end data (dashed edge-links, color-code by a)).

until also its paired partner is resolved and counted. Otherwise we store read
information as combined coverage gains and losses per base in a bin. As normally
only a small portion of the genome is covered, with even fewer changes in coverage,
this structure is very sparse, yet allows full access to coverage motives at each bin or
later exon in the graph. This technique allows us to read in complete chromosomes
with very small memory footprint in a single pass. This will greatly simplify the
later inclusions of trans-splices and other distant splice events. Similarly, bins from
several input files over the same chromosome can be effectively merged, or kept as
separate entities.
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4.3.2 Graph Construction
Instead of relying on traditional splice graphs, we propose a novel generalized bin-
based graph structure that makes it possible to utilize multi-splice evidences. The
nodes of G are identified such that they can represent a minimal partial set of exons
X together with two artificial unlabeled nodes s, t ∈ V representing joined start
and end points of all transcripts. Nodes v ∈ V (G) ∖ {s, t} are accordingly labeled
l(v) ∈ X such that l(v) = l(w) implies v = w. The edges e ∈ E(G) correspond
to (partial) bins and are labeled by ordered sets of exons l(e) = {l1, l2, . . .} with
lj ∈X. The labels of G satisfy the following four conditions:

(i) Every path p = (v1, . . . , vk) such that v1 = s and vk = t and vivi+1 ∈ E(G)
for 1 ≤ i < k through G corresponds to a unique transcript defined as the
union ⋃e∈p l(e).

(ii) Every bin b = (x1, . . . xj) maps to a unique path p = (v1, . . . , vk) such that
vivi+1 ∈ E(G) for all 1 ≤ i < k, l(v1) = x1, and l(vk) = xj .

(iii) G contains the minimal possible number of nodes among all graphs satisfying
(i) and (ii).

(iv) For every edge e ∈ E the length ∣l(e)∣ is maximal.

Conditions (i) and (ii) hold for the basic splice graph (see Appendix B.3.1)
but they are not necessarily satisfied for all bin graphs — e.g. StringTie (M.
Pertea et al., 2015) adds edges such that multi-splice bins create alternative paths
signifying the same transcript for flow computations, violating both (i) and (ii).
Since we enforce an injective but not necessarily surjective map from nodes to
exons, condition (iii) maximizes exons that are only part of (possibly multiple)
edges. Condition (iv) is required because edges can include exons that are also
present as nodes (see following example). We note that our requirements to allow
only one node per exon, as well as the sub-condition in (ii) requiring start and end
exons of every bin to match nodes may seem restrictive at first glance. Indeed,
it is easy to construct scenarios where we loose multi-splice information because
of this definition. However, as bins tend to be incomplete for realistic data, both
conditions have proven to help amend for such noise. Further, we exclude bins
that are true subsets of a single unique bin from condition (ii). Similarly, we treat
stretches of unique overlapping bins as a single bin for (ii). For a full discussion
please see Appendix B.3.1.

The graph G can be computed in O(N logN) time if there are N initial bins.
We proceed in two steps to create our final graph. First we create an auxiliary

graph G′ = (V ′,E′) that is used as a guide for the final bin graph. We initialize V ′

as the set of all bins directly supported by reads. We add two kinds of edges v′w′,
labeled accordingly (a) as overlap if the suffix of the bin v′ is a prefix of bin w′ or (b)
contained if v′ is a subset of w′. This formulation is similar to the overlap graphs
used by Cufflinks (Trapnell et al., 2010). It uses an immediate bin-formulation,
however. Using pre-sorted bins, this raw graph can be built in O(N logN) (see
Appendix B Alg. 1). Contained bins are not allowed to own overlap edges, which
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Figure 23: Shared interval markers are used to keep track of overlapping regions during computations. Each bin is
assigned a directed binary forest of intervals, where current edges in G are marked as leaves, and inner nodes mark
steps in the partitioning. Two distinct suffixes of bin A are respectively prefixes of bins B and C. B and C differ
outside of the prefixes. When adding bins into the graph A will be added first by genomic position, and a single
edge is added 1. B splits edge 1 into two edges 2 and 3, set as new child nodes to 1 in A. 3 and the new arc x are
added as new trees in B. C further splits A, and with this indirectly B. As we use the same reference 3 for both bins,
splitting is trivial. The resulting range forests are shown to the right.

are removed accordingly. Both transitive contained and overlap edges are removed
by using an adaptation of Myer’s approach for string graphs (E. W. Myers, 2005)
in linear time. Pairs of nodes that are connected by a unique overlap path not
overlapping to that of any other pair are successively merged. This is achieved in
also linear time and in particular removes all nodes with indegree 1 or outdegree 1.
Thus merged bins are treated as a single bin according to (ii).

The resulting graph gives full evidence for creating the bin graph according to
(i-iv) (see Appendix B.3.2).

We then use the following algorithm to build up the bin graph (see also Appendix
B Alg. 2, 3): (a) Loop through all bins marked with overlap edges in the order of
genomic position and create nodes for the first vi and last vj exons in the bin if
they do not already exist in G. If there are no incoming overlap edges in G′, add
the full bin as an edge vivj in G. Otherwise, split all paths in G corresponding to
incoming overlap edges in G′ at position vi and join them along the path to vj to
the rightmost pre-existing node vx < vj . Then add an edge vxvj together with the
corresponding partial bin.
(b) Loop through all bins marked with outgoing contained edges in G′. If only one
contained is marked, add the bin as a partial count to the path in G corresponding
to the bin it is contained in (as exception to (ii)). Otherwise, join all paths
corresponding to the containing bins in G along the bin.

The correctness of this procedure can be argued as follows. We reduced the
auxiliary graph such that any overlap marks joints between contradictory bins.
Hence, it is unclear to which bins the overlapping regions belong, and the paths
in this regions need to be joined. Similarly, if a bin is contained in two or more
longer bins, it is unclear to which one it belongs and paths needs to be joined as
well. Therefore, we join exactly all regions conflicting with (ii) to achieve minimality
according to (iii) and (iv) — see Appendix B.3.2 for a full discussion.

Remarkably, despite circular dependencies, we are also able to construct the
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splice graph in only linear time by using recursive, shared interval markers for each
bin (see Fig. 23). In worst case, we compute exactly the basic splice graph. In
practice, however, we regularly see improvements.

4.3.3 An Example for Graph Construction
An example for advanced graph construction can be found in Fig. 22. Using a
regular splice graph (b) for a set of transcripts (a) results in a loss of information.
Instead, the auxiliary graph (c) created by Ryūtō shows that bins form distinct
clusters that can be kept intact. Accordingly, in the bin graph (d) no nodes for
exons E and F are created, despite their presence in multiple transcripts, as their
bins uniquely define their connections. Exon D appears in a critical region between
two transcripts and needs to be set as a node, as the bin (D,F ) could belong to
either one and both transcripts need to be compacted to fulfill (ii). A third isoform
uses also D, but no otherwise violating bins force its connection to the established
node. Instead, it is kept within the edge according to (iv).

4.3.4 Inclusion of Super-reads
Ryūtō can be used in combination with de novo sequence assembly using the
methods invented by M. Pertea et al. (2015) for StringTie. We used the script
provided by these authors aimed to assemble contigs containing both reads for each
pair utilizing the MaSuRCA assembler (Zimin et al., 2013). The resulting super-reads
are aligned against the chromosome using regular split read aligner. Paired-end and
super-read alignments are merged into one file as the new input. As super-reads
are by construction significantly longer than regular reads, they are more likely to
include multiple splice sites, resulting in longer bins. Ryūtō thus can use them to
obtain a more accurate generalized splice graph. As suggested in M. Pertea et al.
(2015), they may also map more accurately to the genome and therefore improve
predictions in otherwise noisy or uncovered regions.

4.3.5 Flow Network Design
Our generalized framework allowed us to test multiple flow network designs. We
define cov(v) to be the coverage of the labeled exon on node v ∈ V (G) and
cov(uv) the coverage of the bin corresponding to edge uv ∈ E(G). In general, we
treat both nodes and edges in our bin-splice graph as flow constraints using cov as
capacity in the network. Therefore, in practice, we convert each node v into two
nodes vin, vout joined by an edge vinvout of capacity cov(v). We will omit this
transformation in definitions for simplicity.

From a theoretical point of view, a simple maximum flow algorithm seems to be
the most efficient implementation: Assuming perfect uniformity among transcripts,
finding a maximal flow will show coverage saturation of all bins, with unused
capacity indicating missed start- or end- sites. However, as uniformity is generally
violated, we found this method to be inaccurate. The start- and end-sites tend to
be underrepresented due to coverage biases, forming bottlenecks in the flow network
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and thus leading to an overall underestimation of transcripts and the introduction of
incorrect additional starts and ends. We found no reasonable metric to distinguish
bias from real evidences and therefore did not further pursue this path.

Any flow metric on splice graphs needs to account for this lack of uniformity
in its definition. We therefore deviate from maximum flows and use a formulation
based on the minimum-cost flow problem instead. We extended the Unannotated
Transcript Expression Cover (UTEC) problem introduced by Tomescu, Kuosmanen,
et al. (2013) for the use on our generalized graph structure. Given cost functions
cv( . ) and cvu( . ) for v ∈ V and uv ∈ E, respectively, we aim to find tuples P of
paths from source s to sink t with estimated costs e(P ) such that we minimize

∑
v∈V

cv

⎛
⎝
∣ cov(v) − ∑

p∈P ∶v∈p

e(p)∣
⎞
⎠
+

∑
vu∈E

cvu

⎛
⎝
∣ cov(uv) − ∑

p∈P ∶uv∈p

e(p)∣
⎞
⎠
.

In other words, we aim to find a set of transcripts with minimal errors to the
coverage of each feature. The solution of Tomescu, Kuosmanen, et al. (2013)
via a minimum cost network flow on an offset graph can be directly applied to
our bin graphs, because all relevant mathematical properties are preserved. As a
result we obtain an optimal flow, quantifying each bin in the graph. Using the
Network Simplex Algorithm we achieve this in O(∣V ∣2∣E∣ log(∣V ∣C)) time, where
C is the maximal cost of any edge. Since we chose convex cost functions, in
our implementation a pseudo-polynomial transformation is necessary (see Ahuja,
Magnanti, and Orlin (1993) and Chapter 2.1.2 for details). However, we strongly
limit the arc-numbers using heuristics to avoid “blow-ups” in computation time
that are common for Traph. Empirically, we found that cv(x) = x2/ cov(v) and
cvu(x) = x2(∣l(uv)∣ − 1)/ cov(vu) are adequate cost functions that outperform
those suggested by Tomescu, Kuosmanen, et al. (2013).

Even though we confirmed that this method performs well on its own, we
developed an additional, data driven, pre-processing step to denoise coverage labels.
Flow formulations tends favor shorter transcripts that are often present in the graph
due to incorrect alignments on splice sites as changing a single edge is often cheaper
than changing a whole path. Even though the convex cost function aims to mitigate
this influence, it does not completely remove the effect. We therefore pre-process
coverage values to enhance uniformity along long transcripts first.

For each node, we compute the forward and reverse overhead: b+v is the difference
of the maximal coverage of v and the coverage of the rightmost base in v, and b−v
is the difference of the maximal coverage of v and the coverage of leftmost base
in v, respectively. Then, we compute the forward correction of the coverage by
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updating nodes in topological order in the following manner:

covf(v) = ∑
u∶uv∈E

(covf(u) + b+u)
cov(uv)
∑

z∶zv∈E
cov(zv)

− b−v

covf(vu) = covf(v)
cov(vu)
∑

z∶vz∈E
cov(vz)

The reverse correction covr(.) is analogously computed in reverse topological
order. We update coverage as cov(x)← cov(x) +max(covf(x), covr(x)). These
corrections, while related to the use of gain and loss factors for flow computations
in combination with length restrictions in path selection in StringTie, are unique
to Ryūtō.

If an annotation of known transcripts (guides) is available, we can make use
of them to increase the accuracy of the denoising step. To this end we iden-
tify the paths corresponding to each guide, or remove the guide if it is incom-
patible with the graph. We compute the bias factor for each exon node as
bv = ∑

u∶vu∈E
cov(vu)/ ∑

u∶uv∈E
cov(uv). We then determine the largest possible cover-

age for each transcript such that no coverage is exceeded on any edge or node, and
coverage follows the bias exactly at each node by multiplying the factors along the
path. As a result we obtain coverage values for each edge and node. We sum up
values over all guides and compute the percentage F of coverage that is accounted
for in this manner. If the percentage exceeds a threshold defined by the user ( 1−
guide trust option percentage ), we set the new coverage to the sum of guides;
otherwise the coverage is increased to match F . This methods allows us to give
the user a handle to account for particularly good or bad guides.

4.3.6 Identification and Quantification of Transcripts
In order to extract transcripts as paths out of the flow network, we can make use of
several well established properties of flows. A decomposition of a flow into at most
∣E∣ paths always exists and can be computed efficiently. Any such decomposition
is optimal with respect to UTEC on the established flow, but not necessarily
biologically meaningful. To explain transcipts parsimouniously, a minimal set of
paths is usually sought. This is an NP-hard problem for which several alternative
heuristics are in use (Hartman et al., 2012; Vatinlen et al., 2008). Most commonly,
the heaviest paths, with maximal coverage, are removed successively until no flow
remains. Traph, for examples uses this approach.

We observed that the minimal set of paths may not be the best metric, however.
Our methods allowed us to solve the NP-problem for a substantial percentage of
loci, resulting in overall worse classification. Instead of focusing on the heaviest
path, we found that successively removing the longest possible transcript together
with the maximal flow along its path performs better. This approach is reminiscent
of StringTie, where the longest path (compatible to multi-splice reads) containing
the exon with the highest coverage in the raw split graph is selected first.
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Instead of immediate flow decomposition, however, Ryūtō employs a complex
mechanism to resolve ambiguous regions in a step-wise fashion. While every path
from source to sink in the graph represents a possible transcript, they may not
represent the truth. Rather, if nodes have multiple incoming and outgoing edges,
wrong connections may be chosen and piece-wise hybrids of true transcripts are
assembled. Evidence for true connections can be found in the coverage and through
single reads or read-pairs overarching such nodes. Linear Programming serves
to resolve nodes wherever possible. Where no other options are viable, the least
likely connections are removed to reduce the complexity of the remaining problem.
Operations are executed in order from most likely to least favorable, based on a
number of heuristics. Only the remaining graph is decomposed by iterative removal
of the longest path.

Several trivial simplifications can be made to the graph G. As a consequence of
the flow conservation on nodes, we can remove tree nodes (with in- or out-degree
of 1 and higher respective opposite degree) and composite paths (nodes with in-
and out-degree 1). As a result, all inner (exon) nodes of the graph will have at least
two incoming and outgoing edges respectively, and therefore represent unresolved
positions in the transcript assembly. We output such nodes for post-processing,
because they identify likely points of mismatches in the subsequent assembly, as a
unique feature of our method. This reduction in graph size also makes it possible
to enumerate all paths locally left and right of each unresolved node. We employ a
strategy reminiscent of Scallop, were the evidence is decomposed using Linear
Programming (LP). Here we use a simple heuristic to mark transcript evidence:
we mark all connections corresponding to overlapping (long) bins, or matching
paired-end bins. We do not require bins to match to unique paths on either side of
the problematic node. Rather, each connection defines two sets of hits, respectively
on incoming and outgoing paths of the node. However, we prioritize more specific
hits, only adding less specific matches if more precise ones cannot sufficiently explain
them. We chose this heuristic for several reasons. Foremost, in the presence of
multi-splice bins, typically also bins exist that are subsets of these maximal bins,
thus cannot provide new information and are removed. Additionally, we hope to
exclude otherwise noisy bins. For example, if an exon em is shorter than the read
size, but its flanking exons left el and right er are not, we can expect to see bins
(el, em), (em, er), and (el, em, er). Similarly, as the connection between read pairs
is unknown, we might find connections between arcs in this gap that actually have
incorrect labels. By prioritizing specificity, we hope to remove such errors.

We obtain a set of connections between incoming and outgoing edges. We denote
the set of incoming edges with evidence from at least one marked connection as Sv,
with corresponding outgoing edges Tv of a vertex v. We gather the connections
Ev ∶ Sv → Tv, together the number of reads n( . ) inducing them. Each bridging
match might contribute multiple such connections, as we allow bins to match
to multiple paths. Given the flow on each edge simplified as fl( . ) we take two
optimization steps to determine the coverage of known connections as variables
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xe,e′ ∈ Ev:

fl(e) − ∑
e′∈Tv ∶(e,e′)∈Ev

xe,e′ ≤ ye ≥ 0,∀e ∈ Sv

fl(e) − ∑
e′∈Sv ∶(e′,e)∈Ev

xe′,e ≤ ye ≥ 0,∀e ∈ Tv

We first optimize subject to

minimize
RRRRRRRRRRRR
∑

(e,e′)∈Ev

n(e, e′) − xe,e′

RRRRRRRRRRRR
to gain the minimal flow induced by each connection. We then take optimal xe,e′

as minimal values in a second step maximizing the used flow

minimize ∑
e∈Sv

ye + ∑
e∈Tv

ye

The resulting values xe,e′ ∈ Ev define the flow of new edges ee′ to be introduced
to the graph. The according value is subtracted from edges ev and ve′. If the
original quality of connections was poor for a set of edges, we refrain from directly
creating connecting edges, but rather create a new intermediary node for this set
(see Fig. 24)

Nodes with evidence are decomposed in the order of the quality of evidences
and minimal square root error per flow. While conceptually similar to Scallop, our
method has several advantages:
(1) We are not limited to pairs of reads with an unambiguous connection in the
graph, but rather can include all pairs.
(2) Incomplete evidences will leave significant flow intact, where Scallop would
remove edges.
(3) By prioritizing specificity, we create less false connections, and LPs are easier to
solve.
(4) We are not required to resolve unmatched edges by forcing a connecting them
by some heuristic. Rather, we can rely on flow decomposition to determine leftover
complexity.

4.3.7 Heuristics for Noise Reduction
Ryūtō handles noise stringently in each step of the computation. While noise
reduction mechanisms often remain under-reported in publications, they are an
integral part of every pipeline. For an exhaustive list of available filters, we refer to
the description of the commandline options of the Ryūtō manual.

