2,276 research outputs found

    A comparative analysis of algorithms for satellite operations scheduling

    Get PDF
    Scheduling is employed in everyday life, ranging from meetings to manufacturing and operations among other activities. One instance of scheduling in a complex real-life setting is space mission operations scheduling, i.e. instructing a satellite to perform fitting tasks during predefined time periods with a varied frequency to achieve its mission goals. Mission operations scheduling is pivotal to the success of any space mission, choreographing every task carefully, accounting for technological and environmental limitations and constraints along with mission goals.;It remains standard practice to this day, to generate operations schedules manually ,i.e. to collect requirements from individual stakeholders, collate them into a timeline, compare against feasibility and available satellite resources, and find potential conflicts. Conflict resolution is done by hand, checked by a simulator and uplinked to the satellite weekly. This process is time consuming, bears risks and can be considered sub-optimal.;A pertinent question arises: can we automate the process of satellite mission operations scheduling? And if we can, what method should be used to generate the schedules? In an attempt to address this question, a comparison of algorithms was deemed suitable in order to explore their suitability for this particular application.;The problem of mission operations scheduling was initially studied through literature and numerous interviews with experts. A framework was developed to approximate a generic Low Earth Orbit satellite, its environment and its mission requirements. Optimisation algorithms were chosen from different categories such as single-point stochastic without memory (Simulated Annealing, Random Search), multi-point stochastic with memory (Genetic Algorithm, Ant Colony System, Differential Evolution) and were run both with and without Local Search.;The aforementioned algorithmic set was initially tuned using a single 89-minute Low Earth Orbit of a scientific mission to Mars. It was then applied to scheduling operations during one high altitude Low Earth Orbit (2.4hrs) of an experimental mission.;It was then applied to a realistic test-case inspired by the European Space Agency PROBA-2 mission, comprising a 1 day schedule and subsequently a 7 day schedule - equal to a Short Term Plan as defined by the European Space Agency.;The schedule fitness - corresponding to the Hamming distance between mission requirements and generated schedule - are presented along with the execution time of each run. Algorithmic performance is discussed and put at the disposal of mission operations experts for consideration.Scheduling is employed in everyday life, ranging from meetings to manufacturing and operations among other activities. One instance of scheduling in a complex real-life setting is space mission operations scheduling, i.e. instructing a satellite to perform fitting tasks during predefined time periods with a varied frequency to achieve its mission goals. Mission operations scheduling is pivotal to the success of any space mission, choreographing every task carefully, accounting for technological and environmental limitations and constraints along with mission goals.;It remains standard practice to this day, to generate operations schedules manually ,i.e. to collect requirements from individual stakeholders, collate them into a timeline, compare against feasibility and available satellite resources, and find potential conflicts. Conflict resolution is done by hand, checked by a simulator and uplinked to the satellite weekly. This process is time consuming, bears risks and can be considered sub-optimal.;A pertinent question arises: can we automate the process of satellite mission operations scheduling? And if we can, what method should be used to generate the schedules? In an attempt to address this question, a comparison of algorithms was deemed suitable in order to explore their suitability for this particular application.;The problem of mission operations scheduling was initially studied through literature and numerous interviews with experts. A framework was developed to approximate a generic Low Earth Orbit satellite, its environment and its mission requirements. Optimisation algorithms were chosen from different categories such as single-point stochastic without memory (Simulated Annealing, Random Search), multi-point stochastic with memory (Genetic Algorithm, Ant Colony System, Differential Evolution) and were run both with and without Local Search.;The aforementioned algorithmic set was initially tuned using a single 89-minute Low Earth Orbit of a scientific mission to Mars. It was then applied to scheduling operations during one high altitude Low Earth Orbit (2.4hrs) of an experimental mission.;It was then applied to a realistic test-case inspired by the European Space Agency PROBA-2 mission, comprising a 1 day schedule and subsequently a 7 day schedule - equal to a Short Term Plan as defined by the European Space Agency.;The schedule fitness - corresponding to the Hamming distance between mission requirements and generated schedule - are presented along with the execution time of each run. Algorithmic performance is discussed and put at the disposal of mission operations experts for consideration

