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Abstract

Satellite imagery and its by-products have become essential resources for a myriad of
environmental, humanitarian, and industrial endeavours. As ameans to satisfy the re-
quirements posed by new applications and user needs, novel Earth Observation (EO)
systems are exploring the suitability of Distributed Satellite Systems (DSS) in which
multiple observation assets concurrently sense the surface, atmosphere, and oceans.
Given the current temporal and spatial resolution requirements of EO products, DSS
are often envisioned as large-scale systems encompassing several different sensing
capabilities operating in a networked manner. Enabled by the consolidation of small
satellite platforms and fostered by the emerging capabilities of distributed systems,
thesenewsatellite architectures posemultiple design andoperational challenges. Two
of them are the main pillars of the research herein presented, namely, the conception
of decision-support tools that assist the architecting process of a DSS, and the design
of autonomous operational frameworks based upon decentralised, on-board decision-
making.

Thefirstpart of thisdissertationaddresses thearchitectingofheterogeneous, net-
worked DSS architectures that hybridise small satellite platforms with traditional EO
assets. In order to do so, we present a generic design-oriented optimisation frame-
work based upon tradespace exploration methodologies. The goals of this framework
are twofold: to select themost optimal constellationdesign; and to facilitate the identi-
fication of design trends, unfeasible design regions, and tensions among architectural
attributes. Such architecting endeavours are often critical in early phases of a mis-
sion lifecycle since they crystallise in architectural decisions that deliver the expected
value to systems. Oftentimes in Earth-observing DSS, system requirements and stake-
holder preferences are not only articulated through functional attributes (i.e. resolu-
tion, revisit time, etc.) or monetary constraints, but also through qualitative traits such
as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that,
the architecting framework defines a single figure of merit that evaluates and aggreg-
atesquantitativeattributesandqualitativeones—theso-called ilitiesofasystem. With
that, designers can steer the design of DSS both in terms of performance or cost, as
well as in terms of their high-level characteristics. The application of this optimisation
framework has been illustrated in two timely use-cases identified in the context of the
EU-funded ONION project: a system that measures ocean and ice parameters in Po-
lar regions to facilitate weather forecast and off-shore operations; and a system that
provides agricultural variables that are crucial for global management of water stress,
crop state, and draughts.
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The analysis of architectural features facilitated a comprehensive understanding
of the functional and operational characteristics of DSS. With that, this thesis con-
tinues to delve into the design of DSS by focusing on one particular functional trait:
autonomy. The minimisation of human-operator intervention has been traditionally
sought inother spacesystemsandcanbeespecially critical for large-scale, structurally
dynamic, heterogeneous DSS. Autonomous satellite operations are studied in differ-
ent domains, namely, fault management and reconfiguration systems, mission plan-
ning and scheduling, and collective decision-making. In DSS, autonomy is expected to
cope with the likely inability to operate very large-scale systems in a centralised man-
ner, to improve the science return, and to leverage many of their emerging capabilities
(e.g. tolerance to failures, adaptability to changing structuresanduserneeds, respons-
iveness). We propose an autonomous operational framework that provides decentral-
iseddecision-making capabilities toDSSbymeansof local reasoningand individual re-
source allocation, and satellite-to-satellite interactions. In contrast to previous works,
the autonomous decision-making framework is evaluated in this dissertation for gen-
eric constellation designs (structured and otherwise) the goal of which is to minimise
revisit times for global target areas. As part of the characterisation of our solution, we
stressed the implications that autonomous operations can have upon satellite plat-
forms with stringent resource constraints (e.g. power, memory, communications cap-
abilities) and evaluated the behaviour of the solution for a large-scale DSS composed
of 117 CubeSat-like satellite units.
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1
Introduction

1.1 New Earth observation systems
Satellite systems are today more pervasive than ever. Spaceborne communication systems
are cornerstone in a world dominated by the immediacy of cloud services, voracious global-
scale economies, and the relentless urge to provide worldwide connectivity for all—machines
included. Security and transportation services are strongly tied to satellite-based navigation
systems without which countless ground-based infrastructures would cease to operate. Like-
wise, Earth Observation (EO) satellites have also become essential to monitor critical environ-
mental parameters. This third kind of satellite infrastructures, the ones embarking instruments
that sense our planet, are the main object of study in this dissertation. Many of the paramet-
ers remotely sensed by satellites could certainly be observed from fixed ground stations—or
even aircraft—but only satellite systems allow us to measure in a global and constant man-
ner. Certainly, this constant yearning for information captured above the stratosphere not only
owes to the severe environmental crisis, but also to the need to grasp multiple physical, agri-
cultural, or ecosystemic processes. This leads satellite-based EO systems to have a profound
impact in a myriad of strategic pursuits, such as ocean and polar monitoring, control of defor-
estation, control of crops, draught management, climate and atmospheric monitoring, study of
faunamigratory movements... Many are the parameters that rely upon satellite data and which
ultimately will derive in human decisions of global significance.

Satellite systems enhance our environmental awareness extensively by providing direct in-
formation about the planet’s surface, oceans, and atmosphere. Yet, many other commercial,
industrial, or governmental endeavours are also taking advantage of this environmental inform-
ation to succeedand thrive. Somuchso thatOSCAR,1 oneof themost comprehensive databases
on Earth observation systems, has catalogued up to 122 variables that are currently sensed
from space. Spectral reflectance and thermal emittance properties of soils, for instance, are
constantly being sensed from space to extract agronomic and biophysical characteristics of ve-
getation and crops. The applications and value-added services of such information extend the
simpleassessmentof cropstateandgrowth, andareessential inmodernagriculturalprocesses.

1 TheObserving SystemsCapability Analysis andReview Tool (OSCAR) is an expert systemand database realised by the
World Meteorological Organization (WMO) (Kurino, 2018). OSCAR is implemented as a web-based application and is
publicly available at https://www.wmo-sat.info/oscar/.

1
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Figure 1.1: Satellite-based Earth observation: market breakdown in 2015. Source: 9th Edition of the Euro-
consult report. Plot from (Dasgupta, 2018).

A constant integration of remote-sensing services has been enhancing the productivity of the
agriculture, cattle, and fishing industry for years through the analysis of sea surface, soil, and
vegetation characteristics. In fact, geospatial data acquired from spaceborne instruments is a
fundamental contributor of multiple ecosystemic indicators: water stress, nutrient, and pest
control (Pinter et al., 2003); yield forecasting (Bolton and Friedl, 2013; Doraiswamy et al., 2004);
monitoring of plant growth and vigour (Kurosu et al., 1995); identification of crop types (Jak-
ubauskas et al., 2002; Yang et al., 2011) (e.g. for biodiversity control, regulation purposes); stock
pressure andmigratory movements (Block et al., 2001); etc.

Aside from services and applications for the primary sector, satellite imagery has also be-
come a dependable resource for governmental activities (e.g. infrastructure planning andmon-
itoring), transportation (e.g. route selection and itinerary planning, vehicle or freight tracking,
trafficandcongestionmanagement, intelligent transport systems), defence, andmanufacturing
activities. In consequence, Earth’s imagery and its derived geospatial information are essential
assets for local and global decision support and have become major market drivers. According
to a breakdown realised by Morgan Stanley Research—published in (Dasgupta, 2018)—, Earth
observation activities rank third (14%) in the private space economy and are positioned only be-
low satellite launch (20%) andmanufacturing (18%) activities.

While the majority of users of geospatial information currently correspond to the govern-
mental or defence sector (Fig. 1.1), many are the private actors which are starting to participate
in the satellite imagery business fabric every year, be it as new providers or new costumers. In
addition, the advances in computer vision, big data analytics, and machine learning are foster-
ing a change of paradigm that is driving the development of new Earth observation (EO) services
and systems. If, previously, the goal of new instruments and systems was primarily focused on
image quality (i.e. spatial resolution, radioelectric accuracy), nowadays the focus is also set on
many other system-wide qualities such as the data timeliness or the revisit time. Furthermore,
this ever-growingweb of EO enterprises is not just limited to deliver processed instrument data;
companies are rather called to comprehend a wide spectrum of data-driven pursuits encom-
passing the analysis and generation of complex information, the fusion of multiple measure-
ments (spaceborne, airborne, in-situ), and the rapid extraction of features. It is only natural that
many raised the need of enhanced space assets that can sustain these new societal demands.
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CHAPTER 1 1.1. NEW EARTH OBSERVATION SYSTEMS

In line with that, Earth observing systems are currently being influenced by two complementary,
fundamental, design trends. Formore than a decade, both governmental agencies and industry
have been exploring—and deploying—satellite systems wherein the data generated by instru-
ments in multiple spacecraft are combined to obtain the desired observation capability. These
are the so-called Distributed Satellite Systems (DSS), architectures that essentially take ad-
vantage of multiple, simultaneous observations from different orbital viewpoints (e.g. to attain
wider coverages or shorter revisit times). On the other hand, the consolidation of small-satellite
platforms as suitable design alternatives for EO is evincing a clear paradigm shift that ismaking
its way through new players in the aerospace industry.

In this context, this new and challenging technological landscape and the challenges posed
by new applications and user requirements have established the vertebral axis of this doctoral
research, which is focused in the architecting of next-generation, spaceborne, distributed sys-
tems for EO, as well as the exploration of autonomous operational schemes for these architec-
tures.

1.1.1 Distributed Satellite Systems

Space systems that encompass a number of satellites orbiting and operating simultaneously in
order to satisfy a set of common goals are typically referred to as a Distributed Satellite System
(DSS). This type of systems has been implemented to address a variety of purposes, namely,
global navigation, communications and broadcasting, space exploration and science (e.g. ESA’s
LISA; reconnaissance and intra-planetary missions) as well as Earth observation. Back in early
1980s, the space community had already gained noticeable maturity in the design of multi-
satellite systems that targeted a specific percentage of ground coverage—mainly for commu-
nications, surveillance and navigation—, i.e. the so-called satellite constellations. Theworks of
Ballard (1980), Lüders (1961) andWalker (1977), among others, providedmethods to determine
theminimumnumber of satellites toprovide continuouscoverageof latitudinally boundedzones
bymeans of specific orbital configurations and patterns. With the advent of multiple constella-
tion realisations (e.g. NAVSTAR’s Global Positioning System in 1978, Iridium in early 1990s), the
term DSS became relatively well established at the end of 1990s, a moment when their design
and system-wide characteristics were being explored in detail frommultiple engineering stand-
points. Although other authors have preferred the use of lexically equivalent terms like Distrib-
utedSatelliteMissions (Nag, 2015), or have coined specific terminology to distinguish theirmain
mission, as in Earth-Observing Satellite Systems (Selva, 2012), this documentwill adopt the ori-
ginal nomenclature, DSS, to name various systems that address EO needs.

In general, DSS are complex mission architectures where many of the system capabilities
can be spread among several spacecraft. This includes both observing capabilities as well as
structural functions, such as communications, data processing or energy generation. Tradition-
ally, the main driver of DSS programs had been the improvement of system performance; spa-
tially distributed instruments naturally allows for wider coverage percentages and a decrease
in revisit times, since multiple instruments are capturing information from multiple locations.
Likewise, separated and sparse apertures can also improve spatial resolutions. In parallel to
that, choosing to spatially distribute satellite capabilities also fosters additional qualities that
are reminiscent to those of generic distributed or parallel computing systems. Exploring these
qualities is deemed essential to understand the potential benefits and value of DSS and to jus-
tify their establishment in specific cases.

One of the first works that addressed the potential system traits of distributed EOmissions
is (Shaw, 1998). As part of a research programme started by the Air Force Research Lab (AFRL)
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at MIT, Shaw explored a few of the qualities that may be ameliorated by means of a DSS. A few
years later, Jilla (2002) complemented Shaw’s work and presented a much more thorough enu-
meration of the potential benefits of DSS in his Ph.D. dissertation. Certainly, the significance
of a distributed EO system is not only enhanced by the—almost inherent—gain in performance
provided by multiple simultaneous observations, but also takes advantage of the mere fact of
distributing the system itself. In that sense, some of the properties enumerated by Jilla could
also be drawn from a qualitative assessment of a generic distributed system. In Jilla’s work, the
enumeration of eighteen potentially beneficial properties of a DSS was framed by a categorisa-
tion into thirteen qualitative groups, as reproduced in Table 1.1. Most of these properties and
qualities will be discussed below under the perspective of state-of-the-art DSS and novel ap-
proaches, although the reader is directed to (Jilla, 2002) for the original definition of each prop-
erty and quality group.

A defining characteristic in DSS is clearly the spatial distribution of instruments in multiple
platforms. This alone can bring several qualities to the system and is an enabler for a number
of remote sensing techniques. To begin with, this distribution of instruments can be regarded
as a decentralisation of observing capabilities, a characteristic bywhich the system can become
less prone to unavailability periods caused by failures. Multiple observing satellites, either with
identical instruments on-board or not, attain better reliability overall owing to the removal of
single points of failure. Take the example of an instrument that has been embarked on three
different platforms; if the main bus of one such platform would start to malfunction (e.g. due to
an error in the attitude control computer) the systemwould not be rendered useless because of
the two remainingplatformsstill operatingundernominal conditions. Thus, spatially distributed
capabilities can also be accounted as a sort of redundancy that may play in favour of ground
operators in the event of failures or periods of increased user demands (e.g. in a natural disaster
emergency). Furthermore, the survivability of the system is positively affected in cases where
the occurrence of an unexpected event yields the disabling of a certain functional or structural
capability, provided that the remaining system functions are left partially or totally unaffected.

Given their distributed structural nature, DSS can be deployed incrementally (Miller et al.,
2001). Doing so has clear advantages over monolithic systems; the most noticeable one being
the ability to start generating revenue even when the system is not fully deployed. Systems of
satellites can start delivering part of their associated data products as soon as some compon-
ents are already in orbit. This is one of the challenges faced in the design process of a commu-
nication constellations as presented in (de Weck et al., 2004), where both capacity and lifecycle
costs are traded in order to obtain a solution that delivers optimum economic benefits through-
out its different stages (i.e. the steps in the evolutionary process of deploying the system). Set-
ting performance aside—early stages will not deliver the system’s maximum capacity, nor may
provide data as frequently as to satisfy the needs of the user—, having the opportunity to oper-
ate an incomplete system also has positive implications when themission is reaching its End Of
Life (EOL). At phases close to EOL some components of DSSwill already be decommissioned ow-
ing to failures or fuel outage. Nonetheless, the remaining active spacecraft might still produce
data with a subset of instruments. Even when one critical instrument fails in early lifetime of
the mission, DSS could be able to minimise failure compensation costs if the failing instrument
would have been embarked in its own platform. Launching Earth observing missions like ESA’s
ENVISAT (Cracknell and Varostos, 2007), which included up to nine instruments on-board and
had a mass of over 8200 kg, represents an enormous financial outlay that is exposed to severe
risks during launch and operations if a critical subsystem fails. Conversely, deploying systems
composed of smaller, single-instrument satellites allows for lower compensation costs when
spacecraft are replenished after failures. Likewise, DSS are usually conceived as structurally
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Table 1.1: Potential benefits of distribution in satellite systems and their allocation to eight categories, as
proposed in (Jilla, 2002).
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Decentralization of resources ✓ ✓
Smaller, simpler satellites ✓ ✓

Mass production of satellites ✓ ✓ ✓
Modular designs ✓ ✓ ✓

Spatial distribution ✓ ✓ ✓
Reduced range to target ✓ ✓ ✓ ✓ ✓

Separated, sparse apertures ✓ ✓
Multiple viewing angles ✓ ✓ ✓

Reduced computational workload ✓ ✓
More satellites ✓ ✓ ✓ ✓ ✓ ✓ ✓
Task division ✓

Increased SNR ✓ ✓ ✓
Clutter rejection ✓ ✓ ✓

Redundancy ✓ ✓ ✓
Path diversity ✓ ✓

Allows for incremental deployment and upgrades ✓
Minimization of failure compensation costs ✓ ✓

Multi-mission capability

dynamic systems, for which not only the failing satellites can be replaced but new capabilities
can be added to the systemas new technology becomes available. Thismaywell extendmission
lifetime and reduce costs and also suggests that distributed EO systems can exhibit higher flex-
ibility than monolithic alternatives. In relation to that, some authors have studied flexibility in
the domain of space systems (Brown et al., 2007; Corbin, 2015; Nilchiani, 2005; Shaw, 1998), re-
inforcing the idea of the underlying value of designs that are robust towards changes in context
and stakeholder needs.

Producing spacecraft has long posed huge monetary investments associated to devel-
opment, launch, and operational costs. As such, reducing and optimising lifecycle costs is
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paramount for satellite systems and has been a concern in both engineering and managerial
endeavours. In his list of properties, Jilla includes three aspects that could contribute to the
deflation of manufacturing costs and expedite the process of fabrication, namely, the mass-
production of satellites, modular designs, and the promotion of simpler and smaller satellite
units. As mentioned above, the space industry is avoiding huge satellite designs (Cracknell and
Varostos, 2007). When distribution becomes a feasible option—mainly because the mission
allows that—, producing single-instrument spacecraft may yield cost savings in cases where
several identical units need be produced. Fostering learning curve savings during the design
phases and leveraging economies of scale has been noted as an inherent quality of DSS, espe-
cially when the number of units increases dramatically. Clear examples of that are the newer
companies in the space sector, such as Planet Labs Inc., which have produced constellations
of hundreds of medium-resolution optical satellites in bulk.2 Another remarkable example can
be found in the FCC proposal recently filed by Space Exploration Holdings, LLC. (SpaceX), which
seeks to deploy amegaconstellation of 4425 Ka+Ku-band satellites3 distributed across several
sets of orbits to provide global broadband access (del Portillo et al., 2018). Furthermore, Jilla
also mentions that DSS are likely to be characterised by modular platform designs: satellite
buses that are conceived to host a variety of instruments and which could be reused for all the
units in the distributed system. We could also argue that these characteristics should be almost
intrinsic in large-scale DSS, since relying upon traditional ad hoc manufacturing of platforms
and buses not only would hinder cost savings but could turn the implementation financially
unfeasible.

Combining measurements from instruments at multiple viewing angles can also improve
the quality of the data product and enable remote sensing techniques that require multiple ob-
servations, either simultaneous or in series. DSS could implement separated, sparse apertures
where the angular resolution—which is proportional to themaximumbaseline between two ele-
ments (i.e. mirrors) of the sparse aperture—would be improvedwith respect tomonolithic satel-
lite architectures, where themaximumbaseline is limited. Jilla (2002) also discusses the trade-
offs between cost, isolation capability (i.e. spatial resolution), total power-aperture for a single
satellite, and range to the target. Here again, we can illustrate this relation with Planet Labs’
Flock constellation (Boshuizen et al., 2014), amedium-resolution optical DSS that providesdaily
global coverage. In order to achieve a 24h revisit time and 3-5m resolution, Planet Labs has had
to resort to small satellite platforms—3U CubeSats, in particular—with inherent limitations in
aperture and power. Albeit this being an optical system and power not playing a critical role,
it still illustrates the aforementioned trade-offs: the aperture limitation in these platforms in-
duces a large number of units in their constellation (more than one hundred, as reported in late
2018). Thus, the system needs to leverage on lower orbits to achieve the desired resolution,
which, in turn, can only becomefinancially feasible with the use of small satellite platforms that
presented the very limitation in aperture.

Furthermore, there are several EO products that leverage frommulti-angular observations,
such as hydrological modelling, soil mapping or the study of terrain stability, to name a few.
The latter are based upon Digital Elevation Modeling (DEM) techniques, which are commonly
implemented with interferometric synthetic aperture radars (InSAR). Earth’s topography and
ground surface deformations can bemapped by correlating images performed in repeat-passes
ofmonolithic satellites over the samearea. Limiting factors of this technologyare the changes in
atmospheric conditions (e.g. humidity) between the twoconsecutivepasses (Dinget al., 2008) as

2 The following reference briefly describes the space segment owned and—in case of the CubeSat constellation—also
manufactured by the company: https://gisgeography.com/planet-labs-imagery/

3 The application is available on-line at: https://fcc.report/IBFS/SAT-MOD-20181108-00083
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well as the extremely accurate orbit determination andprecise pointing required to correlate the
imagery. In order to cope with the former limitation, single-pass InSAR missions composed of
two satellites orbiting in close formation have been demonstrated—e.g. TerraSAR-X/TanDEM-
X (Zink et al., 2008)—and have highlighted the value of DSS. Stereo photogrammetry, on the
other hand, is a muchmore flexible technique that requires less accurate pointing and can pro-
duce lower-resolution elevation maps through the combination of imagery taken from multiple
viewing angles (Tack et al., 2012). DSS could improve temporal resolution of the data product by
capturing all the necessary frames quasi-simultaneously. In a similarmanner, Earth’s paramet-
ers that rely upon the estimation of Bidirectional Reflectance Distribution Function (BDRF) need
also be captured frommultiple vantage points. BDRF, which is estimated in order to capture the
multiangular reflectance of opaque surfaces, enables the study of land surface albedo (Lucht
et al., 2000). This parameter is one of the most important in the characterisation of the Earth’s
radiative regime and its impact on biospheric and climatic processes. DSS were proved to have
the potential to ameliorate angular sampling abilities when compared to monolithic spacecraft
or airborne systems (Nag, 2015), and have been demonstrated as feasible alternatives of higher
impact in performance.

Distributed Earth-observing systems ultimately exploit both the functional capabilities and
qualities of a complex system of systems. Be it to take advantage of its cost savings, to achieve
system performances that would otherwise be unattainable with monolithic spacecraft, or to
leverage the improvement of overarching qualities, the fact is that DSS have changed the way in
which the aerospace community approaches new designs. However, the most valuable aspect
in DSS is perhaps the ability to foster emergent capabilities; functions of the system that only
exist as a result of the aggregation of capabilities from its composing parts. This idea of achiev-
ing emergent functions in a complex system—and in DSS, in particular—, is hardly decoupled
from many of the remote sensing techniques explored above. As a matter of fact, many of the
distributed EO techniques are the reflect of of what Corbin (2015) brought up and described in a
much broader and generic sense as part of his doctoral research. To put it in his own words:

“Emergent capabilities are what can be accomplished when multiple assets combine
their individual capabilities. For example, a camera can take 2D images, but two cam-
eras together can take 3D images, and many cameras working together can build 3D
models of the object being studied.” (Corbin, 2015)

Making use of many of the properties explored in (Jilla, 2002), Corbin laid out a framework
to assess the emergent capabilities of DSS, which was grounded upon three different categor-
ies: (1) fundamentally uniqueemergent capabilities; (2)analytically uniqueemergent capabilities;
and (3) operationally unique emergent capabilities. Categorised into these three groups, seven
generic capability descriptions related to scientific data sampling and collection were provided.
Nourished by the analysis of emergent functions, the study showed the actual competitiveness
of a DSS and examined their benefits compared to monolithic systems.

Emergent capabilities that could never be attained in spite of the engineering and optim-
isation efforts or the capabilities of a single satellite are categorised as funamentaly unique to
DSS. Corbin enumerates three of them, which is reproduced verbatim below for the convenience
of the reader:

“Shared Sampling: When multiple assets trade responsibilities for making the same
measurement at different times, particularly when it is impossible for any single asset
to make the measurement over the time period required for satisfaction.
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“Simultaneous Sampling: When multiple assets conduct a measurement of a com-
mon target at the same time from different locations such that the combination of
the resultant data sets provides more detailed information that could not have been
gathered by a single assetmoving between locations and takingmeasurements at dif-
ferent times.

“Self-Sampling: When multiple assets measure signals generated by each other, or
the precise position and velocity of each other, to infer information about a target or
phenomenon indirectly rather than measuring the phenomenon directly.” (Corbin,
2015)

The capabilities that could only be achieved my means of a ludicrous monolithic design (i.e. in-
feasible cost and unlikely technology) but which are perfectly suitable and reasonable for a DSS
are categorised under the analytically unique group:

“Census Sampling: When multiple assets conduct multiple measurements of a sub-
set (or the full set) of a collection of similar targets in order to have greater certainty
in the variance of the desired properties or characteristics of the whole target popula-
tion.

“Stacked Sampling: When heterogeneous assets are deployed into different environ-
ments or locations to make measurements of the same phenomenon using different
instruments such that the combination of data sets is more valuable than any indi-
vidual data set.” (Corbin, 2015)

Finally, the term operationally unique is coined to group mission strategies that, despite being
practicable with a monolithic satellite, would be considered irresponsible or irrational by de-
cision makers andmission operators:

“Staged Sampling: When additional assets are deployed after knowledge gained by
the first asset’s or wave of assets’ data has been received and analysed such that the
location or orbit of deployment can be re-evaluated and altered to seize opportunity
that was previously unknown or provide similarmeasurements formore confidence in
results.

“Sacrifice Sampling: When assets are knowingly deployed to an unsafe operating
environment, such that most if not all of the deployed assets will be destroyed, but
the scientific returns can justify the development and launch of the entire mission.”
(Corbin, 2015)

The identification of such emergent functions of a DSS goes into details in Corbin’s thesis,
supportedby illustrative examples towhich the reader is directed for further clarification. None-
theless,many of the capabilities explored byCorbin touchupon anumber of the properties iden-
tified in (Jilla, 2002) and reproduced in Table 1.1 that have still not been discussed here. In
particular, these emergent capabilities resonate with the characteristics of complex system of
systems where the composing entities collaborate to attain a set of common goals and share
their resources to do so. Such systems need to exhibit the ability to distribute workload and
to coordinate their efforts in order to satisfy the mission demands in a practical and optimal
manner. A DSS that could require in-orbit SAR processing, could be conceived to distribute
the associated computational burden amongmultiple spacecraft in the system. In effect, some
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DSS approaches are inclined towards the deployment of a kind of collaborative system wherein
satellites coordinate with the rest—at least, virtually—in order to complete their tasks in a fully
decentralized and/or distributed manner. For the sake of an analogy, let all the satellites in a
DSS be regarded as a pool of workers that can independently contribute to a portion of both ex-
ternal and internal functions of the system, e.g. scanning land, maintaining flight formation,
generating energy, processing data. This distribution of workload, task division and exchange
of resources—partially identified in the references cited above—may be central to realise some
of the listed emergent capabilities (e.g. simultaneous sampling, stacked sampling). Indeed, the
different types of sampling are laid out to encompass the chain of activities that are directly re-
lated to the main function of an EO system, namely, capture, process and deliver information.
However, the same kind of coordination required to fulfil these activities in a distributedmanner
can also be extrapolated to themechanisms that would be needed to orchestrate and distribute
structural functions (e.g. energy generation). These aspects will also be highlighted later in this
chapter, as they belong to one of the fundamental pillars of this thesis, namely, autonomous
organisation schemes for DSS.

In summary, DSSmay be regarded as complex spaceborne systems that can be cornerstone
to achieve wider coverage, better resolutions (temporal, spatial, spectral and angular), to fulfil
the needs of a number of data products that could not be satisfied with monolithic satellites,
and ultimately to provide cost-effective solutions to the ever-increasing user and stakeholder
requests. Many aerospace programs have pursued these kinds of approaches in the past, and
many are foreseen to continue to do so with the advent of miniaturisation techniques and the
constant eagerness to engineer systems that excel in non-functional qualities.

1.1.2 Small satellite platforms

As it has already been evoked, the space sector is ever more directed towards segmentation of
largemonolithic satellites into smaller, single-instrument, less complex ones. Notwithstanding
the fact that the first satellites ever built were, in fact, small spacecraft—Sputnik-1 weighted
about 83 kg whilst themass of Explorer-1 was as low as 14 kg—,modern designs have reached
thousands of kilograms and have become extremely sophisticated. Other than the fact that pro-
ducing large satellites may turn into financially infeasible programs or could be too sensitive to
high operational risks, it is inevitable to acknowledge that the sector is succumbing to a change
of paradigm. The advances inminiaturisation techniques, ultra-low-power devices and embed-
ded computing platforms have spurred the development of very small satellite platforms. Cer-
tainly, the beginning of this trendmight have started in the form of educational programs, tech-
nology demonstration missions, or simply as a mere curiosity. Small satellites hardly had prac-
tical utility until, at the beginning of year 2000s, their acceptance started to crystallise in indus-
trial and governmental programs. Ever since the appearance of the first small satellitemissions
(e.g. BIRD, in 2001, or SMART-1, in 2003) hundreds of developments have evolved smaller plat-
forms into mature alternatives that are being considered in a variety of applications, especially
EO (Kramer and Cracknell, 2008; Nag et al., 2014; National Research Council, 2000; Sandau,
2010). In a comprehensive review paper, Sweeting (2018) recalled the major historical land-
marks for small satellite platforms and analysed the impact that they play both in the current
space economy and in next-generation satellite systems.

The most common classification for these types of platforms tends to rely upon their total
mass. The categories generally presented in literature (Kramer and Cracknell, 2008; Sweeting,
2018) include large-, small-, mini-, micro-, nano- and femto-satellites (Fig. 1.2). Beyond this
classification, a specific standard has become extremely popular among designers: the Cube-
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Figure 1.2: Classes of satellite platforms

Sat. A CubeSat is a particular form factor of a pico- and nano-satellite that is made up of mul-
tiples of 10 × 10 × 10 cm3 units (denoted with the letter “U”). Proposed in 1999 by California
Polytechnic State University (CalPoly), the standard gained momentum with the advent of gen-
eric dispensers (e.g. ISIPOD and QuadPack, by the European company ISIS/ISL; or the P-POD,
designed at CalPoly) and the availability of secondary-payload launches that significantly re-
duce the cost of the launch. In addition to that, new actors have started to offer standard Cube-
Sat buses and components as well as integration services for these types of platforms, making
them very suitable to access space in a cost-effective manner.

During the consolidation of the CubeSat era, several studies have inquired about the cap-
abilities of this class of spacecraft and have assessed their suitability to perform Earth obser-
vation. The surveys in (Selva and Krejci, 2012; Woellert et al., 2011) concluded that CubeSats
are suitable platforms to conduct planetary and extra-planetary science by reviewing the char-
acteristics and results from previous missions. A later extensive survey thoroughly classified
130 CubeSat missions into six primary mission objectives, namely, (1) Earth science and space-
borne applications; (2) deep space exploration; (3) heliophysics–space weather; (4) astrophys-
ics; (5) spaceborne in-situ laboratory; and (6) technology demonstration (Poghosyan and Golkar,
2017). These reviews also reveal the impact that these platforms have had in democratising
the access to space, an accent that has also been put in (Sweeting, 2018). As a result, several
ventures around the world have announced the offering of launch services specifically tailored
to small satellites, opening a new segment in the space market and paving the way for nano-
satellite technologies.4

Small satellites are generally conceived as simpler spacecraft that are limited by several
aspects. Themain limiting factors in small platforms—especially nano-satellites and smaller—
are volume, power, and attitude control performance (Bouwmeester and Guo, 2010). Whilst the
former comes evident given their dimensions, it certainly constrains the maximum aperture of
the instruments on-board. Similarly, the power generation capabilities are also tied to the lim-
iting surface area of their photovoltaic panels. This has severe implications with regard to the
power consumption of their payloads and buses. The restricted availability of energy is often
translated into a constrain in their download and inter-satellite links. Because of that, small
satellites inherently present impaired communications (i.e. low datarates, shorter ranges) that
can be very cumbersome to overcome. Conversely, their computational capabilities (i.e. data

4 https://www.nytimes.com/2018/11/10/science/rocket-lab-launch.html
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Figure 1.3: Forecast of nano-satellite launches. Data and plot from the on-line databaseNanosats.eu.

processing power, storage, and memory) are generally less constrained. Given their associ-
ated capital outlay, large spacecraft are constantly subdued to the availability of technology
that lowers their risk of failures. Although this guarantees high operational robustness, large
satellites are often equipped with technology that is much older than that of modern devices.
This is not the case of small satellites, which are often manufactured with commercial-off-the-
shelf (COTS) components that provide higher transistor density—andhenceminiaturisation and
better computational performance—as well as better energy efficiency.5

The complexity of large satellite programs also forces long development cycles where the
fabrication, integration and testing procedures are equally intricate and likely to suffer delays.
On the other hand, small satellite platforms entail a reduction in complexity and are envisioned
to be mass-produced. Thus, their development cycles can be reduced significantly, presenting
a clear advantage with respect to traditional programs.

In the Earth observation domain, high-performance satellites (e.g. SAR, LIDAR, or optical
imagers of high spatial or spectral resolutions) are not expected to be replaced by small satellite
designs. The need for data provided by heavy and power-demanding instruments will not be su-
perseded by new user demands. However, multiple studies seem to concur in the opportunities
that small satellites bring to DSS (Gunter andMaessen, 2013; Selva and Krejci, 2012; Sweeting,
2018), especially for EO (e.g. Nag et al., 2017b). Small satellite technologies represent a feas-
ible solution to attain global coverage with high temporal resolutions (i.e. short revisit times). In
that sense, distributedsatellitemissionscomposedof small, potentially single-instrumentplat-
forms are envisaged as complementary assets to traditional large satellites. Their implement-
ation can already be noted in multiple cases. In late 2016, NASA launched the Cyclone Global
Navigation Satellite System (CYGNSS), composed of eight spaceborne observatories implemen-
ted on micro-satellite platforms to perform ocean surface scatterometry (Ruf et al., 2012). An-
other couple of micro-satellite constellations are the Disaster Monitoring Constellation (DMC)
or Planet’s RapidEye, two remote-sensing systems operating since 2002 and 2009, respectively.

5 Naturally, avoiding the use of space-qualified technologies alsomakes these spacecraft muchmore sensitive to ion-
ised particles and limits the lifespan of suchmissions.

11



In pursuit of Autonomous Distributed Satellite Systems C. Araguz

(a) Satellite constellation. Each satellite is in
a strategic orbit (usually to attain global cov-
erage).

(b) Satellite train. Several spacecraft follow the
sametrajectory (i.e. sameorbit butdifferentmean
anomaly).

(c) Cluster. Spacecraft are maintaining tight
flight formation.

(d) Swarm. A cloud of several satellites.

Figure 1.4: DSS taxonomy (I): constellation, train, swarm and cluster.

1.1.3 Architectural taxonomy for Distributed Satellite Systems

While the term DSS refers to systems where multiple satellites operate to achieve a common
goal, several distinctive characteristics can be used to classify DSS into different categories.
Among theaspects that canbe regarded for classificationpurposes, themost frequent onesare:
(1) the spatial distribution of satellites and orbital configuration; (2) the dynamic nature of their
network and system structure (i.e. static, dynamic, opportunistic); and (3) structural functions
(e.g. availability of inter-satellite links, exchange of resources, etc.) This section briefly intro-
duces a proposed taxonomy of DSS, identifies themain traits of each system type, and provides
examples of flying or plannedmissions for each case.

Constellations (Fig. 1.4a): Formed by groups of satellites orbiting independently, constella-
tions have their number of units and their orbits designed to achieve continuous coverage over
vast geographical areas (e.g. oceans, polar, high population density areas, global). This type of
satellite architecture is implemented by global navigation satellites like GPS, GLONASS, Galileo,
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and BeiDou or by modern communication satellites like Iridium and Globalstar. While commu-
nication constellations do have inter-satellite links (optical or RF) to implement the network for
which they have been designed, most Earth-observing constellations tend to lack this capabil-
ity. Each satellite in the constellation is operating on an individual basis and only interacts with
ground operators to perform its individual function. An extensive review on methods to design,
analyse, deploy, and operate satellite constellations can be read in (van der Ha, 1997).

Clusters (Fig. 1.4c): We call satellite cluster a group of spacecraft which orbit in close form-
ation. This type of satellites do exchange data in order to maintain their spatial configuration,
which is often requiredby their observational requests (i.e. eitherperformingastronomyorEarth
observation, distributed sensors hosted in members of a satellite cluster may require a specific
attitude to properly reconstruct the segmented data.) TerraSAR-X/TanDEM-X (Zink et al., 2008)
and FASTRAC (Muñoz et al., 2012) are successful demonstrations of this concept.

Trains (Fig. 1.4b) are coordinated groupsof satellites that closely followeachother along the
same orbital track. Trains are hybrid architectures featuringmainly heterogeneous components
that perform independent missions. When combined, these individual missions produce syn-
ergistic measurements that satisfy a set of global mission objectives. Examples of these are
the Afternoon train (or “A-Train”) and the Morning constellation, two large satellite formations
dedicated to atmospheric and clouds properties studies which were put in orbit during the last
decade. The Morning Constellation is formed by Landsat-7, EO-1, SAC-C and Terra, which op-
erate as a single mission since 2001 (Graziano, 2012). The A-train, on the other hand, consists
of four NASAmissions and a JAXA mission, the collective observations of which may be used to
build high-definition three-dimensional images of the Earth’s atmosphere and surface (Schoe-
berl, 2002).

Swarms (Fig. 1.4d): Somehow similar to the latter types of DSS, a satellite swarm are
is a network of interconnected satellites that, generally, do not require or maintain a certain
formation. Aside from that, the significant difference with a train or a cluster is the fact that
swarms are envisioned as large-scale DSS—encompassing hundreds or even thousands of
satellites. Because of that, satellite swarms are only feasible if implemented with small space-
craft, which—given their constrained capabilities—reinforce the zoological reminiscence of the
word “swarm” (Gill, 2008). At the same time, their low cost and reduced capabilities also limit the
accuracy of their control whenflying close. When deployed at large-scale (resembling terrestrial
wireless sensor networks), swarms could allow mission concepts that would be impractical or
impossible with current monolithic or multi-satellite missions (Gill, 2008; Manchester, 2015).
Despite this concept is still being explored, the European Space Agency (ESA) demonstrated
their feasibility with the project SWARM, in 2010 (Friis-Christensen et al., 2006).

Fractionated spacecraft (Fig. 1.5a): A completely different structural approach is the one of
fractionated spacecraft, a term coined by Brown and Eremenko (2006) in which individual satel-
lites are built from physically-detachedmodules (Guo et al., 2009). In a fractionated spacecraft,
several modules are envisioned to orbit in close formation in order to wirelessly share their re-
sources and create a satellite infrastructure. Each fraction specialises in a single structural
function (e.g. ground link, data processing, or even power generation). Although the concept
was initially proposed inmid-80s, itwasnotuntil 2006when thedevelopment of afirst technolo-
gical demonstration began: the F6. Standing for Future, Fast, Flexible, Fractionated, Free-Flying
Spacecraft united by Information eXchange (Brown et al., 2006), the F6 project was expected to
demonstrate the feasibility and cost-effectiveness of fractionated spacecraft. Funded by the
Defense Advanced Research Projects Agency (DARPA), the project was cancelled in 2013mainly
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Figure 1.5: DSS taxonomy (II): fractionated spacecraft and Federated Satellite System.

owing to the immaturity of its required technologies (e.g. formation flying, wireless power trans-
fer) and financial strategies.

Nonetheless, fractionated spacecraft are still taken in consideration given the benefits and
new applications that could derive from them. On the one hand, having physically decoupled
modules results in decoupling of pointing requirements. Each module (e.g. sensor) can main-
tain its own attitude and needs not depend upon the operational requirements of other sub-
systems (e.g. power generation usually needs Sun-pointing6) improving, thus, the availability
of the instrument. Moreover, the disaggregation of satellite functions into de-coupled fractions
also allows for in-orbit replacement or addition of new ofmodules (e.g. due to technological im-
provements ormaintenance tasks) aswell as innovative concepts such as in-orbit service areas,
regions in a given orbit where the essential resources are already provided and where payload
modules could be wirelesly tethered.

Federated Satellite Systems (Fig. 1.5b): DSS entailed a significant breakthrough that crys-
tallised with the development of swarms, constellations, trains and the far more challenging
fractionated spacecraft. Nevertheless, the potential of DSS was not fully exploited until the ap-
pearance of the so-called Federated Satellite Systems (FSS). FSS essentially consist in space-
craft networks trading previously inefficiently allocated and unused resource commodities such
as downlink bandwidth, storage, processing power and instrument time. This type of architec-
ture isanalogous toconcepts like the Internetof Things (i.e. multiple interconnecteddevices that
can share information) and cloud computing (i.e. allocation of virtual resources). Initially pro-
posed by Golkar (2013) and thoroughly detailed two years later (Golkar and Lluch, 2015), FSS try
to circumvent the underutilization of expensive space assets in already existing missions. This
approach is also the focus of what other authors called Heterogeneous Spacecraft Networks
(Faber et al., 2014). Coincidentally, both the works on FSS and on HSN argued the need of a co-
operation frame thatallows theexchangeof commoditiesamongamulti-stakeholdernetworkof
operators. Communication among satellites is a fundamental characteristic of the FSS concept.

6 This is true provided that the exchange of resources among the satellite fractions does not impose a certain pointing
requirement.
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Table 1.2: Summary of characteristics for each DSS mission topology, adapted from (Lluch and Golkar,
2015b)

Architecture
type

Mission goals Geometry
configuration

Satellite
distances

Maturity of the concept Year

Constellation Single, shared
among elements.

Structured: walker,
rosetta, flower…

∼103 km. Many deployed constellations
(e.g. GPS, Iridium)

60-70s

Train∗ Coordinated,
shared among
elements.

Structured: same
ground track.

∼102 km. Operative mission: A-train. 2002

Cluster Somemission
goals are shared.

Tightly-controlled close
flight.

∼1m. to
∼1 km.

Demonstrator missions:
TerraSAR-X / TanDEM-X,
FASTRAC.

Late 90s

Swarm Somemission
goals are shared.

Loose, close flight. ∼1m. to
∼1 km.

Demonstrator missions: ESA’s
SWARM

00s

Fractionated
Spacecraft

Multiple mission
goals.

Close flight. ∼1m. to
∼100m.

Pending demonstrator
mission.

1984
& 2006

Federated
Satellite
System∗

Unrelated
mission goals

Opportunistic,
unstructured.

∼103 km. Proof of concept: FSSCat
(Camps et al., 2018), launch
expected in 2020.

2013

∗ Three fundamental differences between a satellite train and a FSS are: (1) the structured nature of the constellation
(in trains), (2) the wider notion of opportunistic cooperation, mission synergies (in FSS), and (3) the likely need of
inter-satellite communication (in FSS).

The federations of satellites are expected to trade with their unused commodities in-orbit as a
means toalleviatemission costs. FSScanbeseenasanalternative to fractionatedspacecraft—
technically more feasible because it could be implemented with readily available technology.
Satellite federations mostly rely upon inter-satellite networking and coordination mechanisms
to create virtual, opportunistic infrastructures with emergent functionalities (Lluch, 2017). A
parallel concept is that of cellularised systems (Kerzhner et al., 2013), where satellite units—or
“satlets”—are virtually aggregated to spawn new, andmore complex, systems.

The taxonomy of DSSmissions is further expanded in (Lluch andGolkar, 2015b)where some
of their architecturally identifying characteristics are structured as shown in Table 1.2. A more
in-depth review of the evolution of DSS missions, and a detailed morphological analysis can be
read in (Selva et al., 2017).

1.2 Motivation: autonomous decision-making in DSS
So far we have presented the current trends in Earth observation and summarised how DSS
and their potential characteristics can be cornerstone to address the ever-increasing user de-
mands. A generic understanding of distributed satellite architectures has been introduced re-
vealingsomeof their operational traits. Seeking toachieve theemergent capabilitiesanalysed in
(Corbin, 2015) and (Lluch, 2017), many of the DSS approaches present structural functions that
could allow them to implement complex communication networks—also for EO applications—
, maintain coordinated flight formation, or distribute computational load among spacecraft.
Most of these structural functions rely upon a number of enabling technologies (Guo et al.,
2009). Selva et al. (2017) identified a number of subsystem-level technologies that must be
evolved in order to make some DSS missions possible, namely, high-precision thrusting and
attitude determination and control; high-bandwidth inter-satellite communications; and high-
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Figure 1.6: Diagrammatic representation of how autonomous operations can maximise the science return
of a satellite mission.

throughput data processing on-board spacecraft. However, the authors of that review made
a special emphasis on multiple system-level capabilities that are also critical for the develop-
ment of successful DSS. Among many of the capabilities—touched upon in previous sections
(e.g. modularity, formation flying, inter-satellite networks)—, Selva et al. also identify some
degree of autonomous decision-making on-board, as a necessary capability to enable DSS con-
cepts (Selva et al., 2017). While implementing inter-satellite networks or flight formation does
also urge to embed some level of autonomous control and management on-board, the system-
level autonomy described in the review highlights the need to increase the cognitive capacities
of spacecraft in order to improve their learning capabilities; allow self-organisation (as in the
concept of opportunistic coalitions proposed by FSS); optimise simultaneous observations; or
coordinate collective measurements to maximise performance, resiliency, and survivability.

The same observationwas alsomade in (Iacopino and Palmer, 2013). Seven different points
are presented as a justification and motivation of autonomy in DSS. Two of them are, perhaps,
slightly more straightforward to grasp because they can also apply to the operation of mono-
lithic satellites: themaximisation of science return, and reduction of operational costs. Satellite
systems are usually tied to the delivery of commands (i.e. decisions made by ground operators
on-ground) through ground station passes. This may hinder the amount of data captured by the
system if observation opportunities are lost during the process (i.e. because decisions can not
be made until operators contact the spacecraft). On the other hand, satellite operations that
are totally ground-based require the steering of human resources to monitor and command the
satellite. These resources generate mission costs that can hardly be ignored and which will en-
dure throughout the whole mission lifespan.

Iacopino and Palmer also motivated autonomous decision-making in DSS as a means to
achieve most of the qualities and emerging capabilities enumerated in previous sections: flex-
ibility, responsiveness, fault tolerance, and the enabling of new mission concepts. However,
a final consideration that is rarely mentioned in other contexts is the inherent ability to handle
large-scale, complex systems. Oneof themainarguments thatwill bediscussed throughout this
thesis is the fact that managing massive EO infrastructures composed of multiple, heterogen-
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eous, multi-stakeholder satellites may be deemed outright infeasible without a certain degree
of autonomous decision-making capabilities. Many of the envisioned DSS concepts are pos-
ing the potential benefits of not only distributed, but also decentralised operational concepts.
Willing to orchestrate the decisions in these scenarioswith human-in-the-loop operational con-
cepts, or even with purely ground-based control systems, could be simply impractical. Apart
from facilitating emergent capabilities, autonomous decision-making could allow the realisa-
tion of large-scale systems that are too large for a single central entity to organise. Especially
due to knowledge being utterly distributed in space.

Nevertheless, providing autonomous decision-making to DSS has still not been practically
demonstratedat the level evoked in (Selva et al., 2017), nor have their benefits beenproven com-
pared to traditional operational schemes. Some flying missions and published studies have
explored decision-making on-board monolithic satellites and have translated such high-level
capability to specific components and functions in a system—mostly as planning and schedul-
ing capabilities (Iacopino and Palmer, 2013). In works related to DSS, however, autonomy has
not been explored in a holistic manner—i.e. as an operational feature that touches upon many
aspects of the design—nor has it been approached as a factor to promote the sought qual-
ities commented above and explored in detail in Section 1.3.6. Therefore, the exploration of
system-level autonomous capabilities and its challenging realisation for DSS, naturally consti-
tute a fruitful field of study and has become one of the main motivations of this doctoral re-
search. The following section continues by exploring the specific works that relate to this body
of knowledge, detailing the state-of-the-art and introducing the theoretical background for this
thesis.

1.3 Literature review
The trends in Earth observation and satellite systems presented before has hopefully outlined a
clear understanding of the context in which this doctoral research is framed. The work presen-
ted herein is committed to explore the design aspects of DSS that have the ability to operate
under minimum human supervision. In order to do so, this thesis has leveraged existing theory
and constructs belonging to two main areas of knowledge. First, systems architecting is posed
as the overarching methodological frame to model, analyse, and optimise high-level designs of
a DSS. Secondly, the bodies of knowledge relating to Multi-Agent Systems (MAS), decentral-
ised and distributed planning, and collective behaviours are linked to the characterisation and
implementation of autonomous functions for satellite systems. These two fields of study and
their critical research are presented in this section in order to later identify the objectives of this
thesis. At the end of each thematic block, Sections 1.3.5 and 1.3.10 summarise themost critical
aspects and points to some of the research gaps that motivated this thesis.

1.3.1 Systems architecting

Systems Engineering (SE) is an interdisciplinary field of engineering that integrates both tech-
nical and human-centred body of knowledge. As such, SE is concerned with managerial, oper-
ational, manufacturing, control, and purely technical aspects of the development cycle in order
to analyse and elicit the customer needs and the required functionality in the early stages. The
ultimate objectives of SE are to design and manage a complex system; a process in which mul-
tiple factors play a defining role. Systems architecting, on the other hand, is the discipline that
explores the functional and physical entities of a system, and their inter-relationships. It is un-
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clear whether either of the two disciplines are encompassing the other or what are the exact
differences between them. Albeit SE is older and arguably broader discipline than systems ar-
chitecting, bothattempt toguide the very early decisions in theconceptionof asystem. Likewise,
both SE and systems architecting adopt a holistic thinking frame and are centred in delivering
value to stakeholders as opposed to uniquely optimising performance or cost. If one could dis-
cern a dissimilarity between the two, it would perhaps be the fact that systems architecting is
more focused on the exploration of the space of alternatives that ultimately derive in design de-
cisions. Because of that, the field under discussion of this doctoral research will adopt systems
architecting as its main theoretical background.

Before exploring the relevant literature in this field, it is necessary to define what the term
system architecture exactly refers to. Putting it in the words of Crawley, a system architecture is
‘an abstract description of the entities of a system and the relationship between those entities.
In systems built by humans, this architecture can be represented by a set of decisions.’ (Craw-
ley et al., 2016) Form and function are also described by Crawley et al. as two fundamental—
and clearly unequivocal—categories of entities: the latter refers to the activities, operations or
transformations that cause or contribute to performance—ultimately leading to the delivery of
value—;whereas the form is the actual embodiment of a system (physical or informational) that
is instrumental in the execution of the function. The form is often also named structure, a term
that evokes the static nature of the formal traits of a system. Furthermore, the description of
a system architecture will also entail the definition of the interfaces of that system with its en-
vironment (e.g. how entities that are external to the system’s boundaries interact with it). In the
systemsarchitecting discipline, thiswhole—and rather abstract—effort iswhatwe call the sys-
tem architecting synthesis (SAS) and it can, at times, be aided by the use ofmodelling languages
such as the Unified Modelling Language (Booch et al., 1997), the System Modelling Language
(Friedenthal et al., 2014), or the Object Process Modelling (Dori, 1999). This overarching meth-
odological frame comprises four steps: (1st) the identification of stakeholders, their needs, and
the external influences (such as regulations or corporate strategies); (2nd) the transformation of
needs into goals of the system; (3rd) the generation of a concept (i.e. the identification of sys-
tem functions that can satisfy the goals found in the previous step); and (4th) the mapping of
functions to the entities of the system and their interrelationship. Ultimately, a SAS results in a
distilled set of decisions that can be combined to obtain a solution to the architecting problem.
These choices are generally referred to as decision variables7 and can be explored systematic-
ally toproduceuniquearchitectures (Simmons, 2008). Aspart of aSASprocess, severalmethods
have been proposed as a means to cope with the complexity usually exhibited by systems, and
include activities such as decomposition, modularisation, and tradespace exploration.

Thesystemarchitectingproblems (SAP)areoftenbedescribedandsolvedasMulti-Objective
Optimisation (MOO) problems (Andersson, 2001; de Weck, 2004). A generic MOO can be formu-
lated as shown in Eq. (1.1). With x being a vector of n decision variables and p a vector of fixed
parameters, let J be a column vector of z objectives whereby Ji ∈ R. A MOO problem is that
which tries to maximise all the elements of vector J , simultaneously. In the most generic case,
each decision variable xi could be represented as a continuous numberwithin the range defined
by its upper and lower boundaries xi(lb) and xi(ub), respectively. Likewise, in order for the solu-

7 Crawley et al. make a clear distinction between a design and an architectural decision. In their view, architectural
decisions do not “materially impact technical parameters or importantmetrics.” [my italics] This is not to say that the
architectural decisions will never influence design choices, but rather emphasises that architectures are not actual
designs. Architectures are high-level descriptions of a solution that will be passed to the design team in the form of
recommendations. However, given that the research presented in this thesis does not touch upon the actual design
of any given architecture, the term design decisions or design variables will be used equally to denote architectural
decisions.
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tion x to stay within the feasible domain S, both the equalities and inequalities in vectors h and
gmust be satisfied.

max. J (x,p) where J =
[
J1(x) · · · Jz(x)

]T
s.t. g (x,p) ≤ 0 x =

[
x1 · · · xi · · · xn

]T
h (x,p) = 0 g =

[
g1(x) · · · gm1

(x)
]T

xi(lb) ≤ xi ≤ xi(ub) h =
[
h1(x) · · · hm2(x)

]T
x ∈ S

(1.1)

With such generic understanding of the problem, de Weck (2004) and Andersson (2001)
recall that two classes of methods exist in MOO literature: scalarisation methods and Pareto
methods. In the former the problem is translated to a single-objective, scalar problem through
the definition of an overarching objective function that aggregates the individual objectives in
vector J . Furthermore, all the known scalarisation methods assign a priori preferences (i.e.
weights) during the formulation of their aggregation functions. This implies that such prefer-
ences can be established before the optimal solutions are found, and assumes that the object-
ives canbemeaningfully combined (deWeck, 2004). Paretomethods, on the other hand, express
preference a posteriori and keep all the objectives disaggregated. Generally, this second type of
MOOmethods resort to concepts like Pareto-dominance to analyse and compare solutions. The
simplest andmost common scalarisationmethod is theweighted sum (WS) approach (Eq. (1.2)).

max. f (J (x,p)) =

z∑
i=1

wi ki Ji with w =
[
w1 w1 w2 · · · wz

]T
where

{
w ∈ Rz

∣∣∣ wi > 0 ,

z∑
i=1

wi = 1

}
and x ∈ S

(1.2)

InWS, a single aggregation function (f ) combines the objectives in anadditivemanner. Each
objective Ji is scaled with a constant ki and weighted with wi ∈ R, which can take an arbitrary
value. In practice, the weights tend to represent stakeholder preferences with fidelity. Another
scalarisationmethoddiscussed by deWeck, utility theory, will be discussed in the following sec-
tion.

In most cases, a SAP will rely both upon domain-independent knowledge—such as optim-
isation, search, and analysis—aswell as upon domain-specific knowledge needed to formulate
the list of variables, their ranges and constraints (Selva, 2012). Moreover, Selva also argues that
these problems are often very hard to solve because:

1. they are non-convex (i.e. they have multiple optima);
2. they are integer, mixed-integer, or—most often—combinatorial because variables are

binary or integers with a discrete set of allowed values;
3. they are large-scale because the domain is usually a combinatorial space; and
4. they are strongly non-linear (especiallywhen functionsJi computeEOmetrics like revisit

time, coverage, and the like).
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1.3.2 Tradespace exploration

Architecting a system is rarely as simple as evaluating a small set of designs based on a single
metric. Instead, it is a process that tries to understand the many trade-offs that exist among
design decisions, the impact ofmetrics and their influence upon the solutions, and the coupling
between decisions (Crawley et al., 2016). Similarly, this analytical exercise is infrequently per-
formed on small sets of designs, but is rather applied to large combinatorial spaces that require
the assistance of decision tools to be able to cope with dimensionality and grasp the complex
relations that exist among decisions.

Tradespace exploration is a quantitative tool that supports system architecting by repres-
enting the relations that canexistbetween twosystemattributesofanarchitectingproblem. The
word attribute is used here to express a ‘numerical quantification of a benefit provided by [...] an
engineering system’ (Ross et al., 2010). In other words, it expresses one of the characteristics
of the solution that system architects are interested to observe because it—partially—relates
to the quantity of value delivered by the system. Owing to its exhaustive exploratory nature, the
representation of attributes in a tradespacemay inherently inducedecision-makers to lower the
fidelity of architecturemodels, and forces the simplification of the problem to a few keymetrics.
In contrast, it allows to explore a large number of designs in a more systematic manner.

Fig. 1.7a shows an illustrative tradespace plot where solutions are represented in the space
x1-x2. For the sake of illustration, these two attributes have been given a name in an effort to
lead the reader towardsameaningful interpretation. Themost straightforward information from
tradespace plots are the identification of clusters, and areas of infeasibility. Ideally, system ar-
chitectswill yearn for solutions that lay as closeaspossible to thebestpossible values forx1 and
x2. This region is usually idealistic and unlikely to achieve, hence its name: utopia. In Fig. 1.7a,
it is impossible to obtain a solution that presents both a very small lifecycle cost and a high
performance, simultaneously. There are, however, some architectures that present efficient
performance-cost ratios when compared to others. These solutions are denoted non-inferior
(or non-dominated, Pareto-optimal) and lay on the Pareto frontier. The Pareto frontier encom-
passes all the architectures that present good tradeoffs between the attributes. The concept of
Pareto-dominance is, in effect, one of the principles that allows to screen for superior architec-
tural alternatives, and is often used in SAP. Its formal definition is as follows:

Attribute x2 —e.g. Total lifecycle cost
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Figure 1.7: Tradespace representation examples.
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LetJ (a),J (b) ∈ Rz be two feasible objective vectors in amaximisation problem. The solution
giving J (a) is said toweakly dominate J (b) if and only if the condition in (1.3) holds.

J (a) ≥ J (b) and J (a) ̸= J (b) (1.3)

which can be expressedmore precisely as:

J
(a)
i ≥ J

(b)
i ∀i

and J
(a)
i > J

(b)
i for at least one i

(1.4)

In addition, the solution a is said to strongly dominate b if all the J
(a)
i elements are strictly

greater than J (b)
i . Thus, the architectures in thePareto front are all equally optimal and selecting

among non-inferior (i.e. Pareto-optimal) architectures can only be carried out through criteria
that is not captured in the tradespace representation (e.g. constraints on the metrics, analysis
of additional attributes, budget caps, etc).

Nevertheless, systemarchitecting problems are often concerned aboutmultiple attributes.
More generally put, systemarchitecting is centredaround thedelivery of value, towhichmultiple
attributes can contribute simultaneously. We have seen how one of the most common scalar-
isationmethods aggregated individual objectives into a single figure for the purpose of solving a
MOO problem. This brings us to present a second, and very frequent, scalarisation method that
is often paired with tradespace exploration approaches: Multi-Attribute Utility Analysis (Fish-
burn, 1970; Keeney and Raiffa, 1993; Stewart, 1992).

The concept of utility is well known in the domains of operations research, systems engin-
eering, and economy, where it originated (Von Neumann and Morgenstern, 1953). In SE, the ex-
pected utility of a system is essentially used to capture stakeholder preferences or value of a
design (Ross et al., 2010). The fundamental goal of utility is to transform such preferences into a
numerical figure, while preserving ordinality and transitive properties (Lluch, 2017). Therefore,
for any given quantifiable attribute in the system, a utility function U(·) is provided which, for
convenience and simplicity, encodes stakeholder satisfaction in the range [0, 1]. The aggreg-
ation of multiple preferences is addressed in Multi-Attribute Utility Theory (MAUT). In MAUT,
the utility aggregate (often namedMAU) encompasses a non-linear combination of stakeholder
preferences—encoded as utility. The most common aggregation form in MAUT is multiplicative
(Torrance et al., 1982; Ross et al., 2010), as shown in (1.5).

U(J) =
1

K

[
z∏

i=1

(
1 +KkiUi (Ji)

)
− 1

]
(1.5)

1 +K =

z∏
i=1

1 +Kki (1.6)

where ki are individual, arbitrary weights for each objective Ji, and the parameterK is used to
scale the cross-utility term toensure that theoverall utility remains in the interval [0, 1] (deWeck,
2004). The relation betweenK and ki is the following:

if
∑z

i=1 ki > 1, then − 1 < K < 0, (1.7a)

if
∑z

i=1 ki = 1, then K = 0 and the additive model holds, and (1.7b)

if
∑z

i=1 ki < 1, then K > 0 (1.7c)

Noteworthy, if the sum of weights is equal to 1 (1.7b), we need to resort to the additive form
of MAU as shown in Eq. (1.8), which is close to the WS approach.

U(J) =

z∑
i=1

kiUi(Ji) (1.8)
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With either of the aggregation approaches, we can ultimately compress the problem and
analyse trade-offs between the system’s cost and its benefit, or value, in view of stakeholders’
preferences. Fig. 1.7b illustrates this analysis in the form of a tradespace plot. In this case, the
tradespace compares solutions with an aggregated utility that we name “science” in an effort to
convey the overall capabilities of a spaceborne EO system.

The use of the tradespace exploration paradigm and multi-objective optimisation is fairly
common for architecting space systems (Ross et al., 2004). A handful of works from groups at
the Massachusetts Institute of Technology (MIT) have adopted this methodology in studies re-
lated to the design and analysis of space systems. It has been applied to a number of decision-
making methodologies, such as Object Process Networks (OPN) (Koo, 2005) and Architecture
Decision Graph (ADG) (Simmons, 2008). McManus and Schuman (2003) used the tradespace
paradigm combined with MAUT in order to explore the theoretical performance of more than
a hundred orbital transfer vehicle designs. They used an additive utility model which aggreg-
ated the system capability, response time, and the required delta-V and traded solutions in the
cost-utility space to assess viability. Similarly, de Weck et al. (2004) discussed the possibility
to deploy communication constellations in a progressive manner, and utilised tradespace rep-
resentations to assess optimal system evolution paths through the deployment process. A few
years later, McManus et al. (2007) also applied tradespace methodology in the core of a much
wider analysis and visualisation study for the design of a space tug for LEO orbital debris. Chat-
topadhyay (2009) proposed a tradespace methodology to compare architectures and quantit-
atively models their value within a System-of-Systems (SoS). Rudat (2013) developed a frame-
work for designing manned missions to the Moon, Mars, and near-Earth asteroids and lever-
aged tradespace representations to analyse the tensions between lifecycle costs and the initial
mass of the system in LEO.More recently, SanchezNet (2017) proposeda framework to architect
next-generation satellite networks and investigate the trade-offs between infrastructure cost
and service provision for latency-sensitive applications. Other relevant works, also on satellite
networks for communications, can be read in (Aguilar et al., 2019; Davison et al., 2017; Sanchez
Net et al., 2015). Lluch (2017) presenteda framework that combined tradespaceexplorationand
MarkovDecisionProcesses to articulate the benefits of cooperative space systems (federations,
in particular).

As non-exhaustive as the previous list can be, it hopefully reflects the maturity and use-
fulness of the tradespace exploration paradigm. However, tradespace representations should
be regarded as a useful construct that can assist decision processes and which can verteb-
rate much elaborate methods in system architecting endeavours. Because a tradespace often
represents large combinatorial spaces, it can be computationally infeasible to explore the full-
factorial space of solutions. Therefore, SAPmayneed to applyDesign of Experiment (DoE)meth-
odologies (Uy and Telford, 2009), or evolutionary heuristic techniques (e.g. Hitomi, 2018; Paek,
2012) in order to make the architecting problem tractable. Section 1.3.4 will delve further into
the literature and focus on specific methods and design-oriented frameworks for satellite sys-
tems that have extended—and crystallised from—the tradespace exploration paradigm,multi-
objective optimisation, and multi-attribute utility theory.

1.3.3 Ilities

In previous sections we have discussed the aggregation of system attributes and the analysis
of tensions between pairs of attributes for the purpose of gaining insight about the architect-
ing problem and be able to issue informed design recommendations. Attributes have been in-
troduced as needs or expectations of a system. A trade-space allows to reflect upon the ten-
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Figure 1.8: Tensions in the realisation of a project (left), reproduced from (de Weck, 2004); and orthogonal
contributors to system’s needs (right).

sions that constantly exist in the fourmain objectives in every product or systemdesign, namely,
schedule, risk, performance, and cost (Maier and Rechtin, 2010). It is precisely the interrelation
between objectives, thatmotivates deWeck to formalise a systemarchitecting problemasMOO.
Fig. 1.8 represents the four dimensions in the realisation of a system and attempts to evoke how
pulling along one of the dimensions compromises the other objectives. Engineering efforts are
generally concerned about satisfaction of user needs, cost (monetary or non-monetary), and
risk (e.g. probability of failure) (deWeck, 2004). Certainly, one could envision these three generic
groups as three instances of systemattribute. Very often, however, these needs are also defined
in terms of intangible properties. In other words, they are defined as qualities that the system is
expected to attain in parallel to functional goals, e.g. flexibility, reliability,modularity. We group
these qualitative attributes under the name ilities. Their definition, in the words of de Weck et
al. goes as follows: ‘ilities are desired properties of systems [...] that often manifest themselves
after a system has been put to initial use. These properties are not the primary functional re-
quirements of a system’s performance, but typically concernwider system impacts with respect
to time and stakeholders than embodied in those primary functional requirements’ (de Weck et
al., 2011). Another way to reason about ilities is also depicted in Fig. 1.8 (right). Acknowledging
that these attributes do act as adownstream influence in a design process (Crawley et al., 2016),
then we can deem them as part of the expectations that we have of the system. That notwith-
standing, their qualitative nature fundamentally distinguishes them from other non-qualitative
ones (e.g. mass, spatial resolution, andmultiple other tangible attributes). Therefore, it is prob-
ably more compelling to conceive system’s expectations as an aggregation of orthogonal attrib-
utes: quantitative and qualitative. Expressing that as a vectorial cross-product ultimately helps
to convey the perception that a system that is unable to meet either of the two sub-goals (i.e.
n⃗a, n⃗a = 0⃗) does not satisfy the needs altogether.

Amyriad of different ilities have been addressed in engineering problems in the past. How-
ever, their definitions are fuzzy and can be overlapping at times. Multiple instances of ilities
can be found in (de Weck et al., 2012), where the authors studied multiple semantic groups and
scrutinised dependencies and incompatibilities between attributes of this type. Expanding the
previous work, (Ross and Rhodes, 2015) proposed a prescriptive 20-category semantic basis for
specifying a set of ilities. A much broader analysis of their semantics, synergies, and conflicts
is presented in (Boehm and Kukreja, 2017). The impact and relevance of ilities in the context
of DSS has also been surveyed in (Lluch and Golkar, 2015b), where authors highlighted that the
value proposition of DSS is often articulated through ilities.
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Nevertheless, not all the ilities need be architecturally distinguishing (Crawley et al., 2016).
If the architectural decisions do not define attributes that relate to a given set of ilities, then we
might not be able to distinguish—and choose—an architecture based upon such qualities. In
order to address that, ilities have been incorporated in a variety of system architecture studies.
A notable example is that ofMcManus et al. (2007), which describes ilities in terms of the three-
dimensional space composed of: (1) changes in context (i.e. the development and operational
environment of the system); (2) changes in the needs; and (3) changes in the system itself (i.e.
its form). With this definition they go about the realisation that the dynamics among these three
factors determines the perceived success of the mission, and propose that ilities be defined as
strategies thatallownavigating in this space (i.e. to let thesystemchange in response tochanges
in context and needs). Based on this theoretical framework, McManus et al. explore—through
a trade-space—the survibability of a satellite system. They choose to display the solutions in
three unequivocal dimensions: cost, utility, and survibability. Noteworthy, their separation of
utility (i.e. quantitative attributes) from survivability and cost, seems to concur with the notion
conjured in Fig. 1.8 (right).

Apart from McManus et al., other authors have explored multiple other specific ilities in
the systems engineering literature. The definition of flexibility has been tackled in (de Neufville
et al., 2004) as a strategy to deal with uncertainty at the planning and design phase. The same
ility was studied in (de Weck et al., 2004) for systems with uncertainties and changing con-
texts. The work was illustrated with the analysis of a large-scale communications satellite
network. Using lattice analysis, de Weck et al. propagated uncertainty across program life-
cycle and identified the benefits of staged deployment of satellite constellations, which allow to
elude endogenous and exogenous uncertainties and capture upside opportunities. Later, Silver
and de Weck (2007) continued exploring flexibility and proposed Time-Expanded Decision Net-
works (TDN), a methodology to explore this quality in large-scale complex systems. TDN model
system lifecycle changes as directed acyclic graphs with their edges determined by switches
of—potentially—high costs. The methodology reduces cognitive burden on system designers
by systematically optimising the path to the best alternative scenarios. Ultimately, Nilchiani
also addressed flexibility and presented a unified and comprehensive framework for measuring
the value of flexibility in space systems based on six fundamental elements through which flex-
ibility in engineering systems can be mapped (Nilchiani, 2005; Nilchiani and Hastings, 2007).
Adaptability and changeability have both been explored in (Fricke and Schulz, 2005) and (Engel
and Browning, 2008), where authors propose strategies towards the mitigation of hindrances
to design upgrades, in an effort to maximise the system’s lifecycle. Upgradability was also
investigated in (Joppin, 2004), a study focused in the value proposition of in-orbit satellite up-
grades, and serviceability of satellites. Changeability has been discussed in Ross et al. (2008b)
as a core concept to encompasses multiple related ilities—flexibility, adaptability, scalabil-
ity, modifiability, and robustness—that are accounted to contribute to three main categories:
change agents, change effects, and change mechanisms. Through a graph-based modelling
of changes and supported by the filtered outdegreemetric, Ross et al. reason that the assess-
ment of this all-encompassing changeability allows for maintaining value delivery in spite of
changes. They incorporate their methodology in a tradespace exploration process. In a similar
manner, (Beesemyer, 2012) leveraged previous definitions of changeability and analysed the
mechanisms that allow system changes to occur. In the samework, evolvability is characterised
as a subset of changeability that encompasses ten different design principles. Leveraging the
works of McManus et al. and Ross et al., Richards (2009) develops amulti-attribute tradespace
exploration methodology for suvivability to improve the generation and evaluation of surviv-
able alternatives during conceptual design phases. McGhan et al. (2016) focus on resilience
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and achieve risk-aware flight software architectures through the design of an activity planning
executive that trades multiple complementary qualities.

1.3.4 Methodologies and frameworks for space systems architecting

Having presented the foundations of system architecting upon which this doctoral research is
grounded, this section concludes the exploration of this topic by reviewing specific methodolo-
gies and frameworks oriented to the analysis, design, and optimisation of space systems.

One of the fundamental contributors of modern methodologies in satellite system archi-
tecting is the Generalized Information Network Analysis (GINA) (Shaw, 1998; Shaw et al., 2001).
GINA is grounded on the appreciation that almost all multi-satellite systems are involved in in-
formation collection and dissemination and can be treated as modular information processing
centres. This methodology is mainly aimed at maximising performance while minimising life-
cycle costs. Adopting a communications theory approach, performance is measured in terms
of four Quality of Service (QoS) metrics—isolation, integrity, rate, and availability. Later, GINA
was combined with multidisciplinary design optimisation methods and originated the Multi-
objective, Multidisciplinary Design Optimisation System Architecting (MMDOSA) (Jilla, 2002).
These methodologies used parametric models to evaluate large sets of designs in a systematic
and user-centric manner.

Leveraging the systematic design space evaluation and parametric modelling of the afore-
mentioned methodologies and combining these with MAUT, resulted in the much more generic
Multi-Attribute Tradespace Exploration (MATE) methodology, conceived by Ross and Hastings
(2005). This methodology, which essentially integrates the body of knowledge described in Sec-
tions 1.3.1 and 1.3.2, has been applied in numerous studies and has evolved into more com-
plex and domain-specific frameworks (Ross et al., 2010). The same group of authors proposed
Epoch-Era Analysis (EEA) (Ross and Rhodes, 2008) by leveraging works on dynamic architec-
tures and network-based approaches (e.g., deWeck et al., 2004; Silver and deWeck, 2007). EEA
was integrated into MATE to create the Responsive Systems Comparison (RSC) method (Ross
et al., 2008a), an all-encompassing value-centric tool that has been used for designing satellite
networks (Rader et al., 2014) and evaluating DSS (Corbin, 2015), among other applications.

Relying upon quantitative tools such as MAUT limits the applicability of methodologies to
problemswhere stakeholder preferences have reduced ambiguity. Golkar (2012) addressed this
issue and proposed a methodology to architect unprecedented large infrastructures for which
objectives are ambiguous or unclear: the Delphi-Based Systems Architecting Framework (DB-
SAF). Aimed at defining, identifying, characterising, mitigating, and analysing ambiguity in the
architecting process, DB-SAF is influenced by multiple disciplines. It is defined as an iterative
process decomposed in 10 steps and include—among others—problem formulation, design of
interviews, reviews with a panel of experts, or elicitation of expert value judgement. The Mars
Sample Return campaign is presented as a case example in (Golkar and Crawley, 2014), showing
how DB-SAF can inform decision-makers in contexts of deep ambiguity.

Most of the tools in systems architecting are concerned with the exploration of a large
number of alternatives, defined as high-level design decisions. These tools can be instru-
mental to guide designers in early stages of the development process, but present limited fidel-
ity in the description and evaluation process of architectural candidates. In order to overcome
this lack, Selva (2012) proposed a methodology that is best suited in applications where de-
signers seek higher modelling fidelity. The Value Assessment of System Architectures using
Rules (VASSAR) is a rule-based framework—as opposed to decision-based (Simmons, 2008)
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or meta-language-based (Koo, 2005)—that includes fuzzy expert logic to make architectural
decisions for Earth-observing satellite systems. The methodology solves multiple different in-
stances of systemarchitecting problems (which are carefully scrutinised in Selva, 2012) through
knowledge-intensive evolutionary search heuristics. A remarkable characteristic of VASSAR
is that it is instrument-centric. The framework is specifically tailored to EO systems and is
aimed at addressing the three classes of architectural decisions that affect value delivery the
most: selecting the most suitable instruments, allocating these instruments into satellites,
and scheduling the launch of the resulting missions (Selva and Crawley, 2013). Additionally,
VASSAR is a methodology that combines quantitative and semi-quantitative data for the as-
sessment of value provided to stakeholders, through approximate or fuzzy evaluation rules (and
hence avoiding the need of extensive simulation executions to obtain figures of merit).

Another remarkable framework that leverages expert knowledge to explore solution spaces
is the one in (Hitomi, 2018). This work fills an important gap that exists between generic multi-
objective evolutionary algorithms (MOEA) and knowledge-intensive expert systems. Hitomi a-
cutely argues that althoughMOEA techniques could be applied to efficiently optimise SAP, their
lack of domain- or problem-specific knowledge hinders their usability. This owes to the fact
that they are not designed to exploit the characteristics of the systems they intend to optimise
and hence precludes them from finding solutions in a computationally efficient manner. Hitomi
circumvents this by proposing a knowledge-intensive MOEA alongside a knowledge-driven op-
timisation algorithm that allows to efficiently search the tradespace of solutions. The algorithm
utilises an adaptive operator strategy to control the application of knowledge-dependent and
knowledge-independent operators (Hitomi and Selva, 2018; Hitomi et al., 2018). Moreover,
Hitomi also proposed a data mining algorithm that can extract new knowledge during the pro-
cess by identifying common design patterns in high-quality solutions found by the optimisation
algorithm.

In the domain of Model-Based Systems Engineering (MBSE), NASA Goddard Space Flight
Center is leading the development of Tradespace Analysis Tool for Constellations (TAT-C), an
extensive, design-oriented, optimisation framework specifically tailored for Earth observation
constellations (Le Moigne et al., 2017). TAT-C is aimed at assessing DSS architectures through
an in-depth, knowledge-intensive tradespace exploration and seek to analyse and optimise the
performance-risk-cost triplet in Pre-Phase A studies. The tool has been presented in a series
of papers that describe its main model- and simulation-based modules, namely, an executive
driver that handles user inputs and orchestrates the execution; a Tradespace Search Iterator; a
tool to estimate costs and risk; the main knowledge-base of this software; an averaged J2 orbit
propagator and coveragemodule; and amodule to produce other relevantmetrics. In (Nag et al.,
2016), the authors introduce themain components and showhow the tradespace search engine
streamlines the generation and evaluation of solutions. TAT-C constrains the size of the design
space by limiting decision choices a priori (e.g. based on user inputs like expected revisit time,
instrument field-of-view, and orbital altitude, the tool estimates upper and lower boundaries
in number of spacecraft). The types of constellations and constellation patterns that TAT-C is
capable of enumerating are discussed in (Nag et al., 2017a) along with the ability to analyse the
impact of staged deployments. (Nag et al., 2018) briefly touches upon the modelling of instru-
ments and explores the applications supported within TAT-C (bi-static radar, occultation, etc).
Albeit still under development—as of early 2019—, TAT-C is a promising tool that could greatly
benefit the design of future DSSmissions.

Other significant research on systems architecting methodologies and optimisation of
satellite systems includes (Raz et al., 2018), (Paek et al., 2018), and (Garcia Buzzi et al., 2019).
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In the former, Raz et al. investigate a new holistic process to the architecting problem based on
set-theoretic design space nomenclature that integrates functional, physical, operational, and
allocational views of a system architecture. Specific Design of Experiment (DoE) methods are
evaluated in order to assess their suitability and limitations for design-space characterisation.
Paek et al. (2018), on the other hand, presented an optimisation algorithm that solved con-
stellation designs for a given set of EO requirements, namely, minimum observations per day,
solar elevation angles, maximum ground sampling distance (GSD), minimum time gap between
observations, repetition cycles, pixel size, and focal length. Integrated within comprehensive,
multi-instrument, design frameworks, this algorithm would allow for the reduction of design
spaces and alleviate computational burdens in extensive explorations of DSS tradespaces. Ul-
timately, thework byGarcia Buzzi et al. (2019) proposes a system-levelmethodology to optimise
the design of NASA’s TROPICS constellation. The mission is characterised by the need to ac-
cess tropical target areas as frequently as to allow the observation of precipitation structure for
storm systems and tomonitor the thermodynamics of the troposphere. As part of the architect-
ing process, Garcia Buzzi et al. devised amethodology that assessesmultiple temporal metrics
and leverages their geographical distribution to analyse them as statistical variables. Among
other attributes, multiple metrics related to the time gaps (i.e. time difference between two
consecutive observations of a single geographical location) and surveyed in their work, in order
to propose a tradespace exploration based on coverage analysis and revisit time statistics.