We found that much of Scallop’s success is not only explained by its LP
strategies, but rather can be attributed to its smart noise filters. We therefore
derived parts of our settings from the same model, considering both reported and
unreported procedures. As an added bonus, this improves the accuracy of filter
matches for benchmarking. Reported improvements can therefore be traced back
to our novel algorithms with high confidence.
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Noise filter heuristics apply to all stages of the assembly process. Following in
this section, we will give an overview of the most critical options.

As a first step, reads not matching the defined quality requirements, such as
secondary or low quality alignments, are removed and not considered as evidence.
During the initial computation of exon and bin structures, features may only be
considered if they are supported by a user defined threshold count of reads. This
includes full bins, exons, and splice-junctions. By default, these filters are generally
disabled as later trimming of graph features appears to be more effective. As a
notable exception, exon borders not defined by a splice junction are subject to a
number of options, controlling among others the size of permissible gaps in coverage
and trimming of spurious mappings. Splice junctions require a minimal number
of correctly aligned bases on either side of the split. As reads are translated to
bins, exon support is only considered if sufficient bases overlap at the respective
exon border. Exons will be commonly excluded from a bin start or end if reads only
spuriously overlap them, accordingly.

The generated assembly graph has to be filtered to remove likely erroneous
features. Specifically we remove:

(F i) Very short start- and end-sites that likely derive from missed splices and
therefore overhanging reads.

(F ii) Very low coverage start- and end-sites connected to high coverage features.

(F iii) Start- and end-sites with low deviation in coverage. Such sites overwhelmingly
derive of systemic alignment errors.

(F iv) Splice junctions of very low coverage connected to very high coverage exons.

(F v) Covered introns (potentially partially) that cannot likely be explained by
functional intron retention.

Lastly, (F vi) a watershed-like algorithm is executed to remove any remaining
noise. We raise the waterlevel up to a user defined coverage threshold. Islands
of higher coverage then constitute (parts of) presumably true features. However,
they may represent disconnected components, and therefore only partial transcripts.
We locally “drain” valleys until all islands are connected. More specifically, we
heuristically add back maximal edges until no dead ends remain and all edges can
be reached in a path from source to sink.

Filter (F iv) gives a slight advantage for noisy data, but a disadvantage for
perfect or simulated data, where generally false intron retention, e.g. because of
sequenced immature RNA, is not properly modeled.

Post-assembly filters are common to nearly all current state-of-the-art assemblers.
In particular, tools frequently utilize the following criteria for removal of unlikely
transcripts:

(F vii) The minimum Length (per reported exon) of each transcript.

(F viii) The minimum coverage (or related internal score) for a transcript to be
reported.
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(F ix) The percentage of an isoform relative to the maximal abundant isoform of
its loci.

It is important to note that filter (viii) is commonly linked to input filters or
graph filters such as (v). Therefore, often hidden from the user, setting this option
will define the behavior of multiple noise removal heuristics. Although likely not
of interest to the average user, this has severe consequences for benchmarking.
Consider an assembly-run where all predicted transcripts are reported regardless of
coverage. Retroactively filtering this result to a minimum coverage will result in
distinctly different results than setting the coverage filter for the respective tool
directly.

Ryūtō can employ all post-assembly filters reported here. By default, (F ix) is
disabled, because the combination of (F viii) and the graph filters listed above are
already effective. However, for guided regions activating (F ix) has proven to be
valuable, depending on the trust level given. This is advisable as guided transcripts
are removed from the graph first, which obstructs the standard step-wise denoising.

4.3.8 Annotation-guided assembly with Ryūtō

Several changes to Ryūtōs core algorithms are made for guided assembly. Although
the completeness of annotation projects has been debated even for model organisms,
the transcripts reported in such high effort projects can be assumed to be correct.
Of course, correctness in general does not implicate presence in a specific sample.
As an additional concern, theoretical scenarios may be constructed where different
combinations of isoforms result in the same combined splice-signals. As annotation
quality declines for less studied organisms, the likelihood for errors in existing
annotations increases. This is true in particular if annotations are not based on
biologically verified transcripts, but rather purely on computational predictions.
Nevertheless, favoring solutions with existing annotations yields a very effective
heuristic in practice. Accordingly, Ryūtō will accept and report every transcript
of the guide if it conforms to existing splice signals and omit it if at least one
splice was not observed. Ryūtō offers a guide trust value, enabling the user to
adapt methods to quality of the guide. Lower trust will increase the likelihood of
assembling novel isoforms on the same locus as guide transcripts.

The following modification are made towards this goal. Exons and splice sites are
created according to the guide and only supplemented based on the read alignments
where absolutely necessary. Annotated features are immune to filtering in all stages
and undergo specialized denoising of coverage as already described in Chapter 4.3.5.
Supported annotated transcripts are extracted before path decomposition.

4.3.9 Benchmarking
In order to compare Ryūtō to competing programs, we benchmarked all tools on
a diverse collection of datasets. We only considered tools tested positively by
K. E. Hayer et al. (2015), as well as newer, freely available, competitors. We
had to omit Traph (Tomescu, Kuosmanen, et al., 2013) and Strawberry (R. Liu
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and Dickerson, 2017), because they could not be run in the available time on the
benchmark dataset or produced errors. This leaves only Cufflinks, StringTie,
Scallop, as well as Transcomb for testing.

In order to conclusively benchmark our tool we need to consider both simulated,
as well as real datasets. Results of simulated data were evaluated with the scripts
provided by K. E. Hayer et al. (2015), calling correct transcripts only if all splices
match and the same number of exons was predicted. Additionally, we require the
predicted strand to match. We chose the same metric for real datasets, only here
using Cuffcompare of the Cufflinks package (Trapnell et al., 2010).

Transcomb calls transcripts at FPKM 0, which will force their exclusion using
the script from (K. E. Hayer et al., 2015). We circumvented this by manually
setting them to near 0 values instead.

While Ryūtō and other tools were designed with mainly multi-exon transcripts
in mind, especially those underlying alternative splicing, also single exon transcripts
can be called by all tools. As the latter are more prone to be affected by fine tuned
filter settings – and often can be called outside of the core methods of each tool
by merely detecting areas of coverage – we will consider both benchmarks in- and
excluding them.

We chose the combination of recall vs. precision as a key statistic in evaluating
all tools. Naturally, improving recall will result in worse precision for each individual
tool. We aim to compare all tools at a good trade-off point for both statistics,
as an average user would. StringTie, Cufflinks, and Ryūtō can be run with
standard parameter. Scallop and Transcomb do not filter significantly in their
presets. Accordingly, we set Scallop to a minimal transcript coverage of 4, as
this best matches the other tools. Transcomb was set to a filter value of 4 as well,
although it did not compete well at any setting with decent precision.

We tested results on alignments created by STAR (Dobin et al., 2013), TopHat
(D. Kim, G. Pertea, et al., 2013) and perfect alignments. For simulated datasets
we relied on the alignments provided by the simulation source. HISAT (D. Kim,
Langmead, and Salzberg, 2015) proved to be more accurate for the simulated
datasets, but could not be generally included as Transcomb is unable to use the
resulting alignments. All others aligners will include the bam-flags required by
Transcomb, although generally only TopHat is recommended by the creators. As
results do not seem to be impacted strongly, we nevertheless use all alignment
variants for the tool.

We used standard parameters for all alignments, however, set STAR to filter
splices to contain only consensus splice motives in order to allow the creation of
XS tags indicating the correct strand.

For human data we used GRCh37/HG19 as the reference genome, with accord-
ingly GENCODE v19 as the latest available annotation as base truth. For mouse
we used NCBIM37/MM9 with GENCODE vM1.

Simulated Datasets

At present there are a no real life datasets for which the complete collection of
transcripts and their expression levels are known with high precision. Benchmarking
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Figure 25: Accuracy of transcript assemblers as recall-precision plots summarized for the simulated datasets T1,
using the alignments produced with STAR, TopHat and perfect alignment.

Figure 26: Accuracy of transcript assemblers as recall-precision plots summarized for ENSEMBL Perfect (EP), using
the alignments produced with STAR, TopHat and perfect alignment. Plots are broken down by coverage of isoforms.

Tool Wall Clock Time [s] CPU use RAM [MB]
Cufflinks 388,794 457% 119700
StringTie 659.62 154% 547
Transcomb 4,393 87% 723
Scallop 660.28 98% 346
Ryūtō 958.6 357% 6910

Table 6: Running times, CPU use and memory use of benchmarked tools. We tested runtimes for ENSEMBL Realistic
(ER) on a machine with an Intel(R) Xeon(R) CPU E7540 @ 2.00GHz and sufficient RAM. Ryūtō, Cufflinks and
StringTie were run assigned 8 cores. Transcomb and Scallop do not offer this option and were run single threaded.
Ryūtō took only slightly longer than StringTie despite the higher computational needs of Ryūtō, made up by more
effective parallelization. The higher memory and time use of Ryūtō is explained by its internal infrastructure that is
designed already for later addition of trans-splice and circularization events. Scallop can take advantage of its lower
requirements for data-structures.
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Figure 27: Accuracy of transcript assemblers as recall-precision plots summarized for ENSEMBL Realistic (ER),
using the alignments produced with STAR, TopHat and perfect Alignment. Plots are broken down by coverage of
isoforms.

of transcript assemblers thus has to resort to simulated datasets. To stay objective,
we used the benchmark datasets from a previous, independent evaluation of reference
based transcript assemblers (K. E. Hayer et al., 2015). In the systematic dataset
(T1) 13,000 artificial genes with varying numbers of isoforms, all of the same
coverage, were simulated without sequencing errors. In the ENSEMBL Perfect (EP)
and ENSEMBL Realistic (ER) sets all genes of Mus musculus mm9 annotated in
ENSEMBL were simulated, with no errors and realistic error margins, respectively.
For technical details on the datasets we refer to (K. E. Hayer et al., 2015). For each
set, 50 million paired-end directional reads were created. All tools were provided
with the same input and no guiding annotation.

Ryūtō performed significantly better on all datasets (Fig. 25, 26, 27) in terms
of the quality of the inferred isoforms. Ryūtō’s running times were comparable to
StringTie and Scallop (see Tbl. 6).

For dataset T1, Ryūtō found 3.6% more true transcripts compared to the
next best performing tool Scallop, while producing more than 35.7% fewer false
positives. Even for realistic data (ER) we still found nearly 3.6% more true transcripts
and at same time reduced the false positives by 19.2%. This improvement is driven
mainly by average to high abundant transcripts. For very low abundant isoforms
Ryūtō performs very similar to StringTie and Scallop. Low abundant regions
exhibit generally high levels of noise that can often not be easily distinguished from
real data. Therefore, conservative filtering is employed as a preset among all tools
with the exception of Transcomb. The artificial design of dataset T1 enables us
to evaluate the impact of the number of spliceforms per locus (Fig. 28). While
improvements can be seen in all categories, they are particularly prominent for
more complex transcripts. Improvements are consistently observed for all alignment
methods (Fig. 25, 26, 27, 28). Ryūtō produces a significant number of variants
not called by other tools, both for true (see Appendix C Figs. 45, 47, 49, 51), but
especially for falsely predicted isoforms (see Appendix C Figs. 46, 48, 50, 52)
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Figure 28: The artifical dataset T1 allows to break down accuracy (as recall-precision plots) along the number of
spliceforms on genes. Artificial genes have maximal 5 spliceforms. Ryūtō dominates in particular on genes with high
splice variation. Results are consistent for alignment with STAR, TopHat and perfect alignments.

Figure 29: Ryūtō offers a trust parameter for guided transcript assembly as a unique feature, allowing the user to
specify a trade-off between recall and precision.

With the exception of Ryūtō and Scallop, transcripts are mainly filtered in
post-processing. Therefore, filters can only have a neutral or negative effect on
recall. To complicate matters, filters vary wildly between tools, despite superficial
similarities. Meaningfully matching similar options is difficult at best. As Ryūtō
dominates in both categories for the overwhelming number of data-points, we did
not systematically vary filter settings for all scenarios, but reserve this test for real
data only.

If gene coordinates are available to guide transcript assembly, they can be used
to enhance predictions. In order to incorporate different levels of reliability we



Chapter 4. Ryūtō - Versatile, Fast, and Effective Transcript Assembly 93

Chromosome
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y

ENSEMBL Perfect
ρC 0.82 0 .87 0.92 0.88 0.89 0.91 0.89 0.92 0.92 0.93 0.88 0.91 0.90 0.92 0.92 0 .90 0.91 0.91 0.93 0 .87 0 .96
ρS 0.82 0.86 0.88 0 .87 0 .87 0.89 0.87 0 .91 0.89 0 .92 0.88 0.91 0.88 0 .91 0 .89 0.91 0.88 0.88 0 .91 0.85 0.94
ρT 0 .77 0.80 0.84 0.82 0.83 0.85 0.84 0.83 0.84 0.77 0 .81 0.83 0.78 0.82 0.79 0.78 0.81 0.82 0.80 0.75 0.94
ρR 0.82 0.88 0 .90 0.88 0.89 0 .90 0 .88 0.92 0 .91 0.82 0 .81 0 .85 0 .89 0.92 0.92 0.91 0 .89 0 .90 0 .91 0.88 0.98
ENSEMBL Realistic
ρC 0.81 0 .81 0.86 0.82 0.81 0.84 0.83 0.85 0.88 0.87 0.85 0.85 0.88 0.88 0.88 0.83 0.87 0.87 0.87 0.85 0.86
ρS 0 .75 0.78 0 .83 0 .78 0 .78 0.81 0 .80 0 .82 0.84 0 .83 0 .81 0.85 0.84 0 .83 0 .84 0 .84 0.83 0.79 0.83 0.80 0 .89
ρT 0.72 0.77 0.81 0.76 0.76 0.78 0.79 0.79 0.75 0.68 0.79 0 .80 0.80 0.76 0.76 0.77 0.82 0.78 0.81 0.71 1.00
ρR 0 .75 0.82 0.86 0.82 0.81 0 .83 0.83 0.85 0 .85 0.74 0.74 0.77 0 .85 0.88 0 .84 0.85 0 .85 0 .83 0 .84 0 .81 0 .89

Table 7: Spearman’s rank correlation coefficients for Cufflinks ρC , StringTie ρS , Transcomb ρT and Ryūtō
ρR for individual chromosomes of the simulated datasets ENSEMBL Perfect (EP) and ENSEMBL Realistic (ER).
Ranks of predicted FPKM are correlated to true abundance ranks. Only the ranks of true predicted isoforms where
considered. Cufflinks exhibits the highest accuracy, but also called the fewest transcripts, therefore gaining a slight
advantage for this measure. StringTie and Ryūtō perform similarly well, with Ryūtō consistently in the advantage.
The best results are highlighted bold, the second best italic.

developed an abstract trust measure that gauges how reliable an annotation is
perceived to be by the user. Ideally, unannotated transcripts will only be called if the
annotation can not sufficiently explain the data, and increasing trust levels should
decrease the number of unannotated transcripts while increasing precision. We had
to exclude Transcomb and Scallop from this test, as they provide no guide option.
To simulate unreliable annotations, K. E. Hayer et al. (2015) provides guides where
15% of transcripts were removed and replaced by unexpressed isoforms. Fig. 29
summarized the performance of different transcript assemblers.

While Cufflinks showed impressive accuracy for highly abundant transcripts,
recall for others was much worse. At medium trust levels, we found that Ryūtō
improves medium to high abundant recall, while performing only comparable in
very low abundant ones. We have yet to investigate this discrepancy in detail, but
found that StringTie e.g. calls annotated isoforms even though individual splices
have not been observed, but exons are still present. We have not yet implemented
such a system. Most noteworthy, for the highest trust rating 100, we only loose
3.1% of true transcripts compared to StringTie (2.9% to trust 60), compared to
80.5% (72.3% to trust 60) fewer false positive predictions, despite the moderate
annotation quality.

Isoform Expression

Network flow approaches closely link the quantification of the expression levels
of individual isoforms with the isoform identification. In order to benchmark
the inference of (relative) expression levels, we computed the Spearman’s rank
correlation coefficient to the ground truth for each individual chromosome. To this
end, FPKM (fragments per kilobase of transcript per million fragments) values are
first converted to ranks in increasing order that are then correlated to the true
ranks. To avoid the problem of assigning ranks to 0 values (from false positive
or unpredicted transcripts), we restrict the evaluation to true transcripts. This
performance measure favors tools with low recall but avoids biases from lower
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ER with HISAT de novo ER with STAR de novo

Figure 30: Ryūtō, Scallop, and StringTie allow the use of aligned de novo assembled super-reads next to normal
paired-end alignments, all showing improvements when using this method, both using the more accurate HISAT2
(left) or to a lesser degree STAR (right) for de novo alignment. Combined alignments were run in standard setting
(up-pointing triangle) as well as with filter coverage 5 (left-pointing triangle).

precision and thus somewhat handicaps our own tool. Nevertheless, we found that
correlation is on par or improved. Cufflinks, with substantially smaller isoform
recall, achieves only slightly better scores (see Tbl. 7). Since Scallop explicitly
recommends the use of a second tool for quantification, while internally relying on
abstract scores, it was not considered in this test.

As there is no way of knowing true abundances of real datasets, we could only
compute this measure for the simulated datasets. T1 was designed with equal
abundances for each transcript, therefore offering no rank order. As expected, all
tools show ρ ≈ 0 reflecting this fact.

Inclusion of de novo Reads

As mentioned above, Ryūtō can be run utilizing also de novo concepts. We
assembled the paired reads of ER to super-reads according to the StringTie
pipeline and aligned them against the reference genome using HISAT2 and STAR
aligner. Transcomb was unable to run on merged alignments, and thus not
considered for this task. Cufflinks’ accuracy is well documented to deteriorate
for this use-case by M. Pertea et al. (2015), hence it was also not considered here.

StringTie, Scallop, and Ryūtō all showed improvements (Fig. 30). We ran
all tools both in standard setting, as well as with slightly increased coverage filters
to offset the increase in input size. As HISAT2 alignments are more accurate, the
observed gains were also larger. For STAR, true improvements were only reached
using the second option, as otherwise too much additional noise was kept. Changes
were consistent among all tools, relative to the the respective base values. It is
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Organism SRA Accession GEO Accession Chosen By # Spots Cell Line Localization Length

human

SRR307911 GSM758566 Transcomb, Scallop 41M H1-hESC cell 76
SRR307912 GSM758566 - 36M H1-hESC cell 76
SRR387661 GSM840137 Transcomb, Scallop 125M K562 cytosol 76
SRR307903 GSM758562 Scallop 36M BJ cell 76
SRR534319 GSM981256 StringTie, Scallop 25M CD20+ cell 76
SRR545695 GSM984609 StringTie 40M CD14+ cell 76
SRR534307 GSM981252 Scallop 167M MCF-7 cytosol 101
SRR545723 GSM984621 Scallop 147M HMEpC cell 101

mouse SRR203276 SRX062280 Transcomb 52M dendritic cell 76
ERR1138641 ERX1217510 - 29M liver cell 101

Table 8: Summary of RNA-seq samples used in this work.

worth noting that results for HISAT2 de novo alignments alone were consistently
more accurate compared to paired-end alone for all but low abundant isoforms.