    Optimal state estimation and control of space systems under severe uncertainty

    Get PDF
    This thesis presents novel methods and algorithms for state estimation and optimal control under generalised models of uncertainty. Tracking, scheduling, conjunction assessment, as well as trajectory design and analysis, are typically carried out either considering the nominal scenario only or under assumptions and approximations of the underlying uncertainty to keep the computation tractable. However, neglecting uncertainty or not quantifying it properly may result in lengthy design iterations, mission failures, inaccurate estimation of the satellite state, and poorly assessed risk metrics. To overcome these challenges, this thesis proposes approaches to incorporate proper uncertainty treatment in state estimation, navigation and tracking, and trajectory design. First, epistemic uncertainty is introduced as a generalised model to describe partial probabilistic models, ignorance, scarce or conflicting information, and, overall, a larger umbrella of uncertainty structures. Then, new formulations for state estimation, optimal control, and scheduling under mixed aleatory and epistemic uncertainties are proposed to generalise and robustify their current deterministic or purely aleatory counterparts. Practical solution approaches are developed to numerically solve such problems efficiently. Specifically, a polynomial reinitialisation approach for efficient uncertainty propagation is developed to mitigate the stochastic dimensionality in multi-segment problems. For state estimation and navigation, two robust filtering approaches are presented: a generalisation of the particle filtering to epistemic uncertainty exploiting samples’ precomputations; a sequential filtering approach employing a combination of variational inference and importance sampling. For optimal control under uncertainty, direct shooting-like transcriptions with a tunable high-fidelity polynomial representation of the dynamical flow are developed. Uncertainty quantification, orbit determination, and navigation analysis are incorporated in the main optimisation loop to design trajectories that are simultaneously optimal and robust. The methods developed in this thesis are finally applied to a variety of novel test cases, ranging from LEO to deep-space missions, from trajectory design to space traffic management. The epistemic state estimation is employed in the robust estimation of debris’ conjunction analyses and incorporated in a robust Bayesian framework capable of autonomous decision-making. An optimisation-based scheduling method is presented to efficiently allocate resources to heterogeneous ground stations and fusing information coming from different sensors, and it is applied to the optimal tracking of a satellite in highly perturbed very-low Earth orbit, and a low-resource deep-space spacecraft. The optimal control methods are applied to the robust optimisation of an interplanetary low-thrust trajectory to Apophis, and to the robust redesign of a leg of the Europa Clipper tour with an initial infeasibility on the probability of impact with Jupiter’s moon.This thesis presents novel methods and algorithms for state estimation and optimal control under generalised models of uncertainty. Tracking, scheduling, conjunction assessment, as well as trajectory design and analysis, are typically carried out either considering the nominal scenario only or under assumptions and approximations of the underlying uncertainty to keep the computation tractable. However, neglecting uncertainty or not quantifying it properly may result in lengthy design iterations, mission failures, inaccurate estimation of the satellite state, and poorly assessed risk metrics. To overcome these challenges, this thesis proposes approaches to incorporate proper uncertainty treatment in state estimation, navigation and tracking, and trajectory design. First, epistemic uncertainty is introduced as a generalised model to describe partial probabilistic models, ignorance, scarce or conflicting information, and, overall, a larger umbrella of uncertainty structures. Then, new formulations for state estimation, optimal control, and scheduling under mixed aleatory and epistemic uncertainties are proposed to generalise and robustify their current deterministic or purely aleatory counterparts. Practical solution approaches are developed to numerically solve such problems efficiently. Specifically, a polynomial reinitialisation approach for efficient uncertainty propagation is developed to mitigate the stochastic dimensionality in multi-segment problems. For state estimation and navigation, two robust filtering approaches are presented: a generalisation of the particle filtering to epistemic uncertainty exploiting samples’ precomputations; a sequential filtering approach employing a combination of variational inference and importance sampling. For optimal control under uncertainty, direct shooting-like transcriptions with a tunable high-fidelity polynomial representation of the dynamical flow are developed. Uncertainty quantification, orbit determination, and navigation analysis are incorporated in the main optimisation loop to design trajectories that are simultaneously optimal and robust. The methods developed in this thesis are finally applied to a variety of novel test cases, ranging from LEO to deep-space missions, from trajectory design to space traffic management. The epistemic state estimation is employed in the robust estimation of debris’ conjunction analyses and incorporated in a robust Bayesian framework capable of autonomous decision-making. An optimisation-based scheduling method is presented to efficiently allocate resources to heterogeneous ground stations and fusing information coming from different sensors, and it is applied to the optimal tracking of a satellite in highly perturbed very-low Earth orbit, and a low-resource deep-space spacecraft. The optimal control methods are applied to the robust optimisation of an interplanetary low-thrust trajectory to Apophis, and to the robust redesign of a leg of the Europa Clipper tour with an initial infeasibility on the probability of impact with Jupiter’s moon