1.3.5 Key findings (I): architecting DSS

The list belowsummarises themost critical aspects found in literaturewith regards toDSSchar-
acteristics, satellite platforms, anddesignmethodologies and tools, and is aimedat bridging the
state-of-the-art of this field with one of the lines of research of this thesis: the architecting of
distributed EO systems.

• Research in systems architecting has emphasised overtly the need for integral de-
cision tools specifically tailored to distributed EOmissions. Modern optimisation
techniques (e.g. evolutionary algorithms) have evolved theoretical methodologies
into complex decision-support frameworks.

• One of the main concerns in state-of-the-art frameworks continues to be the di-
mensionality of the problem. Tradespace exploration approaches that rely upon
simulatedmetrics present critical performance issues thatmay hinder the analysis
of candidate architectures.

• Evolvability and flexibility of the design are key for distributed satellite systems,
since they are prone to be deployed in stages. Achieving value-robust architectures
that are optimised to account for context changes has been a fruitful research en-
deavour during the last decade.

• The value proposition of DSS architectures is often articulated through ilities.

• The quantification and analysis of ilities has been explored in detail inmany system
architecting problems. Qualitative attributes have complemented the evaluation
of candidates and have been analysed to derive design decisions beyond technical
terms. However, to the best of our knowledge, ilities are usually not aggregated into
utility figures nor have been explicitly modelled as attributes in MAUT. As a res-
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ult, stakeholder preferences have not been expressed for qualitative attributes
and their quantification has not driven the optimisation or tradespace exploration
in computational and systematic approximations.

• TAT-C is an extremely comprehensive tool that was presented in parallel to the re-
searchproposalof thisdoctoral thesis. Whilestill underdevelopmentatNASA/ESTO,
the development of this tool is the epitome of the first key point.

• In recent researchoriented toDSS, architectureshave tradedwithdifferent satellite
platform types, as well as instruments. Cost, and successful commercial ventures
have ushered in an era where small satellite technologies are valuable, comple-
mentary assets to traditional spacecraft. Nevertheless, tradespace studies have
rarely considered heterogeneous systems where synergies between small space-
craft and large satellite platforms are assessed and exploited.

• A clear change of paradigm is that of Federated Satellite Systems. The value of FSS
has been explored extensively in literature, where authors have mostly focused on
in-orbit data services. This emphasises the value of inter-satellite links and net-
worked constellation designs, which could also improve some of the performance
metrics in new designs.

1.3.6 Autonomy and autonomous systems in space

The remaining of this section is devoted to structure the knowledge on autonomous space sys-
tems, specially focusing on works oriented to satellite-based mission. Before that, however,
it may be relevant to recall the formal definition of the word autonomy. The first entry of the
Merriam-Webster dictionary defines autonomy as ‘the quality or state of being self-governing.’8

Similarly, another intuitivedefinitionderiving from itsetymology inGreek (αύτονομία (autonomia),
a juxtaposition of the terms auto—self—and nomos—law), defines autonomy as the ability to
do what one does independently, without being forced to do so by some outside power. From
a modern philosophical standpoint, the term is also used to refer to ethical and political self-
determination of persons, and has played a very important role in the definition of the iden-
tity and the interactive capacities of individuals (Moreno et al., 2008). Certainly, the notion of
autonomy ispositionedat the intersectionofphilosophical, scientific, andengineering interests.
Autonomous systems are commonly defined as systems capable of generating their own laws
or norms, but their modelling and design approaches are motivated by different perspectives
and interests.

Autonomy is not a functional or formal attribute of a system architecture per se. Instead,
it is a characteristic that can be attributed to a system’s function. We can say that a system is
autonomous with respect to a given function—structural or not. A very thin line separates the
semantics of thewords autonomous and automatic. In our point of view, an autonomous system
(i.e. a system that performs a given function without human intervention) entails a much wider
and all-encompassing perception of the ability to operate independently; it involves a certain
cognitive or reasoning process—not necessarily a very complex one—that is in a sense related
to the notion of agency and the idea of making decisions. An automatic process, in contrast, in-
volves amuch lower level of abstraction and no reasoning; it is a deterministic—and sometimes
intricate—combination of responses to stimuli that have been designed to produce a fixed res-

8 https://www.merriam-webster.com/dictionary/autonomy
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ult (i.e. the function). That notwithstanding, the notion of autonomy is non-absolute and usu-
ally fuzzy—when not elusive—; it can be understood as a characteristic that can be achieved
to a certain degree and at many system levels (Antsaklis, 2011). In the domain of engineering
systems, autonomy has been explored as a means to achieve decentralised, cooperative self-
organisation—e.g. autonomousvehicles (Veresetal., 2011); InternetofThings (Dingetal., 2013);
robotic teams (Bresina et al., 1998; Ducatelle et al., 2011); in coordination and path planning of
Unmanned Aerial Vehicles (Böhmand Schulte, 2012; Ryan et al., 2007); Cyber-Physical Systems
(Torres et al., 2017). In control systems, Vamvoudakis et al. argued that full autonomy enables
mission tailoring, control reconfigurability to allow for safe recovery, improved responsiveness
and agility, and a general adaptability to changing environmental conditions (Vamvoudakis et
al., 2015).

In Section 1.2 we recalled that two of the benefits of autonomous operations in monolithic
spacecraft were themaximisation of the science return (as illustrated in Fig. 1.6) and the reduc-
tion of operational costs. It should also be noted that autonomy in satellite systems has tradi-
tionally been sought to copewith communication delays; limited systemobservability (only pos-
sible during a satellite pass over a ground station); and to improve the system’s tolerance to fail-
ures (Iacopino and Palmer, 2013; Ocón et al., 2010). A thorough review of autonomous functions
in space missions can be read in (Jónsson et al., 2007), where the authors explore autonomy
as an on-board characteristic that can be applied to: (1) intelligent sensing; (2) fault manage-
ment; (3) mission planning and execution; and (4) distributed decision-making. These four cat-
egories of functions acknowledge the breath of the concept of autonomy in satellite systems.
The first two comprise spacecraft-level functions such as on-board data processing and space-
craft re-configurability as a means to improve the missions’ science return and reliability. The
third and fourth functions, on the other hand, relate to a much more integral idea of autonomy.
Mission planning and execution involves the definition of high-level mission goals upon which
spacecraft reason in order to produce self-managed sequences of actions (e.g. subsystem-level
configuration commands for each satellite component). In DSS, autonomous decision-making
can also translate to high-level coordination among satellites—to coordinate sampling activit-
ies or create opportunistic coalitions—, aswell as low-level actions tomaintain flight formation
or exchange resources in-orbit. The European standard ECSS-E-ST-70-11C is regarded in (Tip-
aldi and Glielmo, 2017) as a reference framework to define and implement different degrees of
autonomy. In line with that, the authors complete this technology review by looking at the re-
lated areas of Fault-Detection and Isolation (FDIR) techniques, On-Board Control Procedures
(OBCP),9 and autonomous spacecraft reconfiguration schemes based on Markov Decision Pro-
cesses (MDP).

Nonetheless, the notion of a system-level autonomy in DSS is oftenmotivated by the prom-
ised qualities and emergent capabilities of distributed architectures. Systems that have the
ability tomaximise their capabilities and survivability in the presence of failures, do require cer-
tain operational mechanisms to circumvent critical situations without the need of human in-
teraction. This is arguably the value of resilient systems, which, in the occurrence of perturb-
ations, are able to return to nominal states (e.g. continue delivering data). As prevalent as in-
ternal FDIR techniques and autonomous management of failures are within satellite units, the
mechanisms to achieve operational resilience and reliability in DSS could also benefit frommin-

9 OBCP are a standard name given to complex command sequences that are stored on-board spacecraft and that can
be triggeredby tele-command. Theyareparticularly critical in deep-spacemissions, suchasRosetta, in order to over-
come low bandwidth and long communication delays between spacecraft and operators. Once triggered, OBCP are
interpreted by executive systems. The term originated at the European Space Agency and has been used in multiple
missions (Prochazka and Hjortnaes, 2010; Steiger et al., 2005)
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imum operator intervention. Similarly, the first two functions explored in (Tipaldi and Glielmo,
2017) are also applicable in the context of a system of satellites that implements distributed
remote-sensing techniques. Autonomous decision-making in DSS should support the various
forms of collaborative sampling identified in (Corbin, 2015). The decisions issued within a DSS
are ultimately aimed at orchestrating systems withmultiple contributing workers that can have
either diverse sensing capabilities (i.e. different instruments on-board) or different resource
capacities. Furthermore, autonomous decision-making could also facilitate sporadic coalitions
among two satellite systems (i.e. FSS) and spur emergent behaviour like in any other complex
system-of-systems (Maier and Rechtin, 2010). In other words, the kind of holistic autonomous
operations highlighted in (Selva et al., 2017) goes beyond spacecraft-level decisions and also
encompasses coordination mechanisms among spacecraft. For the lack of a better termino-
logy, throughout this document wewill often refer to these integral decision frameworks as self-
organisation schemes or operational schemes, to distinguish them from the concept of decision-
making in systems architecting.

1.3.7 Autonomy as self-organisation

The literature is abundant with works on self-organising systems. In the broader domain of arti-
ficial intelligence, self-organisation is generally understood as the ability of a system to exhibit
complex collective behaviours without the entities of that system being explicitly programmed
to do so. Self-organising systems are, by definition, subject to their own norms; they present
notorious autonomous capabilities. Moreover, this notion of autonomy is indeed system-level,
since it involves an emergent capability of the system, not a capability of its individuals. Note-
worthy, this system-wise, emergent behaviour is actually achieved without the need of sophist-
icated cognitive processes (Tummolini et al., 2009). As a matter of fact, one of most thought-
provoking attributes of self-organising systems is that collective behaviours actually emerge
from interactions among the entities of the system—its individuals—, andnot bymeansof com-
plex internal reasoning. In order to elaborate on this, we shall now explore the main charac-
teristics of self-organising systems to be able to address, in the following section, their formal
modelling as generic Multi-Agent Systems (MAS).

Inmanycases, researchershave focusedon theanalysisand reproductionofself-organising
systems that are readily present in nature as a source of inspiration. Among all species of the
animal kingdom, the behaviours of some insect families have fruitfully given birth tomanyworks
in the areas of swarm intelligence and collective organisation (e.g. Vassev et al., 2012). From a
biological standpoint, the principles of swarm intelligence (SI) have been explored in (Garnier et
al., 2007). In SI, systems are described as dynamic structures with multiple individuals wherein
emergent capabilities are achieved through non-linear interactions among these. Moreover,
these systems are usually multi-stable; i.e. upon system perturbations, they may converge
to multiple stable solutions—called bifurcations—depending on their initial conditions. This
relates to the non-linear dynamic nature of interactions in most insect species. Based on the
observation of behaviours in a variety of insect breeds, Garnier et al. (2007) motivated the idea
that complex, emergent behaviours are a combination of four primary functions that are in-
teresting to recall herein since they could constitute the forging elements of an autonomous
system: (1) coordination; (2) cooperation; (3) deliberation; and (4) collaboration. The definitions
of these four functions are gathered in Table 1.3. Furthermore, four characteristics were also
identified by Garnier et al. as the fundamental “ingredients” to promote self-organisation:

• The positive feedback that results from the execution of simple behavioural “rules of
thumb” that promote the creation of structures.
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Table 1.3: Primary functions that contribute to collective behaviours as identified by Garnier et al.

Function Definition

Coordination The appropriate organisation in space and time of the tasks required to solve a specific
problem. This function leads to specific spatio-temporal distributions of individuals, of
their activities, and/or the results of their activities in order to reach a given goal. Syn-
chronisation, ordering of actions, and distribution of spatial areas would be clear ex-
amples of this function.

Cooperation This type of function occurs when individuals must combine their efforts in order to suc-
cessfully solve a problem that goes beyond their individual abilities. We could refer to
cooperation when a given activity requires the aggregation of capacities of many entities
(e.g. the force of several robots needed to move an big obstacle).

Deliberation The mechanisms that occur when a colony (i.e. a group of individuals) faces several op-
portunities and choose at least one of those. An abstract illustration of this behaviour
would be to collectively decide between two paths while following a given direction.

Collaboration Different activities are performed simultaneously by groups of specialised individuals. In-
deed, Garnier et al. point out that this specialisation can rely both on behavioural and
morphological differentiation (with ageing being a determining differentiation factor in
individual specialisation).

• Anegative feedback that counterbalancespositive feedbackand leads to thestabilisation
of the collective pattern.

• Amplification of the fluctuations by positive feedback. Because the authors are consid-
ering behaviours found on social insects, they regard their actions as stochastic. There-
fore, they pose that randomfluctuations are crucial to the discovery of new solutions (and
hence it is crucial to amplify those fluctuations).

• Multiple direct or indirect10 interactions.

The understanding of self-organising systems in nature has been the catalyst of multiple
algorithms that mimic the aforementioned characteristics as a means to solve multi-objective
optimisation problems. Yang et al. (2018) reviewed the common characteristics of some of the
most popular algorithms in the domain of SI, such as Ant Colony Optimisation (ACO), Particle
Swarm Optimisation (PSO), the Genetic Algorithm (GA), the Flower Pollination Algorithm (FPA),
Cuckoo Search (CS), the Bat Algorithm (BA), and the Firefly Algorithm (FA). The reader is directed
to (Yang et al., 2018) for a complete description of these algorithms, as well as some of their
areas of applicability. Their broad generalitymakemost of these algorithms suitable candidates
to address a variety of optimisation problems, including SAP (Selva, 2012) and satellite mission
planning.

1.3.8 Multi-Agent Systems

In the previous section we have seen how bio-inspired, self-organising systems emerge from a
set of individuals cohabiting in a common environment. We have summarised the character-
istics that enable emergent behaviour, as described in literature, and have emphasised how
emergent capabilities are forged from interactions among individuals rather than sophisticated
cognitive processes. We have also briefly introduced how SI has leveraged collective behaviours
found in nature to derive generic optimisation heuristics, andhowmimicking the underlying pro-

10 The term stigmergy is oftenused to refer to indirect communicationbetween individuals in some insect species. Pher-
omone cues left in the insect’s trails constitute the principal element in this communication mechanism.
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cesses of these natural structures can provide systems with artificial, system-level autonomy
(e.g. Schwarzrock et al., 2018; Werfel et al., 2014). Before going into detail on the modelling of
autonomous satellite systems, we shall introduce another key theoretical background for this
thesis: Multi-AgentSystems (MAS). Agents inMASaredefinedas independent entities thathave
the ability to perceive and perform actions on a shared environment. This definition suits the
modelling of generic EO satellite systems since each satellite is capable of performing an action
on the environment (i.e. perform a remote-sensing activity) as well as perceive it (i.e. a satellite
agent can know its orbital location, and may be aware of the geo-location of its measurements,
the presence of clouds, lighting conditions, etc.) Certainly, MAS can be representations of a de-
centralised, distributed system, or just a computational tool to address organisation schemes
and optimisation problems in a variety of contexts (Franklin and Graesser, 1996). MAS have
shown to be convenient modelling frameworks when the system presents the following char-
acteristics (Sycara, 1998):

• problems are too large for a centralised approximation/realisation;
• problems can be naturally regarded as a society of autonomous interacting components;
• information sources or expertise is spatially distributed;
• and—most importantly in the context of DSS—when some performance or qualitative
enhancement is required (e.g. computational efficiency, reliability, extensibility, robust-
ness, maintainability, responsiveness, flexibility).

Because MAS need not necessarily be implemented in the actual physical system—their
implementation can be merely computational—, the definition of the environment, as well as
the actions and perceptions of an agent can vary. For the sake of a generic understanding, it is
fair to describe the environment as the medium where agents cohabit and that allows them to
interact. Thismedium can have different properties, such as the ability to bemodified by agents
(either as an action or as a means of indirect communication, or “stigmergy”).

Several excellent surveys on themodelling and implementation of Multi-Agent Systems for
collective decision-making exist in literature. Rizk et al. (2018) defined their constituent blocks
(agents, interaction, and decision-making) and categorised their modelling into four MAS ap-
proaches: those formulated as MDP (Tipaldi and Glielmo, 2017); game-theoretic approaches,
especially useful to analyse and implement competitive MAS (Raz et al., 2019); SI descriptions
(i.e. bio-inspired); MAS modelled as graphs; and decision-making as distributed cooperative
control (i.e. based on control theory, as in (Vamvoudakis et al., 2015)). They provide a number of
illustrative examples for each case and discuss some of their challenges, including scalability,
computational complexity, the heterogeneity of agents, and dynamic environments. Rossi et al.
(2018), on the other hand, analysed the types of problems that have been solved as MAS and
categorised tens of collective behaviour algorithms used in their implementations. This review
leverages the three tasks that can be addressed by MAS as defined by Brambilla et al. (2013)
in the context of robot swarms: (A) spatially-organising behaviours, where agents coordinate
to achieve a given spatial configuration and have negligible interactions with the environment;
(B) collective explorations, where the agents interact with the environment but have minimal
interactions among themselves; and (C) cooperative decision-making, where agents both co-
ordinate among themselves and interact with the environment to accomplish complex tasks.
Problems involving Earth-observing systems could naturally fit within two sub-tasks of these
groups: area exploration (belonging to group B), and task allocation (member of the group C).

Distributed satellite architectures are composed of observing agents that could have the
ability to interact through direct communication (e.g. RF or optical inter-satellite links). Their
goal is ultimately to perform sampling of the Earth, but they are precluded from the ability to
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modify their environment altogether. Thus, indirect communication (i.e. through the environ-
ment) is not explicitly possible for MAS-based DSS that are implemented in the actual physical
system (although one practical approximation will be presented in Section 1.3.9). That notwith-
standing, this limiting condition does not exist in purely computational implementations of or-
ganisation schemes for DSS. The following section will present some examples of these. The
behaviours exhibited by satellite swarms that maintain flight formation to perform coordinated
sampling could certainly be understood as spatially-organising behaviours (group A). However,
this kind of autonomous function has already gained a lot of traction from the aerospace in-
dustry and has been demonstrated in missions like PRISMA (Gill et al., 2007), ESA’s upcoming
PROBA-3 (Llorente et al., 2013), or even for CubeSat initiatives like the QB50 (Gill et al., 2013).
Thus, this doctoral research is not aimed at contributing to the problem of autonomous fight
formation—which belongs to the domain of attitude control, flockingmechanisms, and in-orbit
manoeuvrability—and will focus on the type of problems that belong to task distribution, co-
ordination, and scheduling as a means to manage collective sampling activities and improve
system-level qualities. In satellite systems, the component that performs this function is named
Mission Planning and Scheduling system (MPS). In the next section, we shall scrutinise their
main characteristics and review recent developments in this area.

1.3.9 Mission Planning and Scheduling

As recalled above, the autonomous capabilities of satellites usually entail functions like fault
management, on-boarddataprocessing, ormissionplanningandexecution (Tipaldi andGlielmo,
2017). In theirmore general notion,MPSare computational tools designed to solve the temporal
allocation of satellite resources that satisfy the goals of the mission. These systems are essen-
tial during the lifespan of a satellitemission, since they optimise the operations of space assets.
Regardless of their size and capabilities, satellites have finite resources on-board (e.g. energy,
data capacity) and are complex machines that must be operated under specific conditions and
safety margins. Traditionally, MPS have been dependable programs that were executed in serv-
ers located in operation control centres. Their ultimate function was to issued time-tagged
commands that would be uploaded to single spacecraft via ground station links. In essence,
MPS replace one of the functions of mission operators (i.e. to produce plans of actions) and al-
low themission to operate under reducedhumansupervision. Fig. 1.9 illustrates a commonMPS
systemwherein plans of action are generated by a computational tool executed on-ground. As a
matter of fact, risk aversion of spacecraft operators and the relative immaturity of the hardware
and software technologies that are required to compute plans of action on-board have typically
led to MPS developments that run on ground. The generation of plans of action is generally
driven bymission goals set by operators, which include parameters like the set of target areas,
observation deadlines, or priorities. The definition of such parameters ultimately satisfies the
needs of EO data consumers (i.e. stakeholders, services, applications, etc.) Upon the upload
of mission plans (which may indeed encompass encapsulated commands and the triggering of
complex OBCP), executive systems on-board translate operator-level orders into routines and
subsystem commands.11 However, these conventional operational schemes lack many of the
benefits of autonomousmissions, like the responsiveness, fault tolerance, and improvement of
performance conveyed in Fig. 1.6 (p. 16). Here again, the elusive definition of what autonomous
operations actually are could suggest that most conventional missions are indeed autonom-

11 It is worthy ofmention that the vastmajority of satellite operators are still reluctant to control spacecraft under these
conditions. Unless the mission explicitly requires to use encapsulation and OBCP (e.g. deep space missions), most
conventional satellite operations are strictly tied to the upload of time-tagged commands that are delivered to sub-
systems by simplistic and extremely robust command-steering mechanisms.
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Figure 1.9: Simplified representation of a conventional Mission Planning and Scheduling system.

ous, owing to the optimisation of plans of action being delegated to computational tools. For
the remaining of this document, we will broadly and unequivocally refer to MPS as tools that
support decision-making. Whether or not that decision-making endeavour enhances some of
the autonomous functions of a satellite mission, is something very particular of each case. This
section will explore design and implementation characteristics of multiple MPS because they
are seen to be potential contributors to holistic mission management frameworks and could be
cornerstone in the realisation of complex operational schemes that enhance autonomy. Prac-
tical developments of MPS—both executed on-ground and on-board—have certainly looked
into that direction, and have exhibited a myriad of characteristics that could be adopted to
implement autonomous organisation schemes also in the context of a DSS.

Formally, mission planning can be formulated as multi-dimensional Knapsack problem. A
Knapsack problem is expressed like Eq. (1.9), whereX is a vector of N decision variables xi ∈
{0, 1}. In an EOmission, xi usually represent activities that spacecraft can perform (e.g. obser-
vation requests, maintenance tasks, data downlink) such that xi = 1 indicates that the activity i
will be performed and xi = 0 does otherwise. The benefit obtained from the execution of a given
activity can be formulated as an arbitrary value βi. Additionally, Eq. (1.9b) expresses arbitrary
resource constraints. Mostmission plannersmaximise benefitwhile ensuring that resource ca-
pacities are not exceeded (e.g. battery or memory capacities). A scheduling problemmaymodel
M different resources, with their associated capacities (cj ). Ultimately, activities are assigned
some capacity consumption r(j) for each resource j. Noteworthy, Knapsack problems are a sub-
set of the Travelling Salesman Problem (TSP), which is known to be NP-complete.12

max. f(X) =

N∑
i=1

βixi (1.9a)

s.t.
N∑
i=1

r
(j)
i xi ≤ cj ∀j = 1, . . . ,M (1.9b)

Scheduling described as a Knapsack problem is certainly the most common approach for
single satellite missions as well as many constellation systems (e.g. Baek et al., 2011; Bianch-

12 P is the class of problems for which we can find a solution in polynomial time. NP is the class of problems for which
we can check a solution in polynomial time. NP-hard problems are at least as hard as the hardest problems inNP, i.e.,
any NP problem can be reduced to any NP-hard problem in polynomial time, but they do not necessarily belong to NP.
NP-complete problems are simultaneously NP and NP-hard. This assumes that P ̸=NP.
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essi et al., 2007; Grasset-Bourdel et al., 2011; Wu et al., 2016). GMV’s ‘flexplan’, the scheduler of
the Sentinel–S1 constellation, was designed to optimise both the usage of the recording device
and the ground station network usage (Tejo et al., 2014). In contrast, the planning framework
for the tandem TerraSAR-X/TanDEM-X was not producing optimal solutions, but rather feas-
ible allocations of resources for the two spacecraft (Lenzen et al., 2011). Instead of optimising
datatakes—which was reported to be computationally unfeasible—the goal of this MPSwas to
find a schedule for up to 500 datatakes per day, in a timely manner (the orders are generated
only six hours before they are uploaded to both satellites).

In parallel to this generic problem formulation, the literature is also abundant with works
that represent MPS problems with the notion of timelines, wherein each variable is defined in
the time domain (Beaumet et al., 2011; Ceballos et al., 2011; Chien et al., 2010; Lenzen et al.,
2011; Tonetti et al., 2014). In timeline-based MPS, the plan generated by the scheduling al-
gorithm is composed of several timelines, the values of which are computed with models that
capture time-dependent dynamics, as illustrated in Fig. 1.10. This commonality was identified
by Chien et al. (2012a), in an article that surveys the characteristics of many automatedmission
operations. Another common feature identified in the review is the decomposition of activities
into Hierarchical Task Networks (HTN) and the need to include task dependencies and temporal
constraints in mission scheduling algorithms.

The inputs of anMPSsystemare generally given in the formof a set of activities and the cur-
rent state of the system. An activity, or “task,” is an atomic description of an action that could be
carried out by a satellite. Often, these activities are relatively high-level and are linked to actions
that produce some benefit, such as capturing a given target area (e.g. Baek et al., 2011; Bon-
net and Tessier, 2008; Chien et al., 2005a; Damiani et al., 2005), or downloading payload data
through a given ground station (e.g. Lee et al., 2016). In timeline-based representations, activ-
ities are usually described as a start time and duration. Nonetheless, an activity can also en-
compass intricate internal processes that have variable duration depending on the actual state
of the system (e.g. calibrating an instrument, de-spinning reaction wheels, pointing antennas).
Temporal constrains that relate to other activities (e.g. precedence, simultaneity) can normally
be expressed as Allen interval algebra relations (Araguz et al., 2018a). Activities can also be tied
to specificmodes of operation of the system, as in (Tonetti et al., 2014). The timeline of activities
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for theMPS of the DEIMOS-2 satellite, maps activities to its five high-level modes of operations,
namely, sun-pointing for housekeeping, nadir-pointing, image acquisition, orbit maintenance
and control, and download.

On the other hand, an MPS expects the current state of the system in order to perform in-
formeddecisionsabout theupcomingactions. States tend tobemodelledasarbitrary resources
that encapsulate a system constraint in the form of a capacity. Researchers at NASA JPL ana-
lysed the modelling of resources in (Chien et al., 2012a) and identified some of the following
characteristics:

• Atomic resources: activities that can not overlap can formally be described through re-
sourceswith binary capacities (Fig. 1.10, blue timeline). When an activity is scheduled (i.e.
xi = 1), the atomic resource towhich it is linkedwill have capacity 0, thus preventing other
tasks from being scheduled simultaneously (see resource constraints in Eq. (1.9b)).

• Depletable resources, on the contrary, can take an continuous capacity (Fig. 1.10, yellow
timeline). These resources can be consumed bymore than one activity at a time (provided
that the condition in (1.9b) holds). These resources are also called “consumable” in (Car-
rel and Palmer, 2005), where their capacity cj is formulated as a normalised real number
(0 ≤ cj ≤ 1). In general, we will label resources as depletable when their capacity returns
to their maximum value once all consumptions are removed. Examples of this type of re-
sourcemodel are recording devices. Storing a certain amount of information in them (e.g.
some bytes) depletes by a certain amount—proportional to the amount of stored inform-
ation. Upon the execution of an activity that deletes this block of information from the
device, the resource returns to the original full capacity.

• Conversely, resources that do not return to their maximum capacity upon removal of con-
sumptions will be called cumulative resources (Fig. 1.10, orange timeline). Cumulative re-
sources can also present non-binary capacities but their modelling forces the applica-
tion of negative consumptions in order to be restore their capacity. Energy resources (e.g.
batteries) are usually modelled as cumulative; once the energy device reaches a certain
capacity (e.g. depth-of-discharge), it can only restore its previous value by applying aneg-
ative power input (e.g. charging batteries with energy from solar panels).

• Intrinsic maximum/minimum values: Given that resources are, in many cases, repres-
enting physical variables, some of them will present intrinsic restrictions that have to be
modelled accordingly. Whenmodelling the resource energy, the designer has to take into
account that the devices that store energy can do so up to amaximum amount of charge;
i.e. when the state-of-charge of a battery reaches 100%, energy in excess will be lost.

In addition to resource constraints it is also common to consider additional restrictions dur-
ing the planning process. These restrictions can help reduce the solution space of the schedul-
ing problem and may encode complex operations constraints. Among the common ones, vis-
ibility with ground stations is the most common constraint (e.g. Lee et al., 2016). Safety and
other constraints have also been considered in MPS as a means to prevent damage to satel-
lite components and instruments (e.g. direct Sun exposure (Chien et al., 2005a), sensor mutual
exposure in a tandem (Geyer et al., 2010)), to impose technological restrictions—e.g. multiple
simultaneous downloads to the same ground station (Geyer et al., 2010)—, or to reflect envir-
onmental conditions—e.g. cloud coverage (Baek et al., 2011), illumination conditions (Beaumet
et al., 2011).

Mission planning problems are ultimately optimisation problems subject to constraints. As
such, multiple different solving techniques have been proposed in literature, including dynamic
programming (Damiani et al., 2005), linear programming (Cho et al., 2018), constraint program-
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ming, and a variety ofmetaheuristics. Greedy Search (GS) and Local Search (LS) have been used
in systems wherein producing sub-optimal solutions is not critical (Beaumet et al., 2011; Chien
et al., 2005a; Grasset-Bourdel et al., 2011; Lenzen et al., 2011; Tonetti et al., 2014). Tabu Search
(TS) was used by Bianchessi et al. (2007) to produce optimal solutions in amulti-satellite, multi-
orbit scheduling problem. Wu et al. (2016) borrowed the concept of tabu lists from TS, and suc-
cessfully integrated them inaSimulatedAnnealing (SA)plannerdesigned tocoordinateEOactiv-
ities of spaceborne assets and unmanned aerial vehicles simultaneously. Wu et al. had also ex-
plored the combination of twometaheuristics a few years before, in an algorithm that addressed
task scheduling for agile satellites in two phases (Wu et al., 2013). The work leverages the clus-
tering of satellite activities as graph networks to constrain the solution space, and then pro-
poses to improve the solver performance by combining LS with Ant Colony Optimisation (ACO).
Iacopino et al. (2014) also explored swarm intelligence algorithms like ACO as ameans to optim-
ise a constellation of several EO satellites. They proposed a solution that leveraged graph rep-
resentations of an MPS problem to allow for highly reactive planning schemes where satellites
could perform coordinated (i.e. shared) measurements. Each activity was represented twice in
a graph: one node representing xi = 1 whereas the other representing xi = 0. Activities where
then concatenated to complete the graph, which also allowed for shared nodes amongmultiple
satellites. ACO was used to solve the shortest paths from the first to the last activity of each
satellite at the same time. Given the iterative nature of ACO, Iacopino et al. also considered the
possibility to insert new nodes within an already initialised ACO, in order to improve responsive-
ness when new observation requests are added to the system (e.g. natural disaster). A similar
approach, also leveraging ACO, was used by Ntagiou et al. (2017) to optimise the coverage of an
agile EO constellation. Evolutionary algorithms have also been applied to MPS systems. In par-
ticular, a number of works have relied upon Genetic Algorithm (GA) to performmission planning
for both single-satellite and distributed missions (e.g. Mansour and Dessouky, 2010). Carrel
and Palmer (2005) proposed an evolutionary architecture where GA was relying upon a fast and
independent resource allocator to verify the validity of chromosome strings. Their implementa-
tion was designed to allow multiple resource models to be considered in the planning process,
aswell as to provide a solution of reduced computational complexity that could be implemented
on-board. GAwas also used in theMPS implementations proposed by Baek et al. (2011) and Lee
et al. (2016), which aggregatemultiple criteria (e.g. user priority, profit, performance, duration of
the interval, and others) as part of their chromosome fitness computation. A comprehensive re-
view of the application of GA to satellite scheduling problems, can be read in (Xhafa et al., 2012),
where the authors discuss problem modelling, constraints, chromosome design, and perform-
ance.

Linear integer optimisation (orMixed-Integer Linear Programming,MILP) is a common tech-
nique to model and solve MOO. AlthoughMILP has been extensively applied to the development
of task schedulers for monolithic satellite missions (and countless other systems), its applica-
tion to DSS can also be found in literature. One of themost significant works in the EO domain is
the MPS proposed by Kennedy (2018), which leverages MILP formulation to develop a planning
framework that optimises both image acquisitions and data routing. Kennedy observed that
the need to reduce data access delays can also be tackled during the optimisation of satellite
operations anddevelopeda framework that optimises three types of tasks: observations, down-
links to ground stations, and transfers among satellites. The system consists of a centralised,
ground-based Global Planner (GP) and multiple Local Planners (LP) running on-board. The GP
generates an optimal global solution leveraging the structural information of the system, last
known satellite states, and user requests. The solutions are then disseminated across the sys-
tem and refined by LPs. The LP adheres to strict operational constraints and adjusts the priority
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of observations in order to react to sporadic, high-priority events such as natural disasters. Both
energyanddatastoragearemodelledascritical resourcecapacitiesof thesystem. With that, re-
source allocationand instrument datapathsare optimised through thedefinition of five system-
level metrics (i.e. objectives to the problem), namely, total observation data throughput, age of
information of observation targets (i.e. revisit time), access latency of the instrument data, av-
erage age of information for telemetry and telecommand data, and average energy and storage
margins. These five indicators drove the optimisation of operations towards solutions that sim-
ultaneously maximised science return and the responsiveness of the system. Furthermore, two
very relevant qualities must also be highlighted: (1) the evaluation of performance and optim-
isation of operations in (Kennedy, 2018) was carried out for large-scale systems encompassing
more than one hundred satellites; and (2) the satellite platforms modelled in simulation-based
experiments explicitly considered small-satellite technologies and their limitations. ISLwas as-
sumed to be realised with novel transceivers of moderate bandwidth that could be embarked in
6U CubeSat platforms, whereas on-board instruments resembled high-resolution hyperspec-
tral imagers (6–5 meters GSD).

Adopting MILP modelling and a global–local approach, their simulated systems were con-
sistently capable of optimising the acquisition of fixed areas as well as to attain the observation
and data routing of urgent, one-off targets. While achieving the former was possible through
global optimisation, the latter was mostly achieved by means of local adjustments to existing
plans. All things considered, the contributions of that study demonstrated that scalable and in-
tegral operational frameworks can greatly affect the science return of next-generation satellite
systems and showed that some small-satellite limitations (e.g. reduced power and bandwidth)
can be overcome through automated, system-level orchestration. Nevertheless, three major
concernswere raised by Kennedy (2018) that suggest extensions to his work and emphasise the
need to explore new operational concepts for DSS. First, the definition of target areas is limited
to individual geographical points and does not consider wider regions (e.g. land, ocean, polar
regions, global, etc.) Accesses are determined by means of a 60º target elevation mask and the
MILP formulation does neither consider off-boresight angles in the prioritisation of observation
tasks. Likewise, platform agility is not encoded in satellite modelling. These conceptual limita-
tionswere not trivial to overcome in their framework and could arguably be considered crucial in
some current EO applications (e.g. global coverage, constant observation). Kennedy also poin-
ted out the need to explore and quantify the effects of heterogeneity in DSS: both in terms of
algorithmic performance and system metrics. Albeit the proposed MILP formulation did allow
for the definition of heterogeneous spacecraft capacities. Finally, despite LPs being capable
of partially modifying local data routes and data collection activities, Kennedy noted that the
satellites lacked coordination abilities and mentioned that this might have precluded some of
the local schedule modifications to actually impact upon overall system performance. In other
words, he emphasised the value of autonomous and collective decision-making, and suggested
promising avenues of research in that direction.

Although purely centralised, on-ground MILP approaches may not always be suitable for
collective operations and/or system forms of dynamic nature, some other remarkable works
have also leveraged this representational formality—and many of the available computational
tools13—to orchestrate satellite constellations and optimise their operations (e.g. Herold et al.,
2010; Monmousseau, 2015). In a recent work by Ehsanfar and Grogan (2019), for instance, MILP
formulation has been leveraged to orchestrate the exchange of resources in a network of satel-
lite federates (i.e. FSS).

13 One of the de facto tools to program and solve mixed-integer problems is IBM’s ILOG CPLEX.
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Agent-based MPS

Mission planning described as the optimisation problem in Eq. (1.9) involves three limiting as-
pects:

1. A priori knowledge of the system and its structure: whether the satellite system is com-
posed of a single or multiple spacecraft, the decision variables of a Knapsack-like plan-
ning algorithm inherently depend on the—static—structural information of the system
to be able to allocate resources.

2. A priori knowledge of current user preferences. In the definition of the objective function,
preferences—encodedasweights (βi)—must bedefinedapriori and cannot be changed
throughout the execution of the planning algorithm.

3. Solvers may run on powerful machines, and their implementation might even leverage
parallelisation techniques ofHighPerformanceComputing, but this type of problemsare
not spatially distributable.

These three factors may limit the applicability of Knapsack formulations in the context of
highly dynamic architectures (e.g. opportunistic federations, incrementally deployed constel-
lations, architecture upgrades, and satellite replacements) and do not foster autonomous self-
organisation and emergent behaviour. Furthermore, this type of optimisation problem is not
practical in the realisation of distributedMPS (i.e. where the actualmission planner implement-
ation is also spatially distributed). The heuristics and formulation can certainly consider DSS
representations—as we have seen in the case of MPS for constellations or clusters—but their
ability to be adopted in utterly decentralised contexts (i.e. on-board DSS nodes) is implausible.
On-board technologies, like those of NASA’s Earth Observing-1 (Chien et al., 2010), have proven
thebenefitsof on-boardmissionplanningbutarenotdirectly applicable todistributedmissions.
As discussed in Section 1.3.8, MAS approaches are naturally suited to enhance structural flex-
ibility and adaptability to changing environments, as well as to promote emergent capabilities.
Consequently, someMAS-based and bio-inspired MPS approaches also exist in literature.

A study for the European Space Agency explored and validated the benefits ofMAS techno-
logies in thecontextofEOconstellations (Ocónetal., 2010). TheDistributedAgents forAutonomy
study (DAFA) demonstrated how MAS-based frameworks can improve multiple system qualit-
ies and presented negotiation-basedmechanisms that are suitable to improve the autonomous
capabilities of a satellite system. Like this, other works also considered MAS as suitable mod-
elling approaches. In particular, Bonnet et al. (2015) proposed an organisation scheme for het-
erogeneous satellite constellations that relied upon AMAS4Opt, a generic framework that can
be used to address optimisation problems based on cooperative, self-adaptive MAS (Kaddoum,
2011). Bonnet et al. solved the dynamic planning of an EO mission by describing an architec-
ture that had nine different types of agents. Three of these agents interact to find a solution to
the scheduling problem: the satellite, request andmesh agents. In addition, three active agents
and three passive agents allow them to model observational constraints (cloud coverage, solar
ephemeris, ground stations) and the system resources (battery, attitude, memory). With this ar-
chitecture, the authors demonstrated the application of MAS in the context of a multi-satellite
mission, and showed that the resulting system could present enhanced robustness, adaptab-
ility, and flexibility. Like in the latter case, Bonnet and Tessier (2008), Damiani et al. (2005) and
HolmesParker et al. (2012) also proposed an organisation schemebaseduponagent negotiation
approaches. Bonnet and Tessier proposed a consensus algorithm that leveraged the periodicity
of circular orbits. This let their agents estimate the next encounter with others. The authors
used this information to propose a resource-aware task distribution algorithm that allowed co-
alitions and minimised the amount of messages exchanged by agents. That notwithstanding,
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their assumption of static constellations with Keplerian circular orbits limits the applicability
of the approach. Coincidentally, the synthetic environment proposed by HolmesParker et al.
(2012) also considered resource-constrained systems. Moreover, they envisioned heterogen-
eous constellations—CubeSat constellations, to be more precise—and stressed the need to
tackle scalability issues. In their simulations, they were able to compare the changes in per-
formance for constellations of up to 300 agents, characterised by different behaviour models.

In relation to consensus or negotiation-based coordination schemes, Kennedy (2018) em-
phasised a very important remark. He stated that while consensus algorithms in densely con-
nected MAS could achieve optimal coordination of operations, this kind of approaches may not
perform as well in dynamic network topologies constructed with sparse and intermittent links.
Consequently, while considering MAS frameworks to be very suited to implement decentralised
systems, we suggest to exercise caution in the adoption of mission planning algorithms that re-
quire frequent and iterative inter-satellite interactions to arrive at consensus.

Aside frommulti-agent frameworks, bio-inspiredorganisationschemeshavealsobeenpro-
posed. The work of Tripp and Palmer (2010) explored an interesting concept: coordination of
satellite clusters without inter-satellite links. Precluded of the ability to exchange messages to
negotiate or reach consensus, the satellites were only capable to interact through indirect, stig-
mergic communications. Stigmergy is considered one of the underlying biological principles of
complex collective behaviours in multiple insect species (Garnier et al., 2007). When social in-
sects like termites, ants, or wasps travel their colonies, they alter the environment by releasing
pheromones. These biological trails, which evaporate after a period time, are capable to guide
other insects that sense the environment, and have been shown to be cornerstone in their de-
centralised coordination. Stigmergic cues have also been the fundamental inspiration for the
ACOmetaheuristic, which essentiallymimics this biologicalmechanism to optimise paths. Mul-
tiple research on robotics (Ducatelle et al., 2011; Johansson and Saffiotti, 2009; Werfel et al.,
2014) or multi-objective optimisation (Cornejo et al., 2014) have also tried to imitate this pro-
cess. Likewise, it has also evoked the means of indirect communication explored by Tripp and
Palmer (2010). Instead of depositing pheromones in the environment, the system proposed by
Tripp and Palmer considers the ground segment as a shared environment where termite-like
satellites can leave their traces (i.e. through RF communication links). With this, they proposed
a scalable organisation framework that self-regulated the actions of each agent (i.e. observa-
tions) without the need of inter-satellite communication. Although this idea was not adopted
in further research by the authors, it certainly inspired the framework of Iacopino et al. (2014),
which solved mission planning with ACO.

Some commonalities in MPS frameworks

Finally, it is worth to mention that MPS software often present common architectural and run-
timecharacteristics. Theirmost common traits, surveyedby theauthor andpublished in (Araguz
et al., 2018a), are summarised below:

• Reactive/deliberative: Types of spacecraft decision-making can be distinguished by
looking at the type of reasoning implemented in mission planning. Deliberative reason-
ing considers a given scheduling window in the future and propagate spacecraft states
through predictive models. Activities are scheduled in a forward-looking manner and the
execution of the planning algorithm is bounded in time. The planner produces a list of
future actions that need be executed to attain mission goals. Many instances of MPS
are, indeed, deliberative (e.g. Baek et al., 2011; Lenzen et al., 2011; Tonetti et al., 2014.
Reactive reasoning, on the other hand, are constantly governing the spacecraft and issu-
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ing decisions based on the current state of the system. MDP reconfiguration techniques
(Tipaldi and Glielmo, 2017) or negotiation-based task distribution are typically reactive.
Reactive decision-making present limited resource optimisation capabilities in favour
of the elimination of system state uncertainties. As a result, many MPS designs have
adopted hybrid approaches where both reactive and deliberative decision-making are
combined. The most clear example of this can be read (Beaumet et al., 2011), where re-
searchers from the French CNES proposed an autonomous decision-making architecture
for an agile EO satellite that was composed of a greedy heuristic to compute forward-
looking plans of action and a reactive rule-based decision layer that adapted the plan in
accordance to environmental states (e.g. presence of clouds).

• On-board/on-ground: Carrying out mission planning in the space segment has become
technologically feasible thanks to increased computational power of modern on-board
computers. Leveraging the results from NASA’s Remote Agent eXperiment (RAX), Chien
et al. (2005a) proposed an automated planning and execution system that was executed
on-board the Earth Observing-1 (EO-1). Along with a robust executive, the flight software
of EO-1 included the Continuous Activity Scheduling Planning Execution and Replanning
(CASPER), amissionplaner that reacted to inputs fromanon-boarddataprocessingmod-
ule. On-board feature extraction techniques (i.e. clouddetection)were applied to thedata
from its hyperspectral imager in order to detect science opportunities. Based on this in-
formation, CASPER generated new plans of action without the need of human supervi-
sion. This successful demonstration of autonomous mission planning was also applied
to the flight software of the IPEX, a CubeSat mission (Chien et al., 2012b), showing that
current satellite platforms are more than capable to become autonomous—small satel-
lites included. On-ground alternatives are still the most common approaches to MPS.
Unless explicitly noted, most of the cited MPS references are designed to be executed
on-ground. For distributed missions, even MAS-based modelling approaches tend to be
executed on-ground (Bonnet et al., 2015). Conversely, some simulation experiments have
constraint their satellite agents with the communication impairment of orbital trajector-
ies (Bonnet and Tessier, 2008; HolmesParker et al., 2012; Tripp and Palmer, 2010). These
planning approaches could certainly be executed on-board, and have the potential to ex-
ploit autonomous decision-making like EO-1.

• Problem division: Some planning frameworks have solved the problem incrementally by
dividing it in sub-problems that are easier to address. One such common approach is
to produce flexible long-term schedules and to refine the short-term fraction in an iter-
ative manner. The system presented in (Chien et al., 2010) has two separated modules:
the weekly module, executed on ground; and the on-board module. The former leverages
computational resources of dedicated servers and generates weekly schedules 3–5 days
in advance. These schedules are then refined several times until they become available
to the control centre. A second part of the problem is solved on-board, where the space-
craft takes the pre-computed plan of actions as an initialisation of the algorithm and ex-
ecutes a replacement scheduling technique. Damiani et al. (2005) also rely on a similar
approach: a global, centralised planner executed on-ground, generates recommended
schedules that are then refined autonomously by each spacecraft, on-board.

• Interleaved scheduling and re-planning: Given that deliberative planning approaches
rely onpredictivemodels, the further the schedulinghorizon is set, themoreuncertain the
state of the system is. In order to cope with this, someworks are grounded on interleaved
planning that re-plan a portion of the scheduling window (Ceballos et al., 2011; Lenzen
et al., 2011).
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Table 1.4: Summary and characteristics ofMission Planning Systems and autonomous satellite operations
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Baek et al., 2011 · • · · · EO · · · · D G · · • · MOO · GA

Beaumet et al., 2011 • · · · · EO · · · • H B · • • · MOO · GS

Bianchessi et al., 2007 · • · · · EO · · · • D G · · • · MOO · TS

Bonnet and Tessier, 2008 · • · · · EO · · · · D B · · · · TD • NB

Carrel and Palmer, 2005 • · · · · EO · · · · R B · · • · MOO · GA

Chien et al., 2005a • · · · · EO · · • • H H • • • • n/a · —

Ehsanfar and Grogan, 2019(6) · · · • · n/a · • · · n/a MOO • MILP

Chien et al., 2010 • · · · · EO · · · · H H • • • • MOO · LS

Cho et al., 2018 · • · · · EO · · · • D G · · • • MOO · LP/GS

Damiani et al., 2005 · • · · · EO · • · • H H · • · • TD · DP

Herold et al., 2010 · • · • · EO/SR · • · · D G · · • • MOO · MILP

HolmesParker et al., 2012 · • · · · EO • • • • D G · · · · TD • NB

Bonnet et al., 2015 · • • · · EO • • • • D G · · • · MOO • NB

Grasset-Bourdel et al., 2011 · • · · · EO · · · • D G · • • · MOO · GS

Iacopino et al., 2014 · · • · • EO • · • • H G · • · · TD · ACO

Iacopino et al., 2015 · • · · · EO · · • • D G · · · · TD · —

Kennedy, 2018 · • · • · EO • · • • D H · • • • MOO · MILP

Lee et al., 2016 · • · · · EO · · · • D G · · • · MOO · GA

Lenzen et al., 2011 · · · · • EO · n/a · • H G · · • · F · GS

Mansour and Dessouky, 2010 • · · · · EO · · · • D G · · • · MOO · GA

Monmousseau, 2015 · • • · · EO • · • • D G · · • · MOO · MILP

de Novaes and Vieira, 2013 • · · · · EO · · · · D B · · • · — · —

Ntagiou et al., 2017 · • · · · EO • · · • D G · · · · MOO · ACO

Ocón et al., 2010 · • · • · EO · · • · D B · · · · TD • NB

Tejo et al., 2014 · • · · · EO · · · • D G • • • · MOO · —

Tonetti et al., 2014 • · · · · EO · · · • D G · · • · MOO · GS

Tripp and Palmer, 2010 · · • · • EO · · • • R B · · · · TD · BI

van der Horst and Noble, 2012 · · • · • EO · · · • R B · · · · TD · NB

Vassev et al., 2012 · · • · · SX · n/a · · n/a B · · · · n/a · n/a

Wang et al., 2011 · • · · · EO · · · • D G · · · · MOO · GS

Wu et al., 2013 • · · · · EO · · · • D G · · • · MOO · ACO/LS

Wu et al., 2016 · • · • · EO · • · • D G · • • • MOO · SA/TS

(1) Mission type: Earth Observation (EO); Intelligence, Surveillance and Reconnaissance (SR); Space Exploration (SX).
(2) Reactive and/on-line (R), Deliberative/off-line (D), Hybrid (H).
(3) On-board (B), On-ground (G), Hybrid (H).
(4) Problem: Multi-Objective Optimisation with constraints (MOO); Task Distribution among team of agents (TD) that
does not necessarily optimise timeline or resources; Feasible non-optimal single solution search (F).

(5) Ant Colony Optimisation (ACO); bio-inspired mechanisms with indirect communication (BI); Dynamic pro-
gramming (DP); Genetic Algorithm (GA); Greedy search (GS); Linear Programming (LP); Local search (LS);
Consensus/Negotiation-based (NB); Simulated Annealing (SA); Tabu Search or based on Tabu-list (TS).

(6) This work describes a resource exchangemechanism for FSS (i.e. not an integralMPS) that is presented in a generic
manner and can be applicable to any mission types and tasks.
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Concluding this section, Table 1.4 gathers some of the most relevant bibliographic refer-
ences mentioned above, and identifies many of the distinguishing characteristics of the cited
MPS systems and algorithms.

1.3.10 Key findings (II): autonomy and MPS

This section summarises the second part of the literature review section, enumerating the crit-
ical aspects related to autonomous space systems, mission planning and scheduling for DSS,
and identifying some of the research gaps that have been tackled in this thesis.

• Autonomy is a functional feature that drives decision-making in the areas of fault
management, mission planning, data processing, and collective organisation. A
certain degree of autonomy is seen critical to achieve the emergent capabilities
of DSS (i.e. shared sampling, exchange of resources, etc).

• The following aspects are essential in the exploration of autonomous distributed
satellite missions:
(i) Systems are structurally dynamic; satellite coalitions in FSS aswell as staged

deployments, or evolvablearchitecturesare important factors thatneedbead-
dressed as part of overarching decision-making frameworks for DSS.

(ii) Distributed satellite systems are expected to hybridise small satellite techno-
logies with traditional space assets. Heterogeneity is a key system attribute
that can affect the sensing capabilities of spacecraft, their reasoning or com-
putational capabilities, their inter-satellite communications capabilities, and
the availability of satellite units (i.e. in federated architectures, satellites may
only contribute to a globalmission provided that it does not interfere with their
primary goal).

(iii) Audacious DSS systems are envisioned to encompass several hundreds of
satellites. Scalability is, therefore, crucial characteristics thatneedbe tackled
in the operational frameworks of DSS.

• Multiple practitioners have justified the need of autonomy not only to reduce oper-
ational costs and improve system qualities (e.g. robustness, adaptability, respons-
iveness, performance) but also to copewith ever-increasing complexity. That is es-
pecially true for large-scale, cooperative DSS.

• Multi-dimensional Knapsack formulation is suitable tomodel local resource optim-
isation problems but does generally not provide the means to promote emergent,
collective behaviours.

• The Multi Agent System paradigm is a suitable modelling approach for large-scale,
decentralised, and spatially distributed systems. The fundamental enabler of col-
lective organisation are the interactions among agents.

• Distributed EO problems can generally be captured as collective area exploration
and/or task allocation.

• Many mission planning and organisation schemes have tried to optimise the map-
ping of large target areas but, to the best of our knowledge, none have considered
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globalconstantcoverage. Similarly, thegoalsofautonomousorganisationschemes
has never reflected system-level metrics like revisit time, or latency. Nevertheless,
these performance figures have been considered in multiple system architecting
studies oriented to DSS.

• Some works have aggregated multiple system-level criteria in their optimisation of
spaceborne resource utilisation (e.g. Lee et al., 2016) but this type of approaches
are generally scarce.

• The inherent limitations of small-satellite technologies—especially in terms of
power and communication capabilities—have beenmentioned in the literature but
have not been fully modelled in experimental set-ups.

1.4 Thesis statement
Earth observation entailsmultiple open challenges that are being exploredby the research com-
munity from many different perspectives. Satellite imagery and the derived geospatial and en-
vironmental information has become a major market driver, which has spurred the raise of in-
vestment dramatically. Thenewspacehasattractednewplayers that have revolutionised theEO
industry and have contributed to establishing the societal values of EOat centre of the equation.
New EO systems are not only called to provide very high-resolution data from space, but to ex-
ploit the synergies ofmultiple remote-sensing systems in order to ultimately deliver information
of the planet. In parallel, the advances in miniaturisation of technologies, cloud and multi-core
computing, artificial intelligence, and the ubiquity of connected devices, has fostered the value
propositionof complex system-of-systems thathybridisesmall satellite technologieswith tradi-
tional space assets (Sweeting, 2018). These new systems are expected to provide in-orbit data
services, enhance global temporal resolutions, minimise costs and risk, and deliver a number
of system-level qualities. Many technologies still need to mature in order to enable novel DSS
concepts (Selva et al., 2017), but several research programmesworldwide have already revealed
that distributed satellite systems could have an essential societal impact.

1.4.1 Research questions and objectives

In this context, two fundamental areas still present unanswered questions to which this thesis
aims to contribute: (1) how can we optimally architect a DSS for EO in the context of future Euro-
pean needs?; and (2) what is the impact of autonomy technologies with regards to their formal
design, the achievement of system-level qualities, and the realisation of practical operational
concepts? Under these two overarching themes, we elaborate the following list of objectives
of this doctoral research:
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Theme (A): ArchitectingDistributedSatelliteSystems for futureEuropeanEarthobser-
vation needs.

(A.1) Explore and identify architectural components and system requirements for EO ap-
plications, with a focus on small satellite technologies, architectural heterogeneity,
and cooperation among satellites.

(A.2) Propose an architecting framework that leverages previous methodologies and can
be used in the context of new needs of European users/stakeholders.

(A.3) Investigate the integration of qualitative attributes in architecting frameworks.

(A.4) Demonstrate the practical applicability of the proposed frameworkwith a use-case.

Theme (B): The impact of autonomy in Earth-observing distributed satellite missions.

(B.1) Analyse the fundamental characteristics of different modelling approaches for
autonomous satellite systems.

(B.2) Propose an autonomous organisation scheme for large-scale, heterogeneous,
resource-aware satellite system.

(B.3) Quantify the impact that autonomous operations have on a system based on
experimental results.

(B.4) Lay down the foundations for the design of autonomous software frameworks in
next-generation satellite systems and instantiate them in an actual
implementation.

1.4.2 Structure

Chapter 1 has introduced the context of this thesis and presented itsmethodological frame. We
defined the types of satellite systems of interest and delimited the applications in the context
of the current environmental, societal, industrial, and humanitarian needs. We categorisedDSS
archetypes and described some of themost common structural and functional traits of this type
of missions. Section 1.3 has structured the body of knowledge of the two main thematic areas
in this dissertation, namely, decision-support tools for the architecting of DSS, and autonomy,
planning and scheduling and collective self-organisation in satellite systems. Sections 1.3.5
and 1.3.10 completed the literature review by summarising the most important aspects in re-
lation to the context and objectives of this thesis. The remaining of this document is structured
in two parts, once for each of the thematic areas outlined above.

Chapter 2 gravitates into the architecting processes forDSSandpresents adesign-oriented
optimisation framework that has been used in the frame of the EU-funded project ONION. The
chapter starts with a brief introduction on ONION and its research objectives, and then contin-
ues to explain the optimisation methodology. Section 2.3 describes the goals and steps of the
architecting framework, while Sections 2.4 and 2.5 detail the models, algorithms, and imple-
mentation details of some of them. Section 2.6 delves into the quantitative score that is used
to drive the optimisation process and details each of their contributing factors, their weighting
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criteria, and aggregation functions. The chapter completes by proposing a number of qualitative
attributes andmodels for their evaluation.

Chapter 3 focuses on the case studies that illustrate the application of the architecting
framework. We start by briefly defining two use-cases identified in the ONIONproject, and sum-
marise theperformance requirementselicited for theseEOsystems. For thefirstuse-case (Mar-
ineWeather Forecast in Polar regions, in Section 3.2), we complete the explanation of the archi-
tecture enumeration process and the selection of values for the decision variables of the optim-
isation process. Then, we present the outcomes and detail the influences ofweighting paramet-
ers, showing the effects of stakeholder decisions and demonstrating some of the values of our
approach. We analyse the design space and its trends and decompose the architectural scores
in their contributing factors. The exploration of results for this first use-case is completed by
describing the single most-optimal architectural solution. Finally, we repeat the same steps for
a second use-case (Agriculture Hydric Stress, in Section 3.3), thus demonstrating the generality
of the approach and commenting on the results.

Chapter 4 relates to the design of operational concepts grounded on autonomy. Starting
with the common system traits and elaborating on the specific autonomous function that DSS
could address (Section 4.3), this chapter presents an decentralised, on-board self-organisation
scheme that can be used to orchestrate large-scale, networked DSS. Section 4.4 provides the
modelling foundations that will be used to characterise the system and its behaviour and Sec-
tion 4.5 describes the self-organisation scheme formally. LeveragingMAS constructs and form-
ality, we describe the self-organisation scheme as the internal reasoning performed by agents
(Section 4.6) and a knowledge exchange strategy (Section 4.6.10) that provides the necessary
means for coordination among agents in the systems. Section 4.6.2 describes the underlying
MPS of the system, and the following sections detail every aspect of the autonomous frame-
work.

Chapter 5 discusses the need to characterise autonomous DSS functions, and the im-
pact upon performance and system qualities. This chapter proposes an integral framework
to quantify the goodness of the solution presented in Chapter 4, and introduces some imple-
mentation details of the underlying simulation tool that has been used to generate, emulate
behaviour, and measure response of arbitrary DSS. Section 5.2 centres on the design, Sec-
tion 5.3 enumerates configuration parameters and some guidelines to choose their values, and
Section 5.4 discusses on the type of system-levelmetrics fromwhich one can extract ameasure
of value or goodness. We illustrate the representation of these metrics in the temporal domain,
and propose aggregation strategies to derive evaluation figures.

Chapter 6 presents a characterisation of our autonomous operational framework that is
carried out with the framework detailed in Chapter 5. The characterisation is structured in
four experiments, namely, the characterisation of performance against resource constraints
(Section 6.2.1), the communications capabilities embarked in the satellites (Section 6.2.2), the
scheduling granularity and an internal parameter (Section 6.2.3), and the cognitive abilities of
agents (Section 6.2.4). Then, Section 6.3 shows its application to a large-scale system. In partic-
ular, we emulate the PlanetScope constellation (composed of up to 117 CubeSat-like satellites)
with our autonomous self-organisation scheme and present its resulting performance.

Chapter 7 concludes by summarising the main scientific contributions of this doctoral re-
search for the two thematic areas (Sections 7.2 and 7.3), and suggesting future strands of work
(Section 7.4).
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2
An optimisation framework

for architecting heterogeneous
Earth-observing satellite systems

2.1 Introduction
This chapter delves into the first theme of this doctoral research: solving the systems archi-
tecting problem for new distributed Earth observation missions. We will present an architect-
ing framework that has been developed as part of a multidisciplinary research project, named
ONION. The ONION project was aimed at exploring and addressing the remote-sensing needs
that are currently not covered by existing or planned European programmes. In this context,
the framework detailed herein has been conceived as a tool to support decision-making at early
stages of a mission’s lifecycle (i.e. in Pre-Phase A studies) and to produce design recommenda-
tions for next-generation European EO assets. This chapter introduces the ONION project, and
then continues to define the elements and steps for the proposed design-oriented optimisation
framework. Chapter 3 completes the description of this framework by illustrating its application
for two timely use-cases.

2.2 The ONION project
Started in early 2016, the Operational Network of Individual Observation Nodes (ONION) was
a two year research project funded by the European Union (EU) under the frame of a Horizon
2020 programme. Led by Thales Alenia Spance France, ONION investigated the technical and
programmatic feasibility of distributed satellite architectures that leveraged current trends in
the EO community—i.e. the aforementioned hybridisation of small-satellite technologies and
medium-sized platforms, the fragmentation of spacecraft functionalities, and federated con-
cepts. The development of ONION was overtly motivated by current needs in the EO market,
namely, high resolution and low-latency data, and coordinated sampling techniques. Its main
overarching goals were to evolve DSS technologies and to provide detailed insight on the unad-
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Table 2.1: Scoring of the top 10 use-cases not satisfied by the existing EU Copernicus infrastructure as
determined in the ONION project. Reproduced from (ONION, 2016b).

Use-case name Num.
of

users

Related
need
score

Related service score Final
score
norm.

FPBI*

Coverage
FPBI*

Accuracy†
FPBI*

Frequency‡
FPBI*

Access¶
Service
score

Marine weather forecast 14 0.8823 <10% 60–70% 50–60% 50–60% 1.00 1.0000

Sea ice monitoring 15 0.8749 <10% 60–70% 50–60% 50–60% 1.00 0.9916

Fishing pressure, stock
assessment

12 0.6829 <10% 60–70% 50–60% 50–60% 1.00 0.7740

Land for infrastructure status
assessment

17 1.0000 30–40% 10–20% 10–20% 50–60% 0.67 0.7556

Agriculture: hydric stress 24 0.9972 30–40% 10–20% 10–20% 50–60% 1.00 0.7535

Land for basic maps 18 0.9055 30–40% 10–20% 10–20% 50–60% 0.67 0.6842

Sea ice melting emissions 15 0.7135 <10% 60–70% 50–60% 50–60% 1.00 0.6739

Atmosphere for weather forecast 14 0.8823 <10% 30–40% 50–60% 30–40% 0.67 0.6667

Climate for ozone layer & UV 14 0.7058 <10% 40–50% 30–40% 50–60% 0.83 0.6666

Natural habitat monitoring,
protected species monitoring

18 0.6903 <10% 40–50% 40–50% 50–60% 0.83 0.6520

∗ Fraction of Products that would Benefit from Improvement.
† Relates to a product’s information content (i.e. resolution, radioelectric accuracy, map scale).
‡ Update frequency. Usually depends on revisit time.
¶ Delivery time, or product’s latency.

dressed user needs as a means to facilitate and foster the making of new competitive imaging
systems from space. The technologies, and architectures investigated in ONION were proposed
as complementary assets to the leading European programme in EO: Copernicus. Formerly
known as Global Monitoring for Environment and Security (GMES), Copernicus is an initiative
that encompasses six thematic areas, or services: (1) land monitoring, (2) marine monitoring,
(3) atmosphere monitoring, (4) emergency management, (5) security, and (6) climate change.
Combining satellite imagery with in situ local monitoring, Copernicus delivers geo-spatial in-
formation services and products to a wide range of end users. ONION leveraged the services
and products of Copernicus, and explored how to fulfil specific stakeholder and user needs that
remain unsatisfied. The exploration of new technologies and system concepts in ONION was
pragmatic and incremental; it comprised an in-depth analysis of stakeholder needs (ONION,
2016b), a survey of key-enabling technologies (ONION, 2016a), and the identification of existing
architectural elements that could be considered in the designing of new space-based imaging
systems. The approach was also to investigate the design of DSS concepts that created syner-
gieswith existing spaceassets, and tounderstand the impact andmaturity of federated satellite
concepts. The outcomes of the project were threefold:

1. An in-depth analysis of needs that derived a set of use cases of high priority.
2. A technology roadmap of architecture concepts and critical technologies that presented

a Technology Readiness Level (TRL) of 4-5 and which can easily and rapidly transition to
TRL 7 with the support of ESA and private space actors.

3. The definition of a comprehensive decision-making methodology for designing new DSS
architectures, the core of which is the focus of this chapter.

With regards to the first outcome, ONION proposed a comprehensive analysis and rank-
ing methodology that allowed to identify potential missions for distributed satellite architec-
tures. The methodology—led by researchers at Skolkovo Institute of Science and Technology
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(Skoltech)—was grounded on an extensive relational database that comprised EO users, expli-
cit needs, and products, among other categories (Matevosyan et al., 2017). The six services of
Copernicus were crossed with the set of 37 different needs enumerated in the database. The
list of needs encompassed the description of specific demands frommultiple application areas,
such as agriculture, climate and weather, renewable energy, faunamigratory control, etc. Scor-
ing their priority, relevance, technical maturity, and suitability in the context of the project, the
study in ONION concluded with a list of ten need-service correspondences that the consortium
termed use-cases. ONION use-cases are the application of a given Copernicus service to a par-
ticular user need. For each one, ONION defined the performance requirements of a number of
measurements—i.e. Earth parameters that can be obtained from spaceborne instrument data.
The performance demands fromeachapplicationwere studied in terms of resolution (horizontal
or vertical), data access latency, coverage, accuracy (e.g. radioelectric performance of the in-
strument), or revisit time. Table 2.1 lists the ten use-cases in ONION, and outlines their impact
in terms of scores and fraction of EOproducts thatwould benefit from improvement (FPBI) in the
serviceportfolio. Marine serviceswere found tobe themostpromisingones, followedbyclimate.
Reductions of both revisit timeandproduct delivery delay formarine services—from24h–48h to
roughly 1 hour—were highlighted as critical performance values that could enable polar navig-
ation, enhance weather forecast, and bring about near-real-time monitoring. Moreover, ONION
also highlighted the relevance and implications of marine services in oil and gas exploitation or
spill combat.

The details of each use-case (i.e. definition, associated needs, list of measurements), as
well as the complete results of the analysis can be read in (ONION, 2016b). A more succinct
publication, focused on the scoring methodology and analysis of results, is available in (Mate-
vosyan et al., 2017). Overall, the definition of ten use-cases has had twomajor implications that
are noteworthy to mention here because of the relation that they maintain with the architect-
ing framework presented hereinafter. On the one hand, this analysis validated the need for DSS
architectures; in particular those that improve revisit times and data access latency. Satellite
constellations composed of multiple observation nodes are naturally well suited to ameliorate
revisit time and deliver global observations (i.e. oceans, poles, etc.) Conversely, other types of
DSS architectures, such as clusters or swarms, would not be particularly relevant to address
these requirements. Furthermore, latency can also be ameliorated through in-orbit networking
and data relay; i.e. the exchange of instrument data through inter-satellite links as a means to
download them quicker to the ground segment. This is reminiscent to federated satellite con-
cepts, in which one spacecraft can offer part of its local, on-board capacities (download band-
width, in this case) to a global infrastructure. Secondly, the definition of sets ofmeasurements
for each use-case, along with their performance requirements, has forged a baseline to as-
sess stakeholder satisfaction for the designs in this context. The DSS architectures proposed
in ONION were called to address the needs posed by these use-cases and their performance
requirements, and hence the architecting framework needs to consider the identified system
attributes as part of the evaluation process for candidate designs. Likewise, stakeholder pref-
erences will have to be encoded in conjunction to these very mission attributes.

2.3 Architecting framework overview
Having presented the frame in which this work has been carried out, we shall now explore
the proposition of a systems architecting framework that, in line with the needs of the afore-
mentioned use-cases, is capable of producing design recommendations for next-generation,
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European, EO systems. Although this framework is explicitly influenced by the types of mis-
sion requirements that were identified in the preceding analysis (i.e. shorter revisit times,
near-real-time access to data), the framework is not centred around a single ONION use-case.
Instead, it has been conceived as a more generic tool for all the identified application areas
and user demands in ONION. Rather than a mere computational tool, the architecting frame-
work is presented as a design-orientedmethodology that aims at supporting the endeavours of
decision-makers. Furthermore, the architecting of systems for other potential EO applications
could also be realised with this framework provided that satellite constellations would be the
most suitablemission architecture andmission functions could be defined in terms of perform-
ance attributes. Combining the goals of this framework with the overarching objectives of this
thesis’ Theme A (see Section 1.4.1 in p. 44), we can lay out a summary of characteristics that
have been sought during the realisation of this architecting methodology:

I. Duality between user-requirements and system qualities: the value delivery chain
for Copernicus services is very much user-centric, and hence has induced this frame-
work to satisfy the requirements defined by certain user applications (i.e. the use-
cases). However, inChapter 1wealreadyemphasisedhow the valuepropositionofDSS
is uttered by means of qualitative attributes like flexibility, robustness, versatility, etc.
In consequence, this framework combines user satisfaction criteria (i.e. performance
metrics) with qualitative attributes. The ultimate purpose of this is to trade qualitative
aspects of designs with the rest of attributes, and to be able to encode stakeholder
preferences also in terms of ilities.

II. Heterogeneous constellations: the value of implementing spaceborne assets with
small satellite technologieswas recalled in the previous chapter and has beendemon-
strated in several flying missions. In order to capture the benefits of their integration
with traditional assets, this framework has considered the design of systems com-
posed of heterogeneous satellite platforms. This feature is mostly motivated by the
need to consolidate small-satellite platforms as supporting elements in the design of
complex, distributed systems, and to assess their complementarity with other space-
borne assets.

III. Networked constellations: although this feature is not explicit in the definition of the
optimisation methodology, the DSS enumerated during the architecting process are
always expected to encompass inter-satellite link (ISL) capabilities. The purpose of
incorporating ISL into the designs is not to compare and assess their underlying tech-
nology—which in some cases can still be deemed immature, specially in nano- and
pico-satellite platforms—but to leverage the benefits of federation as part of the solu-
tion. Multiple ownership of the DSS is not addressed as part of the trade-off analysis
of this framework (i.e. all satellites are assumed to be ownedand controlled by a single
entity), but considering federatedand fractionatedsatellite technologies in thecontext
of an EO system is a novel approach and certainly one of the objectives of ONION.

IV. Understand the shape of the tradespace: the proposed optimisation framework is
aimed at exploiting the design information from trade spaces. Although the terms
“tradespace exploration” and “architecture optimisation” are often used as synonyms,
they hold, under our point of view, an unequivocal distinction. System-level optimisa-
tion is the computational—or cognitive—process by which we identify a single best
solution to a given architecting problem. Conversely, by exploring trade spaces we are
not focused in a single design candidate. With tradespace explorations one can gain
global insight on the coupling that exists between decisions, localise interesting and
uninteresting design regions, or understand the fundamental feasibility limits of the
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solution space (Selva and Crawley, 2013). With this in mind, the framework stresses
the value of the visualisation of design trends and is determined to facilitate it. In con-
sequence, this architecting framework is basedon full factorial tradespaceexploration
(i.e. the optimisation process considers all the possible combinations of design vari-
ables).

V. Balancing fidelity and computational complexity: full factorial design explorations
wherein the evaluation of candidates depends on simulation to compute architectural
attributes are often affected by the computational burden of such simulation tools. In
some cases, a high degree of fidelity may turn the problem intractable or, in contrast,
constrain the size of the space of solutions. On the other hand, computing system at-
tributes with lower fidelity models (i.e. reducing the set of influencing parameters to a
fewcritical ones)maycompromise the validity of theexplorationand lead to inaccurate
representations of the system behaviour. Usually, this problem is addressed by neg-
lecting full factorial explorations and resorting to DoE, search heuristics, etc. Given
that this proposal is particularly inclined to explore global design trends and most of
theattributesare computed in simulationenvironments, this frameworkneeds to cope
with this matter. Therefore, an approach to balance computational cost and fidelity of
models is suggested as part of the optimisation process.

Fig. 2.1 depicts a simplified view of the proposed optimisation framework. The steps shown
in the figure recall the basic processes in MATE (Ross and Hastings, 2005): (1) formulation;
(2) enumeration; (3) evaluation; (4) downselection; (5) analysis; and (6) visualisation. Leveraging
the tradespace paradigm, the systemarchitecting problem (SAP) is addressed bymeans of enu-
merating and evaluating all the candidate architectures in the design space. In full factorial
approaches to SAP, the enumeration step is simply an exploration of the combinatorial space
defined by the decision variables. Very few combination constraints are expected for this pro-
cess. Rule-Based Expert Systems (RBES), such as the one in (Selva, 2012), take a different and
more comprehensive approach and leverage expert knowledge to ensure that combinations are
operationally consistent—they acknowledge and prevent variable combinations in which the
components of the resulting design would be subject to, for instance, mutual electromagnetic
interference. RBES essentially combines decision variables based onmission, operational, and
system integration constraints rather than just permuting design options. Evolutionary search
approaches, on the other hand, rely upon exploration and exploitationmechanisms to reduce the
number of evaluated designs (Črepinšek et al., 2013). Neither of these two enumeration tech-
niques have been considered in this framework for two reasons: (1) given the types of applica-
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Figure 2.1: Overview of the steps in the architecting framework for ONION
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tions defined in ONION and the decision variables that stem from them, we could not anticipate
critical inconsistency problems that could not be resolved a posteriori (i.e. in the actual design
process, after an optimal architecture is found); and (2) we were particularly interested in un-
derstanding the shape of the complete tradespace—especially with regards to the impact of
small-satellite technologies, qualitative attributes, and platform heterogeneity—, thus requir-
ing the evaluation of all possible candidates. The enumeration process has indeed defined con-
straints that mostly relate to platform mass and volume budgets, but these can be accounted
forwith negligible impact in the implementation of the enumeration algorithm. Ultimately, these
constraints will be particular to the actual set of alternatives defined for each of the decision
variables. Since these sets are defined on a use-case basis, their related constraints shall be
described and applicable only for such specific cases. That notwithstanding, it is important to
point out that some of the enumerated candidates can still present some operational incompat-
ibilities. The enumeration process is based on the definition of user needs, formulated as part of
the use-case description. Based on these needs, a complementary selection process provides
a reduced list of potential instrument candidates. This list is used in one of the architectural de-
cisions of the enumeration step. This downselection of instruments, which has not been carried
out as part of this doctoral research, will be summarised later in this chapter.

Once all architectures are enumerated, the framework sequence shown in Fig. 2.1 contin-
ues by evaluating each candidate. The attributes involved in the evaluation are threefold. Firstly,
cost is estimated for every architecture; details of this are given in Section 2.5.3. Then, a num-
ber of performance metrics are assessed and aggregated. The previous two contributors could
generally be classified as quantitative attributes. Thirdly, the evaluation process numerically
quantifies the ilities of the system (i.e. qualitative attributes) that are considered relevant for
the given architecting problem and system context. Putting it formally, we can say that the vec-
tor of objectives in our SAP has three components:

J(x) =


Performance(x)

Cost(x)

Ilities(x)

 (2.1)

In effect, the type of MOO problems that this architecting methodology is aimed at solving
tries to simultaneously optimise the system’s intangible qualities, cost, and performance met-
rics. While the three components in the vector of objectives are representative of three differ-
ent attribute groups, these could similarly be decomposed into vectors with independent sub-
objectives (e.g. performance can be measured in terms of resolution, coverage, and multiple
other metrics). In the application of this framework, detailed in Chapter 3, performance attrib-
utes are either parametric, or computed in simulation tools. Likewise, themonetary expenses of
a design are approximatedwith a combination of a Cost Estimating Relationship (CER) for devel-
opment expenses, and a solver that approximates feasible launch costs (see Section 2.5.3). On
the other hand, we propose to use numerical representations of ilities that are computed based
on models. In this work, we have provided instances of ilities that were specifically relevant for
ONIONuse-cases. Nonetheless, the framework could accept any number of ilities, provided that
their assessment can be quantified numerically with computational tools (e.g. parametricmod-
els, simulation-based models, etc.) Once the three contributors are computed, a single aggreg-
ated figure of merit combines them and provides a means to compare and rank the enumerated
candidates.
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One of the critical aspects of SAP, is the computational resources needed to compute per-
formance metrics. As recalled above, this is particularly critical in full factorial explorations
given that the evaluation of architectures with simulation tools tends to be a computationally
intensive task. In order to cope with this issue, this architecting framework resorts to the divi-
sion of the problem into simpler sub-problems. In particular, we propose to optimise architec-
tures following a coarse-fine approach. Similar problem decomposition techniques have also
been applied in other contexts. In numerical weather prediction, for instance, it is common to
define coarse and fine grid meshes to solve the equations: first at a global scale, and then loc-
ally at regional scales (Kalnay, 2003). The same approach has also been observed in other MOO
areas, such as task scheduling. Some task schedulers produce long term plans that may be
subject to system state and context uncertainties. Then, these plans are iteratively refined for
shorter term schedulingwindows, leveraging the information and complexity reduction from the
solution computed initially (e.g. Chien et al., 2010).