Real Datasets

Even though RNA-seq simulators strife to capture the variety of real data, they might
fail to reproduce some aspects. Yet, when testing on real data it is impossible to
know which genes or isoforms are expressed nor their expression levels. Nevertheless,
we have curated sets of known genes for well studied organisms, including human
and mice, that can be used as a reasonable approximations of the truth. In particular,
it is fairly safe to assume that a prediction that matches a curated gene is most
likely true. In the following we also make the assumption that all other predictions
are false positives. This is not necessarily true – they may just have remained
unannotated so far. As all tools are penalized equally, we suppose that these caveats
have no crucial influence on the ranking, only on the distance between tools. We
used eight datasets of human, and two datasets from mouse ranging from 25 to
167 Mio. spots utilizing 76 bp or 101 bp paired-end, stranded protocols. To avoid
any bias, datasets were mainly chosen from publications of competing tools while
representing a broad range of sample sizes and read lengths (see Tbl. 8).

Improvements on calling only multi-exon transcripts were consistent and sys-
tematic among all datasets (Fig. 31), with Ryūtō calling more true transcripts (up
to 2%), while calling significantly fewer false ones (up to 5.9%). As any improve-
ment in recall entails a larger factor of false positives, Ryūtō significantly improves
accuracy. When matching Scallop to the recall of Ryūtō, by slight variations in
filter settings, we find that it calls up to 12.7% more false positives, averaging at
around 5%. For SRR545723 Ryūtō filters stronger than Scallop, likely due the
additional intron filter. Disabling this filter reveals a much closer match regarding
recall while still outperforming Scallop’s accuracy. Like for the simulated data,
Ryūtō produces a significant number variants not called by other tools, both for
true (see Appendix C Figs. 45, 49), but especially for falsely predicted isoforms
(see Appendix C Figs. 46, 50).

Similar results were achieved when including also single-exon transcripts into
the metrics (Fig. 31), although Ryūtō’s advantage in accurate compared Scallop
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Multi-Exon Transcripts

All Transcripts

Figure 31: The advantage of Ryūtō also becomes apparent in real datasets downloaded from NCBI, again using
recall-precision plots, both only comparing multi-exon transcipts (Top), or all transcripts (Bottom).
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Figure 32: Recall-Precision curves for the 3 most competitive tools, Ryūtō, Scallop, and StringTie, varying the
respective key parameter of each tool. Results are shown for the same set of real datasets as before. Plots highlight
a small but consistent advantage for Ryūtō. Only multi-exon transcipts are shown.

decreases by a minor factor. Again, Ryūtō produces a significant number of variants
not called by other tools (see Appendix C Figs. 47, 51, 48, 52).

Real Dataset Parameter Variation

While each tool provides a key option to filter transcripts, and thus allows the user
to adjust the recall-precision trade-off with a single parameter, filters ultimately
relate to different properties despite superficial similarities. Parameters cannot
be simply set to the same value to the same effect. While parameter advising
could be utilized to optimize the full set of parameters for each tool, for a series of
recall-precision ratios, such an undertaking would be primarily of theoretical value.
Advising strategies are commonly prohibitive in practice due to associated high
costs and complex metrics. We subjected the three leading tools – Ryūtō, Scallop
and StringTie – of the previous benchmarks for further testing. We compute
precision-recall curves by systematic varying main filters within a reasonable range,
much like a typical user would.

Ryūtō implements a central parameter -c, defining the minimum reported
coverage for a transcript. Scallop offers the same filter as --min_transcript_coverage.
Although also StringTie employs a coverage filter (-c), it acts on inputs rather
than assembled transcripts. We use the isoform fraction filter (-f ) – filtering by the
percentage of an isoform relative to the maximal abundant isoform of its loci – as
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the best available option instead. For a detailed set of parameters for all tool calls
see Appendix B.2.2.

Results show a clear advantage for Ryūtō and Scallop (see Fig. 32). StringTie
is unable to dominate results for any parameter or datasets. Although curves for
Ryūtō and Scallop follow each other closely, Ryūtō gains a consistent and clear
advantage for all but very low filter settings.

4.4 Improved Multi-sample transcript assembly with Ryūtō

4.4.1 The Ryūtō Multi-Assembly Approach
Although Ryūtōs core methods are loosely related to PsiCLASS, it does not require
the prior assembly of individual inputs (see Chapter 2.3.3). Instead of limiting the
use of samples to coverage estimation like preceding tools, we instead implement
consensus voting for all steps within the assembly. Due to the high level of noise
in RNA-seq, we found rigorous filtering to be very important for high quality
assemblies.

Ryūtō on multiple input sets operates as an extension of the single input
assembly pipeline. Modifications for multi-sample assembly affect the decision
progress of individual steps where appropriate. Changes pertain only to existing
components and are designed such that they default to the original case if presented
with only one input. Therefore, we can treat every assembly with the same code,
regardless of input multiplicity.

As already well established, Ryūtō relies on the use of splice graphs. While the
graph is built as if all samples where merged into one, coverage information is kept
strictly separate. Decisions for graph editing, filtering and transcript selection are
computed for each individual sample with the consensus informing the operations
used subsequently on all sets. To this end, filters apply to each sample as if
assembled individually, yet, deviations and incomplete datapoints are compensated
for by the other samples. The benefits of this approach are twofold: (i) The
accuracy of the assembly increases even at low numbers of replicates. (ii) For the
first time, users can adjust the precision-recall trade-off point independently of
the number of samples. Filtering thus becomes both more intuitive and stable.
It should also be mentioned, that (iii) Ryūtō is the only tool currently able to
integrate annotations of known transcripts to improve the multi-assembly.

In the remainder of this section we will give brief summary of all changes in
order of the assembly process.

Exons and junctions are created as if all inputs were merged into one. Disre-
garding sequence specific or positional biases, reads are drawn randomly from all
transcripts during sequencing. Therefore, completeness increases with coverage. In
particular at loci with low coverage, missing or incomplete features within individual
inputs can be supplemented and thus resolved. At the same time, we can expect
true features to be present in multiple inputs following the same reasoning, while
mapping errors will be less consistent. We presume that transcripts of very low
abundance will only be selected and amplified by chance during PCR, and will
therefore also not be consistent between samples. As not enough evidence exists
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to correctly call them, their removal is overall beneficial. Consequently, Ryūtō
requires features to be (partially) covered by a user definable fraction of samples
(default 30%). Coverage values are kept strictly separate as vectors. Otherwise,
the construction of the splice graph remains unchanged.

During graph trimming as described in Chapter 4.3.7, removal of features
pertaining to (F i)-(F v) is subjected to their respective application to individual
inputs. Given sufficient samples, Ryūtō will conservatively only remove features
that would be also removed in, and thus get voted for removal by, a supermajority.
On (F vi) inputs vote on which edge to rescue next with the majority deciding for
all.

Subsequently, coverage heuristics and min-cost network-flows are computed for
each input individually. The common coverage can then be set as the sum over all
inputs.

We found that consulting individual inputs for consensus on flow decomposition
or step-wise node decomposition via LP does not improve results. Hence, the
common coverage is used for decomposition heuristics in combination with a pooled
set of (paired) reads and their implied connectivity information. The remaining
graph is decomposed by iterative removal of the longest path.

Nevertheless, coverage for each input is kept strictly separate. It is worth noting
that a path-set chosen by the common coverage flow may not resolve all coverage
in a subset flow of an individual input. A high level of unresolved flow could hint at
undetected isoform changes between samples and can thus be reported by Ryūtō.
A suitable workflow in post-processing, to take full advantage of this information,
has yet to be developed, however.

Final score based filters on the established transcripts, e.g. by mean coverage
or percentage of the most abundant isoform of the loci, are based on consensus
voting again. This ensures that reported transcripts are significant for all inputs.
Vote filtering is especially effective for single exon transcripts.

4.4.2 Guided Multi-Assembly
Ryūtō accepts a set of reference transcripts (guides) also for multi-assembly,
following the same mechanics of single input assembly.

As the annotation may be erroneous in some cases and to avoid calling transcripts
without full evidence, Ryūtō is set to only call transcripts where each exon and
each splice site is covered by at least one read. For multi-assembly, inputs are
considered to be pooled for this operation, i.e. inputs can supplement each other.
While common transcript quantification tools can also work on counts below this
threshold, a programmatic verification may be useful for conservative pipelines.

4.4.3 Ryūtō Read Counting
As coverage is kept strictly separate for each input, Ryūtō can provide a counting
table for Differential Transcript Expression (DTE) simultaneously to transcript
assembly. Our simulations show that on DTE, counting is only slightly less accurate
compared to state-of-the-art transcript quantification, such as Salmon (Patro et al.,
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2017) or Kallisto (Bray et al., 2016) (Fig. 37). Ryūtō’s counts can be very
useful for prototyping, e.g. for establishing a good parameter set. This difference is
to be expected as Ryūtō is optimized for transcript detection, rather than relying
on an established catalog of transcript.

4.4.4 Benchmarking
Datasets and Availablity

We used sets of publicly available RNA-Seq projects for benchmarking. To avoid
bias, we chose datasets already established for this purpose by other publications.
(i) The Geuvadis (Lappalainen et al., 2013) set establishes the genetic variation of
human lymphoblastoid cells (unstranded, paired, 75bp read-length) and is available
at ArrayExpress (Accession:E-GEUV-6). We chose subjects randomly but with
identical sequencing institute and nationality (SRAs: ERR188040, ERR188059,
ERR188065, ERR188087, ERR188219, ERR188245, ERR188247, ERR188307,
ERR188337, ERR188461). (ii) The SEQC Project (Su et al., 2014) Sample A is
comprised of Stratagene’s Universal Human Reference RNA composed of 10 human
cell lines (unstranded, paired, 100bp read-length). It is available as BioProject PR-
JNA208369 (SRAs: SRR896663 to SRR896672). (iii) A set of human acute myeloid
leukemia RNA was taken from Lavallée et al. (2016) (stranded, paired, 100bp
read-length). It is available as BioProject PRJNA278767. Samples were chosen
randomly (SRR1918244, SRR1918247, SRR1918248, SRR1918249, SRR1918241,
SRR1918242, SRR1918243, SRR1918236, SRR1918235, SRR1918236). (iv) A
Study on hippocampus yields samples of healthy and epileptic mice (P. K. Srivas-
tava et al., 2017) (unstranded, paired, 75bp read-length). Data is available as
BioProject PRJEB18790. We consider 2 scenarios, one on only healthy mice (SRAs
ERR1779294 to ERR1779303) and a mixture of healthy and epileptic mice (SRAs
ERR1779294 to ERR1779298, ERR1779464 to ERR1779468). (v) A time-course
RNA-seq for the cold response in Arabidopsis thaliana (Zhang et al., 2017) (un-
stranded, paired, 100bp read-length). Samples ERR1886180 to ERR1886189 were
chosen arbitrarily from BioProject PRJEB19974, each at a different time point.

Data was mapped to reference genomes GRCh38 version 12, GRCm38 version
6, or TAIR version 10.1 respectively, using STAR (Dobin et al., 2013). We use
--outSAMstrandField intronMotif as also recommend for PsiCLASS as the only
nonstandard option. This option simplifies the pipeline, but has no significant
influence on benchmarks.

Simulation

As the full set of true transcripts cannot be known for real datasets, we also simulate
samples based on the Geuvadis and SEQC-A projects. Salmon (Patro et al., 2017)
was used to create a count matrix against GENCODE version 29 on Human Genome
Assembly GRCh38 version 12. Simulation was carried out up to read level with the
R package polyester (Frazee et al., 2015) at the preset illumina4 error model. Like
with real data, mapping to the reference was done with STAR. Counting data was
fit to the distribution model by the create_read_numbers function. However, we
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modified the function to avoid the shuffling of simulated matrix rows to stay as
close as possible to the real count. We do not filter transcripts here to avoid bias.
Resulting reads were shuffled as required by the subsequent mapping algorithms.
We define the set of all transcripts assigned at least 1 read by Salmon as our ground
truth.

To simulate Differential Transcript Expression we need to simulate counts of two
conditions. Following established procedure, we do not retrieve counts from two
real life samples, but rather simulate artificial fold changes to a single true condition.
We reuse the counts established in previous simulations. However, to allow for
stable results in DTE, regions not adequately following the distribution assumption
of the simulation are filtered. Specifically, transcripts with less than 10 reads or a
size value for the negative binomial distribution of ≥ 10,000 are removed. Of the
remaining transcripts, 10% were randomly chosen to be differentially expressed. We
assign fold changes uniformly to be upregulated ({2 . . .6}-fold) or downregulated
({0.5 . . . 0.16}-fold). Reads were simulated with polyester using the illumina4 error
model for both conditions and mapped with STAR. We created random subsets of
40%, 60% and 80% in size of the true set of transcripts as a simulated reference.
We found that adding erroneous transcripts, e.g. unsimulated transcripts annotated
on the same loci, to the artificial annotation does not majorly influence results. We
therefore chose to limit tests to the simpler option.

Assembly Workflows and Tool Parameters

While parameter optimization (advising) probably can improve results, it is rarely
applied and often impracticable. Mimicking the average user we identify and
use the main parameter for each tool like before in Chapter 4.3.9. Ryūtō can
be manipulated via parameter -c, defining the minimum reported coverage for a
transcript. The corresponding option for Scallop is --min_transcript_coverage.
TACO can only filter by isoform fraction, i.e. the percentage of an isoform relative
to the maximal abundant isoform of its loci, aptly named --isoform-frac (-p for
Ryūtō). Additional filters act on input instead. We use --filter-min-expr to filter
incoming transcripts up to the set coverage. This parameter acts similar, but not
identical, to changing the coverage filter of either Ryūtō or Scallop on individual
inputs prior to TACO in the pipeline. StringTie-Merge employs an isoform fraction
filter (-f ) and a coverage filter on inputs only (-c) as well. PsiCLASS, unfortunately,
offers none of the standard filter options. We considered the following instead: -c
subexons score, --sa minimal retained introns coverage, and --vd minimum average
coverage. In theory, --vd should behave similar to a standard coverage filter, but
precision-recall curves behave in an unexpected manner. We found a combination
of --vd and --sa to be the most effective, although only by a narrow margin.

As guided assembly is available only for Ryūtō, we follow the method suggested
by the Kingsford-Group for Scallop for all other tools, merging the guide to an
unguided assembly. Henceforth this method is referred to as guide-joining (GJ) and
executed as follows: (1) Compare assembly to guide with gffcompare. (2) Find
unique (not in the reference) transcripts with gtfcuff. (3) Join unique transcripts
to the reference.
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For a detailed set of parameters for all tool calls see Appendix B.2.3.

Quality Metrics

As a reminder, we use cuffcompare to match results to the reference (Human
GENCODE v29, Mice GENCODE vM20, A. thaliana TAIR10.1 Refseq transcript
catalog, or simulated subsets thereof). We only consider transcripts to match if all
introns were correctly predicted and the start- and end-exons fall within 100bp if
their true location. For DTE we match the list of reported ids to the list of true
fold changes with a custom script.

Transcripts exhibit a high degree of diversity, including, but not limited to,
abundance, length, sequence, function, number of exons, the number, abundance
composition and complexity of superimposing isoforms, and the presence of complex
elements such as alternative start and end-sites or intron retention. While indirectly
captured in composite recall and precision measures, tool-specific biases are almost
impossible to detect and depended also on parameter choice. To our knowledge no
comprehensive pipeline for multi-variant analysis exists. Nevertheless, we designed
basic tests to capture potential tool specific biases (see later Chapter). Bias on
transcript coverage during assembly is more readily accessible (see later Chapter).

Overview of Test Scenarios

We asses the performance of Ryūtō compared to other tools in three scenarios
in 2 stages. First, we test unguided accuracy of assemblies independent of the
research goal under a) increasing sample numbers at constant (default) parameters
and b) varying parameters at maximal sample size. We perform tests on 6 real
(3 Human, 2 Mice, 1 A. thaliana) datasets already established for benchmarking
in previous publications. We consider both stranded and unstranded protocols,
diverse genome sizes, as well as a heterogeneous condition of 2 mixed biological
conditions. Additionally, we created 2 artificial human datasets, each also simulated
as both stranded and unstranded samples. In the second stage we investigate c) the
consequences for differential transcript expression as common task exemplary for
other post-processing pipelines. Here, we employ guided assembly as the research
standard. As a perfect set of transcripts and expression cannot be known for real
datasets, 2 datasets were simulated.

We considered only tools previously shown to be competitive (StringTie-Merge,
TACO, PsiCLASS). Single-set transcript assembly over a merged set of all samples
also needs to be considered. Single-set assembly parameters can be left at default
despite the bloating input size (raw merge) or adapted to increase linearly with
the number of samples (adapted merge); see also Appendix B.2.3. This sets a
benchmark for consistency against our own method. While other multi-assemblers
excel at very high sample counts and such scenarios are without doubt essential
for large scale annotation efforts, they are far removed from the everyday use case.
We therefore limit tests to 10 samples, well above the count of average projects.
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Figure 33: Assessment of performance for Scenario a) with increasing numbers of inputs. Recall and Precision were
assessed at the level of full transcripts. Tests include 6 datasets at 10 samples each: Geuvadis) human lymphoblastoid
cells, unstranded; SEQC-A) Universal Human Reference RNA, unstranded; Leukemia) human acute myeloid leukemia
RNA, stranded; Mice Healthy) healthy mice hippocampus, unstranded; Mice Mixed) 5 healthy and 5 epileptic
mice hippocampus, unstranded; A. thaliana) cold response time series, unstranded. Tools are not quantitatively
intercomparable as parameter settings cannot be adequately matched. Individual trends are informative. Ryūtō
was run on multiple inputs (Multi), merged inputs (Single Adapted and Raw, with linear increasing and default
parameters respectively), or on individual inputs (Single). Only Ryūtō and PsiCLASS show meaningful improvements
while all other tools or combinations show a trend of improving recall only at decreasing precision.

a) Performance on increasing samples counts

Scenario a) on increasing samples serves to demonstrate the recall-precision relation
with increasing samples within each individual tool (Fig. 33, 34, Appendix C Fig.
55, 56, 57, 58). Strikingly, precision tends to decrease with increasing recall for both
dedicated tools, TACO and StringTie-Merge, as well as naive merging strategies.
Only Ryūtō and PsiCLASS show definite improvements, yet, at opposite ends.
While recall stays nearly unchanged for Ryūtō, precision increases sharply within
only 3 samples, after which growth turns more modest (unstranded 28-49%, stranded
22%). PsiCLASS gradually improves upon recall (25-55%) at predominantly near
constant to minimally increasing precision. Improvements for Ryūtō are consistent
for all but very low abundant transcripts, while PsiCLASS faces drops in precision
at high abundance (Appendix C Fig. 53). We note that improvements are especially
significant for Ryūtō in unstranded data, which can likely be attributed to the very
effective removal of incorrectly predicted fragments on the mirror strand of true
transcripts as we will highlight later.