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac

    Autonomous Satellite Command and Control through the World Wide Web: Phase 3

    Get PDF
    NASA's New Millenium Program (NMP) has identified a variety of revolutionary technologies that will support orders of magnitude improvements in the capabilities of spacecraft missions. This program's Autonomy team has focused on science and engineering automation technologies. In doing so, it has established a clear development roadmap specifying the experiments and demonstrations required to mature these technologies. The primary developmental thrusts of this roadmap are in the areas of remote agents, PI/operator interface, planning/scheduling fault management, and smart execution architectures. Phases 1 and 2 of the ASSET Project (previously known as the WebSat project) have focused on establishing World Wide Web-based commanding and telemetry services as an advanced means of interfacing a spacecraft system with the PI and operators. Current automated capabilities include Web-based command submission, limited contact scheduling, command list generation and transfer to the ground station, spacecraft support for demonstrations experiments, data transfer from the ground station back to the ASSET system, data archiving, and Web-based telemetry distribution. Phase 2 was finished in December 1996. During January-December 1997 work was commenced on Phase 3 of the ASSET Project. Phase 3 is the subject of this report. This phase permitted SSDL and its project partners to expand the ASSET system in a variety of ways. These added capabilities included the advancement of ground station capabilities, the adaptation of spacecraft on-board software, and the expansion of capabilities of the ASSET management algorithms. Specific goals of Phase 3 were: (1) Extend Web-based goal-level commanding for both the payload PI and the spacecraft engineer; (2) Support prioritized handling of multiple PIs as well as associated payload experimenters; (3) Expand the number and types of experiments supported by the ASSET system and its associated spacecraft; (4) Implement more advanced resource management, modeling and fault management capabilities that integrate the space and ground segments of the space system hardware; (5) Implement a beacon monitoring test; (6) Implement an experimental blackboard controller for space system management; (7) Further define typical ground station developments required for Internet-based remote control and for full system automation of the PI-to-spacecraft link. Each of those goals is examined in the next section. Significant sections of this report were also published as a conference paper

    Proceedings of the Seventh International Space University Alumni Conference

    Get PDF
    The Seventh Alumni Conference of the International Space University, coordinated by the ISU U.S. Alumni Organization (IUSAO), was held at Cleveland State University in Cleveland, Ohio on Friday, July 24, 1998. These proceedings are a record of the presentations. The following topics are included: Remote sensing education in developing countries; Integrated global observing strategy; NASA's current earth science program; Europe's lunar initiative; Lunarsat: Searching for the South Polar cold traps; Asteroid hazards; ESA exobiological activities; Space testbed for photovoltaics; Teledesic Space infrastructure; Space instrument's concurrent design; NASA advanced fuel program; Mission preparation and training for the European Robotic Arm (ERA); and Global access to remote sensing systems

    Robust space trajectory design using belief stochastic optimal control

    Get PDF
    This paper presents a belief-based formulation and a novel approach for the robust solution of optimal control problems under uncertainty. The introduced formulation, based on the Belief Markov Decision Process model, reformulates the control problem directly in terms of uncertainty distributions, called beliefs, rather than on realisations of the system state. Successively, an approach inspired by navigation analysis is developed to transcribe and solve such problem in the presence of observation windows, employing a polynomial expansion for the dynamical propagation. Finally, the developed method is applied to the robust optimisation of a flyby trajectory of Europa Clipper mission in a scenario characterised by knowledge, execution and observation errors

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    In pursuit of autonomous distributed satellite systems