Going back to the type of optimisation that this section is concerned with, the evaluation
process is decomposed into two phases: an initial evaluation for all the architectures in the
candidate set (i.e. “coarse”), and then a more comprehensive simulation for only a pre-selected
subset (i.e. “fine”). The former is intended to allow the identification of Pareto-efficient architec-
tures, interesting design regions, and tensions between attributes—just like in common trade-
space studies (de Weck, 2015). We have named this evaluation as “coarse” because the sim-
ulation tools that are used to compute system metrics reduce the fidelity of the system model
to be able to produce results in reasonable computational times. Essentially, the evaluation of
coarse systemmetrics (e.g. revisit time) does not take into account resource constraints—such
as battery Depth-of-Discharge, or recorder capacity. This allows to assume that instruments
are always capturing information or using their ISL regardless of energy or storage levels.

An analysis of these initial evaluation—fundamentally grounded on architectural figures of
merit, the relative comparison of potential solutions, and the understanding of design trends—
allows to perform an initial screening of solutions that derives in a reduced set of candidate ar-
chitectures. Then, this reduced subset is re-evaluated with a comprehensive simulation-based
tool that does require higher computational resources to yield results. The second analysis re-
lies upon refined satellite and system models and produces performance figures of higher fi-
delity by considering spacecraft-level budgets: on-board memory (affected both by instrument
data-rates, ISL, and ground station contacts); and power (i.e. battery DoD, and instantaneous
demand on the satellite bus).

Finally, the aggregated figures of merit are re-computed with refined performance met-
rics. In addition to updating the architectures’ figures of merit, the simulation of on-board re-
sources also allows for a simplified feasibility analysis: resource-constrained platforms (e.g.
nano-satellites) or instruments that are very power-demanding may hinder continuous obser-
vations. In turn, the revisit time figure might be affected and decrease slightly, especially when
those satellites are allocated in non-optimal orbital slots with regards to Local Time of the As-
cending Node (LTAN). Once new figures of merit are computed, the final selection of the optimal
architecture is performed based on the new ranking and the aforementioned budget/feasibility
analysis.
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Figure 2.2: Time-related systemmetrics

2.4 Decision variables and performance attributes
We mentioned above that ONION use-cases are defined as a compendium of measurements
made from space. These measurements are relevant for specific applications, user communit-
ies, or societal and scientific needs. As such, the definition of a use-case encompasses the tar-
get area and the expected performance of the system that satisfies these measurements. The
requirements are expressed in terms of the four system variables defined below:

1. Spatial resolution: the ability to separate (i.e. resolve) small details and objects in the
produced images. Oftentimes, the termspatial resolutionwill be equivalent tohorizontal
spatial resolution, expressed in meters. Only when the measured Earth parameter cor-
responds to atmospheric characteristics, its resolutionwill be expressed in terms of ver-
tical resolution. These requirements are expressed for the actual spectral bands in-
volved in the quantification of that Earth measurement, albeit not made explicit in the
use-case definition.

2. Revisit time: the maximum time interval between two consecutive observations of the
same geographic location (i.e. temporal resolution). Depending on the target area of the
use-case (e.g. global, polar, regional), the definition of temporal resolutions may be ex-
pressed for a given minimum latitude.

3. Latency: the time that it takes for a given observation to be available at the ground seg-
ment (see Fig. 2.2). The delivery of a data product to the final user is a process that is
affected by ground operations and data processing times. The sum of all the activit-
ies that involve scheduling, commanding, downloading, and processing payload data,
defines the actual responsiveness of the system. Latency as defined in this framework,
however, fundamentally evaluates the performance of the space segment and ignores
other contributors to the system’s responsiveness. Tasking and processing times have
generally been assumed as constant for the types of applications addressed by this ar-
chitecting framework.

4. Accuracy: this variable refers to the quality of the final data product, as perceived by
users. Usually, this term is influenced both by instrument technologies, platform char-
acteristics (e.g. pointing accuracy of the attitude control system), or data processing
techniques (e.g. feature extraction, data fusion and correction models, etc.) The actual
magnitude of the remote-sensing parameter determines the units used in the quantific-
ation of accuracy.
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These parameters relate to system-wide qualities sought by the applications—or data
products—belonging to a use-case. If the definition of specific measurements contributes
to the identification of system functions, these variables express how well these functions
would be provided to the end users. Therefore, these parameters ultimately quantify whether
the needs elicited in the preceding study (ONION, 2016b) are satisfied or not. Following this
reasoning, most of these variables have been directly linked to system metrics with which the
frameworkpartially assessesuser satisfaction. Thesemetrics drive part of the optimisation and
contribute to the formulation of decision variables. However, not all the user requirements were
found to have explicit mappings to architectural decisions. In particular, accuracy was found
to be mostly affected by design decisions, rather than architectural choices. This is equivalent
to assuming that the achievement of a desired accuracy will always be possible regardless of
the high-level solutions found during the System Architecting Synthesis (SAS). In effect, the
accuracy of a measurement is influenced by several low-level design aspects, such as antenna
design parameters, number of bits in signal discretisation, precision obtained with the attitude
control law, models and algorithms used in the processing of data, etc. As a result, only revisit
time, spatial resolution, and latency were considered as performancemetrics of interest at this
level. Regardless of the actual set of measurements and the specific required performances for
each one, the enumeration of architectures needs be defined in accordance to these attributes.
Candidate solutions are thus enumerated with the decision variables defined in Table 2.2.

Noteworthy, these decision variables only address the space segment. This owes to the fact
that the attributes mentioned above are only affected by the design of spaceborne elements
and orbital geometry. While the design of ground segment (i.e. ground station network, data
centres, operations and data processing strategies) have a non-negligible impact upon cost,
system responsiveness—and possibly other system qualities too—, the optimisation of these
decisions could be considered partially decoupled from the design of constellations. In addi-
tion, a second aspect that is worthy of mention is that the produced solutions are optimised
statically, i.e., the deployment strategy is not considered as part of the decision variables. This
simplification is aligned with the goals of the ONION project, which considered crucial to focus
on static DSSarchitectures first, in order to elaborate the technological roadmap of architecture
concepts and critical technologies. Certainly, the cost of operations is an important contributor
to the system’s financial outlay and is very much tied to the mission lifetime and deployment
strategy. Likewise, planning the deployment of space assets is usually performed in accordance
to themonetary valuation of the system across time. However, these two aspects would only be
deemed crucial in approaches to systems architecting that explicitly consider and optimisemis-
sion stages through the operational part of its lifecycle. Nevertheless, the study performed in
ONIONdid not ignore these aspects, whichwere addressed in parallel to the architecting frame-
work presented in this thesis. Thus, for this SAP, every aspect related to the ground segment
and deployment strategy were assumed independent from the architecture enumeration and
evaluation process.

In order to generate relevant architectures, the optimisation process assigns values to six
decision variables (Table 2.2). Orbital geometries are determined by means of the altitude, the
number of orbital planes, the satellites in each plane, aswell as the constellation pattern. Given
that no particular use-case implicitly required or benefited from varying altitudes (i.e. Moniya or
Tundra orbits), all orbits are chosen tobe circular. As it is common inEO, spacecraft are designed
for LowEarth Orbits (LEO), which provide the best spatial resolutions possible. With their orbital
planes and separation optimised, attaining constant coverage with a given satellite constella-
tion ultimately depends upon the number of satellites—which is often indicative of the mission
cost—and instrument aperture. However, given that constant global coverage was not elicited
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Table 2.2: Architectural decision variables.

Decision variable definition Values

Orbital altitude: Height of the LEO circular orbits that configure the generated satel-
lite constellations.

510 km, 657 km,
807 km.

Walker pattern: Constellation network pattern (Walker, 1977). Star, Delta.

Orbital planes: Number of orbital planes that compose the orbital geometry. The set
of possible values is defined with the requirements of the use-case.

Use-case
specific.

Number of satellites: Total satellite count in the constellation. All satellites are as-
sumed to embark instruments and ISL payloads to download instrument data through
the satellite network. The set of possible values is defined with the requirements of
the use-case. Satellites are distributed homogeneously in the number planes of each
candidate architecture.

Use-case
specific.

Satellite platforms: The specific class for each satellite. This variable controls the
heterogeneity of the constellation by combining small satellite technologieswith large
platforms.
• Heavy platforms are assumed to have a 600 kg dry mass (approximately 200 kg for
payload capacity). Although this satellite class is considered “small” according to
the classification in Fig. 1.2 (p. 10), this type of platform is a consolidatedalternative
for conventional MEO constellation designs. An illustrative example of one partic-
ular manufacturer and platform of this type is Surrey’s SSTL-600 (600 kga, 200 kgb,
450 W peak).

• Medium platforms present a drymass of around 160 kg (approximately 50 kg dedic-
ated to payload capacity). According to the mass-based classification these plat-
forms would be classified as “mini”. Examples of manufacturers include: OHB’s
TET-X (120 kga, 50 kgb, 160 W peak.); Surrey’s SSTL-150 (153 kga, 50 kgb, 100 W
peak); or Sierra Nevada’s SN-50 (50–100 kgb, 245 W at BOL).

• Small platforms are assumed to be similar to a nano-satellite with 3U–12U Cube-
Sat form factor, and payload capacity (5–10 kg) Representative manufacturers of
this type of platforms include ISIS’ 6U bus (6 kgb, 10 W average), or GomSpace’s 6U
platform (4–6 kgb, 12 W peak).

Heavy, Medium,
or Small.

Instruments: one or more remote-sensing capabilities that each individual satellite
embark. This variable also controls heterogeneity but is nevertheless tied to the se-
lection of platforms.

Use-case
specific.

a Total platform dry mass; b Payload capacity.

for any of the use-casemeasurements, and since the apertures are intrinsically defined as part
of the instrument decision variable, the optimisation has a certain flexibility and can trade the
number of satellites, instrument apertures, and altitudes tominimise revisit times. Three differ-
ent altitudes in LEO have been considered in all cases: a very low one (510 km), a relatively high
one (807 km) and an intermediate (657 km). These values have been computed to achieve Sun-
Synchronous orbits (SSO) with repeat cycles of around 30 days. Walker star and Walker delta—
alsoknownasBallard’sRosette (Ballard, 1980)—areselectedaspossible constellationpatterns
given their general applicability to EO constellations. While star configurations are formed with
near-polar orbits, geometries in delta usually can not provide polar coverage (and hence neither
global) but present better diversities at the equator. Only specific combinations of plane inclin-

56



CHAPTER 2 2.5. ENUMERATION AND EVALUATION

ations and instrument apertures facilitate polar coverage in delta patterns. In spite of the most
optimal configuration for the given target areas or revisit time requirements of a use-case, both
configurations (i.e. star or delta) have been considered in the set of architectural decisions be-
cause of the different impact that they have upon inter-satellite communications (Long, 2014).
Satellite-to-satellite contacts in delta differ from those in star, and both could favour optimal
results in terms of latency.

The exploration of candidate solutions also assigns satellite platforms. The architecting
process limits the choice to three different classes regardless of the application, namely, nano-
satellite, micro-satellite, and small-satellite platforms. For convenience, they will be referred
hereinafter as small, medium, and heavy platforms, respectively. Their definitions encompass
an approximated volume,mass, and power generation capability that has been used in the enu-
meration process to constrain the number of instruments that can be embarked in each one of
them.

In contrast, the set of possible values for the number of planes and number of satellites
is defined ad hoc for each use-case. Judging revisit time requirements and potential instru-
ment apertures one can devise a set of possible values—especially upper bounds—that could
be interesting to explore in the tradespace. Similarly, the list of potential instruments is selec-
ted on a use-case-basis. An analysis of performance requirements and observation gaps was
performed for the critical application cases of the ONION project, including those presented in
Chapter 3. The study, led by researchers at the Technical University of Catalonia (UPC Barcelon-
aTech), extensively surveyed the available flying assets, instrument technologies, their perform-
ance, technological limitations, and suitable satellite platforms (Lancheros et al., 2019). Based
on a comprehensive database of instruments andplatforms, Lancheros et al. proposed a quant-
itative optimisationmethod to devise simplified sets of instruments that could be used to sense
the Earth parameters defined in ONION use-cases—which ultimately cover Copernicus gaps.
Their results were incorporated in the architecting framework in order to generate feasible in-
strument combinations, as described in Section 2.5.1.

2.5 Enumeration and evaluation
Theenumerationof candidatedesigns isperformedwithasimplecombinatiorial routine that im-
plements the inherent constraints in the assignment of values to decision variables. In Table 2.2,
weproposedEOpayloads tobeoneof the architectural decisions. In order tomaximise the sens-
ing capabilities of each satellite, several sensors are usually embarked on-board a single satel-
lite platform. Thus, the framework requires the generation of feasible instrument combinations
to proceed with the enumeration of candidates. Instrument combinations must enforce tech-
nological compatibility between the embarked payloads. Instead of relying on a computational
tool (e.g. like in RBES), this step is carried out by analysing platform and payload characterist-
ics, namely, the sensing principles andmodes of operation, volume andmass, antenna require-
ments, power consumption, and data rate. Simultaneously, the type of data produced by each
instrument is also taken into account in order to produce combinations that aremeaningful; i.e.,
combinations embarking two instruments that measure the same parameter are pruned. The
resulting aggregated mass, power, and data rate of each instrument set are implicitly mapped
and constrained by one of the three platform classes. With that, the selection of instrument
combination is a synonym for the satellite platform. This implicitly limits the generation of ar-
chitectures to designs that only consider certain internal components.
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Table 2.3: Architectural choices for Marine Weather Forecast

Decision variable Option set Cardinality

Orbital altitude
{
510, 657, 807

}
3 options

Walker pattern
{
Delta(∆), Star(⋆)

}
2 options

Orbital planes
{
2, 3, 4, 6, 8

}
5 options

Number of satellites
{
4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48

}
11 options

Satellite platforms
{
S,M,H

}
3 options

Instruments 12 instrument combinations 12 options

In addition to that, the enumeration process also reduces the space of potential solutions
to a tractable size through specific constraints. This was indeed critical given the computa-
tional cost of the simulation of revisit time and latency. In order to illustrate the problem, let
the sets of architectural choices present the cardinality of one of the applied use-cases: Mar-
ine Weather Forecast. With the options listed in Table 2.3, the number of possible constellation
geometries is of 3 × 2 × 5 × 11 = 330. This ignores the possibility of unfeasible configurations
(e.g. 4 satellites in 8 orbital planes) and only counts potential combinations. Removing incom-
patible combinations we would obtain 219 possible constellations, which could be deemed a
reasonable volume of architectures to simulate. The problem arises when instruments are as-
signed. According to the option sets, up to 12 options exist with regards to spaceborne instru-
ments. Each option corresponds to a combination of sensors that fit in a platform—efficiently,
without under-utilising volume and payload capacity. A finite number of heavy, medium, and
small designs exist, and they are tied to n specific instrument combinations. Consequently, the
number of unique designs for a constellation configuration can be expressed asmultiset coeffi-
cients. Given a number of satellites k and a number of instrument combinations n, then for each
constellation configuration we have

((
n
k

))
combinations:((n

k

))
=

(
n+ k − 1

k

)
=

(n+ k − 1)!

k!(n− 1)!
(2.2)

In the case of a constellation with 4 satellites, we would obtain((
12

4

))
= 1365 (2.3)

alternatives. However, as thenumberof satellites increases, thesizeof thecombinatiorial space
explodes. For 48 satellites, the number of multisets with cardinality k is((

12

48

))
≃ 2.79 · 1011. (2.4)

Naturally, the problem becomes intractable and requires constraining the size of the combinat-
orial space further.

2.5.1 Enumeration constraints

One implicit limitation is the generation of instrument combinations sets conveyed above. In ad-
dition to that, two explicit restrictions have also been applied to limit the number of candidate
of solutions. Firstly, if a constellation embarks more than one satellite of the same class (i.e.
heavy, medium, or small), their internal design will be the same. This means that some subset
of nodes in the generated constellations will embark the same instruments. In parallel to re-
ducing the design space, forcing the repetition of space assets is aligned with the notion of a
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Figure 2.3: Constellation slots generated for a Walker-delta constellation of 12 nodes in 4 planes.

cost reduction that leverages learning curve savings. Producing more than one identical satel-
lite units enables cost savings owing to the reutilisation of design efforts and the optimisation
of manufacturing and verification processes.

Secondly, the distribution of satellite types across a constellation is also constrained by a
number of slots. In ONION, a slot identified a subset of identical spacecraft within the constel-
lation. Slots were defined by selecting spacecraft groups with either the same Right Ascension
of the AscendingNode (RAAN) orMean Anomaly (MA). Fig. 2.3 shows possible slot definitions for
a constellation of 12 nodes in 4 planes. For this illustrative case, up to 7 different slots, A to G,
are defined. The enumeration of architectures is completed by assigning different instrument
combinations to the available slots. This is done until all satellites have one instrument combin-
ation and platform class assigned. With this generation scheme, a constellation with the slots
depicted in Fig. 2.3 could, for instance, allocate heavy platforms in S11, S21, S31 and S41 (Slot D),
medium spacecraft in the rest of the nodes (Slot E) and no small satellites altogether (Slot G).
A different alternative would be to allocate one platform type in planes 1 and 3 (i.e. Slot A), and
a different type in planes 2 and 4 (i.e. Slot A’). Note that, in the previous case, slot A is used to
allocate platforms in both odd and even plane numbers. This owes to the fact that slots are not
fixed, but can select different groups of spacecraft as long as theymaintain the sameseparation
inMA or RAAN. It would not be possible, thus, to allocate the same instruments in plane 1 and 2
at the same time, since Slot A forces the selection of planes to be separated 180º in RAAN.

2.5.2 Performance analysis

After this, architectures can be evaluated by simulating their revisit times and latencies. We
need to recall that the four performancemetrics listed in Section 2.4 (p. 54) are defined individu-
ally for eachmeasurement of the use-case. Asmentioned before, instruments are pre-selected
a priori owing to their ability to satisfy such performance requirements. Lancheros et al. (2019)
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Listing 2.1: Example of simulation data in XML produced by ONION tools.

1 <Architecture ArchID="14">
2 <!-- Definition of constellations: -->
3 <Constellation Altitude="807.9" Nodes="8" Planes="2">
4 <ONION_node SatID="s11" MA="0" RAAN="0" ... />
5 <ONION_node SatID="s12" MA="90" RAAN="0" ... />
6 <ONION_node SatID="s13" MA="180" RAAN="0" ... />
7 <ONION_node SatID="s14" MA="270" RAAN="0" ... />
8 <ONION_node SatID="s21" MA="0" RAAN="45" ... />
9 <ONION_node SatID="s22" MA="90" RAAN="45" ... />
10 <ONION_node SatID="s23" MA="180" RAAN="45" ... />
11 <ONION_node SatID="s24" MA="270" RAAN="45" ... />
12 </Constellation>
13 <!-- Slot configurations: -->
14 <SlotConfigurations>
15 <Configuration Slot_ID="1" Slots="s11;s12;s13;s14;s21;s22;s23;s24"
16 Type="full"/>
17 <Configuration Slot_ID="2" Slots="" Type="null"/>
18 <Configuration Slot_ID="3" Slots="s11;s13;s21;s23" Type="in-plane"/>
19 <Configuration Slot_ID="4" Slots="s11;s12;s13;s14" Type="across-plane"/>
20 </SlotConfigurations>
21 <!-- Simulated performance data: -->
22 <Metrics>
23 <Metric Slot_ID="1" PayloadID="i1" RevisitTime="9.23" Latency="33.4"/>
24 <Metric Slot_ID="1" PayloadID="i2" RevisitTime="7.98" Latency="21.3"/>
25 <Metric Slot_ID="3" PayloadID="i1" RevisitTime="5.67" Latency="37.2"/>
26 <Metric Slot_ID="3" PayloadID="i2" RevisitTime="6.43" Latency="37.0"/>
27 ...
28 </Metrics>
29 </Architecture>
30 <Architecture ArchID="15">
31 ...
32 </Architecture>

identified potential sensors for the ONION use-cases through the assessment of their spatial
resolutions, their ability to deliver the required accuracy, and the feasibility of implementing
specific antenna apertures—indirectly affecting revisit times. Obtaining instrument-specific
metrics is enabled by the very definition of constellation slots—characterised by satellites that
embark the same instruments. ONIONprovided simulation tools thatwere tailored to evaluating
architectures based on slots. The outcomes of these simulation tools are disseminated through
XML files the structure of which is shown in Listing 2.1. In these XML files, the definition of a
constellation geometry is followed by the enumeration of a reduced set of slot configurations
(similar to A–G in Fig. 2.3). With that, revisit time and latency are computed individually for the
subset of satellites that would be allocated in each slot. Performance is individually computed
for each instrument (i.e. i1 and i2 in the example), which essentially differ—simulation-wise—
in their apertures, incidence angles, and footprint shapes.

The flexibility offered by ONION tools allows to evaluate multiple candidates with a single
data structure. In fact, the reutilisation of performance metrics proposed in ONION is funda-
mentally different to previous architecting approaches based on tradespace exploration (e.g. Le
Moigne et al., 2017; Sanchez Net, 2017) and was paramount for the realisation of the study.
The example in Listing 2.1 gathers 3 simulation executions for each payload (andmetric). Based
on slot metrics, we can enumerate six unique architectures provided that only two instrument
combinations are available. Had the reutilisation of metrics not been proposed, higher compu-
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Figure 2.4: Permutations obtained from simulation data. The labels i1 and i2 denote the allocation of two
arbitrary instrument sets.

tation times would have been required during the simulation all the unique architectures. The
efficiency of this method may not be apparent for the illustrated case but is clearly noticeable
when two or more instrument sets have one payload in common. In practice, however, some of
the slot permutations result in indistinguishable architectures. Fig. 2.4 depicts four unique per-
mutationsandone redundant example. Given that the “coarse” simulation tools inONIONdidnot
model resource constraints, such as battery Depth of Discharge (DoD), nor environmental states
(e.g. lighting conditions in optical imagers) there is essentially no difference in revisit time and
latency between Case 3 and its permutation. The enumerated architectures are not equival-
ent in terms of design because their instruments are allocated in differentmean anomalies, but
the two candidates are architecturally equivalent (i.e. their attributes are not differentiating).
Therefore, only one of the permutations is considered during the assessment of design trends
and Pareto dominance. Only during the final evaluation stage (i.e. the “fine” performance ana-
lysis) all possible permutations of a single architecture will be analysed in detail in order to keep
the most optimal ones.

2.5.3 Cost

The lifecycle cost of a satellite program is often associated to the following expenditures: satel-
lite manufacturing and test; launch, deployment and checkout; ground station network; oper-
ations and data processing services; and satellite replenishment (de Weck et al., 2004). Given
that the architectural decisions found relevant in this framework are restricted to the space seg-
ment, the fraction corresponding to operations and ground equipment has not been considered
in the evaluation of costs. Similarly, we have not taken into account the possible need of a re-
plenishment strategy, since designs are assumed static. Therefore, rather than lifecycle costs,
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Table 2.4: Cost Estimating Relationship selected in ONION, from (Mirshams et al., 2005).

S/cmass range [kg] Model [MUSD]

10–100 C = 0.0008 x2.2459

100–500 C = 1.2899 x0.6395

the optimisation process evaluates initial development costs, which includemanufacturing and
test as well as launch expenses. These two fractions of an architecture cost are evaluated sep-
arately. The first part, development costs, is evaluated by means of a Cost Estimating Relation-
ship (CER), which was adopted in the frame of ONION (more details can be read in a publication
by the authors, Araguz et al., 2018b). In particular, a CER model is taken from (Mirshams et al.,
2005) which estimates cost from spacecraft dry mass, as expressed in Table 2.4. The model
presents a discontinuity at x = 100 kg in order to adjust the prediction of development costs
of pico- and nano-satellites more accurately. That notwithstanding, the accuracy of first or-
der, single-parameter CERs needs be interpreted with caution. Multiple contributing factors
can play a determining role in the estimation of mission costs for satellite programs. As a res-
ult, single-parameter CERs should only be used to represent rough estimations of cost, like the
ones of this framework. The Small Satellite Cost Model (SSCM) is a much more accurate and
complex cost model for satellites below one thousand kilogram (Mahr et al., 2016) that could be
more suitable in the need of a higher precision. Integrating multiple design, performance, and
programmatic parameters, the last version of this cost model (SSCM14) delivers representative
estimates of the development and production cost of spacecraft buses. Precisely because of
their complexity, this type of cost models can hardly be adopted in architecting studies, where
many of the design and programmatic parameters are still unknown. In the context of DSS, Nag
et al. (2014) reviewed costingmethods andmodels for small satellites and studied their validity
for satellite constellations. As part of their discussion, the authors recommend the applica-
tion of learning curve parameters to capture recurring and non-recurring costs when multiple
identical copies are produced. Non-recurring costs are one-time expenses that should not be
accounted forwhenmultiple spacecraft areproduced. Thus, theCERused in this frameworkhas
been complemented with the learning curve adjustment with coefficient Sp = 0.8 expressed in
Eq. (2.5).

CTotal = CunitN
1−Lc

with Lc =
ln
(

1
Sp

)
ln (2)

≃ 0.3219

(2.5)

2.5.4 Launch cost

The second contributor to the cost evaluation of architectures is the launch expenditure. Launch
costs for satellite constellations were studied in (de Weck et al., 2004), where the authors ex-
amined the viability of optimising the deployment of satellites by trading the cost and capacity
obtained in every deployment stage. In this case we also opted for an estimation of costs based
upon an optimisation procedure. Nevertheless, deriving launch cost models for satellite con-
stellations without a predefined launch and deployment strategy is complex and has not been
addressed in thiswork. Instead, launchcostsareestimatedbyoptimising theselectionof launch
vehicles. Again, this does not yield accurate and precise representations of the actual costs of

62



CHAPTER 2 2.5. ENUMERATION AND EVALUATION

0,125

4,657

22,087

29,468

52,945

68,618

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

C
os

t 
(M

€)

Spacecraft dry mass (kg)

Development costs model

N = 10 units

N = 20 units

N = 1 unit
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deployment, but it certainly gives a minimum boundary that can be used in the comparison of
candidates.

Table 2.5: Launcher vehicles and their fairing configurations.

Launcher Max. Capacity
(kg)

Cost (MUSD) Fairing configuration

Unused
capacity
(kg)

Unused
capacity
(%)

H M S

Ariane 5 10000 178 2800 28 10 0 0

5363 54 3 12 24

Soyuz 4650 50-80 1684 36 4 0 24

1928 41 2 6 24

2572 55 0 10 24

Vega 1450 55-60 10 1 2 0 0

1052 73 0 2 0

531 37 1 1 0

644 44 1 0 24

1164 80 0 1 24

Rokot 1600 41.8 880 55 1 0 0

1202 75 0 2 0

681 43 1 1 0

794 50 1 0 24

1314 82 0 1 24

Black Arrow 2 200 6.12 1 0 0 1 0

114 57 0 0 12

63



In pursuit of Autonomous Distributed Satellite Systems C. Araguz

Algorithm 1 Greedy search algorithm to compute launch costs.

1: procedure CAPACITY(ℓc, N ) ▷ Compute the capacity (mass) used by the launcher configuration
ℓc with the number of satellitesN

2: Letmh,mm,ms be the satellite masses.
3: M ← 0 ▷ Initialise mass count
4: for k ∈ {h,m, s} do ▷ Compute mass for each satellite class
5: ifN(k) ≥ ℓc(k) then
6: M ← ℓc(k) ·mk

7: else
8: M ← (ℓc(k)−N(k)) ·mk

9: end if
10: end for
11: returnM ▷ The capacity used isM , in kg.
12: end procedure
13:

14: procedure LAUNCHCOST(nh, nm, ns) ▷ Compute the launch cost with greedy optimisation
15: LetN ← (nh, nm, ns) ▷ The number of satellites in one plane
16: Let L be the set of launcher configurations.
17: while ∥N∥ ̸= 0 do ▷ Some satellites have still not being allocated
18: Let

{
LS ⊆ L

∣∣ ∑
i CAPACITY(LSi, N) > 0

}
19: Let e, u be new arrays.
20: for LSi ∈ LS do
21: ui ← CAPACITY(LSi, N) ▷ Get used capacity
22: e i ← COST(LSi) / ui ▷ Compute cost efficiency
23: end for
24: b← argmin

i
{e i} ▷ Find minimum

25: ℓ← LS(b) ▷ Select the launcher configuration with lowest cost-mass ratio
26: for k ∈ {h,m, s} do
27: ifNk ≤ ℓk then
28: Nk ← 0 ▷We allocated all satellites of type k
29: else
30: Nk ← Nk − ℓk ▷ Allocate satellites of type k
31: end if
32: end for
33: C ← C + COST(ℓ)
34: end while
35: return C ▷ The cost is C
36: end procedure

Based on the data published in (FAA, 2017), a list of potential launcher vehicles has been
compiled and is shown in Table 2.5. This list encompasses vehicles with enough capacity to
launch one or more of the satellite platforms identified in Table 2.2. In the frame of ONION the
list of vehicles was limited only to European launchers. The cost of deploying a constellation
is optimised per plane: an optimisation routine minimises costs by assuming that spacecraft
orbiting at the same plane can potentially share a launching vehicle. In order to simplify the
optimiser andobtain cost estimates in reasonable times, this processdoesnot take intoaccount
the exact location of a given satellite within its orbital plane—i.e. mean anomaly. Nevertheless,
computing launch costs on a plane-by-plane basis allows to capture the effect of the number
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of planes in the decision variable and to discriminate solutions that, regardless of having the
same number of satellites, present different orbital geometries. The optimisation algorithm is
implemented as the iterative greedy search listed in Algorithm 1. Launch costs are optimised by
means of selecting launcher configurations with minimum cost-capacity ratio. Given a number
of satellites nh (heavy), nm (medium), and ns (small), the launcher configurations that maximise
the capacity of the fairing and present lower costs are considered better. Iteratively allocating
satellites on this basis, produces a list of launchers the cost of which is summed to give the total
launch cost of a single plane. Note that this optimisation algorithmdoes not consider additional
contributing factors such as the orbital altitude, inclination, or delta-v for in-planemanoeuvres
(e.g. Crisp et al., 2015).

2.6 Aggregated figure of merit
The architecting methodology sketched in Section 2.3 already highlighted that three independ-
ent factors contribute to the optimisation process. Eq. (2.1) defined the vector of objectives
J(x) with the performance, ilities, and cost components. We also mentioned that, in the con-
text of a given use-case, the purpose of this architecting framework is both the identification
of design trends and the selection of the best architectural candidate. In order to address both
goals we require the ability to compress the relevant architectural attributes into a single fig-
ure that can then be used to compare solutions in a relative scale. Chapter 1 explored one of
the commonmethodologies around the aggregation of attributes, namely,Multi-AttributeUtility
Theory (MAUT). In MAUT, the relevant architectural traits of a candidate solution are combined
into a single value by virtue of a given aggregation function. In MAU aggregates, decision-maker
preferences are encoded as arbitrary weights that reflect the importance of each attribute as
perceived and/or influenced by stakeholder needs. At the same time, MAUT is based upon the
conceptofutility—U(i), for anyattribute i—thatexpressesstakeholder satisfaction in the range
[0, 1]. TwocommonMAUaggregate formswere recalled inEquations (1.5) and (1.8), themultiplic-
ative and additive forms, respectively (p. 21). These two scalarisation methods have been used
extensively to aggregate quantitative attributes and represent the value of solutions in trade
spaces.

The approach followed in this framework leverages the theory on MAU, but proposes a
unique aggregation function that is tailored to the vector of objectives in Eq. (2.1). In particular,
the proposed aggregate formulation acknowledges and separates the three contributing com-
ponents of theMOOproblem in order to study their influence and effects in a decoupledmanner.
This figure of merit, termed Γ hereinafter, is formally defined as:

Γ
(
J(x)

)
= Γ

(
Performance(x)

)
· Γ
(
Cost(x)

)
· Γ
(
Ilities(x)

)
(2.6)

Both inMAUT as well as in tradespace studies, it is very common to separate cost compon-
ents from the MAU aggregate (i.e. Γ(Performance(x)). This is done precisely to trade cost (e.g.
monetary investment, mass, lifecycle expenditures) with the overall value of the system. Doing
socertainly allows the identificationofPareto-efficientdesigns, andhenceΓ(Cost(x))will be in-
dependently studied in some of the representations of Chapter 3. This architecting framework,
however, also needed a single aggregated figure of merit in order to relatively rank architectures
and to allow the pre-selection of candidates, as explained in Section 2.3.
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In (2.6), the assessment of qualitative attributes (i.e. ilites) has been kept separated from
performance attributes explicitly. Regardless of both terms being expressed as utilities in the
range [0, 1], the evaluation of these two attribute classes is radically different in nature. Fig. 1.8
(p. 23) already conveyed this fundamental differentiation by depicting these two factors as or-
thogonal vectors. The independent evaluation of these two terms may also be more compelling
when decision-maker preferences are expressed; it may seem unnatural to weight the import-
ance of quantitative and qualitative attributes together given that one should always comple-
ment the other. Thus, we pose that the assessment of individual qualitative weights should
never bemixed with the weights of quantitative ones. It is precisely based on this cognitive con-
struct, that we unfold the formulation of Γ(J(x)) outlined in Eq. (2.6).

2.6.1 Normalisation function for quantitative attributes

Expressing stakeholder satisfaction in the arbitrary range [0, 1] requires utility functions that
translate the value of a given attribute to the normalised domain. Utility functions can generally
takemultiple forms. Messac (2000) listed four different classes of functions that can be applied
to the formulation of optimisation objectives. Functions of Class 1S are denoted Smaller-is-
Better (SIB), and present higher utility values for low metric values (minimisation utility). Func-
tions of the complementary Class 2S are referred as Larger-is-Better (LIB) and respond other-
wise: they output high utility values for higher attribute values. In the case of this framework,
all the quantitative attributes used in the optimisation (i.e. revisit time, latency, spatial resolu-
tion, and cost) behave like Class 1S-SIB functions. The 1S utility function implemented in this
framework is a combination of an exponential score formulation with Wymore’s score function
(Daniels et al., 2001). It is formally defined below:

U(p) =



Q+

1− exp

(
−pa − p

ρ

)
1− exp

(
−pa − pb

ρ

) (1−Q) when pb ≤ p ≤ pa

Q when p > pa

1 otherwise

(2.7)

Given a metric p (usually, a performance attribute), the function evaluates its value within
the range [pb, pa], where these values are defined individually for each attribute and measure-
ment. For every use-case, we define the range boundaries as the optimal (pb) andminimum (pa)
performance requirements with regards to a given measurement k. Lowest scoreQ is assigned
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to attributes that hardly satisfy minimum requirements, while the highest score is assigned to
metrics that reach the optimal requirement. Performing better than the optimal requirement is
considered an unnecessary feature that is thus ignored in Γ aggregates. The residual value Q

is selected based on the utility aggregation function. In additive aggregations, this parameter
is set to 0, whereas in multiplicative aggregations we usually assign a small positive number to
Q. This is essential in aggregates wherein we still want to preserve the ability to differentiate
bad solutions (i.e. those that do not satisfy, at least, one minimum requirement). It is important
to note that the latter situation is very likely in the context of a system optimising multiple per-
formance metrics simultaneously. Here it is important to recall that in every architecture, the
three performance metrics are evaluated and optimised individually for every remotely-sensed
parameter. Therefore, if a use-case defines 5 measurements of interest, architectures will be
optimising 15 independent objectives (in addition to cost and qualitative attributes). Satisfying
all the requirements moderately well will generally be unlikely.

ρ =
pa − pb
E

(2.8)

Finally, the definition of the parameter E in (2.8) controls the exponential behaviour of the
score function. Thisparameter can takebotharbitrarypositiveandnegativenumbers toproduce
convex and concave responses inU(p), respectively. For the sake of illustration, different values
of E are shown in Fig. 2.6.

2.6.2 Measurement-specific figures of merit

Once performance metrics are normalised to the utility range, the definition of our custom fig-
ure of merit starts by combining measurement-specific attributes into a single score that we
termed Γk. For every measurement k defined in the use-case, the performancemetrics (pm) are
weighted with positive γ values. Two types of aggregation are proposed in (2.9). The additive
version (2.9b) is simply a weighted sum (WS) approach. When looking at a single Γk, WS scalar-
isation methods present better transparency since the metrics contribute independently to the
aggregate and can be analysed easily inΓk decompositions. Conversely, theweighted geometric
mean (WGM) in Eq. (2.9a) produces aggregates that are harder to grasp owing to the expression
of weights through exponents and given the fact that they are harder to decompose. However,
WGM aggregates allow for an intrinsic filtering of solutions that do not perform well in one of
the attributes. ONION considered that user needs were not satisfied if either of the three per-
formance metrics was not satisfying the requirements. Hence the results have mostly used the
WGM form. For the sake of illustration, this could be equivalent to asserting that a system that
has an outstanding revisit time but which provides imagery of very coarse resolution should be
considered irrelevant. Specific user and application needs require that most of the attributes
be satisfied to a certain degree. Asmentioned above, achieving optimal performance (i.e. pb) for
all metrics simultaneously is very unlikely. However, the optimisation in ONION required to fil-
ter out solutions that, regardless of standing out in the other two performancemetrics, showed
poor results in one of them.

Γk =
∏
m

U(pkm)γm where
∑
m

γm = 1 (2.9a)

Γk =
∑
m

γm · U(pkm) (2.9b)
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2.6.3 Aggregation

Eq. (2.6) showed the final aggregation of three contributing terms, namely, Γ(Performance(x)),
Γ(Cost(x)), andΓ(Ilities(x)). These three components are all enclosed in the range [0, 1] and are
aggregated in amultiplicativemanner. Let these individual termsbe formally defined as follows:

Γ
(
Performance(x)

)
= Γ′ =

√
1

NK

∑
k

Γ2
k =

√√√√ 1

NK

∑
k

(∏
m

U(pkm)γm

)2

(2.10)

Γ
(
Cost(x)

)
= U(C Total)

∣∣
P=0.001

(2.11)

Γ
(
Ilities(x)

)
= A (2.12)

The first term (2.10) combines all the measurement-specific figures of merit of a use-case,
wherebyNK is the number ofmeasurements. We propose the combination ofΓk as aRootMean
Square (RMS). With this approach, we continue to emphasise the need to satisfy as many user
requirements simultaneously as possible. This aggregation method satisfies the needs of the
ONION study, although it may well present two drawbacks in other contexts. To begin with, the
aggregation through RMS is detrimental in terms of transparency. Secondly, the aggregation of
several metrics through non-linear transformations such as the square root, is subject to rank
reversals. In decision-making, rank reversals is a change in the ordering of candidate solutions
when either a different decision method is chosen (e.g. the aggregation of metrics), or new al-
ternatives are added to the original set. Certainly, RMS could be very prone to rank reversals
in the former case. If the decision method would change to include different or additional per-
formancemetrics, most of the architectural scores obtained through an initial evaluation would
likely change and cause a dramatic reordering. This very problem relates to a common criticism
in decision-making at large: the ability to assert that the chosenmethod always derives correct
answers. Without entering into detail in the decision-making paradox,14 suffice it to say that en-
suring that a method is always correct without uncertainty is impossible in practice. The very
selection of attributes and expression of stakeholder satisfaction and preferences is a complex
endeavour that is itself contingent on multiple subjective criteria. Because of that, and espe-
cially given that this method is presented in the context of ONION and is not expected to neither
include new attributes normodify the candidate set a posteriori, we can guarantee that the rank
reversals issue will not affect the decision process. It is also important to point out that the ag-
gregation through RMS is only correct if every Γk covers the whole range [0, 1]. This is always
asserted provided that

∑
m γm = 1, as noted in Eq. (2.9a).

Concluding with the description of Γ′, it is important to point out one particular character-
istic of the evaluation and aggregation scheme in this framework. In the previous section we
showed how measurement-specific figures of merit were obtained from the performance at-
tributes of that very measurement k. However, in complex architectures like the ones proposed
in this work it is possible to enumerate architectures that can provide a single measurement
with multiple instruments. This situation is patently clear when two instruments implemented
with the same sensing principle (e.g. hyperspectral imager) are designed for two different satel-
lite classes (e.g. a nano-satellite or a small-satellite platform). Clearly, both instruments will
exhibit different performance characteristics by virtue of their design, e.g. longer focal lenghts,
larger antenna diameters, higher power availability, etc. A different instance of the same situ-
ation can ofen be observed when two instruments that implement different sensing principles
are capable of providing the same information (e.g. an active microwave instrument such as a
14 See https://en.wikipedia.org/wiki/Decision-making_paradox.
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synthetic aperture radar, and a passivemulti-static radar). In either of the two cases, themeas-
urement correspondence will not be complete. As a matter of fact, both the pre-selection of
instruments and the identification of potential instrument combinations, tries to minimise this
very fact. Nevertheless, it is still possible to evaluate architectures where different instruments
could contribute toΓk. Provided that only three typesof satellite classesare consideredand that
multiple platforms of the same type will always embark the same instrument combination, the
problem can be reduced to choosing the best contributor to Γk. In order to do so, the algorithm
that computes aggregated figures of merit, does rely upon the decision below.

Γk = max
{
Γkh,Γkm,Γks

}
(2.13)

The second term (2.10) of Γ(J) is essentially a normalisation of the cost. Like in many other
cases, assessing the absolute cost of a solution is not as relevant as the comparison of this
valuewith other alternatives—provided that either no constraints have been defined or they are
indeed satisfied. Thus, cost will be assessed by means of linear normalisation, that can be ap-
proximated with the SIB utility function introduced in Eq. (2.7). It is important to note that the
combination of SIB utility functions is fundamentally equivalent to the generic formulation of an
optimisation problem where some objectives need be maximised while others have to be min-
imised:

max. f(J) =

∑
i J

(max)
i∑

i J
(min)
i

; f(J) =
∑
i

ULIB

(
J
(max)
i

)
·
∑
i

USIB

(
J
(min)
i

)
(2.14)

Coincidentally, all the performance metrics in this framework need be minimised, whereas
only the third term (A) represents attributes that need be maximised. The formal definition of
this latter contributor is discussed in detail in the following section.

2.6.4 Qualitative attributes

The modelling of qualitative aspects in DSS has been practised in previous works. Chapter 1
mentioned a number of examples of the incorporation of qualitative attributes, the so-called
ilities, in frameworks that solve SAP. Some methodologies found in literature have addressed
the design of EO satellite systems with a focus on qualitative attributes. Therefore, we find it
crucial to consider ilities in the architecting of DSS. When discussing donwstream influences,
Crawley et al. state the following: “Design for X (DfX) is a term used to describe a series of design
guidelines, such as Design for Manufacturing, Design for Six Sigma, Design to Cost, and Design to
Test. [...] Oneway to think about the universe of Design for X is in terms of the list of ilites, or attrib-
utes of the system that are related to its implementation and operations” (Crawley et al., 2016).
Certainly, the notion of DfX implicitly articulates the need to address the achievement of certain
qualities through active design and decision-making constructs. This is specially relevant for
DSS, provided that some of their benefits are often uttered through the expression of several of
these ilities (Corbin, 2015; Lluch and Golkar, 2015b; Ross and Rhodes, 2008). Following this line
of thought, this framework proposes to model qualitative attributes and to aggregate them as
another form of MAU—a qualitative one. Similar to the quantification of ilities in other works
(e.g. McManus et al., 2007; Rader et al., 2014), the third term in Γ(J) corresponds to this ag-
gregated figure. Again, we keep this value separated from the quantitative attributes cost and
performance in order to understand the influence that they have upon the design space and to
be able to express preferences independently. In Fig. 2.7 we illustrate how the quantification of
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Figure 2.7: Figure of merit modification from the quantification of ilities.

ilities is performed through models, and their aggregation to the final figure of merit. Thus, we
refer to the unmodified figure ofmerit as the portion of Γ that does not include ilities. Once ilities
are evaluated and aggregated, this value is used tomodify the previously computed aggregation
of performancemetrics and cost. This section proposes up to five different ilities that have been
considered at some point in the application of this framework, for ONION. Themodelling of such
specificquantities hasbeenexplicitlymotivatedby theneedsof theproject andhas servedasan
illustrationof theadditional support to themakingofdecisions that theybring to this framework.
Many other critical ilities could also be considered in future studies that were not addressed as
part of thiswork. Ultimately, their incorporation in tradespace studies dependson themodelling
acumen of decision-makers and their ability to quantify them as ameans to perform significant
comparisons.

The five ilities considered in the application of this framework—and described in detail
below—can briefly be summarised as follows:

• Criticality: the ability to performmeasurements that have higher societal value.
• Practicality: the ability to process the captured data in a timely manner, without worsen-
ing the system responsiveness (Fig. 2.2).

• Data relevance: the quality of the produced data and sensing principle, with regards to
the information that will be extracted from it (i.e. the actual measurement).

• Versatility: the ability of a given constellation geometry to produce optimal architectures.
• Maturity: the degree of acceptance and heritage for the technologies in an architecture.

Before their modelling is addressed, we shall present their aggregation and weighting for-
mulation. Models of ilities should be able to yield a numeric quantification in the range [0, 1],
where the maximum satisfaction of the modelled quality is represented with value 1. Thus, for
each ility i, wewill define amodel ai that produces this value based on decision variables (x) and
parameters (p), simulation, or essentially any other method. Then, for the expression of prefer-
encesweuse the exponential function in Eq. (2.16), whereby the value b is aweighting parameter,
and a is the quantification of the ility introduced before. Fig. 2.7a shows the application of this
weighting function for different values of b. The interpretation of the resulting value is as fol-
lows: architectures deliver a certain aggregated performance Γ′, as shown in Eq. (2.10). This
performance figure ismodified in accordance to the aggregation of qualitative attributes. Their
normalised range facilitates the implementation of a modifier as a scalar product, i.e. αΓ′. Ilit-
ies that present a very strong influence (i.e. b ≈ 1) will dramatically modify Γ′. Conversely, ilities
with a very weak influences upon the selection (i.e. b ≈ 0) will hardly change its value. Since the
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application of these modifiers is multiplicative by definition, its aggregation into a single value
A can also be given in multiplicative form (2.17).

x 7→ a ≡ f(x,p) (2.15)

α = f(a, b) = (1− b)
(1−a) with b ∈ (0, 1) (2.16)

A =
∏
i

αi (2.17)

Measurement criticality

In Eq. (2.10) and (2.9a)weprovided the aggregation function for all the performancemetrics con-
sidered in this framework. Prioritieswereexpressed throughγm, whichweighted the importance
of every single performance metric m. As pointed out before, in the multiplicative aggregation
forms proposed both for Γk and Γ′ the sum of weights γm(k) must be equal to 1 for every meas-
urement k. This does not preclude decision-makers to provide different distribution of prefer-
ences for metrics of two different measurements; i.e., it is possible to have γm(k1) ̸= γm(k2), ∀m.
Nevertheless, the RMS aggregation of Γk ’s forces the domain of every value to be strictly [0, 1].
This results in the inability to evaluate preferences with regards to the measurements satis-
fied by the use case. In some cases, the definition of user requirements may define measure-
ments that are of higher priorities than others, either because the derived applications and user
communities stress this fact, or because the performance elicited for such specific parameter
provides greater societal value—even beyond the scope of the use-case. In these situations,
decision-makers may require the ability to give higher priority to these critical measurements.

ac =

∑
k wk · xk∑

k wk
with wk ∈ [0, 1] and xk =

1 if measurement k is provided

0 otherwise
(2.18)

The definition of ac above, lets system architects to assign normalised weights to specific
measurements, whereby the binary variable xk is determined with the set of instruments em-
barked in the architecture. The choosing of values wk can be determined by means of a survey
to stakeholders, through the analysis of global agendas and societal demands, or simply as a
binary value.

Practicality

Architectures with a large number of nodes generating high-resolution data could have severe
implications in terms of performance and responsiveness. The need to process large amounts
of raw data may constrain the final timeliness of the system. In Section 2.4, we mentioned that
the definition of latency only accounts for the download time of observation data. This simpli-
fication could be valid provided that the processing and dissemination times are either constant
for all the architectures in the enumerated set (i.e. these values are not affected by architectural
decisions) or when their contribution to the total timeliness is negligible compared to download
times. For some architectures, however, these two assumptions may not always be true or ac-
curate. In order to solve this decision bias, we define practicality as a modifier that takes into
account the very fact that some designs of the space segment may hinder ground segment per-
formance (e.g. SAR processing for large volumes of raw data).
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Table 2.6: Meaning of the data relevance indexR.

R Relevance for the given variable (RO) Performance degradation (RD)

5 Primary Not influenced.

4 Very high Negligible change.

3 High Slightly worsened.

2 Fair Heavily worsened.

1 Marginal Almost non-operative.

ap = U(D) = U

(
Nodes∑
n=1

dn

)
with P = −3

Q = 0

pa = 0.25Dmax

pa = 0.9Dmax

(2.19)

Thevalueofap is computedwith theaggregateddatarate (
∑

dn) of anarchitecture, asshown
in Eq. (2.19). The value of D, in kbps, is then transformed into a utility by setting the lower and
upper thresholds pb and pa (i.e. worst and best values, respectively) to a fraction of the absolute
maximum aggregated datarate found in the candidate set (Dmax).

Data relevance

Depending on the sensing principle, measuring a certain physical variable will be performed
through different data processing techniques. In some cases, sensor data values are directly
linked to the physical variable while, in other cases, that particular variable might be indirectly
inferred by means of complex data processing models or fusion with other measurements. This
characteristic is taken into account and collected in the OSCAR database. The Observation Sys-
temsCapability Analysis andReview tool (OSCAR) is anon-line15 inventory of factual information
on satellite capabilities, such as instruments, satellites, programmes, and agencies. OSCAR
is also a tool providing expert assessments on the relevance of instruments for fulfilling pre-
defined capabilities and the measurement of particular geophysical variables (Kurino, 2018;
WMO, 2019). The OSCAR/Requirements database currently stores the definition and details
of about 200 physical variables. Linked to this information, OSCAR/Space gathers more than
700 instruments from around 200 satellite programs and assesses their relevance with regards
to the geophysical variables for which they produce data. This assessment is given—in qual-
itative form—through the definition of a relevance class. The available classes are listed in
Table 2.6, where Primary corresponds to measurements that are directly inferred from sensor
values, andMarginal identifiesmeasurements that could be indirectly deduced through intens-
ive processing, data fusion, or the application of models of limited reliability. Leveraging this
knowledge, this framework defines a similar data relevance modifier by transforming OSCAR
classes into a numerical indexR.

In addition to the relevance identified in OSCAR, the ar modifier augments the definition
of relevance and also considers the fact that the sensing principle of some instruments may
be subject to specific operational conditions. Capturing data outside such conditions could

15 https://www.wmo-sat.info/oscar/
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lead to a degradation of data quality, and hence also a performance degradation overall. The
simulation-based evaluation of revisit times is unable to consider the operational constraints
(e.g. lighting conditions or presence of clouds in optical imagers), especially because most of
them relate to physical environmental conditions that can not be predicted in simulation. Owing
to that, we considered crucial to influence the architecting decisions with a qualitative modifier
thatwould take intoaccountboth the relevancecriteriadefined inOSCAR, aswell as the inherent
operational limitations of instruments.

ar =
1

5N∗
k

∑
k

Rk whereRk = min
{
RO, RD

}
k (2.20)

The suggested quantification of ar is essentially based upon the averaging of relevance in-
dices (see Table 2.6) for all the measurements provided by an architecture. Eq. (2.20) formally
defines ar, wherebyN∗

k is the number of satisfiedmeasurements by the solutionx
∗, andNO and

ND are the numerical indices listed in Table 2.6.

Versatility

The term versatility can have multiple interpretations. It could be regarded as the ability of a
system to satisfy diverse needs without having to change its form, as defined by de Weck et al.
(2012). In addition, in their proposal of prescriptive semantic basis for ilities, Ross and Rhodes
identify two types of versatility: functional and operational. Functional versatility is defined as
the ability to achievemultiple functionswith similar form and operations, while systems that are
operationally versatile can achieve similar functionswithmultiple operations but, again, similar
form. In our ownmodelling of versatility, we leverage the idea ofmaintaining similar form to per-
form multiple functions. Thus, the versatility modifier considered in this work tries to quantify
how good an architecture is when very few architectural elements (i.e. its form) are changed.
In particular, av evaluates the ability of a given constellation geometry to perform well, regard-
less of the embarked instruments on board. Grouping architectures by their platform distribu-
tion and orbital configuration (i.e. altitude, Walker pattern, number of planes and nodes, and
allocation of platforms are fixed), versatility is computed as the root mean square of all the per-
formance aggregates that share the same architectural family (Γ′

RMS). With this, versatility is
formally defined in Eq. (2.21), whereNi is the number of unique architectures that share a given
constellation, and Γ′

i are their performance aggregates, as defined in Eq. (2.10).

av =

√√√√ 1

Ni

Ni∑
i=1

(Γ′
i)

2 (2.21)

Maturity

Finally, this last qualitative modifier determines how much an architecture relies on emerging
and/or enabling technologies. Twoalternativedefinitionsareproposed inEq. (2.22a) and (2.22b).
The basic form (a) considers an arbitrary weight wm ∈ [0, 1] and gets the maturity ratio16 for the
architectural elements xi of the design x∗. A more granular definition of maturity is the one
formulated in (2.22b), which relies upon the definition of Technology Readiness Levels (TRL) for
every satellite platform design. TRL are a type of measurement system used to assess the ma-
turity level of a particular technology originally introduced byNASA. This rating systemhas been

16 The bracketed notation [S] is borrowed from (Graham et al., 1994). [S] stands for 1 if the statement S is true, and 0
otherwise.
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Table 2.7: Technology Readiness Levels

TRL Definition

1 Basic principles observed and reported.

2 Technology concept and/or application formulated.

3 Analytical and experimental critical function and/or characteristic proof of concept.

4 Component and/or breadboard validation in laboratory environment.

5 Component and/or breadboard validation in relevant environment (industrially relevant
environment in the case of key enabling technologies).

6 System/subsystemmodel or prototype demonstration in relevant environment (ground or
space).

7 System prototype demonstration in operational environment (i.e. space).

8 Actual system completed and “flight qualified” through test and demonstration (ground
or space).

9 Actual system proven in operational environment (competitivemanufacturing in the case
of key enabling technologies; or in space).

used inanumber of projects, both inNASA,ESA (2008) and in theEuropean researchprogramme
H2020. There are nine technology readiness levels; TRL 1 is the lowest and TRL 9 is the highest
(see Table 2.7). The function TRLp(i) essentially evaluates the level of the i-th satellite in archi-
tecture x∗. A generic method for evaluating TRL is described in (Shea, 2017).

Basic: am(x∗) =
1

wm |x∗|
∑

xi∈x∗ wm [xi is mature] (2.22a)

Platform TRL: am(x∗) =
1

9Nsat

∑Nsat
i TRLp(i) (2.22b)

2.7 Summary
In this chapter we have detailed a systems architecting framework tailored to Earth-observing
satellite systems. This framework has been proposed in the context of the European research
project ONION. In the frame of EU’s Copernicus, ONION identified ten critical applications that
the European EO programme is not fully addressing. The applications identified in ONION, have
beendefinedasacompendiumofperformance requirements elicited fromtheanalysis of stake-
holder needspublished in (Matevosyanet al., 2017). Basedon this analysis, a preliminary optim-
isationprocesspublished in (Lancheros et al., 2019) hasderiveda set of relevant instruments for
ONIONuse-cases. Both the set of use-cases and thepotential instruments to architect newsys-
temshave shaped the needs of this framework andhave determined itsmain inputs. The frame-
work presented in this chapter is oriented to the optimisation of DSS designs for architectures
composed of heterogeneous satellite platforms, leveraging FSS concepts to deliver near-real-
time access to data, short revisit times, and high spatial resolutions. The goals of this frame-
work are twofold: (1) to select the most optimal constellation design for a given use-case; and
(2) to facilitate the understanding of design trends and unfeasible design regions. In order to
do so, the methodology has leveraged the tradespace exploration technique and has proposed,
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for the first time, the incorporation of multiplemodel-based qualitative attributes as part of the
optimisation criteria. Six steps have been defined in this architecting process:

1. A formulation of theproblem that identifies architectural decision variablesbasedon the
requirements elicited from user needs;

2. The enumeration of candidate architectures, which generates satellite constellations
hybridising small-satellite technologies and traditional spaceborne assets;

3. An initial coarse evaluation of solutions that computes an aggregated figure of merit for
every candidate;

4. An analysis and screening process to pre-select a reduced set of architectures;
5. A second, refined evaluation of performance metrics, applied only to the reduced set of

pre-selected candidates;
6. A final feasibility analysis to determine the best solution that not only considers refined

figures of merit, but also spacecraft-level resource budgets.

This chapter has delved into the definition of an aggregated figure of merit that factors in
quantitative attributes (i.e. performance metrics and cost) and qualitative attributes (i.e. sys-
tem qualities, or “ilities”). The expression of value has been addressed through utility functions,
which are then combined with ad hoc aggregation methods. The proposed figure of merit for-
mulation defines a single architecture score that allows the relative ranking of solutions and
enables independent weighting of performance attributes and qualitative attributes. With that,
the latter contributor to architectural scores (i.e. the quantification of ilities) acts as a modifier
to quantitative attributes and becomes one of the objectives of the optimisation process.

Γ =
∏
i

[
(1− bi)

(1−ai)
]

︸ ︷︷ ︸
Ilities = A

U(C Total)︸ ︷︷ ︸
Cost

√√√√ 1

NK

∑
k

(∏
m

U(pkm)γm

)2

︸ ︷︷ ︸
Performance = Γ′

(2.23)

Eq. (2.23) summarises the formulation of architectural scores and highlights its three com-
ponents. Finally, this chapter has proposed a set of models that quantify ilities of the systems.
Far from being generic or comprehensive, the proposed set of ilities illustrate the application of
this architecting method in the context of ONION.

The reader is directed to (Araguzet al., 2018b) for a comprehensive summary of the contents
presented in this chapter.
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3
Case studies

3.1 Introduction
Having presented the architecting framework, this chapter applies the optimisation methodo-
logy and steps described in Chapter 2 to two illustrative use-cases fromONION. The structure of
this chapter is hence divided in two parts: Section 3.2 is devoted to present, in detail, the applic-
ation of the framework and results of the Marine Weather Forecast (MWF) use-case, whereas
Section 3.3 repeats the same exercise for the Agriculture: Hydric Stress (AHS) use-case and
summarises its results. These two application domainswere selected as two of themost critical
use-cases inONION. Theparticularitiesof these twouse-cases (i.e. context, endusers, perform-
ance requirements) shall be presented alongwith details on the pre-selected instruments. With
that, each section proceeds to show the results of the design-space exploration and conclude
showing the optimal constellation design. In order to fully understand the results presented
below, we shall first clarify two aspects, namely, the chosen formulations—when alternatives
were provided in the previous chapter—and the approaches used to represent results.

Firstly, as mentioned in the previous chapter, the aggregation method of performancemet-
rics is WGM. This forces the weights specific to a given measurement k to be

∑
m γmk = 1, ∀k.

Despite the aggregation function accepting unbalanced priorities, the results shown in this
chapter equalise the preferences with regards to performance, i.e. γmk = 1

3 , ∀k,m. A compar-
ison of results for alternative performance weights is be briefly presented in Section 3.2.6. The
parametric utility function U(p) shown in Fig. 2.6 (p. 66) uses Q = 0.1 and E = 3; i.e., architec-
tures that present very low performances, close to the minimum value pa, are assigned a much
lower utility than those that satisfy the measurements moderately well. The values for these
parameters are all summarised in Table 3.1. Values for the weighting vector of quality attributes
b = [bc bp bm br bv]

T are also gathered in the table for clarification. Nevertheless, the results
obtained with different weighting vectors are be studied in Section 3.2.5 for the MWF case.

Secondly, the representation of results is given in four different forms: (a) ranking based
on figures of merit (Γ); (b) 2-dimensional tradespaces (usually showing cost and Γk) with Pareto
frontier; (c) 3-dimensional tradespaces; or (d) iso-Γ hypersurfaces. Fig. 3.1 depicts these four
cases for the sake of illustration. The vertical z-axis corresponds to the aggregatedarchitectural
score Γ, or its contributing terms (Γk orAΓk). Three-dimensional plots (Fig. 3.1c) will be used to
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Table 3.1: Values for the parameters in this architecting framework

Parameter Reference Description Value

E Eq. (2.7) and (2.8) Controls the behaviour of the 1S-SIB exponential score func-
tion. Applies to all utilities unless noted otherwise.

3

Q Eq. (2.7) Lower bound offset to the exponential score function. 0.1

γm Eq. (2.9a) Individual weights for performance metricsm. 1
3
∀m

bc Eq. (2.16) Weight for the criticality modifier.∗ 0.5

bp Eq. (2.16) Weight for the practicality modifier.∗ 0.25

br Eq. (2.16) Weight for the data relevance modifier.∗ 0.5

bv Eq. (2.16) Weight for the versatility modifier.∗ 0.35

bm Eq. (2.16) Weight for the maturity modifier.∗ 0.05

wk Eq. (2.18) Normalised weight for critical measurements. 1

wm Eq. (2.22a) Weighting constant in the expression of basicmaturity. 1

∗ The value given in this table only applies to the final weighting vector for MWF and AHS. Results with alternative
weights are compared in Section 3.2.6.

capture tensions in the design (i.e. show unfeasible or interesting design regions) as well as to
plot three-dimensional tradespaces that depict each of the contributors of Γ in one axis: Γk,
cost, andA. Similarly, iso-Γ plots capture the envelope of three-dimensional data in order to fa-
ciliate the understanding of design trendswhenmore than onedesign variable is involved. Apart
from leveraging three-dimensional plots to represent scores, attributes anddesign variables, all
the charts in this chaptermake use of colour to communicate one specific characteristic of can-
didate solutions: their composition with regards to satellite platforms and their heterogeneity.
Provided that this framework solves architecting problems wherein platform classes can take
three values (i.e. small, medium, and heavy), this very information can be encoded in colour by
transforming the distribution of these three platform classes into one of the three primary col-
our components (i.e. blue, green, and red). Colour codes are assigned as follows: blue repres-
ent small platforms, green is assigned to medium platforms, and red to heavy platforms. Thus,
an architecture that is composed solely of one type of platform will be shown with its respect-
ive primary colour in the series. Conversely, when an architecture is composed of a number of
small, medium, and heavy satellites, the distribution profile is additively combined to produce a
unique colour code. Examples of colour codes are shown in Table 3.2.
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Figure 3.1: Representation of results
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Table 3.2: Examples of colour codes for various platform distributions

Distribution Example

Colour H M S NH NM NS

100% 0% 0% 24 0 0

50% 50% 0% 4 4 0

0% 100% 0% 0 12 0

25% 50% 25% 10 20 10

33% 33% 33% 16 16 16

50% 0% 50% 6 0 6

0% 0% 100% 24 0 0

3.2 Marine Weather Forecast in the Arctic region
The environmental crisis and its effects upon Polar regions has stressed the need tomonitor the
status of icecaps and sea. In the Arctic, the reduction of permafrost and changes in climate has
fostered the need tomeasureweather and ocean parametersmore often, andwith better accur-
acy. On the other hand, this context has also brought new opportunities to a number of indus-
tries, which can now exploit regions that were hardly accessible a decade ago. Global warming
has induced a companies in the shipping, oil and gas, or fishing industries to consider extending
their operations to the North. For transportation services, the constant melting of icecaps has
opened the possibility to trace commercial northern routes as an alternative to the Suez canal.
Owing to the same circumstances, the plans to expand offshore operations in the Arctic region
have increased noticeably and have enabled companies in the oil, gas, andmining industries to
access large reservoirs of natural resources. It is estimated that nearly onequarter of theEarth’s
undiscovered, recoverable resources lie in the Arctic region (13% of the oil; 30% of the natural
gas; and 20% of the liquefied natural gas).

Monitoring the marine environment is critical in the above-mentioned pursuits. Offshore
operations require in-depth, frequently updated knowledge of the state of the sea in order to
plan their activities and avoid damage to platform equipment and vessels—sea currents, rogue
waves, and the presence of ice are determining factors. Similarly, the fishing and aquaculture
industry is tied to meteorological information and the state of seas to assess safety and risk
for trawlers and their crews. Furthermore, multiple ocean and environmental conditions are
strongly affecting fish populations and are important for the regulation of sustainable fishing
practices. To date, the availability of marine weather indicators in Polar regions is scarce, and
their prediction based on models is difficult. In this context, Marine Weather Forecast (MWF)
in the Arctic region was identified in ONION as one of the most important application area to
address. While the primary users of new EO systems for the Arctic would be meteorological or-
ganisations, their weather forecasts and integral data products enable the generation of Geo-
graphical Information Systems (GIS) products that are critical for a number of end users in the
public sector (e.g. local governments, sea authorities, coast guards), and private sector (e.g. fish
farmers, oil and gas industries).

The main physical variables belonging to this use-case involve meteorological conditions,
sea state, and ice measurements. A number of Copernicus and EUTMETSAT satellite programs
are already providing data of this kind (e.g. Sentinel-1, Sentinel-3, Metop-A, B, and C, Meteosat
SecondGeneration), or are scheduled to do so in the near future (e.g. Sentinel-4,Meteosat Third
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Figure 3.2: Arctic boundaries as defined by working groups of the Arctic Council: Emergency Prevention,
Preparedness and Response (EPPR); ArcticMonitoring and Assessment Programme (AMAP); Conservation
of Arctic Flora and Fauna (CAFF); and the Arctic Human Development Report (AHDR).

Table 3.3: Performance requirements for MWF

Spatial resolution (km) Revisit time (h) Latency (min)

Parameter Target Minimum Target Minimum Target Minimum

K1 Ocean surface currents 1 25 6 24 6 60

K2 Wind-speed over sea surface 1 10 3 24 6 60

K3 Significant wave height 1 25 3 12 10 60

K4 Dominant wave direction 1 15 3 12 6 60

K5 Sea surface temperature 1 20 3 24 5 60

K6 Atmospheric pressure 1 25 3 24 5 60

K7 Sea ice cover 0.01 12 3 24 10 60

Generation). However, their related data products are either not available for higher latitudes or
present poor revisit cycles. Owing to the nature ofMWFapplications, having the ability to access
marine measurements is as critical as their frequent update. In addition, both the planning of
fishing activities and offshore operations require the access to data products to be close to real-
time.

3.2.1 User requirements

In order to allow forecast of fish distribution, planning commercial transportation routes, and
assess the safety and risk of offshore operations, theMWFuse-case gathered up to seven phys-
ical variables of interest that are defined below. For convenience, we label each measurement
with capital letter K:

• Ocean surface currents (K1): water flow on ocean surface (in cm/s).
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• Wind-speed and vector over sea surface, horizontal (K2): 2D wind vector conventionally
measured at 10 m height.

• Significantwave height (K3): average amplitude (inmeters) of the highest 30 of 100waves.
• Dominant wave direction (K4): the direction of the most energetic wave in the ocean wave
spectrum (in degrees).

• Sea surface temperature (K5): measured in Kelvin, for surface of up to 2 meter depth.
• Atmospheric pressure (K6): air pressure at the sea level (in hPa).
• Sea ice cover (K7): fraction of a given area (in %) that is covered by ice.

For each variable, their requirements in terms of revisit time, latency, and spatial resolu-
tion are given in Table 3.3. These performance requirements were considered for a target area
the Arctic region. The Arcitc circle encloses the portion of the Earth that is above 66º33’47.5”
north, yet multiple boundary definitions exist for the Arctic region (see Fig. 3.2). Taking these
into consideration, the MWF target area was set latitudes above 60ºN. Note that two columns
are provided for the three system metrics in Table 3.3. This owes to the fact that current ap-
plication requirements are also defining minimum performances for these variables in OSCAR
(WMO,2019). Thegapanalysis tool inOSCARconsiders threedifferent thresholdswith regards to
the impact of measurements performed by existing or planned assets: threshold performance,
below which there is no impact; breakthrough performance, producing significant impact; and
optimal performance, when the variable is observed according to current application require-
ments. Leveraging this gap analysis classification, we borrow the information elicited by OSCAR
in our architecting framework to quantify the minimum performance that ONION systems are
expected to provide. While the values in the optimal column have been defined in ONION gap
and stakeholder analyses (Matevosyan et al., 2017), theminimum column gathers performance
figures fromOSCAR. Their values correspond to OSCARminimum or optimal thresholds depend-
ing on the gap analysed by either OSCAR or a complementary analysis specifically tailored to EO
requirements in Polar regions (Lancheros et al., 2019).

In addition to the enumeration of these measurements and their expected performance,
the use-case also highlighted four parameters that are specially relevant in the current Euro-
pean context. In particular, the parameters K1, K2, K3, and K4 were marked as high priority in
the architecting of solutions for MWF. These correspond to critical variables that enable the de-
termination of sea states, an ability that was deemed essential during the analysis of derived
applications and end users’ needs.

3.2.2 Instrument configurations

Based on the analysis of requirements, the instruments listed in Table 3.4 were proposed to ad-
dress the architecting of MWF. Nine potential instruments were selected such that they pro-
moted the design of small, medium, and heavy satellite platforms and covered all the meas-
urements of the use-case. Columns K1 to K7 indicate the type of measurements that can be
satisfied from the data generated by each instrument. Noteworthy, this columns do not take
into account performance requirements (e.g. spatial resolution), but only instrument suitabil-
ity based on the sensing principle and operating bands. Instrument characteristics are taken
from publicly available reports of the representative missions listed in the third column. Their
operating power and output datarate are shown in columns five and six. The masses listed in
the fourth column do not take into account the required antenna for microwave payloads, al-
beit these could easily be considered part of the platform mass. Instrument swaths have been
computed for the three possible orbital altitudes (i.e. 510 km, 657 km, and 807 km). Likewise,
horizontal spatial resolutions are also computed at the corresponding altitude. While technical
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Table 3.5: Instrument configurations for MWF

Instrument \ Config. 1 2 3 4 5 6 7 8 9 10 11 12

GNSS-R • · • • • · · · · • • ·

Optical Imager · · • · · • • · • • • ·

Radar Altimeter · · · • · • · · · • · ·

MWR (small) · • · • · · · · · · · •
MWR (medium) · · · · • · · · · · · ·

MWR (heavy) · · · · · · · · · • • •
MWR (nadir) · · · · · · • · · · · ·

SAR Altimeter · · · · · · • · · · • ·

SAR-X · · · · · · · • • · · •
Mass (kg) 2 3 33 45 51 71 128 150 181 138 168 218

Datarate (bps) 200k 20k 715k 263k 205k 558k 12.5M 1M 1.5M 767k 12.7M 10M

Platform size S S M M M H H H H H H H

data is often collected fromOSCAR/Space, swaths and resolutions are computed taking into ac-
count antenna apertures and sensor characteristics. Their technical specifications have been
adjusted to the needs of the use-case—while always considering technological feasibility and
maintaining reasonable antenna dimensions. As it can be seen, the table includes both instru-
ments with high resolutions—close to or better than the target requirements in Table 3.3—, as
well as instruments that have coarse resolutions when compared to the user needs. Diversity is
justified by the fact that some instruments may excel in one performance trait (e.g. resolution)
butmaybe inferior in others (e.g. swath, power consumption). It isworthy ofmention that the list
of instruments, encompasses two instruments suitable for nano-satellite platforms, namely, a
GNSS reflectometer (detecting signals of opportunity from Global Navigation Satellite Systems
and operating as a passive, multi-static radar), and a small millimetre-wave radiometer similar
to the one developed for the Temporal Experiment for Storms and Tropical Systems Demonstra-
tion (TEMPEST-D)mission, fromNASA JPL (Padmanabhan et al., 2017). Complementing the lat-
ter radiometer, two additional ones were also proposed. Setting aside the fact that these three
different radiometers operate in slightly different bands (and hence satisfy different measure-
ments), this selection wasmotivated by their diversity in mass and volume.

These instrumentsare thencombined toproduce themeaningful configurations inTable3.5.
Rather than computationally generating a list of all possible instrument configurations—likely
producingunfeasible ormeaningless cases—theapproach followed in this frameworkpreferred
theenumerationof configurations guidedbyhuman judgement andsystemknowledge. The sum
ofmasses determines feasible satellite platformswhere the instruments can be embarked; de-
notedwith letters S,M, andH in Table 3.5. Based on this assumption, instrument configurations
were also guaranteed to satisfy power and data budgets of their buses (see Table 2.2, p. 56).
The numbers in the table header, identify up to twelve unique instrument configurations; two
for small platforms, three for medium platforms, and seven for heavy platforms. Among the
alternatives, the Microwave Radiometer (MWR) denoted as “nadir” only appears in configura-
tion 7, and its swath and spatial resolution are not shown in Table 3.4. This instrument was only
considered to provide complementarymeasurements to theSARAltimeter (instrument 8), which
requires them to perform water vapour correction in the primary observed data. Nevertheless,

83



In pursuit of Autonomous Distributed Satellite Systems C. Araguz

Table 3.6: Indices of data relevance andmaturity parameter for MWF instruments

Instrument Data relevance index Mature

K1 K2 K3 K4 K5 K6 K7

GNSS-R – 2 2 – – – 3 –

Optical imager – – – – 5 4 5 ✓
Radar Altimeter 3 5 4 4 – – – ✓
MWR (small) – – – – – 5 – –

MWR (medium) – 4 – – – – 3 ✓
MWR (heavy) – 3 – – 5 – 2 ✓
MWR (nadir) – – – – – – – ✓
SAR Altimiter 3 3 3 4 – – – ✓
SAR-X 3 5 4 5 – – 1 ✓

Table 3.7: Decision variables for Marine Weather Forecast

Decision variable Option set Cardinality

Orbital altitude
{
510, 657, 807

}
3 options

Walker pattern
{
∆, ⋆

}
2 options

Orbital planes
{
2, 3, 4, 6, 8

}
5 options

Number of satellites
{
4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48

}
11 options

Satellite platforms
{
S,M,H

}
3 options

Instrument configurations∗
{
1, 3, 8, 9

}
4 options

∗ from Table 3.5.

this complementary MWR was considered in the assessment of mission cost, power and data
budgets, and platform capacity.

Concluding this section, Table 3.6 gathers the data relevance indices (R) for each instru-
ment. These indices are used in the evaluation of the relevance quality modifier presented in
Section2.6.4. Their valueshavebeen taken fromtheOSCAR/Spacedatabaseandhaveonly been
modified to account for operational limitations. In particular, the optical imager is sensitive to
the presence of clouds. Although its relevance index in OSCAR is of 1 (primary) or 2 (very high)
for sea ice cover (K7) and sea surface temperature (K5), respectively, the value of R considered
in this study has been decreased to 5 owing to the extreme likelihood of clouds in some of its
captures. The last column, denotes the maturity of the instrument, simplified to binary value
(i.e. Eq. (2.22a) is used with wm = 1).

3.2.3 Decision variables

Table 3.7 recalls the allowed values for each of the architectural decisions in this use-case, as
previously introduced in theprevious chapter. Thenumber of orbital planesandnumber of satel-
lites has been chosen to allow for the generation of solutions that could potentially satisfy revisit
time requirementswithmultiple instrument apertures. Based on these values, the enumeration
process generated 5586 unique architectures. The architectures were enumerated from 204
unique constellation geometries that were simulated in slots, as described in Section 2.5.2 (p.
59). Given the204constellationgeometries (whichdefinedaltitude, numberofplanes, andnum-
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ber of nodes), the instrument configurations were applied to complete the architecture-level
design.

Due to the development of this framework being done in collaboration with partners of the
ONION consortium, both the definition of the enumeration process and the slot-based simula-
tionapproachwasagreedafter anumber of iterationsandsimulation rounds. Asa result, ONION
identified instruments that were constantly being ruled out in preliminary applications of this
architecting framework. Hence in the final evaluation of architectures (i.e. carried out with a
final version of the ONION tools that provided performancemetrics) these instruments were ef-
fectively removed from the list of alternatives. Having considered them would have extended
simulation times to periods that were incompatible with the project milestones, and would not
have increased the quality of the yielded solutions. Thus, the final instruments considered for
theMWFwere theGNSS reflectometer (GNSS-R), the optical imager, and the Synthetic Aperture
Radar (SAR). The four available combinations that included these instrumentswere the ones lis-
ted in Table 3.7. This simplification, ultimately owing to the computational burden (very common
for simulation tools of this type) still preserved options that could be embarked in the three plat-
form classes.

3.2.4 Partial results: performance aggregates

Fig. 3.3 shows intermediate results for theMWF. In particular, it represents architectural scores
obtainedwithout theapplicationofqualitativemodifiers—i.e. termA inEq. (2.23). Fig. 3.3bplots
each candidate in a tradespace representation. The x-axis corresponds to total architectural
costs, while the y-axis represents the performance aggregate term Γ′. The Pareto frontier is
represented as a red line in the plot. Fig. 3.3a, on the other hand, displays the architectural
scores for the most optimum designs. In the latter case, scores correspond to an intermediate
figure of merit that does not include qualitative attributes (i.e. Γ⋆ = U(CTotal) · Γ′), essentially
compressing the trade-offs in a single dimension and sorting the architectures based on their
optimality. Architecture identifiers have been omitted from the plot (x-axis in Fig. 3.3a), since
they do not provide additional insights.
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Figure 3.3: Results for the MWF use-case, without qualitative modifiers.
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With these two plots, we can already observe two characteristics. Firstly, we can see
the saturation effects of the utility function U( · ). Architectures delivering better revisit times
and latency than the target values hardly have their figures of merit improved. Specifically in
Fig. 3.3b, we can conclude that an investment of more than 760 million USD—approximately—
would not bring relevant improvements to the system; most of the requirements would already
be satisfied at this cost figure. Analysing the other extreme of the plot (i.e. architectures with
the lowest cost) we can also observe a partial clustering of solutions that, despite presenting
inexpensive costs, hardly deliver any value to the system (i.e. their aggregated performance is
lower than 0.5 in the normalisedΓ′ scale). All the architectures in this small cluster are depicted
in blue indicating that these designs are only composed of small platform nodes. Secondly,
looking at Fig. 3.3a one can clearly note that architectures with the best scores always include
small platforms: bar colours indicate a combination of platforms wherein small nodes—blue
component—are predominant. This is a relevant finding because it already suggests the actual
benefits of heterogeneous DSS that rely upon small-satellite technologies.