We designed conditions to maximize contrasting setups. Due to the complexity
of possible combinations, we were unable to create exhaustive tests, but instead
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Figure 34: Assessment of performance for Scenario a) with increasing numbers of inputs. Recall and Precision
were assessed at the level of full transcripts. Tests include 2 simulated datasets, each varied as stranded (S) and
unstranded (US) at 10 samples: Geuvadis) human lymphoblastoid cells; SEQC-A) Universal Human Reference RNA.
Tools are not quantitatively intercomparable as filter settings cannot be adequately matched. Individual trends are
informative.

limited ourselves to self-contained sub-tests. The comparison of Multi-Ryūtō and
adapted merge reveals a consistent advantage for our novel method, particularly
pronounced for unstranded samples. This advantage in precision is less pronounced
in simulated samples, but still present. Simple merging for Ryūtō, unsurprisingly,
raises recall at a significant cost of precision. There is no noteworthy difference
between TACO run on Ryūtō or Scallop. Adapted merge on Scallop is comparable to
the same condition in Ryūtō for unstranded data, therefore both under-performing,
at a consistent offset to each other. The offset vanishes for stranded protocols,
with near identical recall but consistently better precision for Ryūtō. There is a
notable offset where StringTie-Merge is more precise while TACO provides more
recall. This offset persists even when adjusting parameters on test b).

The heterogeneity introduced by including samples of 2 biological conditions
does not seem to affect the methods in a significant fashion, nor did the use of time
series. Assembly on the much smaller genome of A. thaliana also had no negative
impact.

While Ryūtō exhibited the longest running times and showed above linear
growth with increasing input sizes, resource use stayed below a reasonable threshold
of less than 20 CPU hours (see later this Chapter). Only the A. thaliana dataset
required more memory than available on standard home machines due to very large,
aberrant, introns in the mapping.

While demonstrating individual performance well, the relationship between tools
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Figure 35: Assessment of performance under varying parameters in scenario b). Recall and Precision were assessed
at the level of full transcripts. Tests include 6 datasets at 10 samples each: Geuvadis) human lymphoblastoid cells,
unstranded; SEQC-A) Universal Human Reference RNA, unstranded; Leukemia) human acute myeloid leukemia
RNA, stranded; Mice Healthy) healthy mice hippocampus, unstranded; Mice Mixed) 5 healthy and 5 epileptic mice
hippocampus, unstranded; A. thaliana) cold response time series, unstranded. Parameters were varied as described
in methods and Appendix B.2.3. No suitable parameters could be found for PsiCLASS. For StringTie-Merge the
isoform fraction filter (-f ) was used.

Figure 36: Assessment of performance under varying parameters in scenario b). Recall and Precision were assessed
at the level of full transcripts. Tests include 2 simulated datasets, each varied as stranded (S) and unstranded (US)
at 10 samples: Geuvadis) human lymphoblastoid cells; SEQC-A) Universal Human Reference RNA. Parameters where
chosen and varied to maximize the spectrum of results for all tools and combinations (See methods for details).

cannot be accurately judged in this experiment, as filter settings cannot be trivially
matched.

b) Performance under parameter variation

Therefore, we computed precision-recall curves under varying parameters for each
setup in scenario b) (Fig. 35, 36, Appendix C Fig. 59, 60, 61, 62). As any average
user would, we identified the main filter option for each tools as described before.
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While PsiCLASS showed significant promise in scenario a), it only seems to operate
well at a narrow range of parameters, possibly due a disproportionate effect of filters
on medium abundance transcripts (see Appendix C Fig. 54). We were unable to
identify a viable and stable configuration and none was provided in its original paper.
With the exception of StringTie-Merge in one sample, all other tools fall short
of Ryūtō. PsiCLASS can claim a window of high recall, low precision assemblies
on only unstranded data for itself, with little variability of possible parameters. It
performs particularly well on the smaller A. thaliana genome, but also here fails
to achieve precision. PsiCLASS’ performance appears to be partly stronger in
simulations. In stranded sets, both real and simulated, PsiCLASS looses ground to
all other competitors. Multi-Ryūtō dominates tests at high-precision scenarios.

Notably, with parameters set to lowest filtering, Multi-Ryūtō is not able to
produce results at a similar recall to adapted merge. The reason for this is set
up within the assembly pipeline and how filters act on individual inputs. A multi-
assembly approach requires at least a coverage of 1 on a sufficient number of inputs
for consensus voting on a feature, effectively forcing a higher base filter compared
to merging. If, for example, at least 3 inputs are needed for a consensus, this sets a
hard lower threshold of admissible coverage. In contrast, single-input mergers can
be set to only 1× coverage, regardless of the number of merged inputs. Therefore,
they allow for a wider range of recall at the cost of precision. Overall, adapted
merge appears to be a valid alternative when recall is prioritized, as filters can be
reduced more effectively.

Again, we see no significant changes when including samples from multiple
conditions compared to a single condition. We note that varying filters in Ryūtō
prior to vs. during TACO assembly yields inconsistent results, highlighting the need
for a parameter design without in-transparent consequences for end-users. To
mimic the dilemma of choices faced by an average user, we varied parameters
both on Ryūtō prior to assembly with TACO, as well as on TACO itself. We note
that the variation in results for TACO with Single-Ryūtō seems to be limited to a
close neighborhood, that, despite some regularities, does not fall into a consistent
pattern. At first glance, filtering via TACO seems to achieve a stronger effect towards
precision than pre-filtering inputs. However, this trend is near inverted for SEQC-A
and simulated datasets.

For StringTie-Merge we compare input filtering (-c) vs. classic output filters
(-f ). The latter can be considered to be the more reliable and versatile option.
The offset between TACO and StringTie-Merge reported also in a) is persistent
throughout parameter variations and datasets.

It should also be mentioned that Multi-Ryūtō appears to be slightly less effective
on simulated data in both tests. While we were unable to identify the cause
unambiguously, we suspect that this difference is the consequence of a higher
variability of transcripts with very low expression, that is not captured properly by
the assumptions of read distributions made by the simulation tools.

Readers should take note that the intersection between Single-Ryūtō and
Multi-Ryūtō appears to be quite close to the standard parameters on stranded
datasets. Therefore, Multi-Ryūtō appears to be a conservative choice by default at
a reasonable trade-off between recall and precision.
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An interlude on strandedness

The differences between stranded and unstrandend protocols are both pronounced
and consistent throughout simulated as well as real datasets. Considering both
experiments so far, adapted merge performs well for stranded data, but fails for
unstranded samples. Generally, adapted merge Ryūtō dominates high recall, low
precision setups, while Multi-Ryūtō dominates at high precision and thus lower
recall. For stranded protocols, or when disregarding single exon transcripts, there is
a consistent intersection between both; their transition point.

Most of this effect can be ascribed to “shadow” effects of true transcripts, i.e.
reads assigned to the wrong strand but at the right location. This behavior is not
unexpected, as only spliced reads can be correctly assigned to a strand via the
consensus splice motive. Other reads are either randomly assigned or considered
for both strands. Tools may, however, rescue unassignable reads by checking within
their proximity for already assigned reads. Of course, this will fail if either true
transcripts are located on both strands of the same locus, or if erroneous splices
mislead the process. In either case, fragments of true transcripts could be predicted
on the false strands, if not correctly filtered. These transcripts will consist of only
single exons in the majority of cases. Removing single exons from benchmarking
thus reveals the extend of changes, best observed in scenario b) (Appendix C Fig.
60, 62). While for Multi-Ryūtō there are no obvious changes to its profile curves,
adapted merge undergoes drastic changes. Quite remarkably, curves morph to show
similarity with the general stranded case. We presume that the main cause for
the strong decay of unstranded adapted merge Ryūtō can be found in the rapid
accumulation of such false shadows. Nevertheless, Multi-Ryūtō will dominate high
precision scenarios also without single exons. Both StringTie-Merge and TACO
display a similar effect. While for stranded samples the topologie of curves does
not significantly change when removing single exon transcripts, the same cannot be
said for unstranded samples. Including single exons, both tools present a significant
trend towards low recall while only barely improving precision. Upon exclusion,
curves “widen” to a larger range of precision, hinting at a large residual set of
false single exon transcripts unaffected by parameters. Even the relative order in
TACO and Single-Ryūtō variation seems to be affected with distributions changing
drastically when excluding single exon transcripts (Appendix C Fig. 56, 58, 60, 62).
PsiCLASS also exhibits a change, however, here presenting as a notable shift in
recall in relation to other tools without single exon transcripts. It should be noted
that adaptive merge Ryūtō turns into a viable, for high recall even dominating,
alternative under this precondition even on unstranded data, yet exhibits a higher
parameter versatility than the competition.

c) Differential Transcript Expression Analysis

The catalog of transcripts is fundamental also for differential transcript expression
(DTE) detection. Commonly, DTE analysis is performed on organisms with available
annotation. Contrary to our previous scenarios, we therefore need to consider also
guided assembly, an option unavailable for all multi-assemblers besides Ryūtō. We
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Figure 37: Assessment of performance for differential transcript expression detection in scenario c). Tests include 2
simulated, stranded datasets at 5 samples per condition: Geuvadis) human lymphoblastoid cells; SEQC-A) Universal
Human Reference RNA. For each dataset artificial incomplete references at 40%, 60%, and 80% completeness were
used for assembly and quantification. Top: Precision and recall of predicted fold changes. F1 measure is given for
each subcondition. References are merged with the assembly (filled marker), or only given to the assembler as a
parameter (empty marker). Results for p-value p = 0.05 are shown. Ryūtō was run on multiple inputs (Multi), as
well as individual samples (Single), both providing a reference annotation (Guided) and without (Unguided). “GJ” in
the tool pipeline indicates joining the assembly to the full reference. Bottom: Precision and recall at the level of
full transcripts prior to DTE analysis.

instead follow guide-joining as described before in the Chapter (Assembly Workflows
and Tool Parameters). Even for well studied organisms the catalog of annotated
transcripts is incomplete. We mimic the varying quality of available annotations
by creating random subsets of all simulated transcripts at 40%, 60%, and 80%
size. Lastly, we consider 3-5 inputs per condition. Fold changes were predicted by
DESeq2 (Love, Huber, and Anders, 2014). Overall, Ryūtō consistently produces
the most precise results, with recall only significantly suffering in the 40% scenarios
(Fig. 37, Appendix C Fig. 63). PsiCLASS consistently dominates TACO in both
recall and precision, yet can best Ryūtō in only one scenario and is dominated (or
in one case co-optimal) for the rest (up to 11.4% increase in precision at 5% more
recall). Notably, Ryūtōs advantage increases with annotation quality. Reviewing
assembly results prior to DTE analysis, TACO and PsiCLASS produce a similar
recall even at 60% and 80% guides due to GJ, but Ryūtō can do so at a better
precision (up 17-24%) with favorable effects for DTE. A precision of over 90%
is consistently achieved even at 40% guides, reaching over 98%. Ryūtō is preset
to only call annotated transcripts when each feature is covered by at least one
read, while DTE can be performed at even less evidence. Merging the guide to
the assembly therefore further increases recall under the assumptions of a near
perfect annotation. We expect Ryūtōs ability, competitive in itself, to be very useful
for more conservative applications. Guide-joining seems to act as the strongest
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classifier among method groups in our experimental setup. To remain fair, methods
without GJ require to be guided otherwise, with Ryūtō as the only option. Thus,
they show a better precision but lower recall than methods including GJ. Guided
Multi-Ryūtō with GJ was the best available option for most datasets. Utilizing
transcript guides for single assembly prior to TACO seems to have little impact on
the final result when paired with GJ. Neither has the alternative use of Scallop at
near indistinguishable results. Unsurprisingly, single set guiding alone is insufficient,
performing worst overall. Counting with either Salmon or Kallisto on the same
set of transcripts, here guided Multi-Ryūtō, has no major influence on DTE, with
no clear winner. Counts provided by Ryūtō perform slightly worse. The leading
guided methods predict similar amounts of unique true DTEs. PsiCLASS provides
the highest recall of true assembled transcripts prior to DTE analysis. Overall, while
still certainly important, we expect precision to be only the secondary criteria in
this scenario, as false positives will often be removed also within the quantification
pipeline. Nevertheless, the recall-precision layouts transfer well to their counterparts
in DTE, albeit with changed distances, confirming their immediate relationship.

To supplement the analysis, we computed Venn diagrams for DTE results.
However, we did not see any notable shifts between methods, but rather consistent
divergence with no tool combination calling more unique fold changes than all
others (Appendix C Fig. 65, 66).

Analysis of Assembled Transcripts

Despite the complex nature of assembly bias and the resulting complications for
method design (see Chapter 2.3.3), we devised a simple but informative strategy
to find indicators of strong discrepancies in our own methods. To avoid the bias
of counting tools such as Salmon, we use real datasets, here Leukemia, Geuvadis
and SEQC-A as used before. Consequently, we limit results to the set of annotated
transcripts in the GENCODE project, an unavoidable restriction also for simulation.
We compare Ryūtō pairwise to other tools, building up three unique sets of true
predicted transcripts per dataset: the intersection of both, as well as the respective
transcripts unique to each tool. We characterize transcripts by the number of exons,
indicating complexity, as well as the annotated type according to GENCODE. As
manipulating tools to operate at a similar recall-precision trade-off is a nontrivial
task, we ran tests at standard parameters for all tools with the exception of Scallop
at --min_transcript_coverage 4. We report results only at 10 inputs. Before
interpretation, we need to note that higher recall is associated generally with a
lower precision, but false positives cannot be effectively categorized. As a notable
complication, therefore, totals are not immediately comparable, and totals of unique
transcripts are a direct reflection of the overall recall disregarding precision. We
therefore also provide the distribution of features for analysis. All-vs-all comparison
revealed no surprises, with all tool producing unique true transcript proportional to
their recall (Appendix C Fig. 64).

Single exon transcripts are generally assembled independent of the tool-specific
methods as no alternative splicing can occur. Rather, contiguous stretches of
mapped reads need to be identified and evaluated. Single exon transcripts are
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therefore in particular sensitive to filter parameters and assumptions independent of
other tool biases. We therefore exclude this category from further tests. However, it
should be noted that although Ryūtō assembles fewer single exon transcripts than
all other tools, its precision is magnitudes above the competition (see Appendix C
Tbl. 11)

Transcripts reported uniquely by Ryūtō appear to contain higher numbers of
exons than those produced by TACO; see Appendix C Tbl. 12. In competition to
StringTie-Merge, Ryūtō dominates in the range of 2-5 exon transcripts, with
a slight advantage of StringTie-Merge above this threshold. Divergence to
PsiCLASS is even less prominent. Overall, these result should be interpreted with
caution. Reported percentages for unique and mutual reported transcripts for all
tools are remarkably similar, with all tools producing unique transcripts in all exon
ranges with no major deviations.

The same setup was used to compare the functionality of assembled transcripts,
only now counting the annotation according to GENCODE instead of exon numbers;
see Appendix C Tbl. 13. On first glance, this analysis appears to highlight subtle
but noteworthy differences between tools. Ryūtō calls consistently more transcripts
of the type IG V Gene in reference to PsiCLASS. PsiCLASS in turn assembles
more true transcripts of the types antisense, lincRNA, processed transcripts, and
transcribed unprocessed transcript. Especially noteworthy, TACO dominates in the
same categories, regardless of the underlying single input assembler, while Ryūtō’s
advantage in IG V Genes is less consistent. However, Ryūtō in turn produced more
true assemblies of these types compared to StringTie-Merge. A parsimonious
explanation can be found if a common property exists for all types causing the
divergence. Indeed, all detected types include very short transcripts that are prone
to noise filtering, especially on low coverage loci. This assumption was strengthened
by manual inspection. Differences therefore can most likely be explained by stricter
transcript length requirements in Ryūtō and StringTie, which are adaptable for all
tools.

The results of this section highlight the great difficulty in establishing functional
categories for transcripts. With > 90% of transcripts located in only a single
category (protein coding), existing schemes are ineffective to highlight the relation
to assembly difficulty, even in combination with other metrics. The creation of an
exhaustive multi-variant comparison is outside of the scope of this work and would
require significant research. Ideally, any attempts at such investigations would also
require the inclusion of parameter-advising-like exploration to see the full scope of
possible assemblies. Although it would surely be the dream of many bioinformatics
users and developers to choose assemblers based on the strict and well defined
demands of their own subject of research, this is unfortunately currently unrealistic
for all but few well studied types of transcripts.

Depth of Coverage Analysis

Transcripts can be further classified by their coverage, i.e. the average number of
reads expected to include each base of a transcript. Unfortunately, isoform level
quantification cannot be effectively measured experimentally, but rather is estimated
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with tools such as Salmon based on mapped reads. Therefore, real datasets cannot
be employed accurately and simulated counts are essential. We chose the Geuvadis
simulation for reanalysis. True (assembled) transcripts are assigned their simulated
coverage, disregarding the reported coverage by the respective assembler. False
assemblies are assigned the coverage of the closest true match or the assembler
reported coverage if non is available. Matching is achieved by cuffcompare.
Transcripts are classified according to the combined coverage c over all inputs,
i.e. the sum of coverages. We separate transcripts into 4 categories: c ≤ 10×,
10× < c ≤ 50×, 50× < c ≤ 100×, and c > 50×. We re-evaluate scenarios a) (Appendix
C Fig. 53) and b) (Appendix C Fig. 54) under this premise.