    Get PDF
    Satellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per satèl·lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanitàries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d’observació de la Terra (OT) estan explorant la idoneïtat dels Sistemes de Satèl·lit Distribuïts (SSD), on múltiples observatoris espacials mesuren el planeta simultàniament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribuïts i, tot i que són possibles gràcies a l’acceptació de les plataformes de satèl·lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d’ells són els pilars principals d’aquesta tesi, en concret, la concepció d’eines de suport a la presa de decisions pel disseny de SSD, i la definició d’operacions autònomes basades en gestió descentralitzada a bord dels satèl·lits. La primera part d’aquesta dissertació es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits satèl·lits amb actius tradicionals. Es presenta un entorn d’optimització orientat al disseny basat en metodologies d’exploració i comparació de solucions. Els objectius d’aquest entorn són: la selecció el disseny de constel·lació més òptim; i facilitar la identificació de tendències de disseny, regions d’incompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d’OT, els requeriments del sistema i l’expressió de prioritats no només s’articulen en quant als atributs funcionals o les restriccions monetàries, sinó també a través de les característiques qualitatives com la flexibilitat, l’evolucionabilitat, la robustesa, o la resiliència, entre d’altres. En línia amb això, l’entorn d’optimització defineix una única figura de mèrit que agrega rendiment, cost i atributs qualitatius. Així l’equip de disseny pot influir en les solucions del procés d’optimització tant en els aspectes quantitatius, com en les característiques dalt nivell. L’aplicació d’aquest entorn d’optimització s’il·lustra en dos casos d’ús actuals identificats en context del projecte europeu ONION: un sistema que mesura paràmetres de l’oceà i gel als pols per millorar la predicció meteorològica i les operacions marines; i un sistema que obté mesures agronòmiques vitals per la gestió global de l’aigua, l’estimació d’estat dels cultius, i la gestió de sequeres. L’anàlisi de propietats arquitecturals ha permès copsar de manera exhaustiva les característiques funcionals i operacionals d’aquests sistemes. Amb això, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l’autonomia. Minimitzar la intervenció de l’operador humà és comú en altres sistemes espacials i podria ser especialment crític pels SSD de gran escala, d’estructura dinàmica i heterogenis. En els SSD s’espera que l’autonomia solucioni la possible incapacitat d’operar sistemes de gran escala de forma centralitzada, que millori el retorn científic i que n’apuntali les seves propietats emergents (e.g. tolerància a errors, adaptabilitat a canvis estructural i de necessitats d’usuari, capacitat de resposta). Es proposa un sistema d’operacions autònomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a través del raonament local, l’assignació individual de recursos, i les interaccions satèl·lit-a-satèl·lit. Al contrari que treballs anteriors, la presa de decisions autònoma s’avalua per constel·lacions que tenen com a objectius de missió la minimització del temps de revisita global

    In pursuit of autonomous distributed satellite systems

    Get PDF
    A la pàgina 265 diu: "In an effort to facilitate the reproduction of results, both the source code of the simulation environment and the configuration files that were prepared for the design characterisation are available in an open repository: https://github.com/carlesaraguz/aeossSatellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per satèl·lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanitàries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d’observació de la Terra (OT) estan explorant la idoneïtat dels Sistemes de Satèl·lit Distribuïts (SSD), on múltiples observatoris espacials mesuren el planeta simultàniament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribuïts i, tot i que són possibles gràcies a l’acceptació de les plataformes de satèl·lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d’ells són els pilars principals d’aquesta tesi, en concret, la concepció d’eines de suport a la presa de decisions pel disseny de SSD, i la definició d’operacions autònomes basades en gestió descentralitzada a bord dels satèl·lits. La primera part d’aquesta dissertació es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits satèl·lits amb actius tradicionals. Es presenta un entorn d’optimització orientat al disseny basat en metodologies d’exploració i comparació de solucions. Els objectius d’aquest entorn són: la selecció el disseny de constel·lació més òptim; i facilitar la identificació de tendències de disseny, regions d’incompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d’OT, els requeriments del sistema i l’expressió de prioritats no només s’articulen en quant als atributs funcionals o les restriccions monetàries, sinó també a través de les característiques qualitatives com la flexibilitat, l’evolucionabilitat, la robustesa, o la resiliència, entre d’altres. En línia amb això, l’entorn d’optimització defineix una única figura de mèrit que agrega rendiment, cost i atributs qualitatius. Així l’equip de disseny pot influir en les solucions del procés d’optimització tant en els aspectes quantitatius, com en les característiques dalt nivell. L’aplicació d’aquest entorn d’optimització s’il·lustra en dos casos d’ús actuals identificats en context del projecte europeu ONION: un sistema que mesura paràmetres de l’oceà i gel als pols per millorar la predicció meteorològica i les operacions marines; i un sistema que obté mesures agronòmiques vitals per la gestió global de l’aigua, l’estimació d’estat dels cultius, i la gestió de sequeres. L’anàlisi de propietats arquitecturals ha permès copsar de manera exhaustiva les característiques funcionals i operacionals d’aquests sistemes. Amb això, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l’autonomia. Minimitzar la intervenció de l’operador humà és comú en altres sistemes espacials i podria ser especialment crític pels SSD de gran escala, d’estructura dinàmica i heterogenis. En els SSD s’espera que l’autonomia solucioni la possible incapacitat d’operar sistemes de gran escala de forma centralitzada, que millori el retorn científic i que n’apuntali les seves propietats emergents (e.g. tolerància a errors, adaptabilitat a canvis estructural i de necessitats d’usuari, capacitat de resposta). Es proposa un sistema d’operacions autònomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a través del raonament local, l’assignació individual de recursos, i les interaccions satèl·lit-a-satèl·lit. Al contrari que treballs anteriors, la presa de decisions autònoma s’avalua per constel·lacions que tenen com a objectius de missió la minimització del temps de revisita global.Postprint (published version
    • …
    corecore