The analysis of Pareto-dominance allows us to identify solutions that present the best
trade-offs between aggregated performance and total cost. The list of non-dominated designs
(i.e. those in the Pareto front outlined in red) in Fig. 3.3b includes up to 74 candidates. Some
of these architectures are listed in Table 3.8. This non-exhaustive list gathers four candidates
with high scores and four with lower scores. The first column in the table shows the absolute
rank obtained by these architectures when ranked by figure of merit (last column). One of the
non-dominated solutions in the Pareto frontier is, unsurprisingly, the solution of highest figure
of merit. This solution encompasses ten satellites distributed in two orbital planes. As noted in
Fig. 3.3a, the most optimal choice does include a number of small satellite platforms in its or-
bital configuration: eight in this case. Also as expected, this solution is not the onewith the best
performance: its aggregated performance figure (Γ′) is of 0.914. The scalarisation approach fol-
lowed in this architecting framework has assigned the highest figure ofmerit to this architecture
owing to the combination of good performance and a relatively low cost. That notwithstanding,
other designs are capable of delivering better performances. In particular, the last three con-
stellations in Table 3.8 deliver better revisit times due to their orbital geometries encompassing
a larger number of satellites (48). However, the cost of such constellations raised to values that
could easily be deemed unfeasible in most contexts.

Table 3.8: Subset of non-dominated architectures for MWF, without qualitative modifiers.

Rank Id. Altitude
(km)

Walker
pattern

Planes Nodes Instruments Cost
(M€)

Perfo.
(Γ′)

Score
(Γ)Total NH NM NS IH IM IS

1 205 807 ⋆ 2 10 2 0 8 9 – 1 261.97 0.914 0.8255

3 572 807 ⋆ 4 4 2 0 2 9 – 1 274.08 0.914 0.8215

4 3775 807 ∆ 2 8 4 0 4 9 – 1 359.19 0.948 0.8211

7 3458 807 ∆ 2 6 2 0 4 9 – 1 261.89 0.908 0.8205

4924 2379 510 ⋆ 2 24 0 0 24 – – 1 12.69 0.365 0.3650

5342 919 807 ⋆ 6 48 36 0 12 9 – 1 1846.56 0.986 0.2877

5509 914 807 ⋆ 6 48 36 12 0 9 3 – 2119.82 0.986 0.1836

5537 924 807 ⋆ 6 48 48 0 0 9 – – 2183.02 0.986 0.1596
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3.2.5 Design trends incorporating ilities

The partial results showed in the previous section allowed us to understand what the most op-
timal architectureswouldhavebeen, ignoringqualitativeaspectsof thedesign. Aspointedout in
the previous chapter, however, this architecting framework is determined to incorporate qualit-
ative attributes in the optimisation and seeks to explore the impact of these factors in the archi-
tecting process. At the beginning of this chapter, we already recalled that one of the character-
istics of the proposed figure of merit formulation was, in fact, the ability to encode preferences
of decision-makers also for qualitative attributes. Table 3.1 introduced the values of weighting
coefficients applied to qualitativemodifiers—the vector b—, but did not touch upon their signi-
ficance. Aswewill see in the next section, these values play a significant role in the architectural
optimisation. In consequence, their values shall be detailed below to allow the correct interpret-
ation of the design trends presented in this section.

The architecting process in ONION was characterised by the weighting vector depicted in
Fig. 3.4. Thedistribution ofweights for eachof themodelled ilities assigns high values to critical-
ity and data relevance (bc = br = 0.5). Going back to the definition of thesemodifiers in Sections
2.6.4 and 2.6.4 (pp. 71–72) the application of such strong influences in architectural figures of
merit promotes solutions that deliver data for critical measurements (i.e. K1–K4) and forces the
selection of instrument configurations that provide data with higher relevance indices. Versatil-
ity is alsoassignedamoderate influenceof bv = 0.35, stressing thewillingnessof theconsortium
to select constellation designs that provide better flexibility to designers, a posteriori. This de-
cision stems from the idea that architectural definitions are only high-level design descriptions.
Optimal architectures in a SAP process are conveyed to engineering teams as a series of recom-
mendations. Therefore, selecting architectures that present higher versatility could potentially
ease the design efforts if designerswould need to adjust some of the instrument characteristics
a posteriori. Given that versatile constellation geometries are defined as those exhibiting better
performance figures—in spite of the chosen instrument or platform class—, selecting architec-
tures that are structured in such favourablemanners could givemore flexibility to design teams.
Practicality, on the other hand is not particularly prioritised nor ignored during the architecting
of systems for ONION. The value of practicality is set at bp = 0.25; generating and download-
ing large volumes of raw data is not particularly critical for the type of instruments defined in
this use-case. Finally, the weight assigned to the maturity modifier is very low (bm = 0.05). If
we recall the impact of a modifier based on its weight (i.e. f(a, b) = (1 − b)(1−a)), architectures
thatwould have theworstmaturity (am = 0) would only reduce their figures ofmerit by a factor of
(1−0.05)(1−0) = 0.95. This causes theoptimisation toeffectively ignore thepresenceof emerging
technologiesandsmall satelliteplatforms (e.g. GNSS-R instrumentandCubeSatplatforms) and
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Figure 3.4: Weighting vector applied to quality attributes: nominal case.
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Figure 3.5: Tradespace representation for MWF, with qualitative modifiers.

allows optimal solutions to include them. Coincidentally, the previous section already hinted the
benefits of small-satellite platforms and stressed the positive impact that they can have upon
development and launch costs.

With the weighting described above, the new tradespace representation turns into the one
shown in Fig. 3.5. The trade-offs between total cost and modified figures of merit (i.e. A · Γ′)
changed noticeably in terms of scale and distribution of solutions. One of the clear differences
with respect to Fig. 3.3b is the abrupt change infigure ofmerit for a cluster of architectures in the
lower leftmost region of the plot (i.e. points below 0.3). If we inspect their design characteristics
we will observe that their main commonality, as conveyed with colour, is the lack of heavy satel-
lites in their constellation designs. This is clearly advantageous in terms of cost since none of
these solutions results in a total expenditure higher than 806MUSD. Actually, the architectures
that present such cost figures are essentially composed of 48 medium platforms in various or-
bital configurations. If we compare these extreme cases with designs that have lower number
of nodes, we can find out that their improvement in revisit times and latency is minimal and has
negligible impact over the aggregated figure of merit. However, a clear disadvantage of all the
designs in this cluster is their inability to provide data for ocean surface currents (K1) and domin-
ant wave direction (K4). These two measurements can only be satisfied by radar altimeters and
synthetic aperture radars (i.e. instruments 3, 8 and 9 in Table 3.4). The two altimeter choices
were effectively ruled out in previous iterations of the architecting process owing to their ex-
tremely narrow swaths—in the order of 7–10 km—; this characteristic increased K1 and K4’s re-
visit times considerably andnevermanifestedany architectural benefitwith respect to architec-
tures embarking SAR-X. Thus, the SAR-X payload becomes instrumental for the satisfaction of
thesemeasurements. Had these not been labelled as critical, architectures that can not provide
SAR data could still present moderately high figures of merit. However, the strong influence of
the criticalitymodifier precludes most of these architectures to actually become part of the fi-
nal solution. On the other hand, this cluster of solutions is also worsened by the data relevance
modifier. Medium class platforms embark optical instruments that have relatively high spatial
resolutions—1 km or less. Operating in the visible and infrared spectral bands, these sensors
produce imagery that allows the identification of sea ice (K7) and sea surface temperatures (K5).
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Figure 3.6: Ranking of the best 100 candidate architectures for MWF. Labels over bars indicate the archi-
tecture identifier for each solution. Architectures labelled in green and marked with a star (∗) correspond
to non-dominated solutions (see Table 3.9).

That notwithstanding, their performance is always subject to proper lighting conditions and the
absenceofblockingmeteorologicphenomena (e.g. clouds). In Table3.6weassigned very low rel-
evance indices to this instrument precisely owing to this limiting operational conditions—Polar
regions are frequently covered in clouds and are only lit during summer periods. Ultimately, ar-
chitectures composed of medium and small platforms may only deliver value to stakeholders
and user bymeans of their GNSS reflectometers (embarked in both types of platforms as per in-
strument configurations 1 and 3, Table 3.5). Hence their figures of merit are strongly decreased
when qualitative modifiers are applied to the formulation.

Another relevant characteristic in the tradespace (Fig. 3.5) is the absence of non-dominated
solutions above 803MUSD. The Pareto frontier in this case is encompassing 34 candidate archi-
tectures. Table 3.9 enumerates all non-dominated solutions except those without heavy plat-

Table 3.9: Shortlisting of non-dominated architectures for MWF

Rank Id. Altitude
(km)

Walker
pattern

Planes Nodes Instruments Cost
(M€)

Perfo.
(Γ′)

Ilities
(A)

Score
(Γ)Total NH NM NS IH IM IS

1 130 808 ⋆ 2 4 2 2 0 9 3 – 321.14 0.924 0.709 0.5772

2 125 808 ⋆ 2 4 2 2 0 8 3 – 316.25 0.922 0.709 0.5771

3 3768 808 ∆ 2 8 4 4 0 8 3 – 458.48 0.954 0.723 0.5703

4 3775 808 ∆ 2 8 4 0 4 9 – 1 359.19 0.953 0.690 0.5701

5 3773 808 ∆ 2 8 4 4 0 9 3 – 466.30 0.955 0.723 0.5689

21 132 808 ⋆ 2 4 2 0 2 9 – 1 261.84 0.915 0.677 0.5597

36 2410 808 ∆ 4 8 4 4 0 8 3 – 554.00 0.945 0.731 0.5468

42 2415 808 ∆ 4 8 4 4 0 9 3 – 561.82 0.947 0.731 0.5454

52 127 808 ⋆ 2 4 2 0 2 8 – 1 256.96 0.773 0.774 0.5422

85 2965 808 ∆ 4 16 8 0 8 9 – 1 627.60 0.981 0.709 0.5305

116 2959 808 ∆ 4 16 8 8 0 8 3 – 711.36 0.961 0.743 0.5212

123 2964 808 ∆ 4 16 8 8 0 9 3 – 723.87 0.966 0.743 0.5204

215 2958 808 ∆ 4 16 8 8 0 8 3 – 791.36 0.982 0.743 0.5100

264 2963 808 ∆ 4 16 8 8 0 9 3 – 803.87 0.982 0.743 0.5065

411 133 808 ⋆ 2 4 2 0 2 9 – 1 207.96 0.797 0.677 0.4988

1270 128 808 ⋆ 2 4 2 0 2 8 – 1 203.08 0.639 0.774 0.4579
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Figure 3.7: Design trends for MWF. Left: architectural figures of merit represented in the space nodes–
planes. Right: iso-Γ curves and hypersurface.

forms, which lay in the lower part of the global ranking. Similarly to the case without qualitative
modifiers, most of these solutions are the ones with better ranks. Fig. 3.6 shows the ranking
of the first one hundred solutions—sorted by their aggregated figures of merit (Γ)—, where we
can observe that only three types of platformdistributions are selected. This dramatic change is
more apparent if we compare the current results with the partial ones (Fig. 3.3a). When qualit-
ativemodifierswere not applied, platformdistributionsweremore diverse and therewas a clear
prevalence of solutions hybridising multiple small satellites with a few larger assets. Further-
more, wecanalso observe that the full scale rangeof the tradespaceplot is nowset toΓ’s slightly
over 0.7, revealing that no solution is capable of fulfilling all qualitative traits simultaneously.

Among the architectures with higher scores, we can only find architectures in which nodes
are distributed in the following proportions: 50%heavy and 50%mediumplatforms (coloured in
ochre); 50% heavy and 50% small (in violet); and four cases where constellations are composed
of 2 heavy, 2 medium, and 6 small satellites (in dark blue). In the first two platform distributions
the number of nodes varies from 4 to 16 and we see that there is a clear trade-off between the
total launchedmass and the types ofmeasurements providedby the constellation. The fact that
the selection ofmedium class platforms (with optical imager and GNSS-R) over small platforms
(onlywithGNSS-R) is not definite even for themost optimal designs suggests that other decision
variables could be playing an important role in this optimisation process.

Further insight can be obtained from three-dimensional representations of Γ such as the
ones on Fig. 3.7. These plots show values of Γ in the z-axis and represent each architecture in
the two-variable space nodes–planes. Both the number of satellites and their distribution in
orbital planes are design decisions that are interesting to observe together since they relate to
the size of the architecture. The left side plot represents all the candidate architectures with
their corresponding colour code. The subset of architectures displayed in the previous ranking
(Fig. 3.6) essentially correspond to the ones in the upper parts of this plot—displayed in the up-
per corner of the image. Arguably, three-dimensional data plots are difficult to appreciate in
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two-dimensional projections. In order to cope with this intrinsic limitation, the representation
on the right side shows the shape of the design-space by defining a hypersurface that includes
all the maximum Γ points for every number of nodes and planes. Regardless of the design vari-
ables being discrete, the surface is interpolated in all directions to convey the potential values
of Γ even for regions of the design space that have not been considered during the enumeration
(e.g. 21 nodes and 7 planes). Iso-Γ values are displayed as contour curves on top of the surface
to ease the understanding of the three-dimensional shape in such a projected view. This latter
representation enables decision-makers to understand some of the design trends that exist in
this architecting process. In particular, we can observe that for some number of nodes (6, 10
and 12, more precisely) the maximum values of Γ decrease significantly, creating two valleys in
the plot. Likewise, we can also observe that the region contained within 24–40 nodes creates
a plateau for which the value of Γ is of roughly 0.47. These two characteristics seem to indicate
the counter-intuitive notion that adding more satellites to a constellation is not always a good
decision.

In (McManus et al., 2007) the authors explored the representation of architectural scores
(utility, in their case) in three-dimensional tradespaces wherein the other two axes corres-
ponded to lifecycle costs and a single qualitative attribute (survivability). McManus et al. cri-
ticised that capturing Pareto dominance in n-dimensional tradespaces is difficult, even for
scenarios with three attributes. Although this can certainly be the case in multiple architecting
problems—especiallywhenhighly scattereddata structuresareprojected in two-dimensions—
, there are situations in which these representations can still evoke further insight to decision-
makers. In that sense, the plots in Fig. 3.8 show aggregated performance figures of an archi-
tecture (Γ′) with respect to the total cost and some qualitative attribute. The x-axis represents
the quantities evaluated for each ility (before the application of the weighting function). This
type of representation has enabled the interpretation of trade-offs with regards to themodelled
qualities and has allowed to grasp what the main contributing ilities are for some specific data
points.

In this architecting exercise, the interpretation of some of these results can be straightfor-
ward, likematurity (Fig. 3.8c) and criticality (Fig. 3.8a): we observe how architectures that em-
bark SAR-X and optical imagers (i.e. architectureswith heavy andmediumclass platforms) tend
to lay closer to the α = 1 edge, since these instruments are considered mature and satisfy crit-
ical measurements in MWF. At the same, their aggregated performance Γ′ is higher than that of
other candidates because both their spatial resolution is high, and the target revisit times can
be satisfied with a reduced number of satellites. Similarly, the representation of data relevance
(Fig. 3.8d) partially confirms the effect mentioned above: architectures without SAR-X instru-
ments present poorer relevance that, combined with the inability to deliver high performance,
yields very low architectural scores. Nevertheless, the representation of versatility (Fig. 3.8e)
has also complemented our understanding of the clustering effect observed in Fig. 3.5: archi-
tectures that are only composed of small and medium platforms both tend to present low per-
formance and very poor versatility. As it can be seen in Fig. 3.8e, a subset of blue data points
(corresponding to architectures composed of CubeSat-like satellite nodes only) are located at
the lower end of the av axis. With the current modelling of versatility, this effect is certainly to
be expected: architecture families based on small satellites can only embark instruments that
are naturally suited for this type of platforms. Smaller instruments—especially those that fit in
6Uor 12UCubeSat—tend to present reducedperformance either in spatial resolution or swaths
(and hence revisit times). The focal length of hyperspectral imagers or the achievable antenna
gain in nano-satellites are not comparable to those of larger platforms, and the power limita-
tions of their platform buses preclude them to embark high resolution, active instruments such
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Figure 3.8: Three-dimensional tradespaces for MWF. Each plot represents one attribute in each axis: ag-
gregated performance (Γ′), total cost, and qualitative attributes. Subplots represent one single ility or the
aggregated termA.

as LIDAR or SAR. As a result, these architectural families will group designs that will all present
poor performance. Although the modelling simplicity of versatility could certainly be criticised
and did suggest future strands of work (e.g. modelling thismodifier based upon complex design
characteristics), this initialmodel-baseddefinition still allowed the validationof thearchitecting
methodology.

Finally, Fig. 3.8f shows the cloud of candidate designs in a three-dimensional space where
the x-axis corresponds to the aggregated value A. This representation complements the ana-
lysis of the tradespace at the beginning of this section, wherewe compared thefinal resultswith
the preliminary ones (presented in Section 3.2.4).

3.2.6 Alternative solutions

In Section 3.2.4 we presented partial results of the tradespace and ranking that were compared
with the trends obtained after the application of qualitative modifiers. We observed the influ-
ence that these modifiers had upon the final solution space and explored design trends with
regards of instrument selection, number of nodes and planes. The previous weighting of qualit-
ative modifiers (vector b nominal case, Fig. 3.4) allowed to pre-select a subset of architectures
for the ONION study that satisfied the needs of the project—and which ultimately reflect the
criteria of the consortium. In this section, we shall explore two alternative cases that will delve
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Figure 3.9: Weighting vector applied to quality attributes: conservative and operational cases.

further into the effects of qualitative attributes upon optimal solutions and design trends. For
the sake of illustration, two different weighting vectors are defined, which we named “conser-
vative” and “operational” cases. Their values are shown in Fig. 3.9. This brief section shows the
architecting results when these two cases are applied, without changes in performance aggreg-
ates and weighting of quantitative metrics.

The conservative weighting vector (Fig. 3.9, left) tries to imitate stakeholder preferences
in conventional satellite programs. In contrast to the nominal case, the maturity of architec-
tural components is here enforced by applying a strong influence in its corresponding modifier
(i.e. bm = 0.5); the resulting designs need be grounded upon well-known, reliable technologies,
rather than new emerging ones. The value assigned to data relevance has not been changed,
continuing to present a high impact upon the optimisation (br = 0.5). Similarly, the critical-
ity of the architecture is only slightly changed to actually emphasise its importance even more
(bc = 0.6). Optimal architecture descriptions with these weights ignore the value of small satel-
lite technologies and stress the need for designs that excel at the mission-related qualities. In
contrast, mission-agnostic ilities such as the ability to change or reuse the architecture in the
event of context shifts are given a very lowpriority; i.e. versatility is almost ignored, with aweight
of bv = 0.05. In parallel, the influence of practicality has also been neglected with bp = 0.1, al-
lowing architectures to generate large volumes of raw data.

The results of the conservative case are summarised in the three plots of Fig. 3.10. In all
cases the data is shown with qualitative modifiers already applied. The most straightforward
difference with respect to the nominal case is the pervasiveness of constellation designs com-
posed only of heavy satellites. Given the fact that we did not constrain the amount of raw data
to download and we forced satellite architectures to rely upon mature technology, the most op-
timal sensor choice is the SAR-X (which has a datarate of 10 Mbps, high spatial resolution, and
wide swath). If we compare the ranking of a conservative design (Fig. 3.10c)with thepartial rank-
ing obtained for aggregated performance alone (Fig. 3.3a, p. 85), we can clearly see that designs
that only embarkedSAR-X instrumentswere effectively ruledout by other alternatives that, des-
pite potentially providingworse spatial resolutionsweremuchmore cost-effective. With the ap-
plication of conservative qualitative weighting, however, the cost-effectiveness of architectures
with small nodes is masked by the influence of ilities. Thus, the figures of merit of architectures
that exhibit lower relevance (e.g. those embarking medium satellites with optical imagers) and
architectures that rely upon emerging technologies (i.e. CubeSat platforms, GNSS reflectomet-
ers) are greatly affected by this alternative priorities. Nevertheless, it is worthy of mention that
the optimal design region continues to be characterised by a low number of satellites (2–4) dis-
tributed in 2 or 4 planes. The combination of this orbital configuration and the wide swaths of
SAR instruments attain the target revisit times of all the observed variables.
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Figure 3.10: Alternative solution for MWF (I): conservative case.

The second alternative weighting vector, the “operational” case, is proposed as an antag-
onistic scenario. Rather than emphasising the qualities of the architectures in terms of their
design (i.e. well established and mature subsystems and payloads that generate high quality
data), this second case is focused on the operational and data processing characteristics of ar-
chitectures. The weights shown in Fig. 3.9 (right) assign higher priority to practicality and relax
the influence of data relevance (br = 0.25). Lower data relevances may induce the optimisation
process to yield architectures that either require extensive data processing to infer the value of
the physical variable (i.e. perhaps requiring complementary data to correct the measurements)
or are subject to weather phenomena to enable the quantification of parameters. In both cases,
we conceive an illustrative case wherein decision-makers are inclined to reduce the amount of
raw, unprocessed data. In this scenario, we also reduce the impact of versatility to bv = 0.1 to
focus on the effects of other qualitative attributes.

As can be observed, the results are again overly distinct to the nominal and conservat-
ive cases. Pareto-efficient designs (Fig. 3.11a) include multiple solutions with heterogeneous
constellations—just like in the nominal case—, but the ranking of architectures depicted in
Fig. 3.11c differs significantly in platform distribution—again identified by their colour codes.
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Figure 3.11: Alternative solution for MWF (II): operational case.

Interestingly, another significant change with regards to the previous cases can be observed
in the representation of iso-Γ curves and interpolated hypersurface (Fig. 3.11b). The operational
casepresentsmuchflatter design trendswhenfiguresofmerit aredepicted in thenodes–planes
space. Although the optimal region is still in a similar location, the sensitivity to Γ with respect
to the number of satellites or planes is less pronounced. The plateau observed in the nominal
case has been accentuated with the values of “operational” weights. Finally, we can also notice
an inversion with respect to Γ values for some data points. In the tradespace representation of
the nominal case (Fig. 3.5, p. 88) we reported that a subset of architectureswas clustered below
A · Γ′ ≲ 0.3. In the operational case, however, the very same subset presents higher figures of
merit that are actually better than other designs in the set. This behaviour essentially owes to
the changes in modifier weights—especially the strong influence of the practicalitymodel.

3.2.7 Refined evaluation and selection

Section2.3 (p. 49) divided theevaluationof this architecting framework in twoconsecutiveparts:
the so-called “coarse” and “fine” evaluation stages. The results presented above have all been
tacking the design tensions observed with coarse performance metrics. These metrics were
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computed with an ONION tool implemented by a research team at SkolTech, and were provided
on an instrument basis (i.e. for each instrument, their performance metrics were simulated in-
dependently for a reducednumber of slot configurations). This facilitated the generation of 5586
uniquearchitectures, theanalysis of Pareto-dominance, and the identificationof optimal design
regions. For the MWF use-case, these design sub-spaces were characterised mostly by archi-
tectures composed of 2–8 heavy and medium satellite platforms, and 4–16 small platforms.
Orbital geometries were predominantly located at 807 km of altitude, and were configured in 2
to 8 planes. The choice of Walker pattern did not produce much impact on the solutions, and
both cases (star “⋆”, and delta “∆”) were found in non-dominated solutions and solutions with
very high figures of merit. Based upon the characterisation of this optimal design regions, we
downselected a reduced set of candidate designs in order to complete the evaluation process.

Before we proceed to present this preliminary selection, we need to stress out that Pareto-
dominance alone can not be used to determine optimal solutions in absolute terms. Indeed,
dominance provides insights on the relations that exist between attributes. The Pareto frontier,
or set of non-dominated solutions, includes architectures that both present good and poor per-
formance, low and high costs, and beneficial or disadvantageous qualities. All the architectures
of the Pareto front are equally optimalwith regards of the trades between the chosen attributes.
However, if we scrutinise their aggregatedfigures ofmerit (or ranks), wewill find out that Pareto-
optimal designs canpresent very low scores. Only in Table 3.9, which shortlisted non-dominated
solutions excluding architectures without SAR-X instruments, we can see that this subset in-
cludes a solution with rank as low as 1270 (77.3 %, in a relative scale). That being said, the pre-
selection process devised in this architecting framework has taken into account the analysis of
results presented above (including Pareto-dominance, but also aggregated figures of merit, the
explored design trends, meaningful permutations of decision variables, etc.) and is proposed as
an ad hoc analysis step. The shortlisting includes the architecture with higher score and finds
alternative designs to complete the evaluation and optimisation process. Although we do not
rely upon computational implementations, the pre-selection approach is similar to the exploita-
tion feature—rather than exploration, (Črepinšek et al., 2013)—of some evolutionary heuristics;
it leverages the characteristics of an optimal design region to evaluate, in finer detail, a reduced
number of similar designs. The approach for this intermediate analysis step has resorted to the
following guidelines:

• Score: pre-selected solutions should not present low rankswhen sorting thembyΓ. Solu-
tions need to be close to the highest scoring architecture and should not consider options
that, despite relevant or interesting, already presented low figures of merit in the coarse
performance analysis.

• Diversity: the subset of architectures needs be diverse in order to provide meaningful al-
ternatives during the second evaluation process. The pre-selection shall take into ac-
count every decision variable to produce solutions that are similar to the one with highest
score.

• Similarityandproximity: when identifyingalternative values fordesignvariables, thesolu-
tions need be similar to the ones of architectures with high scores. Non-adjacent values
in the variables’ option set (Table 3.7) can be considered only if their distances within the
set are relatively short.

• Avoid falling into new exploration: since the size of the pre-selected set is constrained by
the computational burden of subsequent evaluation tools (the “fine” evaluation), pruning
choices in whichmultiple decision variables are changed simultaneously has been one of
the motivations for exclusion.
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• Pareto efficiency: the subset considers optimal designswith regards to thecost–perform-
ance trade space if they fulfil the guidelines above.

• Expert insight: ultimately, since this analysis step relies upon human judgement and cri-
teria, expert recommendations and engineering insightmay induce the inclusion of some
architectures without these explicitly fulfilling all the above-mentioned guidelines.

Based on the previous criteria, the list of pre-selected architectures included 28 candid-
ates, as shown in Table 3.10. For this use-case, the list encompasses ten architectures with the
highest score, and eight non-dominated designs (marked with ∗ next to their rank). The table
shows their design parameters, and the evaluation of attributes (i.e. cost, Γ′ and ilities). The last
column corresponds to the aggregated figure of merit that combines all three attributes into a
single value, with which candidates are sorted.

In the list of pre-selected candidates, all the solutions encompass, at least, two SAR-X in-
struments. Nine highly-ranked architectures are combining 2 or 4 heavy platforms with 2 or

Table 3.10: List of downselected architectures for MWF. An asterisk (∗) next to the rank indicates that this
architecture is Pareto-optimal (in the cost–A · Γ′ tradespace). Numbers in bold indicate maximum and
minimum values in their corresponding column.

Rank Id. Altitude
(km)

Walker
pattern

Planes Nodes Instruments Cost
(M€)

Perfo.
(Γ′)

Ilities
(A)

Score
(Γ)Total NH NM NS IH IM IS

1 ∗ 130 807 ⋆ 2 4 2 2 0 9 3 – 321.14 0.924 0.709 0.5772

2 ∗ 125 807 ⋆ 2 4 2 2 0 8 3 – 316.25 0.922 0.709 0.5771

3 ∗ 3768 807 ∆ 2 8 4 4 0 8 3 – 458.48 0.954 0.723 0.5703

4 ∗ 3775 807 ∆ 2 8 4 0 4 9 – 1 359.19 0.953 0.690 0.5701

5 ∗ 3773 807 ∆ 2 8 4 4 0 9 3 – 466.30 0.955 0.723 0.5689

6 1148 657 ⋆ 2 4 2 2 0 8 3 – 316.25 0.908 0.707 0.5662

7 1153 657 ⋆ 2 4 2 2 0 9 3 – 321.14 0.910 0.707 0.5662

8 578 807 ⋆ 4 8 4 4 0 8 3 – 458.48 0.933 0.732 0.5654

9 2188 510 ⋆ 2 4 2 2 0 9 3 – 321.14 0.910 0.705 0.5654

10 583 807 ⋆ 4 8 4 4 0 9 3 – 466.30 0.936 0.732 0.5651

45 256 807 ⋆ 2 16 8 0 8 9 – 1 523.12 0.973 0.696 0.5441

51 4140 657 ∆ 4 8 4 4 0 9 3 – 561.82 0.945 0.729 0.5423

56 1300 657 ⋆ 2 16 8 0 8 9 – 1 523.12 0.971 0.694 0.5410

85 ∗ 2965 807 ∆ 4 16 8 0 8 9 – 1 627.60 0.981 0.709 0.5305

89 4088 807 ∆ 2 10 2 2 6 8 3 1 328.67 0.937 0.642 0.5280

91 4105 807 ∆ 2 10 2 2 6 9 3 1 333.55 0.938 0.642 0.5275

111 205 807 ⋆ 2 10 2 0 8 9 – 1 261.97 0.923 0.626 0.5218

116∗ 2959 807 ∆ 4 16 8 8 0 8 3 – 711.36 0.961 0.743 0.5212

118 3445 807 ∆ 2 6 2 2 2 8 3 1 328.58 0.927 0.640 0.5209

119 257 807 ⋆ 2 16 4 0 12 9 – 1 359.34 0.953 0.631 0.5209

120 4699 807 ∆ 2 16 4 0 12 9 – 1 359.34 0.953 0.631 0.5209

123∗ 2964 807 ∆ 4 16 8 8 0 9 3 – 723.87 0.966 0.743 0.5204

125 3453 807 ∆ 2 6 2 2 2 9 3 1 333.46 0.928 0.640 0.5203

137 824 807 ⋆ 6 6 2 4 0 9 3 – 381.24 0.931 0.649 0.5182

141 5017 807 ∆ 2 20 4 0 16 9 – 1 359.40 0.948 0.630 0.5178

151 291 807 ⋆ 2 20 4 0 16 9 – 1 359.40 0.947 0.630 0.5166

157 943 807 ⋆ 8 8 2 2 4 9 3 1 357.99 0.930 0.640 0.5161

241 3487 807 ∆ 8 16 8 0 8 9 – 1 627.60 0.948 0.703 0.5083
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4 medium ones. It is interesting to point out that the instrument configurations for the heavy
platforms is not always the same; the shortlisting includes solutions where SAR-X payloads are
also combined with optical imagers (instrument configuration #9, Table 3.5). These solutions
inherently provide very low revisit times for optical imagery, albeit we already anticipate that the
analysis of power budgets can reveal problems. Given their power requirements, radar payloads
are usually allocated in dawn-dusk Sun-synchronous orbits (SSO). However, these orbits are not
ideal for optical payloadsbecauseof the resulting illuminationconditions. Theselectionprocess
has hence tried to include solutions where radar and optical imagery are produced in different
satellite platforms.

In the lower part of the table one can also find candidate designs where the distribution of
platforms change slightly with respect to the most optimal ones. Based on the analysis of re-
visit times and latency, we determined that it was crucial to consider solutions with a higher
number of satellites. The justification for that is twofold. On the one hand we know that in-
creasing the number of small satellites has very low impact upon total cost. Small spacecraft
can only embark GNSS-R instruments, which essentially produce significant data when signals
of opportunity (i.e. those from GNSS constellations like GPS, Galileo, GLONASS, or Beidou) re-
flect in the Earth’s land and oceans. Although the swath of these instruments is extremely wide
(730–1170 km, Table 3.4), the effective scanned area only corresponds to the regionswhere sig-
nal reflections are present and detected. The simulation of actual revisit time for this type of
instruments is therefore extremely complex and was not been tackled in this study. As a res-
ult, the revisit times figures obtained during the evaluation of architectures could be slightly
over-optimistic; i.e. despite the instruments being enabled, significant information might not
be present in some parts of the area covered by their footprints. This is especially certain when
the number of GNSS-R instruments is low and barely produces overlapping.17 Increasing the
number of GNSS-R satellites can alleviate this effect and produce solutions that can be evalu-
ated in a more reliable manner during the refined analysis described below.

On the other hand, increasing the number of satellites can also be interesting in terms of
latency. The coarse simulation tool did not model satellite subsystems in a detailed manner—
for the sake of reducing computational burden. In turn, inter-satellite communication payloads
were modelled as omnidirectional antenna that were only subject to range constraint. As a
result, latency figures could also present over-optimistic results in some cases, not only be-
cause of power considerations but also due to antenna visibility. The refined analysis not only
considered specific antenna configurations and radiation patterns for each platform type (as
briefly described below) but also simulated different transceiver technologies. This induced the
pre-selection of candidates to promote solutions that could potentially ameliorate constella-
tion connectivity (i.e. improve the number of established ISL connections) in case of previous
over-simplification. This naturally leads towards a higher number of small or medium satellites
(because they have less impact upon cost, and the change does not affect figures of merit dra-
matically).

Ultimately, it isworthnoting that regardlessof their final architectural scores (Γ), all thepre-
selected architectures were performing extremely well in terms of system metrics. The values
ofΓ′ ranged between 0.908–0.981 (globalmaximum in thewhole design spacewas 0.9877), and
the ilities figureAwas enclosed in the range 0.626–0.743 (with the best global value at 0.8107).

17 Note that footprint overlapping is very likely inPolar regions,whichare coincidentally the target area for this use-case.
This can certainly palliate the effect described above, which would otherwise be critical in the simulation ofmissions
requiring global coverage.
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Figure 3.12: Different permutations of orbital configuration based on slots

Having presented the list of pre-selected solutions, we shall now explore the results of the
“fine” evaluationprocess. In order to compute refinedperformancemetrics, a dedicatedmission
analysis tool developed by Deimos Space18 was used. This refined analysis tool and some of its
results are briefly summarised in (Tonetti et al., 2019). This second evaluation was capable of
producing revisit times and latency for each of the instruments embarked in an architecture.
Unlike with “coarse” evaluation, the new performance figures were given in two forms: average
and maximum. Maximum revisit times correspond to the worst value, obtained for any point of
the target area at any time during the simulation. Average revisit times correspond, likewise, to
the average revisit time across all points in the target area. The averaged values correspond to
mean revisit times achieved throughout the simulation. Maximum and average latency are also
provided under the same definitions—and the figures were also geo-located.

The main objective of this second simulation stage is to provide refined performance met-
rics that consider on-board resources. Therefore, the simulation required some aspects of the
architectural descriptions to be modelled more in detail. Firstly, the Right Ascension of the As-
cending Node (RAAN) of each instrument had to be specified. Given that the availability of on-
board energy is crucial to assess the performance with the desired fidelity, the location of each
instrument within the orbital configuration plays a significant role in spacecraft power budgets
and the achievement of certain revisit time. Walker configurations define specific angular sep-
arations between planes and nodes but do not necessarily specify RAANs. This was not needed
for the previous computation of metrics given that solar power generation was not taken into
account. In parallel to that, the selection of specific slot configurationswas not strictly required
before. If we recall the definition of a slot configuration in Sections 2.5.1 and 2.5.2 (pp. 58–61),
the allocation of instruments in different slots was not enforcing specific mean anomalies (MA)
and RAAN for each instrument. Instead, it suggested a way to group instruments in order to re-
duce the number of simulation runs. Fig. 3.12 illustrates two possible permutations that would
produce the same performance figures in the first evaluation step. Spacecraft are identically
separated in MA and RAAN in both cases. The determination of the optimal permutation (main-
taining slot constraints) was crucial to assess the architectures in their best cases. The process
entailed the identification of optimal RAAN for the instruments, and then continue with the al-
location of platforms as defined in their architectural definitions. The first priority was the al-

18 Member of the ONION consortium.
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location of SAR-X in 06h-18h SSO,19 while the second was to allocate optical imagers in their
optimal LTAN (i.e. 10h-22h).

Secondly, aside from determining the most optimal slot permutation the refined analysis
also proposed preliminary designs for themost critical elements of the satellite bus, and imple-
mented detailed subsystem models. For each platform type, three specific ISL payloads were
designed which defined bandwidth, data rate, antenna gain, and transceiver power consump-
tion (both for the reception and transmission). The capabilities and power requirements were
defined in accordance to the platform size and considering inherent volume, mass, and battery
limitations both for the antennae and transceiver hardware (especially in CubeSat platforms).
Likewise, the dimensioning of the Electrical Power Subsystem (EPS)was also taken into account
during the simulation. Solar panel areas were preliminary designed along with batteries of spe-
cific energy densities, capacity, and mass.

With all the above-mentioned characteristics, the refined performance simulation encom-
passed a chain of individual analyses that are summarised in (Araguz et al., 2019a). This evalu-
ation process yielded two kind of outcomes: (1) specific resource requirements and identifica-
tion of unfeasible designs (power-wise); and (2) themaximum and average performancemetrics
detailed before. The identification of unfeasible designs allowed to trim the list of candidates
from 28 options to 14. The final set of designs are listed in Table 3.11. Revisit times and latency
were computed for complete orbital repeat-cycle (i.e. 25–27 days depending on the selected
altitude). Maximum and average values allowed the refinement of figures of merit and the iden-
tification of best and worst cases. While the best case corresponds to the figure of merit ob-
tained with average performance figures (fourth column in Table 3.11), the worst is computed
with maximum values (fifth column, same table). Along with the previous performance metrics,
the chain of analysis also reported data and power budgets as four individual indicators:

• Maximum depth-of-discharge (DoD, in %): the maximum battery capacity used in any of
the satellites at any given point during the simulation.

• Average depth-of-discharge (DoD, in %): the average of maximum DoDs for satellites in a
constellation.

• Maximumaccumulated storage (inMB): themaximumamount of payload data stored on-
board by any of the satellites, during the simulation.

• Average accumulated storage (in MB): the average of maximum storage capacities for
satellites in the constellation.

The new data caused re-ordering of candidates and confirmed the need to evaluate them
with higher fidelity models. Interestingly enough, the architectures that were previously ranked
1–3 and 5–10 (Table 3.10) turned out to be unfeasible in terms of power availability. The criteria
that suggested to remove these designs from the final list was mainly grounded on the DoD in-
dicator mentioned above. A simple normalisation expression was used to assess the quality of
solutions with respect to power, taking into account the number of heavy, medium, and small
platforms. The design of satellite buses and their batteries, is usually dimensioned to allow up
to a certain DoD. In a custom design, this maximum DoD is used to analyse the feasibility of the

19 ThedefinitionofRAANandLocal Timeof theAscendingNode (LTAN) are equivalent forSSO.Becauseof that, orbits are
defined with respect to their LTAN rather than RAAN. Defining LTAN is much more meaningful when power consider-
ations are relevant. A satellite allocated in a 06h-18h orbit (also called “dawn-dusk”) is constantly illuminated by the
Sun, since its ground track is riding the eclipse terminator. This type of orbits are common for radar imagers, which
are generally very power demanding. Conversely, a satellite orbiting at LTAN of 10h-22h is optimising the illumination
conditions of the acquisition. Optical imagers usually require certain sunlight angles and will acquire images during
their ascending half-cycle, i.e. at 10h AM local time, as opposed to their descending local time, 22h, where there is
absence of light.
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mission in terms of power budget. Power budgets must always be positive (i.e. the aggregated
energy input needs to exceed the aggregated power output across one orbit). In most satellite
programs the maximum DoD allowed under nominal operation modes tends to be around 20%
to 30%. Using this idea, we normalised the reported DoDs by assuming that heavy platforms
allowed up to 20%DoDwhereas the requirement inmedium and small platforms can be relaxed
to 30%:

norm(DoD) = 1− DoD ·Ntotal

Nh · 20% +Nm · 30% +Ns · 30%
(3.1)

Architectures thatpresentednegative values in thenormalisationof theiraverageDoD,were
automatically ruled out. Certainly, a careful and ad hoc design of their power subsystemswould
have fixed their potential issues. That notwithstanding, the average DoD was merely used as
a discriminator for designs that can present harder power requirements to satisfy. Table 3.11
shows the reported values for the four indicators. It is worthy of mention that some of the ar-
chitectures in the final list still present maximum DoDs of 100%. This owes to the fact that—at
least—oneof the satellites in their constellationsdidnot haveapositive powerbudget (although
the reported data did not indicate which one or howmany of them).

The final selection of the most optimal architecture was performed on a Γworst basis. The
selected design is the second in the final rank, the architecture identified as #3487. Only one
architecture presented better performance (Γworst) when compared to the selected one. If we
recall the design characteristics listed in Table 3.10 we can find out that these two architectures
only differ in the number of planes in which their orbit geometries are configured. Structured
as a Walker delta constellation, the selected design was configured in 8 planes, whereas archi-
tecture #2965 was configured in 4. However, the selected design reported better average and
maximum DoD than the highest ranked one. Two additional observations need also be noted:
the first is that even though their storage capacity did differ significantly, these values were not
taken in consideration in the decision. Storage volume is not as critical as battery capacity given
that it does not have the same design implications (i.e. the capacity of payload data recorders
hardly impacts power consumption, mass, volume, or essentially any other spacecraft charac-
teristic). The second observation can not be draw from Table 3.11 because the values of unfeas-
ible designs have been omitted. During this careful assessment of solutions we encountered
that the solutions providing highest Γbest were actually the ones presenting detrimental average
DoDs. Nevertheless, the omitted architectures did not provide betterΓworst when comparedwith
the selected one. As a matter of fact, Table 3.11 has preserved the architectural ranks obtained
by architectures (first column) when the 28 original candidates were considered. The omitted
designs (which can indeed be found in Table 3.10) ranked in positions 4–6, 8, 11, 12, 14–19, 26,
28 in the refined ordering based on Γworst.

The performance results for the selected design are detailed in Fig. 3.13. As it can be seen,
the architecture is unable to fulfil all the objectives (J ) of the architecting problem (target values,
Table 3.3, p. 80). This was common for all the architectures in the pre-selection and for the vast
majority of solutions in the whole design space. It owes to the fact that satisfying all perform-
ance metrics at the same time compromised the other two attributes (i.e. ilities and, above all,
cost). Nevertheless, the reported revisit times and spatial resolutions were always better than
theminimum requirements enumerated in Table 3.3 (p. 80). Latency, on the other hand, presen-
ted interesting values that are worth commenting. For most of the measurements, the latency
obtained is lower than 90minutes. This translates to values slightly below 0.5 in the normalised
utility scale. Furthermore, the maximum simulated latency for two measurements (i.e. ocean
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Figure 3.13: Refined performance metrics obtained for architecture #3487 of the MWF use-case.

Table 3.11: Refined figures ofmerit for MWF. Architecture with id. #3487, emphasised in bold, corresponds
to the final selected design in ONION.

New
rank

Initial
rank

Id. Prev. Γ New Γbest New Γworst DoD
(max.)

DoD
(avg.)

Storage
(max.)

Storage
(avg.)

1 85 2965 0.5305 0.5404 0.3300 29.90% 8.30% 333.00 173.00

2 241 3487 0.5083 0.5358 0.3274 10.10% 4.90% 1,009.00 516.00

3 123 2964 0.5204 0.5386 0.3144 26.16% 12.42% 303.00 218.14

7 157 943 0.5161 0.5471 0.2222 100.00% 18.24% 157.56 81.92

9 45 256 0.5441 0.5585 0.2210 26.55% 8.14% 251.49 146.11

10 56 1300 0.5410 0.5566 0.2206 25.75% 8.37% 348.62 194.26

13 4 3775 0.5701 0.5970 0.2050 28.07% 11.66% 361.79 194.13

20 120 4699 0.5209 0.5457 0.1879 27.54% 5.63% 364.82 123.45

21 141 5017 0.5178 0.5450 0.1878 26.16% 4.57% 352.22 106.59

22 111 205 0.5218 0.5577 0.1868 25.98% 4.42% 307.55 97.82

23 119 257 0.5209 0.5457 0.1817 22.53% 4.01% 272.70 97.78

24 151 291 0.5166 0.5448 0.1814 23.27% 3.57% 312.09 94.36

25 91 4105 0.5275 0.5545 0.1738 100.00% 24.05% 363.31 130.78

27 89 4088 0.5280 0.5557 0.1717 100.00% 24.02% 267.00 114.47
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surface currents and dominant wave direction) is of less than 1 minute. Indeed, all these num-
ber seem to suggest that the access to thesemeasurementswas exactly in real-time. The distri-
bution of ground station network definitely played a significant role in the achievement of these
figures but, given the type of simulation performed by the ONION tool, we need to read these
values with caution. Although power requirements were taken into account both for downlinks
and ISL, the delivery of data through ISL was simulated as a single-hop communication path.
That is: if a satellite established ISL contact with another one that had visibility with a ground
station antenna, it immediately proceeded to downloading thedata. Thus, themaximum latency
values of 83–87minutes actually correspond to analmost complete orbital period. Somespace-
craft might have accumulated payload data that could not be downloaded in the previous pass
(through single-hop ISL). Certainly this strategy ignores the fact that a satellite can relay its data
to another one even if the receiver is not connected to a ground station (GS). These scenarios are
more than likely for orbital networks where satellites cross paths at the equator or in other re-
gions without GS visibility (e.g. southern hemisphere). Apart from limiting the alternatives in
terms of GS network design, this approach simplifies the packet exchange to a simple data flow
process—ignoring, thus, the imperious need for autonomous ISL protocols that orchestrate the
process. Amore elaborate simulation of satellite-to-satellite communications was out of scope
of the ONION architecting problem. Nonetheless, we still pose that this is a critical aspect that
needs be considered in the context of research programmes oriented to DSS. Consequently, the
work presented in this dissertation has indeed tackled this need and has proposed a tool to sim-
ulate autonomous satellite networks in detail. This tool is presented in Chapter A and is part of
a comprehensive simulation framework, themain objectives of which are explicitly aligned with
the goals of this doctoral research.

Finally, this section concludes by summarising the main characteristics of the selected
design. The most optimal architecture to a use-case focused on weather, ocean and ice monit-
oring was found to be a constellation of 16 satellites, distributed in 8 planes with aWalker delta
pattern. The architecture includes 8 heavy satellites that embark a SAR instrument operating
in the X-band and an optical sensor at the visible, near-infrared, and thermal infrared spec-
tral bands (VIS/NIR/TIR). Despite uncommon, this instrument configuration provided the best
revisit time and spatial resolutions for most of the measurements of the use-case. The remain-
ing satellites are designed with a 6U CubeSat platform that embarks a GNSS-R instrument.
Two platforms of each type are allocated in each of the eight planes of the constellation. Their
orbits are all near polar SSO at 807 km. All platforms embark ISL payloads to download data
through one-hop communication paths. This constellation includes instruments that provide
data for the seven physical variables of the use-case. In some cases, the physical variable can
be sensed by two different instruments at the same time (K2, K3, and K7). In these cases, the re-
visit timemight be satisfied at different spatial resolutions (e.g. GNSS-R instruments at 39.5 km
or 2.5 km; optical and SAR-X at 1 km). The cost of this constellation is estimated at 627.6million
Euro. Launch costs are assumed to be no less than 42% of the total expenditure (i.e. 264.48
M€). This cost was obtained by optimising the launch costs of 8 individual campaigns (one for
each plane).

This concludes the study ofDSSarchitectures for amissiondevoted tomarineweather fore-
cast in the Arctic. The following section will introduce a second use-case that was also ad-
dressed in ONION and which is related to water stress assessment for agricultural purposes.
The following case study was carried out as a validation of the re-usability of the architecting
approach. As such, the following section will summarise the results by presenting global design
trends and “coarse” evaluation of architectures. The refined evaluation and preliminary design
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carried out for MWF (detailed in Section 3.2.7) was not addressed in the frame of ONION and,
hence, will not be explored in Section 3.3.

3.3 Agriculture: Hydric Stress
Water scarcity and droughts are critical environmental issues that affect a third of the popula-
tion worldwide (including countries from the EU). The global demands for freshwater are con-
stantly rising and are generally accounted to: increasing population, the improvement of liv-
ing standards in underdeveloped countries, the change of consumption habits, and the notable
expansion of irrigated crops. The latter is exacerbated by the need to provide nourishment to
ever expanding communities and to satisfy the demands of the foodstuff industrial fabric. The
volume of freshwater available and accessible is estimated to cover the global needs on an an-
nual basis. The essence of the water scarcity problem is, however, the geographic and temporal
mismatch between freshwater demand and availability. This mismatch results from local vari-
ations through the course of a year and are the main cause of droughts in several parts of the
world. The population affected by water scarcity during, at least, one month every year is es-
timated to be of 2.8 billion people (Mekonnen and Hoekstra, 2016). The most affected regions
include China, India, and the Sub-Saharan Africa, as depicted in Fig. 3.14.

Out of the total water used worldwide, up to 70% is accounted to irrigation, stressing the
need to optimise water for these purposes. About 100 tons of water are used to produce 1 ton
of crops. And only 1% of this absorbed water is actually retained in crop tissues; the rest is
lost through transpiration. Certainly, all this water is essential for the correct functioning of
the plant; it allows the regulation of leaf temperature and facilitates the absorption of nutrients
through the roots. Optimising water use in agricultural activities requires the understanding of
the state of a crop, and the constant monitoring of atmospheric and land parameters. In par-
ticular, the information required to assess water scarcity is: land surface temperature and soil
moisture; meteorological data such as accumulated precipitation, or air temperature; surface
water elevation; evapotranspiration (ET); and theNormalisedDifferenceVegetation Index (NDVI).
In this context, in situ measurements tend to be too expensive and often destructive. Moreover,
given the global nature of the problem, relying upon locally sensed information to understand
and optimise water use at global scale is simply impossible.
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Figure 3.14: The number of months per year in which blue water scarcity exceeds 1.0 at 30×30 arcmin res-
olution. Period: 1996–-2005. Source: (Mekonnen and Hoekstra, 2016).
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In this context, the Agriculture Hydric Stress (AHS) use-case is defined as an application
areawhere DSS architectures are perfectly suited to perform remote sensing of all the paramet-
ers of interest. In contrast to the MWF, the target area for AHS is global and given the dynamics
of agricultural process and the relevant meteorological phenomena, the required revisit times
are generally more relaxed. End-users encompass a number of actors from the private sector
(e.g. insurance companies, re-insurers, farms, agricultural corporations, food industries), and
the public sector (e.g. governments, policymakers, and regulators, or essentially any other actor
interested in food security issues and drought management). The information that these end-
users require could potentially be aggregated and generated by a heterogeneous fabric of inter-
mediate users, encompassing non-profit organisations (WMO, health organisations, research
entities), NGO’s and international humanitarian relief institutions (e.g. Red Cross), branches of
the United Nations such as the World Food Programme (WFP) or the Food and Agriculture Or-
ganisation (FAO), and a varied compendium of small and large private enterprises.

3.3.1 User requirements

The physical parameters of interest in this case are the ones listed below:

• Detection of water stress in crops (K8): difference between surface temperature of the
canopy and air temperature. Temperature measurement of the apparent surface of land
(bare soil or vegetation) in Kelvin (K).

• Soil moisture at the surface (K9): fractional content of water (m3/m3) in a volume of wet
soil. Surface layer: upper few centimetres.

• Estimation of evapotranspiration in crops (K10): quantity of water evaporated from the soil
and plants when the ground is at its natural moisture content (in mm/day).

• Crop growth and condition (K11): based on the estimation of NDVI. Difference between
maximum (in NIR) and minimum (around the Red) vegetation reflectance, normalised to
the summation.

Since this use-case is only focused in the agricultural domain, the parameters correspond,
mostly, to indicators that provide information of water usage, concentration in soil and surface,
and state of crops. The main purpose of these parameters is to allow end users to determine
levels of efficiency, monitor water scarcity in cropped lands, and derive decisions or propose
counteractingmeasures at regional levels. Variables K8 and K11 are not catalogued in OSCAR or
CEOS per se; their quantification is estimated through a combination of measurements or spe-
cific indices (e.g. NDVI). On the other hand, despite variable K10 being indeed catalogued in the
gap and requirements analysis of OSCAR, its measurement with spaceborne instruments can
not be carried out directly. Evapotranspiration refers to the amount of either transpiration or
evaporation that occurs in plants.20 Both processes occur simultaneously and in different pro-
portion depending on the leaf area index (i.e. the amount of shade created by the crop canopy).
Its determination is based on the energy balance method, which measures the energy—or lat-
ent heat—of a cropped area and estimates the corresponding amount of water loss (Allen et al.,
2007).

The performance required in terms of spatial resolution, revisit time, and latency are sum-
marised in Table 3.12. Similarly to the MWF use-case, target values indicate the maximum per-
formance that could be required to satisfy user demands. Theminimum columns are taken from
the associated variables in OSCAR (i.e. threshold and breakthrough values in OSCAR’s gap and
requirements analysis).
20 A detailed explanation can be read in a paper published by FAO (Allen et al., 1998), also available on-line at: http:

//www.fao.org/3/X0490E/x0490e04.htm
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Table 3.12: Performance requirements for AHS

Spatial resolution Revisit time Latency

Parameter Target Min. Target Min. Target Min.

K8 Detection of water stress in crops 7 m 2 km 24 h 36 h 24 h 36 h

K9 Soil moisture at the surface 1 km 10 km 24 h 36 h 24 h 36 h

K10 Estimation of evotranspiration in crops 2 m 2 km 24 h 36 h 24 h 36 h

K11 Crop growth and condition 2 km 30 km 24 h 36 h 24 h 36 h

Table 3.13: Instrument selection for AHS

# Name Reference
mission

Mass
(kg)

Power
(W)

Datarate
(kbps)

Swaths
(km)

Horiz. spatial
resol. (km)

Remarks K8 K9 K10 K11

1 GNSS-R CYGNSS,
DDMI

2 12 200 730
946
1170

25
32
39.5

— - ✓ - -

2 Optical
Imager

MetopC,
AVHRR/3

31 27 515 1636
2186
2812

0.64
0.82
1.01

VIS/NIR/TIR. ✓ ✓ ✓ -

10 L-band
microwave
radiometer

SMOS,
MIRAS

355 511 89 661
856
1058

17.00
21.76
26.86

— - ✓ - ✓

11 Hyperspectral
Optical
Imager

PROBA-1,
CHRIS

14 8 1k 10
12
18

0.03
0.04
0.05

VIS/NIR. ✓ - ✓ -

12 TIR sounder
(small)

CIRAS,
EON-IR

14 40 320 937
1220
1518

13.50
17.28
21.33

— ✓ - ✓ -

13 TIR sounder
(medium)

MetopA,
HIRS/4

35 24 2.88 1271
1671
2100

6.17
7.90
9.75

— ✓ - ✓ -

Table 3.14: Instrument configurations for AHS

Instrument \ Configuration 1 2 3 4 5 6 7 8 9 10

GNSS-R • · • • • • · · · ·

Optical Imager · · · · · • · • · ·

L-bandMWR · · · · · · • • • •
Hyperspectral imager · • • · · · · · • ·

TIR sounder (small) · · · · • · · · · ·

TIR sounder (medium) · · · • · · · · · •
Mass (kg) 2 14 16 37 16 33 355 386 369 390

Datarate (kbps) 200 1000 1200 203 520 715 89 604 1089 92

Platform size S M M M M M H H H H
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Table 3.15: Indices of data relevance andmaturity parameter for AHS instruments

Instrument Data relevance index Mature

K8 K9 K10 K11

GNSS-R – 3 – – –

Optical imager VIS/NIR/TIR 3 1 3 – ✓
L-bandMWR – 5 – 5 ✓
Hyperspectral optical imager VIS/NIR (small) 4 – 4 – –

TIR sounder (small) 5 – 5 – –

TIR sounder (medium) 5 – 5 – ✓

3.3.2 Instrument configurations

The remotely-sensed variables of this use-case can be satisfied with the instruments listed in
Table 3.13. These instruments were selected in a preliminary study and include two options
that have also been considered for the MWF (i.e. instruments 1 and 2). Optical instruments in
the visible and near-infrared bands (VIS/NIR) allow the measurement of vegetation reflectance
and facilitate the generation of NDVI (pertaining to K11). In parallel to that, the measurement
of temperature-related variables (K8 and K10) can be performed with atmospheric sounders
(microwave or passive infrared). Soil moisture (K9) can generally be obtained from L-band ra-
diometry, like in ESA’s SMOS mission. Additionally, GNSS-R is an emerging technology that has
recently also been considered to measure soil moisture. Out of this set of instruments their
combinations in ten meaningful configurations was proposed and is listed in Table 3.14. Given
the reported masses in the reference missions, the combinations of instruments resulted in
one option for small platforms (GNSS-R), five that could be embarked inmediumplatforms, and
four for large satellite buses. The relevance indices and maturity parameter for the selected
instruments are shown in Table 3.15.

3.3.3 Decision variables

Thedecision variables forAHSare listed in Table3.16. The threenotabledifferenceswith regards
to theprevious case studyare: thenumber of planes—now reduced to only three alternatives—;
the fact that Walker patterns are no longer a design variable—all architectures are designed as
Walker delta—; and, naturally, the configurations of instruments. We followed the same exer-
cise and considered three different LEO altitudes for constellations and eleven options for the
number of satellites. Noteworthy, the fact that this use-case had daily revisit time requirements
could have reduced the number of nodes. Nevertheless, two factors played a significant role in
this decision: instrument swaths and coverage. Most of the the selected instruments exhib-
ited relatively wide swaths (~600 km to ~2000 km), except the hyperspectral imager (instrument
11). In contrast, the latter provides a high spatial resolution that could be especially relevant for
measurements K8 and K10. Consequently, the number of nodes was chosen to be able to con-
sider alternatives embarking hyperspectral imagers that could fulfil revisit time requirements.
Furthermore, the fact that this use-case defines global target areas also inclined us to keep al-
ternatives with a high number of satellites in the set of options.
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Table 3.16: Decision variables for Agriculture Hydric Stress

Decision variable Option set Cardinality

Orbital altitude
{
510, 657, 807

}
3 options

Orbital planes
{
1, 2, 3

}
3 options

Number of satellites
{
4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48

}
11 options

Satellite platforms
{
S,M,H

}
3 options

Instrument configurations∗
{
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

}
10 options

∗ from Table 3.14.
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Figure 3.15: Tradespace representation for AHS.

3.3.4 Design trends

This second application of the architectingmethodology considered all the instrument combin-
ations in Table 3.14. As a result, the enumeration process populated the tradespace with up
to 12,198 unique architectural candidates. After the computation of their figures of merit, the
solution landscape and its Pareto frontier are represented in Fig. 3.15. The figure shows A · Γ′

whereby the aggregation ofA is computed with the same vector than in the MWF use-case (see
Fig. 3.4, p. 87). Given that the set of instrument options encompassed only one alternative for
small platforms, it is much more frequent to find solutions that combine the other two types of
satellite platforms. The tradespace plot reflects this situation by colouring the vast amount of
data points in green, red and combined colours. Unlike with MWF, we can clearly observe that
the results in AHS are much more diverse in terms of figures of merit. While candidate solu-
tions in the previously analysed use-case tend to cluster in certain regions of the plot, Fig. 3.15
does not present clustering of any kind. It is also worthy of mention that total expenditures of
more than 600MUSD are practically meaningless, since the increase in architecture score is al-
most negligible for themost optimal solutions. Interestingly, the aggregated performance figure
alone (Γ′, shown in Fig. 3.16) hardly allowed the comparison of solutions. Without the applica-
tion of modifiers, most of the resulting architectures (72%) were clustered in high regions of the
plot (Γ′ > 0.5). We can also observe the formation of bands of nearly constantΓ′, which preclude
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Figure 3.16: Tradespace representation for AHS, without the application of qualitative modifiers.

the discrimination the solutions and leaves cost as the single distinguishable trait. The fact that
designs become distinguishable after the evaluation of ilities suggests that this instance of the
architecting problem, as well as its optimal solution, are greatly affected by such assessment.

Continuing to show the collection of plots that were also prepared in the MWF, Fig. 3.17
presents the list of architecture scores of the first 100 architectures—sorted by their final ag-
gregated Γ. As expected, the subset of highest rank correspond to non-dominated solutions,
although AHS did not include as many Pareto-optimal ones in the shortlisting of solutions as
MWF. The exploration of their design characteristics showed that almost none of the architec-
tures with high rank included small platforms in their constellation designs. As amatter of fact,
small satellites only start to appear for Γ ≤ 0.4766 and always as a complementary asset to
medium or heavy satellites. In order to understand this, one needs to examine the selection of
instruments (see Table 3.17). Aside from selecting at least two heavy and two medium satellite
platforms, the solutionsalwaysembark instrument configurations8or 9 (in heavy satellites) and
3 or 6 (for medium ones). Since heavy satellite options always include the L-bandMWR, the only
difference between the two chosen alternatives is their secondary payload: the optical imager
(AVHRR/3), or the hyperspectral one (CHRIS). Both instruments operate in the visible and near
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Figure 3.17: Ranking of the best 100 candidate architectures for AHS. Labels over the bars indicate the
architecture identifier for each solution. Architectures labelled in green andmarked with a star (∗) corres-
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Table 3.17: List of AHS architectures with higher score (top 30). An asterisk (∗) next to the rank indicates
that this architecture is Pareto-optimal (in the cost–A ·Γ′ tradespace). Numbers in bold indicatemaximum
andminimum values in their corresponding column.

Rank Id. Altitude
(km)

Planes Nodes Instruments Cost
(M€)

Perfo.
(Γ′)

Ilities
(A)

Score
(Γ)Total NH NM NS IH IM IS

1 ∗ 395 808 2 4 2 2 0 8 3 – 368.74 0.708 0.844 0.5176

2 ∗ 9264 510 2 8 4 4 0 8 6 – 467.61 0.734 0.835 0.5084

3 ∗ 9251 510 2 8 4 4 0 9 6 – 462.90 0.734 0.825 0.5030

4 ∗ 389 808 2 4 2 2 0 8 6 – 299.20 0.685 0.823 0.5026

5 ∗ 9270 510 2 8 4 4 0 8 3 – 578.87 0.743 0.857 0.5023

6 394 808 2 4 2 2 0 8 3 – 416.50 0.694 0.844 0.4970

7 ∗ 376 808 2 4 2 2 0 9 6 – 296.25 0.685 0.812 0.4968

8 4924 657 2 8 4 4 0 8 6 – 467.61 0.717 0.835 0.4966

9 4930 657 2 8 4 4 0 8 3 – 578.87 0.732 0.856 0.4943

10 4911 657 2 8 4 4 0 9 6 – 462.90 0.717 0.824 0.4913

11 9171 510 2 6 3 3 0 8 6 – 397.14 0.734 0.775 0.4862

12 4923 657 2 8 4 4 0 8 6 – 507.61 0.715 0.835 0.4860

13 9183 510 2 6 3 3 0 8 3 – 488.68 0.743 0.795 0.4854

14 7455 510 1 6 4 2 0 8 3 – 492.26 0.743 0.794 0.4844

15 4929 657 2 8 4 4 0 8 3 – 618.87 0.730 0.856 0.4834

16 388 808 2 4 2 2 0 8 6 – 346.96 0.671 0.823 0.4822

17 9263 510 2 8 4 4 0 8 6 – 507.61 0.708 0.835 0.4816

18 1542 808 1 4 2 2 0 8 3 – 368.74 0.708 0.784 0.4809

19 4910 657 2 8 4 4 0 9 6 – 502.90 0.715 0.824 0.4809

20 9147 510 2 6 3 3 0 9 6 – 393.26 0.734 0.765 0.4809

21 7446 510 1 6 4 2 0 8 6 – 422.72 0.734 0.774 0.4806

22 4588 657 2 4 2 2 0 8 3 – 368.74 0.676 0.816 0.4775

23 375 808 2 4 2 2 0 9 6 – 344.01 0.671 0.812 0.4766

24 7565 510 1 8 4 2 2 8 6 1 422.81 0.734 0.768 0.4766

25 7734 510 1 10 4 2 4 8 6 1 422.86 0.734 0.768 0.4765

26 9250 510 2 8 4 4 0 9 6 – 502.90 0.708 0.825 0.4765

27 7583 510 1 8 4 2 2 8 3 1 492.34 0.743 0.781 0.4763

28 7755 510 1 10 4 2 4 8 3 1 492.39 0.743 0.781 0.4762

29 9269 510 2 8 4 4 0 8 3 – 618.87 0.718 0.857 0.4758

30 7428 510 1 6 4 2 0 9 6 – 418.01 0.734 0.764 0.4755

infrared and provide data to detect water stress in crops (K8) and estimation of evapotranspir-
ation (K10). While the former provides 0.64–1.01 km of spatial resolution, the latter does exhibit
a slightly better performance (30–50m) at the expense of extremely narrow swaths (10–18 km).
In case of the medium platforms, instrument combinations 3 and 6 also differ in the choice of
these two exact instruments: option 3 embarks GNSS-R and the hyperspectral imager, whereas
6 embarks GNSS-R and the other optical instrument. Surprisingly, although one would expect
combinations 8-6 and 9-3 to always appear paired like so, the solutions listed in Table 3.17 do
mix them in multiple occasions (i.e. 8-3 and 9-6).

From Table 3.17 one can also observe that the optimal number of spacecraft, provided that
these instruments are embarked, is of 4when constellations orbit at 808 km, anddoubles as the
altitude decreases. Is is also apparent that the most common distribution is 2 planes, although
some candidate designs in the top 100 solutions configure their satellite networks in a single
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Figure 3.18: Design trends for AHS: architectural figures of merit (left); iso-Γ curves and interpolated hy-
persurface (right).

orbital plane. These two design characteristics are clearly noticeable in Fig. 3.18a, in which Γ

present two peaks in these design locations. An additional design trend is that constellations of
two orbital planes withmore than 12 satellites become less favourable than options configured
in one or three orbital planes. In fact, Γ does not decrease monotonically with respect to the
number of nodes if planes are fixed at the values 1 or 2. Furthermore, the interpolated hyper-
surface of iso-Γ presents a subtle plateau at Γ ≃ 0.4 that extends to the 48 satellites for 1 and 2
planes.

3.4 Summary
Chapter 2 proposed an architectingmethodology oriented to Earth-observing Distributed Satel-
lite Systems. The framework has been applied to two timely use-cases that were identified dur-
ing the ONION project: the Marine Weather Forecast, centred in the measurement of climatic
and ice variables in the Arctic region for transportation, fishing, ans offshore operations; and
the Agriculture Hydric Stress, a use-case in which constellations provide data related to hydro-
logical parameters to facilitate theoptimisationofwater resources. This chapterhasshowed the
results obtained during the application of themethodology and has tried to emphasise its defin-
ing qualities, namely, the definition of a single figure ofmerit that not only considers quantitative
performance indicators as measure of goodness, but also assesses and aggregates qualitative
traits. In the presented results, we observed how the two types of architectural attributes—
qualitative and quantitative—can be used to drive the optimisation process and encode stake-
holder preferences. In this sense, the results showed that both attributes presented significant
effects in the final selection of a design.

As part of the application of this architecting methodology, we have presented the inputs
required in both use-cases, namely, the definition of user requirements and the enumeration
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of potential instrument candidates. We listed possible platform configurations that included
the enumerated instruments in order to complete the set of decision variables. The application
of this methodology has been presented in two separate sections: MWF (Section 3.2), and AHS
(Section 3.3). In the former, we explored every single step of the architecting process: the enu-
meration of solutions, their coarse performance evaluation, the analysis of design-space and
preliminary screening, the refined evaluation process, and the final selection of an optimal can-
didate. The resulting data sets and their discussion has mostly revolved around the analysis of
architectural scores, which allowed to understand the effects of certain design variables and
their tensions (e.g. orbital altitude and number of satellites), optimal design regions (peaks) and
trends in the solution-space (valleys, insensitivity regions). Ultimately, we pose that the identi-
fication of such features, albeit being of very high level, certainly provide valuable information to
design teams and is aligned with previous studied in the domains of systems architecting and
systems engineering.

The results of this full-factorial optimisation process have been achieved through the defin-
ition of a single aggregated figure of merit (Γ) that relatively ranked the solutions and identi-
fied promising designs. As part of the explanation of results we have observed how this ap-
proach is also consistent with the notion of Pareto-dominance, very common in SAP. As pointed
in Chapter 1, Pareto-dominance is often not sufficient to identify a single solution, but rather to
capture tensions among pairs or triplets of architectural decisions. All non-dominated candid-
ates in a tradespace are equally efficient in the traded variables. Nevertheless, our aggregated
Γ consistently encompassed Pareto-optimal designs in the short-listed sets of architectures.
As expected, these solutions corresponded to designs that were closer to the utopia values (i.e.
high value, low cost) in tradespace representations.

A single EO constellation has been selected among 5586 unique architectures: a 16 satel-
lite Walker delta constellation, distributed in 8 orbital planes at 807 km. The satellite platforms
in this design measure multiple physical parameters simultaneously. Eight of these satellites
are implemented in conventional heavy platforms en embark a SAR-X instrument (similar to
Severjanin-M21) and an optical imager (similar to AVHRR/322). The eight remaining satellites
are CubeSats embarking a GNSS-R payload like the DDMI.23

With the performance specifications of these set of instrument and the structural details of
theconstellation, thearchitecturesatisfiedmostof theoptimalmission requirements (Table3.3,
p. 80). That notwithstanding, two important remarks need be stressed. The first is that none of
the architectures presented cost-effective solutions that satisfied every single one of the sys-
tem requirements simultaneously. This was especially true for the latency requirement, which
could not be satisfied for all the measurements of the MWF use-case. The simulation-based
data which assessed this performance metric relied upon the definition of point-to-point ISL
and neglected other networking aspects that could potentially improve this characteristic. Nev-
ertheless, relying upon specific network protocols andmulti-hop communication techniques to
simulate the accurate performance would require the very definition of Inter-Satellite Network-
ing schemes forEarth-observing satellite systems—areas that are still being explored in current
research (Ruiz-de-Azúa et al., 2018a,b). Thus, the latency values used in our architecture evalu-
ation should be considered proxy values that need be refined and optimised as part of the actual
constellation design.

21 https://www.wmo-sat.info/oscar/instruments/view/502
22 https://www.wmo-sat.info/oscar/instruments/view/62
23 https://www.wmo-sat.info/oscar/instruments/view/921
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Secondly, it is important to recall that the architecture enumeration process is instrument-
agnostic and purely combinatorial. No rules were applied other than those of the enumeration
process itself (e.g. all planes have the samenumber of satellites). As a result, someof the points
in the space of solutions corresponded to constellations wherein LTAN and mean anomaly are
not optimised in terms of power requirements. Given that the coarse performance evaluation
does not consider on-board resources to compute revisit time metrics, some of the solutions in
the tradespacemight be slightly overestimated. Rule-based and knowledge-intensive heuristic
approaches have been explored in literature which consider design constraints at the architect-
ing level (Hitomi, 2018; Selva and Crawley, 2013) and produce accurate design that could con-
sider someof these factors, but these represent a completely different architectingapproach fo-
cused on the optimisation of a single solution rather than the exploration of global design trends
optimal regions. In order to cope with the coarseness of the initial architecture evaluation, this
chapter has also presented the pre-selection of candidate architectures for MWF, and the res-
ults of refined analysis. This architecting framework has thus been able to optimise the design
without producing unfeasible solutions nor compromising the full-factorial exploration of the
design space.

Another important aspect discussed in detail in this chapter has been the application of
qualitative modifiers and their impact upon design trends. With the set of ilities introduced in
Chapter 2, the architecting process in this chapter has shown, for MWF, three alternative pref-
erence values for the qualitative modifiers. These preferences have been presented as a the
set of weights that are applied in the aggregation of ilities (see Eq. (2.16), p. 71). Through the
application of a nominal weighting scenario and two illustrative cases—i.e. conservative and
operational—we have explored the impact of ilities and showed the strong influence that they
can have upon architecting processes like these. In that sense, the collection of figures 3.8a–f,
as well as Section 3.2.6, have scrutinised the obtained values for each ility and justified many
aspects of the optimisation.

Finally, this chapter also explored the solution of the architecting framework when applied
to theAHSuse-case, although, in this case,weonly presented results of the coarseperformance
evaluation. Two of the fundamental differences with regards to MWF have been the size of the
enumerated architecture set—ofmore than twelve thousand candidate solutions—and the fact
that small satellite platforms did not have much of an impact in the optimal designs.

Additional remarks on this systemsarchitecting framework andpossible strandsofwork for
future research will be discussed in the concluding chapter of this thesis.

113



In pursuit of Autonomous Distributed Satellite Systems C. Araguz

114



4
In pursuit of autonomous

Distributed Satellite Systems

4.1 Introduction
Autonomy was discussed in the introduction as a functional property of satellite systems that
can ameliorate the mission’s responsiveness, increase science return, improve robustness, or
even reduce operational costs. We also explored the benefits of autonomy in the handling of
complex systems in which knowledge and expertise is spatially distributed, and presented how
autonomy is verymuch linked to theconceptof self-organisation inmulti-agentorbiological sys-
tems. Autonomywas also introduced as a characteristic that can be achieved to various degrees
andatmany levels or domains. At eachspecificdomainand for eachspecific function, themath-
ematical and computational tools that are required tomodel, implement, or verify autonomy are
very likely to differ. Achieving autonomous formation flying, for instance, may entail the applic-
ation of flocking algorithms, control theory, and a vast knowledge in attitude and orbital dynam-
ics, whereas autonomous failure handling (e.g. FDIR techniques), may possibly rely upon MDP,
anomaly detection algorithms, and complex modelling of the spacecraft environment and com-
ponents. At system-level, and in the context of an Earth-observing DSS, autonomy has usually
been concerned with a much broader and higher level notion of decision-making: planning of
operations and optimisation of spaceborne resources.

In this frame, this chapter proposes an autonomous organisation scheme for DSS, focusing
on system-level functions like the ones mentioned above, and aiming at the study of its impact
in next-generation EO systems (see Theme B of this thesis’ objectives in Section 1.4.1, p. 44).
This chapter will present a multi-agent framework and decision support scheme, by means of
which DSS missions can be orchestrated. The fundamental goals of this organisation scheme
are to enable fully autonomous operations in Earth observing satellite systems atmission-level,
i.e. command- and device-level details are not relevant for the framework and have not been
touched upon in this chapter. In addition to that, three general notions or assumptionsmight be
worthy ofmention at this point. Thefirst is that the kind of systemarchitectures targeted for this
framework are the ones that wouldmostly fall in the category of a satellite constellation, swarm,
or a Federated Satellite System (FSS). We explicitly exclude fractionated spacecraft and satel-
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lite clusters since both could be regarded as a single sensing entity from the operational point of
view.24 Indeed, their sensing capabilitiesmay be distributed in nature—e.g. the TerraSAR-X and
TanDEM-X combine their sensing capabilities to perform interferometric SAR observations—
but the spacecraft belong to a single mission and are operated as a single Earth observatory.
Certainly, flight formation is a critical autonomous function in these cases. However, in Sec-
tion 1.3.8 we already pointed out that this kind of self-organisation has already gained a lot of
traction among aerospace practitioners and researchers, and is out of scope in this thesis. The
type of distributed systems of interest in this research are those composed of an arbitrary num-
ber of satellites orbiting in multiple orbits. We are especially concerned with satellite systems
where the orbiting spacecraft can establish sporadic inter-satellite links to exchange informa-
tion, but a certain orbital geometry or configuration is not a necessary condition. As a matter of
fact, this study is interested in opportunistic systems that are formed from the union of many
independent missions—naturally having uncoordinated orbital designs.

Thesecondaspect tobear inmind is that thesystem-level autonomy thatwedevise ismeant
to address the ultimate abstraction layer in a hierarchical operational architecture. Therefore,
thesatellitemodelsconsidered in this studyhavesimplified their componentsand internal func-
tions, namely, their sensing capabilities (i.e. the instruments that they embark) and critical sub-
systems or devices (e.g. battery, attitude control, communications payloads, etc.) This does not
disregard the operational complexity of a spacecraft but it actually responds to the need of or-
chestrating a distributed system—as a whole—rather than operating individual spacecraft in a
coordinatedmanner. The actions and decisions tackled in this work are assumed to decompose
into complex command sequences and spacecraft modes of operation. In parallel to that, the
proposed solution ignores the more than likely human interventions that practical realisations
of DSS would certainly entail. In real missions, any sort of orchestration will probably be su-
pervised or monitored by human operators who may wish to overwrite some of the decisions or
manually steer parts of the system for some reason.