Increment testing in a) reveals the effectiveness of merging strategies depending
on transcript coverage. Ryūtō operates distinctly different to the competition.
PsiCLASS, TACO and StringTie-Merge operate well on low coverage ranges, even
at ≤ 10×, improving both recall and precision. However, at higher coverages any
improvements in recall are offset by a decrease in accuracy. The gradual change
between both states is well captured in the graphs and especially prominent in
PsiCLASS. Ryūtō shows more steady improvements for all but very low abundant
transcript. It stands to reason that at averages below 10× transcripts cannot be
well represented in sufficient inputs. As Ryūtō requires a significant subset of inputs
to call the transcript, results are strongly filtered. These results suggest that a more
adaptive strategy might benefit Ryūtō in this category. Notwithstanding, it should
be noted that neither tool can achieve significant recall (≈ 3%) in this category.
Effects of Ryūtō on stranded data are very subdued, which is consistent to the
already observed gap in improvements on simulated data compared to real stranded
datasets.

Scenario b) reveals the influence of varied parameters on transcripts with
respect to their abundance. Conceptually, filters will act most strongly on low
abundant transcripts. Setting a high enough threshold will invariably remove also
true transcripts. Therefore, we expect curves to decrease both in recall and in
precision with increasing filter setting. At increasing coverage, the influence of filters
decreases until we expect recall to fall as precision increases. All tools follow this
trend. Notably, on very low coverage adapted Single-Ryūtō achieves the highest
recall and precision by a significant margin, but falls short at higher abundances.
PsiCLASS exhibits the strongest decay in recall and precision at medium to high
range coverage.

Running times

To show the influence of increasing numbers of datasets on running time and
memory requirements we ran benchmarks on A. thaliana (Appendix C Tbls. 14
and 15) and Geuvadis (Appendix Tbls. 16 and 17). Benchmarks were executed
on a shared machine with an Intel(R) Xeon(R) CPU E7-8860 at 2.27GHz and
sufficient memory. Unsurprisingly, Ryūtō shows slightly above linear growth for
both time and memory. The underlying cause of this increase can be attributed
to the construction of a consensus-splice-graph of raw reads. This step is avoided
by all other tools that instead merge already “compacted” features. PsiCLASS,
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TACO and StringTie-Merge exhibit more moderate increases in running time at
near constant RAM. TACO and StringTie-Merge are dominated by the cost of
single datasets assemblies, which in sum remains less expensive than Multi-Ryūtō.
Although running times stay in very reasonable range, especial compared to older
tools such as Cufflinks, we do not recommend the use of Ryūtō for very large
numbers of inputs. We note that the high memory demand for A. thaliana stems
from numerous very long aberrant splices produced by STAR which effectively fuse
near completely chromosomes into a single splice graph. The memory demands for
all other datasets stays below the level of RAM available to average home machines.
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This thesis describes the development, methods and implementation of two novel
approaches for sequence assembly. Chapter 3 describes the LazyB framework for
genome assembly. LazyB is designed as a hybrid assembler combing short-read
and long-read data. Contrary to existing methods it enables the assembly of low
coverage datasets. An optimized version of the framework has been implemented
as the MuCHSALSA assembler. Chapter 4 focuses on Ryūtō, a tool for reference
based transcript assembly. Ryūtō includes a novel extension for guided assembly
and the ability to assemble multiple inputs into a consensus-assembly.

5.1 Discussion and Outlook

5.1.1 LazyB

This thesis and associated works demonstrate the feasibility of a new strategy
for sequence assembly with low coverage long-read data. Despite a ready to use
and well optimized core-implementation and overall favorable benchmarks, several
avenues for improvements are left open.

While MuCHSALSA supports multi-threaded computations, it mainly relies on
naturally occurring sources of parallel structures. We found that larger genomes
tend to exhibit more spurious overlaps and therefore also crosslinks. In effect, true
graph components tend to “pack together”, therefore creating fewer and larger
components. Parallelity could be regained by cutting edges that are identified as
likely crosslinks. An optimal solution, however, would require the identification
of maximal, well connected, tube-like subgraphs – the proper interval graphs for
each contig or contig fragment. The solution relates to finding a maximally dense
partition with an unknown number of classes, which has been demonstrated to
be NP-hard (Darlay, Brauner, and Moncel, 2012). We presume that suitable
approximations exists.

Within this work we have not yet addressed the topic of sequence polishing, i.e.
how to improve the base accuracy of assemblies based on short-read or long-read
alignments. LazyB combines long reads and short-read unitigs into a common
coordinate system during the creation of consensus sequences. As a result we gain
high-quality intervals based on unitigs, separated by long-read data accordingly
exhibiting a much higher error rate. While unitigs are unique, parallel structures may
arise in long-read stretches. In the final assembly step a multigraph is constructed
encoding the consensus sequence as a path (see Chapter 3.5.1). Parallel edges in
this graph correspond to the same genomic coordinates. Hence, the corresponding
fragments of long reads can be aligned to improve accuracy. The same is true
also for alternative paths between any two nodes in the multi-graph. This setup
defines a collection of alignments distributed on the assembled contigs, similar to
the situation in common polishing strategies based on mapping short-read data or
long reads to a preliminary assembly. Preliminary tests with off-the-shelf tools such
as racon (Vaser et al., 2017) indeed improve sequence identity, but also tend to
introduce new translocation breakpoints. We suspect this is the consequence of
insertions and deletions being much more abundant than mismatches in Nanopore
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data, which is at odds with the Needleman–Wunsch alignments used by polishing
tools.

An alternative interpretation of this effect may by attributed as well to alignment
uncertainty, albeit at another step of the assembly. We use mimimap2 to establish
overlaps between unitigs and long reads. Thereby we can only estimate the shared
region of long reads by interpolation (see Chapter 3.3.3) as base-wise alignments
are not available for all matched regions or generally error prone. While the average
impact of errors is likely fairly low (see Appendix A.2), significant shifts of several
basepairs appear to be possible. If a shifted overlap is chosen for assembly in a
contig path, such a divergence would introduce either a – depending on the size
of the shift very likely minor – loss of basepairs or a local duplication. QUAST, as
was used for benchmarking, will ignore minor local mistakes as reasonably accurate.
Polishing tools, however, will rightfully detect regions of particularly bad alignment
quality and split contigs at such positions instead of attempting to rescue them.
As true overlap regions cannot be known – if so we would remove all shifts – the
relevance of such faults remains unknown.

We suspect that further overall improvements can be achieved by improving
the quality of the initial overlap graph. Conceivably, more stringent filtering of
the short-read unitigs against multi-copy sequences with similarities comparable
to the expected error levels in the long reads can reduce spurious edges. It may
also be worthwhile to explore pairwise alignment metrics for long-read sequences
forming edges in the overlap graph to confirm their respective overlaps. We
found that for some organisms, including also the human dataset included in the
benchmarks of this thesis, unitig assembly is a critical bottle neck of our approach.
Especially in regions with high repeat density, few and relatively short unitigs will
be created, often failing quality thresholds for use in our pipeline. As all tested
state-of-the-art short-read assemblers produced unitigs of comparable quality, we
find it unlikely to make significant strides in this regard. Instead we propose the
inclusion of also lower quality unitigs into the assembly, but attempt to verify
matches by a secondary quality control based on pairwise alignment or a related
similarity measure. However, as we have seen, classical aligners do not perform
at a satisfactory level, presumably due to the InDel-dominated error profile of the
current long-read sequencing methods. We found that already the alignment of
long reads to a perfect reference is problematic (see Appendix A.2). Improved
alignment approaches would also be required in the finishing steps. It remains to
be seen whether dedicated long-read aligners, such as the current-level modeling
approach of QAlign (Joshi et al., 2020), are able to resolve these issues. With
increasing availability of high accuracy long reads such as HiFi PacBio, alignment
uncertainty will also disappear as a negative influence. This, of course, also applies
to competing methods such as wtdbg2. We expect that especially long-read-only
assemblers will experience a major drop in required coverage, as to date a large
portion of the pipeline is dedicated to dataloss attributed to read and consequently
also alignment errors. Efficacy of methods using high accuracy reads has yet to be
demonstrated. While, in the meantime, we can likely not solve the full alignment
problem for standard high error long reads, we nevertheless seek to establish a
verification strategy for unitig overlaps based on alignments as the next immediate
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step.
A prominent category of misassemblies within the LazyB contigs are inherited

from chimeric reads. This therefore suggests an iterative approach: Subsampling the
long-read set will produce more fragmented contigs, but statistically remove chimeric
reads from the majority of replicate assemblies. Final contigs are constructed in a
secondary assembly step by joining intermediary results. It might appear logical
to simply run LazyB again to obtain a “consensus” assembly, where intermediary
contigs play the role of longer reads with mapped anchors. In preliminary tests,
however, we observed that this results in defects that depend on the sampling rate.
The question of how to properly design the majority calling to construct a consensus
assembly remains yet to be answered.

Finally, a proper pipeline needs to be established to join short-read assemblies
and very low coverage LazyB assemblies. While Quickmerge appears to produce
satisfying results (and short-read contigs in regions not covered by the long-read
assembly could be fished out as the set of uninvolved contigs in this process), we
presume a dedicated method may yield even better results.

In essence, remaining open question pertain largely to the lack of effective
alignment strategies for long-read sequences.

(i) More accurate alignments would allow us to use shorter, and therefore easier
to assemble, unitigs covering a higher percentage of the genome.

(ii) Alignment uncertainty introduces significant local noise to the assembly.

(iii) The base accuracy of assembled contigs can be improved by sequence polishing.
The raw coverage required towards this goal is drastically reduced with
improved alignments.

(iv) Crosslinks will appear less frequent at higher mapping accuracy. We presume
that they may also be removed effectively purely based on their unique signal
in the assembly graphs, however.

As a first step, we therefore seek to explore methods to validate the pairwise
alignments indicated by untig overlaps, as required for LazyB, via secondary metrics.
Instead of solving the very hard global aligned problem for long reads, it seems
plausible that local alignment quality only at sites of interest such as overlap borders
could be improved.

Further research needs to be dedicated also to the following topics:

(v) Chimeric reads need to be identified and removed effectively, e.g. via sub-
sampling.

(vi) Effective strategies for merging short-read and hybrid assembly contigs remain
unknown.

Both could potentially be solved via meta-assembly of two or more assemblies.
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5.1.2 Ryūtō

Establishing an accurate set of expressed transcripts from RNA-seq samples is a
common and critical part of diverse applications. The Ryūtō framework in its
current implementation is already a competitive alternative towards this goal. It
can achieve substantial improvements in RNA-Seq pipelines. Yet several avenues of
research are left open.

Multi-Ryūtō is not ideally suited for very large sets of samples, as improvements
saturate but running times increase. We suspect that our method will eventually
fail on overly heterogeneous inputs as uncertainty is brought into the voting process,
however, we could find no negative effects on heterogeneous data from the same
cell type.

By design, Ryūtōs internal datastructures lend themselves to handling circular
and trans-splice events. We aim for an integration of this functionality in future
versions of the software. The design of specialized splice graphs makes it possible to
localize positions in the graph structure that are likely cause for errors, a property
that will be useful for future improvements especially in subsequent applications.
A dedicated post-procressing pipeline making effective use of this novel type of
data, e.g. for differential expression analysis, has yet to be developed, however.
Ryūtōs structure also facilitates an easy exchange of components, allowing for easy
prototyping and evaluation of individual elements.

One of the most significant obstacles in the development of transcriptome
assembly methods remains the question on how to perform benchmarks. Although
the consensus appears to agree on the use of recall-precision statistics, details
vary strongly. Commonly, tools are compared only at respective default setting,
despite significant differences in the philosophy of parameter design. Scallop,
e.g., does not provide any default filters in order to force users to a hopefully
well-reasoned choice. Matching parameters is not commonly attempted and if so is
imperfect. Naturally, this type of benchmark emulates the behavior of an average
user well, but does little to explore the range of capabilities of each tool. Exhaustive
variation of all parameters is not generally feasible. A reasonable compromise
relies on systematic variation of the main filter option in order to compare recall-
precision curves rather than single datapoints, as was used in this thesis. No
established workflows or datasets exist to measure the bias on isoform features such
as splice sites, retained introns, or alternative start- or end-sites. Complex biases
may reside in the combination of isoforms and their shared exons and therefore
in the structure of the assembly graph. Sequence composition provides a further
strong influence, not only in regard to the alignment step, but also on coverage
fluctuations within the same isoform due to sequencing biases. Although this form
of analysis was rudimentary included by K. E. Hayer et al., 2015, tests-scenarios
are not sufficient and results inconclusive. This gap in knowledge is especially
detrimental for subsequent applications in RNA-Seq pipelines, to which biases will
propagate at equally unknown consequences.

In order to shed light on the influence of assembly choices on specific features
of transcripts and classes of RNA, we propose the creation of a complex set of
simulated datasets for multivariate testing. Features of coding RNA are commonly
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exploited for improved assembly of only this class, e.g. via open reading frame
prediction in Mikado (Venturini et al., 2018). Properties of non-coding RNA
are more illusive. By convention, non-coding RNA is grouped into RNA types
depending on common features, such as length, sequence, folding structure, function,
composition, or genomic location. Despite large scale collection efforts such as
Rfam Kalvari et al., 2021, many types of RNA remain understudied or possibly
even undescribed. Of course biases may be obvious for some RNA classes, e.g.
when tool filters explicitly target key features of the class. As a salient example,
microRNAs are generally shorter than the default minimal length requirement of
tools. While benchmarking biases against individual RNA types can be informative,
we presume that less restrictive testing could achieve a better overall resolution.
Towards this goal, we propose to examine the set of features defining known types
in order to create a catalog of known important features for multivariant testing. If
bias towards a feature is found, inferences can be drawn back to the original or later
even novel types. In order to avoid negative influences associated with simulation,
existing annotations for real datasets may be classified along the same catalog as a
complementary test. Once such datasets have been established, the influence of
parameters and assembly components can be more comprehensively studied.

As a second avenue of research, we advocate the use of machine learning for
transcript assembly. Although the methods presented in this work represent a
significant step in the development of transcript assembly, model-based approaches
appear to have come close to their limits. Machine learning methods do well in
detecting hidden relationships and therefore also potential biases in highly complex
and noisy data. They are in particular well suited to complement simulated analysis
as suggested above. Machine learning can not only be applied to study assembly
results, but also properties of intermediate assembly steps and inputs. In particular,
we seek the integration of properties that are not commonly available to reference
based transcript assemblers, such as sequence, RNA structure, or estimations of
alternative start- and end-sites from CAGE experiments. The graph structure,
as a result of superimposed isoforms, is of equal interest. Machine learning may
not only lead to a better understanding of assembly bias, but insights can be
transferred towards its eradication. Noise susceptible assembly steps, such as
coverage correction via min-cost flows in Ryūtō, may benefit greatly from the
inclusion of machine learning.

Summarizing, further research efforts should be focused on three areas:

(i) The integration of circular and trans-splice events.

(ii) The creation of a comprehensive framework for transcript assembly bench-
marks able to assess method bias to allow improved performance measures
and to facilitate the systematic analysis of assembly steps.

(iii) The integration of machine learning methods to analyze and correct bias.

Ryūtō is well suited towards all three goals.
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5.2 Summary and Conclusion

Deciphering the sequence composition of genetic material stands at the starting
point of all genetic studies. Assembly is an essential procedure enabling the decoding
and exploration of the genetic makeup of organisms. As such, it is a core problem
of bioinformatics and it serves an integral part in a great variety of fields and
analysis pipelines as explored throughout this thesis. While open questions remain
as outlined above, this work describes significant advances for both de novo genome
assembly and reference-based transcriptome assembly. All methods have been fully
implemented and are available to researchers via public repositories. Ryūtō and
LazyB offer ample potential for inclusion in existing and novel workflows. Their
respective frameworks are well suited for further research as already discussed in
this chapter, and the development of both tools will continue accordingly.

5.2.1 LazyB

LazyB is new low-cost hybrid genome assembler that copes well with large genomes.
It was designed with a special focus on assembly at very low coverage. We report
significant improvements in contiguity compared to a traditional short-read assembly
already at 2× coverage of long reads.

The LazyB workflow relies on enforcing properties of proper interval graphs that
have not been exploited in this manner in competing sequence assembly methods,
as well a unique method of finding near perfect overlaps between long reads.

Removing over-abundant k-mers enables the assembly of short reads into highly
accurate unitigs free of repetitive elements. A bipartite overlap graph between long
reads and unitigs is transformed to a long read overlap graph encoding, true to
the name, pairwise consistent overlaps between long reads. Contigs are modeled
as a set of disjoined paths, each of which induces a subgraph conforming to the
properties of proper interval graphs. Graphs are step-wise transformed by a series of
fast algorithms to conform to approximate subgraphs representing exactly this union
of contig paths. First, a consistently oriented subgraph is extracted and reduced to
a directed acyclic graph. In the second step, contigs are extracted as maximum
weight paths, using a metric based on local conformity to proper interval graphs.
LazyB does not follow the conventional approach to remove false positive edges
as tips or bubbles, and only addresses these types of errors indirectly during path
selection. For each path, the maximal globally compatible set of unitig overlaps is
computed and thereon dependent the consensus sequence constructed.

The consistently low complexity of individual assembly steps served as a major
goal and motivator for the development of this novel approach. Already the
non-optimized prototype LazyB, written entirely in Python, not only provides a
significant improvement of the assembly but also requires much less time and
memory than state-of-the-art tools. The optimized implementation of MuCHSALSA
further reduces running times and memory consumption by a significant factor.

A major portion of the observed speed advantages can be attributed to avoiding
both a correction of long-read sequences and an all-vs-all comparison of the long
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reads, next to the very low error rates of unitig induced overlaps between long
reads.

Benchmarks highlight consistent improvements in contiguity and misassembly
rates in low coverage assemblies on yeast, fruit fly, and human compared to leading
competing methods.

5.2.2 Ryūtō

Ryūtō provides a versatile framework for reference based transcript assembly and
quantification based on short-read RNA sequencing. Our new method is compatible
to existing downstream applications and highly adaptable to individual research
needs.