Thirdly, the degree of optimisation applied to the handling of satellite resources and space-
borneassetshasnotbecome themain focusofourapproach. Indeed, on-board resourceswill be
taken into account in order to optimise instrument usage and trigger sequences of actions that
are viable resource-wise, but themain priority of this study is to assess the impact of autonomy
rather than generating the most resource-efficient sequences of actions. This necessarily pre-
supposes the ability to generate such sequences of action without any sort of human super-
vision, but does not assert that these sequences are the most optimal ones. Oftentimes we
will argue that providing autonomous decision-making capabilities may certainly compromise
the overall efficiency of the system. In the face of such criticism, we will usually contend that
autonomy inself-organisingbiological systems is rarelyarticulatedunder these termsbut rather
through the augmentation of system capabilities (i.e. emergent functions). Throughout the fol-
lowing chapters we will never utter, or try to imply, that autonomy facilitates an improvement in
efficiency (i.e. better useof resources). Theonlymessage intended to convey is that autonomous
operations can facilitate, or enhance, certain system qualities that—given the structural char-
acteristics of the system—would be extremely difficult to obtain otherwise. The assessment
of impact—discussed in Chapters 5 and 6—will entail a careful analysis of the structural and

24 Fractionated satellites certainly require an orchestrating framework that effectively controls their physically-
detached modules in order to manage the spacecraft as a whole. In the context of DARPA’s F6, Dubey et al. (2012)
presented a software platform that was specifically tailored for this type of DSS architectures. However, from the
operator point of view these spacecraft could be regarded as a single entity and would be operated like any other
monolithic satellite. Spacecraft “fractions”, as they are so-called, fly in very close proximity (1–100 m, as recalled in
Table 1.2, p. 15) and behave as a single satellite. Similarly, satellite clusters also fly in relatively close proximity (up
to∼1 km) and could be understood as a single sensing entity as well.
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functional implications for satellite systems. In line with that, this thesis has assessed the sig-
nificance of autonomy in terms of performance by assimilating a number of mission-level met-
rics. These indicators will sometimes reflect a degradation in terms of performance that could
be regarded as a loss of efficiency. Justifying that this loss of efficiency owes exclusively to the
operational scheme (and not the confluence of multiple factors) and demonstrating that a bet-
ter sequence of actions is possible, can be an extremely complex cognitive endeavour or an ut-
terly challenging computational effort—if not an ill-posed problem.25 Given the priorities of this
study, these kind of demonstrationswill be considered slightly tangential to themain focus—i.e.
understanding the implications and the augmented qualities—and hence will not be explored
in detail.

4.2 System characteristics
Before we proceed to explain the design of an autonomous operational strategy, it is important
to delineate the type of complex system-of-systems that we wish to address. In that sense, the
following list gathers and summarises themost critical traits discussed in Chapter 1 (which are
sometimes also part of themotivation for autonomous, decentralised operations), and specifies
the context and aspects that should be taken into account during the design of self-organising
schemes for DSS:

• Heterogeneity: Different satellite designs are to be expected, either because the system
is designed as a heterogeneous constellation of satellites like the ones explored in previ-
ous chapters or because the system is formed as the union of several individualmissions.
In a practical case, different satellite platforms may become part of the same DSS (even
opportunistically or in a temporal manner).
Organising a systemwhere the observation capabilities are heterogeneous could be chal-
lenging, especially owing to two factors: (1) the areas that on-board sensors can cover
are different (i.e. the instrument swath); and (2) power and data requirements are also
instrument- and platform-specific. Likewise, different satellite platforms will likely em-
bark on-board computers with different computational capacities. If the former relates
to the observation capabilities, the latter conveys the heterogeneity in terms of on-board
reasoning capabilities. A third and final distinguishing trait for satellites is also the abil-
ity to communicate through ISL or with ground links. In this case, themain distinguishing
factor is probably the bandwidth, or data rate, atwhich information canbe exchangedand
downloaded.

• Large-scale: The ability to provide daily or even hourly revisit times and global coverage
is ultimately possible by means of deploying large satellite constellations.
The number of satellites in new EO ventures can reach hundreds. With this order of mag-
nitude, solutions addressing autonomous decision-making systems need be scalable or,
at least, concerned about potentially large numbers of units (i.e. during the analysis of
suitability and performance of the very solution).

• Resource-awareness: Oneof the disadvantages of small-satellite platforms—especially
nano- and pico-satellites—is their tight resource budgets. This limitation stems from
their reduced power generation capability, and owesmostly to small solar panel areas. In
turn, this results innon-negligiblecommunicationconstraintsboth togroundand through

25 It could be ill-posed to try to assess the performance or efficiency of a system that is said to only be manageable
autonomously (or in a decentralisedmanner), by comparing the performance obtained by the very same systemwhen
controlled in a non-autonomous (or centralised) manner.
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ISL and, in some cases, it could even limit instrument duty cycles.
Mission Planning Systems have always considered on-board resource constraints in the
optimisation of observation and download activities—in small spacecraft or distributed
missions as well. In that sense, the planning of operations in a decentralised, autonom-
ous manner must neither ignore them. As a matter of fact, in order for new operational
frameworks to be suitable for small-satellite technologies, these need be designed in ac-
cordance to the types of limitations that these platforms exhibit, namely, power and com-
munications capacity. Conversely, the use of COTS components hardly inflicts greater
limitations in terms of computational capabilities (i.e. storage andprocessing power)—at
least compared to conventional spacecraft designs. In fact, space-qualified, radiation-
hardened CPUs and memories characteristic of large monolithic satellites can actually
deliver lower computational performances than their COTS counterparts.

• Ilities: As it was noted before, many of the promising benefits of DSS are, precisely, their
emerging qualities. Many of the works explored in Chapter 1 actually emphasise that
the underlying value of DSS is not only their ability to satisfy stringent user demands,
but also to ameliorate the system-level characteristics that do not necessarily relate to
performance.
Although some of these emerging qualities are inherently provided by the distributed
nature of DSS, most still require coordination mechanisms to make them effective, e.g.
survivability, resilience, responsiveness: all relate to traits that require some degree
of coordination in order to be achieved. If the coordination is seamlessly implemented
through self-organising, on-board mechanisms (rather than centralised, ground-based
coordination of assets), then, the evaluation of these very autonomous decision-making
schemes can also be articulated through some (or all) of the qualitative attributes that
are intended to be achieved.

• Dynamic structure: One defining trait in DSS is their ability to change, structurally,
throughout the mission lifespan. One simple illustration of this is the deployment of a
distributed architecture in a series of stages. The opposite to incremental deployment is
also envisioned, the so-called graceful degradation, where systems continue to provide
valuable data even when some of the spacecraft are no longer operative. Moreover, the
idea of extending the lifespan of a given mission by adding new capabilities (e.g. space-
craft embarking new payload technologies) or replacing a failing units is also applicable
to DSS. Ultimately, novel concepts such as FSS, in which the aggregation of underutilised
spaceborne capacities form opportunistic—or virtual—mission architectures also con-
tribute to determining that one crucial trait in DSS is their changing and adapting form.
The main implication of an architecture that is constantly evolving (even in the event of
sporadic failures) is that the organising scheme can not be based upon fixed—or even
complete—descriptions of the system. Therefore, the achievement of the functions of a
system should rather allow for adaptive mechanisms that can cope with changing con-
texts (i.e. the current state of the DSS).

• Multiple ownership or local goals: If one assumes that the spare capacities of a satel-
lite can be traded and aggregated with others to create synergistic coalitions or virtual
systems, then it could also be worth pointing out that the temporal availability of such
capacities (e.g. instrument usage) may be subject to the needs of external stakeholders.
Thus, satellites in a DSS could also be described as shared assets thatmay need to attain
local goals apart from those of the DSS itself.
Allowing satellite capacities to be only available to the system in specific time intervals or
by autonomous and/or decentralised agreements (e.g. auctioning, on-board protocols to
establish federations), could be necessary in some cases.

118



CHAPTER 4 4.3. AUTONOMOUS FUNCTION

• Spatially distributed: The most straightforward trait of a DSS is the fact that their ulti-
mate function (i.e. to observe the Earth) is achieved by aggregating the output of instru-
ments orbiting in different trajectories.
The implications of this trait in the design of autonomous organisation strategies are
probably less evident and somewhat debatable. In our opinion, the implementation of
the necessary coordination mechanisms should be done on-board, and also in an abso-
lutely distributed and decentralisedmanner. This can be a questionable statement since
autonomy, in this context, only implies that the system’s decision-making is carried out
without human intervention. A centralised, on-ground system could definitely be con-
ceived that could orchestrate a very large constellation of satellites. As a matter of fact,
this has been the fundamental approach for many Mission Planning Systems in satellite
programs (recall the conventional MPS architecture depicted in Fig. 1.9, p. 34): compu-
tational tools automatically generate optimal (or feasible) plans of action that satisfy the
goals of themission. However, we argue that this decision-making architecture is not es-
pecially favourable to attain most of the qualities discussed before (e.g. responsiveness,
robustness, maximisation of science return). As commented in Section 1.2 and conveyed
in Fig. 1.6 (p. 16), performing all the decisions on-ground requires the operational scheme
to be constantly tethered to the actual system to be able to determine its state accur-
ately (and issue decisions accordingly). Distributed satellite architectures should not be
compared to other distributed sensing systems (such as Wireless Sensor Networks) due
to the fundamental difference between a mere distributed sensing node and an actual
spacecraft. The internal complexity of a satellite tends to be orders of magnitude higher
than that of a simple sensing node, and hence their state informationmay bemuch richer
and difficult to download. We do not intend to suggest that conventional, on-ground
MPS systems are never suited for DSS, but we do see clear impediments to the achieve-
ment of full potentials and performance. Although we acknowledge that other authors
may possibly disagree with our view, we strongly believe that the trade-offs between
on-ground/centralised and on-board/decentralised clearly suggest the adoption of the
latter. In that sense, the solution presented herein is also decentralised and spatially
distributed in nature. Exploring and quantifying the said trade-offs is out of scope in this
work, and one of the possible future strands of work of the authors.

4.3 Autonomous function
If we accept that an autonomous system is autonomous with respect to a given function (e.g.
flight formation, task scheduling, failure handling, network management, etc.) it is essential
that we describe the very function that we intend to implement in an autonomous manner. This
work focuses on observation activities of a DSS and has tried to devise a framework to issue de-
cisions that affect the resources spent in such activities. In particular, we wish to organise a
system that collectively senses a global target area. We find this task to be particularly challen-
ging when compared to delimited target areas (e.g. Polar regions, natural disasters, geographic
features, countries, cities) because of the amount of spatial information that the sensing entit-
ies may need to assimilate and because of the lack of geographical boundaries. Themain differ-
entiating trait with previous works is that we do not wish to establish spatially- or temporally-
bounded regions a priori; observation activities are not tied to pre-identified tasks—which can
be satisfied by one sensing entity—but cover a large area that cannot be observed completely
in a single satellite pass. Nevertheless, the proposed solution will be described generically and
will also be applicable to smaller targets.
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The organisation of a collective sampling can be subject to certain performance require-
ments. Two illustrative cases of such performance requirements could be (1) to sample the
complete area once in the shortest possible time, or (2) to do it continuously without gaps (i.e.
constant coverage). Achieving global coverage without gaps (or amaximum temporal gap value)
is usually discussed in the context of a constellation design and the optimisation of their or-
bital geometries (Garcia Buzzi et al., 2019; Paek et al., 2018). On the other hand, the former
performance requirement is mostly addressed through planning of operations. In the domain
of operations andmission planning, the majority of research and literature onMPS have looked
at the sampling problem from a coverage perspective, i.e., they have proposed systems that or-
ganise the collection of spatial samples to attain a certain coverage (Kennedy, 2018; Ntagiou
et al., 2017; Wang et al., 2011). In some cases, deadlines are assigned to observation activities
in order to enforce the system to produce Earth imagery with a given frequency. However, to the
best of our knowledge, none of the approaches consider continuous observations under similar
temporal constraints. Many of theworks proposemission planning and optimisation algorithms
that produce solutions for bounded scheduling windows. Therefore, we propose temporal res-
olutions to be one of the fundamental metrics to drive the collective sampling endeavour, and
to withdraw the constraining concept of a fixed-size scheduling horizon just like we have with-
drawn the—often convenient—definition of spatial boundaries. In a more concise manner, let
the autonomous function be described as follows:

Functiondefinition: tomanage the required resources thatareneeded toconstantly cap-
ture global Earth imagery, in order to minimise or attain a given revisit time.

4.4 Self-organising scheme: modelling overview
The envisioned autonomous function suggests the conception of self-organising strategies that
could be commonly categorised into two of the four application areas for autonomy identified in
(Jónsson et al., 2007), namely, planning and execution and distributed decision making. In ad-
dition to that, Section 1.3.8 already introduced that this kind of autonomous decision-making
could have several correspondences to the descriptions of two generic tasks in self-organising
systems (Brambilla et al., 2013): area exploration, as a kindof collectivemonitoring (or sampling)
of the environment; and task allocation, or distribution ofwork among a teamof agents. Wehave
seen, in Chapter 1, that these types of problems can easily bemodelled asMulti-Agent Systems
(MAS). Therefore, wedeclare our self-organising scheme for DSSas an instance ofMAS,wherein
agents interact to achieve some of the collective functions defined by Garnier et al. (2007): co-
ordination, cooperation, deliberation, or collaboration (see Table 1.3, p. 31).

If agents, in this context, can informally be understood as entities that sense the world,
the result of their self-organising scheme should therefore yield the exact observation activ-
ities that each agent needs to perform in order to attain global goals. A common environment
allows the team of observing agents to capture the same information if their sensing devices
are pointing to the same spatial region. In parallel to that, agents must have the ability to com-
municate directly: they can exchange messages upon encounter. We do not rely upon indirect
communication methods to organise the collective function; i.e. stigmergic cues, or essentially
any kind of trace left in the environment. Stigmergic communications for satellite systems have
been explored in other academic works (c.f. Tripp and Palmer, 2010). Despite interesting, the
benefits of stigmergy in satellite coordination are relatively scarce in pragmatic scenarios. In
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Figure 4.1: Modelling of an Earth observation DSS as aMulti-Agent System

purely computationalMAS, agents can interact to one anotherwithout spatial constraints. Con-
versely, our MAS limits agent interactions to be realised through inter-satellite communication
channels that are subject to physical constraints (e.g. line of sight, bandwidth, power consump-
tion). Fig. 4.1 represents the system as it has been approximated to a MAS. In this simplified
representation of the system, agents have the ability to observe the area pointed by their in-
struments, reason about their actions, and estimate the state of their shared goals (e.g. revisit
time of certain locations). Their trajectory is fixed and deterministic (e.g. an orbit) and cannot
be changed. We do not consider the ability to modify an agent’s trajectory nor the activities re-
lated to orbital station-keeping because they do not belong to the type of function that we aim
to perform autonomously. Having fixed and deterministic trajectories is a clear distinguishable
trait with respect to many of the MAS approaches in literature that address work distribution
and area exploration (Rizk et al., 2018; Rossi et al., 2018). In fact, many of the algorithms and
self-organisation methods proposed for a variety of MAS—e.g. robots teams, car fleets, drone
flocks—are often designed to decide, in someway or another, the paths of their agents. Satellite
systems, in contrast, need to adapt their actions to their fixed trajectories.

As part of their action set, agents can decide to either keep their instruments disabled or
enable them to capture the information covered by their footprints. Unlike other works oriented
to mission planning for EO satellites, we have chosen not to explicitly consider agile satellite
platforms in our modelling, i.e. satellites that can adjust the orientation of their instruments in
order to observe different areas of the Earth’s surface as they fly over them. Having the ability
to also choose a certain orientation—usually expressed as roll and pitch angles—would be an
additional layer of complexity that can be added to the self-organising strategy presented be-
low. However, given the representational complexity of a non-agile system (especially owing to
heterogeneity, scale, and dynamic structure), we decided not to extend the action set of agents
and facilitate an easier interpretation of results, performance, and impact upon system qualit-
ies. Similarly, the sensing process is arbitrary andhomogeneous across all agents in the system.
We do not see specific value in modelling different instrument technologies (i.e. different sens-
ing principles) provided that they are capable of producing imagery of indistinguishable quality.

Agents are considered capable of understanding and reasoning about the governing laws
of their physical world; they have the ability to perform moderately complex calculations in or-
der to predict certain state information of the system and of other agents (e.g. determining the
footprint of an instrument for any known agent). Given that agents represent satellites in a DSS,
they are assumed to embark on-board computers that havemoderate computational resources.
Their computational limitations are mostly represented as finite memory. Finally, the state of
each agent is represented as a set of resource capacities. These capacities, which are con-
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sumed both during sensing processes and communication processes, need be optimised to a
certain degree in order to attain the system goals with a moderate efficiency.

4.5 Formal description
Eq. (4.1) formally describes the systemΩ as an immutable set of n agents. Each agent in the set
may also belong to other systems, have their own local goals, and choose to contribute to the
shared goals of Ω in bounded time intervals. Agents can be of two types: satellite and ground
station. We shall define their behavioural models and in detail in the following sections.

Ω =
{
A1, A2, . . . , An

}
(4.1)

4.5.1 Satellite agent model

A satellite agent is the central entity in our MAS. Informally, we describe satellite agents as a
platforms embarking two payloads for communications (one for ISL and the other for ground
links), and a single arbitrary instrument with which it observes the Earth. Each agent is charac-
terised by its position and velocity in space. For the sake of simplicity and computational effi-
ciency we model the agent motion as a Keplerian orbit, although other kinds of models (e.g. J2,
SGP4, etc.) could seamlessly substitute the current one if more precision would be needed.

Therefore, the position of an agent is given by its orbital parameters: the semi-major axis
(a), eccentricity (e), the orbit’s inclination (i), the right ascension of the ascending node (θ), and
the argument of the periapsis (ω). Following Kepler laws, the distance to the centre of the Earth
r is determined as a function of the orbital state variable (true anomaly, ν), as follows:

r(ν) =
a(1− e2)

1 + e cos ν
(4.2)

For convenience, we express the position of a satellite agent in Cartesian form (4.3), in the
Earth-Centered Inertial (ECI) frame of reference:

−→p (t) =


px(t)

py(t)

pz(t)

 = Rz(−θ) ·Rx(−i) ·Rz(−ω) ·

r(ν)


cos(ν)

sin(ν)

0


 (4.3)

whereby Rz(α) and Rx(α) are the rotation matrices about the z and x axes, respectively. Note
that position −→p is expressed as a function of the epoch t. Computing the true anomaly ν as a
function of the current epoch can be done with the mean anomalyM :

M(t) = M0 +mm · t [rad] (4.4)

whereM0 is the mean anomaly of the object at the epoch’s reference time (e.g. J2000) and the
termmm corresponds to themeanmotion, in revolutions per time unit. The value is derived from
Kepler’s third law,mm ≈

√
µ a−3 =

√
G ·Me a−3, whereG is the gravitational constant andMe

is the mass of the Earth. The mean anomaly is transformed to eccentric anomaly E by virtue of
the relation

M = E − e sin(E) (4.5)

which is solved numerically. Then, we can directly obtain ν as

ν = 2 · arctan
(√

1 + e sin(E/2)√
1− e cos(E/2)

)
(4.6)
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Figure 4.2: Instrument modelling for satellite agents

and the velocity vector as−→v (t) = d−→p (t)
dt .

Note that unlike other on-board collective mission planning systems, such as the one de-
scribed in (Bonnet and Tessier, 2008), we do not restrict spacecraft trajectories to circular orbits
(e = 0). Doing so can lead to favourable simplifications, such as the ability to predict satellite
encounters that stems from the inherent periodicity of circular orbits. Bonnet and Tessier did
exploit this characteristic in the definition of a negotiation-based algorithm that distributed ob-
servation tasks for small EO constellations, but the lack of generality of this approximation was
not convenient in this particular case. As a matter of fact, this MAS framework assumes that
positions are only known locally—i.e. by each satellite agent—unless they explicitly communic-
ate their trajectories to others. This is equivalent to describing a fairly common case in which
spacecraft propagate their own orbits based on local knowledge of orbital parameters. Note-
worthy the computational capabilities embarked on board the spacecraft should allow them to
estimate their positions, but that doesnot necessarily imply that agents can compute the orbital
state of other satellites. In fact, propagating orbits of other agents may be counter-productive
for large-scale systems; not only due to the lack of scalability but also because orbital paramet-
ers are constantly corrected to take into account nodal precessions and other drifts. It would
be a poor approximation to assume that this information can be kept always updated for all the
satellites in the system.

The sensing capabilities of an agent are modelled as a nadir-looking instrument charac-
terised by an aperture angle FOVinst. For simplicity, the behaviour of the instrument has been
approximated to that of a radiometer with circular footprint, as depicted in Fig. 4.2. The state of
an instrument is a boolean variable. When the instrument is enabled, it generates raw data and
drains power at the ratesDinst and Pinst, respectively.

Agents can communicate with others if and only if their links can be established. In or-
der for an inter-satellite communication to be possible, both agents need be in line of sight and
their links be closed. ISL antennas are assumed to be isotropic, and link closure is approxim-
ated coarsely by defining a maximum range (rISL, in units of distance). ISL are only modelled to
emulate the exchange ofmessages, never instrument data, since the proposedmodelling of col-
lective functions have not considered cooperation by means of in-orbit data services (e.g. relay,
storage, processing). Transferring data from one agent to the other is performed at a fixed data
rateDISL. Twoagentscanbecharacterisedwithdifferentdata ratesandmaximumranges. If that
is thecase, the communication is effectuatedat theminimumof the twodata ratesprovided that
agents are separated, at most, by the minimum of their ranges. ISL communications consume
power at a rate determined by the parameter PISL. Links with a Ground Station agent are only
constrained by line of sight, computed for a minimum elevation angle at the ground antenna.
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Figure 4.3: An agent activity represented as a single observation strip.

4.5.2 Activity model

The unit of information generated and understood by agents is called an activity. Agents share
knowledge and coordinate among themselves bymeans of exchanging these objects. Activities,
denotedwith ai, represent atomic observation tasks that have been scheduled by some agent at
some point in time. Activities are mapped to a single continuous ground strip as created by the
instrument’s footprint (Fig. 4.3). Executing an activity implies enabling the instrument to cap-
ture information. Activity strips are formally defined as a tuple that encompasses the following
attributes:

• τa: the last epoch at which this activity was asserted by its creating agent. At the time of
creation, τa is equal to the current epoch t. The asserting process will be described later.
For now it is safe to assume that this value is a time label that indicates the age of an
agent decision.

• τs, τe: the start and end epochs of the activity. Since an activity is a single observation
strip, these values are intrinsically related to the agent’s trajectory and themotionmodel
described above. The instrument of an agent is enabled at epoch τs ≤ t < τe.

• P : the arc or parabola that describes the trajectory of the agent between start and end
epochs.

Fig. 4.3 depicts the attributes described above. It is important to note that regardless of this
information being shared across agents in the system, the execution of an activity is never del-
egated, i.e., the agent that produced the activity object is the sole responsible of its execution.
The description of P must always be minimal and complete in order to allow the obtaining of
the strip’s coverage (i.e. area covered by the instrument during the execution of the task) in an
unequivocal manner. One possible description of this parabola would be to communicate the
orbital parameters of the satellite agent—valid throughout τs ≤ t < τe. In a discrete approx-
imation, this attribute could also be provided as an arbitrary number of position steps, equally
spaced in distance or time. In both cases, P should encode the minimum information possible
that allows recovering the coverage area without artifacts. Certainly, a trade-off exists between
the amount of information shared (in bytes) and the computational resources needed to recon-
struct the strip. In the implementation of this autonomous organisation framework, presen-
ted in Chapter 5, we chose the discrete representation (as depicted in Fig. 4.3). Our choice has
beenmainlymotivated by implementation aspects, as we shall detail later. In either case the in-
formation encoded in P should be computed locally when the activity is created. This assumes
that the orbital drifts that could occur between the creation of an activity and its execution (e.g.
∆t = τs − τa) are tolerable with regards to the EO application (e.g. instrument swaths of several
tens or hundreds of kilometres). The approximation should be accurate provided that at least
one of the following conditions is true: (1) the time delay between creation and execution is as
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short as to consider orbital drifts negligible; (2) the local estimator of an agent’s position (i.e.
internal orbit propagator model) is not capable of producing different results at any given eval-
uation time t ≥ τa; or (3) the difference between the trajectory originated fromP and the actual
one, projected in the Earth surface, is orders of magnitude smaller than the swath of the in-
strument. While continuous functions (e.g. orbital models) should mostly take into account the
absolute error in position, discrete approximations should also determine a suitable number of
steps to avoid artifacts in the computation of a continuous strip area. A rough rule to compute
the minimum number of points could be to ensure that the distance |∆P | between two consec-
utive points Pi, Pi+1 ∈ P , projected onto the ground track, is always smaller than a fraction of
the instrument’s swath (e.g. 1

4 or
1
6 ).

Agents are capable of generating their own local plans of actions or schedulesS, which con-
sist of a collection of activities:

S = {a1, a2, . . . , aN} (4.7)

They are also allowed to retract from their plans of action partially or totally. Therefore, activities
are tri-state objects: they can be labelled as confirmed (a∗i ), discarded (a

⊗
i ), or undecided. Activ-

ities that have either been confirmed or discarded, are called facts. Additionally, let the subsets
S∗, S⊗ ⊂ S be two non-intersecting sets only encompassing confirmed or discarded activities,
respectively.

Every time an agent modifies S (either by confirming, discarding, or adding new activities),
their τa is updated to the current epoch. The creation of new activities is subject to mutual ex-
clusiveness; i.e. for a given agent, two activities ai and aj which have not been discarded can not
overlap in time. Or more formally:

Let X = S \ S⊗

and T (a) = H(t− τs(a))−H(t− τe(a))∑
ai∈X

T (ai) ≤ 1, t ∈ R
(4.8)

wherebyH(t) is the Heaviside step function.

Finally, two properties are also defined for an activity, namely, confidence and decay. The
former is a value that represents the certainty that an agent has with regards to the execution
of an activity. We express it as a normalised value u(ai) ∈ [0, 1]. The expression of confidence
is local to an agent and can also be updated. These values are used by other agents in their
decisional processes but are never estimated for activities that are not owned. Their value is
computed with a function that gives u(a∗i ) = 1 and u(a⊗i ) = 0. The details of this function are
presented in Section 4.6.4 and Section 4.6.5.

The decay property, on the other hand, can be evaluated at any time for any known activity
(owned by the agent or not). We define a decay as a measure of usefulness of an activity—or
relevance of that knowledge—to the internal reasoning processes of an agent. An activity decay
value is also normalised, δ(ai) ∈ [0, 1]. An activity with δ(ai) = 0 is irrelevant to an agent and can
be safely forgotten. Conversely, knowledgewith δ(ai) = 1 is utterly useful and should potentially
be shared with others. The value can be computed with arbitrary functions that take the attrib-
utes of an activity (e.g. τs, τe, τa) and other factors. Four possible definitions for δ(ai) are given
in Section 4.6.10.
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Figure 4.4: Timeline representation of depletable and cumulative resource models

4.5.3 Resources model

The state of an agent is described by a set of resource capacities. Two types of resourcemodels
are envisioned: depletable and cumulative. A depletable resource is characterised by a capacity
that only changes when resource demands are created or released. In other words, their con-
sumption rates are instantaneous. When a consumption rate is removed, the resource capacity
is automatically releasedand returns to its original value. Conversely, cumulative resourcemod-
els represent consumption rates that are constantly applied through time. Upon the release of
a consumption rate, cumulative capacities do not return to their original value. Only when neg-
ative rates are applied, their capacity is gradually restored. Fig. 4.4 illustrates the modelling of
these two types across timelines. On the lower part of the diagrams, processes are represented
to show the changes in capacity. The cumulative case shows a simplified modelling of the state
of charge of a battery, whereas the illustration of a depletable resource could represent instant-
aneous memory allocation or power drain through the satellite bus. The processes labelled p3
and p4 illustrate the state of the spacecraft with regards to solar power input. During the period
corresponding to p4, a negative capacity consumption is applied to the resources, thus allowing
charge to increase when no other process consumes energy.

Formally, resources can be approximated26 to the capacity models in Eq. (4.9) and (4.10),
whereby ri is the capacity consumed by the i-th process.

Cd(t) = Cmax −
∑
i

ri(t) (4.9)

Cc(t) = Cmax −
∑
i

(∫
ri(t)dt

)
(4.10)

4.5.4 World model

The state of the system is captured as the actual revisit time obtained for any observable loca-
tion. In this approximation of the system, the observable world is approximated as the ellipsoid
defined in the World Geodetic System (WGS84). The revisit time for any point (qx, qy, qz) in the
surface of the Earth, is defined as the period g = t −max(τq(aj)), whereby t is the epoch at the
evaluation time and τq(aj) is the epoch at which the observation of point qwas concluded during
activity aj . With that, we can state that the global objective of the system is to guarantee that
the global revisit time, for any point in the WGS84 ellipsoid (EWGS84), is never greater than some
goalG

t−max (τq (aj)) ≤ G, q ∈ EWGS84 (4.11)

26 The models do not include intrinsic capacity values that are very likely to exist in most cases (e.g. battery state-of-
charge can not exceed 100%.
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This inequality could be globally verified by means of analysing the strip coverages of all the
executed activities, i.e. the aggregate set β∗ =

∪
i S∗i . However, this absolute aggregate can

hardly be obtained by any single agent—i.e. locally. In order to understand the latter statement,
let us first explore the evaluation of the system state at the agent level.

Agents need to reason about the state of the system in order to determine the optimal se-
quence of actions that fulfil Eq. (4.11). Although their local reasoning produces a set of local
actions (i.e. Si), their function is attained collectively. We mentioned that agents actually co-
ordinate by means of exchanging atomic information units; the activities. Given their orbital
trajectories and periods (e.g. around 90 minutes for a LEO), it is important to bear in mind the
unlikeliness of all agents having a complete knowledge of all the activities. Even in an extremely
reduced and uninteresting scenario such as a systemwith only two agents, the schedule of one
can not be known by the other until their ISL can be established and they decide to exchange
such information. Thus, agents are only knowledgeable of their own activities (Si) and the ones
that some other agent has shared with them at some point. We call this partial aggregate the
knowledge base of an agent, and we formally declare it as a vector of partially known schedules:

βi =
[
Ŝia Ŝib · · · Ŝij

]T
(4.12)

We use the notation Ŝij , with j ̸= i, to express the knowledge that agent i has over the activities
scheduled by j. Noteworthy, this knowledge includes future and past activities, as received by
agent i. Moreover, Ŝij can certainly contain activities that have finally been discarded or ones
that the j-th agent has yet not confirmed. Therefore, the internal reasoning process of an agent
i that produces Si, as well as its local evaluation of the system state (i.e. the global revisit time),
is inevitably subject to the uncertainty and partiality of its knowledge base. Since local agent
information can be partially obsolete, agents need mechanisms to assess the validity of their
knowledge. We will later see how agents use activity confidence values (u(ai)) and decay (δ(ai))
to that extent.

Returning toour initial observation, theabsoluteaggregateβ∗ thatenables theevaluationof
the actual systemstate could only be obtainedby anoracle that has access to theupdatedagent
schedules, at any point in time. The aggregate β∗ can hence be grasped as the “ground truth”
of the system, which can only be estimated by agents as a result of interactions and internal
cognitive processes.

4.5.5 Ground station agent model

A ground station is defined as a simple passive agent that has a fixed geographical location and
does not consume resources. Ground stations are modelled as entities with certain commu-
nication capacities, allowing to download raw instrument data without much constraints (i.e.
the most constraining factor for downlinks is on-board energy, rather than bandwidth). Ground
links are always established if the satellite has line of sight with the ground station, considering
a minimum elevation angle (elGS). Networked data downlinks have not been considered in this
modelling exercise; i.e. a satellite agent can only download its own instrument raw data and can
not relay data from other agents through inter-satellite networks (ISN). Modelling such a fea-
ture would be extremely helpful in full-fledged FSS approaches or systems that try to optimise
latency. Since this is not the focus of this work, we have not considered the ability to provide
in-orbit data services (including relay).
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Figure 4.5: Diagrammatic representation of the processes in the autonomous, self-organising MAS.

4.6 Autonomous self-organisation scheme
Having described the behavioural models of the components of our MAS, this section proposes
the organisation framework that facilitates the autonomous function defined in Section 4.3.
Fig. 4.5 illustrates individual agent timelines and evokes the processes that are entailed in this
autonomous self-organising system. As mentioned above, agents can interact and exchange
activities by means of their ISL (represented with symbol ⃝). Upon the exchange of informa-
tion, the knowledge base of an agent can change and potentially trigger their local reasoning
process (3). Cognitive abilities of agents are essentially deliberative decision-making processes
supported by the estimation of the system state—i.e. evaluating the inequality in Eq. (4.11)—,
such that it derives in the generation, or assertion, of future activities. Physical and technolo-
gical constraints modelled in agent interactions (i.e. line of sight and bit rate) reduce the dur-
ation of encounters to very short periods. This advocated for such deliberative processes, gen-
erally known to be hard to resolve, to only take place after interactions are completed. Thus,
agents have a static perception of the system during their decision-making process (i.e. their
knowledge base remains fixed). Likewise, the contrary is also true; agent links are only enabled
when agents have completed the planning of their activities. The third process illustrated in the
diagram (Fig. 4.5) corresponds to the very execution of agents’ activities (2), which for the cur-
rentmodelling scenariowehave limited to enabling on-board instruments to remotely sense the
Earth. Provided that no additional information is added to their knowledge base before activities
are confirmed, agents have—generally—no other reason to retract their plan of actions. Agents
will only consider re-scheduling their activities in the event of unexpected failures or upon the
arrival of significant updates in their knowledge bases. Therefore, two fundamental mechan-
isms can be identified in this self-organising approach that will be presented in the following
sections: the planning of local activities, and the exchange of knowledge.

4.6.1 Spatial and temporal discretisation

The reasoning processes of agents in this modelling approach have approximated the physical
world as a discrete representation. Time discretisation is arguably very common in many MPS
implementations, specially those in which tasks are represented with start and end times of
fixed resolution. Just like in other mission planning endeavours, the implications for this multi-
agent framework are simply a matter of granularity of the obtained solution. Given that the ob-
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jective of this work is to observe the effects of an autonomously operated DSS rather than the
exactness of the system function, we shall not discuss time discretisation exhaustively nor em-
phasise it in the notation hereinafter. Suffice it to say that agents are only capable of handling
timeand its relatedvariableswithagranularityTstep in theorderof tensof seconds. Unlessnoted
otherwise, Tstep will always be a global discretisation constant, defined in the simulation tools
that implement this self-organising scheme rather than in the very definition of models. If one
of the previous models needs be redefined, though, this is probably the equation of cumulative
resource capacities (4.10), which can now be expressed in discrete-time as follows:

Cc[tk] = Cc[tk−1]−
∑
i

ri[tk] · (tk−1 − tk) (4.13)

Space discretisation, in contrast, is regarded as an intrinsic limitation of the cognitive abil-
ities of an agent; i.e. since agents represent artificial machines with finite computational re-
sources, their ability to comprehend the world needs be subject to some computational con-
straints. We have chosen to limit the volume of information handled by an agent, i.e. itsmemory.
Therefore, each agent estimates the state of a discretely approximated world, E , by estimating
the state of a finite number of points. Owing to the fact that agents can have different compu-
tation capabilities, we define the discretisation procedure to be arbitrary and local to an agent.
Thus, each agent has its own understanding of the world, subject to its discretisation proced-
ure—i.e. mainly, itsmemory. Furthermore, since the function of the system is to collectivelymap
the Earth surface, we can represent the world as a two-dimensional projection. For the sake of
simplicity, an equirectangular projection with a grid of ∆φ degrees is defined as a discrete ap-
proximation of the world. Arguably, this discretisation procedure may not be the most efficient
in terms of memory, because the density of points in the poles is higher than at the equator, but
it eased the representation of the world as a matrix of dimension 360◦

∆φ ×
180◦

∆φ ,

E(n×m) =


e11 e12 e13 . . . e1m

e21 e22 e23 . . . e2m
...

...
...

. . .
...

en1 en2 en3 . . . enm

 (4.14)

where we call each unit of the grid eij a world cell.

In Section 4.5.4 we introduced the fact that each agent is capable of estimating the state of
the system by means of evaluating its revisit time. As discussed before, Eq. (4.11) actually ex-
pressed the goals of every agent as a function of its knowledge base. Now that we have defined
a discrete approximation of the world, let the previous expression of the system state be gen-
eralised as the function g that takes some time t, a cell q ∈ E , and the knowledge base of an
agent:

g(t, q, β) = min
a∗

(t− τq(a
∗)) {a∗ ∈ β : τq(a

∗) ≤ t} (4.15)

4.6.2 Genetic Algorithm local scheduler

As itwaspreviouslydiscussed, agentsaredesigned togenerate their ownscheduleS, withwhich
they optimise resource capacities and try to attain the goal of the system. In order to do so,
each agent evaluates the state in a forward-looking manner and generates the most optimal
set of local activities given its fixed trajectory. We previously abstracted this whole process as
being part of the reasoning abilities of an agent (symbol3 in Fig. 4.5). This process shall now be
detailed as a localmission planning system (MPS) that enables agents tomake decisions based
propagated state variables. Let the requirements of such anMPS be listed as follows:
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• The planning process is forward-looking and deliberative; an agent context (i.e. position
and resource capacities) needs be propagated locally to produce the new schedule.

• Estimation of the system’s state and the enumeration of new potential observation activ-
ities should be done in a local, on-board manner.

• Upon the enumeration of potential activities, the scheduling system should also consider
previously scheduled ones that have yet not been executed (i.e. re-scheduling capability).

• Its ultimate goal is to find optimal scheduling solutions considering resource capacities
and the knowledge about other agents’ contributions to the system, even if they are un-
certain.

• The re-scheduling process should have a control mechanism to modulate the priority of
previously scheduled activities (i.e. it should be possible for designers to adjust the will-
ingness of an agent to retract a previous plan of actions, both to foster and to restrain
such capability.)

• Finally, a pragmatical note should be made: whichever the solution is that satisfies the
above-mentioned characteristics, it should also present a moderately constrained com-
putational complexity in order to allow the execution in modern satellite on-board com-
puters.

While most of the features in the list may turn into specifications for any common scheduling
strategy, some of them are describing specific traits that we need to enforce in order to self-
regulate theMAS and achieve collective behaviour. If agents would not be knowledgeable about
the contributions of others during scheduling, they would be rendered completely isolated. In
that case, the function would not be attained collectively—in spite agents producing optimal
schedules—and agent interactions would be hollow. The planning scheme is indeed local, but
it takes into account global information acquired through interactions and should be partially
grounded upon the estimation of the system state (not only local agent state). We do not name
the scheduling process “decentralised” because it certainly is not: the planning of activities is
an individual reasoning process. However, this individual action is one of the cornerstones of the
collective self-organisation scheme we propose—which is indeed decentralised.

Many kinds of scheduling algorithms could be adopted to accomplish the imposed require-
ments. In this case, we have relied upon one multi-objective evolutionary algorithm (MOEA) to
solve the scheduling problem in a computationally efficientmanner. The Genetic Algorithm (GA)
is a well knownmetaheuristic that was first introduced by Goldberg (1989). Inspired by the pro-
cess of natural evolution, the GA is one of such evolutionary algorithms that mimic the funda-
mental biological processes in animal populations to find solutions tomulti-objective problems.
The GA is a stochastic optimisation method; random variables are used as part of the search
process. Its application is extended to a myriad of domains requiring computationally efficient
non-convex optimisation, including task scheduling (Xhafa et al., 2012). Unlike non-stochastic
approaches, the GA can sometimes yield sub-optimal solutions (e.g. local minima) if their char-
acterising parameters are not properly set (e.g. number of generations, mutation rate). Never-
theless, this behaviour can generally be avoided through careful selection of values and operat-
ors.

The benefits and limitations of the GA have been studied extensively in the literature. While
this section covers the very basics of theGA and its application to the particular case, the reader
is directed to (Whitley, 1994) for a comprehensive explanation of its features and some of the
known variations of the algorithm. In its canonical form, the GA defines a population of candid-
ate solutions. Each individual in the population (or “phenotype”) encodes properties of the solu-
tions in the form of a chromosome (or “genotype”). The algorithm simulates biological processes
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in natural selection—mutation, crossover, and selection—to evolve the population towards bet-
ter solutions. The GA is an iterative process that repeats the same sequence of steps until the
termination criteria is satisfied. Generally, the iterative process is completed after a maximum
number of iterations (also called “generations”) or when the solution reaches some predefined
quality threshold. In order for GA to be used in any given problem, the following needs be satis-
fied:

• It should be possible to represent solutions as chromosomes; usually as a string of bits,
characters, or integers, albeit ad hoc genotypical structures are also possible.

• The evaluation of a solution shouldbedone through the so-calledfitness function. Thefit-
ness of a solution generally evaluates of the objective function defined in the optimisation
problem.

After the initial creation of individuals (i.e. randomly generated solutions), the iterative pro-
cess is divided in three steps, namely, selection, crossover, and mutation. First, pairs of chro-
mosomes are selected to generate new individuals. This process is performed on a set that is
initialised with the members of the population: themating pool. Although the selection opera-
tion could technically be performed at random, amuch computationally efficient approach is to
rely upon fitness information to select individuals to breed the new generation. Multiple selec-
tion operators have been proposed that provide certain qualities. The most straightforward and
common algorithms are perhaps the fitness proportionate selection (FPS) and the tournament
selection. In FPS, also called roulette wheel selection, a probability of selection p is associated
for each individual, such that

pi =
fi∑N
j=1 fj

(4.16)

whereby fi is the fitness value of the i-th individual. The tournament selection, on the other
hand, is carried out by selecting the best individual froma subset of k randomly sampled altern-
atives. Each selection algorithm presents its benefits and particular characteristics. The tour-
nament selection, for instance, is less subject to stochastic noise, whereas the FPS is biased
towards fitter individuals. In practice, the selection of one operator or another is determined
based on the algorithmic complexity and the suitability of the selection technique, i.e. theremay
be cases where having a biased selection could be a deliberate choice. Further restrictions can
be applied to the selection, such as elitism, where individuals of lower fitness are eliminated a
priori, or truncation, in which only an arbitrary portion of the selection set is considered. Once
a pair of parents are selected from the mating pool, they are generally removed and will not be
selected again.

The selected individuals are re-combined through the crossover operator, which spawns
two new individuals—i.e. their offspring. The crossover operation essentially swaps genotyp-
ical information from the two parents for a number of segments of their chromosomes, where
each segment is defined bymeans of crossover points. In chromosomes represented as strings,
the most common crossover operators are single-point, k-point, and uniform (Fig. 4.6). In the
former, as its nomenclature indicates, a single crossover location is determined (at random) in
the chromosome and offspring are generated by re-combining the first and second half of their
parents. The second operator alternative is the most generic of the three, as it performs the
re-combination for k different crossover locations. In uniform crossover, each bit from the off-
spring’s genome is independently chosen from the two parents according to a given probability
distribution—usually also uniform. The generation of new individuals is completed once the
mating pool is empty.
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Beforenewoffspring are added to thepopulation, chromosomesaremutated. Themutation
process alters the value of small parts of the chromosome potentially producing genuine solu-
tions. After the mutation, chromosomes could present properties that were not found in either
of the parents. However, these new properties can either be favourable or detrimental for the
individual. The expression of such an improvement or deterioration will be made apparent in
their fitness values. The mutation of binary-encoded chromosomes simply entails the inverting
of bits (i.e. alleles) with some probability rm. This part of the genetic algorithm is key to con-
trolling the exploration and exploitation features of the search. While higher mutation rates will
allow the algorithm to explore non-visited locations of the fitness landscape, it can also hinder
the exploitation of optimal spots by spreading the population toomuch. Conversely, setting very
lowmutation ratesmay also obstruct the search and preclude the algorithm fromescaping local
minima.

Finally, when offspring are mutated and their fitness values are computed, the last step of
this iterative heuristic is to merge this set with the initial population. Different strategies can
be used at this point, namely, elitist selection, random truncation, or generational replacement.
In elitist selection (or survival of the fittest), the new population is defined as the set of chro-
mosomes of higher fitness (i.e. keeping population size constant). Random truncation and gen-
erational replacement are two forms of truncation. In the latter, the new population is entirely
composedof offspring—i.e. provided that thesizeof this set is equal to theoriginal population—
, whereas in the former the union of the two sets is randomly shuffled and only one of the two
halves is kept as the new population.

4.6.3 Objective function and chromosome design

Having summarised the canonical form of a GA, let us now formally introduce the application
of this evolutionary algorithm to the scheduling domain. The problem that each agent needs to
solve is the scheduling of optimal observation tasks, subject to resource constraints. In order
for that problem to be solved, agents define a finite scheduling window and a set of potential
activities. In Section 4.3 we introduced that this self-organising scheme is not confined to fixed
scheduling windows, but is aimed at continuously distributing work through the exchange of
knowledge and local deliberative processes. In this sense, the scheduling of local activities is
a process that happens in a completely distributed and asynchronous manner. As a result, the
systemas awhole is constantly evolving towards a solution to the global problem. That notwith-

Parent 1

Child 1

Child 2

Parent 2

Chromosome string; 20 alleles

Single-point crossover k-point crossover (k=5) Uniform crossover

Mutation (e.g. rm = 15%)

Figure 4.6: Crossover operators andmutation
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Figure 4.7: Payoff evaluation.

standing, the reasoning processes of agents are restricted to a given scheduling window, the
length of which is also indicative of their computational capacities.
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Figure 4.8: Generation of potential activities based on payoff.

With a fixed scheduling window, agents determine potential observation activities as the
time intervals in their trajectories for which the enabling of their instruments could represent a
meaningful contribution to the system—measured in revisit time. In order to determinewhether
their contributions might be significant, they resort to a payoff function pe(t) ∈ R+, that is eval-
uated for a given time interval t, at certain surface location e ∈ E . We refer to a time interval,
rather than a single time value, because an agent instrument will always observe a given point
for a certain period of time, determined by its trajectory and aperture angle. Points that are
closer to the ground track will have longer observation periods than points that are closer to the
footprint edges. Given the current knowledge base of the agent in question, each cell of the dis-
cretised world surface has some information released by other agents, i.e. their intentions with
respect to observing e. The exact formulation of payoff is detailed later in this section. For now,
it is safe to assume that the values yielded by the payoff function represent an abstract utility.
This utility figure is what the scheduling algorithm needs to maximise. Assuming that pe can be
computed for every cell of the observable world, agents need to evaluate this function in order
to generate activities that can be scheduled. Fig. 4.7 conveys this very idea, and represents a
portion of the world wherein an agent computed its potential payoff for the area that would be
covered during the scheduling window. Note that the agent needs not compute payoff for cells
that will never be observed during the scheduling window. In addition to the ground track of the
agent and its instrument swath, the figure also depicts the footprints of two arbitrary activities
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a1 and a2 that are part of the agent’s knowledge base (β). The strip areas of these two activities
are covering a number of coincident cells in the agent’s trajectory. The overlap is occurring in
space although not necessarily in time. Nevertheless, the impact of these activities is notice-
able in terms of payoff: areas where footprints do not overlap yield higher payoff values than
regions with overlap.

We can, thus, compute an aggregated payoff value p̄(t) as a function of the individual cell
payoffs that the agent obtains for every point e, at any time interval t. If this information is com-
puted for the scheduling window, the agent can generate its potential activities, such that they
only exist for regions of high payoff. The algorithm used to generate such activities is paramet-
risedby: (1) themaximumdurationof anactivityTmax, defined topreserveaminimumgranularity
in the scheduling solution; (2) a maximum number of activities (c len) corresponding to the max-
imum length of a chromosome; and (3) an optionalminimumpayoff threshold belowwhich activ-
ities are not generated. Once the potential activities are identified, chromosomes encode them
in boolean alleles. A value of 1 corresponds to the activity being carried out—with the corres-
ponding resource consumption—, and 0 otherwise. However, if the final solution encompasses
adjacent active activities (i.e. strings of the likes of 1111…) these will finally be considered as
a single observation strip. Note that this transformation is only performed at the end of the GA
algorithm and is motivated by the need to reduce clutter in the MAS.

Other implementations of GA-based schedulers have been presented in literature where
alleles are encoded as integer or even floating point values (Xhafa et al., 2012). The mission
planning in (Lee et al., 2016), for instance, was also based on GA and used a complex chromo-
somedesign. The systemconsisted in theoptimisationof groundstation contactswith satellites
in a constellation. The authors proposed a GA in which chromosome alleles encompassed two
integers and a boolean value that encoded the pairing between ground antennae and a satel-
lites. Carrel and Palmer (2005) also encoded atomic tasks in each allele but implemented a GA
to optimise task scheduling with resource constraints. In their case, all the input tasks (or “op-
erations”) are always scheduled and the GA is used to find the most optimal order of actions.27

The value of each allele is a non-binary code identifying a given operation or task. Given the type
of tasks scheduled in our case, binary chromosomes are one of the most efficient and simple
approaches to encode solutions. Having strings of bits encoding atomic tasks allows for com-
putationally efficient crossover and mutation operations and requires a very small amount of
memory to represent the population. One drawback of this approach is that start and end times
of activities are defined a priori and the observed strips can not be changed to optimise cap-
tures. This can be detrimental in terms of resource efficiency if very small areas of high payoff
fall between two activities, or when they only represent a small portion of one strip. There are
alternative chromosomedesignswhere strip lengths and/or start times could be part of the rep-
resentation of a solution (e.g. encoding these values as integer alleles), although the trade-offs
in terms of computational efficiency inclined us to keep binary representations. Moreover, the
potential drawbacks of this approach are not critical for the systemwe propose, since agents do
not seek to produce extremely accurate and optimal schedules and the granularity of observa-
tion strips is still adjustable by setting low Tmax and a higher number of alleles (c len).

Representing solutions as strings of bits enables the formulation of the scheduling problem
as amodifiedKnapsack problem. LetX be a vector of decision variables xi ∈ {0, 1} correspond-
ing to each of the chromosome alleles. For each activity i, let Pi be defined as the aggregated
payoff associated to the activity, and Ptotal =

∑
i Pi. Then, the objective function f(X) (also the

27 The very same GA scheduler (named NEAT) was also adopted in a later work by the same authors (Tripp and Palmer,
2010), which proposed a self-organising scheme for satellite swarms based on stigmergy. Like in our case, NEAT was
used as the underlying local scheduling algorithm for each of the agents in their system.

134



CHAPTER 4 4.6. AUTONOMOUS SELF-ORGANISATION SCHEME

fitness of each individual in the population) is formally defined as:

max. f(X) =
1

Ptotal

∑
i

Pi · xi (4.17a)

s.t. Ck(t) ≥ 0, ∀k, t (4.17b)

xi ∈ {0, 1} (4.17c)

Given the definition of cumulative capacity models, the declaration of resource constraints
can not be generalised like in commonKnapsack formulations—see Eq. (1.9b) in p. 34. Capacit-
ies (Ck) are naturally constrained to positive values for all steps in the discretised time (4.17b),
but asserting this constraint needs be done through the sequence of consumptions determined
by a candidate solution. Algorithm 2 shows the routine used to compute fitness values. The
procedure encompasses resource constraint verification, leveraging the description of a similar
process in (Carrel and Palmer, 2005). Essentially, the capacity constraint stated in the equation
above is implemented as part of the routine (lines 14–20), where condition v determines if the
chromosome s has exceeded the capacity of any resource k.

Computing the fitness value is often one of themost computationally expensive operations
in GA. The approach described in Algorithm 2 requires to iterate over the alleles of each solu-
tion and check resource constraints while payoff values are aggregated. Although it could be

Algorithm 2 Compute the fitness of a chromosome.

1: procedure FITNESS(X) ▷ Compute for candidate solutionX.
2: LetKc,Kd be the set of cumulative and depletable resources, respectively.
3: Let C0k, Ck be the initial and maximum capacity of resource k, respectively.
4: Let r+k < 0 be the constant regeneration rate of resource k (only applicable to cumulative

capacities).
5: for all k ∈ Kc do
6: ck ← C0k ▷ Initialise capacities.
7: end for
8: Ptotal ← 0, ps ← 0 ▷ Initialise payoff counters.
9: v ← (COUNT(s) > 0) ▷ Count the number of active alleles in s and initialise flag.
10: while v ∧ (i ≤ c len) do ▷ Iterate over the alleles until done or capacity exceeded.
11: Ptotal ← Ptotal + Pi

12: if xi = 1 then ▷ Check if allele i is active.
13: ps ← ps + Pi ▷ Add payoff of activity ai.
14: for k ∈ Kc do ▷ Iterate over cumulative resources.
15: ck ← ck − (rki + r+k )(τe(ai)− τs(ai)) ▷ Compute cumulative capacity for k.
16: v ← v ∧ (ck ≥ 0) ▷ Update ‘valid’ flag.
17: end for
18: for k ∈ Kd do ▷ Iterate over depletable resources.
19: v ← v ∧ (rki > Ck) ▷ Compute depletable capacity for k and update flag.
20: end for
21: end if
22: i← i+ 1

23: end while
24: if ¬ v return 0 end if ▷ There has been a capacity violation, fitness is 0.
25: return P ← ps

Ptotal
▷ Returns the normalised fitness value.

26: end procedure
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Algorithm 3 Genetic Algorithm scheduler for satellite agents.

1: LetG be the maximum number of generations.
2: Let S be a set ofN − (c len + 1) randomly initialised individuals.

3: S ← S ∪

{
c len∪
i=1

Xi

∣∣∣ xi = 1, xj = 0, j ̸= i

}
∪ {x ∈ 0, 1 | x = 1} ▷ Add non-random solutions.

4: FITNESS(S) ▷ Compute fitness of the population.
5: Xbest ←Xi ∈ S | i = argmax

j
fj ▷ Initialise the best solution.

6: g ← 1 ▷ Initialise generation counter.
7: while CONTINUE(g,Xbest) = true do
8: while |S| < N do ▷ Re-populate S if too many invalid solutions were removed.
9: LetXnew be a randomly initialised solution.
10: S ← S ∪ {Xnew}
11: end while
12: LetM ← S ▷ Initialise the mating pool.
13: LetO ← ∅ ▷ Initialise offspring set.
14: while |M | ≥ 2 do
15: {m1,m2} = SELECT(M, 2) ▷ Parent selection. Returns two individuals from pool.
16: {o1, o2} = CROSSOVER(m1,m2)

17: o1 ← MUTATE(o1)

18: o2 ← MUTATE(o2)

19: O ← O ∪ {o1, o2}
20: end while
21: FITNESS(O) ▷ Compute fitness of offspring and verify capacity constraints.
22: if g ≤ 1 then
23: S ← REPAIRPOOL(S) ▷ Remove individuals that violate constraints.
24: end if
25: O ← REPAIRPOOL(O) ▷ Remove offspring that violate constraints.
26: S ← SELECT(S ∪ O,N) ▷ Environment selection gives a set of, at most,N individuals.
27: Xbest ←Xi ∈ S | i = argmax

j
fj ▷ Find new best solution, based on fitness.

28: g ← g + 1 ▷ Increment generation counter.
29: end while
30: S ←Xbest ▷ Construct the new schedule with the best solution.

argued that this is a very simple operation, performing it over thewhole population, and for each
generation of the GA, is indeed one of the bottlenecks of the heuristic. Despite the optimisation
facilitated by the flag v—which allows to skip part of the process as soon as one capacity con-
straint is violated—, the size of the population and the length of chromosome strings will play a
determining role in the overall computational complexity of local schedulers.

Completing the description of the GA scheduler, Algorithm 3 lists the routine that imple-
ments this heuristic. The iterative process is controlled by a procedure that monitors the im-
provement rate and number of generations (see line 7). If the number of generations exceeds
Φ, the process terminates and the algorithm returns the best valid solution—if one was found.
Simultaneously, if the best solution (Xbest) does not change over a number of generationsΦbest,
this process also terminates the iteration in favour of a quicker response time. In order to en-
sure that the set S always includes—at least—one valid solution, its random initialisation (l. 2)
inserts c len+1 solutions (l. 3): one in which all activities are selected for schedule, and c len solu-
tions where a single allele is set to 1. The selection operation in line 15 is one of the above-
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mentioned alternatives (FPS, tournament selection). Likewise, crossover can also be realised
with either a single-point, k-point or uniform operator. After all the parents in the mating pool
M havebeenselected tobreednew individuals, thefitness values for those is computedwith the
procedure detailed in Algorithm 2. Note that both in the initialisation of the population S (l. 2)
and in the crossover and mutation process, unfeasible solutions may be generated (i.e. those
for which capacity constraints do not hold). The fitness routine asserts this condition and labels
chromosomes as “invalid” (i.e. v is set to false). Then, a simple routine is invoked to remove all
the invalid solutions (l. 25). A generation is completed by merging the repaired pools (S and O,
l. 26). This last step is known as the environment selection operation, and it usually entails a
truncation of the merged set—based on fitness or age of the chromosomes.

4.6.4 Agent confidence over activities

When we formalised activities in Section 4.5.2 we introduced the confidence function u(a), with
which agents express their own certainty with respect to one of their actions:

u(ai) ∈ [0, 1] with u(a∗i ) = 1 and u(a⊗i ) = 0 (4.18)

A value of u(a) = 1 indicates that the agent is absolutely certain that the activity is—or will
be—carried out, whereas a value of u(a) = 0 informs other agents that this activity has been
permanently discarded and will never be executed. We shall now provide the definition of this
function based on the discretisation of space (E ) introduced at the beginning of this section. In
Fig. 4.7 we noted how the definition of an activity payoff was affected by other activities, and we
depicted payoff values pe for every discretised cell e ∈ E . Similarly, if we assume that each activ-
ity in β has an associated u(a)—reported by the agent that scheduled a—wecanalsomap these
values in space and compute their aggregation for the strip area. However, there are confidence
values that are more meaningful than others. Agents that are close to confirming an activity
(u(ai) ≈ u(a∗i )) or discarding it (u(ai) ≈ u(a⊗i )) express very valuable information to the others
because these activities are about to become facts. Facts allow agents to estimate the state of
the systemwith less uncertainty and, hence, could lead agents to bemore confident of their own
activities. Conversely, activities with a reported confidence of 0.5 are expressing the complete
opposite of a fact: they are contributions to the system the likelihood of which is somehow un-
certain to other agents. Therefore, agents use u(a) = 0.5 to indicate that their decisions could
be biased by information that is not known to be certain.

In order to compute the confidence that an agent has over a certain activity, a utility function
U is declared such that it captures the above-mentioned situations. A utility of 1 is assigned to
facts (i.e. bits of information in which agents can safely rely upon). Conversely, 0 is yielded when
the knowledge is more volatile. We choose to model this utility with a pair of sigmoid functions.
The logistic function in Eq. (4.19) is a convenient sigmoid curve that can easily be adjusted to
behave like a smooth threshold.

σ(u) =
1

1 + e−ku(u−uo)
(4.19)

With k being the logistic growth rate (or steepness of the curve) and uo defining the midpoint
value (in our case uo = 0.5), the logistic function can be used to define our utility in two parts:

U(u) =

{
σ(1− 2u) if 0 < u < uo

σ(2(u− uo)) if uo ≤ u < 1
(4.20)

Given that we want this utility figure to cover the whole range [0, 1], we will roughly choose
ku > 10. This definition produces a symmetric response centred at U(uo = 0.5) ≈ 0 which has
U(u) ≈ 1 for confidence levels of activities that are about to become facts. Before we proceed to
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the definition of u(ai), it is important to emphasise the meaning of the values captured by this
utility model:

• u ≈ 1→ U ≈ 1: This is probably themost straightforwards case, since it maps an activity
that the agent reported to have high confidence over, to themaximumutility value. Agents
are eager to acquire and share knowledge with low uncertainty because it allows them to
schedule their own observations muchmore reliably.

• u ≈ 0 → U ≈ 1: The confidence of an agent with regards to their activities does actu-
ally change as the knowledge base of the agent is expanded. Noteworthy, two things can
happen: (1) no additional information about the system is received or the new informa-
tion reinforces previous decisions and causes the schedule to remain unchanged; and (2)
agents receive newknowledge that triggers re-scheduling of their actions because the in-
formation of the system drifted from its original estimation. For now, we need to assume
that such a re-scheduling process—detailed later in Section 4.6.8—is more prone to re-
tracting activities that previously had lower confidence levels. Similarly, we assume that
higher-confidence activities shall be less likely to be dropped. In this context, activities
that present very low certainty (u) are indeed useful for the systembecause they aremore
likely than others to become facts: the agent is certain that such activities have higher
probabilities of being retracted, and hence can safely ignore them (i.e. U ≈ 1). In other
words, it is preferable for an agent to know that some action has a very low probability of
execution than to be relatively uncertain about it. We will later see that the confidence
level is a fundamental part in the computation of payoff, which drives the optimisation
process in the scheduling algorithm.

• u ≈ 0.5→ U ≈ 0: This knowledge is the worst with regards to orchestrating the actions in
the system. An activity that has reported a confidence of 0.5 is as likely to be discarded as
it is to be confirmed. For the sake of interpretability, consider this volatility to be analog-
ous to the stability of a system. Confidence of u = 0.5 represents an unstable point in a
function (e.g. the maximum of a convex state function). Small perturbations could cause
the system to change (i.e. either to discard or to confirm the activity). On the other hand,
u ≈ 1 and u ≈ 0 could be grasped as stable states: these activities are very likely to be
kept or removed, respectively.

It was important to stress the meaning of utility values because they are used to compute
confidence of a new activity. Upon the creation of a new observation strip, the confidence repor-
ted by the agent is an aggregation of utility values across space:

ub(ai) =
1

Ne

∑
e

1

Na(e)

∑
j

U(u(aj)) iff Na(e) > 0, u(ai) = Ux otherwise (4.21)

The expression averages utilities of each cell e, whereby Ne is the area covered by ai, ex-
pressed in number of cells. Na(e) is the number of activities that are mapped in the area cor-
responding to e. The set of activities considered in the inner summation are subject to one con-
dition. In general, aj should match activities that overlap ai. However, not all the activities are
considered in this process. In particular, we only compute the average utility for activities that
contribute to the computation of payoffs. In order to clarify this, we first need to look into the
actual payoff function, presented below.

4.6.5 Updating confidence

In Eq. (4.21) we deliberately named the confidence function ub(ai), rather than u(ai). Since this
function gives the confidence obtained during the scheduling process, we will refer to it as the
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Figure 4.9: Utility and confidence update functions

baseline confidence. Activities are not exactly static, even if the agent does not discard them. In
this framework, we contend that if an activity is not discarded, then it must necessarily be rein-
forced. Even extremely uncertain activities—i.e. u ≈ 0—may end up being executed if the agent
never withdraws them. As a result, we propose a simple update model with which agents can
change confidence levels without actually recomputing payoffs nor performing the aggregation
in Eq. (4.21). The equation can certainly be translated to a relatively simple computational im-
plementation, provided that the set of contributing activities is known. However, in target areas
that are densely populated (i.e. with a lot activities overlapping and contributing to the agent
payoff), finding the list of relevant activities and aggregating their utilities can be slightly time-
consuming. Furthermore, if the estimation of the system does not change nor a re-scheduling
process is triggered, the last solution generated by the GA planner will eventually be executed.
The execution will happen regardless of the agent confidence on the programmed observations.
Once activities are executed they are certainly confirmed. Therefore, we propose to evolve their
confidence from u(ai) = ub to u(a∗i ) = 1with the expression

u(ai) =
[
ub(ai)

](1−
(

∆t
ht

)µ)
(4.22)

whereby µ is a constant greater than 1 that regulates how early the confidence increases from
ub to 1 (Fig. 4.9). Moreover, we also define a new parameter, named ht that defines a tem-
poral delay with which agents confirm their activities before their start time. With that, ∆t is
defined as the time difference between the creation of the activity—when baseline confidence
was computed—and the confirmation horizon (see Fig. 4.9).

4.6.6 Payoff function

So far we have described the reasoning process of agents as a local planning of activities that
is grounded on the estimation of the state of the system. The estimated state allows agents to
decidewhether their instruments should be enabled in a forward-looking and deliberativeman-
ner. We previously introduced the payoff function pe(t) as a quantity that captures the value of
an agent observation, computed for the interval t and mapped to a location of the surface (e).
Therefore, payoff quantities necessarily have to be linked to the goals of an agent and the state
of the system. If some agentAj has scheduled observations at the location e during similar time
intervals than a given agent Ai, the payoff computed by the latter should be close to zero (i.e.
because the other agent has already decided to contribute with observations in this area). Con-
versely, when the observation scheduled byAj has a very different time interval (e.g. tj ∩ ti = ∅),
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then agent Ai will evaluate the revisit time that would result by its own observation and obtain
a high payoff if its contribution is good for the system.

The payoff value for a cell can be computed from two revisit times: forwards and backwards
(Fig. 4.10). Given a proposed activity a1, there is a time interval t during which the agent is ob-
serving the cell. This interval is denoted in Fig. 4.10 as [τs1, τe1], and should not be confused with
the absolute start and end times of an activity. Likewise, tasks that have been previously sched-
uled by other agents may overlap in e and define their own observation intervals—denoted as
[τs2, τe2] and [τs3, τe3]. It is important to note that the actual time at which the payoff is evaluated
is irrelevant; only τsk and τek are needed to determine the contribution to the system function.
As amatter of fact, some of the scheduled activitiesmight have already been executed at evalu-
ation time. Since the goal of the system is to minimise the coverage gap, the agent that is about
to schedule a1 needs to take into account both the observation delays before and after a1. We
name these revisit time figures backwards and forwards, respectively. For the case illustrated in
Fig. 4.10, backwards revisit time would be computed as the difference between the limits of the
intervals a2 and a1; i.e. ∆t(B) = τs1 − τe2. Conversely, forwards revisit time would be computed
as∆t(F ) = τs3 − τe1. We name the function that transforms this delay into a payoff value as g.
Three alternatives are proposed as part of the framework, althoughmany other could be also be
used. The only requirements for the payoff functions in this framework are the following two:

1. Payoff functions g(∆t)must be monotonic.
2. The evaluation of g(0)must yield 0.

The most simple one is a linear function that takes the delay∆t as input, and increases payoff
at a rate determined by the constant slope kℓ and the order n:

gℓ(∆t) = kℓ · (∆t)n if ∆t > Gmin, and 0 otherwise (4.23)

This function produces unbounded payoff values which effectively allow the minimisation of
time gaps. In mission scenarios where the optimisation of revisit times would require achiev-
ing a certain value—not necessarily the minimum—, designers could resort to non-linear pay-
off functions such as the ones in Eq. (4.24) and (4.25). The payoff gh is a normalisation function
defined in two parts, where Gmax and Gmin are, respectively, the maximum and minim revisit
times allowed in the system. The value Pmid ∈ [0, 1] is the payoff when the system goal G is
exactly met (e.g. 1

2 ).

a2 a3a1
time

τs2 τe2 τs1 τe1 τs3 τe3

Revisit time 
(backwards)

Revisit time 
(forwards)

Δt ↦ p(B) Δt ↦ p(F)

Interval t for a1 in e

Figure 4.10: Payoff contributions: backwards and forwards revisit time.
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gh(∆t) =



0 if ∆t < Gmin

Pmid (∆t−Gmin)

G−Gmin
if Gmin ≤ ∆t ≤ G

Pmid + (1− Pmid)

(
∆t−G

Gmax −G

)
if G ≤ ∆t ≤ Gmax

1 if ∆t < Gmax

(4.24)

The parameters of this function could be strategically set to control the response and priority
with regards to observations that are below and above a certain goalG. Finally, the third altern-
ative relies upon the logistic function to compute payoff values (4.25). In this case, the function
also produces a normalised value and the constant kg controls the steepness of its exponential
behaviour without the need of revisit time boundaries.

gs(∆t) =
1

1 + e−kg(∆t−G)
(4.25)

The functions above have shown the methods to compute payoff when a single revisit time
can be obtained from the cell. However, this is often not the case, since multiple strips may
be overlapping simultaneously in one location. Moreover, agents are not always certain about
such activities (i.e. u(a) ̸= 1). In these cases, the expression of payoff is obtained as an iterat-
ive aggregation of the individual payoffs for each activity, regulated by their confidence values.
Fig. 4.11 depicts a case where nine different activities {a2, a3, . . . , a10} overlap in a given loc-
ation with the proposed activity a1, of which we seek to calculate the payoff. Activities a2, a∗9,
and a10 can be safely discarded because there are two confirmed activities (a∗3 and a∗8) which de-
termine the obtained revisit time. Regardless of other observations occurring before a∗3 or after
a∗8, the revisit time obtained by a1 will not be affected. However, the knowledge base includes
some activities that may also contribute to the system goal and have yet not been confirmed
or discarded. This hopefully clarifies the comment we made about the formulation of ub(a), in
Eq. (4.21). In order to compute u(a1) for the depicted example, the summation would only con-
sider j = 3, 4, . . . , 8. Similarly, the computation of payoff also needs to consider these unde-
cided activities. If the agent would only consider facts, the payoff value pe(a1) would simply be
computed as follows:

pe(a1) = g(∆t3) = g(τs1 − τe3) (4.26)

a4 a7a1
time

a2 a3 a8 a9 a10

Potential activity to schedule.

Confirmed activity (fact).

Undecided activity.

Revisit time (backwards),  g(Δt3) Revisit time (forwards)
Irrelevant 

w.r.t payoff
Irrelevant 

w.r.t payoff

* ** a5 a6

g(Δt4)

g(Δt5)

g(Δt6)

u(a3) = 1

u(a4) = 0.5

u(a5) = 0.25

u(a4) = 0.75

A (50%)

B (25%)

C (75%)

A
B

C

Payoff contribution only with a3

Payoff after a4, a5 and a6

Figure 4.11: Payoff contributions: undecided and confirmed activities.
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Focusingonly onbackwards revisit time,wecouldsay that g(∆t3) is themaximumpayoff that the
agent can expect for its activity; since the function g is monotonic, the individual payoff values
obtained for undecided activities can only be smaller—i.e. g(∆t3) ≥ g(∆t4) ≥ g(∆t5) ≥ g(∆t6).
Thus, we shall define a payoff aggregation technique that worsens the maximum payoff by a
certain factor and takes into account the intermediate contributions.

LetX be the set of undecided activities that contribute to the goal. Let a∗0 be the first con-
firmed activity, such that τsi − τe0 (backwards) or τs0 − τei (forwards) are minimum. For the sake
of compactness, assume that gk ≡ g(∆tk) and uk ≡ u(ak). We define the arithmetic sequence
of intermediate payoff contributors (sn)NX

n=1 as:

(sn)
NX
n=1 = (sn−1 − gn) · un (4.27)

wherebyNX is the number of elements inX and s0 = g(∆t0). With that, we formally define the
aggregated payoff pe(ai) as the sum of the arithmetic sequence shown in Eq. (4.28).

pe(ai) = s0 −
NX∑
n=1

sn

= s0 −
NX∑
n=1

(sn−1 − gn) · un

(4.28)

Using this formulation, the expanded expression for the example shown in Fig. 4.11 would
haveX = {4, 5, 6} and be written as follows:

pe(a1) = g(∆t3)−
6∑

n=4

(sn−1 − gn) · un

= g(∆t3)− u(a6)

[
u(a5)

[
u(a4)

[
g(∆t3)− g(∆t4)

]
− g(∆t5)

]
− g(∆t6)

] (4.29)

The sequence is shown geometrically with the blue bars in the figure, for which arbitrary con-
fidence values are used as examples. Ultimately, this payoff value is computed for one of the
sides (backwards or forwards). The final payoff for the cell will be set as themaximumof the two
payoff values.

pe(ai) = max
{
p(F )
e (ai), p

(B)
e (ai)

}
(4.30)

4.6.7 Selecting contributing activities for payoff and baseline confidence

The selection of contributing activities is crucial to determine cell payoff and the activity’s initial
confidence, as it has been shown in the previous sections. The process that identifies relevant
time intervals ai is subject to specific rules that are described below for the sake of complete-
ness:

[R1] The iterative process that computes payoff starts defining an initial value s0, as shown
in Eq. (4.28). This value corresponds to the best payoff that an activity can obtain at
a certain point in the surface—considering time intervals of other existing activities.
The best payoff s0 is obtained by selecting a reference interval. This interval must cor-
respond to the confirmed activity a∗j that presents shorter revisit time with ai (a∗3 and
a∗8 in Fig. 4.11). If no confirmed activities are available, then the selection shall choose
the earliest reference interval—for backwards revisit time—or the latest one—for for-
wards.

[R2] If no time interval exists that can be selected to obtain payoff, then constant paramet-
ers will be set. In particular, p(F ) = 0 and p(B) = 1.
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[R3] If no time interval exists that can be selected to compute baseline confidence, then a
constant value ofUx will be set—see Eq. (4.21). We name this parameter the unknown
utility, since it corresponds to a confidence value that agents obtain when they have
absolutely no knowledge of other activities in one specific region. Ux is hence an ini-
tialisation value that can play a significant role in the organisation scheme. Defining
u(ai) = Ux = 0.5, for instance, would result in the agents effectively stating that their
planned actionsmay be subject to changes owing to their reasoning process not being
able to estimate the state of the system altogether.

[R4] If one of the selected intervals ak between the reference (aj ) and ai is actually inter-
secting with ai, then its intermediate payoff—gn, in Eq. (4.28)—is computed as g(0).

[R5] If the reference interval a∗j overlaps ai, then pe(ai) = g(0) and no other intervals are
considered.

[R6] If the reference interval aj overlaps ai, but it belongs to an undecided activity, then an
arbitrary reference intervalwill be generated such that it includesall theundecided in-
tervals (which are all intersecting). However, in this special case s0 is defined as g(bG)

with a sufficiently large b such that s0 ≈ 1. We choose this initial payoff value because,
in these situations, agents have actually proposed two activities that overlap in space
and time but neither of them confirmed their executions. Furthermore, the i-th agent
had no other previous knowledge to estimate the system state. Setting s0 ≈ 1 is equi-
valent to assuming that all the activities for that region have been forgotten because
they were no longer relevant (i.e. their revisit times would be greater thanG, therefore
maximising their payoff). Nonetheless, by virtue of [R4], the more undecided, over-
lapping activities and/or the higher their confidence values, the closer pe(ai)will be to
0.

4.6.8 Re-scheduling

Prior to introducing the details about the re-scheduling of activities, let the planning process
be summarised. The forward-looking reasoning by which agents determine when to enable on-
board instruments, asdefined inSection4.6.3, startswith the generationof potential strips. Cell
payoffs (pe) are computed for a predefined scheduling window and temporal intervals are selec-
ted to produce suitable tasks—i.e. the aggregated payoff (p̄) is above the minimum threshold.
While this processwasdescribed for an agent that hadnot scheduled activities before, the same
reasoning can be performed considering some existing activities.

If the agent has previously scheduled activities but has yet not executed them, the gen-
eration of strips should not only be driven by the aggregated payoff but also by the previously
defined start and end times of such existing activities. In periodswhere no activity is scheduled,
the rules defined in Section 4.6.3 are applied without any modification: a maximum task dura-
tion of Tmax is defined to split the scheduling window in smaller fractions and the payoff value is
checked in order to remove uninteresting regions. Conversely, for regions where an activity had
previously beenscheduled, thegeneration routinedoesnot check thepayoff threshold, since the
systemneeds to have the ability to reinforce previous decisions andmaintain previous activities.
Whennewpotential activities are generated, somesubset of thosemust cover thewhole interval
of previous activities. Thus, tasks are only generated in accordance to the duration constraint.
Fig. 4.12depicts this very processwith an illustrative case. In this scenario, an initial executionof
the activity generation routine has produced fourteen potential activities (x1 tox14). These activ-
ities, which are decision variables of the optimisation problem, have beenmapped to genotypes
in the genetic algorithm scheduler. The evolutionary algorithm yielded a solution that encom-
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passed activities a1, a2, and a3. After an arbitrary time, the agent confirms the former two. After
the execution of a∗1, the re-scheduling process is triggered and new activities are proposed; new
chromosomes are defined. At this point, a∗2 is a fact that cannot be changed, and a3 is still unde-
cided. In this illustrative case, we show how the estimation of system state—reflected in payoff
values—can change dramatically after a certain period of time. Here it is important to emphas-
ise that the interval corresponding toa∗2 no longer satisfies theminimumpayoff constraint. How-
ever, since the re-scheduling process takes into account previous solutions, decision variables
x3, x4, and x5 are indeed declared as part of the new optimisation problem. The new activities xi

respect the start and end times of a∗2 and a3. Furthermore, the alleles corresponding to the con-
firmed activity are forced to 1, and protected. TheGA scheduler is unable tomutate these alleles
and every individual in the population is initialised with x3 = x4 = x5 = 1. Upon crossover, every
selected parentwill always share this piece of the chromosome string andwill produce offspring
that also protect these alleles.

Once the re-scheduling process is completed, the solution includes a∗2, and three newactiv-
ities. Since a3 is not part of the solution, the agent discards it and continues. Noteworthy, the
solution has set xn = 1 consecutively for n = 3, . . . , 7. However, the agent does not generate a
singlemerged activity in favour ofmaintaining old information intact. As amatter of fact, agents
also tend to maintain previous decisions through the re-scheduling process. When the require-
ments for the GA scheduler were listed at the beginning of Section 4.6.2, we noted that having
the ability tomodulate thewillingness to retract fromprevious decisionswas one of the required
features. This control mechanism is implemented in the GA as part of the fitness function—see
Eq. (4.17a), p. 135. Recalling the fitness function (f(X)), we formally defined Pi as a the weight
of the Knapsack formulation. This value corresponds to the aggregated payoff assigned to each
activity xi.