The performance of short-read assemblers in general is hindered by the technical
limitations of sequencing platforms. The length of short-read fragments is often
insufficient to unambiguously resolve the connections between far distant alternative
splicing events. Sequencing coverage values have been proven to be another
informative data-source to resolve isoforms. Yet, coverage is highly susceptible
to noise and therefore in practice strongly diverges from the uniform distribution
that would be expected in perfect data. Hence, it is critical to preserve and utilize
data-sources bridging splice sites whenever possible.

Ryūtō uses aspects of overlap graphs to create a generalized, bin-based splice
graph, enabling the immediate representation of multi-splice evidences in the
datastructure. Per design, every read matches to a unique path in the graph. Thus,
coverage for each feature is kept intact as an essential property for assembly decisions.
Graph features constituting likely false positives or otherwise lowly supported regions
are rigorously filtered. Custom heuristics and a minimum cost network flow serve
to reduce coverage noise and enable the later accurate quantification of transcripts.
Transcripts are modeled as a path decomposition of the resulting flow, constraint
by splice-evidences from multi-splice and paired-end reads. The graph is simplified
such that only nodes remain where no unambiguous decomposition to transcript
paths is possible. Linear programming is used to resolve each problematic node
based on the available bridging splice-evidences.

We found that users expect a single parameter to adapt results to their preferred
recall-precision trade-off. This concept is shared by all major assemblers. Yet this
practice often hides the reality of complex filters and assembly parameters necessary
to deal with the abundant sources of bias present in the data. Next to a well
optimized and intuitive main parameter based on transcript abundance input and
output filtering, Ryūtō exposes most internal choices as parameter settings in order
to raise awareness of design choices.

Ryūtō supports both single- and multi-sample assembly, employing a core
algorithm based on the integration of low level feature voting to mediate assembly
steps.

Ryūtō can also be used with de novo assembled super-reads that combine
pairs of reads, providing an additional increase in recall and accuracy. It includes a
framework for guided transcript assembly that can help adjust predictions according
to annotation quality and user preference as a completely unique feature.
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While results also show that further strides in the quality of RNA sequencing,
and thereon dependent also assemblers, need to be made, our benchmarks highlight
significant improvements by Ryūtō in transcriptome reconstruction and thus also
downstream workflows. Compared to other leading methods, Ryūtō is significantly
and consistently more accurate for both simulated and real data, in particular
for complex loci. On single datasets, Ryūtō calls 1-4% more true transcripts,
while producing 5-35% less false predictions compared to the next best competitor.
Inclusion of de novo super-reads further improves accuracy mostly for medium to
high abundant isoforms.

Contrary to competing methods, multi-sample assembly is consistently more
accurate than single-sample results. Multi-Ryūtō improves precision at stable recall
on both unstranded (28-49%) and stranded (22%) data. While for multi-sample
assembly PsiCLASS remains in the lead if recall is valued at the cost of precision
in unstranded samples, Ryūtō dominates all other categories. Multi-Ryūtō can
benefit any average budget project where replicates of the same tissue are available.
We demonstrate advancements on differential transcript expression analysis as a
common task in research. Our unique feature of guided multi-assembly is especially
valuable when reliable but incomplete annotations exist, achieving a precision of
>90%. Ryūtō is well suited also for the reanalysis of published data.
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APPENDIX A
Additional for LazyB

A.1 Implementation Details

LazyB is implemented as a python 2 script. It relies on Python Libraries NetworkX
for graph representation and algorithms and on BioPython for handling of sequence
data.
MuCHSALSA is written entirely in C++ using libc++-12 as the only dependency.

A.2 The Problem of Nanopore Alignments

Alignment of Nanopore reads is particularly hard, regardless of context. In detail,
this applies to three scenarios in LazyB that would profit greatly from an increased
accuracy of alignment methods: (i) Pairwise alignment of pure Nanopore reads, (ii)
alignment of Nanopore reads to a perfect reference or related alignment to near
perfect unitig anchors, and (iii) short reads mapping for sequence polishing.

Although under good conditions a consensus accuracy of more than > 99% is
achievable for as few as 5 reads per base, magnitudes higher coverage is necessary for
effective assembly. A partial but significant reason for this seemingly contradictory
observation can be traced to the difficulties in establishing pairwise overlaps. Long
read only assemblers Canu and wtdbg2 only consider pair-wise overlaps if reads
share a significant set of (rare) k-mers. wtdbg2 divides reads into bins which are
treated like a single base in a Smith-Waterman-like alignment. Bins are also used
as a base-unit for a fuzzy-Bruijn assembly graph, where bin segments act as nodes
that are connected if they appear consecutively in the same read. Pairwise-aligned
bin segments act as the same node. In the final assembly step, the consensus for
each bin per node is chosen. Canu avoids full alignment during the overlap phase,
then uses more traditional but ultimately very similar alignment graphs (Myers’
O(ND) algorithm). Here the most abundant path defines the consensus sequence.
A similar approach is also chosen for polishing tools such as in Racon. Ultimately,
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these methods allow ample room for errors in pairwise assembly, relying on high
coverage to statistically remove them.

This, unfortunately, is not possible for low coverage assembly strategies such as
LazyB or, even more complicated, single pairwise alignments. The effects of this
problem can be well demonstrated anecdotally in our so far incomplete attempts to
estimate the extend to which such problems influence our own methods negatively.

The assembly of short read unitigs is a mayor limit for accuracy and completeness
of LazyB. To date we were unable to produce significantly different results, despite
extensive tests, on different modern short-read assemblers. Increasing the quality
of unitigs themselves appears unlikely, although not impossible.

As an alternative avenue, we consider the integration of also lower quality unitigs
into the assembly. As a mayor caveat this will inevitably also introduce an increased
number of false overlaps. In order to offset this negative influence, we examine
a possible secondary criterion for quality control based on sequence similarity in
the overlap outside of the unitig regions. Although, intuitively, this idea appears
to be viable, as certainly true overlapping reads should exhibit also a high degree
of similarity while false overlaps are random, reality has turned out to be more
complicated.

We set up a series of experiments on the 11× Yeast dataset also used in the
main text. First, using a LazyB assembly we extracted a set of perfectly assembled
contigs, as identified by QUAST. We identified the corresponding assembly paths
used by LazyB and thereby the set of pairwise long read overlaps for each contig.
We attempted to recover overlaps fore each pair using minimap2. To our surprise,
we were unable to find any significant overlaps for a significant number of these,
by design true, long read pairs. Therefore, using minimap2 for overlap-validation
would potentially result in a considerable loss in assembly quality.

In order to setup a framework for systematic benchmarks, we need to establish
a base truth. However, on real data true overlaps cannot be known while simulation
does likely not reproduce the full error signal. We estimate the truth by aligning
each read against the genome reference, in theory less difficult than direct pairwise
alignments. Pairwise read overlaps then manifest as a shared region on the reference.
However, using minimap2 at relaxed settings, we were only able to find overlaps
for 76% of reads without significant alignment errors. Of those only 41% could be
aligned as a single block, once again highlighting the complex nature of long read
alignments.

Nevertheless, we compare the overlaps induced by unitigs as described in the
main text to those on the reference. Please recall that exact overlaps can only be
estimated by interpolation due our inability produce base-exact alignments. The
same is true also for reads aligned to the reference in multiple blocks. The error
margins of such inaccuracies, combined with other alignment errors, can accumulate
to sizeable length differences (see Fig. 38).

Overall, the development of more sensitive alignment (validation) strategies
would greatly improve the perspectives of low coverage assembly.
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A.3 Additional Figures

Figure 38: Difference of overlap start- and end-positions according to unitig anchors and reference alignments.
Although the majority of overlaps is consistent within few basepairs, some diverge to a large degree despite indicating
the same overlap.
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≥ 100 bp

a) b)

c) d)

anchors1. Nanopore read 

2. Nanopore read shared anchor region

Figure 39: Illustration of consistency checks for anchors in reference to a pair of Nanopore reads. a) A user defined
minimal length and quality of the shared anchor region is required, here illustrated as ≥ 100 bp length. b) The relative
order of alignments for two anchors is switched between Nanopore reads. Anchors are therefore incompatible. c) The
distance between matches is not sufficiently similar on both Nanopore reads. Anchors are therefore incompatible.
d) A consistent set of anchor alignments. Image-Source: von Löhneysen, Sarah; A New Approach to de Novo Genome
Assembly Combining Short and Long Sequencing Data; Master’s Thesis; Leipzig University; 2020
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+ -

overhang

offset

1. Nanopore read (r1)

2. Nanopore read (r2)

Figure 40: Overview of possible relative orientations and layouts between two Nanopore reads. The shared region of
both reads mapping to the same (set of) unitig anchor(s) implying the overlap is indicated by dashed lines. Reads
may be oriented the same (+) or as the reverse complement of each other (-). The unmapped regions to both
sides of the anchor are indicated as overhang per respective Nanopore read. The actual offset is determined as the
difference of overhang. ⊕ / ⊖ indicate negative respectively positive offset respective to the first read. Offsets in
turn define the local direction of extension. Note that cases may be transformed into another by either i) switching
first and second read or ii) switching the orientation of both reads. This property is utilized to establish a total graph
order in Section 3.4.2. Image-Source: von Löhneysen, Sarah; A New Approach to de Novo Genome Assembly Combining
Short and Long Sequencing Data; Master’s Thesis; Leipzig University; 2020
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Figure 41: Running times of MuCHSALSA at increasing numbers of CPU cores available for assembly on two datasets
on yeast (left 5×, right 10× coverage). Due to the overall small genomes size, parallelization can achieve only minor
improvements.

Figure 42: Running times of MuCHSALSA at increasing numbers of CPU cores available for assembly on two datasets
on fruit fly (left 5×, right 10× coverage). Although parallelization achieves significant improvements, saturation
occurs already at low numbers of cores. At high core numbers, parallelization overhead worsens results.
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APPENDIX B
Additional Implementation
Details for the Ryūtō core

algorithm

B.1 Implementation Details

Ryūtō was built in C++ with the help of several libraries. We use the Lemon Graph
Library (LEMON C++ Libraries n.d.) for all graphs. LP instances are solved with
CLP (CLP C++ Libraries n.d.). Boost (Boost C++ Libraries n.d.) datastructures
are used for efficiency. Lastly, we used HTSlib (HTSlib C++ Library n.d.) for
handling alignments files.

We use OpenMP to parallelize computations when possible. In particular,
we allow the user to process multiple chromosomes concurrently via a simple
commandline parameter. As transcripts naturally form many independent relatively
small graphs, these can also be treated individually and in parallel.

B.2 Tool Versions and Parameter

B.2.1 Tool versions
Initial tests for the Ryūtō core algorithms were executed on Cufflinks v2.2.1,
StringTie v1.3.3, Scallop v0.10.3, as well as Transcomb v.1.0 and compared to the
development version of Ryuto 1.3m.

Benchmarks for Multi-Ryūtō and the parameter variation test were run on
StringTie v2.1.4, Scallop v0.10.5 and Ryūtō 1.6.
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B.2.2 Detailed Tool Parameters for Ryūtō Single Benchmarks
In the varied test we used the following set of parameters. Ryūtō -c 1, 2, 4, 6, 8,
10, 15, 20. Scallop --min_transcript_coverage 1, 2, 4, 6, 8, 10, 15, 20. StringTie
-f 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.15, 0.20, 0.25, 0.30.

B.2.3 Detailed Tool Parameters for Ryūtō Multi Benchmarks
For scenarios a) and b), mapped reads were provided as the sole input for assemblers.

a) Increment Test: Tools were run at standard parameters, with the exception
of Scallop preceding TACO. As Scallop does not filter natively, it was set to a
reasonable filter of --min_transcript_coverage 4 for single input assembly. Adaptive
Merge filters were set to 4× i, where i is the number of inputs, for both Ryūtō and
Scallop.

b) Varied Test: Multi-Assembler were run at 10 inputs at the following ranges:
Multi-Ryūtō -c 0.5, 1 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, Ryūtō adapted merge -c 1,
5, 10, 20, 25, 30, 35, 40, 45, 50, 55, 60, TACO --isoform-frac 0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17,
0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, StringTie-Merge -f 0.01 0.02 0.03
0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
0.20 0.21 0.22 0.23 0.24 0.25 and -c 0 3 6 9 12 15 18 21 24 27 30 33 36, and
PsiCLASS --vd 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0,
7.5, 8.0 at --sa always 0.5 below this value. To better highlight the curve on A.
thaliana, PsiCLASS was additionally run on --vd 9.0 10.0 12.0 14.0 16.0 18.0.

To vary input for TACO, Ryūtō was run in single mode on individual inputs at
-c 2, 4, and 6. Scallop was run at --min_transcript_coverage 4 for comparison.
Additionally, we ran TACO at --filter-min-expr 4 and 6 with with Ryūtō -c 2.

On A. thaliana only, for both a) and b) we included the intron-length filter
--max-intron-length 80000 at a level well above the longest known element for
Ryūtō to reduce the negative influence of aberrant long splices spanning whole
chromosomes on running times.

c) DTE : Tools were run at standard parameters except Scallop preceding TACO
at --min_transcript_coverage 4. Multi-Ryūtō was run with guiding option -g and
-p 10. Single-Ryūtō was run with and without guiding. All others were guide-joined.
Transcripts were quantified with Salmon salmon, Kallisto kallisto or by Ryūtō
itself. Each scenario was run at 3,4, and 5 replicates per condition and for references
containing 40%, 60%, and 80% of true transcripts. DTE was performed by DESeq2
deseq2 at p = 0.1, p = 0.05, and p = 0.01.

B.3 Notes

B.3.1 Supplementary Note 1: Proof that properties (i) and (ii)
hold for splice graphs.

By design, a splice graph consists of (partial) exons as nodes, with edges representing
either splices or neighboring partial exons. Each node is therefore assigned a unique
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genomic interval, and splices or connections between neighboring partial exons map
to unique edges accordingly. Each splice of each bin is recorded. Each exon maps
to exactly one node and vice versa.

Let us assume that two paths exist that differ in at least one edge but represent
the same transcript, thus violating (i). Then, two different edges would indicate the
same genomic feature, therefore contradicting the definition of the splice graph.

Similarly, let us assume that a bin maps to two paths that differ in at least on
edge in the graph. Again, this would require for two edges to indicate the same
genomic feature and contradict definitions. Assume a bin does not match any
path, at least one splice of the bin was not recorded in the graph, contradicting its
definition. As all exons are represented as nodes and edges can only contain single
splices, bin starts and ends necessarily match nodes.

This completes the proof.

B.3.2 Supplementary Note 2: Discussion of graph creation
according to (i)-(iv).

The design of bin graphs is a non-trivial tasks due to a multitude of restrictions
and objectives. We consider three major design criteria: (a) Stability of the design
given incomplete data. (b) Preservation of evidence from multi-splice bins. (c) Fast
implementation. Objectives (a) and (b) in general contradict each other. In order
to test this trade off, we modified our implementation to maximize (b) as follows:
We now allow l(v) = l(w) even if v ≠ w, thus representing exons as multiple nodes
as needed. Additionally, we drop the constraint that l(v1) = x1, and l(vk) = xj

from (ii). We can use a modified version of the original algorithm for this purpose,
and leave details as an exercise for the reader. The thus enforced integrity of
multi-splice bins has a positive impact in some instances (Suppl. Fig. 43), but
shows bad properties on incomplete bin sets (Suppl. Fig. 44). Overall, on realistic
data, the quality of description decreases.
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Figure 43: Information loss of the original definition (right) compared to the alternative definition (left). We have
exon bins of unrealistic theoretical quality: AXWZ, XWZB, XWZC, DXVZ, EXVZ, and XVZF. The bins form two
cluster in the overlap graph that stay intact in the alternative definition. As we normally require bins to end at nodes
and nodes are unique per exon, both clusters are contracted into one graph component. We argue that this case is
rare.

Figure 44: Information gain of the original definition (right) compared to the alternative definition (left). Exon X
is smaller than the readsize. However, only bins AC, BC, CXD, and XE are present, with the expected bin CXE
missing. Condition (iv) forces bin XE to stay disconnected for the alternative condition. In the original formulation,
(ii) forces the presence of a node for X, and XE is joined as nodes are unique. This is a common problem, especially
in low abundant regions.

In order to show the correctness and maximality according to (iii) and (iv) of
our original algorithm, we argue by listing elemental operations on the overlap
graph, corresponding to the resulting bin graph structures they induce. We can
then depict the algorithm as a series of elemental operations, each contracting a
group of nodes in the overlap graph into a single node until only a single node
per component remains. Given the operations, a simple proof by induction can be
formulated: As the bin graph is acyclic, the inverse of the listed operations can
be used to build up any overlap graph. Local maximality is also true on a global
perspective, as the restricting factors remain the same. In order to minimize visual
elements, we here do not label edges with the nodes of a bin as before, but rather
use placeholder variables that represent ≥ 1 splices each. Different naming strictly
indicates incompatible splices, while same names represent the same splice signal.
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ID Bins Overlap-
Configuration Overlap Operation Graph Operation

2.1

a, b
ax, bx
xa, xb

a1xa2, b1xb2

a

b

a

b

a

b

2.2 ax, xb ax xb axb

2.3
a1xa2, x
ax, x
xa, x

a

x

a

3.1a ax, bx, xc

ax

xc

bx

ax/bx xc
a

b
x c

3.1b axy, bx, xyc

axy

xyc

bx

acy/bx xyc
a

b
x y c

3.2a xa, xb, cx cx

xa

xb

cx xa/xb
c x

a

b

3.2b yxa, xb, cyx cyx

yxa

xb

cyx zxa/xb
c y x

a

b

3.3 a1xa2, b1xb2, x x

a

b

a/b

a1

b1
x

a2

b2

3.4a ax, xb, x

ax xb

x

ax xb

x

3.4b
x,xy, xyb
x, xy, bxy

x, xy, b1xyb2

x xyb

xy

x xyb

xy

3.5 axy, xyz, yzb

axy xyz

yzb

axy xyz

yzb

2.1 Bins have no overlap or containment relation. Whole inclusion of bins in
edges does not contradict (i) or (ii), as bins are distinct. We therefore use the
identity function of each component in the bin graph if it exists, or otherwise a
single edge. Cases with more bins follow analogously. 2.2 We treat unique overlaps
as a single bin. Therefore, inclusion of a middle node according to (ii) is not
required and maximality forces no changes. 2.3 We disregard bins that are unique
subsets of another bin. Therefore, no inclusion of middle nodes according to (ii)
are required and maximality forces no changes. 3.1a/b As a prefix overlaps to at
least two nodes, unique mapping of bins (ii) is violated unless paths are joint at
the largest overlapping suffix for each incoming node. According to (ii) every bin
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bin needs to end at a node, inducing nodes at every prefix corresponding to a suffix
of an incoming node. 3.2a/b As a suffix overlaps to at least two nodes, unique
mapping of bins (ii) is violated unless paths are joint at the largest overlapping
prefix for each outgoing node. According to (ii) every bin bin needs to start at a
node, inducing nodes at every suffix corresponding to a prefix of an outgoing node.
3.3 As a bin is contained in two edges, it can not be uniquely mapped, violating
(ii). Therefore, both need to be joined. 3.4a A bin contained in the overlapping
region of two nodes actually belongs to a single path. 3.4b A bin contained in
an also contained bin does not induce any violations to (i) or (ii). 3.5 Transitive
overlaps can be ignored, as pairwise treatment induces the same data.

Please note that instances of 3.4a, 3.4b, 3.5 need to be resolved before the rest
of all operations, with the exception of 2.2, which can only be used last per locus,
as all more specific operators need to go first. Of course, induced bin graphs need
to be preserved and updated for each step. Nodes cannot be lost and edges only
get split, as they were mandated for by (i) or (ii).

Operations 3.4a, 3.4b, 3.5 correlate to the removal of transitive edges in our
algorithm. 2.2 is applied to nodes with in-degree 1 or out-degree 1. 3.1 and 3.2
correspond to part (a) of the algorithm, 3.3 to (b).
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We give an example decomposition as follows:

Operation Overlap Graph Bin Graph
axy

bx

xf fz

xyz

yzc

zd

3.5

axy

bx

xf fz

xyz

yzc

zd

2.2

axy

bx

xfz

xyz

yzc

zd

3.1b
axy/bx

xfz

xyz

yzc

zd

a

b
x y z

3.1a axy/bx xyz/xfz

yzc

zd

a

b
x y z

fz

2.2
axy/bx/
xyz/xfz

yzc

zd

a

b
x y z

fz

3.2b
axy/bx/
xyz/xfz

yzc/zd

a

b
x

f

y z
c

d

2.2
axy/bx/
xyz/xfz
yzc/zd

a

b
x

f

y z
c

d
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Algorithm 1 Generate the overlap graph from bins.
Require: list of bins B, empty graph G′

sort B according to genomic position of each exon
active bins A ∶= {}
contained c ∶= false
for b ∈ B do
for a ∈ A do
if genomic position of a left of leftmost exon in b then
A ∶= A ∖ {a}

else
if b subset of a then
add contained edge ba in G′

c ∶= true
if c = false then
for a ∈ A do
if suffix of b is prefix of a then
add overlap edge ab in G′

A ∶= A ∪ {b}
reduce transitive edges on G′ in post-processing
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Algorithm 2 Generate the bin graph from the overlap graph. We omit details of
range handling.
Require: overlap graph G′, Bn overlapping nodes, Bc contained nodes
for b ∈ Bn in genomic order, ∣b∣ = k do {(a)}
if b has ≥ 2 incoming overlap edges then
c incoming overlap edge, range of overlapping bin i − j
find edge e of c including i
split e at i
if bj not a node then
create it

add edge bjbk with label bj . . . bk to G
for next c do
for edges eb of b do
if c has a node in range of eb at position i then
split eb at i

else if eb induces a node not in any edge ec of c at position i then
split ec at i

else
if b0 not a node then
create it

if bk not a node then
create it

add edge b0bk with label b to G
for b ∈ Bc in genomic order, ∣b∣ = k, range of b bin i − j do {(b)}
c outgoing contain edge,
find edge ei of c including i
split ei at i
find edge ej of c including j
split ej at j
for next c do
for edges eb of b do
if c has a node in range of eb at position i then
split eb at i

else if eb induces a node not in any edge ec of c at position i then
split ec at i
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Algorithm 3 Split an edge in the bin graph for Alg. 2
Require: Graph G, Map m of edge labels in G, split position i, edge e = uv to
split with bin b, ∣b∣ = j
if bi = u or i = v then
return

if bi not a node then
create it

if b0 . . . bi not in m then
add edge b0bi with label b0 . . . bi to G
add b0 . . . bi to m

if bi . . . bj not in m then
add edge bibj with label bi . . . bj to G
add bi . . . bj to m

split range at i and assign edges
remove e from m
remove e from G
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APPENDIX C
Additional Tables and

Graphics for Ryūtō

C.1 LazyB Core
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(a) T1 True Predictions (b) EP True Predictions (c) ER True Predictions

(d) SRR307911 True Predictions (e) SRR30791_1_2 True Predictions (f) SRR387661 True Predictions

(g) SRR307903 True Predictions (h) SRR534319 True Predictions (i) SRR545695 True Predictions

(j) SRR534307 True Predictions (k) SRR545723 True Predictions (l) SRR203276 True Predictions

(m) ERR1138641 True Predictions

Figure 45: Venn diagram of reported true multi-exon transcripts of Scallop and Ryūtō.
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(a) T1 False Predictions (b) EP False Predictions (c) ER False Predictions

(d) SRR307911 False Predictions (e) SRR30791_1_2 False Predictions (f) SRR387661 False Predictions

(g) SRR307903 False Predictions (h) SRR534319 False Predictions (i) SRR545695 False Predictions

(j) SRR534307 False Predictions (k) SRR545723 False Predictions (l) SRR203276 False Predictions

(m) ERR1138641 False Predictions

Figure 46: Venn diagram of reported false multi-exon transcripts of Scallop and Ryūtō.
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(a) T1 True Predictions (b) EP True Predictions (c) ER True Predictions

(d) SRR307911 True Predictions (e) SRR30791_1_2 True Predictions (f) SRR387661 True Predictions

(g) SRR307903 True Predictions (h) SRR534319 True Predictions (i) SRR545695 True Predictions

(j) SRR534307 True Predictions (k) SRR545723 True Predictions (l) SRR203276 True Predictions

(m) ERR1138641 True Predictions

Figure 47: Venn diagram of reported true transcripts, including single exon transcripts, of Scallop and Ryūtō.
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(a) T1 False Predictions (b) EP False Predictions (c) ER False Predictions

(d) SRR307911 False Predictions (e) SRR30791_1_2 False Predictions (f) SRR387661 False Predictions

(g) SRR307903 False Predictions (h) SRR534319 False Predictions (i) SRR545695 False Predictions

(j) SRR534307 False Predictions (k) SRR545723 False Predictions (l) SRR203276 False Predictions

(m) ERR1138641 False Predictions

Figure 48: Venn diagram of reported false transcripts, including single exon transcripts, of Scallop and Ryūtō.
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(a) T1 True Predictions (b) EP True Predictions (c) ER True Predictions

(d) SRR307911 True Predictions (e) SRR30791_1_2 True Predictions (f) SRR387661 True Predictions

(g) SRR307903 True Predictions (h) SRR534319 True Predictions (i) SRR545695 True Predictions

(j) SRR534307 True Predictions (k) SRR545723 True Predictions (l) SRR203276 True Predictions

(m) ERR1138641 True Predictions

Figure 49: Venn diagram of reported true multi-exon transcripts of all tools.
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(a) T1 False Predictions (b) EP False Predictions (c) ER False Predictions

(d) SRR307911 False Predictions (e) SRR30791_1_2 False Predictions (f) SRR387661 False Predictions

(g) SRR307903 False Predictions (h) SRR534319 False Predictions (i) SRR545695 False Predictions

(j) SRR534307 False Predictions (k) SRR545723 False Predictions (l) SRR203276 False Predictions

(m) ERR1138641 False Predictions

Figure 50: Venn diagram of reported false multi-exon transcripts of all tools.
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(a) T1 True Predictions (b) EP True Predictions (c) ER True Predictions

(d) SRR307911 True Predictions (e) SRR30791_1_2 True Predictions (f) SRR387661 True Predictions

(g) SRR307903 True Predictions (h) SRR534319 True Predictions (i) SRR545695 True Predictions

(j) SRR534307 True Predictions (k) SRR545723 True Predictions (l) SRR203276 True Predictions

(m) ERR1138641 True Predictions

Figure 51: Venn diagram of reported true transcripts, including single exon transcripts, of all tools.
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(a) T1 False Predictions (b) EP False Predictions (c) ER False Predictions

(d) SRR307911 False Predictions (e) SRR30791_1_2 False Predictions (f) SRR387661 False Predictions

(g) SRR307903 False Predictions (h) SRR534319 False Predictions (i) SRR545695 False Predictions

(j) SRR534307 False Predictions (k) SRR545723 False Predictions (l) SRR203276 False Predictions

(m) ERR1138641 False Predictions

Figure 52: Venn diagram of reported false transcripts, including single exon transcripts, of all tools.
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C.2 LazyB Multi

C.2.1 Tables
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overlap

P
siC

LA
SS

Ryūtō
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+

TA
C
O

Ryūtō
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overlap
Scallop

+
TA

C
O

Ryūtō
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ūt
ō
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Ryūtō
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Ryūtō
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overlap

Scallop
+

TA
C
O

3prim
e_

overlapping_
ncRN

A
0
(0.00%

)
0
(0.00%

)
1
(0.02%

)
0
(0.00%

)
0
(0.00%

)
1
(0.03%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
IG
_
C_

gene
0
(0.00%

)
1
(0.01%

)
1
(0.02%

)
0
(0.00%

)
0
(0.00%

)
1
(0.03%

)
0
(0.00%

)
0
(0.00%

)
1
(0.03%

)
IG
_
V
_
gene

2
(0.08%

)
67

(0.65%
)

53
(1.01%

)
26

(1.13%
)

94
(1.04%

)
30

(0.80%
)

0
(0.00%

)
1
(0.01%

)
0
(0.00%

)
IG
_
V
_
pseudogene

0
(0.00%

)
0
(0.00%

)
2
(0.04%

)
1
(0.04%

)
4
(0.04%

)
4
(0.11%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
T
R_

C_
gene

0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
1
(0.03%

)
0
(0.00%

)
0
(0.00%

)
1
(0.03%

)
T
R_

V
_
gene

1
(0.04%

)
5
(0.05%

)
17

(0.32%
)

0
(0.00%

)
0
(0.00%

)
3
(0.08%

)
0
(0.00%

)
2
(0.03%

)
0
(0.00%

)
T
R_

V
_
pseudogene

0
(0.00%

)
0
(0.00%

)
1
(0.02%

)
0
(0.00%

)
0
(0.00%

)
1
(0.03%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
antisense

35
(1.41%

)
145

(1.41%
)

206
(3.93%

)
15

(0.65%
)

101
(1.12%

)
154

(4.12%
)

7
(0.56%

)
32

(0.46%
)

72
(2.18%

)
bidirectional_

prom
oter_

lncRN
A

0
(0.00%

)
6
(0.06%

)
5
(0.10%

)
1
(0.04%

)
1
(0.01%

)
6
(0.16%

)
0
(0.00%

)
2
(0.03%

)
0
(0.00%

)
lincRN

A
24

(0.96%
)

111
(1.08%

)
175

(3.34%
)

13
(0.57%

)
74

(0.82%
)

117
(3.13%

)
4
(0.32%

)
31

(0.44%
)

53
(1.61%

)
polym

orphic_
pseudogene

0
(0.00%

)
1
(0.01%

)
0
(0.00%

)
1
(0.04%

)
0
(0.00%

)
1
(0.03%

)
0
(0.00%

)
1
(0.01%

)
0
(0.00%

)
processed_

pseudogene
1
(0.04%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
processed_

transcript
17

(0.68%
)

49
(0.48%

)
66

(1.26%
)

11
(0.48%

)
38

(0.42%
)

50
(1.34%

)
3
(0.24%

)
22

(0.32%
)

38
(1.15%

)
protein_

coding
2390

(96.06%
)

9846
(95.68%

)
4587

(87.50%
)

2213
(96.47%

)
8644

(95.95%
)

3276
(87.73%

)
1238

(98.49%
)

6866
(98.42%

)
3098

(93.82%
)

sense_
intronic

0
(0.00%

)
0
(0.00%

)
3
(0.06%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
1
(0.08%

)
0
(0.00%

)
2
(0.06%

)
sense_

overlapping
0
(0.00%

)
3
(0.03%

)
7
(0.13%

)
0
(0.00%

)
2
(0.02%

)
5
(0.13%

)
0
(0.00%

)
1
(0.01%

)
1
(0.03%

)
transcribed_

processed_
pseudogene

2
(0.08%

)
11

(0.11%
)

13
(0.25%

)
2
(0.09%

)
9
(0.10%

)
9
(0.24%

)
0
(0.00%

)
3
(0.04%

)
3
(0.09%

)
transcribed_

unitary_
pseudogene

3
(0.12%

)
8
(0.08%

)
17

(0.32%
)

2
(0.09%

)
6
(0.07%

)
11

(0.29%
)

1
(0.08%

)
3
(0.04%

)
4
(0.12%

)
transcribed_

unprocessed_
pseudogene

10
(0.40%

)
35

(0.34%
)

77
(1.47%

)
7
(0.31%

)
29

(0.32%
)

57
(1.53%

)
3
(0.24%

)
10

(0.14%
)

27
(0.82%

)
unprocessed_

pseudogene
3
(0.12%

)
3
(0.03%

)
11

(0.21%
)

2
(0.09%

)
7
(0.08%

)
7
(0.19%

)
0
(0.00%

)
2
(0.03%

)
2
(0.06%

)



Appendix C. Additional Tables and Graphics for Ryūtō 155

Table 14: Running times and memory use on increasing numbers of inputs on the dataset A. thaliana. Times are
presented as total time used by all CPUs. Adapted Single-Ryūtō is significantly slower than Multi-Ryūtō. Values for
TACO and StringTie-Merge only include resources spent by the respective tools themselves and exclude prior single
set assembly.

Tool Name Running time in [hh:mm:ss] Max. RAM [MB]
Multi-Ryūtō Set 1 0:25:32 3762

Multi-Ryūtō Sets 1-2 0:53:49 7604
Multi-Ryūtō Sets 1-3 1:30:53 13370
Multi-Ryūtō Sets 1-4 2:01:28 18503
Multi-Ryūtō Sets 1-5 2:54:53 25187
Multi-Ryūtō Sets 1-6 3:41:29 31379
Multi-Ryūtō Sets 1-7 5:03:46 42211
Multi-Ryūtō Sets 1-8 6:27:06 57788
Multi-Ryūtō Sets 1-9 7:35:20 61738

Multi-Ryūtō Sets 1-10 8:47:17 71106
Single-Ryūtō Adapted Set 1 0:23:51 3820

Single-Ryūtō Adapted Sets 1-2 0:57:17 6959
Single-Ryūtō Adapted Sets 1-3 1:38:54 11214
Single-Ryūtō Adapted Sets 1-4 2:19:00 15309
Single-Ryūtō Adapted Sets 1-5 3:14:56 20589
Single-Ryūtō Adapted Sets 1-6 4:39:59 25175
Single-Ryūtō Adapted Sets 1-7 7:14:42 34841
Single-Ryūtō Adapted Sets 1-8 9:31:34 41705
Single-Ryūtō Adapted Sets 1-9 11:24:13 45819
Single-Ryūtō Adapted Sets 1-10 12:40:18 49463

Single-Ryūtō + StringTie-Merge Set 1 0:00:02 36
Single-Ryūtō + StringTie-Merge Sets 1-2 0:00:04 42
Single-Ryūtō + StringTie-Merge Sets 1-3 0:00:06 42
Single-Ryūtō + StringTie-Merge Sets 1-4 0:00:08 42
Single-Ryūtō + StringTie-Merge Sets 1-5 0:00:09 42
Single-Ryūtō + StringTie-Merge Sets 1-6 0:00:11 42
Single-Ryūtō + StringTie-Merge Sets 1-7 0:00:12 42
Single-Ryūtō + StringTie-Merge Sets 1-8 0:00:14 43
Single-Ryūtō + StringTie-Merge Sets 1-9 0:00:15 43

Single-Ryūtō + StringTie-Merge Sets 1-10 0:00:17 43
Single-Ryūtō + TACO Set 1 0:01:31 59

Single-Ryūtō + TACO Sets 1-2 0:02:05 65
Single-Ryūtō + TACO Sets 1-3 0:02:37 66
Single-Ryūtō + TACO Sets 1-4 0:02:56 67
Single-Ryūtō + TACO Sets 1-5 0:03:17 66
Single-Ryūtō + TACO Sets 1-6 0:03:32 67
Single-Ryūtō + TACO Sets 1-7 0:03:59 66
Single-Ryūtō + TACO Sets 1-8 0:04:28 67
Single-Ryūtō + TACO Sets 1-9 0:04:54 67

Single-Ryūtō + TACO Sets 1-10 0:05:13 67
Scallop + TACO Set 1 0:01:34 59

Scallop + TACO Sets 1-2 0:02:07 65
Scallop + TACO Sets 1-3 0:02:42 66
Scallop + TACO Sets 1-4 0:03:08 66
Scallop + TACO Sets 1-5 0:03:27 66
Scallop + TACO Sets 1-6 0:03:30 66
Scallop + TACO Sets 1-7 0:03:57 66
Scallop + TACO Sets 1-8 0:04:15 67
Scallop + TACO Sets 1-9 0:04:31 66

Scallop + TACO Sets 1-10 0:04:47 67
PsiCLASS Set 1 0:15:14 1234

PsiCLASS Sets 1-2 0:17:16 1354
PsiCLASS Sets 1-3 0:22:40 1032
PsiCLASS Sets 1-4 0:28:37 1351
PsiCLASS Sets 1-5 0:36:19 1169
PsiCLASS Sets 1-6 0:41:09 1303
PsiCLASS Sets 1-7 0:52:31 1195
PsiCLASS Sets 1-8 1:02:26 1493
PsiCLASS Sets 1-9 1:07:49 1573
PsiCLASS Sets 1-10 1:14:55 1349
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Table 15: Running times and memory use on single inputs on the dataset A. thaliana. Times are presented as total
time used by all CPUs.