In addition to protecting alleles that map to confirmed activities, the GA also prioritises al-
leles that belong to previous solutions. This is achieved by increasing the payoff value of a given
activity by a factor that is proportional to some arbitrary constantKp. More formally, the modi-
fied payoff of an allele that belongs to a previous activity aj is:

P ′
i =

[
1 +Kp

(
u(aj)− uo

1− uo

)]
Pi iff u(aj) > uo , P ′

i = Pi otherwise. (4.31)

The modulation of willingness is, again, implemented through previously computed con-
fidence levels. If the agent reported that its confidence with regards to aj was very high (and
possibly communicated it to other agents), its payoff will be multiplied by a factor that is close
toKp. Conversely, if the agent reported a confidence closer to uo, the activity will only be priorit-
ised slightly. The control mechanism is hence parametrised by the multiplicative constant and
the confidence threshold uo. Setting aKp ≫ 1 (e.g. 102 clen) should guarantee the re-scheduling
of previous activities, whereas lower constants may enable agents to retract from previous de-
cisions and facilitate the improvement of schedules. Noteworthy, once new outcomes are pro-
duced by the GA scheduler, baseline confidence values are computed and assigned only to the
new activities (e.g. ub4). Activities that belong to previous solutions, however, only have their
confidence values updated. This choice stems from the notion that such activities are still “old
decisions” that were taken based on previous agent beliefs and are propagated in time. The re-
schedulingprocessessentially takes them into considerationandproducessolutions that either
keep previous activities, or indirectly discards them. In other words, it adapts new schedules to
previous solutions. If agentswould be allowed to change previous activities, it could probably be
more efficient to also resize activities, having severe implications in stability fromasystempoint
of view. On the other hand, computing new confidencewith the current information in the know-
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Figure 4.12: Generation of potential activities based on payoff and previous schedules.

ledge base—instead of updating previous values—can also present some unwanted effects. In
order to understand this, suppose that an activity is generated that has a very high confidence
value (e.g ax, u(ax) = 0.95. By virtue of the utility function, this knowledge is considered very
valuable to the system (U(ux) ≈ 1) and hence will tend to be propagated. As a result, other
agents may rely on it to produce their solutions. Upon the exchange of knowledge with other
agents, the initial agent that scheduled ax in the first place may see its payoff affected by other
activities. This can also produce, for the sake of the example, a potential decrease in confidence
(e.g. u(ax)′ = 0.2). Suppose that, regardless of the updated knowledge base, the re-scheduling
processmaintains the original activity in the newplan of actions. If the systemwas to assign the
new confidence to the activity, further re-scheduling processes would likely discard the activ-
ity in favour of activities of higher payoff. As a result, an activity that could have been initially
planned with a very high confidence of 0.95, might end up being discarded due to the interac-
tions with other agents. Certainly, a dramatic change in the estimation of system state may still
produce the samebehaviour, butmaintaining original confidence levels guarantees that the val-
ues of u(ax) do not becomeunstable or even chaotic. As amatter of fact, the proposed approach
forces confidence levels to either rise until the activity is confirmed, or to become 0 altogether
(a⊗x ).

4.6.9 Triggering the reasoning process

Aspresented above, the re-scheduling process is implementedwith interleaved schedulingwin-
dows. Optimising the plan of actions for a temporal window that has been partially optimised in
thepast is a relatively commonapproach thathasbeenapplied inotherMPSdesigns (seeAraguz
et al., 2018a). The process is triggered by an arbitrary delay Trs. By design, however, local reas-
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oning and planning of actions is only performed if the agent is not executing one of its activities.
Thus, the local planner will be triggered as earlier as Trs and wait until observation tasks are
completed.

4.6.10 Knowledge exchange rules

Completing the description of this MAS approach, this final section addresses the last critical
aspect in systems of this kind: the process that regulates the exchange of information. At the
beginning of this chapter, wemostly articulated our description of the agents through their com-
putational capabilities and their communication constraints. We formally declared the system
asaset of agents that canexchangeknowledgeuponencounters. Their communication linksare
both limited by physical constraints (i.e. antenna line-of-sight) and technological parameters
(i.e. bandwidth, power consumption, etc.) Furthermore, throughout this document we have em-
phasised the likeliness andbenefits of implementingDSSwith small-satellite technologies, and
platforms—especially in large-scale scenarios. As a result, we have been inclined to consider
that satellite agents are generally representing spacecraft with moderate computation capab-
ilities and extremely constrained ISL (mostly owing to power requirements, small antenna dia-
meters, and line-of-sight during encounters). In this context, we grounded our self-organising
scheme upon the exchange of atomic information that can be encoded in a reduced number of
values (recall the description of an activity, in Section 4.5.2, p. 124).

Agents can only propagate activities when their orbital trajectories cross and their energy
states allow links to be established. The exchange of knowledge is hence characterised by very
short communication processes and needs tomaximise the volume of relevant information that
is exchangedwith others. In order to do so, we devised an exchangemechanism that is driven by
prioritisation of knowledge. Upon the establishment of ISL, satellite agents will try to deliver as
many valuable information as they can to the others without actually engaging in bi-directional
protocols. A different alternative would be to implement a coordination protocol that would en-
able agents to only share knowledge units that are unknown by others. We argue that the design
of optimal exchangemechanisms—i.e. those thatminimise the propagation of information that
is irrelevant or already knownby the receiving agent—could be subject to several trade-offs. We
pose that the reduced representational size of an activity calls for the assessment of system-
level protocol efficiency. Should such a protocol be defined, a measure of its goodness could be
the amount of relevant information that arrives at the receiving agent relative to the duration of
the encounter. As compelling as this can be, this approach potentially increases the complex-
ity28 of the exchange process and has not been tackled in this study. Instead, our proposed solu-
tion leverages the small size of the exchanged data packets and tries tomaximise the amount of
information that is propagated through the network. The exchange of activities is therefore im-
plemented as an unidirectional communication process in which agents try to forward as many
activities as possible.

Upon encounters, agents compute a priority value for each information unit that allows
them to rank the information that will be exchanged. This rank is computed as:

λi = wu · U(û(ai)) + wδ ·
∑
j

wjδj(ai) (4.32)

28 Werefer to thenotionofcomplexitybecausemeasuring relevance in this context is subject to localagentbeliefs. Some
activitiesmay be highly relevant for one agent and utterlymeaningless to others, and determining (or estimating) this
factor in either a purely local manner or through the exchange of messages may not be trivial altogether (especially
when bandwidth utilisation and efficiency comes into play).
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where δj(ai) corresponds to the decay property briefly introduced in Section 4.5.2,wj is a norm-
alisedweight for each decay type, andU( · ) is the parametrised utility function shown in Fig. 4.9.
The normalised weights wu and wδ modulate the contribution from utility and decay values, re-
spectively. We use û(ai) to denote the estimated confidence of an activity. The estimation of
confidence arises from the fact that some activities may actually provide indirect information
about other knowledge units that are not part of the exchange process. In particular, agents can
easily determine that an activity has been discarded if they receive other activities—scheduled
by the same agent—that are incompatible with their existing beliefs (i.e. their start and end
times intersect with others). Provided that the asserting time (τa) of the intersecting activity is
posterior to the ones in the knowledge base, the older ones can be safely discarded in a local
manner. Expressing this as a formal rule, we have:

û(ak) = u(a⊗k ) = 0 ⇐⇒
{
[τsk, τek) ∩ [τsj , τej) ̸= ∅, τak ≥ τaj

}
with ak, aj ∈ Ŝi (4.33)

Finally, the decay property of an activity is also expressed as a function of time, like in the
case of utility and confidence. With ∆t = |t − τ | being the delay between the current absolute
time t and some arbitrary time τ , the definition of any function should provide the value 0 for
worse case∆t and 1 for∆t = 0. We have considered four different families of functions (I, II, III
and IV), shown in Fig. 4.13. Families I, II, and III are parametrised by a single time value. These
functions canbeused to producedecaywith the activity’sage (∆t = t−τa), tardiness (∆t = τs−t,
valid for t ≤ τs), or earliness (∆t = (t− τe), valid for t > τe). The first version (I) is a simple linear
function with constant slope. In the figure we plot these families of functions for an arbitrary
delay, normalised to themaximumallowed by the function. Functions II and III correspond to the
exponential score computed as in Eq. (4.34), where εmodulates the exponential response.

δexp(∆t) =
1− exp

(
−∆tmax−∆t

ρ

)
1− exp

(
−∆tmax−∆tmin

ρ

) with ρ =
∆tmax −∆tmin

ε
(4.34)

The fourth family (IV) ofdecay functions isanalternative to the linear version (Fig. 4.13, right).
In this case, the functiondecreases its valuemonotonically from t = τa to thepointwhere t−τe =
G. During the execution of the activity its decay value is kept constant in a plateau at a value
determined byG, τa and τs.
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Figure 4.14: Summary of the processes, models, and functions involved in the self-organising scheme.

4.7 Summary and final remarks
This chapter has presented the modelling of an Earth Observation DSS and a framework to or-
chestrate the system function in an autonomous manner. The system has been described as a
MAS, with satellite agents and their interactions being the core of the modelling approach. We
presented a self-organisation scheme based on the local reasoning of agents, a process that is
supported by the knowledge acquired from agents upon encounter. Fig. 4.14 summarises the
processes discussed in this MAS framework and shows the relations that they have within the
scheme. We havemodelled agents as a single observation node in a DSS. In our solution, agents
have the ability to estimate the state of the system based on known intents of other agents,
provided in the form of atomic information units—single observation activities. A local mission
planning system, implemented with a GA, dictates the local actions of a satellite through the
maximisation of activity payoffs and has been designed to run on-board. One of the essential
characteristics of this self-organisation scheme is that agents are capable of determining their
own potential tasks without the supervision of ground operators. This very idea originates from
the assumptions thatmodern spacecraft are likely to embarkmoderate computational capabil-
ities. This enables satellites to actually reason about the state of the system, and identify obser-
vation intervals in-orbit. Chien et al. (2010) already explored a similar mission planning feature
for monolithic systems. In EO-1, the spacecraft was designed to perform on-board data pro-
cessing of the captured images in order to improve scheduling of data takes and optimise the
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Table 4.1: Summary of the effects of confidence values in the self-organisation framework.

Confidence Effect

High,
u(a) ≈ 1

• Activity a has a high likelihood of being carried out.
• Payoff values are computed with higher accuracy (i.e. revisit times are trusted to be cer-
tain).

• Confirmed activities (i.e. u(a∗
i ) = 1) are used as filtering points allowing to ignore the influ-

ence of other activities.
• Activities that are being considered for re-scheduling have their aggregated payoffs mul-
tiplied by a factor close to (1 + Kp). Therefore, agents are less inclined to changing the
schedule and dropping a.

• The utility of these activities tends to U ≈ 1. This yields higher baseline confidence in the
activities that are solutions to the scheduling problem.

• The likelihood of sharing these activities with other agents is high.

Medium • The agent is absolutely uncertain about this activity.
• Confidence is used as a weighting value that modulates the impact of the obtained revisit
time in payoffs.

• Depending on the confidence threshold uo, activities that are considered for re-scheduling
may have their payoff values increased. The closer u is to uo, the closer the multiplicative
factor is to 1 and the less prioritised the activity becomes.

• The utility of these activities tends to U ≈ 0. This yields lower baseline confidence in the
activities that are solutions to the scheduling problem.

• The likelihood of sharing these activities with other agents is low.

Low,
u(a) ≈ 0

• Activity a has a low likelihood of being carried out.
• The obtained revisit times have very low influence in payoff calculation. Consequently, the
planning process barely takes them into account.

• These activities are not prioritised in re-scheduling process.
• The utility of these activities tends to U ≈ 1. This yields higher baseline confidence in the
activities that are solutions to the scheduling problem.

• The likelihood of sharing these activities with other agents is high.

download process. The presented system—which had also been applied in one nano-satellite
mission (Chien et al., 2012b)—showed that it can be computationally feasible to identify poten-
tial observation targets on-board, and to optimise spacecraft operations at the space segment.
Several other works had also tackled on-boardmission planning techniques and explored some
of the benefits of such a change of paradigm, such as the improvement of the system respons-
iveness in the event of failures, or the maximisation of science return (Araguz et al., 2018a).

Similarly, in our proposed self-organisation scheme, satellite agents determine their po-
tential observation targets autonomously by means of estimating the state of their collective
observation function. This process is driven by the computation of figure of merit that we gen-
erically referred to as payoff. Activity payoffs encode the quality of a given capture with regards
to the collective goal. As presented at the beginning of this chapter, agents collaborate to attain
a given global revisit time. Given the characteristics of the communication processes between
agents (constrained by physical and technological limitations) the knowledge retained by each
agent will hardly ever be complete or up to date. As a result, agentsmay never estimate the true
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state of the system and need to resort to mechanisms that assist their decision-making. The
mechanismproposed in this framework is partially grounded on the definition of confidence val-
ues (u), which state the certainty that agents have with respect to the execution of a scheduled
task. This value is used throughout the framework to address several aspects, namely, generat-
ing payoff values, prioritising previous solutions during a re-schedule process, and defining the
usefulness of sharing an activity with other agents. The effects of different confidence values
are summarised in Table 4.1.

It is also important to recall that this proposal has simplified the modelling of instruments
todeviceswith conical aperturesandcircular footprints (i.e. nadir-looking, non-agile platforms).
Related works that have addressed the optimisation of schedules in DSS for EO have modelled
the observing operations and tasks with higher fidelity; either by considering agile-platforms
or rectangular footprints (e.g. Ntagiou et al., 2016; Yelamanchili et al., 2019). Conversely, our
framework has modelled systems wherein the set of allowed operations of an observing agent
is mostly restricted to the enabling or disabling of their instrument. Certainly, this approach
presents a reduced the complexity that partially eased the conception of this autonomous
framework. However, our solution should also be applicable for systems performingmoderately
complex observation tasks (e.g. taking into account regarding angles different than nadir, in-
strument modes of operation, additional operation constraints, changing their footprints from
circular to rectangular, etc.) Systems that would consider agile satellite platforms would prob-
ably need to modify the design of chromosomes in order to include their roll and pitch angles—
as well as to add additional constraints to select solutions with feasible attitude manoeuvres.
Provided that the agents have the ability to schedule their observations on-board, the complex-
ity entailed in their planning endeavour is relatively irrelevant for this study. In fact, it should be
noted that the fundamental goal of this research is to explore the systemqualities and perform-
ance of autonomous operations in the context of novel DSS scenarios. In that sense, many of
the benefits of autonomy are expressed or emphasised for large-scale, heterogeneous, and dy-
namicmission architectures. As we introduced in the first chapter, these types of DSS are likely
to be realisedwith small-satellite platforms and technology (i.e. COTS,moderate computational
capabilities, low communication bandwidth, restrictive power budgets, limited attitude control,
etc.) Hence, we have been inclined to reduce the complexity of the collective function in favour
of studying the system performance for scenarios of the above-mentioned kind. To the best of
our knowledge, no previous studies have tried to optimise global revisit times in a decentral-
ised manner for systems that exhibit all of these characteristics—albeit some have certainly
addressed the optimisation of regional target areas (Lee et al., 2016; Yelamanchili et al., 2019),
dynamic and distributed systems (Iacopino et al., 2014), or the orchestration of decentralised
systems (Tripp and Palmer, 2010).29

Ultimately, as part of these final remarks, we need to emphasise that the presented frame-
work relies upon discretisation of space to perform estimation of system state in a computa-
tional manner. Representing coverage strips in a purely geometrical manner would involve the
definition of curved planes that are harder to express mathematically—compared to cell units
in a discretised Earth surface. We found the increase in estimation accuracy to be unnecessary
to the problem tackled in this research. On the other hand, the discretisation of space has also
been practised as a means to represent a certain computational capacity on board the space-

29 The work presented in the latter cited reference is certainly worthy of mention because it explored collective organ-
isation of satellite systems by means of indirect communication (i.e. stigmergy). However, the modelling of agents
was extremely simplified and did not consider orbital trajectories. Most importantly, the kind of observation activit-
ies that the authors modelled were purely arbitrary (abstract resources) and did not take into account geo-location
aspects such as the notion of a target area or instrument footprints.
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craft (i.e. memory). Just like agents are allowed to present heterogeneous observation capab-
ilities (i.e. instrument’s FOV, power consumption, and datarate), they can also be characterised
by heterogeneous cognitive capacities (i.e. granularity of their space discretisation). In prac-
tice, given that the discretisation technique only affects the ability of an agent to resolve system
state at some location, the number of points considered in a coverage model should be chosen
somehow in conjunction to the instruments’ fields of view. Narrower instrument apertures will
require agents to discretise the surface with finer resolutions whereas wider ones can relax this
condition and allow agents to reason with coarser surface meshes.
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5
Measuring the impact of autonomy in

Distributed Satellite Systems (I):
Design-oriented characterisation

framework

5.1 Introduction
Oftentimes in the engineering of systems, designers are faced with the need to assess the
goodness of their solutions and the breadth of their applicability. Doing so might be of special
interest in generic designs that seek to address awide spectrum of applications and be relevant
in a number of different contexts. As a framework oriented to achieve autonomous operations
in Earth observation missions, the generic solution proposed in Chapter 4 is both influenced
by endogenous design parameters—belonging to the very definition of the self-organisation
scheme—and by exogenous system traits30—characteristic of its application contexts. Both
aspects may play a determining role in the achievement of the system function (i.e. to oper-
ate an EO mission autonomously), and hence it might be crucial to assess, at least, the most
relevant ones. On the one hand, the collection of parameters (i.e. variables and functions) de-
scribed as part of the behavioural rules of our specific multi-agent system can influence the
dynamic response of the system to certain conditions and states. Likewise, the very limitations
or characteristics of the system (e.g. satellite capacities, instrument swaths, orbital geomet-
ries, dynamic network topology) can also influence the achievement of collective operations and
render different system performances.

In that sense, this chapter completes the description of the autonomous operational
scheme for DSS, by introducing a characterisation framework that is both oriented to valid-
ate the proposed approach and to facilitate the exploration of design guidelines. Aside from
providing a simulation-based environment that can assess system performance and lead to a

30 We use the term “exogenous” to refer to characteristics that are not part of the self-organisation scheme, but which
belong to the definition of the system itself (i.e. its form).
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practical verification of the autonomous system function—and its quality—, the characterisa-
tion framework is mainly aimed at analysing the effects of the above-mentioned design and
system parameters. Based on a careful exploration of case scenarios, this framework shall
allow the understanding of the implications that some input parameters can have upon the be-
haviour of the system. In turn, thismay expose potential limitations of the approach (i.e. caused
by intrinsic traits or owing to exogenous factors) and should lead to the identification of optimal
values for specific satellite architectures, technologies, and EO applications. In order to assess
the quality of the solution and to identify suitable and/or detrimental input spaces, the defin-
ition of this framework leverages the analysis of critical state variables and the quantification
of system metrics that can be aggregated and transformed to evaluate the merit of the system
at higher level. Ultimately, leveraging the obtained system-level metrics may also enable the
exploration of certain qualitative aspects of autonomous, decentralised decision-making, and
foster the analysis of impact of autonomy in DSS.

The conceptual elements that compose this framework and give structure to this chapter
are: (1) a simulation tool that emulates DSS with the characteristics and level of abstraction
explored in Chapter 4 (i.e. heterogeneous, large-scale, dynamic) and which can graphically rep-
resent and record agent and system states (Section 5.2); (2) a configuration set that allows the
selection of input variables and generation of case scenarios (Section 5.3); and (3) a qualitative
scheme to explore and aggregate simulation outcomes and evaluate performance and under-
stand the effects of critical parameters (Section 5.4).

5.2 Design of an ad-hoc simulation tool to support design char-
acterisation

As stated in Section 4.1, the main objective of this study is not to improve the system efficiency
(e.g. use of resources) but to provewhether certain systemaspects are ameliorated orworsened
by means of adopting an autonomous operation scheme. In order to do so, we are forced to rely
upon the simulation of such systems and their behaviour. A software tool developed with such
purpose has to have the ability to emulate a team of agents in a computationally efficient man-
ner, and include internal probes thatmeasure their dynamic variables. This needs to be possible
for any of the simulated elements and at multiple levels; i.e. reporting the number of activities
known by an agent can be as relevant asmeasuring their resource capacities, or the evolution of
confidence values in every one of the known activities. Furthermore, having the ability to visu-
alise state information is also of utmost importance in complex systems such as the ones in-
tended to emulate, where the behaviour of its entities and the performance of the system may
be intimately related to individual actions and interactions. At any given time, a snapshot of the
emulated systembothencompasses state information of agents (i.e. resource capacities, orbital
state, state of their instruments, tasks currently in the agent’s plan of actions, etc.) and the state
of the EO system as a whole (i.e. revisit time obtained at every surface coordinate, total number
of scheduled tasks, discarded plans of action, etc.) Grasping this amount of information is a
challenging cognitive endeavour that we eased by facilitating the visualisation of most of these
variables.

The design of this system simulation software is divided in three separatemodules that will
be presented in the following sections: model, planner, and graphics. The tool is implemented
in object-oriented programming in the C++ language, and is supported with a few libraries. It is
perhapsworthy ofmention that although this design implementsaMulti-AgentSystem,wehave
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not relied upon existing tools or platforms to implement our MAS. This decision stems from the
fact thatmostMAS frameworks are tailored to generic systems that need not emulate the phys-
ical constraints of a DSS (or essentially any other physical system, specifically). In particular,
most of theMASplatforms provide themeans tomodel agents and the environment, and enable
seamless message exchange among agents. However, given that the complexity of our frame-
work resides, mostly, in the implementation of the models presented in the previous chapter
and the implementation of physical environment constraints, we resorted to a completely ad
hoc solution and have not adopted any MAS platform in particular.

This ad hoc simulation tool has been tailored to the needs of the design characterisation
framework presented in this chapter. As such, the implementation has focused on high-level in-
teractions and the emulation of critical state variables only. Despite autonomy, and the concept
of operations presented in the previous chapter, being studied with this level of abstraction,
finer details such as complex spacecraft subsystems and states can not be emulated with this
software. In particular, inter-satellite communications are one of the simplified processes. The
design characterisation has been performed with a simplified emulation of subsystems, as de-
scribed in Section 4.5.1. ISL are modelled as a communication channel constrained by a con-
stant data rate and limited by amaximum distance, ignoring amyriad of physical and technolo-
gical effects, namely, signal attenuation, propagation delays, antenna sensitivity, and packet-
level segmentation of messages. Acknowledging the lack of fidelity in this particular process—
acceptable for the characterisation aimed in this chapter—and its relevance in networked DSS
(e.g. FSS, flight formation swarm, etc.) we also proposed the complementary tool introduced
in Appendix A. In addition to emulate communications with higher fidelity at all levels (i.e. sig-
nal, device, protocol), the simulator presented in the appendices has been tailored to design de-
centralisedoperational concepts andsatellite networkprotocols, and canbeexpanded tomodel
further components and variables of interest that were not relevant for this study (e.g. antenna
radiation patterns, power buses, satellite attitude, C&DH units, etc.)

5.2.1 Satellite, surface, and activity models

The design of components that model the system is centred around the definition of agents,
the surface that they observe, and the fundamental elements of the organisation scheme (i.e.
activities and knowledge base). These components are described as the set of classes repres-
ented in Fig. 5.1 and 5.2. The diagrams showUML classes in a simplifiedmanner, where only the
most important attributes and operations are depicted.31 The class Agent represents a single
EO satellite that is composed of an Instrument, an AgentLink to communicate with other agents
and exchange information, and a set of Resources that model on-board capacities such as bat-
tery state of charge. Themotion of a satellite is emulated through the implementation of a Kep-
lerian orbit propagator in the class AgentMotion. Entities the state of which is explicitly time-
dependent, are generalised by the interface TimeStep, which defines a single method to update
them.

31 All UML class diagrams in this section have purposefully ignored implementation details such as those from the ac-
tual implementation language (C++). As such, common types and containers used in the representation of classes
are written with generic, descriptive names, rather than implementation-specific ones, e.g. ‘int’ is used to denote
integer types andwill be preferred over any specific kind (signed, unsigned, long, etc.); ‘float’ is usedwithout any spe-
cific reference to its representational size in bits (e.g. double, long double); arbitrary types such as AgentID, Time,
AlleleIndex, Vector3d are used instead of numeric types, non-scalar types, or strings; list,matrix, and table are used
generically rather than specific container class names fromC++’s Standard Template Library (e.g. vector,map). Sim-
ilarly, getter and settermethods for the encapsulated state variables or parameters (i.e. private attributes) have been
omitted from all diagrams.
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Figure 5.1: UML class diagram of the satellite agent (simplified)

The sensing capabilities of satellites are emulated in the class BasicInstrument, a concrete
implementationof theabstract interface Instrument. BasicInstrumentobjectsareparametrised
by an aperture and resource consumption, as introduced in themodelling chapter. Although not
listed in theUMLdiagram, this class implements operations todeterminewhichare the coordin-
ates of the discretised surface that are enclosedwithin its footprint. In order to do so, instances
of this class take the current position of the agent (or any other position point from other agent’s
activities) and computes the visibility as a number of cells. The state of the instrument is con-
trolled through the functions enable and disable. Having defined an aperture and passing it a
given position, the class computes instrument slant ranges and swaths, two operations that the
Agent class relies upon in the generation of its own activities and the computation of coverage
strips for activities that are received from other agents.

Inter-Satellite Links are emulated in AgentLink as bidirectional communication channels
that are implemented in arbitrary transceivers. Aside from emulating data rate and power con-
sumption, the class checks line-of-sight and maximum range constraints. Two agents can only
communicate if their separating distance is smaller than both of their ranges and they are in
line-of-sight. The emulation of transfers is performed through the functions connect and sched-
uleSend. Event listeners are installed in AgentLink objects to allow agents react upon encoun-
ters. When two links can be established, one of the two AgentLink objects involved in the emu-
lation invokes the encounter function (which is a callback installed in event listeners). Agents
then try to connect to the other end and generate the list of activities that may be shared. Once
the list is generated, these activities are pushed to a temporal transmission queue by invoking
scheduleSend. The emulation of transfers and links dictates howmany of the selected activities
will actually be received at the other end. Likewise, during the emulation of both transmission
and reception, the class AgentLink accumulates the energy spent in the transfer. At every time
step of the simulation, the satellite reads the energy consumed by its links and applies it to the
correspondingResource object. ISL communications are not scheduled, or planned in anyman-
ner. This means that the consumption of resources (i.e. energy) that the agent emulates is not
optimisedandcannot bepredicted. Agentsdefineafixedenergy reservoir that is only consumed
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ActivityHandler

-activities_own: list<Activity>
-activities_others: table<AgentID, list<Activity>>

+update()
+isCapturing(): bool
-checkOverlaps(a: Activity, l: list<Activity>): list<Activity>
+add(a: Activity)
+discard(a: Activity)
+create(P: table<Time,Vector3d>, c: list<EnvCell>): Activity
+getActivitiesToExchange(id: AgentID): list<Activity>
+purge()
+markAsSent(a: Activity)

EnvModel

-cells: matrix<EnvCell>
-plut: matirx<Vector3d>

+computePayoff(a: Activity)
+generateActivities(prev: list<Activity>): list<ActivityGen>
+createActivityGen(t0: Time, t1: Time, prev: Activity): ActivityGen
+addActivity(a: Activity)
+removeActivity(a: Activity)
+updateActivity(a: Activity)
+cleanActivities(t: Time)
+getWorldCells(r: Vector2d): Vector2d
+getPositionLUT(): matrix<Vector3d>
+toWorldCoordinates(model_coord: Vector2d): Vector2d
+toModelCoordinates(world_coord: Vector2d): Vector2d

ActivityGen

+t0: Time
+t1: Time
+steps: int
+cell_coord: list<Vector2d>
+cell_payoffs: list<float>
+cell_utilities: list<float>
+prev_act: Activity

Activity

-confirmed: bool
-discarded: bool
-active: bool
-confidence: float
-confidence_baseline: float
-last_update: Time
-creation_time: Time
-trajectory: table<Time,Vector3d>
-active_cells: list<ActivityCell>
-id: int
-agent_id: AgentID
-has_been_sent: bool

+utility(confidence: float, umin: float): float
+decay(t: Time): float
+isConfirmed(): bool
+isDiscarded(): bool
+isFact(): bool
+isOwner(id: AgentID): bool
+reportConfidence(): float
+getPriority(): float
+getStartTime(): Time
+getEndTime(): Time
+clone(other: Activity)
+markAsSent()

EnvCell

-activities: list<Activity>
-payoff_func: list<CellPayoffFunction>
-clean_func: list<CellCleanFunction>
-payoff_values: table<Time,float,float>

+addCellActivity(a: Activity)
+removeCellActivity(a: Activity)
+updateCellActivity(a: Activity)
+computeCellPayoffs(t0: list<Time>, t1: list<Time>): float
+getPayoffAt(t: Time): float
+getUtilityAt(t: Time): float

PayoffFunctions

+f_revisit_time_forwards: CellFunctionPair
+f_revisit_time_backwards: CellFunctionPair

+payoff(revisit: Time): float
+bindPayoffFunctions()
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+t0s: list<Time>
+t1s: list<Time>
+x: int
+y: int
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Figure 5.2: UML class diagram of the activity and surface models (simplified)

during ISL communications. Reserved capacities are taken into account during the scheduling
of observation tasks and its availability is always guaranteed by the GA scheduler—albeit it may
remain completely unused during execution of the scheduling solution. Agent links can con-
sume, and even exhaust, this reserved capacity in periods with high ISL activity. If the reserved
capacity is depleted, the agent disables its link with the disable function and only re-enables it
when its task planner is executed again.

The Resource class, on the other hand, is designed as a generic interface that implements
any of the capacity models discussed in Section 4.5.3. Their total capacity is defined as an ar-
bitrary floating point value, that can then change as new consumptions are added or removed
from it. Capacity usage is set in the form of a rate that can either be applied instantaneously
(applyOnce), for a certain amount of time (applyFor), or constantly (addRate). A clone function
allows resource objects to be duplicated during the scheduling process. Copies of Resource ob-
jects can thus be manipulated to compute resource availability in a forward-looking manner,
allowing to compute cost values that are part of the fitness function in Eq. (4.17).

In Fig. 5.2 we show the class hierarchy for most of the aspects pertaining to the autonom-
ous framework: the information units shared in agent interactions and the estimation of system
state. Aside from the functional and behavioural components introduced above, the Agent class
is also composed of an ActivityHandler and a single EnvModel. The former models the agent’s
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knowledge base (βi), and provides a collection of operations that allow agents to manage and
interact with their information units (the Activity). As described in Section 4.5.2, an activity is
characterised by its start and end times, the assertion time (τa)—or last update time—and its
trajectory. For the sake of simplicity we define as many trajectory points as generated in the
discretisation of time, although in some scenarios agents could preform equally with a reduced
number of positions that would be interpolated.32 The state of an activity, fundamental to the
framework, is characterised as a collection of Boolean flags and floating point values. The at-
tributes confirmed, discarded, and active indicate, respectively, if an activity has become a fact
and whether the agent is currently executing it. The updated confidence value (u) and the initial
confidence baseline (ub) are alsomapped to a pair of attributes. Confidence values are updated
with the operation setConfidence, which reads the confidence value and current virtual time and
computes the new value in accordance to Eq. (4.22). The Activity class also provides getPriority
to return the value described in Eq. (4.32). Additionally, two static operations are implemented
which compute utility and decay values,U(u(ai)) and δ(ai) respectively.33 Agents can label their
activities as sent through a function implemented for this purpose, notifying the ActivityHandler
that such object needs be kept in the knowledge base until its full decay.

TheActivityHandler encapsulates all the actions that anagent performson the knownactiv-
ities. Its state is mostly described through two Activity containers: one for the activities owned
by the agent and another for the activities received in interactions. The purge operation is in-
voked before any scheduling process begins in order to forget the activities that are no longer
relevant for the system (i.e. based on their end times). Likewise new Activity objects are instan-
tiated in the function create. When an activity is received in an AgentLink, the agent forwards
the object to the add function in ActivityHandler, which verifies the received information and up-
dates the knowledge base. In particular, this function checks the update time (τa) of an activity
and estimates whether this or any other known activity can be locally discarded. In order to do
so, ActivityHandler relies upon checkOverlaps, an operation that iterates over all the activities in
a set to detect temporal intersections (which an agent knows not to be possible).

When a new activity is added (created by the agent or not), the ActivityHandler inserts it in
themodel of thediscretised surface,EnvModel. Surface tesselation is implementedwithagran-
ularity determined by configuration parameters. Once individual cells are created, they are all
stored in EnvModel, in a matrix attribute of this class. New activities are added to EnvModel in
order to allow the estimation of revisit times in each region of the target area. The functions ad-
dActivity, removeActivity, and updateActivity are called regularly by the ActivityHandler in order
to maintain the EnvModel updated with the information in the knowledge base. In turn, these
functions invoke their EnvCell counterparts by inspecting the strip coverage of activities. Env-
Cell represent a single location (eij ) in the discretised world (E ). The class provides compute-
CellPayoff which computes forward and backward payoffs and returns themaximum value. The
payoff algorithmdescribed inSection4.6.6 (seeFig. 4.11), is implemented in the static classPay-
offFuntions. We decided to hide their implementation details in a dedicated class that gathers
a collection of payoff functions. As a matter of fact, this class has been generalised to provide
payoff functions different than revisit time in case that thiswould benecessary in the future (e.g.
payoff based on latency, or instrument footprint overlap). Furthermore, the class PayoffFunc-
tionalso provides the operationpayoff, which implements the computation of g(∆t)described in
Eq. (4.23) and 4.25. Once cell payoffs and utility values are computed for a single EnvCell—see

32 Themain constraining factor is the evaluation of coverage strips. Coarser spatial discretisationwould allow for smal-
ler number of trajectory points.

33 See Eq. (4.20) and Figs. 4.9 and 4.13.
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Eq. (4.28)—, their values canbe retrievedwith the operations getPayoffAt and getUtilityAt, which
expect a single argument corresponding to the time for which these values need to be fetched.

Activity and EnvCell are indirectly related: an activity has a strip coverage that is defined as
a set of active_cells. This information is encodedwith a helper type—ActivityCell—that encodes
the intervals of visibility that one activity has over points in the surface. Note that this complex
type is implemented as two lists of time values, t0s and t1s. It is important to store a pair of lists,
rather than a pair of start-end times, because activities that have extremely long durationsmay
take more than one orbital cycle. In such situations, some cells may actually be observable in
more than one occasion in the same scheduling window, and hence would have more than one
observation interval.

Finally, the EnvModel is also related with the scheduler module (described in the following
section). As described in Section 4.6.3, agents generate potential observation tasks by means
of estimating the state of the system. This estimation is performedwith payoff values and yields
a set of potential tasks that the GA scheduler will consider in its optimisation (see Figs. 4.8
and 4.12). The very process of generating potential activities is implemented in the function gen-
erateActvities, member of EnvModel. The return value is a complex type named ActivityGenwith
which such activities can be created. Noteworthy, this function takes a list of Activity objects
as input arguments. This list corresponds to observation tasks that might have been previously
scheduled by the agent but which still have not been executed. When the internal routine gen-
erates new observation intervals, those that are linked to existing activities are correspondingly
linked to them in the prev_actmember of ActivityGen. Thus, the scheduler is notified that some
solution existed beforehand, and can set payoff multipliers accordingly.

5.2.2 GA Scheduler implementation

The realisation of theGA scheduler has been extensively discussed in Section 4.6.2, towhich the
reader is directed to get the full details of the algorithm and its implementation. Fig. 5.3 shows
how theplanning algorithmhasbeen included in this simulation framework and the classes that
compose it. The scheduling algorithm is essentially implemented in two classes: GAScheduler
and GASChromosome. The latter encapsulates potential solutions in the form of chromosomes,
and implements some their characteristic operations. A list of Boolean alleles encode the vector
of decision variablesX, for which we provide a complementary vector to protect some of their
values. The list of protected alleles is simply amask that precludes any of the alleles from being
altered in the mutate function. Crossover operators are also implemented as a static member
function of GASChromosome, which spawns two individuals by combining the pair of parents
in the argument list. Crossover operators are homogeneously selected for all agents through a
configuration parameter of type GASCrossoverOp.

GAScheduler objects are dynamically created by an Agent. Their instances are initialised
through three different functions, namely, setChromosomeInfo, setAggregatedPayoff, and set-
PreviousSolution. The former of the three accepts a number of input arguments that are omit-
ted in the UML diagram for the sake of reducing clutter. Essentially, this function is invoked by
the agent once EnvModel provides the list of potential activities. The function takes start and
end times of each task and stores them in an internal table of GASInfo elements. Start and end
times are kept for every decision variable xi (i.e. for every allele). In addition,GASInfo also stores
a single aggregated payoff value. These corresponds to Pi values, as declared in Eq. (4.17a)
and discussed in the previous section. The aggregation function is one of the parameters of
the simulation scenario. Three aggregation alternatives can be selected: average, maximum,
or summation. We generally observed that the best aggregation approach tends to be the av-
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GAScheduler

-iteration_profile: tuple<int,float>
-population: list<GASChromosome>
-individual_info: list<GASInfo>
-prev_solutions: list<GASPrevSolution>
-t_start: Time
-t_end: Time
-resources_init: table<string,Resource>

+schedule(): Solution
+setChromosomeInfo(times and cost)
+setAggregatedPayod(idx: int, po: float, conf: float)
+setPreviousSolution(a0: AlleleIndex, a1: AlleleIndex, act: Activity)
-computeFitness(GASChromosome): float
-select(pool: list<GASChromosome>): GASChromosome
-repairPool(pool: list<GASChromosome>)
-combine(parents: list<GASChromosome>, children: list<GASChromosome>)
-protectPopulation()
-generateSolution(GASChromosome, out discarded: list<Activity>): Solution
-iterate(generation: int, best: GASChromosome): bool

GASInfo

+t_start: Time
+t_end: Time
+ag_payoff: float
+baseline_confidence: float

GASPrevSolution

+a_start: AlleleIndex
+a_end: AlleleIndex
+a: Activity
+factor: float

GASChromosome

-alleles: list<bool>
-protected_alleles: list<bool>
-fitness: float
-valid: bool

+mutate()
+protect(aidxs: list<AlleleIndex>)
+crossover(parents: pair<GASChromosome>, out children: pair<GASChromosome>)

«enumeration»
GASSelectionOp
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Figure 5.3: UML class diagram of the Genetic Algorithm scheduler (simplified)

erage, which computes the mean of cell payoffs. The individual cell payoff values (computed
in EnvCell) are passed to GAScheduler with the method setAggregatedPayoff. The initialisation
is completed with setPreviousSolutions, a function also invoked by Agent which configures re-
scheduling parameters (e.g. protected alleles for activities that are confirmed).

Once the scheduler object is configured, the iterative evolutionary process is triggered with
schedule. The iterative process is constantly monitored and stopped by means of the private
method iterate, which check the improvement rate and number of generations. The algorithm
detailed in Algorithm 3 (see p. 136) is executed until a solution is found. Internally, the loop calls
the functions select and combine to perform parent selection and environment recombination,
respectively. The function computeFitness implements Algorithm 2 (p. 135) and identifies solu-
tions that violate resource constraints. These solutions are pruned from the populationwith the
method repairPool. Finally, once the iterative process is completed, solutions are reported to
Agent in the return value of schedule.

5.2.3 Visualisation module

Having the ability to grasp the state of a system turned out to be of utmost importance during
their emulation and verification. In systems with multiple variables and state information en-
codedatmany levelsof abstraction, relyingsolelyupondata toanalyse thesystemresponse, can
be cumbersome. This is especially true in the case of complex systems, such as ourMAS, where
multiple decentralised decisions and actions are being simultaneously performed. Graphical
interfaces that encode a subset the system’s variables can be extremely helpful to understand
system-wide trends, some agent-level decisions and interactions, and also to identify flaws of
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the approach (or the implementation). With these aims, we have designed a graphical layer that
enables designers to view the state of agents, their interactions, and the resulting autonomous
function. In this context, this ad hoc simulation framework provides four kinds of views, as sum-
marised below.

One particular characteristic of thisMAS is that their agents ‘live’ in a physical world. There-
fore, the representationswill all showagents located in their physical environment. For the sake
of simplicity, we plot agents in an equirectangular projection of the Earth’s surface. Fig. 5.4 dis-
plays a system composed of fifty satellite agents. Their representation is simplified to an arrow-
shaped icon showing the direction of their motion (i.e. projected onto the 2-d surface) and a
circle depicting the footprint of their nadir-looking instruments. Each agent is labelledwith their
unique identifier (e.g. ‘A01’) and a number that indicates the state of one resource (e.g. battery
state of charge). Furthermore, the view also shows coloured lines that represent interactions.
When a pair of satellites are in line-of-sight, two lines are drawn that represent the state of each
of their ISL devices. A grey line indicates that a link could be established but has not been per-
formed (e.g. for a lack of power, range, or agent decisions). Once two agents are connected—a
state that involves both of the satellites—their ISL are shown in orange. Their representation
is shown in purple when links transition from an idle state to an actual exchange of information
(i.e. transmission).

The estimation of systemstate performedby every agent—in a localmanner—is also a crit-
ical system variable that we visualised in plots like the one in Fig. 5.5. In this case, all the in-
formation shown in the plot correspond only to a single satellite agent. The image shows the
estimation of state by displaying payoff values. Payoff is computed by the agent from the estim-
ation of revisit times (forward or backward) for the points that could be observed by the agent
during the length of their schedulingwindow. In the example, we show values for agent A0, which
has a scheduling window that spans almost four orbital periods. Its wide instrument aperture
and orbital altitude produces long swaths—roughly covering the equivalent to a few thousand
kilometres. The grid onto which payoff values are projected has the size of the agent’s surface

Agents in line-of-sight Agents connected Agents transmitting 

Figure 5.4: Graphical representation of satellite agents and links. Coloured lines represent ISL and their
state, whereas instrument footprint in equirectangular 2-d projection is shown as an orange perimeter.
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Figure 5.5: Single agent view and payoff value.

model. Had the agent computed revisit timeswith coarser resolutions, the viewwould represent
larger “payoff pixels”.

In addition to the payoff information, Fig. 5.5 also shows the state of its knowledge base
in a graphical manner; i.e. the activities known by the agent. White lines represent activities
that have been scheduled by the satellite planner andwhich have not been discarded. Activities
are also labelled with their numerical identifier, which is preceded by the agent name (e.g. A0

:17 shows activity 17 of agent 0). The same representation is used for activities received as a
result of interactions, coloured in grey. As it can be seen, payoff values change dramatically
whenother activities have scheduledobservations for the same target areas. Redpixels indicate
very low payoff values (0.05 in a normalised scale) whereas blue and green indicate areas that
could be worthy of observing (with payoff of 0.5 to 1, respectively). Noteworthy, the plot also
shows the time dependence of payoffs: the estimation of revisit time for contiguous locations
yield different payoff valueswhen the agent estimates them from twodifferent orbital locations.

Finally, the representation of the system would not be completed without plotting the res-
ults actually yielded by the autonomous organisation framework, i.e. revisit times. Fig. 5.7 (left
side) shows two representations of the true system state in a colour scale that encodes revisit
times relative to the system goal. Noteworthy, the information shown in this view is never truly
graspedby theagents,whichperformanestimationbasedon theknownactivitiesand their con-
fidence values. In this view, revisit times are computed with the actual state of agents’ instru-
ments (i.e. enabledordisabled). Therefore, the viewshows theactual performanceof thesystem
as it would be perceived by users. The screenshot captures the state of a systemwith ten satel-
lites and a nominal instrument aperture and arbitrarily distributed orbital planes. Section 5.4
introduces how this information is transformed into systemmetrics that allow the evaluation of
the solution in objective and quantitative terms. However, in order to assess the response of the
system and analyse the suitability of autonomous operations, we may need reference values to
compare the obtained performance with an optimal case. This chapter discusses these evalu-
ation process in detail and refers the measurement of utopia values: i.e. the minimum revisit
time that could ever be attained by the system. Displaying these values may also be of interest
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Figure 5.6: UML class diagram of the graphics module (simplified)

Actual Utopia

0 days 1 day 2+ days

Figure 5.7: Dynamic revisit time visualisation: the actual value obtained as a result of autonomous oper-
ations (left); and utopia value (right). The screenshot shows the difference the two for a system with 10
satellites andmoderate resource constraints.

in some scenarios and hence have been included in the set of graphical representations. In that
sense, Fig. 5.7 (right side) displays revisit times as obtained by the same satellites if their instru-
ments had been continuously enabled—a situation that we know to be unlikely and unrealistic
given resource capacity constraints. In the illustrative systemwith ten satellitesweobserve how
theutopia revisit time is almost covered in blue (i.e. values closer to 0), whereas in the represent-
ation of the actual revisit time, the background is coloured in orange (i.e. regions that are about
to exceed the system goalG = 1 day).

As much as it is important to assess the results obtained with autonomous operations by
means of comparing them with utopia values, it is also important to discern when such results
could not be improved by any physicalmeans. If satellites in the systemhave not observed a cer-
tain region, we wish to understand whether this is caused by the self-organisation framework
or by causes external to it (i.e. the actual orbital geometry). In order to do so, the generation of
metrics does take into account the regions that remain obscured in the utopia case and masks
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Actual revisit time

Utopia

0 days 1 day 2+ days

Figure 5.8: Comparison of two time gaps in dynamic revisit time views. Several areas that have not been
accessed by the system in a long period of time (top). Comparing the state of the system with the Utopia
case (bottom), one can evaluate whether these time gaps are naturally caused by the constellation design
(square marker) or as a result of the decentralised operations (circular marker).

them during the generation of reports. These regions are encoded in the representation with a
grey colour. The bottom representation in Fig. 5.8 depicts an example of this situation. In that
case, the time gaps obtained by an arbitrary satellite constellation have reached values greater
than 2 days in multiple locations (coloured in red, Fig. 5.8 top). However, looking closely at the
utopia plot (bottom) we can observe that some of the areas with poor revisit times are actually
covered in grey. This indicates that none of the satellites in the constellation have yet flown by
these locations and, hence, they should not be taken into account when assessing the perform-
ance of autonomous operations.

The design of the graphical layer in this simulation tool has been carried out with the class
hierarchy depicted in Fig. 5.6. The software architecture has resembled that of a Model-View-
Controller pattern and has separated the implementation of graphical objects in individual
classes. Each of the types that can be represented graphically are generalised with the inter-
face HasView. This interface provides a single method to retrieve the graphical objects that are
mapped to model classes (e.g. getView in Agent, returns an object of type AgentView). Thus,
most of the classes discussed above have their graphical counterpart which represent their
states accordingly and can be treated seamlessly. The underlying graphical objects and oper-
ations required to draw shapes and colours are provided by the Simple and Fast Multimedia
Library34 (SFML), a simplified interface to the OpenGL API. SFML provides a number of graphical
primitives that have facilitated the implementation of our classes. Each of the visual objects

34 https://www.sfml-dev.org/
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Table 5.1: System architecture, mission, and satellite configuration parameters

Variable Ref. Values Remarks

na Eq. (4.1) ≥ 1 Number of satellite agents inΩ.

Pgen — R− Power generation capabilities of satellites.

Pinst §4.5.1 R+ Instrument power consumption.

P
(RX)
ISL §4.5.1 R+ ISL power consumption in reception (RX).

P
(TX)
ISL §4.5.1 R+ ISL power consumption in transmission (TX).

rISL §4.5.1 [1,∞) km Maximum range of ISL, in kilometres.

CISL — [0, 1] Energy capacity reserved for ISL as a fraction of the total capacity Cmax

(see Section 4.5.3). This fraction will not be considered during the
scheduling process.

FOVinst Fig. 4.2 (0, 180]◦ Aperture angle of instruments.

Dinst §4.5.1 N bps Rate at which instruments produce raw data, in bits per second.

DISL §4.5.1 N bps ISL transfer data rate, in bits per second.

Bact — N Size of an activity position value. Total transmitted size is computed as
Bact · |P |.

⟨a, e, i, θ, ω⟩ Eq. (4.2) — Orbital parameters: semi-major axis (in km), eccentricity (unitless), in-
clination, RAAN, and argument of the periapsis (all three in degrees).

M0 Eq. (4.4) [0, 360]◦ Mean anomaly at the epoch reference time (J2000).

∆P Fig. 4.3;
§4.5.2

— Trajectory increments to describe activities. This is fixed, and computed
with the simulation time step (see Table 5.5).

ISLs – Boolean Modifies agent control of ISL to allow links to be simultaneously enabled
with the instrument (true) or not (false).

implements the sf::Drawable interface and can be treated polymorphically by the SFML entities
that perform windowmanagement and encapsulate OpenGL calls.

5.3 Parametric configuration of system scenarios
The design-oriented characterisation framework that we propose to assess the goodness of
autonomous operations is based on the analysis of carefully selected scenarios. These case
scenarios are ultimately described with the parameters enumerated in the modelling sections,
and which are gathered in Tables 5.1, 5.2, and 5.3. The values are provided in structured input
files (written in YAML35) which are read by the simulation tool to build the simulation case. All
the configurationparameters havebeenpresented in theprevious chapter. Wegather themhere
for the sake of reference, and to briefly recommend some rules to choose appropriate values. In
Table 5.4, we list the configuration parameters for the GA solver that produces local schedules
for each agent. Additionally, Table 5.5 enumerates internal parameters that configure the sim-
ulation tool itself and which may have some effects upon the outcomes.

The variables listed in Table 5.1 mostly correspond to technological parameters and defini-
tion of the DSS architecture. Most of these values tend to be actual design variables in systems
architecting studies because they have a direct impact upon the system performance. Clear
trade-offs exist between the system performance, and number of satellites (na), their orbital

35 https://yaml.org/
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configurations, the aperture of their instruments, and the required resources to enable them.
While in Chapter 2 we already discussed how critical resource budgets can be in small-satellite
platforms, designing these values for the experiments presented in Chapter 6 needs be done
carefully as well. Although it may be useful to explore the quality of our autonomous operations
framework in extremely unfavourable conditions—i.e. when the system can hardly attain the
goal, evenwithout resource constraints—the valuesassigned to technological andarchitectural
parameterswill tend to guaranteemeaningful DSS. The selection of power rates canbearbitrary,
provided that themodelling of capacities is also arbitrary. Throughout the rest of this document,
we will assume that energy reservoirs have a maximum capacity of 10. With this value, we can
generate power consumptions that can represent significant scenarios (e.g. very constrained,
ample, nominal, etc.) Setting aside the number of satellites and their instrument apertures, se-
lecting their power generation capability and the consumption of their instruments can be done
by roughly calculating their charging and depletion times. We will often take an orbital period of
90 minutes as a reference time, and compute Pgen as:

Pgen = −Cmax

tfull
= − 10

90n [min.]
(5.1)

Let tfull be the time that it would take for the energy reservoir to be filled completely, computed
as a value proportional to an orbital period (roughly). Assuming that time is represented in Julian
days, for an illustrative case of n = 1, we could have energy generation computed as:

Pgen = − 10

JD(90min.)
= − 10

90/1440
= −160 [energy units/min] (5.2)

Likewise, the energy consumption of an instrument (Pinst) can be assigned as a (positive) mul-
tiple of Pgen. For the energy consumption of links, two variables are of special interest, namely,
the power consumption of links and the data rate at which activities are transferred. We sug-
gest to first fix the duration of a single transfer by determining the size and data rate (i.e. txfer =
Bact · DISL). Assuming some illustrative encounter duration, these values would effectively set
the number messages that can be exchanged in a single agent interaction and can be chosen
with this guideline. Additionally, we may also constrain communications with power. Since
agent interactions are not predicted, the optimisation of energy consumed by ISL is not pos-
sible. Instead, agents define amaximum, fixed capacity that is reserved for ISL. This capacity is
expressed as a fraction ofCmax andwill be reserved—with higher priority than tasks—at the be-
ginning of a scheduling process. Thus, agents are guaranteed to have a certain amount of energy
for ISL, that canbeusedbetween twoconsecutive executions of theGAscheduler. Having afixed
transmission time and total capacity, setting a transmission power rate is hence equivalent to
limiting the total number ofmessages within a scheduling cycle. In general, one expression that
could be used to find representative power rates, would be to divide the reserved capacity by a
total number ofmessages exchanged during a scheduling cycle. Eq. (5.3) computes this number
by assuming a number of encounters ne and a number of transfers per encounter nxfer.

PISL = P
(TX)
ISL + P

(TX)
ISL = 10−2P

(TX)
ISL + P

(TX)
ISL =

CISL · Cmax

nxfer · ne
=

10% · 10
10 · 20

= 0.005 (5.3)

The expression can be applied to get an estimation of the order of magnitude provided that the
scheduling cycle is known upfront—since it is determined by Trs. In nominal cases, we will of-
ten set the reception power rate to a value below 20 dB of the transmission power rate. Finally,
the last constraining value in agent interactions is the maximum range of their ISL (rISL), which
we conveniently express in kilometres and can be set to technologically feasible values (e.g. 1–
103 km) or be left unconstrained with a sufficiently large value.
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Table 5.2: Configuration parameters of agents

Var. Ref. Values Remarks

eo — N Size of the discretised surface in agentmodels. Surface is discretised
with cells of length 90◦

eo
degrees.

Tstep §4.6.1 R+ Minimumtimevalue thatanagentcanhandle. Commonforall agents.

Tmax Fig. 4.8;
Fig. 4.12

Tmax = λTstep,

λ ∈ N
Granularity of activities in the generation of chromosome alleles.
Smaller tasks can still exist (i.e. λ = 1) given the generation algorithm
described in Section 4.6.3 and 4.6.8. After solutions are yielded by the
GA scheduler, continuous alleles that are active are merged and can
also produce activities longer than Tmax.

Tsched Fig. 4.12 Tsched ≥ Tmax Scheduling window.

Trs §4.6.8 0 < Trs ≤ Tsched Effectively dictates how often the GA scheduler is invoked.

βmax — — Themaximum number of activities that an agent can retain from oth-
ers. βmax =

∣∣∪na
i Ŝi

∣∣.
c len §4.6.3 N Themaximum length of a chromosome (in number of alleles) determ-

ines the number of dimensions of the optimisation problem (i.e. the
maximum number of dimensions of the decision vectorX). However,
the generation of potential activities can produce dim(X) < c len.

In parallel to the technological parameters described above, agent reasoning capabilities
can be adjusted with the variables listed in Table 5.2. This table lists: the parameters that af-
fect the accuracy and granularity of agent predictions and estimation of system state (i.e. es-
sentially the discretisation of space and time); values that adjust their forecasting abilities; and
values that modify the amount of information that agents can store (i.e. computational capa-
city, expressed as memory). For the sake of simplicity, we let agents model the Earth surface
as a homogeneous discretisation of its equirectangular projection. While the variable eo adjusts
the size of anEnvCell (recall the UMLdiagram in Fig. 5.2), Tstep sets theminimum time unit in the
simulated environment. On the other hand, parameters Tsched, Trs and Tmax define, respectively,
the scheduling window, the delay before a re-schedule is triggered, and themaximum task dur-
ation. Although we discussed them in detail in the previous chapter, it is important to mention
that these parameters can sometimes have an effect upon the GA solver. Given that a single de-
cision variable xi ∈X will be defined for every potential task, setting extremely long scheduling
windows in conjunction to very short Tmax, could produce a decision vector of high dimensional-
ity. Despite such cases leveraging the performance improvements of the GAmeta-heuristic and
being certainly solvable in bounded time, they may require careful fine-tuning of the GA sched-
uler parameters at run-time. In order to eliminate the need to implement adaptive operator and
parameter controllers—apractice that is nevertheless recommended inmany cases—, the cur-
rent version of the simulation tool sets amaximumnumber of dimensions (c len) for any instance
of the on-board planner. The maximum length of a chromosome (in number of alleles) will gen-
erally be computed to allow the whole scheduling window Tsched be covered by activities of size
Tmax.

In Table 5.3 we gather the parameters that regulate the processes of the autonomous self-
organisation framework. One of such parameters is the so-called goal of the system (G), ex-
pressed in time units. This value is used in the organisation scheme to reduce the amount of in-
formation stored by agents. It essentially dictates the rate at which activities decay; the greater
the goalG, the slower activities decay and the longer they are kept in agent’s knowledge bases.
Once an activity age exceeds the goal value (i.e. t− τe > G), the decay function δ(ai) yields 0 and
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Table 5.3: Configuration parameters of the self-organising framework.

Var. Ref. Values Remarks

G Eq. (4.11) Mission dep. Goal of the system (i.e. revisit time) in time units.

g(∆t) Eq. (4.23);
Eq. (4.24);
Eq. (4.25)

{gℓ(∆t), gh(∆t),

gs(∆t)}
Payoff function: proportional (gℓ), in steps (gh), or sigmoid (gs).

kℓ Eq. (4.23) R+ Proportionality constant for gℓ payoff function.

nℓ Eq. (4.23) R+ Order of the proportional payoff function gℓ.

Gmin Eq. (4.23);
Eq. (4.24);

0 < Gmin < G Proportional and in steps (gℓ and gh): minimum revisit time (in
time units) above which agents generate payoff. Revisit times
lower thanGmin, yield gℓ = gh = 0.

Gmax Eq. (4.24) G < Gmax Payoff function in steps (gh): maximum revisit time (in time units)
below which agents generate payoff. Revisit times greater than
Gmax, yield gh = 1.

Pmid Eq. (4.24) (0, 1) Payoff function in steps (gh): payoff valuewhen the goal is exactly
met, i.e. gℓ(G) = Pmid.

kg Eq. (4.25) R+ Sigmoid payoff function: steepness of logistic function. The
value depends upon goalG and should guarantee that gs(0) ≈ 0.

Pth §4.6.3;
Fig. 4.8

[0, 1) Prevents agents fromperforming actions thatwould yield too low
payoff.

ku Eq. (4.19) ku > 10 Steepness of utility function U(u).

µ Eq. (4.22) [1, 8] Exponential rate at which confidence values are updated.

ht Eq. (4.22) 0 ≤ ht ≤ Tsched Activity confirmation window (in time units).

Kp Eq. (4.31) > 1 Payoff multiplicative factor in re-scheduling process.

uo Eq. (4.31) [0, 1] Confidence threshold. Thepayoff of activitieswithu < uowill not
be increased in the re-scheduling process.

Ux Eq. (4.21) [0, 1] Confidence value when the payoff function does not have other
activities to compute revisit times. This is also the confidence
initialisation value for the first activities created in the system.

δ(∆t) Eq. (4.34),
§4.6.10

I, II, III, or IV. Decay family. I, II, and III take a time reference from the activity
and decrease the decay value as time passes. Family IV linearly
and constantly decreases the decay except during the execution
interval of the activity.

∆t §4.6.10 {age, tardiness,
earliness}

Definition of time delay in the decay families I, II, and III. Each
value implicitly define∆tmax in Eq. (4.34).

ε Eq. (4.34) [−10, 10], ε ≠ 0 Exponential behaviour of decay function families II and III. ε < 0

for convex (II) and ε > 0 concave (III).

wu Eq. (4.32) [0, 1] Contribution of the utility to the priority value of activities.

wδ Eq. (4.32) [0, 1] Contribution of the decay to the priority value of activities.

the information unit is no longer considered relevant by agents. Nevertheless, by design of the
internal scheduling algorithm, agents will always minimise revisit times—maximising resource
utilisation. Given that the objective function in Eq. (4.17) (p. 135) does not encode resource ca-
pacities within the fitness function, the system will always tend to maximise payoff, regardless
of the setting applied inG. The goal value does affect the computational capabilities of agents
but should not affect the behaviour of the system. A general rule of thumb applied throughout
many of the test cases is to setG to a multiple of the revisit time in a best-case scenario.
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On the other hand, several constants are defined which modify the behaviour of internal
functions (e.g. payoff, confidence update). Providing recommended values or selection guide-
lines is the actual object of this characterisation framework. Thus, we do not provide illustrative
examples like in the previous cases. This section only highlights the effects of extreme cases for
some of them. Internal values that are modelled with sigmoid functions, gs(∆t) and U(u), are
characterised by a steepness constant: kg and ku. The former is used in computation of payoff
values and the choice of a value needs be done in conjunction with the goalG. Systems that try
to attain very long revisit times (e.g. in the order of somedays)may set smaller kg andsmooth the
responseof thepayoff function, if needed. In contrast, settingsmallkg ≃ 2 for systems thatwant
to achieve stringent revisit timesmay be counter productive, since the value obtained for values
close to zero will be given non-zero payoffs (i.e. g(∆t→ 0) > 0). Conversely, ku is not affected by
any other design parameter, since the input ranges for the utility function are always constant.
In this case we will often choose values greater but close to 10, since this provides a smooth
transition from the central point to the function extremes (U(1) = U(0) ≈ 1). Selecting values
above 15will start to produce abrupt threshold-like behaviour whichmay be lessmeaningful for
most system instances.

Just like G controls the size of the knowledge base and the age of its stored activities, Pth

can also be used to prevent agents from generatingmeaningless intervals. This threshold could
have the potential to reduce the complexity of the GA solver (i.e. by effectively minimising the
number of alleles) and can also be adjusted to prevent resource utilisation in irrelevant areas
for the system. This variable may have noticeable impact in scenarios wherein resource utilisa-
tion needs be avoided in cases of low payoff. One such possible scenario would be a system in
which agents have reduced forecasting abilities but are very constrained in resources. In a case
like this, designersmaybewillingoptimiseaccessesand implementconservative resourceman-
agement policies. In turn, setting the threshold to Pth > 0 can also have an impact upon system
performance: agents would no longer be able to fully minimise time gaps because activities of
very low payoff would never be part of the input to their internal planners.

It is also worth noting that the re-scheduling process and the likelihood of previous activit-
ies being kept in subsequent executions of the GA solver is determined by the pair of variables
Kp and uo but is also affected by the length of the chromosome c len. If we recall the formula-
tion in Eq. (4.31), activities that are considered for re-scheduling may have their payoffs multi-
plied by a factor ofKp if their confidence level is above uo. Guaranteeing that activities are never
discarded—without actually disabling interleaved schedulingwindows—is straightforward and
can be achieved by selecting a sufficiently largeKp and setting uo = 0. However, finding the ap-
propriate value forKp needs to be done in accordance to the number of alleles and the dynamic
range of the payoff function (provided the goal settingG). The individual payoff values assigned
to each active allele (i.e. xi = 1) are aggregated to evaluate the fitness of a solution. Thus, the
value assigned to Kp needs to take into account the dimension of X. A general guideline to
choose this value would be to make it proportional to c len.

In order to illustrate the rationale, consider a case where a is an undecided activity that is
part of a re-scheduling process:

Let c len = 5 → X = {x0, x1, x2, x3, x4}

a = {x2} (undecided activity)

Now assume that the assigned payoff values for each chromosome allele are the following:

P = {P0, P1, P2, P3, P4}, with P2 = Pa and Pi = 1,∀i ̸= 2
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Table 5.4: Genetic Algorithm Scheduler configuration parameters

Variable Ref. Values Remarks

Crossover §4.6.3;
Fig. 4.6

{single, k-point,
uniform}

Type of crossover operator.

Crossover points Fig. 4.6 < c len Number of crossover points in the k-point operator.

Parent selection Alg. 3 {tournament,FPS} Selection operator for parents in the mating pool.

Environment
selection

Alg. 3 {elitist,
generational}

Selection operator for the combination of parents
and offspring.

TournamentK §4.6.2 ≥ 2 Rounds in tournament selection operator.

Φmax §4.6.3 ≫ Nind Absolute maximum of generations.

Φbest §4.6.3 ∼ 0.5Gmax Number of generations without improvement be-
fore timeout.

Nind §4.6.2;
Alg. 3

∼ 10− 100 Number of individuals (i.e. chromosomes) in the
population.

rm §4.6.2 [0.001, 0.2] Mutation rate. Controls the exploration of new
solutions.

Pi(p̄) Eq. (4.17a) {max,min,
mean, sum}

Payoff aggregation function.

wp Eq. (4.17a) [0, 1] The weight applied to the payoff term in the object-
ive function (i.e. fitness). Usually,wp + wr = 1.

wr Eq. (4.17a) [0, 1] The wight applied to the resource consumption
term in the objective function (i.e. fitness). Usually,
wp + wr = 1.

The highest approximate value of Kp that will guarantee that the previous activity is not dis-
carded is found by solving the inequation below:

P ′
a =

[
1 +Kp

(
u(a)− uo

1− uo

)]
Pa > (c len − 1)Pi

Substituting the known values an letting uo = 0 and u(a) ≈ 1, we have:

P ′
a = [1 +Kp] Pa > 4

The value ofKp canbe chosenby assuming aminimumPa abovewhichwedonotwish to discard
the activity (e.g. Pa = 0.01 gives Kp > 399). This illustrates the highest possible value that
we may wish to assign to Kp in order to prevent existing activities from being discarded in the
worst case, which is that the existing activities cover a single allele (and hence a single payoff
value) and need to counterbalance their poor payoff values against the high payoff of all the
other alleles (Pi = 1). Usually, the actual value can be set at one or two orders of magnitude
below—depending on the chromosome length, c len.

Finally, Tables 5.4 and 5.5 enumerate parameters that we will maintain static in most of
the cases studied in Chapter 6. The former lists all the possible configuration values for the
GA scheduler. Assigning values to these variables will always aim at reducing computational
complexity (i.e. simulation time) while guaranteeing that the evolutionary process converges to
acceptably good solutions. Certainly, guaranteeing that the solution always converges to the ab-
solute maximum is not strictly possible by means of a generic assignment of parameters, since
each GA instance will be initialised with a different set of starting conditions and a different
fitness landscape. Guaranteeing that the solution always reaches the global optimum can be
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Table 5.5: Configuration parameters of the simulation tool

Var. Ref. Values Remarks

ϕw Fig. 5.6 ϕw ∝ 180◦ Number of longitude points in the definition of the Earth sphere (see the
matrix attribute in classWorld, Fig. 5.6). This only affects measurement
of systemmetrics, but not agent capabilities or reasoning process.

λw Fig. 5.6 λw ∝ 90◦ Number of latitude points in the definition of the Earth sphere (see the
matrix attribute in classWorld, Fig. 5.6). This only affects measurement
of systemmetrics, but not agent capabilities or reasoning process.

Tsim — Tsim ∼ days Duration of the simulation (in time units). Should guarantee that system
reaches steady state.

tepoch — — The start epoch of the simulation is only needed in propagation of orbits.

ninterp §4.6.1 — Number of interpolated points in trajectory vectors P . ninterp ≤ 2 dis-
ables this feature.

specially challenging in a context like that of our agents, where the dimension ofX is constantly
changing. Different fitness landscapes and number of dimensions will require different number
of generations to find the optimal value. Since we chose to limit the number of generations with
an upper boundary—a common practice in multiple applications of GA (Xhafa et al., 2012)—, it
is theoretically possible that the solutions land in local maxima. However, it is not hard to find
a suitable set of values that minimises computational complexity and achieves acceptable res-
ults in most of the cases. The most critical variables are the number of generations (Φmax) and
the size of the population (Nind), since they impact the time required to compute fitness values
and the goodness of the obtained solution. While higher number of generationswill increase the
likelihood of the population to land in the global maximum, this value increases the computa-
tion time linearly. On the other hand, the number of individuals also increases the chances to
explore favourable regions of the solution space, provided that diversity is enforced across gen-
erations (specially in early phases). In our case, the environment selection operator is constantly
set to the elitist case—also named “survival of the fittest.” Despite this operator being one of the
less suitable to guarantee diversity in some specific problems, we have not observed any kind of
impairmentordecrease in solutionquality during verificationof the implementation (time-wise).
In contrast, this operator provided the best performance with the current implementation. We
have realised all the experimentswith a k-point crossover operatorwith 10 crossover points, and
performed parent selection with the tournament operator (withK = 2).

The selection of Nind and Φ has been ultimately driven by the guidelines published in re-
cent studies. Most of the application cases of the genetic algorithm claim that the higher the
number of individuals, the better the resulting solution can be (for a reasonable number of gen-
erations). While this may generally be true, Roeva et al. (2015) show that there are problems for
which an increase of population size beyond a certain value does not guarantee better solutions
(Nind = 100, in their study). Similarly, Chen et al. (2015) performed a benchmark comparison of
the population size, the number of generations, and the dimensionality of the decision vector
and concluded likewise. Their findings suggest that for populations above a certain value ‘the
number of generations required for convergence is mostly constant with respect to population
size’. What the authors also observed is that the dimensionality of the decision vector may play
a significant role in computational performance and convergence rate. In order to cope with
these two critical aspects, they show that in cases of high dimensionality (Nind ≥ 50), setting
Nind < c len does not compromise the quality of solutions and can maintain convergence time
within reasonable boundaries. Therefore, we will try to keep Nind < c len and always greater or
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equal than 50. On the other hand, we keep the number of generations high enough to guarantee
that the algorithm converges to the global maximum in most cases. In the experiments presen-
ted in the next Chapter, we setΦmax = 10000 and a timeout 103 ≤ Φbest ≤ 5103 to prevent the GA
to keep iterating if no improvement is found after this number of generations.

In Table 5.5 we show the parameters that control the execution of the simulation and the
measurement of system performance. In particular, variables ϕw and λw define the resolution
of the surface grid used in the evaluation of true system state (both the “actual” and the “uto-
pia”). These values are constantly set to 1800 and 900, respectively, in order to produce meas-
urements with a resolution of 0.2◦ × 0.2◦. This resolution allowed measuring the system per-
formance accurately without compromising computational resources. However, some values of
the time discretisation parameter (Tstep) can still create artefacts in the evaluation of coverage
strips. In simulations wherein agents discretise time in long time steps and/or their instrument
swaths are very narrow, the coverage area that is swept during one single time step (i.e. two ad-
jacent points in an agent’s trajectory) may not resolve as a continuous strip but reveal the shape
of the footprint. In order to eliminate this artefact, we included an interpolation function that
can be controlled through the parameter ninterp. This configuration parameter only affects the
routines that compute strips and does not have an impact upon agent’s computational capacit-
ies. In our case, such functions are used both for representation andmeasurement of perform-
ance (i.e. to determine the actual area observed by the system) and also during the estimation
of payoff values (i.e. local computation performed by agents).

Lastly, the duration of the simulation (Tsim) is chosen taking into account the constellation
design and roughly estimating howchallenging the function can be for the actual satellites com-
posing the system (i.e. given their instrument apertures, energy constraints, etc.)36

5.4 Measuring system metrics
In our opinion, any characterisation framework that assesses the quality of an autonomous EO
system, and in particular an EO system designed to minimise revisit time, should be grounded
upon measurements of the system’s performance, i.e. how well the system attains its function.
One possible approach to measure performance could be to analyse the revisit time metric ob-
tained with our autonomous system. If we take the most common definition, revisit time is a
value computed as the time delay between two consecutive observations of the same location
(Fig. 5.9), also referred to as “accesses.” The separation between two accesses, or “time gaps”,
can be understood as the instantaneous revisit time of a particular location. Themaximum time
gap, aggregated for every point of the target area, gives the actual revisit time of the system and
is an indicative measure of how often the information is refreshed—globally—, albeit not uni-
formly nor synchronously. Since EO constellations are usually designed with orbital geometries
that have a known repeat cycle, the revisit time of a static system can be assumed constant
(i.e. setting aside orbital drifts, seasonal effects, and operations). Multiple other definitions of
coverage- and time gap-related metrics have been reviewed in (Garcia Buzzi et al., 2019). The
authors highlighted statistical features of their metrics and proposed an aggregation approach
for time gaps that is partially aligned with the needs of our study. Certainly, while the global re-
visit time is commonly found in the specification of many EO data products, resorting to a single
aggregated figure is insufficient to fully grasp the effects of design and system parameters in
our case and may often conceal dynamic and spatial characteristics that are interesting to ob-

36 Provided that the simulated time span allows to observe the performance of the system in steady state, this valuewill
try to minimise computation times without compromising the results.
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Figure 5.9: Definition of revisit time for a single point in the target area.
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Figure 5.10: Example of aggregated revisit time for an autonomous DSS.

serve. This is specially true in systems in which satellite operations are constrained by limited
resources and the function is attained collectively.

While the evaluation of revisit time for a complete repeat cycle of the system is a good first
approximation during the design and assessment of constellations (as we actually did in the
systems architecting study in Chapters 2 and 3) this value is actually subject to the behaviour
of satellites and does evolve through time. In Fig. 5.10 we show the time evolution of a global
revisit time variable for an arbitrary DSS that operated autonomously andwas constrained in re-
sources. Lookingat these results it is possible to convey that once theemulationof operations—
autonomous, in this case—is considered in simulation, the obtained revisit time may change
drastically through time. Regardless of the system being static, we can see that the applica-
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Figure 5.11: Benchmarking cases: utopia, random, and actual revisit times.
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tion of the autonomous operational framework yielded a global revisit time that is never higher
than 1.45 days. Moreover, the system seems to operate in a stable regionwherein theworst time
gap is always confined within a 0.8–1.4 days range. Like in Fig. 5.9, the abrupt changes corres-
pond to points in time when one of the instruments in the constellation accessed the location
with the highest accumulated delay. The characteristics of the constellation design—ignored
in this example—may certainly have played a determining role in the achievement of these res-
ults. However, even if we do not ignore these details, assessing the goodness of our solution can
hardly be done solely with a single time-series.

In order to analyse performance in a qualitativemanner and determinewhether someof the
effects may or may not be intrinsic to the system, we have opted for a benchmarking approach
in which three revisit time figures are compared, namely, actual, utopia, and random (Fig. 5.11).
As commented in Section 5.2.3, the simulation tool also measures the revisit time obtained by
the same system if it had infinite on-board resources. An unconstrained system does not ne-
cessitate decentralised operations and coordination of any kind, since all satellites can observe
the surface constantly and simultaneously. The performance of such set up corresponds to the
best figure ever attainable by the system, represented in orange in Fig. 5.11. As it can be seen
in the time series, the value is lower than the obtained with autonomous operations (in blue)
and presents a much narrower range throughout the simulation span. Conversely, the random
case (in yellow, Fig. 5.10) corresponds to the worst performance we should ever expect from a
decentralised system. This figure is obtained through a complementary simulation run in which
satellite agents are precluded from their ability to coordinate with others and perform a random
allocation of resources. In order to obtain such results, the same system is simulatedwith some
configuration parameters overridden by the framework (Table 5.6). The selected parameter val-
ues render agents unable to optimise their accesses and produces very poor results in terms of
revisit. This modulation of an agent’s behaviour inherently fosters overlapped accesses—both
in space and time. Instead of finding an optimal plan of actions, agents select a solution from
the randomly initialised population, always ensuring that the schedule does not violate resource
capacity constraints. Naturally, disabling the GA scheduler and selecting solutions at random
can induce noticeable resource underutilisation in some cases. This situation is especially ag-
gravated inmoderately resource-constrainedscenarios, inwhich theactivitiesmustbe carefully
scheduled to be use all the available capacities. Similarly, the likelihood of having a valid solu-
tion within a randomly initialised set can be slightly counterproductive in extremely constrained
systems, specially if random solutions tend to have half of their decision variables equal to one
(xi = 1). In order to ensure that a valid solution is always found in the randomised scheduler as
well as to slightly counterbalance the problem of resource underutilisation, the routine that ini-

Table 5.6: Parameters overridden to obtain the random revisit time results.

Parameter Remarks

Pth = −1 Ignores the payoff threshold.

rISL = 0 Disables ISL and precludes agent interactions.

Trs = Tsched + 1 Never performs interleaved scheduling.

βmax = 0 Agents can not keep activities from others in their knowledge base.

Φmax = Φbest = 0 The iterative process in the evolutionary scheduler is disabled. One solution is selected
at random.

Nind = 500 TheGApopulation is increased significantly tomaximise the likelihood of having a valid
solution within the initialised set.
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Figure 5.12: Representation of time gaps, sampled in four different locations.

tialisesxi forNind individuals is performedwith a uniformly-distributed process that changes its
likelihood P (xi = 1) while guaranteeing diversity. That notwithstanding, the random figure will
always present wider boundaries, and can still be subject to miss-utilisation of resources—as
explicitly intended.

Exploring timeevolutionof anaggregatedfigure like revisit timeenablesus to identify spuri-
ous processes, evaluate performance boundaries, and qualitatively assess the stability of the
system. Nevertheless, this metric is unable to capture many of the effects of a lack of coordin-
ation and precludes us from truly assessing whether the solution is acceptable or not. The ag-
gregation of time gaps across space limits our ability to distinguish a case in which the satellite
constellation fails to observe a small region of the target area from a case in which utterly un-
coordinated accesses yield the same aggregated revisit time. In order to illustrate this, take for
example the temporal plots inFig. 5.12. Thegraphshows timegapvaluessampled in four repres-
entative locations37, and the data corresponds to simulations of the same system than above.
While previous representations showed a global revisit time bounded within 0.8–1.4, sampling
specific locations reveals better results inmany cases. As amatter of fact, we will later see that
the revisit time in almost all the covered area is actually lower or equal to 0.68 days. As it can be
seen in Fig. 5.12, only two of the sampled points present time gaps higher than 0.6 days: one at
the equator (Singapore) and the other in southern latitudes (Cape Town). These occurrences are
not manifested more than once in their respective time series, and cannot be observed in latit-
udes above the equator (Barcelona and Greenland). On the other hand, we could also state that
the application of autonomous operations clearly favoured polar areas, since the accesses in

37 The locations have been selected to have diversity in latitudes and longitudes and correspond to cities or re-
gions with high environmental significance. Exact coordinates of each location are: 41.437◦N, 2.193◦E (Barcelona);
1.358◦N, 103.877◦E (Singapore, equatorial); 76.002◦N, 39.878◦W (Greenland, polar); 33.972◦S, 18.549◦E (Cape Town).
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(a) (b)

Figure 5.13: Illustrative results: mean revisit time (left) and maximum revisit time (right). Simulation time:
1 week.