Tool Name Running time in [hh:mm:ss] Max. RAM [MB]
Single-Ryūtō Set 1 0:25:12 3070
Single-Ryūtō Set 2 0:27:12 2960
Single-Ryūtō Set 3 0:25:28 3221
Single-Ryūtō Set 4 0:20:38 2702
Single-Ryūtō Set 5 0:25:37 3868
Single-Ryūtō Set 6 0:22:27 3325
Single-Ryūtō Set 7 0:31:52 5057
Single-Ryūtō Set 8 0:21:37 2724
Single-Ryūtō Set 9 0:22:01 2806

Single-Ryūtō Set 10 0:20:53 2643
Scallop Set 1 0:19:34 7079
Scallop Set 2 0:19:41 5683
Scallop Set 3 0:17:17 6321
Scallop Set 4 0:13:25 3885
Scallop Set 5 0:16:45 5693
Scallop Set 6 0:14:13 4216
Scallop Set 7 0:23:00 8567
Scallop Set 8 0:14:19 4594
Scallop Set 9 0:15:42 5588

Scallop Set 10 0:14:22 4272
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Table 16: Running times and memory use on increasing numbers of inputs on the dataset Geuvadis. Times are
presented as total time used by all CPUs. Adapted Single-Ryūtō is significantly slower than Multi-Ryūtō . Values for
TACO and StringTie-Merge only include resources spent by the respective tools themselves and exclude prior single
set assembly.

Tool Name Running time in [hh:mm:ss] Max. RAM [MB]
Multi-Ryūtō Set 1 1:00:38 1347

Multi-Ryūtō Sets 1-2 1:56:38 3354
Multi-Ryūtō Sets 1-3 4:00:37 4269
Multi-Ryūtō Sets 1-4 4:48:21 5464
Multi-Ryūtō Sets 1-5 7:42:14 8099
Multi-Ryūtō Sets 1-6 9:10:19 9498
Multi-Ryūtō Sets 1-7 9:17:31 10906
Multi-Ryūtō Sets 1-8 12:04:46 11858
Multi-Ryūtō Sets 1-9 15:18:58 14000

Multi-Ryūtō Sets 1-10 17:30:50 17013
Single-Ryūtō Adapted Set 1 0:59:26 1347

Single-Ryūtō Adapted Sets 1-2 2:54:08 4024
Single-Ryūtō Adapted Sets 1-3 5:35:34 5245
Single-Ryūtō Adapted Sets 1-4 6:39:45 5312
Single-Ryūtō Adapted Sets 1-5 13:23:36 7917
Single-Ryūtō Adapted Sets 1-6 15:50:22 9109
Single-Ryūtō Adapted Sets 1-7 16:19:28 10634
Single-Ryūtō Adapted Sets 1-8 1 day, 3:59:08 11543
Single-Ryūtō Adapted Sets 1-9 1 day, 7:07:53 13594
Single-Ryūtō Adapted Sets 1-10 1 day, 11:00:49 16576

Single-Ryūtō + StringTie-Merge Set 1 0:00:03 41
Single-Ryūtō + StringTie-Merge Sets 1-2 0:00:05 41
Single-Ryūtō + StringTie-Merge Sets 1-3 0:00:06 41
Single-Ryūtō + StringTie-Merge Sets 1-4 0:00:08 41
Single-Ryūtō + StringTie-Merge Sets 1-5 0:00:09 41
Single-Ryūtō + StringTie-Merge Sets 1-6 0:00:11 41
Single-Ryūtō + StringTie-Merge Sets 1-7 0:00:12 41
Single-Ryūtō + StringTie-Merge Sets 1-8 0:00:14 41
Single-Ryūtō + StringTie-Merge Sets 1-9 0:00:15 41

Single-Ryūtō + StringTie-Merge Sets 1-10 0:00:18 43
Single-Ryūtō + TACO Set 1 0:02:11 67

Single-Ryūtō + TACO Sets 1-2 0:02:27 67
Single-Ryūtō + TACO Sets 1-3 0:03:03 67
Single-Ryūtō + TACO Sets 1-4 0:03:23 67
Single-Ryūtō + TACO Sets 1-5 0:03:51 67
Single-Ryūtō + TACO Sets 1-6 0:04:15 67
Single-Ryūtō + TACO Sets 1-7 0:04:27 67
Single-Ryūtō + TACO Sets 1-8 0:04:48 67
Single-Ryūtō + TACO Sets 1-9 0:05:09 67

Single-Ryūtō + TACO Sets 1-10 0:05:33 67
Scallop + TACO Set 1 0:02:02 66

Scallop + TACO Sets 1-2 0:02:26 66
Scallop + TACO Sets 1-3 0:02:53 67
Scallop + TACO Sets 1-4 0:03:26 66
Scallop + TACO Sets 1-5 0:03:45 67
Scallop + TACO Sets 1-6 0:03:40 67
Scallop + TACO Sets 1-7 0:04:21 67
Scallop + TACO Sets 1-8 0:04:47 67
Scallop + TACO Sets 1-9 0:05:00 66

Scallop + TACO Sets 1-10 0:05:19 67
PsiCLASS Set 1 0:14:09 789

PsiCLASS Sets 1-2 0:26:39 481
PsiCLASS Sets 1-3 0:38:54 501
PsiCLASS Sets 1-4 0:48:42 502
PsiCLASS Sets 1-5 1:11:18 764
PsiCLASS Sets 1-6 1:20:01 764
PsiCLASS Sets 1-7 1:26:19 764
PsiCLASS Sets 1-8 1:34:23 764
PsiCLASS Sets 1-9 1:54:23 764
PsiCLASS Sets 1-10 1:57:47 764
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Table 17: Running times and memory use on single inputs on the dataset Geuvadis. Times are presented as total
time used by all CPUs.

Tool Name Running time in [hh:mm:ss] Max. RAM [MB]
Single-Ryūtō Set 1 0:58:01 1393
Single-Ryūtō Set 2 1:18:51 5187
Single-Ryūtō Set 3 1:43:00 1745
Single-Ryūtō Set 4 0:36:20 1276
Single-Ryūtō Set 5 3:17:39 2981
Single-Ryūtō Set 6 0:53:32 2733
Single-Ryūtō Set 7 0:52:21 1673
Single-Ryūtō Set 8 1:14:00 1066
Single-Ryūtō Set 9 1:11:23 2253

Single-Ryūtō Set 10 1:11:22 3159
Scallop Set 1 0:11:47 3235
Scallop Set 2 0:14:07 6787
Scallop Set 3 0:16:08 3734
Scallop Set 4 0:08:56 3267
Scallop Set 5 0:29:53 6729
Scallop Set 6 0:13:05 3320
Scallop Set 7 0:11:49 4374
Scallop Set 8 0:11:00 2464
Scallop Set 9 0:18:18 5696

Scallop Set 10 0:18:21 8942
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C.2.2 Figures
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Figure 54: Assessment of performance under varying parameters in scenario b). Recall and Precision were assessed
at the level of full transcripts. Tests include 1 simulated dataset (Geuvadis), varied as stranded (S) and unstranded
(US) at 10 samples. Transcripts are classified according to the combined coverage c over all inputs into 4 categories,
c ≤ 10×, 10× < c ≤ 50×, 50× < c ≤ 100×, and c > 50×.
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Figure 55: Assessment of performance for Scenario a) with increasing numbers of inputs. Recall and Precision were
assessed at the level of full transcripts. Tests include 6 datasets at 10 samples each: Geuvadis) human lymphoblastoid
cells, unstranded; SEQC-A) Universal Human Reference RNA, unstranded; Leukemia) human acute myeloid leukemia
RNA, stranded; Mice Healthy) healthy mice hippocampus, unstranded; Mice Mixed) 5 healthy and 5 epileptic
mice hippocampus, unstranded; A. thaliana) cold response time series, unstranded. Tools are not quantitatively
intercomparable as filter settings cannot be adequately matched. Individual trends are informative.
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Figure 56: Assessment of performance for Scenario a) with increasing numbers of inputs. Recall and Precision
were assessed at the level of full transcripts, but excluding single exon transcripts. Tests include 6 datasets at 10
samples each: Geuvadis) human lymphoblastoid cells, unstranded; SEQC-A) Universal Human Reference RNA,
unstranded; Leukemia) human acute myeloid leukemia RNA, stranded; Mice Healthy) healthy mice hippocampus,
unstranded; Mice Mixed) 5 healthy and 5 epileptic mice hippocampus, unstranded; A. thaliana) cold response time
series, unstranded. Tools are not quantitatively intercomparable as filter settings cannot be adequately matched.
Individual trends are informative.
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Figure 57: Assessment of performance for Scenario a) with increasing numbers of inputs. Recall and Precision
were assessed at the level of full transcripts. Tests include 2 simulated datasets, each varied as stranded (S) and
unstranded (US) at 10 samples: Geuvadis) human lymphoblastoid cells; SEQC-A) Universal Human Reference RNA.
Tools are not quantitatively intercomparable as filter settings cannot be adequately matched. Individual trends are
informative.
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Figure 58: Assessment of performance for Scenario a) with increasing numbers of inputs. Recall and Precision were
assessed at the level of full transcripts, but excluding single exon transcripts. Tests include 2 simulated datasets,
each varied as stranded (S) and unstranded (US) at 10 samples: Geuvadis) human lymphoblastoid cells; SEQC-A)
Universal Human Reference RNA. Tools are not quantitatively intercomparable as filter settings cannot be adequately
matched. Individual trends are informative.
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Figure 59: Assessment of performance under varying parameters in scenario b). Recall and Precision were assessed
at the level of full transcripts. Tests include 6 datasets at 10 samples each: Geuvadis) human lymphoblastoid cells,
unstranded; SEQC-A) Universal Human Reference RNA, unstranded; Leukemia) human acute myeloid leukemia
RNA, stranded; Mice Healthy) healthy mice hippocampus, unstranded; Mice Mixed) 5 healthy and 5 epileptic mice
hippocampus, unstranded; A. thaliana) cold response time series, unstranded. Parameters where chosen and varied
to maximize the spectrum of results for all tools and combinations. Parameters were varied as described in methods
and Suppl. B.2.3. No suitable parameters could be found for PsiCLASS. Filtering in addition to TACOs isoform
fraction variation is indicated by C followed by coverage set to the parameter, i.e. --filter-min-expr for TACO and -c
for Ryūtō.
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Figure 60: Assessment of performance under varying parameters in scenario b). Recall and Precision were assessed
at the level of full transcripts, but excluding single exon transcripts. Tests include 6 datasets at 10 samples
each: Geuvadis) human lymphoblastoid cells, unstranded; SEQC-A) Universal Human Reference RNA, unstranded;
Leukemia) human acute myeloid leukemia RNA, stranded; Mice Healthy) healthy mice hippocampus, unstranded;
Mice Mixed) 5 healthy and 5 epileptic mice hippocampus, unstranded; A. thaliana) cold response time series,
unstranded. Parameters where chosen and varied to maximize the spectrum of results for all tools and combinations.
Parameters were varied as described in methods and Suppl. B.2.3. No suitable parameters could be found for
PsiCLASS. Filtering in addition to TACOs isoform fraction variation is indicated by C followed by coverage set to the
parameter, i.e. --filter-min-expr for TACO and -c for Ryūtō.
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Figure 61: Assessment of performance under varying parameters in scenario b). Recall and Precision were assessed
at the level of full transcripts. Tests include 2 simulated datasets, each varied as stranded (S) and unstranded (S) at
10 samples: Geuvadis) human lymphoblastoid cells; SEQC-A) Universal Human Reference RNA. Parameters where
chosen and varied to maximize the spectrum of results for all tools and combinations. Parameters were varied as
described in methods and Suppl. B.2.3. No suitable parameters could be found for PsiCLASS. Filtering in addition
to TACOs isoform fraction variation is indicated by C followed by coverage set to the parameter, i.e. --filter-min-expr
for TACO and -c for Ryūtō.

Figure 62: Assessment of performance under varying parameters in scenario b). Recall and Precision were assessed
at the level of full transcripts, but excluding single exon transcripts. Tests include 2 simulated datasets, each varied
as stranded (S) and unstranded (S) at 10 samples: Geuvadis) human lymphoblastoid cells; SEQC-A) Universal
Human Reference RNA. Parameters where chosen and varied to maximize the spectrum of results for all tools and
combinations. Parameters were varied as described in methods and Suppl. B.2.3. No suitable parameters could be
found for PsiCLASS. Filtering in addition to TACOs isoform fraction variation is indicated by C followed by coverage
set to the parameter, i.e. --filter-min-expr for TACO and -c for Ryūtō.
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Figure 63: Assessment of performance for differential transcript expression detection in scenario c). Tests include 2
simulated, stranded datasets at 3,4, and 5 samples per condition: Geuvadis) human lymphoblastoid cells; SEQC-
A) Universal Human Reference RNA. For each dataset artificial incomplete references at 40%, 60%, and 80%
completeness were used for assembly and quantification. Bottom: Precision and recall at the level of full transcripts
prior to DTE analysis. Top: Precision and recall of predicted fold changes. F1 measure is given for each subcondition.
References are merged with the assembly (filled marker), or only given to the assembler as a parameter (empty
marker). Results for p-values p = 0.01, p = 0.05, and p = 0.1 are shown.
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(a) Geuvadis (b) SEQC-A (c) Leukemia

Figure 64: Venn diagram of true assembled transcripts at 10 inputs for each tool and standard settings on human
datasets Geuvadis, SEQ-C, and Leukemia. Recall was not matched. Methods show unique assemblies proportional to
their recall, with PsiCLASS producing the most unique results.

(a) 40% (b) 60% (c) 80%

Figure 65: Number of correctly identified transcripts underlying fold changes for the Geuvadis datasets of human
lymphoblastoid cells at 5 inputs per condition. References at 40%, 60%, and 80% of true transcripts were merged to
assembly results. Tools all show similar differences to all others.
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(a) 40% (b) 60% (c) 80%

Figure 66: Number of correctly identified transcripts underlying fold changes for the SEQC-A datasets of Universal
Human Reference RNA at 5 inputs per condition. References at 40%, 60%, and 80% of true transcripts were merged
to assembly results. Tools all show similar differeness to all others.
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List of Abbreviations

A Adenine.
AS alternative splicing.
AUC area under curve.

bp basepairs.

C Cytosine.

DAG directed acyclic graph.
DE differential expression.
DNA Deoxyribonucleic acid.
DTE differential transcript expression.

FM-index Full-text index in Minute
space.

FPKM Fragments Per Kilobase Million.

G Guanine.
GJ guide-joining.

HTS high-throughput sequencing.

InDels insertions and deletions.
IQR interquartile range.

LP Linear Programmming.

NGS next-generation sequencing.

OLC overlap-layout-consensus.
ONT Oxford Nanopore Technologies.

PacBio Pacific Biosciences.
PCR polymerase chain reaction.

RNA Ribonucleic acid.
RPKM Reads Per Kilobase Million.
RT-qPCR real-time quantitative PCR.

SMRT Single-molecule real-time.
SRA Sequence Read Archive.

T Thymine.
TGS third-generation sequencing.
TPM Transcripts Per Kilobase Million.

U Uracil.
UTEC Unannotated Transcript Expres-

sion Cover.



174 List of Abbreviations



List of Referenced Programs 175

List of Referenced Programs

ABySS De Bruijn based de novo short read genome assembler..

ALLPATHS De Bruijn based de novo short read genome assembler..

BWA General aligner ideal for mapping short reads to a reference..

Canu OLC based de novo long read genome assembler..

Celera OLC based de novo short read genome assembler..

Cuffcompare Comparison of transcriptomes, e.g. a new assembly against a refer-
ence for benchmarks..

Cufflinks Reference based short read transcriptome assembler..

DBG2OLC OLC based de novo hybrid genome assembler..

DESeq2 Differential gene and transcript expression analysis..

Falcon OLC based de novo long read genome assembler..

FlipFlop Reference based short read transcriptome assembler. Allows multi-input
consensus assembly..

Flye OLC based de novo hybrid genome assembler..

Gffcompare Comparison of transcriptomes, e.g. a new assembly against a reference
for benchmarks..

Gtfcuff Transcriptome toolkit that e.g. allows to extract unique isoforms..

HASLR OLC based de novo hybrid genome assembler..

HISAT2 Split-read aligner specialized for the mapping of RNA to a reference..

hybridSPAdes De Bruijn based de novo hybrid genome assembler..
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ISP Reference based short read transcriptome assembler for the consensus assembly
of multiple inputs..

Kallisto Isoform level transcriptome quantification of RNA-seq..

LazyB De novo hybrid genome assembler. Developed as part of this thesis..

MaSuRCA OLC based de novo hybrid genome assembler..

Merqury Reference free k-mer based quality assessment of assemblies..

MIKADO Reference based short read transcriptome assembler for the consensus
assembly of multiple inputs..

minimap2 Alignment/Mapping of long and short reads..

MITIE Reference based short read transcriptome assembler for the consensus
assembly of multiple inputs..

MuCHSALSA Fast implementation of LazyB.

Newbler OLC based de novo short read genome assembler..

Polyester Simulate RNA-seq reads, e.g. for expression studies..

PsiCLASS Reference based short read transcriptome assembler for the consensus
assembly of multiple inputs..

QUAST Reference based and reference free quality assessment of genome assemblies..

Quickmerge Merge long-read based assemblies into a meta-assembly..

Racon Base-error correction of contigs based on reads aligned to them..

rnaSPAdes De novo short read transcriptome assembler..

Ryūtō Reference based transcriptome assembler. Developed as part of this thesis..

Salmon Isoform level transcriptome quantification of RNA-seq..

Scallop Reference based short read transcriptome assembler..

SGA OLC based de novo short read genome assembler..

Shasta De Bruijn based de novo long read genome assembler..

SOAPdenovo De Bruijn based de novo short read genome assembler..

SPADES De Bruijn based de novo short read genome assembler..
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STAR Split-read aligner specialized for the mapping of RNA to a reference..

Strawberry Reference based short read transcriptome assembler..

StringTie Reference based short read transcriptome assembler..

StringTie-Merge Reference based short read transcriptome assembler for the
consensus assembly of multiple inputs..

TACO Reference based short read transcriptome assembler for the consensus assem-
bly of multiple inputs..

TopHat2 Split-read aligner specialized for the mapping of RNA to a reference..

Trans-ABySS De novo short read transcriptome assembler..

Transcomb Reference based short read transcriptome assembler..

TransRate De novo quality assessment of genome and transcriptome assemblies.

Traph Reference based short read transcriptome assembler..

Unicycler De Bruijn based de novo hybrid genome assembler..

Velvet De Bruijn based de novo short read genome assembler..

WENGAN OLC based de novo hybrid genome assembler..

Wtdbg2 OLC based de novo long read genome assembler..
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