Greenland are far more frequent than in the other locations. Undoubtedly, these four samples
are extremely far from being representative of the systems performance38 but they hopefully
illustrate how poor the analysis of results can be if spatial information is ignored altogether.
Recalling the categories of tasks addressed by MAS (Brambilla et al., 2013), in Section 1.3.8 (p.
31) we said that the kind of decision-making that is sought in autonomous Earth-observing DSS
could resemble two concepts: a team of agents that collectively explore an area and coordin-
ate to accomplish this goal (i.e. cover the whole area); and a system in which agents distribute
workload to be able to attain a global function that can not be achieved individually (i.e. task
scheduling with multiple workers). Given that the distribution of work corresponds to optim-
ising the accesses performed by satellite agents and maximise the observed area, maintaining
spatial information in the results will be of utmost importance in our context.

Aspart ofa recent study forNASA,GarciaBuzzi etal. (2019)describedaconstellationdesign
and analysis framework for the TROPICS mission in which the assessment of performance was
likewise grounded upon time gaps. Although the study was oriented to optimise the design of
the systemand did not consider operations, their reflections around the need to keep spatial in-
formation disaggregated in some stages of the analysis are also applicable in our context. Like
in their study, the geo-located information contained in the system state is very relevant to eval-
uate the achievement of its function. As such, the characterisation of autonomous DSS, as car-
ried out in this research, is alsobasedongeo-locatedperformancemetrics. Two typesofmetrics
can be of interest in our case, namely, average revisit time (Fig. 5.13a) andmaximum revisit time
(Fig. 5.13b). While the former was used in the TROPICS study, the information contained in av-
erage time gaps tends to be more relevant in static analysis where the effects of operations are
neglected. Given the nature of our systems, mean revisit times will hardly have enough sens-
itivity to derive conclusive findings. Throughout a simulation run, every point in the projected
surface is likely to be accessed by an instrument several tens or hundreds of times. This can
cause higher time gaps to bemasked bymany lower values, especially in situations like the one
in Fig. 5.12 (Singapore). In contrast, we found the maximum revisit time to divulge much richer
information. Fig. 5.13b shows this very measurement of performance: the worst time gap ob-
tained at any point of the surface during the simulated time.

Throughout the analysis of results in Chapter 6, we will always use maximum revisit time
figures to assess autonomous operations. As stated before, the results obtained for the actual
case will be compared to the random and utopia cases, for which the geo-locatedmetric is also

38 Especially when the framework measures more than 106 points
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(a) (b)

(c)

Figure 5.14: Illustrative results: random (top left) and utopia (top right) revisit times; difference between
actual and utopia (bottom). Simulation time: 1 week.

illustrated in Figs. 5.14a and 5.14b, respectively. These results—actual, random, and utopia—
facilitate the analysis of our solution bymeans of comparison. An ideal systemshould be able to
distribute theobservationshomogeneously, and result in smooth revisit timemaps. On theother
hand, a system that fails to coordinate their accesses will be much more prone to overlaps and
uneven distribution of revisit times. Fig. 5.14a shows the random case and clearly presents the
effects of a lack of coordination, namely, oversampling of polar areas (visited often by satellites
in the constellation) and irregular revisit time values in equatorial latitudes—withmaximumval-
ues of up to 3.5 days. Instead, the application of the autonomous organisation framework res-
ulted in a slightly better distributed revisit time map, as shown in Fig. 5.13b. A few peak values
of up to 1.6 days can still be observed, but the distribution of values has significantly reduced
oversampling at the poles. An additional representation thatwe canuse to characterise the sys-
tem is to observe the difference between the utopia and actual cases, as shown in Fig. 5.14c; the
data from the simulated scenario is usually 12 hours above the synthetic best case.

The differences between the three cases are also evident if we scrutinise some statistical
variables of the data. In fact, the statistical information contained in heat maps can be lever-
aged to complete the analysis andderive aggregatedperformancemetrics of higher significance
than the common revisit time definition (Garcia Buzzi et al., 2019). Fig. 5.15 shows an estimation
of the Probability Density Function39 (PDF) of the three cases. Annotated in the plot we included
some of the relevant statistical variables that correspond to the blue series (“Actual”). Out of the
available variables, the two most significant ones to quantify the goodness of solutions are the

39 This estimationwas obtainedwith a Kernel Density Estimator (Normal), with a homogeneous bandwidth for the three
cases of 0.0404. The bandwidth is computed as λRTmax, where RTmax is the absolute maximum value observed in
the three cases and λ is a scaling factor that depends on the length of the simulation (λ = 0.0114, in this case).
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Figure 5.15: Kernel Density Estimation for the maximum revisit times shown in Fig. 5.13b.

mean40 (µ) and variance (σ2) since they represent the value attained by the system and its spa-
tial distribution. Mean values are represented in the plot as a vertical dashed line in the figure.
The closer the actual mean value (in blue) is from to utopian mean (orange), the better the sys-
temwill be in terms of generation of data. Inmany occasions, however, the characteristics of the
system—especially on-board resourceconstraints—will yieldmean revisit times that arehigher
than the utopian value. A low variance in such situations indicates that the system is nonethe-
less well coordinated and that the coverage of the target area is performed more uniformly. In
contrast, random scheduling of activities will yield the highest mean and variance values, since
footprint overlaps will likely leave some locations of the target area uncovered.

5.5 Summary
This chapterhaspresentedadesign-orientedcharacterisation framework that is groundedupon
a simulation tool to obtain performance metrics. The emulation of DSS is not particularly con-
cerned about representing specific technologies with precision or producing extremely accur-
ate results in terms of orbital dynamics. Instead, the simulation of satellite systems assumes
amoderately straightforward orbit propagationmodel and describes spacecraft subsystems as
high-level components that consume arbitrary resources and interact with data. The main goal
of this characterisation framework is to reproduce satellite-to-satellite interactions and to show
the effects that some design variables and parameters have upon autonomous satellite oper-
ations. Through the evaluation of performance metrics and the qualitative analysis of design
spaces, this framework expects to contribute to the methodological prospects for the realisa-
tion and verification of autonomous DSS. Many works in the domain of Mission Planning and
Scheduling systems for EO constellations have discussed the virtues of multi-satellite, multi-
orbit planning algorithms by means of a single, detailed, mission-specific case example. This
owes to the very fact that most of such MPS are indeed designed to satisfy the needs of one
specific system. The solution presented in this thesis is oriented otherwise, i.e. we aim at ex-
ploring the effects of autonomous operations in a generic manner. As such, the solution we
provided should be applicable in a number of different case scenarios and also requires a care-

40 Mean values are computed from heat map data after the application of a cos(λ) correction factor, whereby λ is the
sample’s latitude. This guarantees that regardless of not having a mesh of constant density (i.e. regions at the poles
are sampled with the same number of points than in the equator) the mean figure is correct.
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Figure 5.16: Design characterisation strategy

ful scrutiny of its performance. However, rather than analysing absolute performance values
this framework should allow the identification of limitations and opportunities for its adoption
(i.e. design guidelines). In the context of system-agnostic studies, we are certain that the design
of autonomous operations requires a methodological approach in order to assess the quality of
the solutions and assess the breath of their applicability.

The methodological concept that we devised (Fig. 5.16) is fundamentally the same than a
tradespace exploration, albeit the size of design spaces needs be extremely constrained due
to the computational requirements of the underlying simulation tool. We will essentially define
narrow sets of design variables and their values to allow their simulation in feasible times.
The resulting outcomes are composed of agent state variables (i.e. resource capacities and
information of their knowledge base) and spatial revisit time data. The design characterisa-
tion is thus grounded upon aggregated metrics that are obtained from spatial data, namely,
mean revisit time and its geographical variance. These two metrics are computed from the
maximum time gap ever observed in every point of the Earth’s surface. The framework also
defines two benchmarking figures that we named utopia and random, and which correspond to
best- and worst-case performances, respectively. With metrics obtained from multiple points
of the design space, the goal of this characterisation methodology is ultimately to analyse the
trends of our output spaces in order to understand the effects that some internal or external
characteristics may have upon the system function.

Lastly, we conclude this chapter with one final remark. The statistical variance is one of
the interesting figures of merit in this framework, since its value helps to quantify the temporal
and spatial distribution of instrument accesses. A well-coordinated system should tend to re-
duce this figure regardless of its mean revisit time, since the very core of this self-organisation
scheme is tominimise revisit times and avoid the generation of EO data of lower value. Thismay
evoke an idea of a system-level efficiency that is important to acknowledge and measure but
which needs not be confused with the discussion on the qualities brought about by autonom-
ous operations. Regardless of the collective optimisation of coverage and revisit time being
crucial—as reflected in the fundamental performancemetrics of this study—, one cannot claim
that autonomousoperationsproducehigher efficiency in termsof utilisation of resourcesunless
that figure is compared with a centralised, ground-based counterpart. As mentioned at the be-
ginning of Chapter 4 (Section 4.1, pp. 115–117), enabling decentralised, autonomous operations
doesnotnecessarily implyan improvementonefficiency (orperformance)but it couldpotentially
be the only solution to address operations in some large-scale, complex systems-of-systems.
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6
Measuring the impact of autonomy in

Distributed Satellite Systems (II):
Results

6.1 Introduction
This chapter concludes the exploration of the Theme B of this doctoral research and presents
the results obtained in Distributed Satellite Systems that apply the autonomous organisation
scheme proposed in Chapter 4. We have structured this chapter in two main sections. In Sec-
tion 6.2 we apply the characterisation framework introduced in Chapter 5 in order to explore the
effects that various design variables have upon the achievement of the autonomous function,
while Section 6.3 shows the results of the autonomous organisation scheme when it is applied
to a large-scale system. Ultimately, this chapter aimsat contributing to the openquestionposed
at the beginning of this dissertation, which questioned what is the impact of autonomy techno-
logies in DSS with regards to their design, the achievement of system-level qualities, and the
realisation of practical operational concepts.

While the modelling and simulation approach followed in this chapter has been discussed
in the previous section, two important remarks need be highlighted beforewe introduce the res-
ults. Firstly, this study has leveraged MAS descriptions because they provide a suitable model-
lingdevicewithwhich thedecentralisedorganisationschemecanbeexpressed in termsofagent
behaviour, agent reasoning processes, and agent-to-agent interactions. As such, the definition
of our approach includes multiple low-level parameters that adjust these domains and which
could have implications in the achievement of collective performance. The latter statement
is perhaps obvious when the effect of a certain parameter value is directly manifested in the
autonomous function itself (i.e. through performance metrics), but that should not necessar-
ily imply that the effect of all parameters is indeed observable through final aggregatedmetrics.
That notwithstanding, the types of systems thatwe are simulating could arguably be considered
complex SoS—they are composed ofmultiple components that interact to one another and are,
at the same time, self-contained systems. Assessing and understanding the cause of every in-
dividual agent action is a challenging cognitive endeavour, since they are generally triggered
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asynchronously andmayaccumulate the effects ofmany events andprevious interactions. Even
though the action set of an agent is reduced to a few plain operations, agents handle and trans-
form spatio-temporal information in processes that will hardly be observable. A clear example
of this is the computation of payoff values for a given scheduling window, which aggregates in-
dividual cell payoff values computedwith the function g(∆t) (recall Fig. 4.29). The provided visu-
alisation tools certainly eased this pursuit and allowed the verification of the correctness of our
implementation, but in all the simulated scenarios there will be situations in which the volume
of information may simply be impossible to display. In these cases, relying upon intermediate
variables or aggregated figures of merit is essential despite their inherent lack of transparency.
This paradox—the need to observe low-level details to justify the effects in aggregated metrics
that are defined to inhibit the need to observe low-level details—has been difficult to overcome
and has often forced us to inspect the evolution of some simulations carefully. The outcomes of
such scrutinies will be summarised in some sections of this chapter in order to draw the appro-
priate conclusions, but these can not be supported with muchmore than formal explanation.

Secondly, the simulated cases have simplified agent states and only considered one re-
source capacity: an abstract energy reservoir. The data generated by the on-board instruments
has been removed from the simulation tool, rendering data storage capacities irrelevant. Like-
wise, we also simplified operations and ignored the interaction of satellites with Ground Sta-
tions. Although these features would be extremely important in a complete mission analysis
and a much more complex evaluation of performance and system behaviour, the very fact of
including them only increased the computational burden and did not improve the value of the
results. Future strands of work should definitely look into a much more elaborate and reliable
modelling of spacecraft components (e.g. batteries, transceivers, attitude subsystem, CD&H
unit, etc.) and consider the incorporation of other state variables apart from storage capacity
(e.g. attitude in agile platforms, multiple modes of operation for instruments, etc.)

Aside from these aspects, it is also worth pointing out that the modelling of an activity tra-
jectory (P ) has been implemented as a discrete array of position vectors. In Section 4.5.2 we
defined P as the arc or parabola that describes the trajectory of the agent between start (τs)
and end (τe) epochs. Defining this parabola from a set of orbital parameters—valid from τs to
τe—is probablymore efficient with regards to data volume during the exchange of activities, but
it requires additional computation steps: the trajectory must be reconstructed at the destina-
tion agent. Since this tradeoff is not crucial for the system and the second alternative is detri-
mental to execution times of our simulations we opted for the above-mentioned approach and
let agents pre-compute their positions and share them in static vectors.

Performance has certainly been a major concern in the implementation of the simulation
framework and thedesign of test cases. The current implementation of the simulator41 has sup-
port for highly concurrent computing platforms—through parallel sections implemented with
OpenMP42—and has leveraged some memory optimisation techniques to ameliorate the per-
formance and reduce simulation times. These implementation-level features together with the
simplification of agent states into a single capacity resource (and hence a single capacity con-
straint) enabled every instance of the GA scheduling algorithm to produce solutions in 5 to 10
seconds.43 This number is expected to grow in practical realisations of this organisation scheme

41 Available at https://github.com/carlesaraguz/aeodss
42 https://www.openmp.org/
43 Wall-clock time. Note that the GA algorithm times out after a maximum number of generations (Φbest). Provided that

the population size is kept constant, the computational complexity of one generation is approximately proportional
to the complexity of the fitness function, i.e. proportional to the chromosome length (c len) and the number of capacity
constraints.
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if it would ever be deployed in actual satellite platforms, likely inferior in terms of computational
power, albeit the performance in these cases is still expected to be within reasonable boundar-
ies.

6.2 Design characterisation
Section 5.3 classified the design variables of the systems into parameters that belong to
the definition of the constellation, satellite platforms, and instrument (Table 5.1), those that
define the reasoning capabilities of agents (Table 5.2), and the internal parameters of the
self-organising framework (Table 5.3). We also mentioned that the performance is naturally
influenced by its structure, but also by the behaviour of agents. In that sense, the definition
of characterisation cases has also followed a similar conceptual separation: among the pos-
sible variables to explore, we have identified the three categories that shall be characterised
independently from the rest. Ideally, each of these categories should have all their belonging
variables explored simultaneously in order to identify tensions between values and locate op-
timal design regions. However, given the number of design variables contained in each category
and the fact that many-dimensional input spaces are challenging to grasp, we proposed to
structure the characterisation in multiple independent cases in which we explore a small sub-
set of the input space. Each case shall trade-off the effect of two groups of variables, allowing
the representation of results in three-dimensional spaces—with the third dimension corres-
ponding to our output space, the aggregated performance metrics. This section presents the
results of four design space explorations wherein we assessed the impact of some of the most
relevant variables. However, the computational requirements limited the evaluation to discrete
input spaces with a fixed number of possible combinations (like in the tradespace exploration
methodology presented in Chapter 2).

The following list, enumerates the studied cases and briefly discusses their significance:

• Resource constraints and number of satellites. Demonstrating that autonomous oper-
ations are feasible in resource-constrained DSS could be deemed critical. There exists
a number of distributed missions (planned or flying) in which small satellite platforms
are essential enablers—be it for cost issues or the urge to have shorter development
cycles. This kind of satellite platforms are often scarce in on-board resources, especially
power and communication bandwidth—despite the latter beingmostly a consequence of
the former. The power generation capabilities of CubeSats is limited to small photovol-
taic panel areas, while battery sizes and masses precludes them from storing and de-
livering large quantities of electrical power. Small satellites have long been equipped
with sophisticated energy management units that optimise their power utilisation on-
board. Similarly, a decentralised, collective system should also be able to: (1) optim-
ise the use of resources globally, and (2) achieve the collective function regardless of re-
source constraints. Naturally, systems composed of satellites that are very constrained
in resources will not be able to attain their goal with the same performance than uncon-
strainedDSS. Thismanifests asan increment in theeffective revisit timeof the system. As
a consequence, designersmay be forced to add additional units to the systemas ameans
to increase the capacity of the system (i.e. to ameliorate revisit time performance). In this
context, Section 6.2.1 presents results of autonomous DSS for scenarios that trade the
above-mentioned characteristics: on-board energy and number of satellites.

• Communication capacities and number of satellites. We have emphasised before that
the core of the autonomous operations devolves upon the exchange of information among
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satellites. The exchange of control information through ISL allows satellites to coordin-
ate their activities and cover the target area more efficiently. As a result, our solution
is strictly dependent upon ISL technology to be carried out. Many different factors may
play a significant role in the achievement of a given bandwidth and/or ISL range, namely,
the ISL technology (RF, optical), gain and directivity of the antenna (or optical system),
output power of the transceiver, etc. In order to estimate the minimum link characterist-
ics that enable our solution, Section 6.2.2 explores the effects that ISL technologies may
have upon decentralised operations. System designs that promote the establishment of
ISL will inherently increase the volume of exchanged information. However, two factors
can have major impact in this regard: ISL capacities and constellation designs. Constel-
lations geometries with higher connectivity may also present acceptable performances
regardless of embarking very limited ISL technologies. As such, the number of satellites
has also been considered as one of the variables to trade in order to produce constellation
designs of different connectivity.

• Scheduling granularity and likelihood of retracting from previous decisions. Agent
states are determined through deliberative scheduling (Araguz et al., 2018a), i.e. a
forward-looking process that allocates resources to activities based on propagation of
current states. Despite the process being purely deliberative, the planner allows for pre-
vious scheduling solutions to be refined after a period of time; what is generally referred
to as interleaved scheduling windows (see Section 4.6.8, p. 143). As part of the defin-
ition of their MPS, three different factors define these deliberative processes, namely,
the length of the scheduling window, the granularity with which tasks are generated, and
the frequency with which agents correct previous plans of actions. Furthermore, we also
described how internal parameters of the organisation scheme control the likelihood of
maintaining previously scheduled activities in the corrected solutions (Kp, ht, and uo, in
Table 5.3). The closer the start epoch of an activity is, the less likely it will be for an agent
to discard it. This control mechanism was adopted to limit information mismatch among
satellite agents, and to protect the stability of the system. Nevertheless, these charac-
teristics could have an impact in the agent’s ability to coordinate effectively and produce
optimal plans of actions. In order to understand their effects, Section 6.2.3 will define a
test case that combines different values for the above-mentioned characteristics. This
test case, which belongs both to the second and third category of design variables, has
assumed a fixed system design (i.e. constellation geometry, number of satellites, instru-
ment and ISL characteristics, etc.) and has observed the changes in performance when
scheduling parameters (Tmax, Tsched, Trs, c len) and behaviour control variables (Kp) are
changed.

• Surfacemodel resolution and size of the knowledge base. The reasoning capabilities of
agents is limited by their memory. Given that agents are expected to be implemented—
in practice—as a high-level component of the flight software of satellites, we shall never
ignore the limited computational resources of the underlying hardware unit. The amount
of available memory in their on-board computers may significantly affect the reasoning
processes that lead to their decisions. In particular, Table 5.2 listed two design variables
that have not been touched upon in any other characterisation scenario: the resolution
of their surfacemodels (eo) and themaximum size of their knowledge base (βmax). In Sec-
tion 4.6.1 we explained that agents keep an internal model of the Earth. This model, ap-
proximates the WGS84 ellipsoid as a grid with finite evaluation points, or “cells”. Each of
the cells holds information regarding observation intervals from other agents that is used
to determine the most optimal actions (see Section 4.6.6, p. 139). The resolution with
which agents reason about their environment is inevitably linked to the swath of their in-

184



CHAPTER 6 6.2. DESIGN CHARACTERISATION

struments, but it is unclear from the definition of eo which are the effects to be expec-
ted for different values of this parameter. What is indeed clear, is that the finer the sur-
face mesh (i.e. smaller eo), the more memory would be required by the flight software.
On the other hand, the handling of an agent’s knowledge base can also require different
amounts of memory. Agents that tend to remember very old activities (see parametersG,
in Table 5.3) may eventually require a knowledge base of higher a size (especially in sys-
tems that generatemany activities). Given that on-boardmemory is limited, the test case

Table 6.1: Common configuration table for tests. The first column names the variables as they are listed in
configuration files.

Parameter name in framework Var. Value

environment.payoff.type g(∆t) Constant slope, i.e. proportional function gℓ(∆t).

agent.motion.max_ecc e Orbit eccentricity: 0 (circular)

agent.energy_generation Pgen -160

agent.activity_size n/a Size of an activity: 26 bytes +Bact · |P |

agent.link.allow_during_capture ISLs Yes.

— Bact 12 (i.e 3 * sizeof(float))

agent.knowledge_base_size βmax 2000∗

agent.max_tasks c len 50†

agent.max_task_duration Tmax 4 · Tstep
agent.min_payoff Pth 10-3

agent.confidence.exp µ 2

agent.utility.steepness ku 15

agent.utility.unknown Ux 0.75

agent.priority.utility_weight wu 0.5

agent.priority.decay_weight wδ 0.5

ga_scheduler.generations Φmax 104

ga_scheduler.timeout Φbest 103

ga_scheduler.payoff_aggregation Pi(p̂) Mean

ga_scheduler.payoff_k Kp 25†

ga_scheduler.confidence_th uo 0.5†

ga_scheduler.population_size Nind 100

ga_scheduler.mutation_rate rm 0.2

ga_scheduler.crossover.type n/a Crossover type: k-point

ga_scheduler.crossover.n_points n/a Crossover points: 10

ga_scheduler.parent_sel.type n/a Parent selection operator: tournament

ga_scheduler.parent_sel.k K Tournament selection rounds: 2

ga_scheduler.environ_sel.type n/a Environment selection operator: elitist

system.interpos ninterp 3–6 points, depending on instrument swath

system.time.duration Tsim 7 days†

system.time.sec Tstep 30 seconds†

system.time.start_epoch tepoch 2451545.0 (January 1st, year 2000, at 12:00:00 PM)

∗ Not applicable in results from Section 6.2.4.
† Not applicable in Sections 6.2.3, 6.2.4 and 6.3.
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in Section 6.2.4 has questioned the effects of restrictive memory budgets at both levels:
the knowledge base and resolution of surface model.

Plenty other variables and groupswere also consideredwhich had finally not been explored
as part of this thesis. Section 6.4 summarises some of them, and suggests possible strands of
work for future research.

Running the above-mentioned test cases requires to identify a finite set of values for the
variables in the input space. These option sets will be detailed in the following sections. Simil-
arly, all the remaining variableswill be fixed to common values that are usually shared across all
the test cases. Finding suitable values for parameters that have not been characterised in de-
tail is sometimes a non-trivial exercise. Running intermediate tests and verification procedures
allowed to fine-tunemost of the parameters of the characterisation framework. In all cases, we
opted for nominal values that would allow the execution of tests in feasible times. The list of
common parameter values is provided in Table 6.1. Throughout this chapter wewill identify vari-
ableswith the notation in previous chapters andwill also provide the names that these variables
take in the actual configuration files of the framework (first column, in Table 6.1). Furthermore,
Appendix C details the actual configuration files with which each of the simulations were con-
figured. The files can be found in a public repository together with the code of this framework
(the reader is directed to the appendix for more details). Variables that are not listed in Table 6.1
are either part of the simulation specification or were not applied equally in all cases. Most of
thembelong to the architecture and satellite design, since every single test defines specific DSS
for the type of tests to be performed.

6.2.1 Resource constraints

The results presented in this section aim at observing the changes in performance when the
number of satellites and their internal energy constraints are changed. Setting a fixed energy
capacity of 10, four different energy constraint levels were defined by means of adjusting the
consumption of the instrument. Having a constant energy generation (see Pgen in Table 6.1), the
more power required by the instrument, the sooner the energy reservoir will be depleted and the
shorter the effective operational time of satellites will be. The four cases are listed below:

• High: Pinst = 1600. Full capacity depletion after 10 min of continuous operations.
• Moderate: Pinst = 640. Full capacity depletion after 30 min of continuous operations.
• Nominal: Pinst = 320. Full capacity depletion after 90 min of continuous operations.
• Low: Pinst = 200. Full capacity depletion after 360 min of continuous operations.

Table 6.2: Fixed parameter values for the energy-constrained characterisation.

Parameter name in framework Var. Value Remarks

agent.instrument.aperture FOVinst 80º —

agent.link.range rISL 109 meters Only constrained by line-of-sight.

agent.motion.altitude h 500 km —

agent.motion.inc i Orbit incl.: [80, 100]◦ Randomly selected.

agent.planning_window Tsched 180min. ∼2 orbital periods.

agent.replanning_window Trs 45min. ∼1/2 orbital periods.

agent.confirm_window ht 90min. ∼1 orbital period.
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On the other hand, five constellations sizes have been simulated characterised by the num-
ber of satellites: 5, 10, 15, 20, 25, and 30. The geometry of the constellation was generated ran-
domly, i.e. we fixed an orbital altitude of 500 km (circular), and constrained inclinations between
80 and 100 degrees. The rest of the orbital parameters were randomly assigned by the frame-
work. This set-up could emulate systems in which spacecraft have not been designed specific-
ally for a single purpose, but which can cooperate to satisfy a common EO goal (e.g. a federation
of EO satellites). The resulting orbits are quasi-polar and will alternate between prograde and
retrogrademotion; a favourable configuration tomaximise connectivity within the constellation
(provided that inclinations are similar and ISL constraints have been ignored). Naturally, most
of the generated constellations—if not all—do not optimise coverage. With an aperture of 80
degree, the instrument produces a swath of 864 km and requires the use of multiple spacecraft
to attain revisit times in the order of 12–24 hours—energy constraints considered. As a result,
constellations of different sizes were inevitably capable of attaining different revisit times. The
parameter G (which regulates the age at which activities are forgotten and removed from the
knowledge base) was also changed with the number of satellites. Systems with 5 and 10 satel-
lites were assigned G = 1 day; systems with 15 satellites had G = 0.8 days; and the rest were
configured atG = 0.5 days.

The results of the characterisation are shown in Figs. 6.1–6.5. The first observable char-
acteristic in the initial set of plots (Fig. 6.1) is the confirmation that DSS encompassing only 5
satellites provide higher mean revisit times, as expected. Fig. 6.1a shows mean revisit times for
the utopia, actual, and random cases. Looking at the results of utopia, we can also clearly see
that an increase in number of satellites is less meaningful as the number increases beyond 15.
Constellationswith 15 ormore satellites present time gaps always lower than 2 days,44 andwell
below this value on average. This can be confirmed in Fig. 6.1b, wherewe plot the isocline curves
for the same metric represented above it. The plot shows a moderately flat surface for the uto-
pia case as mean revisit times are lower than 0.23 days (5.5 hours). At the same time, the plots
also show the impact of energy constraints when the emulation of operations is enabled (cases
actual and random). As expected, the effective revisit time increases significantly as the energy
constraint changes from low to high.

With the previous interpretations, two clear conclusions can be drawn from the results. The
first is that the response of an autonomously operated DSS is not negatively affected by either
resource constraints or the number of satellite platforms—at least at this scale. The output
space does not present peaks or optimum regions other than the expected ones, which can be
justifiedwith the choice of design values alone. The second conclusion is that the application of
decentralised operations has, nonetheless, a positive impact upon the system function. Com-
paringmean revisit times from the actual and random cases, we can observe that satellites that
interact to one another and optimise their plan of actions do yield better results. Furthermore,
Fig. 6.1d also confirms the value in the application of this autonomous framework: except for
one corner case (5 satellites and high energy constraint) the variance obtained for maximum
time gaps is always very low and close to 0 in most cases. This suggests that, regardless of the
system not being able to attain better revisit times, the coverage of the target area tends to be
homogeneously distributed. This interpretation of the results can also be drawn from the heat
maps in Fig. 6.2, where we show the maximum time gaps for each of the four corner cases in
this characterisation, plus one additional case with 10 satellites. In all instances of the actual
case, the time gap is significantly better distributed than in the other two cases. Therefore, it is
correct to assert that these autonomous DSS were able to coordinate their efforts and optim-
ise the use of resources globally. A notable exception is that of 10 satellites and high energy

44 Recall that the mean value is obtained frommaximum time gaps at every location of the target area.
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(a) Mean revisit times for utopia (left), actual (centre), and random (right) cases.
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Figure 6.1: Results for the energy-constrained characterisation: mean and variance values.
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Figure 6.2: Maximum revisit time from the characterisation of energy constraints.

constraints (second row in Fig. 6.2). Despite the system showing relatively homogeneous time
gaps—ranging from 1 to 2.5 days in most of the target area—, the equatorial region presents
poor performance and is not covered homogeneously in the actual case. Noteworthy, the same
situation is captured in the utopia time gaps, although the fact that decentralised operations
were unable to capture these regionsmore frequently needs be interpreted cautiously. The first
consideration is that the constellation geometry (generated at random) is worsening equatorial
performance considerably—i.e. by design. However, an ideal organisation system should be
capable of counteracting this limitation andoptimising timegaps in all areas, including themost
challenging ones. Two factors could be playing an important role in this regard. One the one
hand, systemswith hard resource constraints havemuch less opportunities to correct poor per-
formance, especially when it is located in a small area. Given that satellites can only observe
the area underneath their orbital trajectories, missing a single critical access opportunity may
be disadvantageous for the system, and can easily be captured with this metric. These areas
are certainly critical, since the constellation geometry limits the number of possible accesses
inherently. Given that the underlying scheduling heuristic is stochastic by nature, it is indeed
possible that the algorithm reaches a sub-optimal solution—either due to the number of gen-
erations required to evolve the population to the optimal solution or because the heuristic lands
in local optima. However, these cases are hard to verify and are not likely to repeat consistently
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Figure 6.3: Maximum revisit times at an equatorial location for a systemwith 10 satellites and high energy
constraint.

for a delimited region. Secondly, the presented situation is certainly very challenging and could
also be affected by task granularity. The the process that generates potential activities (see
Section 4.6.3, pp. 132–137) ismostly driven by themaximum time duration (Tmax) and the payoff
threshold (Pth). The maximum task duration in this case is set at 2 minutes and the threshold
is approximately 0 (i.e. can be neglected). This resolution enables agents to optimise their ac-
tions with a relatively high accuracy (i.e. 2 min.), but might have been insufficient to avoid poor
time gaps in narrow areas—contained within latitudes of ±15◦, in this case. Fig. 6.3 may ease
the understanding of the results by showing the aggregated revisit time for the equatorial region
(i.e. themaximum time gap observed at any point in the region). The figure depicts the evolution
of revisit times for the area containedwithin 30ºN–30ºS, and also provides a single pointmeas-
urement for an arbitrary location at the equator (Singapore). As we can see, utopia revisit times
are almost constant at 2.7 days (orange line). This is the best aggregated value we can expect
for this region; certainly above the mean of the system. If we look closely at a single location,
we can also understand that the performance is very much influenced by the orbital design. As
we can see in the dashed orange line, this arbitrary location could not be accessed during more
than 2 days (both at the start epoch, and after 5 days of simulation). While this can certainly be a
notorious performance drop in some applications, it is safe to assume that the results obtained
with autonomousoperationsare still reasonably good. A second, andperhaps slightlymore con-
clusive, analysis of results can be done with the time gap average shown in Fig. 6.4, wherein we
can confirm that the distribution of accesses wasmoderately homogeneous most of the times.

Finally, the set of plots in Fig. 6.5 completes the exploration of results by showing the estim-
ated PD in the corner cases. Alongwith amuchmore complete understanding of the distribution
ofmaximum time gap values, these plots also provide statistical variables thatmay be interest-
ing to comment. In the case with worst performance (Fig. 6.5a) we see a noticeable difference
between utopia and actual. Despite having a mean value of 1.76 days, the 90th percentile is at
almost 4 days of gap.45 Several regions have revisit times higher than this figure (as shown in
heatmaps) but the PD also shows that the areas with time gaps higher than 6 days are almost
negligible. As the number of satellites is increased (Fig. 6.5b), the estimated PDF approximates
the kernel of its KDE estimator (Gaussian), proving, again, the coordination ability exhibited by
satellite agents.

45 Note thatmean values are computedwith latitude corrections to account for the effects of uneven density across dif-
ferent latitudes. The statistical variables annotated in the plots have not applied this correction and may be slightly
biased towards the values obtained at the poles. Since polar regions tend to have better revisit times, we should ana-
lyse the statistical information cautiously and assume slightly worse results than the ones given in the annotations.
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Figure 6.4: Average time gap for a systemwith 10 satellites and high energy constraint.
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Figure 6.5: Probability Density Estimation.

Table 6.3: Fixed parameter values for the characterisation of ISL capabilities.

Parameter name in framework Var. Value Remarks

agent.instrument.energy Pinst 880 15min. of continuous operations.

agent.motion.altitude h 574.033 km Repeat cycle of 2 days.

agent.planning_window Tsched 250min. —

agent.replanning_window Trs 60min. —

agent.confirm_window ht 60min. —
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Table 6.4: Inter-Satellite Link cases

Parameter in framework Variable None CubeSat Medium Satcomm

agent.link.range rISL 0m 500 km 1500 km 3000 km

agent.link.datarate DISL n/a 9600 bps 200 kbps 200 kbps

agent.link.energy_tx P
(TX)
ISL n/a 0.0391 2·10-3 2·10-4

agent.link.energy_rx P
(RX)
ISL n/a 4·10-4 2·10-5 2·10-6

agent.link.reserved_capacity CISL 1% 25% 25% 25%

6.2.2 ISL capabilities

Theexchangeof activitiesamongagentsallow themtoestimate thestateof the system. With the
arrival of new information, agents can (re-)plan their activities and optimise accesses based on
updated knowledge. Therefore, inter-satellite communication is key to the autonomous frame-
work—just like communication is usually crucial in many other decentralised algorithms for
MAS. If the previous section explored the effects of changing the duty cycle of instruments, the
characterisation in this section is aimed at determining how critical ISL technologies are, and
what is the minimum capacity that enabled decentralised operations. ISL models are charac-
terised by their maximum range and a data rate (which should be attainable at the specified
range). The underlying simulation tool does notmodel physical aspects of the link, such as radi-
ationpatterns, Bit ErrorRate (BER), propagation losses, and the like. Nevertheless, theavailable
pair of parameters (i.e. DISL and rISL) still allowed to represent three characteristic ISL subsys-
tems, as listed in Table 6.4. All the remaining parameter values that are specifically defined for
this set of simulations and which remain constant are gathered in Table 6.3. Thus, one of the
dimensions of the design space is determined by one of the ISL cases: CubeSat, Medium, and
Satcomm. We label the first ISL option “CubeSat” since it emulates typical communication con-
strains of a nano-satellite. At 9600 bps, this ISL is only able to establish a linkwith neighbouring
agents that are closer than 500 km. The second case, “Medium” could typically represent an
RF link between two micro- or mini-satellites. We kept a conservative data rate of 200 kbps,
assuming that the network infrastructure of an EO DSS would separate the control plane from
the data plane, as proposed in Lluch andGolkar, 2015a. Data-oriented services—that would ex-
change instrument data—would likely be implemented with highly directive ISL (RF or optical)
and provide higher bandwidths. Instead, agent activities could be exchanged through a con-
trol plane, which we assumed as a lower bandwidth channel implemented with moderately iso-
tropic antennae. The case “Satcomm” is provided as a technologically feasible yet moderately
extreme option for inter-satellite communications. It is basically characterised by a range that
doubles the Medium option, establishing links at up to 3000 km. This latter alternative could
maximise the connectivity of constellations in many cases. In addition to these three cases,
we also included a control case in which satellites do not embark ISL capability altogether (la-
belled “None”). Despite ISL being a critical characteristic, agents that do not receive activities
from others still plan their actions according to their previous actions. Therefore, their sched-
ules might be slightly more optimal than purely random operations. Furthermore, having this
option allowed us to determine the improvement of the system uniquely due to ISL. Table 6.4
also details the power rating of ISL subsystems, which is obtained following the guidelines in
Section 5.3 (p. 165). CubeSat-like ISL are given a higher power consumption since this value
preserves a relation with the capacity of energy reservoirs: the smaller the satellite platform,
the more constrained in power, and the higher the power consumption of ISL (PISL).
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Figure 6.6: Constellations A and B, used in the generation of systems with 4 and 8 satellites.

The other dimension of the input space is characterised by the number of satellites. Ideally,
increasing the number of satellites should improve the connectivity of the system. However this
is not always the case unless orbital geometries are carefully selected. Generating constella-
tions at random, like in the previous case, could yield constellations in which the orbital phasing
between spacecraft is not optimised to allow the establishment of links. We eluded this problem
by providing specific orbital designs in each case. Four constellations of sizes 4, 8, 12, and 16
satellites have been considered. In all four cases the spacecraft orbit at 574.033 km, providing
repeat cycles of exactly 2 days. Their orbital designs are described below:

• 4 satellites in phased configuration. We defined an arbitrary constellation of 4 equally-
spaced orbital planes and inclined 80º. Satellites have been allocated in phased slots, i.e.
one satellite per plane and sharing the same mean anomaly. We label this configuration
constellation A, as depicted in Fig. 6.6. The resulting network topology only allows the
communicationswhen satellites fly by polar regions. In order to allow the constellation to
map the whole surface in one repeat cycle, the instrument aperture (FOVinst) was set at
65º, providing a swath of 736 km.

• 8 satellites in prograde and retrograde configuration. This configuration extends the
previous case by including the constellation B, which provides exactly the same structure
but has the orbital planes inclined 100º. Retrograde orbits are less common for com-
munications satellites due to the need to compensate the rotation of the Earth during
launch. However, heliosyncronous retrograde orbits—usually polar—are very common
in commercial EO systems, especially those requiring their observations to be performed
at consistent local times. Nevertheless, the ad-hoc combination of constellations A and
Bhas exclusively aimedatmaximising the frequency of satellite contactswith others. The
same aperture of 65º is also applied in this case.

• 12 satellites in Walker Delta 80º:12/4/1. In this case we construct a satellite constel-
lation following the rules defined in (Walker, 1977). Walker Delta constellations—also
named “BallardRosette” (Ballard, 1980)—areconfigurations that aimatmaintaining con-
stant coverage for satcomm constellations. Like inmany other studies, EO DSS have also
been designed following this configuration, since they evenly distribute satellites and can
provide optimal results in terms of revisit time. The notation i:t/p/f identifies a given
Delta configuration by its inclination i (80º), the total number of satellites t, the number
of equally spaced planes p, and the relative spacing between satellites of adjacent planes
(computed as f·360º/t). In this case, our constellation of 12 satellites is distributed in 4
planes, with 3 satellites in each plane (Fig. 6.7a; Table 6.5). A phase shift of 30º is ap-
plied in the adjacent planes. With an instrument aperture of 48º (510 km of swath), this
constellation is able to access the whole target area in approximately 12 hours.
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Figure 6.7: Diagrammatic representation of Walker Delta networks. Note that orbital phasing between ad-
jacent planes (∆MA) is not represented.

RAAN A: 0º B: 90º C: 180º D: 270º

MA

Slot 0 0º 30º 60º 90º

Slot 1 120º 150º 180º 210º

Slot 2 240º 270º 300º 330º

Table 6.5: Configuration of a Walker Delta 80º:12/4/1

RAAN A: 0º B: 90º C: 180º D: 270º

MA

Slot 0 0º 22.5º 45º 67.5º

Slot 1 90º 112.5º 135º 157.5º

Slot 2 180º 202.5 225º 247.5º

Slot 3 270º 292.5 315º 337.5º

Table 6.6: Configuration of a Walker Delta 84º:16/4/1

• 16 satellites in Walker Delta 84º:16/4/1. Repeating the same exercise than above, we
define a Walker Delta constellation with 4 planes and a phase shifting of 22.5º (Fig. 6.7b;
Table6.6). Inaneffort tokeep theutopia revisit timeclose to thepreviouscases, theorbital
planes have been inclined at 84º and instrument apertures have been set at 62º (693 km
of swath).

The results in Fig. 6.8 show effects both in the number of satellites and the type of ISL. In-
creasing constellation sizes does improve revisit times in utopia and random, as expected. In
fact, the utopia results dhow that the constellations are able to scan the surface of the Earth in
less than 12 hours (3.6 hours in the larger systems). However, when the autonomous framework
is applied, the changes with respect to the number of satellites and ISL type are not monotonic
(Fig. 6.8a and Fig. 6.9). We can also observe that the improvement in performance produced by
ISL types is not produced at the same value for systems of different sizes. Carefully inspecting
the dynamic evolution of the system we have been able to verify that these changes are indeed
induced by a change in connectivity. If we informally define connectivity as the number of ISL
established among different satellites of the constellation, we see—in the simulation events—
that increasing the number of connections produces better mean revisit times. This character-
istic is mostly influenced by the range defined in each ISL type, but it is important to note that
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different constellations will increase their connectivity at different ISL distances. For the case
of a constellation with 4 satellites this change is produced when ISL range is set at 3000 km. If
we project the output space in two dimensions (Fig. 6.9) we can observe that a case in which the
results present an intuitive response: a constellation with 12 satellites improves its revisit time
when the ISL type changes fromNone to CubeSat, and fromMedium to Satcomm. Arguably, the
reduction in revisit time must result from better coordination; agents are able to estimate the
state of the system with less uncertainty and plan their activities more efficiently. However, not
all systems may require an ISL with the characteristics of the Satcomm type. The constellation
with 8 satellites does not improve its revisit time (see Fig. 6.8d and Fig. 6.10) as ISL capabilities
improved, suggesting that the systemwas already able to coordinate with themost constrained
ISL type. We arrive at this conclusion motivated by the fact this constellation, with only 8 satel-
lites andmoderate energy constraints (Pinst = 880, i.e. 15min of continuous operation, Table 6.3)
is able to achievebetter results than the constellation of 12 satellites. In contrast, increasing ISL
capabilities in the two Walker Delta constellations ameliorates the results as range is less con-
straining.

Finally, it is also worth pointing out that the effect of data rate is almost negligible. As we
said above, the longer the ISL range is the better connectivity constellations have and the more
coordinated the system results. However, cases wherein the number of connections did not
change with the ISL type hardly resulted in any improvement—albeit data rate increased.

6.2.3 Scheduling granularity and Kp

As part of the characterisation of our solution, this section and the following one explore the
effect of internal parameters of the autonomous framework when system structure and capa-
cities remain constant. In particular, this section defines an input space characterised by the
configuration of local MPS (scheduling window, task size, etc.) and the constant Kp. All the
other constant parameters are detailed in Table 6.7, except the orbital parameters of the selec-
ted constellation, which are given in Table 6.9. Up to five different cases have been defined for
the configuration of the scheduling granularity bymeans of the parameters gathered in Table 5.2
(p. 167). The five cases are detailed in Table 6.8, and include two major configurations: short-
and long-term scheduling. In short-term, agents define a scheduling window that covers only
one orbital period, whereas long-term enables agents to plan four orbital periods ahead. This
change is also combined with a slight modification of the resolution with which activities are
generated. Provided that Pth = 0, the maximum task duration (Tmax) provides a measure of the
accuracy with which instrument accesses will start and end. The values assigned to short- and
long-term cases is of 2 and 4minutes, respectively. Furthermore, alternating between different
values for the re-scheduling window (Trs) completes the definition of cases. We provided dif-
ferent values for Trs to test different configurations of the interleaved scheduling windows. The
length of a new scheduling window that overlaps the previous is, thus, indicated with a percent-
age (25%, 33%, etc.) Higher percentages allow agents to discard previously scheduled activities
and correct their plan of actions, whereas lower values reduce the ability to minimise repeated
observations (from two overlapping accesses) if their respective activities were scheduled in a
previous cycle. In order to allow long-term scheduling windows, the time discretisation (Tstep)
has alternated from 30 seconds to 1 minute. This allows to obtain the factor 4x in scheduling
windows while only doubling chromosome lengths. The main justification for that has been the
need to maintain similar computational complexities in each case.46 An even longer scheduling

46 Otherwise some of the cases could be harder to compute and would render simulation times that could be too long
for the study to be realised.
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Figure 6.8: Results for the characterisation of ISL capabilities: mean and variance values.
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Figure 6.10: Maximum revisit time from the characterisation of ISL capabilities.
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Table 6.7: Fixed parameter values for the characterisation of scheduling granularity.

Parameter name in framework Var. Value Remarks

system.n_agents na 8 satellites —

agent.instrument.energy Pinst 400 45min. of continuous operations.

agent.instrument.aperture FOVinst 42º 685.791 km of swath

agent.motion.altitude h 825.345 km Period of 101.245 min. Repeat cycle of 5
days.

agent.min_payoff Pth 0 —

environment.payoff.goal_target G 2 days —

agent.confirm_window ht 10min. Very short.

agent.link.range rISL 3000 km Satcomm case in Table 6.4.

agent.link.datarate DISL 200 kbps —

agent.link.energy_tx P
(TX)
ISL 2·10-4 —

agent.link.energy_rx P
(RX)
ISL 2·10-6 —

agent.link.reserved_capacity CISL 25% —

system.time.duration Tsim 5 days —

window would indeed be possible if either Tstep or c len were increased—assuming the corres-
ponding increase in GA algorithm termination times.

Table 6.8: Scheduling granularity cases

Case Tsched Trs Tmax Tstep c len

Short-term scheduling, 66% interleaving window overlap. 100 min. 33 min. 2 min. 30 sec. 50

Short-term scheduling, 33% interleaving window overlap. 100 min. 66 min. 2 min. 30 sec. 50

Long-term scheduling, 75% interleaving window overlap. 400 min. 100 min. 4 min. 1 min. 100

Long-term scheduling, 50% interleaving window overlap. 400 min. 200 min. 4 min. 1 min. 100

Long-term scheduling, 25% interleaving window overlap. 400 min. 300 min. 4 min. 1 min. 100

The second parameter of the input space, Kp, modulates the likelihood with which a pre-
viously scheduled activity can be discarded to re-allocate resources to new intervals of higher
payoff. Six values are considered (Kp = {0, 0.5, 1, 3, 12, 75}), which have been computed follow-
ing the guidelines introduced inSection 5.3 (pp. 165–172). A very highKp = 75 essentially forces
previously scheduled activities to be preserved during re-scheduling. However, since confirma-
tionwindows are very short (ht = 10min.) it could still be possible—despite unlikely—to discard
old activities due to the stochastic nature of the GA algorithm. Conversely, aKp = 0 dismisses
the prioritisation of old activities and allows agents to optimise their accesses without limita-
tions. The intermediate values are computed to also provide a very low (Kp = 0.5, Kp = 1})
nominal (Kp = 3) and a moderately high (Kp = 12) prioritisation of previous tasks.

In order to see the effects of these combinations of parameters, the system needs be de-
signed in such a way that the interleaved scheduling becomes extremely significant. We pro-
posed a constellation design with 4 pairs of satellites. Each pair (identified with letters A–D,
Table 6.9) identifies a train configuration: satellites X1 follow X0 with a RAAN separation of 12º
andaphasing of 180º. Thus, the following satellites have the samegroundtrack than thepreced-
ing ones. This, combined with a repeat cycle of 5 days, fosters the need to coordinate accesses
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Figure 6.11: Constellation design for the characterisation of scheduling granularity.

Table 6.9: Orbital parameters for the constellation design in characterisation of scheduling granularity

Orbital Param. \Satellite: A0 A1 B0 B1 C0 C1 D0 D1

Inclination 85º 85º 95º 95º 85º 85º 95º 95º

Mean anomaly 0º 180º 90º 270º 180º 0º 270º 90º

Right Ascension of the Ascending Node 0º 12º 0º 12º 180º 192º 180º 192º

for immediate operations.47 Moreover, two alternative orbital inclinations (85º and 95º) gener-
ate two sets of coverage paths that also foster overlapping accesses among agents that belong
to a different train. The a diagrammatic representation is provided in Fig. 6.11, and the specific
orbital parameters are gathered in Table 6.9.

Running the 30 cases produced the trends depicted in Fig. 6.12. In order to interpret the
results, it is important tonote that the constellationdesign (i.e. utopia case) yieldsamean revisit
time of 14.6 hours. The first look at the mean revisit times and variance metrics confirm that
despite having some effect upon performance, these parameter set presents lower impact in
thesystemfunction than thepreviousones. Thatnotwithstanding, Fig. 6.12apresentsadynamic
range of roughly 8 hours48 that can be critical in some EO applications. Two characteristics can
benoted: the identificationofaanabsoluteoptimal valueatST66andKp = 0.5andacleareffect
of both thewindow length and the interleaving overlap. Short-term scheduling (ST) presents the
most efficient planning of activities and produce the lowest variance values (Fig. 6.12d). In most
of the cases, increasing the overlap percentage does produce results of lowermean revisit time.

Two other interesting characteristics are worthy of note. The first is the impact of the vari-
ableKp, which does yield better results for lower values. While long scheduling windows clearly
impact the operations by precluding satellite agents from allocating resources accurately, de-
creasing Kp can overcome the situation. Despite the effects of this variable being much less
noticeable, allowing agents to retract previous decisions (i.e. lower Kp) improves the results
of some long-term cases. Looking at the results in Fig. 6.12a and Fig. 6.13, a Kp > 3 seems
to be partially detrimental to some of the simulated systems (those with LT windows). An ex-
tremeKp = 75 generates the worst performance at LT25, since it inhibits agents from correct-
ing scheduling conflicts precisely in situations where they might be more likely—provided the
maximum task duration resolution. In contrast, Kp = 0 ameliorates performance in almost all

47 Given the orbital configuration and instrument swath, the groundtracks and coverage footprints for non-polar regions
do not repeat after 5 days.

48 This range is obtained for mean values. The actual revisit time ranges for a single case can be higher than this value.
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Figure 6.12: Results for the characterisation of scheduling granularity: mean and variance values.
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Figure 6.13: Maximum revisit time from the characterisation of scheduling granularity.
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cases. Following logically, one could be tempted to conclude that disablingKp altogether is al-
ways the best practice. This would allow agents to produce new schedules and never consider
their previous decisions. As critical as this could be to a system that is based upon the exchange
of partial—and sometimes uncertain—information, there is an important effect that confirms
theneed for this parameter andsuggests that the stability of the systemcouldbeaffectedbyKp.
This relates to the second observation in these results: the worsening of mean performance for
the caseKp = 0 and ST66. While contiguous data points present revisit times that are amongst
the best values in this test case (i.e. below 0.85 days, 20.4 hours), the above-mentioned corner
casehasa value slightly aboveof 0.9 (21.6hours). Suchperformanceworsening is perhapsmuch
more noticeable in Fig. 6.13, where one can compare the this particular case with the adjacent
ones, and corroborate the slight changes in performance with geographical representations of
the chosenmetric.

Figure 6.14: Discarded activities in agent’s knowledge bases. The plot aggregates the state of the know-
ledge base of all the agents and shows maximum–minimum values (coloured areas) and average values
(lines). Results are shown for the scheduling window setup ST66.

Figure 6.15: Undecided activities in agent’s knowledge bases. The plot aggregates the state of the know-
ledge base of all the agents and shows maximum–minimum values (coloured areas) and average values
(lines). Results are shown for the scheduling window setup ST66.
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Figure 6.16: Total number of activities in agent’s knowledge bases. The plot aggregates the state of the
knowledge base of all the agents and showsmaximum–minimum values (coloured areas) and average val-
ues (lines). Results are shown for the scheduling window setup ST66.

In order to understand this effect, we need to resort to the evolution of knowledge bases.
Resources, in these systems, are always limited. The amount of activities that an agent can
remember, as we will detail in the next characterisation case (Section 6.2.4), is limited by the
value βmax. Agents will remember as many activities as their memory devices allow them to.
Once an activity is discarded, this piece of information is still considered valuable for the sys-
tem and is kept in agent’s knowledge bases. They keep the information until its total decay, in
order to propagate it within the system and decrease, hence, the aggregated uncertainty that
agents have upon the actions of others. If we allow agents to discard their own activities without
constraints and we force them to re-schedule often, not only will the agents flood the system
with unusable information but they may also saturate their internal memories with plenty of
discarded activities. Discarding an activity should be a relatively controlled operation to allow
agents to maximise their payoffs. Instead, a Kp = 0 could foster this operation without actu-
ally providing significant benefit in payoff. As a result, the system becomes heavily populated
with activities that, in spite of agent’s urges to keep and share them with others, are irrelevant
for scheduling purposes. What is more, the very action of constantly discarding activities is also
fostering the exchange of relevant activities (i.e. undecided) that will likely and quickly become
discarded. Fig. 6.14 shows this system behaviour and demonstrates the true effect ofKp. In the
plot, we show the time evolution of discarded activities in agent’s knowledge bases. We have
aggregated the internal information contained in every agent, and showedminimum–maximum
margins and average values. As we can see, the number of discarded activities quickly rises to
1200 for Kp = 0, and presents a more relaxed evolution for Kp = 0.5 and below. As expected,
the number of discarded activities forKp = 75 is always close to 0.

To the eyes of a designer, the data shown in Fig. 6.14 could be much more relevant when
comparedwith Figs. 6.15 and 6.16. Keeping our focus on the blue series (Kp = 0) we can observe
that the memories of agents become saturated around t = 1.5 days. At that point, agents can
no longer accept new activities in their knowledge bases, but only update the ones that received
and stored previously. Nevertheless, the number of discarded activities continues to grow even
after t = 1.5, presenting amaximumat t = 2 days. This peak value is not arbitrary, but it actually
corresponds to the maximum decay time of activities (G = 2, Table 6.7), and the time at which
older activities will start to be released from the system. After this point, the system continues
to be saturated and agent knowledge bases will only insert new activities as soon as the old

203



In pursuit of Autonomous Distributed Satellite Systems C. Araguz

Table 6.10: Spatial discretisation cases

eo Max. cell size (º) Max. cell size (km) Size of E

225 0.4º× 0.4º 44.5 km× 44.5 km 405000 cells

90 1º× 1º 111.2 km× 111.2 km 64800 cells

45 2º× 2º 222.4 km× 222.4 km 16200 cells

22.5 4º× 4º 444.8 km× 444.8 km 4050 cells

ones are removed—i.e. as a result of the decay function. This situation is clearly detrimental
to the system, since we are indirectly affecting the knowledge exchange rules, and most likely
hindering indirect coordination. Interestingly, this unwantedbehaviour onlymanifests slightly in
aggregated system performance metrics. The following section delves into the choice of values
for βmax and expands on the performance changes for saturated knowledge bases.

6.2.4 Cognitive abilities

Completing the characterisation of our solution, this section explores two characteristics that
affect the reasoning processes of agents: the resolution with which they estimate the state of
the system, and the amount of information that they can retain in knowledge bases. These two
characteristics, respectively expressed throughparameters eo andβmax, are intrinsically limiting
thecognitiveabilitiesofagentsandhaveadirectmappingupon the requiredhardware resources
that would host their implementations: memory. Changing the constant eo has a direct impact
on the number of cells that define the discretised world E . Recalling the notes in Table 5.2, the
surface is discretised with cells of size 90◦

eo
. The resulting grid is used by agents in their estima-

tion of payoff values and determination of activity footprints. Ideally, the grid should be as small
as to allow agents schedule their observations accurately but the actual constant can be selec-
ted in accordance to the instruments swath. For this set of simulations, all spacecraft embarked
an instrument with an aperture of 40º and orbiting in circular orbits at 574.033 km, i.e. swath of
420 km. The selected constants eo are defined in the four cases listed in Table 6.10. The smal-
lest resolution is set at 0.4º, yielding a surfacemodel (E ) of 4·105 cells, whereas themost coarse
value produces cells that are slightly larger than the instrument footprint. Although this latter
case should be avoided in practical realisations of the autonomous framework, we considered
relevant to analyse the performance degradation in such cases.

The other dimension of the input space has been determined by the number of activities
that can be kept in memory (despite their age). Up to five cases have been considered, namely,
βmax = {50, 100, 500, 1000, 5000}. The same constellation has been simulated in all cases. Their
orbital parameters have been arbitrarily defined to produce a system of 10 satellites in polar or-
bits. Their inclinations were selected within the range [96, 97] and their RAAN and initial mean
anomalies were randomly set—and kept the same in all the simulations. The remaining para-
meters were fixed with the values listed in Table 6.11.

The results of this configuration are shown in Fig. 6.17. In this case we can observe how
the performance of the system is apparently unaffected by grid resolution if we only analyse
the mean revisit time metric (Fig. 6.17a). However, a closer look at the results of Fig. 6.18 show
that the response of the system is slightly affected by the choice of eo. In particular, the grid
of heat maps in Fig. 6.18 present non-uniform values in some the cases. Simultaneously, the
distribution of time gap values is also affected by the size of the knowledge base (βmax). As it
can be seen in all figures, lowering thememory reserved to store activities to values below 1000
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Figure 6.17: Results for the characterisation of cognitive abilities: mean and variance values.
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Table 6.11: Fixed parameter values for the characterisation of cognitive abilities.

Parameter name in framework Var. Value Remarks

system.n_agents na 10 satellites —

agent.instrument.energy Pinst 880 15min. of continuous operations.

agent.motion.altitude h 574.033 km Repeat cycle of 2 days.

agent.planning_window Tsched 200min. —

agent.replanning_window Trs 60min. —

agent.confirm_window ht 30min. ≃ 1
3
of an orbital period.

agent.instrument.aperture FOVinst 40º 420.459 km of swath

agent.min_payoff Pth 0 —

environment.payoff.goal_target G 2 days —

agent.link.range rISL 3000 km Satcomm case in Table 6.4.

agent.link.datarate DISL 200 kbps —

agent.link.energy_tx P
(TX)
ISL 2·10-4 —

agent.link.energy_rx P
(RX)
ISL 2·10-6 —

agent.link.reserved_capacity CISL 25% —

system.time.duration Tsim 7 days —

produces similar effects than the observed with severely constraint ISL: agents are unable to
coordinate their actions because the lack important information. At βmax ≥ 1000 the system is
capable to distribute instrument accesses and minimise gaps. This effect is much more signi-
ficant for βmax = 5000 in which we observe that the average revisit time of the system is actually
improved if compared to other cases (Fig. 6.17a). The effect of poor optimisation of accesses
is also more obvious in variances, as shown in Fig. 6.17d. This metric proves—quantitatively—
that coarser grid resolutions could have a negative effect upon the system. Nevertheless, the
effects are not always reflected in results with similar characteristics. Looking at the results
for eo = 2◦ or eo = 4◦ we can see that the resolution produces different distributions in heat
maps (Fig. 6.18) that are only noticeable in cases with βmax ≥ 1000. In order to properly under-
stand some of these outcomes, we can leverage the results presented in Fig. 6.10. When agents
did not embark ISL subsystems, their actions were only based upon their previous accesses.
Despite precluding the optimisation of collective operations, this situation does not necessar-
ily yield the worst performance but it will always present mean and variance values that can be
improved. Limiting the number of activities in the knowledge base has, thus, the same implica-
tions: it worsens performance to a certain point but it can never result in figures that are worse
than those of completely isolated agents.

6.3 Case study: large-scale system
The proposed autonomous operations are based upon internal agent reasoning and exchange of
information. The system and its orchestration are therefore naturally and utterly decentralised.
One of themotivations for that was indeed the need to propose solutions that can scale well, i.e.
self-organisation schemes that behave well in systemswith a large number of agents. The need
to assess the goodness of our approach in large-scale systems stems from the very fact that
some practical cases of DSS are, in fact, densely populated small-satellite constellations. One
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Figure 6.18: Maximum revisit time from the characterisation of cognitive abilities.

example of a system with these characteristics—if not one of the most compelling evidence of
the on-going change of paradigm in EO—is the system deployed by Planet Labs. Operating the
PlanetScope, RapidEye, and SkySat Earth-imaging constellations, Planet Labs has the ability to
provide global high-resolution, panchromatic imagery (3.7 m GSD) that is updated daily (Planet
Labs, 2019). Their flagship constellation, PlanetScope, is composed of approximately 130 3U-
CubeSat units orbiting in SSO. As a means to verify the scalable nature of our framework, we
have studied the performance of this very constellation when it is operated in an autonomous
manner.

A few adjustments were required in order for this case study to be meaningful and to allow
its representationwith the simulation environment. PlanetScope satellites have a swath of 24.6
km (Planet Labs, 2019). Setting instrument apertures that yield the same swath forces us to
increase the resolution of the environment. Increasing the resolution beyond 0.2º is certainly
possible in terms of implementation of the simulation tool. However, the computing platform49

49 Server rack with 2x Intel Xeon E5-2650 v4@2.20GHz (48 parallel threads) and 48 GB of RAM.
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Table 6.12: PlanetScope constellation satellites

Satellite label Orbit apogee Inclination # selected Selected sat. ID’s

Flock 2P 505 km SSO ∼97.37º 9 4–12

Flock 3P 505 km SSO ∼97.41º 63 26–88

Flock 2K 475 km SSO ∼96.94º 38 10–41, 43–48

Flock 3M 534 km SSO ∼97.39º 3 2, 3, 4

Flock 3P’ 513 km SSO ∼97.49º 4 1, 2, 3, 4

Total 117

Table 6.13: Configuration parameters for the large-scale case study.

Parameter name in framework Var. Value Remarks

system.n_agents na 117 satellites —

agent.instrument.energy Pinst 320 67min. of continuous operations.

agent.planning_window Tsched 200min. —

agent.replanning_window Trs 60min. —

agent.confirm_window ht 30min. ≃ 1
3
of an orbital period.

agent.instrument.aperture FOVinst 13º 110.445 km of swath at equator.

agent.min_payoff Pth 0 —

environment.payoff.goal_target G 3 days —

agent.link.range rISL 500 km CubeSat case in Table 6.4.

agent.link.datarate DISL 9600 bps —

agent.link.energy_tx P
(TX)
ISL 0.0391 —

agent.link.energy_rx P
(RX)
ISL 4·10-4 —

agent.link.reserved_capacity CISL 25% —

system.time.duration Tsim 5 days —

where these tests were carried out presented a limitation in resources (memory) that precluded
us from simulating such a large number of satellites with an increased resolution.50 In order
to cope with this limitation we chose to increase instrument swaths to 110 km (13º of camera
FOV) and keep surface model resolution at 0.4º× 0.4º (yielding cells of 44.5 km in length), as in
Section 6.2.4. The corresponding increment in stripe sizes turned the 24 hour revisit time of the
system (reported) into an almost 12 hour global revisit time. The constellation design was taken
from the reported status of PlanetScope in June 2018 (Planet Labs, 2018). Out of the launched
satellite, 117 were reported as operative. Orbital parameters have been taken from NORAD TLE
files. Furthermore, provided that information about the internal buses is not available, we arbit-
rarily defined a relatively low instrument power consumption which allows up to 67 minutes of
constant operations. This value could represent a similar constraint taking into account that the
actual imagers are subject to illumination conditions (which are not included in our simulation
environment). Table 6.12 summarises the selected PlanetScope assets for this large-scale case

50 One needs to consider that surface models are independently allocated within each satellite instance. While several
high-resolution surface models can be allocated in the computing platform (equipped with 48 GB of memory), doing
so formore than 100 satellites was certainly unfeasible. Nonetheless, it is important to note that this has no implica-
tions with regards to the system’s scalability, since a truly decentralised and distributed systemwould also replicate
computational resources for every independent satellite agent.
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(a) Actual (b) Random

(c) Actual–Utopia difference (d) Utopia

Figure 6.19: Maximum time gaps obtained for PlanetScope constelation

study, and Table 6.13 completes the description of the system by providing the remaining values
for the parameters of our framework.

The results are shown in Fig. 6.19 and Fig. 6.20. As it can be noted, the performance of the
system is moderately good, with an absolute maximum revisit time in any location of less than
2.5 days. Noteworthy, the weighted mean revisit time for the actual case is of 0.479 days (11.5
hours). Given the size of the system, and the relatively lowpower constraints inflicted in satellite
platforms, two additional observations can bemade: the difference between the utopia and ac-
tualmetrics is in any casehigher than1.66days (40days), although it hardly exceeds0.75days of
difference inmost cases. This can be confirmed through the statistical information displayed in
Fig. 6.20, wherein we can see that the actual case (blue line) hardly exceeds a 24h revisit time—
90th percentile is actually 0.996 days.

The second relevant observation from these results is the systemarchitecture and resource
capacities allows for the random case to be exceptionally well behaved. Despite the noticeable
improvement achieved with our self-organisation scheme, randomly scheduling activities and
precluding agents from interacting yielded a weighted mean revisit time of 0.594 days (14.25
hours). We can clearly see that time gaps of 0.5 days are as frequent as those of 1 day, but it is
also quite apparent that random operations will hardly deliver time gaps higher than 1.5 days.
However, if we look at the evolution of absolute maximum time gap in Fig. 6.21—aggregated for
thewhole target area and represented in the timedomain—,wecanobserve that the enabling of
autonomous operations significantly improves this worst-case performancemetric. In Fig. 6.21
we can also see that the worst time gap attainable by the system in any location is always below
1.5 days and, most importantly, above 1 day. This could hardly be observed in the geographical
representation inFig. 6.19dor thePDE inFig. 6.20. Given theconstellationdesignand instrument
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Figure 6.20: Probability Density Estimation for the maximum time gap in PlanetScope constellation.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (days)

0

0.5

1

1.5

2

2.5

3

3.5

4

W
o

rs
t 

re
vi

s
it

 t
im

e
 (

d
a

ys
)

Revisit time (global)

Actual

Utopia

Random

0

0.5

1

1.5

2

2.5

3

3.5

4
2  = 0.64
2  = 0.14
2  = 1.6

Figure 6.21: Temporal evolution of the absolutemaximum time gap in PlanetScope constellation. The time
series (left-hand side) shows the evolution of worst-case performance metric: the maximum time gap ag-
gregated over the whole target area. The right-hand side shows the fitted PDF for the same variables.

swaths, it is impossible for the system to deliver lower revisit times than 1 day in every single
location. Value can hopefully be assumed as correct, since the Planet Labs provides precisely
this figure in the specifications of their PlanetScope data product. Ultimately, the application of
the autonomous operational framework did result in a similar behaviour than in previous cases
(Section 6.2). The results seem to indicate that the orchestrating of large-scale systems can be
done autonomously. No particular effect or unexpected behaviour was observed that suggested
otherwise.

6.4 Summary
This chapter has conducted a series of analysis oriented to the characterisation of the system
and to facilitate the identification of design guidelines for future systems that apply decentral-
ised, autonomous decision-making. As detailed in Chapter 5, multiple system and agent para-
meters can influence system behaviour and ultimately affect performance. Owing to the size
of the input design spaces (Section 5.3), this characterisation has certainly not been practised
in a comprehensive manner. Nevertheless, we have selected some of the most critical design
choices, andshown theeffectsuponsystemperformancemetrics (i.e. revisit times). Three types
of design parameters have been analysed: (1) systemandarchitectural, which belong to the very
definition of orbital geometries and on-board capacities in DSS; (2) parameters that describe
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the reasoning capabilities of agents; and (3) parameters that belong to the very definition of our
autonomous self-organising framework.

The tests have demonstrated the validity of our approach and have shown how certain
choice of parameter values may improve performance in some cases. In particular, we could
observe how the configuration of scheduling windows and their interleaving can sometimes
modify the ability that agents have to solve conflicts and improve the efficiency of their opera-
tions. One of themost determining factors in this case is the granularitywithwhich activities are
generated. The second parameter that was shown to influence performance wasKp, for which
designers should prefer lower values always greater than 0. Similarly, the cognitive abilities
of agents were mostly dominated by the amount of activities that they could remember from
others. We studied the effect of very reduced β sizes, and concluded that agents should be able
to keep a moderately high number of activities. This indeed, enforces technological character-
istics in the development of satellite agents, which would require high-capacity recorders or
OBC memories. While the previous is certainly true, the amount of memory required by agents
is always within technologically feasible margins.51

This chapter also explored the inherent limitations of small-satellite technologies an how
they affect the system function. We characterised the system under varying energy capacity
constraints, andunder different ISL capacities. The former constraint did not reveal any remark-
able insight other thanconfirming thatautonomousoperationsunder extremely constrainedop-
erations are always better than random scheduling of activities (i.e. the self-organising mech-
anism does have a positive impact regardless of energy constraints). On the other hand, the
characterisation of ISL confirmed that the exchange of system information could be practised
even in cases with extremely constrained ISL capacities. This test case (Section 6.2.2) also al-
lowed to conclude that themost important limitation for collective operations are the number of
encounters, rather than bandwidth or range limitations). Systems embarking CubeSat-like ISL
subsystems were as capable to achieve their goals as cases highly capable ISL. Furthermore,
the results also reinforced the need for ISL devices, since the system scenarios where agents
did not exchange information always resulted in poorer performance.

Finally, this chapter has looked at one particular large-scale scenario—the PlanetScope
constellation—and has observed the obtained performance once autonomous operations were
applied. The case study did not reveal unexpected behaviours that could be attributed to the
scale of the system, and emphasised that the definition of decentralised operations could be
well suited for such cases.

51 In the most extreme cases, agents were allowed to store up to 5000 activities. The amount of memory required for
this β size is certainly affected by the number of discretised trajectory positions and by the static size of an activity
object (26 bytes, in this implementation). An approximate estimation that considers 1000 trajectory points for 5000
activities would require less than 60 MiB of memory (per agent). Further details on memory requirements can not
be given since most of them would either require an in-depth analysis of computational complexity, or would be very
subject to particularities of the implementation.
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7
Conclusions

7.1 Introduction
Satellite imagery and its byproducts have become dependable resources for environmental and
climate monitoring, weather forecast, governmental activities, modern agriculture, and count-
less other commercial and industrial applications. As conveyed throughout this dissertation,
someEarthObservationsystemsarestarting toadoptnovel structural and functional paradigms
grounded upon distribution and increased on-board capabilities in order to address the ever
growing user and application requirements. Structurally dynamic and potentially large-scale,
full-fledged Distributed Satellite Systems are being conceived as networks of sensing units that
could become part of a self-governed, in-orbit infrastructure. Multiple aspects related to their
design and operation are still open fields of study in the aerospace community, and some have
been expressly tackled in this research.

The work presented in this thesis has been focused in two important areas related to the
aforementioned systems, namely, the conception of decision-support methodologies and tools
that address the design of EO constellations from a systems perspective (i.e. Pre-Phase A stud-
ies and systems architecting approach); and the exploration of operational schemes that enable
autonomous operations in a mission- and architecture-agnostic manner. These two research
themes crystallised in the design-oriented architecting framework introduced in Chapters 2 and
3, and the autonomous self-organisation scheme presented and characterised in Chapters 4, 5,
and 6. This final chapter discusses the specific contribution areas, recalling both the context
at large and summarising results, and concludes by identifying possible avenues for future re-
search.

7.2 Integral decision-support frameworks for Earth-observing
satellite systems

Distributed Satellite Systems in communications have long been explored as technologically
(and financially) viable architectures to provide wider area coverage—often global—and im-
proved performance—short latency, high capacity. Yet, while their adoption in Earth Obser-
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vation could have also originated from the need to improve performance—usually shorter re-
visit times—, the value proposition of DSS is partly motivated by plenty other promising attrib-
utes that can derive from their characteristic architectural designs. DSS are not conceived as a
mere juxtaposition of observation assets but rather as complex systems-of-systems that lever-
age and exploit ground-based technologies to deliver a number of qualitative system-level im-
provements (Corbin, 2015; Jilla, 2002). In systems architecting, these improvements are often
articulated through the so-called ilities of a system, which express qualities of a design bey-
ond its performance. Recalling the notional representation of total system expectations and
qualitative/quantitative needs in Chapter 1, we said that it is often common for stakeholders
and designers to express preferences both over purely functional goals as well as on these non-
tangible properties of systems (e.g. flexibility, reliability, modularity, and the like). We conveyed
the idea that the expectations of a system are an orthogonal aggregation of these two types of
properties—quantitative and qualitative—which need not necessarily be tightly coupled nor be
achieved at the expense of one another, but must be equally critical to system designers.

In parallel to that, the design of distributed EO missions has also gained traction due to
the consolidation of small-satellite technologies and standardised platforms. Having demon-
strated their value in termsof science return anddevelopment costs and cycles, small-satellites
are cornerstone in the implementation of DSS. Somuch so that there aremultiple flying EOmis-
sions implementedwith small-satellite technologies that are already producing high-value data
products (e.g. Planet’s Flock, NASA’s CYGNSS). Given their manufacturing and launch charac-
teristics, small-satellites are critical enablers for large-scale constellations but their incorpor-
ation in designs is not immediate. Some studies in the past pointed at the potential value in
missions that hybridise traditional spacecraft platforms with small, single-instrument satellite
units. And, in some of the most audacious propositions (like FSS), distributed mission archi-
tectures are envisioned to encompass multiple heterogeneous spacecraft that operate in a co-
ordinated manner to carry out collective sampling, create opportunistic coalitions, exchange or
trade with underutilised resources, or offer data services to the constellations they belong to.

In this context, this research has tried to answer some of the open questions posed in re-
gards to the design of such kind of systems. Like in many other cases in systems engineering,
the conception of such kinds of architectures may become an extremely complex cognitive en-
deavour which can be eased through the definition of multi-objective optimisation frameworks.
This thesis has exploredmethodological solutions that can guide the architecting of hetero-
geneous, hybrid, EO constellations that both satisfy stringent user and application require-
ments and excel at their qualitative properties. Our work has been framed in the context of
an EU-funded research project, named ONION, which was aimed at investigating fractionated
and federatedsatellite technologiesandarchitectures that couldcomplementEuropeanEOpro-
grammes (e.g. Copernicus). In that sense, we have leveraged contributions frommembers of the
consortium to derive an integral architecting framework that could be applicable inmany differ-
ent use-cases. In particular, the framework presented in Chapter 2 leverages the definition of
applications and user requirements as the set of performancemetrics proposed in (Matevosyan
et al., 2017), and takes the elicited values from that preliminary analysis. Furthermore, the pre-
selection of potential instrument alternatives in (Lancheros et al., 2019) led to the definition of
one decision set in the enumeration of architectural candidates.

7.2.1 Aggregation of qualitative attributes into architectural figures of merit

Multi-attribute tradespace exploration is one common methodology to address MOO problems
in the architecting of systems. Leveraging this theoretical background allowed us to propose
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a design-oriented optimisation framework that is a fundamental part in the comprehensive
decision-support framework in ONION. The optimisation process detailed in Chapter 2 is groun-
ded on the evaluation of candidate solutions through a single all-encompassing figure of merit
(Γ). It is through this numerical score, precisely, that solutions are relatively compared, ranked,
and ultimately selected. The definition of figures of merit is one of the identifying traits of this
framework, which aggregates both system costs (i.e. monetary investment), quantitative ex-
pectations (i.e. user needs), and qualitative attributes (ilities). Unlike previous studies in sys-
tems architecting, stakeholder preferences are also encoded in terms of the qualitative attrib-
utes: we define a matrix of weights (γmk) to quantify the importance of performance metrics
(revisit time, latency, and spatial resolution) and an independent vector (b) that expresses the
significance of each qualitative attribute. Therefore, the optimisation of EO architectures has
been simultaneously driven by performance quantities and the assessment of multiple ilit-
ies. While the evaluation of ilities is indeed not new, the aggregation of multiple qualitative and
quantitative attributes in a single figure of merit is, to the best of our knowledge, applied in this
framework for the first time.

With the objectives of the optimisation defined as the aggregate Γ
(
J(x)

)
,52 we obtain a nu-

merical value that expresses the aggregated stakeholder satisfaction in the range [0, 1]. How-
ever, as we conveyed in Section 2.6, both the weighted aggregation of performance metrics and
the weighted aggregation of qualitative attributes needed be done independently in order to
completely decouple these non-competing elements of the evaluation process.

7.2.2 Optimising heterogeneous, networked EO systems

The primary goal of this optimisation framework has been to conceive architectural designs that
could leverage the benefits of small-satellite platforms and federated mission concepts. As
a result, the enumeration of candidate designs has considered three different platforms sizes
(small, medium, and heavy satellite) and allows heterogeneous architectures that combine
these platforms in a single constellation. Aside from constellation geometries (i.e. altitude,
number and distribution of planes) and sizes (i.e. number of satellites), the enumeration of
designs also determines which EO capabilities are embarked on-board, producing meaningful
combinations of instruments for each of the three platform sizes. Furthermore, each constel-
lation unit was assumed to embark a given ISL capacity, allowing for instrument data to be
downlinked to ground through other satellites. This characteristic may be regarded as a primit-
ive step towards the architecting of truly collaborative satellite networks, sincemany important
aspects related to staged deployment and operations (e.g. ISN protocols) have been neglected
or simplified during the design optimisation. Nevertheless, together with themulti-instrument,
multi-platform feature of the enumeration approach, this framework could become a guide for
the conception of future architecting tools oriented to federated and fractionated architectures.

7.2.3 Coarse–fine architectural evaluation

With the ability to quantify the goodness of a solution based on aggregated figures of merit, the
proposed framework has been outlined as the common set of steps inmost tradespace explora-
tion studies.53 One of the sought characteristics of this framework has been the ability to exam-
ine the whole solution space in an effort to identify global design trends, regions of infeasibility,
sensitivities to decision variables, and tensions among architectural choices. Therefore, it was
crucial to carry out a full-factorial explorationof thedesign spaceand toquantify figures ofmerit

52 Recall Eqs. (2.6) and (2.23) in p. 65 and p. 75, respectively.
53 See Fig. 2.1 in p. 51.
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for the complete architectural set. This led to the evaluation of performance metrics—carried
out through simulation—for extremely large sets of designs. Provided that small satellite tech-
nologies are considered in the designs, resource capacities (e.g. power and data budgets) need
be taken into account in order to obtain accurate performance figures. However, the computa-
tional burden of detailed spacecraft and subsystemmodels hardly allows the evaluation of the
complete design space. In order to cope with this frequent limitation, the architecting frame-
work has adopted a coarse–fine evaluation approach in which the solutions are analysed in a
two-step process. The first step assumed simpler spacecraft models that allowed the simula-
tion of approximate performance figures. With these, we conducted a careful analysis of design
trends and have been able to down-select a reduced set of candidate architectures. Finally, per-
formance figures of the pre-selected set were refined with custommission analysis tools54 that
considered resource budgets.

7.2.4 Exploration of results in two timely use-cases

In order to show the application of the proposed methodology, demonstrate the influences that
the architectural attributes (qualitative and quantitative) have upon the design of EO DSS, and
illustrate the generality of the architecting framework, Chapter 3 detailed the results obtained
for two timely use-cases. These unique use-caseswere identified as two of themost critical ap-
plication domains for the extension of European EO programmes (ONION, 2016b). The first re-
volved around the design of a constellation tomonitor weather and ocean parameters in Arc-
tic regions, to satisfy the needs of the increasing off-shore operations, the fishing industry, and
marine transportation services. The results, also published in (Araguz et al., 2019a), identified
a sixteen-satellite constellation as themost optimal design, consisting of eight heavy platforms
and eight CubeSat-like units. Orbiting at 807 km, the selected solution flies multiple synthetic
aperture radar instruments and optical imagers, and is complemented by low-resolution GNSS
reflectometers flying in the eight nano-satellites.

Thesecondcasestudyexplored inChapter3addresses thedesignofEOconstellations that
facilitate the study of global hydric stress andmanagement ofwater resources in agriculture.
This second application of the optimisation framework hopefully demonstrated its generality
and its results also confirmed the value of heterogeneous, networked architectures. In this case
study, however, the set of optimal architectures were mostly composed of heavy and medium
platforms and hardly included small-satellites in the orbital configurations of the most optimal
solutions. The choice of instruments and their suitability in terms of mass-budget and spatial
resolutions resulted in medium satellite platforms (rated at 166 kg) as the most viable options
to complement large satellites in the design of this system.

7.3 Autonomous operations and decentralised, system-level de-
cision-making

The second thematic area explored in this thesis has focused on the operational aspects of dis-
tributed satellite missions. Autonomy and decentralised operations have been a recurring topic
in works that investigate suitable alternatives to manage novel EO systems, especially those
that are very large in scale or present dynamic structures. Most of the benefits of autonomous
operations were surveyed in the introductory chapter and include, among others, a potential re-
duction of costs in mission operations, the improvement of system responsiveness, an inherent

54 Details of the mission analysis tools are summarised in (Tonetti et al., 2019).
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resiliency that could ameliorate tolerance to failures andmaximise science return, and a better
adaptability to changing needs or architectural changes.

Autonomy in the context of EO DSS has been explored through different premises. Most
of the previous research has focused on the development of complex Mission Planning and
Scheduling systems that allowed the optimisation of operations for static constellation designs.
Oftentimes, the systems to operate were composed of homogeneous platforms and rarely
presented similarities with small-satellites. TheMPS designs have beenmostly based upon de-
tailed optimisation processes and combination of heuristics andwere designed to run in ground
control centres (Araguz et al., 2018a). Very few works have considered the possibility to per-
formmission planning on-board and leveraged ISL capacities to improve the performance of the
system or implement purely decentralised coordination mechanisms (c.f. Bonnet and Tessier,
2008; Kennedy, 2018). Hence, this thesis has contributed to the on-going exploration of decent-
ralised, on-board autonomous operations and has proposed a system-level decision-making
framework that is applicable in small-satellite, heterogeneous, and potentially large-scale EO
systems.

7.3.1 Autonomous operations based upon satellite interactions and on-board
reasoning

Chapter 4 proposed an autonomous operational framework that leverages Multi-Agent Sys-
tems descriptions and simplifies satellite platforms as sensing units that consume resource
capacities (power and data storage). We delimited the autonomous function of our systems
to be the continuous observation of global target area that minimises revisit times. Satel-
lite agents have been assumed to embarkmoderate computational capabilities in order to allow
them to reason about the state of the system (i.e. the collective function). Based on local estim-
ation of state and the potential benefit of their own contributions to the system, agents gener-
ate local observation tasks and optimise their schedules through an internal MPS implemented
with multi-objective evolutionary algorithms (GA). In order for agents to be able to estimate the
state of the system (i.e. time gaps), we enabled them to exchange information about their ac-
tions through inter-satellite links. Agents constantly exchange their planned activities and keep
the received ones in their finite memory capacities. Section 4.6.10 delved into the knowledge
exchange rules and detailed the mechanisms through which older activities are removed from
the knowledge bases of satellite agents.

With this two fundamental components—internal state reasoning and mechanisms to ex-
change relevantactivities—, thestudiedsystemshavebeenable tooperateautonomouslyand
exhibited the ability to distribute work in a consistent and moderately optimal manner. The
novelty of this work is nonetheless centred around the generality of the approach, and our abil-
ity to apply it in heterogeneous, resource-aware, large-scale systems. We also consider three
specific contributions that merit a special mention.

The first is the already mentioned resource-awareness of the system and its implications
for DSS based on small-satellites. With resource capacities being at the core definition of a
satellite state and ISL subsystems being constrained by physical and technological limitations,
the proposed approach acknowledges two of the most critical aspects in small-satellite plat-
forms, namely, reduced power availability and impaired communications.

Secondly, the definition of this framework is not particularly tied to a single DSS archetype
(i.e. constellation, swarm, train, etc.) like many in the past, but it could be adopted in all system
types and sizes. The modelling of satellite capabilities and capacities also allows for its applic-
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ation in system scenarios where multiple platforms—characterised by different resource and
observation capabilities—collectively attain a common goal and produce data for a single EO
application. Provided that satellite operations are optimised individually—and/or on-board—,
the ownership of each satellite platform could certainly belong to different stakeholders with
different interests. This opens the door to the application of this autonomous framework inmis-
sions that leverage and exploit federated satellite concepts.

The third and perhaps most uncommon characteristic is the type of autonomous function.
All previousworks in thepasthaveoriginated fromtheneed tooptimise theobservationofapriori
defined, localised target areas. To the best of our knowledge, no other autonomous system tried
to orchestrate the observation of a global area with limited resources, nor tried to constantly
optimise revisit times in a collective, on-board manner. Instead of defining a fixed scheduling
horizon and optimising operations for a finite temporal window, the system that we devised is
constantly evolving towards the common goal. Agents do perform planning of actionswith finite
schedulingwindows, but their planningand re-planningprocessesare triggeredasynchronously
and continuously in order to progressively improve their operations. Moreover, the target area of
the system is not constrained by the definition of specific locations. Agents are requested to
collectively access the whole surface and to allocate resources that minimise revisit times
globally.

7.3.2 Characterisation framework for autonomous Earth-observing systems

We emphasised in many occasions that the ultimate goal of the proposed autonomous frame-
work is not solely oriented to the optimisation of imager accesses but was mainly motivated by
the urge to understand the impact of autonomy and decentralised operations. To that extend,
we have suggested the characterisation of satellite systems that operate autonomously, and
proposed to use the outcomes of such studies as a guideline for future designs and application
contexts. The characterisation framework presented in Chapter 5 is based on the emulation of
system behaviour and the extraction of system-level performance metrics that are of interest
to such pursuit. We opted for the definition of a single aggregated revisit time value, that is ob-
tained as the average of all the maximum time gaps. However, we also conveyed that utterly
aggregated metrics like this are very prone to hiding interesting effects, especially in systems
that are called to image wide surface areas. Although the definition of figures of merit that cap-
ture the goodness of autonomous operations should be deemed key to assessing future solu-
tions, we must stress the need to preserve geographical information disaggregated in order to
understand the system behaviour. Furthermore, Chapter 5 also proposed to leverage statistical
information from some of the revisit timemetrics as was also done in (Garcia Buzzi et al., 2019).

7.3.3 Anassessment of the impact of small-satellite technologies upon autonom-
ous operations

Chapter 6 showed the results of our design characterisation and explored some of themost rel-
evant architectural traits in autonomous DSS, namely, resource limitations of small-satellite
systems, large-scale systems, and cognitive and/or deliberative capabilities in agents. While
the compendium of tests allowed to confirm the suitability of autonomous operations, three
important remarks need be noted. First of all, we observed that moderately or highly power-
constrained systems presented a noticeable performance degradation—as it would naturally
be expected. Comparing the behaviour of the systemwith aworst-case scenario (i.e. randomal-
location of resources), we could confirm that autonomousoperationsare indeedbeneficial since
they were able to maintain performance within bounded margins in spite of resource scarcity.
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It is precisely in these cases when a proper coordination of assets—autonomous or not—can
significantly improve the outcomes of a system. Systems lacking such limitations might as well
ignore the need for deliberative planning and simply let their agents observe the target areas
continuously. This has usually been the traditional approach to space systems design: optim-
ising platform resources based on the analysis of power-, thermal-, and data-budgets, to allow
constant operations with ample safety margins. In contrast, small-satellite designs are some-
times urged to perform aggressive power and data management in accordance to their limiting
power generation and storage capacities, or to be able to download instrument data through
links of lower bandwidth. Our decentralised, on-board decision-making did allow the coordina-
tion of accesses and the optimisation of resource usage to a certain degree. Whether or not per-
formance could be optimised further resorting to some other operational framework is a ques-
tion that has not been tackled in this doctoral dissertation. As a matter of fact, such question
could even be deemed ill-posed in the context of very large-scale DSS, for which we generally
lack alternative operational frameworks altogether.

The second remarkable conclusion refers to the need of high-bandwidth ISL to properly co-
ordinatedecentralisedflyingassets. As it hasbeenshown inSection6.2.2, oneof thespecific ISL
technology emulatedduring the tests, resembled theperformanceof aCubeSatplatform: an ISL
transceiver that delivered 9600 bits per second at a maximum range of 500 kilometres. In some
particular cases the results suggested no evidence of improvement when these ISL transceiv-
ers were replaced by others with higher capabilities.55 ISL performance was indeed critical in
certain constellation geometries wherein orbital planes and configuration forced the links to be
established at greater distances. This led us to observe that a critical factor is not the ISL capa-
city per se but the overall connectivity of the system. Asmuch as connectivity can be improved
with ISL of better performance, it can also be achieved through other methods, e.g. optimised
constellation designs, inter-satellite networking and routing protocols,56 or higher constellation
density, to name a few.

Lastly, the results in Sections 6.2.3 and 6.2.3 also demonstrated how the autonomous
framework could be implemented practically, with minimum on-board computational re-
sources and frequent re-scheduling cycles. We observed that performing re-scheduling of
activities often, improved the system’s ability to coordinate accesses. The benefits of ourmech-
anism to prioritise previously scheduled activities (parameterKp) were also confirmed through
characterisation. We demonstrated that, in some system instances, ignoring previous plans of
action (Kp = 0) leads to systems being flooded with unusable information—that of discarded
activities. In turn, the knowledge bases of agents (β) became easily saturated and caused a
performance degradation that was noticeable in aggregated metrics. We concluded that the
choice of Kp should be as lower as to allow the improvement of schedules during re-planning
processes, but always greater than 0 in order to control the amount of meaningful information
stored in βs and to promote the convergence to stable agent decisions. Therefore, the value
of Kp should be carefully selected taking into account the profile of payoff functions (i.e. their
steepness and ranges), the maximum number of tasks (c len), and the depth of agent knowledge
bases (determined by βmax andG).

Likewise, this characterisation could also determine that the resolution with which tasks
are generated on-board (i.e. based on the estimation of the system state) could be a critical
parameter. This latter observation suggested the need to improve the generation of tasks, an
aspect that we shall detail in Section 7.4. Furthermore, Section 6.3 studied the performance of

55 See results in Section 6.2.2. In particular, Fig. 6.8 (p. 196) and Fig. 6.10 (p. 197) showed negligible improvement in the
case with 8 satellites, when ISL performance was increased from the CubeSat case to the Satcomm case

56 That enable communication among agents through ISN rather than only point-to-point.
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a large-scale system operated under the autonomous self-organisation framework. In par-
ticular, we assessed autonomous operations for the PlanetScope constellation, composed of
117 nano-satellites. The results also showed that our solution is not particularly affected by
the scale of the systemand emphasised the suitability of decentralised decision-making (of any
kind) for these types of Earth-observing DSS.

7.4 Future research
Theworkpresented in this thesishasopened furtherquestions thatmayhopefully fosternewav-
enues of research. The design of autonomousDSSarchitectures still entailsmultiple challenges
both in the domain of systems architecting and autonomous decision-making. Throughout this
dissertation, we have examined many system-level characteristics of DSS and have tried to re-
inforce the notion that these architectures could improve multiple qualitative properties. While
these non-tangible characteristics have been deemed crucial for the design of architectures (i.e.
form and function), most of them are only attainable through the design of operations (i.e. be-
haviour). Two clear examples are the ability for these systems to ameliorate responsiveness and
to become resilient. The formermay be affected by the structural design, but it does require the
definition of Inter-Satellite Networking schemes that escape the domain of systems architect-
ing and MOO. Similarly, truly resilient systems could be those that are able to adapt to sporadic
outages or node failures through the implementation of MPS of some kind. We deem essen-
tial to incorporate these two qualities—anmany others—into design frameworks (through their
quantitative evaluation) although these may possibly require a previous validation and charac-
terisation in independent studies (oriented to operations and/or networking). Accordingly, we
deem the evaluation of several of such qualities to be decisive in works that tackle autonomous
decision-making in the future. Many authors in the past have claimed that autonomous opera-
tions can bring robustness to systems, as well as an inherent adaptability to changing functions
andstructural contexts. These importantqualitiesneedbedesignedandassessed forautonom-
ousDSS inorderboth toconfirmthebenefitsof autonomousoperationsand to incorporate these
qualities in systems architecting studies.

One overarching characteristic of DSS is the dynamic nature of this kind of architectures.
Large-scalesystemswill hardlybedeployed instantaneouslyandareperfect candidates for con-
tinuous repair and upgrades (i.e. replacing failed units with new ones, upgrading technology,
expanding the system to improve capacities, etc.) These aspects have been explored in previ-
ousworks in the context of satellite constellations, althoughmostly oriented to communications
systems (deWecket al., 2004; RossandRhodes, 2008). Theanalysis of evolvability and changing
structures throughout the mission lifespan is indeed critical for DSS, and has implications at
both levels: thedevelopmentofdecision-support frameworks thatacknowledgeandalsooptim-
ise structural changes; and the implementation of decentralised decision-making that behave
well under structural changes. This thesis has not looked into staged deployment strategies in
either of the two thematic areas, butwe consider themperfect opportunities for future research.
In particular, we suggest to study the short-term changes in performance and operations that
results from theadditionor removingof satellite units in a system (asa causeof failure or not), as
well as the long-term analysis and optimisation of incremental steps that guaranteesmaximum
delivery of value to stakeholders.

In line with the above, our architecting framework has only addressed the design of struc-
tured, static constellations. That notwithstanding, the aerospace community has been looking
at extraordinarily challenging mission concepts that entail the federation of several flying mis-
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sions. These novel architectures are perhaps the best candidates to explore in future works.
Federated Satellite Systems can undoubtedly be described as heterogeneous, potentially large-
scale, and certainly dynamic architectures. They also feature two characteristics that have not
been emphasised in this thesis but which are indispensable to analyse and design: the com-
bination of non-structured orbital geometries and heterogeneous observation capacities (thor-
oughly explored in Lluch, 2017) and the inter-operation and exchange of resources among the
members of such opportunistic infrastructures. This bridges to two important questions that
might be solved through extensions to our autonomous self-organisation scheme and/or novel
approaches: how to optimally combine existing systems such that inter-satellite operability is
possible (i.e. ISL technologies and coordination mechanisms), and how to orchestrate the ex-
change of under-utilised resources such that maximises local and collective mission utilities in
a decentralised and autonomousmanner.

At this point, the landscape of previous research—including this thesis—has found com-
plementary techniques and approaches to optimise the design of distributed missions and has
proposed mission planning strategies wherein satellite units are rather abstract descriptions
of the functions and components of an actual spacecraft. In other words: most of the works
have overtly gravitated towards the optimisation of systems, as a whole, and explored the com-
plexities of DSS architectures (not their composing entities). Both in the most recent mission
planning works (e.g. Kennedy, 2018) and in architecting frameworks, many spacecraft-level
design aspects are simplified, ignored, or assumed plausible in posterior engineering phases.
If we recall the ultimate goal of systems architecting, we may find these high-level definitions
of satellites to be absolutely sufficient for the above-mentioned pursuits, i.e. to issue recom-
mendations for the engineering teams that will eventually design and implement the systems.
Likewise, the simplification of satellite functions in the optimisation of operations is also a valu-
able device that allows us to identify and address system-level obstaclesmore efficiently and to
decouple specific design issues from the analysis and simulation of the system. However, when
some of the resulting designs need be elaborated and put into practice in realistic scenarios,
most of the aspects that were oblivious to system architects can actually impact the results of
previous analyses and could alter some of the issued recommendations. In our case this has
materialised in four different areas that also suggest future research lines: (1) the allocation
of instruments into specific constellation slots; (2) the estimation of costs; (3) the communica-
tions through inter-satellite networks; and (4) the operation of complex satellite platforms. The
former relates to the identification and encoding of design constraints in the enumeration of ar-
chitectures, such as illumination conditions, operational limitations,57 and power requirements
for some instruments (e.g. dawn-dusk orbits for SAR imagers). In line with the results shown in
(Hitomi, 2018) we believe that knowledge-driven approaches, complex combination rules, and a
more detailed enumeration process are all advantageous solutions to address some of these is-
sues. Additionally, the architecting process of DSS should no longer ignore the lack of reliability
in the estimation of costs for nano-satellite units and launch strategies that involve heterogen-
eous systems. Our architecting framework assumed a single-variable CER for the former, and
a worst-case greedy optimisation for the latter (Section 2.5.3, p. 61). While these allowed the
meaningful comparison of costs and the generation of figures of merit in Chapter 3, further re-
search efforts are needed to accurately estimate lifecycle costs for missions that are deployed
incrementally or which heavily rely upon small-satellite platforms. In this area, we acknowledge
the promising research conducted at NASA-ESTO in regards to the comprehensive TAT-C archi-

57 Cloud presence, variable humidity, the need for additional calibration measurements with secondary instruments,
etc.
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tecting framework (Le Moigne et al., 2017), the results of which were partially presented at the
time of writing this thesis.

The other two aspects (ISNand complex satellite operations) have beenpartially explored in
this thesis andwould also benefit from further research. Kennedy (2018) already noted the need
to consider agile satellite platforms in the optimisation of operations, an aspect that has been
neglected in all the recent research oriented to MPS for DSS. The incorporation of additional
satellite constraints and system dynamics (i.e. attitude control) could be deemed very critical,
since the addition of these characteristics could certainly improve the performance of the DSS.
In theMPS proposed in (Kennedy, 2018) this feature is assumed as plausible through the defin-
ition of a 60º ground-elevation mask, although not taken into account in the MILP formulation
and optimisation process. Conversely, we have not ignored the operational complexity of agile
platforms and have strictly scheduled image acquisitions with fixed nadir-looking instruments.
Nevertheless, the definition of our GA Scheduler and the encoding of chromosomes could nat-
urally allow the incorporation of single-axis control values (e.g. roll). In order to do so, one could
easily replace the binary encoding of chromosomes by integer alleles that could represent off-
nadir target angles. Doing so would require the modification of genetic operators, the imple-
mentation of additional constraint checks during fitness evaluation, and could certainly affect
the performance of the heuristic. Likewise, we also see value in representing DSS with higher
fidelity in the emulation of ISL. Should in-orbit satellite interactions be simulated in future stud-
ies, their ISL models would need to consider the particularities of the physical link (i.e. antenna
radiation patterns, BER) and the control of network-level aspects (i.e. medium access/packet
collisions, multi-hop routing protocols, etc.)

7.5 Final remarks and open discussion
The evolution of space systems is currently and constantly seeking the incorporation of amyriad
ground-based technologies that promise to improve the way in which we observe the Earth.
Some of themost audacious DSS propositions, if not all, are facing a change of paradigm that is
partly motivated by the Internet of Things, the extraordinary miniaturisation of computing plat-
forms, cloud computing and virtual services, and the recent advancements in machine learning
and artificial intelligence. Many of the research efforts seem to indicate that we should expect
thedevelopment of very complex satellite systems in the years to come. The capabilities of these
new architectures will inherit the years of experience of an industry that has always been con-
cerned with reliability and maximisation of value return, but may no longer give full control of
operations of the flying assets to human operators.

Aside from the technical difficulties and obstacles to solve, advancing towards autonomous
operations supposes yet another fundamental challenge to overcome: the conception of sys-
tems that truly operate under minimum influence of human operators. Given the huge financial
outlays of traditional systems, accepting that EO systems can operate in an utterly autonomous
manner is still dubious. However, like in many other areas in ground technology (autonomous
vehicles, UAVs, smart cities), many are the advancements that are constantly pushing to make
this paradigm change a reality. The future of Earth observation systems is very likely to benefit
from the design of systems that combine multiple sensing platforms and technologies in oper-
ating in networks and fully-autonomously. Autonomous systems that shall be able to observe
the planet aswell as to learn, react, and predict how to balance their actions and direct their as-
sets. Not only to adaptively maximise their aggregated capacities, but also to mitigate failures
and cope with structural changes. As system designers, we shall be ready to leverage the infin-
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ite possibilities that autonomous DSS could bring to the applications and global needs, namely,
real-time access to remotely-sensed data, extremely frequent or continuous refresh cycles, or
the seamless adaptation and assimilation of variable user requests and stakeholder interests.
These new systems and their delivery of comprehensive EO information products, will excel in
uncountable qualitative properties far beyond revisit times and latency. It is our understand-
ing that full-fledged autonomous DSS, will continue to be dependable alternatives to satisfy in-
numerable humanitarian, environmental, agricultural, industrial, and commercial endeavours.
The control of these far-fetched DSSwill relegate human operators to higher-level functions in-
volving strategic changes, the collection of massive amounts of information—not data—, and
themanagement of long-term contingencies. The Earth could, thus, be continuously monitored
and assisted by self-healing, self-organised, highly heterogeneous, and massive EO infrastruc-
tures that would create an ecosystem of machines at the service of humanity.

Whether this sophisticated but captivating paradigm shift will become a reality in the near
future, only time can tell.
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A
Simulating Earth-observing

autonomous satellite networks

A.1 Introduction
In the domain of Earth Observation, large-scale DSS—and specially single-instrument systems
implemented in small satellite platforms—aim at leveraging some of the benefits of modern
ground-based technologies. Many-core, parallel, and distributed computing systems, the Inter-
net of Things, energy efficient Systems-on-Chip, or Wireless Sensor Networks are just a few of
the technologies that have inspired and/or motivated the conception of distributed EO systems
and the proposition of audacious architectural solutions such as Federated Satellite Systems
(Golkar andLluch, 2015) or fractionatedspacecraft (BrownandEremenko, 2006). The taxonomic
characteristics of DSS have been summarised at the beginning of this document (see Chapter 1,
Section 1.1.3), where we have noted how many of the DSS archetypes are very dependent on
inter-satellite communications to operate and expedite their novel structural functions. While
communication is crucial in many of the DSS instances that require tight coordination (i.e. de-
centralised mission planning, flight formation, scattering manoeuvres in swarms or clusters),
the ability to form networks when spacecraft have different orbits is even more challenging.

FSS are perhaps one of themost clear examples of the need to design new networking con-
cepts that facilitate the autonomous interaction between spacecraft and which ultimately en-
able their value. By tradingwith and sharing underutilised spaceborne capacities, FSS concepts
envision the formation of virtual systems that agglomerate multiple flying assets. Such innov-
ativemission concepts—which are seen as an opportunity to amortise launch and development
costs and could spawn newmarket opportunities (Golkar, 2013)—suggest that EOmissions can
be composed ofmultiple networked satellites that provide or consume services froma space in-
frastructure. Thus, satellites embarking excess capacities (e.g. computational power, downlink
bandwidth) could share them with other federated nodes. These opportunistic coalitions have
the potential to be favourable to both ends: while providing a service can be a source of revenue
for ones, relying upon in-orbit services to accomplish the goals of the mission may foster a re-
laxation of system requirements and increase the flexibility of the others. Densely-populated
CubeSat swarms could be conceived as purely instrument-centric nodes that tether to other
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spacecraft to complete their function (e.g. to process raw data and download it to the ground
segment). In that sense, FSS are the natural extension—or complement—to the notion of relay
networks (e.g. TDRSS, EDRS) when these are applied to EO use-cases and are inspired by the
technologies enumerated above.

Despite FSSservicesnot being explicitly limited todata—i.e. in-orbit dataprocessing, relay,
storage, or download, are probably themost plausible and/or technologicallymature options for
FSS services—any of them would urge autonomous coordination mechanisms and decentral-
ised decision-making in order to carry them out without being hindered by the dynamics of the
system. Provided that these services trade with on-board resources, being able to manage and
share them in an autonomousmanner could be deemed a critical feature both for the reliability
of the individual nodes, and for the robustness of the infrastructure. Albeit not strictly part of the
concept definition, if satellites lacked the ability to manage their resources autonomously (i.e.
both to offer to, and request them from the infrastructure), the synergies of these systems-of-
systemswouldbe subdued to the timings of groundoperations and couldhave their applicability
and benefits reduced. Just like the definition of operations inmonolithic contexts does not con-
ceive low-level commanding of devices, nor the controlling of subsystemswhen ground stations
are not in contact with spacecraft, satellites in a federation would also be expected to operate
seamlessly when some of their structural functions would be provided by external nodes in the
federation. In this context, truly distributed, decentralised, and synergistic operations are ne-
cessarily enabled through in-orbit, autonomousdecision-making and inter-satellite communic-
ations (Lluch and Golkar, 2015a; Lluch et al., 2015). The same kind of autonomous coordination
is expected—and has been applied—in satellite swarms that maintain flight formation and re-
quire constant exchange of messages with neighbouring nodes.

Among many of the key enabling technologies (Selva et al., 2017), autonomous decision-
making and inter-satellite networking could be seen as two layers of the same structural func-
tion: the orchestration of decentralised operations inDSS (e.g. planning collective observations,
negotiationandexchangeof resources). Asamatter of fact, Chapter 6showedhowthenotionsof
autonomous decision-making and inter-satellite communications are extremely tied to one an-
other. In the proposition of our decentralised self-organising scheme—and other approaches in
thepast (e.g. Bonnet and Tessier, 2008; Damiani et al., 2005; Tripp andPalmer, 2010)—satellites
do rely upon message exchange to derive their optimal plan of actions. Similarly, the definition
of inter-satellite networks (ISN) would not be necessary in EO systems if spacecraft would not
transmit data through ISL (e.g. coordinationmessages, raw data to process, instrument data to
download, etc.) but since FSS is often articulated through the definition of a virtual mission in
which spacecraft exchange science data, designing the system at the network-level is crucial.

In this context, designers are faced with the need to propose and verify new network proto-
cols, federated negotiation approaches, or decision-making algorithms. The validation of these
software technologies usually entails the simulation of systems and their environment and the
generation of metrics to assess their quality. In the most simplistic case, satellite networks
could be modelled as simple nodes that orbit the Earth, ignoring their functions (i.e. sample
the surface or atmosphere of the Earth) and reducing their representation to communication
devices. Many network simulation frameworks could be used in this pursue, which facilitate the
modelling of moving devices (such as those in Mobile Ad-hoc Networks, MANET). However, the
de facto tools used by the industry and academia to simulate networks (e.g. QualNet58, OM-
NeT++59, NS-2/360) are tailored to ground applications and ignore scenarios where the com-

58 https://www.scalable-networks.com/qualnet-network-simulation
59 https://www.omnetpp.org/
60 https://www.nsnam.org/
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munication devices are complex systems per se (i.e. with a different function other than im-
plementing communications). Network simulators often provide a good collection of assets to
model and implement custom protocols, signal propagation models, and physical devices like
transceivers and antennae, but they hardly allow the implementation of non-network compon-
ents (e.g. a battery) or other environmental and state variables that have direct impact upon
links. Examples of the latter would be the Earth and its atmosphere, the state-of-charge of bat-
teries, attitude, pointing of ground station antennae, etc. The literature is certainly abundant
with works that tackle resource-aware devices and which rely upon network simulation tools to
demonstrate their designs. However, these works—and the tools they rely upon—usually ad-
dress WSN, MANET, or other systems in which the complexity of the modelled devices and the
environment is not comparable to that of a satellite nor a DSS. Likewise, none of the standard
network simulation platforms includemobility models for objects that orbit around the Earth or
are constrained by line-of-sight effects.

When spacecraft state variables (e.g. orbital position, recorder capacity, battery state-of-
charge) need be evaluated in simulation, aerospace practitioners often resort to dedicated soft-
ware tools that are tailored for space systems andmission analysis. Some of themost common
alternatives in this domain are AGI’s Satellite Tool Kit (STK), or NASA’s General Mission Ana-
lysis Tool (GMAT). These software frameworks provide a wide range of orbit propagation mod-
els (analytic/low fidelity like J2 or SGP4, semi-analytic/medium fidelity, numerical/high fidel-
ity like HPOP), and an extensive set of built-in tools designed to carry out integral mission ana-
lysis simulations (e.g. thermal, schedule of operations, instrument modelling, etc.) Due to their
broad adoption in multiple contexts, these simulators have often been paired with some of the
network simulation tools mentioned above in order to produce software ecosystems with both
functionalities; i.e. the simulation of space systems and networks. However, the combination
of these two components has been realised with different architectural approaches. A group of
researchers atNASAdiscussed the possibility to bindSTKandQualNet simulators to allow them
to run in parallel and synchronised (Barritt et al., 2010). This approach provides great simula-
tion accuracy given that each simulation tool receives intermediate outputs from the other and
mutually complement their emulation of functional and physical variables. Llatser et al. (2017)
also followed a similar approach in the implementation of a simulator for a similar domain: an
autonomous fleet of networked vehicles. The major drawback of this kind of architectural ap-
proach is the inefficiency that draws from synchronising two independent software toolboxes
that have not been designed to run in an integrated manner. The emulation of large-scale sys-
tems and/or the need to analyse a system behaviour at long-term (e.g. weeks, months) could
turn this lack of computational performance into a prohibitive cost for designers. A second al-
ternative is the sequential execution of aerospace and network simulation tools. This kind of
architectures, implemented in (Baranyai et al., 2005; Lluch et al., 2015), run several instances
of physics or aerospace simulators (STK, and others) to produce inputs that will be used in sub-
sequent executions of a network-level simulation tool (e.g. NS-3, QualNet). Despite ameliorat-
ing the computational performance, the main limitation in these contexts is the total inability
to simulate the impact of network or operational aspects in physical variables that have been
computed previously. Generally, network simulation engines are event-based, emulate vari-
ables in extremely small time scales (down to nano- or pico-seconds) and are asynchronous by
nature (i.e. state variables are not advanced for time pointswhere network components are idle.
Conversely, physical and aerospace variables could require numerical methods, and often rely
upon time-discrete models. When the output of the latter is used in network simulators, most
of the state variables need to be interpolated to obtain their corresponding values at the times
triggered by network events. Provided that the integrated simulation of spacecraft components
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(e.g. battery use) is not the focus of the study and the loss in accuracy due to interpolation canbe
assumed, the limitations of this approach could be deemed acceptable. However, the possib-
ility to emulate autonomous operations—both in FSS or other EO contexts—is simultaneously
concerned about on-board resources and the exchange of information among satellite nodes,
precluding the adoption of architectural approaches wherein the two domains are not unified.

The third and most relevant alternative is the development of fully-integrated tools that
comprise thesimulationofaerospacecomponentsandvariables, andcommunications, network
devices and protocols. This concept was explored by Merts and Barnard (2016), who presented
a simulation framework that relied upon Python’s SimPy network simulation library. Similarly,
Puttonen et al. (2015) proposed the Satellite Network Simulator 3, an extension to NS-3 that
included an orbit propagator and the definition of satellites as nodes in the network. Although
their design was not oriented to EO applications nor considered additional spacecraft compon-
ents, this work proved the feasibility of developing integrated tools that tackle the simulation of
networked space systems. Another example with similar characteristics is found in (Niehoefer
et al., 2013), which presented an Open Source Satellite Simulator implemented in OMNeT++.

In this context, we pose that similar approaches should also be adopted in order to simulate
EO DSS with the aforementioned level of detail. To the best of our knowledge, none of the pre-
vious works addressed the design of an integral simulation platform that facilitates emulation
of spacecraft components in a generic, extensible manner nor considered a layer for autonom-
ous, decentraliseddecision-making. Likewise, neither of thepreviousworkshave addressed the
simulation of EO systems and, most importantly, the measurement and evaluation the system’s
performance through EO metrics (e.g. revisit times, instrument coverage). None of the works
have explored heterogeneous networks of Earth-observing satellites nor have provided model-
ling environments to define small-satellite platforms and their limitations (a critical aspect in
the simulation of DSS). All these features are insofar lacking in any of the existing tools that
could be used to study and validate FSS concepts, ISN protocols, and autonomous operations.
While Chapter 5 presented a framework that was tailored to characterise the self-organisation
framework proposed in Chapter 4, this Appendix introduces the design of a generic simulation
platform oriented to simulate autonomous DSS networks.

The design presented in this appendix is part of an on-going project developed at UPC’s
NanoSatellite and Payload Laboratory (NanoSat Lab) that was briefly introduced in (Ruiz-de-
Azúa et al., 2018c).

A.2 Requirements for a Distributed Satellite System simulator
A software tool that should allow the emulation of DSS missions and networks will be affected
by two aspects that need be carefully considered during the design and implementation phases:
the inherent combination of processes that evolve in very different time scales, and the ability
to simulate a very large number of components (i.e. satellites and their internal subsystems).
In our case, we have identified three independent time scales that belong to three groups of
processes involved in the emulation: (1) networking and communications (in the order of mil-
liseconds to nanoseconds), (2) physical variables and control of subsystems (with changes oc-
curring in seconds), and (3) spacecraft operations andmission planning (comprising operations
that entailminutes todays). Fig. A.1 represents these threeprocessgroups inahierarchical view,
trying to suggest the notion that processes in longer time scales actually correspond to higher
abstraction operations that may eventually decompose into several lower-level, and faster op-
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Figure A.1: Time scales in integral simulation of DSS networks.

erations. As a consequence of these three different time scales, the emulation of a systemmay
also require different time spans. While some number of orbital cycles may suffice in the emu-
lation and verification process of a data routing protocol, extracting mission-level metrics like
revisit times may demand simulation spans in the order of one or more complete repeat cycles
of the constellation geometry. Combining the need to simulate long time periods and potentially
large-scaleDSS, undoubtedly forces us to propose software architectures inwhichperformance
and computational efficiency are two important factors.

On the other hand, a simulation environment needs to allow the definition of multiple sys-
tem cases. As a result, the software should rather be designed as a generic platform wherein
future researchers define their specific components and behavioural models. We deliberately
addressed the design of a platform in which the complexity of spacecraft components is not a
priori defined. As a generic platform, this software shall allow the definition of custom mod-
els that represent a satellite with the fidelity required by the experiment or test specification,
rather than the software itself. In some cases, researchers may need the definition of a num-
ber of satellite components to understand the low-level effects of some ISN protocol—and its
impact upon power or on-board memory—, whereas in other cases, defining a couple of sim-
plified resourcemodels (like the ones in Section 4.5.3) would probably suffice for the evaluation
of long-term mission performance of an autonomous constellation. In parallel to that, a gen-
eric simulation platform for DSS should allow the definition ofmultiple system scenarios and/or
contexts that could be simulated with the same spacecraft modelling fidelity. Consequently, we
identify two types of users for this simulation platform:

1. The system modeller that needs the ability to program specific spacecraft compon-
ents, subsystems, physical variables, network protocols, and behavioural controllers
(i.e. flight software and operations).

2. The user that leverages the availability of the above-mentioned spacecraft components
to configure and simulate different types of DSS.

The design of this software has tried to address both needs equally and proposed different
design and configuration environments to allow the flexible definition of a system and a simu-
lation case, along with a programming framework that facilitates the extension of the toolbox
with custom components.

Finally, two additional aspects are considered essential in a simulation environment ori-
ented to Earth-observing DSS: (1) the ability to represent the system and its state in a graph-
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ical manner, and (2) the generation of reports that quantify mission-level performance metrics.
Therefore, Section A.4 will briefly present the adoption of a third-party Graphical User Interface
(GUI), that can be extended to both visualise states and plot geo-located data.

A.3 Design
We opted to adopt the Network Simulator 3 (NS-3) as the core engine of this framework. NS-3
is a discrete-event network simulator for Internet systems, targeted primarily for research and
educational use. It’s providedasanopensourceplatformwritten inC++ that encompassesmul-
tiple libraries and components to emulate networks of different kind. The DSS Simulator is built
on top of this core to extend the library of components and provide an environment to represent
networks of satellites.

A.3.1 Software architecture

The architecture of this software framework is depicted in Fig. A.2. Divided in threemain blocks,
the architectural diagram also conveys the flux of information generated during an execution.
Users are expected to provide the definition of the system in structured configuration files.
These configuration files enumerate the components that will be generated and linked at run-
time by the simulation software in order to represent the desired scenario. The files detail the
specific components that compose a single satellite type, and configure their internal para-
metric variables (e.g. the capacity of a battery, the number of cells, etc). With the definition of
satellite types, a global configuration file determines the configuration of the DSS by providing
orbital characteristics for each node and the definition of the network protocol stack.

The software deploys the virtual DSS and hands the control over to the NS-3 event-driven
engine. The emulation of satellite states, communication, and operations are individually
tackled in three modules, as shown in the specific architecture of a satellite entity (Fig. A.3).
The architecture revolves around the definition of a network node (i.e. a satellite). Each satel-
lite object encompasses a set of protocol instances—the network stack—that are paired with
the definition of on-board capacities and can modify them during operations. This allows for
memory-intensive services (e.g. like those of a FSS) to actually produce an impact upon satellite
components and state. Likewise, communications of any kind (inter-satellite links or ground
station links) are also simulated functionally through network devices and transceivers that
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Figure A.2: Diagrammatic representation of the software architecture and data flow for the DSS simulator
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Figure A.3: Satellite architecture within the DSS simulator

belong to the networkingmodule but which do influence energy reservoir devices of the physical
module. The operations module implements user-defined behaviour (e.g. the self-organisation
rules, on-board scheduling of activities, flight software control). Leveraging the built-in fea-
tures of NS-3, these components are modelled as applications (i.e. the final entities in com-
mon TCP/IP protocol stacks). Their interface to communication devices is performed through
emulated sockets, that encode the messages and data within the chosen transport protocol.
Simultaneously, the operations layer has direct access to variables from the physical module
with which subsystem commands can be emulated and critical spacecraft states can be read.

The emulation of communications and satellite states generates data that is stored in in-
dexed database registers for later access and exploitation. Once the simulation is completed,
a post-processing process is launched which has two fundamental goals, namely, to prepare
session files for the GUI, and to generate performance reports both for network processes, and
functional aspects of the mission (i.e. Earth observation performance metrics).

A.3.2 Physical module

Providing a generic environment to define custom satellite components was considered crucial
to this software. As a result, we implemented a programming environment with which users can
define their own behavioural models in the physical module. Models are self-contained rep-
resentations of subsystems (e.g. EPS, instrument), devices (e.g. battery, recorder, on-board
memory), or arbitrary physical variables or states (e.g. attitude). We provided a generic Model

class that allows the implementation of these user-defined components and which facilitates
the following:

1. Implementationof stateupdates throughasingleuser-defined function that is iteratively
called during the simulation.

2. Seamlessgenerationof output variables the temporal evolutionofwhich isautomatically
recorded and is accessible for later exploitation.

3. Definition of a network ofmodels that interact to one another through input/output vari-
ables.

4. User-defined update cycles, both accepting asynchronous, event-based updates upon
changes in input variables, and periodic/cyclic updates with periods controlled within
the update block and allowing fine control of the duration of each individual cycle.
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Figure A.4: Generic physical model representation and state network

The physical module defines Model and additional components to provide the aforemen-
tioned functionalities. The design of these components is represented in the UML diagrams of
Fig. A.5 and Fig. A.6. Model-derived classes (i.e. those implemented by users) are given the abil-
ity to generate variables of type input, output, and state. Input and output variables (implemen-
ted in MInputand MOutput classes inFig. A.5, respectively) define theexternally visible interfaceof
amodel, which can be leveraged to connect these self-contained software entities to the opera-
tions module and to other models. While output variables are wrappers to user-defined objects
of any given type, inputs are very simple classes that facilitate the read-only access to the value
of outputs. State variables (MState) are not linkable with other components but are also auto-
matically recorded at every update. The update process of a model is determined by the finite
state machine depicted in Fig. A.4. User-defined code is implemented in the update state (i.e.
Model::update() function in Fig. A.6), which essentially reads inputs and sets the value of output
variables (externally accessible) and state variables. Upon every update, models can define the
next update cycle by calling Model::scheduleNextUpdate(). This function provides the following
semantics: it defines amaximum time interval duringwhich the outputs of a givenmodel can be
assumed constant if no input variable changes. Thus, if an input variable is modified, themodel
is updated regardless of its update time interval not being exhausted. Furthermore, we also
provided a means to mask out input variable changes to allow some models to only react upon
changes of specific variables. This could be especially necessary to implement purely periodic
components (i.e. those that will not be updated upon changes of any of their input variables but
only after a certain time interval), tominimise the computational burden, and to limit the amount
of redundant data in the results. The latter is particularly useful in cases wherein changes in in-
put variables are irrelevant for the state of a component (e.g. if a virtual satellite device is in a
“disabled mode”, changes to some of its inputs will not have any effect and its update can thus
be skipped altogether). Functions Model::updateOnChange and Model::canUpdate implement this
very functionality (Fig. A.6).

Asmuch as amodel can describemultiple kinds of spacecraft components, usersmay also
be inclined to define parametrised characteristics to re-use their models throughout multiple
simulation scenarios. Let the example of a battery be one ideal use-case of such feature. A
usermay bewilling to leave certain constant properties unset (e.g. themaximumcapacity of the
battery cell) in order tobeable to representmultiplebattery sizes fordifferent satelliteplatforms
and energy needs. The class ModelConfig in Fig. A.6 implements this functionality by essentially
parsing the configuration written in input user files into parameter arrays that can be accessed
during the construction of Model-derived objects.

User configuration files also define the network of models that represents a single satellite
platform. This network of models can be understood as a directed graph wherein edges corres-
pond to links between an outputs and inputs (Fig. A.7). The linking process is automated at the
early run-time stages and is implemented in the MVariableTable class. In order for the network to
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Figure A.5: UML diagram for the physical module (I): model variables.

Figure A.6: UML diagram for the physical module (II): models and configuration.
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be updatedwithout an iterative process, we force themodel network to define a directed acyclic
graph (DAG). Provided that the update of each individual node in the graph is only induced by
changes in input variables and internally defined time intervals, the update of a satellite state
is constantly updated in a partial manner, as depicted in the lower diagram in Fig. A.7. In the
illustrative example, models B, C, E and F have some input variables that can trigger updates
(identified in black). Assuming that all their outputs would change upon update, if model A is
updated then model B is also automatically updated. In turn, models E and C are also updated.
However, given that model D does not have input variables that trigger an update cycle, its out-
puts will not changed and will be bypassed to model E. Similarly, model F will not be updated
because its input variable F.1 has beenmasked and F.2 remained unchanged.

A.4 Graphical User Interface
The implementation of the Graphical User Interface is realised with VTS Timeloop, a third-party
software developed for the French National Centre for Space Studies (CNES) and used in mul-
tiple missions and software frameworks both at CNES and the European Space Agency. VTS
provides a configurable interface that can be used to display multiple kinds of space systems,
state variables, and projections. The software defines a custom data protocol based on plain
text files with which users can provide the data to visualise. Some of the benefits of VTS include,
but are not limited to:

• Flexibility and reliability to display any kind of systems (be it EO DSS, single-satellitemis-
sions, extraplanetary probe missions, etc) and their variables of interest. The software
has been used in some areas of the operations for ESA programmes and missions, in-
cluding SMOS, or Rosetta.

• Providesbuilt-in visualisationmodules (e.g. Celestia, SurfaceView) that facilitate the rep-
resentation of systems in 3D or planar Earth projections.

• Is well documented and extensible. VTS can be paired with custom visualisation engines
that implement their communication interface. Thus, multiple views of the system are
seamlessly synchronised and controlled from VTS.
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Figure A.8: Graphical User Interface: VTS Timeloop, surface view representation

• Visualisation can be either in real-time (i.e. from a constant streamof data) or fromprevi-
ously computeddata stored in files. TheDSS implementation leverages this secondmode
of operations (i.e. offline) to let users observe the results of a simulation with full control
of time.

• At the time of writing this document VTS was an actively maintained project, receiving
periodic updates and new features.

• It is freeware and endorsed by competent actors in the space industry (ESA, CNES).

A.5 Summary
This appendix has motivated the design and implementation of ad-hoc simulation software
frameworks that can represent and emulate complex DSS for EO. The purpose of the presented
design is twofold: to enable the simulation of autonomous DSS, and to emulate ISL commu-
nications with fidelity. This software is an on-going research project at UPC’s Nano-Satellite
and Payload Laboratory that is briefly introduced in (Araguz et al., 2019b; Ruiz-de-Azúa et al.,
2018c) and is expected to be released in the months that follow the publication of this docu-
ment. The software will be licensed under an open source agreement and is aimed at becoming
an extensible support tool for future research groups. Implemented on top of the NS-3 core,
the simulator encompasses a programming environment through which custom satellite com-
ponents can be modelled and controlled, as well as a user configuration area that facilitates
the definition of multiple different DSS contexts. We have briefly presented how the architec-
tural definition of a satellite is composed of three uniquemodules: operations, networking, and
physical. Satellite behaviour (e.g. modes of operations, execution of tasks) and flight software
is emulated in a the operations module, which leverages NS-3 components and is internally
implemented as the application layer of a network node. The physical layer encompasses as
many self-contained representations of subsystems, devices, or abstract models provided by
the user. Finally, the networking module allows the user to define their own custom network
stack, enabling the design, implementation, and verification of new ISN protocols that could
be critical technological enablers for Federated Satellite Systems and other networked DSS
approaches.
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B
Design guidelines for general-purpose

payload-oriented nano-satellite
software architectures

The contents of this appendix have been reproduced fromC. Araguz,M.Marí,
D. Selva, E. Bou-Balust, and E. Alarcón. “Design guidelines for general-
purpose payload-oriented nano-satellite software architectures.” published
in Journal of Aerospace Information Systems 15.3, AIAA (2018), pp. 107–119.

The design of nano-satellite platforms usually entails COTS components or miniaturised sub-
systems that are specifically designed for themost widespread standard in industry: the Cube-
Sat. This is certainly true for hardware components, but is not always the case in the software
domain. Designers are often provided with operating systems, middleware, and tools that can
assist the implementation of their flight software in a reliable manner. The use of these de-
pendable resources is indeed recommended since many of the libraries and pre-packed soft-
ware componentsare extensively testedand verified for their use in safety-critical environments
(e.g. RTOSes). However, just like the integration of hardware is not the mere fact of juxtaposing
physical components, the design of software architectures also requires a careful engineering
process that will bring the required qualities to the flight software. In this paperwe surveyed the
most critical qualities and techniques and laid out generic recommendations for the design new
software architectures oriented to nano-satellite missions.

B.1 Introduction
Nano-satellites have become an affordable alternative formany companies, research organiza-
tionsanduniversities toaccess the spacemarket, bothas consumersandproviders. Usually de-
ployed in Low-Earth Orbits, nano-satellites have proven to be suitable platforms for technology
demonstration (Bowmeester and Guo, 2010), a variety of Earth observation and remote sensing
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purposes, science and research (e.g. Kitts, 2007) and many other space applications such as
low-power communications or maritime activity surveillance (e.g. Bønding et al., 2008).

Either adopting the CubeSat design philosophy and standardised structure, as in the 3U-
based FLOCK constellation by Planet Labs (Boshuizen et al., 2014), or designing spacecraft
busses that take up less than 60 cm per side61 like NASA’s CYGNSS constellation (Ruf et al.,
2013), nano-satellite platforms have already been adopted by agencies, small and large corpor-
ations and have have been developed under many educational programs since the appearance
of the CubeSat standard. While the latter types of missions tend to be fully designed, imple-
mented and operated by heterogeneous teams at universities and are generally less demanding
in terms of accuracy and reliability, the vast presence of university-developed nano-satellite
missions is a clear sign of the ongoing democratisation of space and the constant exploration of
small spacecraft’s science return capabilities. On the other hand the interest and adoption of
these types of platformsby the industry (e.g. (Ehrenfreund, 2014; Vuolo et al., 2013)) evidencesa
clear paradigm shift and suggests a complexity increase for futuremission architectures based
on nano-satellite technologies.

Albeit this situation has led to the development of multiple successful, monolithic nano-
satellitemissions, lately, the adoption of this class of spacecraft has alsobeen considered espe-
cially favourable for the development of newmission architectures such as fractionated space-
craft, satellite constellations and swarms (Barnhart et al., 2007). The combination of several
instruments hosted at different nano-satellites has been envisaged as an enabler for new Earth
observation missions with enhanced performance and improved system qualities (Selva and
Krejci, 2012).

In this scenario, some companies have already been offering software components, hard-
ware modules and complete subsystems that are compliant with the de facto standard (i.e.
CubeSat Units), ranging from complex Attitude Determination and Control Subsystems (ADCS),
to Electrical Power Supplies (EPS), robust communication protocols, low-power on-board com-
puters or Real-Time Operating Systems (RTOS). These andmany other CubeSat-compliant com-
mercial components, facilitate the development and integration of spacecraft and remove the
burdenof designing and testing somecritical subsystemsandmodules. Thus, apart fromcoping
with the complex task of integration, most nano-satellite developers ultimately focus on the de-
velopment of mission-specific payloads and, most importantly, the design and implementation
of custom flight software that controls the spacecraft at device- and system-level.

Given that software is usually understood as the final architectural element to achieve
the desired functionality, less attention has been placed on software-related issues during
the emergence and consolidation of the CubeSat era. However, software and its architectural
characteristics can be critical for the management of the mission; their correctness severely
affects the functionality of the spacecraft. As amatter of fact, designing proper software archi-
tectures is also essential to achieve system-wide qualities such as reliability and performance,
and should not be understood as the mere fact of writing functionally correct programs.

In this context, this paper poses the need for improvement and explores the qualities and
characteristics of nano-satellite systems. By identifying critical functionality and architectural
requirements, thispapermotivates theapplicationofadesignmethodology fornewdesigns that
is composed of three essential guidelines, namely:

61 NASA’s CYGNSS spacecraft measures 18 x 42 x 60 cm when stowed, although this volume mostly accounts for the
GNSS-R antenna and solar panels.
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1. Payload-oriented modularity: emphasises the importance of proper encapsulation and
generalisation of low-level components in order to adapt software architectures to the
needs of multi-payload missions and fast development cycles.

2. Robustness through hierarchical decomposition: aims at structurally reducing error
propagation and intends to minimise the complexity of critical system control parts
by decoupling them from hardware and low-level modules.

3. On-board planning capabilities: provides a set of minimum components that can en-
hance the autonomy of a spacecraft by virtue of automatic generation of mission plans
and robust execution of tasks.

This set of design guidelines, summarised in Fig. B.1, are presented as generic overarch-
ing characteristics rather than implementation features. Thus, they can be applied vertically
throughout a whole flight software framework. Furthermore, due to the fact that specific in-
dustry standardsarenot considered in this study, thesedesign guidelines canbeembracedboth
by educationally-based programs and by industries developing their spacecraft, contributing,
thus, to the foundations of future-generation nano-satellite software architectures.

This paper is organised as follows: Section B.2 and Section B.3 identify the critical qualities
and features that modern nano-satellite software should improve. Section B.3 explores tech-
niques to do so by revisiting and structuring knowledge hitherto presented in literature. Sec-
tion B.4 derives the set of generic design guidelineswhich can be adopted at architectural levels
and which improve the selected system qualities. Finally, Section B.5 illustrates the application
of these design criteria with an instance of those guidelines in the flight software architecture
of the 3Cat-1 nano-satellite mission.

Architectural Requirements for Nano-Satellite Software Architectures
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Figure B.1: Visual summary of common desired functionalities, qualities and characteristics of nano-
satellites, critical architectural requirements for their on-boardsoftware, andhowtheymap to threedesign
guidelines.

243



In pursuit of Autonomous Distributed Satellite Systems C. Araguz

B.2 Identifying the architectural requirements for flight software
Determining the essential requirements for nano-satellite flight software requires the assess-
ment of both their functional traits, the particularities of this type of systems, and the desired
all-encompassing qualities. The impact of these three aspects upon the design process is prob-
ably common to that of many engineering fields, and their interaction needs be taken into con-
sideration just as much as they need be individually considered. Functional requirements es-
sentially describe the behaviour of the system (internal and external) and can easily draw spe-
cific structural design requirements: functions can easily be decomposed into blocks and their
interrelationships. On theotherhand, thespecificsystemcharacteristics, or its context,will also
reveal indirectdesign requirements that shouldbewell studiedatdesign time. Notonly these re-
late to the limiting conditions under which the system operates (e.g. intermittent or continuous
operation, influenced by external factors thatmay cause failures, setting amaximumnumber of
concurrent operations) but they also encompass particular details of the development process,
such as: whether they need to be produced in mass, or not; the types of devices on top of which
the softwarewill run; howmuch of the designwill need to be changed andwhich partswill suffer
greater modifications; etc. The number of possible functions and specific system characterist-
ics can be vast and is out of the scope of this study. Instead, the present analysis is interested
in common aspects that do apply in most nano-satellite missions and which can translate to
generic design requirements.

Indeed, this set of generic requirements is very muchmotivated by functional characterist-
ics, system limitations and external conditions. However, these factors also enforce high-level
attributes of a software architecture, which can also be grouped and studied under the term
of quality attributes. Accordingly, a software architecture should not only define the system in
termsof tangible actions, relationships or functionalities but it shouldalsoplay a significant role
in achieving these system-wide quality attributes. Designing a suitable architecturewill allow or
preclude just about all of a system’s characteristics, thereby leading the goodness of a software
architecture to strongly affect the integrity of the whole system.

The IEEE Standard for a Software Quality Metrics Methodology (IEEE, 1993) defines soft-
ware quality as the degree towhich the software possesses a desired combination of attributes.
These non-functional attributes of a software system (e.g. reliability, performance, usability)
canmap to specific, yet high-level, requirements andmay often be intertwined with each other.

The set of quality attributes one can use to assess a particular software architecture dif-
fers depending upon the source. Somuch so that lexically similar or identical qualities can have
different names and the same quality can be found with slightly different definitions. The con-
sideredattributes and their definitions in this paper are taken from the standards in (IEEE, 1990,
1995; IEEE/EIA, 1998; ISO, 1991) and references (Anderson, 2010; Clements et al., 2001). Note,
however, that because they relate to qualitative aspects, assessing them quantitatively is often
a very subjective exercise that has not tackled neither in the cited works nor in this analysis. In
order to minimize semantic ambiguities and provide a more generic set of requirements, this
paper proposes three groups of quality attributes that encompass many of the specific ones
discussed in the references. The requirements proposed in this paper, justified in detail in the
following sections, are: (a) robustness, (b) modularity and scalability and (c) autonomy. These
quality attributeswill ultimately bemapped into three independent design rules later in this pa-
per.

Aside from possible inter-dependencies, software quality attributes may be conceptually
bound to the desired functionality and external limitations of a system. In other words, some
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system limitations and functional requirements will force some of this qualities to become ac-
tual requirements. As an illustration of the latter statement, consider a case in which a soft-
ware needs to process large volumes of data (function) but is forced to run in a computationally-
limitedhardware (systemcharacteristic). While, in this case, the software architecturewould re-
quire a certain performance, if the software would run on several different platforms, one would
say that the software needs to have high portability. This conceptual binding between function-
alities, system characteristics and the high-level qualities of a software, are graphically repres-
ented in B.1, for the groups of attributes proposed above.

B.2.1 Robustness

Space applications are subject to countless sources of failures. While the effects of ionized
particles in the on-board semiconductors, such as Single Event Upsets (SEU) and Single Event
Latchups (SEL) are one of the most common sources of errors, other situations like one-time
subsystem malfunctions, power or communication failures can cause a variety of run-time er-
rors. In order to protect their microcontrollers and memories against SEU’s and SEL’s, large
spacecraft are often equipped with radiation-hardened devices that can withstand greater
doses of ionizing radiation. Contrarily, nano-satellite designs hardly include such devices, usu-
ally owing to the spacecraft limited power andmass budgets and sometimes due to the habitual
use of regular COTS components.

Similarly, large satellites also combine the use of rad-hard technology with sophisticated
real-time operating systems, hypervisors and middleware which present reliability guarantees
and provide the foundations for robust software environments. The latter types of products,
however, are not restricted in nano-satellite developments. A good example of these can be
found in NASA/GSFC’s Core Flight Executive and Core Flight Software62 (cFE and cFS), an open-
source middleware which is available for some open-source kernels63 (e.g. RTEMS, Linux) and
which can be used to develop flight applications. The cFS/cFE middleware is a comprehensive
flight software framework that extends the Operating System and provides common services
andamyriadof re-usablemodules. Adopting thesemayameliorate the robustnessof thesystem
since this products have been exhaustively tested and verified (Ganesan et al., 2009). Regard-
less of this suite already being tested in NASA’s nano-satellite missions (Cudmore et al., 2015),
its adoption is still not broad enough and many current developments are still implemented on
top of simpler, commonly known operating systems (e.g. FreeRTOS or standard Linux kernels),
which lack most of the reliability guarantees of additional, space-qualified middleware.

In these situations, the mission software should be able to withstand the system’s failures
and correct them. From an architectural standpoint, not considering qualities like recoverability
or reliability during the software design process poses a risk to the mission and could become
one of the causes of a global breakdown. While the reliability of an architecture is related to the
ability to perform the required functions without failures or within a bonded failure rate, recov-
erability emphasizes how good the recovery strategies are. In order to recover from a fault or
unexpected state, one may argue that the architecture needs to be designed with robust sys-
tem state control and some kind of error detectionmechanism. Because of that, this evaluation
framework considers critical to implement the available architecturalmethods and alternatives
to achieve robust software, also in nano-satellite programs.

62 https://cfs.gsfc.nasa.gov
63 Please note that at the time of writing this paper, FreeRTOS support for cFS/cFE was already in development but had

not been officially released as part of NASA’s Operating System Abstraction Layer (OSAL).
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B.2.2 Software modularity and scalability

During the last years, developing, launching and operating high-density constellations of nano-
satellites started to become a reality. Ventures like the one started by Planet Labs have planned
to operate constellations of up to 200 homogeneous units (Boshuizen et al., 2014) in order to
offer Earth imagery at medium-resolutions (3-5 m) with daily revisit times. The capabilities of
satellite constellations consisting of many nano-satellite units are promising and suggest the
need for modular architectures, also from a software viewpoint. As a matter of fact, next gen-
eration constellations should not necessarily involve identical units orbiting at different orbits
but could also encompass a set of heterogeneous nano-satellites orbiting closer and commu-
nicating with one another. In that scenario, software architectures not only need be replicable
but shall be variable enough to attain the control of a diversity of payloads.

Simultaneously, many nano-satellite programs tend to continue their activities after a suc-
cessful mission and develop new generations of spacecraft based on their previous designs. In
this context, designing reusable systems does have a significant importance in order to reduce,
even more, the development times of future nano-satellite units.

As technology advances, new, smaller, less power-consuming and more capable devices
and modules will surface. Nano-satellites will, then, increase their payload capacities and will
likely require flight software capable of controlling and interfacing more subsystems. The need
for scalable and flexible software architectures were modules can be added, changed or re-
movedwithout affecting the core of the architecture therefore becomes evident. In this respect,
several attributes can be studied to asses how complex it is to modify an architecture to some
extent. Terms such as variability, extensibility and subsetability reflect the ease with which a
software architecture canbemodified to producenewdesigns that differ in specific, preplanned
ways and assess the required actions to do so. Similarly,maintainability ormodifiability also ex-
press the ease with which a software system or component can be modified to correct faults,
improve some characteristic or adapt to a changed environment. When the changes are exogen-
ous to the software architecture itself, one can study the portability of the design by assessing
howcomplex it is tomigrate it fromoneplatform64 to a different one. Withmore or less emphasis
in each of them, this set of qualities are deemed essential in this study and will be considered
when deriving specific design guidelines in the sections that follow.

B.2.3 Spacecraft autonomy

There are many different factors which suggest that nano-satellites be provided with a certain
degree of autonomy. To begin with, observability in satellites can be extremely constrained. De-
pending on the orbit altitude and inclination and the location of the ground stations, satellites
in Low Earth Orbits (i.e. most nano-satellites) can establish communication links in the order of
up to 4-5 times per day, with durations in the range of 5 to 10 minutes, approximately. Assum-
ing good elevation conditions for the ground station antennae, nano-satellite operators might
be able to communicatewith their spacecraft during 30-45minutes every 24 hours if occasional
link deterioration caused by environmental factors is not considered. Consequently, the amount
of information that can be downloaded from a LEO satellite is extremely restricted, let alone the
limited data rates often found in nano-satellite systems.

These communication restrictions may preclude mission operators from reacting to unex-
pected failures with agility and could lead the satellite to remain in safe modes for long periods
after an error is detected. Intermittent communications thus worsen the spacecraft perform-

64 Here the term “platform” can refer to either the underlying hardware modules, or the CPU architecture, or the OS.
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ance if science opportunities are missed during the latter situation. Conversely, autonomous
spacecraft that can replan their activities not only will improve the spacecraft’s data acquisition
capabilities but will also ameliorate the mission’s robustness.

On the other hand, limited telemetry bandwidth could prevent the retrieval of fine-grained
states of the satellite. When satellite actions and resource allocations are planned in the ground
segment, not knowing the state of the spacecraft with enough accuracy can negatively affect
the way they are computed. Combining spacecraft state uncertainties with the uncertainties
inherently found in space environments may, in addition, turn the plan generation into a very
complex endeavor.

Furthermore, autonomousspacecraft canalsodeliverhigherqualitydata if theyareprovided
with algorithms that intelligently optimize the data collection and download. This capability is
not new for large spacecraft and has been demonstrated in the past for several satellite mis-
sions. An example of this is NASA’s Earth Observing One (EO-1), a spacecraft which performed
on-board data analysis and replanning to optimize the volume of data downloaded to ground
(Chien et al., 2005b). The three-tiered software architecture in EO-1 encompassed a scheduler
module (CASPER) that was able to replan activities, including downlink, based on science ob-
servations in the previous orbit cycles. Although computing resource allocation and performing
data analysis on-board demands higher computational capabilities, the same on-board plan-
ning software was successfully integrated in the IPEX nano-satellite mission in 2013 (Chien
et al., 2012c), demonstrating that this class of satellites can also support and benefit from the
sophisticated algorithms present in autonomy systems.

Notwithstanding the fact that the commented autonomous capabilities are common in
large satellite missions, many nano-satellite operation approaches are still relying upon the in-
teraction of spacecraft with ground segment controllers. When nano-satellites pass over their
ground stations, they receive sequences of time-tagged telemetry commands whose execu-
tion is statically scheduled at ground. Modern approaches are those implementing goal-based
operations, where ground operators only modify the mission goals and allow the spacecraft to
autonomously schedule its activities to meet the current goals (de Novaes and Vieira, 2013;
Wojtkowiak et al., 2013). Mission goals inherently encapsulate complex and flexible command
sequences that will be decomposed on-board, and are not accompanied by a fixed execution
time. This type of approaches, in which nano-satellites would be more autonomous, improve
the mission performance by allowing the spacecraft to optimize the timeline of actions not only
based on the state of resources and subsystem but also with a given degree of awareness of
captured data quality. Nano-satellites with instruments that can only operate under certain
conditions (e.g. optical imagers are generally constrained by lighting and cloud-coverage con-
ditions) could autonomously decide when to enable their instruments based on predictions (e.g.
lighting conditions) and on-board analysis of data (e.g. cloud coverage), thus saving power and
storage efficiently.

Having explored the system characteristics, qualities and common functional aspects, this
paper proposes this framework of three essential requirements (robustness, modularity and
scalability, and autonomy) to be applied during the design process of future nano-satellite soft-
ware. The items presented in the framework have essentially arisen from the technological con-
text and current trends in the small spacecraft community: while CubeSat-based systems have
proven to be a time- and cost-effective alternative to develop high-performance, complex space
systems, the number of nano-satellite programs is growing incessantly. All the aforementioned
architectural requirements are achievable through software engineering efforts and encompass
many of the quality attributes found in architecture evaluation methods.
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Whereas there aremany systems described in the literaturewhich improvemost of the crit-
ical qualities (reliability, flexibility, autonomy, performance, etc.) their descriptions and designs
have been presented and addressed from their particular mission standpoints, preventing their
architectures, components and techniques to be generally applied in different contexts. It is
the purpose of this paper to explore some of these techniques and designs and to derive a set
of design guidelines that satisfy the requirements presented in this section and which can be
generally applied in new software architectures for nano-satellites.

B.3 Review of Current Solutions
This section gathers a compendium of architectural concepts and design techniques that are
present or have been applied in successful programs. While some of the items of this list are ba-
sic conceptswithwhichmost software engineerswill be familiar, all of themcanbe concurrently
embraced at the design phase as a means to improve some of the essential quality attributes
for nano-satellite flight software.

B.3.1 Process isolation and protected shared resources

Time and Space Partitioning (TSP) are well-known techniques in the aviation and space indus-
tries to deliver robust software. TSP kernels and middleware allow one computer to be used
for many different applications and the controlled use of the system’s shared resources (i.e.
memory, I/O devices...) Applications executed using a TSP approach have their memory regions
protected from the rest of the processes and are executed within deterministic time slots man-
aged by a global hypervisor running on top of the OS. While Inter-Partition Communication is
reliably managed and guaranteed by intermediate layers, this approach allows high-level ap-
plications to be executed seamlessly without affecting other computer components upon their
failure.

Applying time and space protection for the applications running in spacecraft is a com-
mon and recommended approach that can be found in many spacecraft designs (Windsor and
Hjortnaes, 2009). Nonetheless, it may require the utilization of specific RTOSes or middleware.
The idea of process isolation, however, is also implemented in widely known kernels like Linux.
These operating systems are, on the contrary,muchmore available and known than specific TSP
products and they naturally provide process isolation (i.e. a virtual address space for each pro-
cess). The use of Linux in small satellite developments is not new (e.g. Chien et al., 2012c; Evans
andMerri, 2014; Limesandetal., 2015;ManyakandBellardo, 2011; SchmidtandSchilling, 2008;
Tian et al., 2012) andalso owes to the inherent useof readily availableCOTScomponents (i.e. on-
board computers). In Linux-based designs, however, the mechanisms to control the access to
shared resources (e.g. storage devices, communication ports, etc.) should be carried out separ-
ately, since most Linux drivers are not designed to provide such feature.

B.3.2 Real-Time Operating Systems

The utilization of real-time software in the nano-satellite community is highly accepted and re-
commended. Programming flight software applications in real-time environments is essential
to guarantee the execution of critical processes. While priority-based real-time systems imple-
ment reliable scheduling algorithms that prevent task priority inversions, inter-task communic-
ation and synchronization services provided by real-time kernels also allow the deployment of
complex architectures.
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Figure B.2: PolySat’s Second Generation Bus software architecture. Extracted from (Manyak, 2011) and
adapted.

Most modern RTOSes support many of the processor architectures found in spacecraft
computers (e.g. PowerPC, ARM, SPARC...) The availability of hard-real-time OSes ranges from
industry renowned products like RTEMS65, VxWorks66, QNX67, LynxOS68 and so on, to small-
footprint, free and/or open-source alternatives such as FreeRTOS69 or µC/OS-III70. On the other
hand, in the list of real-time alternatives one can also include Linux patches, such as PREE-
MPT_RT71 or Xenomai72. These options, which provide soft-real-time capabilities to standard
Linux kernels (e.g. priority-basedpreemptive scheduling), canalsobe suitable for nano-satellite
developments although their timing capabilities (i.e. latencies) are not comparable to special-
ized hard-real-time products.

B.3.3 De-embeddable core and safe devices

Architectural approaches to improve software robustness can be found in multiple nano-
satellite designs. An easily applicable example can be found in the flight software developed at
California Polytechnic State University, for their series of CPx nano-satellites. Fig. B.2 shows the
two-tiered PolySat’s software architecture, consisting of the Processes and Libraries layers, de-
ployed on top of a Linux kernel. Theprocesses layer encompasses the so-called staticprocesses
(i.e. processes which are always active) and the temporary processes (i.e. are launched on-
demand). Depending on their functionality and criticality, static processes are sub-categorized
into system or mission processes, clearly identifying the main platform modules. In addition,
the libraries layer, which provide services and hardware interfaces to the processes layer, is
also logically divided into a set of basic libraries (“PolySat Library Base”) plus an extension set
(“PolySat Library Full”).

Their reusable software architecture has been the main controlling software on-board CPx
spacecraft and is characterized by presenting two modes of operation, namely, degraded- and

65 https://www.rtems.org
66 https://www.windriver.com/products/vxworks
67 http://www.qnx.com
68 http://www.lynx.com/products/real-time-operating-systems/lynxos-rtos
69 http://www.freertos.org
70 https://www.micrium.com/rtos
71 https://rt.wiki.kernel.org
72 https://xenomai.org
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full-mode. In degraded-mode, the on-board computer only runs critical processes which do not
access devices that are sensitive to radiation damage (i.e. NAND storage device). These critical
processes implement theminimal functionality for the satellite to be operable and are respons-
ible to switch to full-mode once the contents of the NAND device have passed an integrity test.

Designing software architectures with de-embeddable cores that require aminimum set of
hardware components to run,may allow ground operators to keep control of the spacecraft even
whenparts of the systemareunusable. In the lack of redundant systems, this kind of techniques
can enhance the overall robustness of the systemand ameliorate the lifespan of the spacecraft.

B.3.4 FDIR methodology

Fault Detection, Isolation and Recovery techniques are quite spread among space applications
and have recently landed in the nano-satellite community. FDIR systems externally monitor
system variables and infer the occurrence of errors by checking their expected values, usually
against a predefined model. In the event of failures, FDIR systems detect their severity and ap-
ply some actions to isolate, circumvent and solve the errors, whenever possible. Implementing
safe modes where the spacecraft can safely remain upon the occurrence of errors is a common
technique that allows ground operators to return the system to a desired state andmay prevent
loss of contact.

Despite thehigh computational load required to run complex FDIR systems, there havebeen
nano-satellite missions that considered them to some extent. On one hand, Technical Univer-
sity of Delft has applied FDIR analysis on their DelFFi program (Bräuer, 2015) by studying how
to detect and isolate failures in several subsystems and devices (e.g. deployables, UART, I2C,
memories). Their analysis resulted in a set of procedures and rules to trigger state transitions to
safe modes and/or to signal the errors.

Among theactive small satellite initiatives, ESA’s 3UCubeSatOPS-SATencompassesaded-
icated FDIR computer which monitors each payload board through a modular controller (Evans
and Merri, 2014). Apart from the ability to monitor houskeeping data coming from the OBC and
reacting to a small set of telemetry commands, the FDIR computer is able to circumvent Single
Event effects (i.e. SEU, SEL) by electrically isolating the payload boards from the system bus.

B.3.5 Dynamically-linked libraries

Segmented software implementations which consist of a set of programs, libraries and drivers
can be partially updated by only replacing some of their fractions. While shared libraries offer
the possibility to encapsulate reusable code outside the kernel that can be loaded or called by
several programs, the fact that they are easily replaceable significantly increases the update-
ability and modularity of the system as well. Furthermore, since nano-satellite communication
channels impose severe constraints on the volume of data that can be transferred, maximizing
the software modularity should be deemed essential when designing in-orbit firmware update
methods. A common updatemethodology is the application of patches to the software binaries.
Usually, patches consist of new program data appended to the existing binary and accessed
through jump instructions injected in specific program locations. Although this method can re-
duce the uploaded volume of data, its complexity is critical and may imply longer development
and test times. Systems based on dynamically-linked modules could ease this procedure by
allowing the replacement of the whole module (both in-orbit or during integration stages).
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Figure B.3: AAUSAT3’s software platform. Adapted from (Bønding et al., 2008).

PolySat’s design philosophy actually followed this approach, resulting in all the basic soft-
ware features being implemented in shared libraries. Linux-based operating systems include
the Dynamic Linker, a component that loads and links shared libraries needed by the execut-
ables at run-time. Although updating a software architecture in-orbit could be accomplished by
securely replacing programs and library binaries through telemetry commands, the most valu-
able advantage is the ability to upgrade a componentwithout recompiling normodifying the rest
of the architecture (e.g. kernel, drivers, other components…)

B.3.6 Centralized vs. distributed approaches

Regardless of the system topology being an extrinsic characteristic to software engineers, the
choice of one or another notably affects the design of the software architecture. Themajority of
nano-satellites are centered around a single on-board computer that controls each subsystem
though low-level, interfacemicrocontrollers. Even though this systemarchitectures inflict a risk
on the mission if the OBC presents a failure, the complexity of the system is reduced given that
most computations are performed on the same device. Communicating software components
within the same environment is easy and achieved through kernel services (e.g. pipes, message
queues, shared memory heaps…) Nonetheless, distributed approaches have also flown in pre-
vious missions, such as the one presented by the AAUSAT3 (Aalborg University, Denmark).

AAUSAT3’s software architecture (Bønding et al., 2008) is based on a set of applications that
run on top of the platform’s software stack: the bootloader, the kernel and a collection of librar-
ies (Fig. B.3). Although the system architecture of the AAUSAT3 did not allow to migrate all the
applications to different nodes (i.e. some of them rely on hardware components which are only
accessible at their node),missing onemoduledoesnot necessarily imply a globalmissionbreak-
down. While isolation of components running in different nodes and application concurrency
is achieved naturally and effortlessly, distributed approaches remove single-points-of-failure
(SPoF) thanks to the replication of baseline components (on-board computer, OS…)

B.3.7 Software redundancy

Hardware redundancy is usually prohibitive in nano-satellites due to its cost and complexity.
However, implementing redundancy at the software level is achievable and can solve some of
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the effects caused by SEU. Two possible types of software redundancy are envisaged and are
listed as follows:

a) Data redundancy: the authors of (Hishmeh et al., 2009) state that critical data may be
redundantly stored within amemory device to be able to recover fromSEU effects. They
applied this technique for the KySat-1 flight software, an educational CubeSat project
by the Kentucky Space Consortium. The KySat-1 stored three copies of sensitive data
on the on-board EEPROM to ensure its integrity in the event of a bit-flip caused by ra-
diation particles. Although this technique might not be applicable for large volumes of
data, it could be a suitable solution to protect critical, non-volatile system parameters
or temporary scientific data.

b) Bootloader redundancy: storing the boot images in Triple Modular Redundancy (TMR)
memories prevents the on-board computer from starting with a corrupted image and
has been implemented in some programs (e.g Tian et al., 2012). Despite TMR being a
hardware technique, the concept of triplicating and voting a system image can also be
performed in software within a single memory chip. Albeit less robust, the improve-
ment can be adopted with little extra cost, mainly in terms of complexity, in many
nano-satellite programs. The AAUSAT3 can easily illustrate the idea. Engineers of
the AAUSAT3 program designed a CAN-based bootloader that can start any given ap-
plication on the spacecraft boards (Bønding et al., 2008). This bootstrap system, which
was designed in conjunction with the so-called Software Image Server (SWIS), was in-
tended to perform firmware updates securely (i.e. if an application fails, the system can
return to the previous version or switch to a different one). Notwithstanding, the SWIS is
essentially a system that can store redundant copies of a boot image and reliably select
and correct corrupted ones. Similarly, on-board computers with sufficient capacity in
their ROM devices could implement simpler concepts to protect the most critical data:
the kernel image.

B.3.8 Other techniques towards robust software

The literature coversplenty of software techniques toachieve robust softwarewhichare suitable
in nano-satellite developments. Although describing them all is not the object of this paper,
this section concludes with three valuable design concepts that may mitigate or help to detect
problems in small spacecraft platforms.

1. Robust communications: exchanging information between two entities is often critical.
Processes and modules may communicate to send system commands and their re-
sponses, system variables or sensitive data (e.g. subsystem configuration parameters).
In some cases, this information exchange may be performed over unreliable commu-
nication channels or may be affected by SEU effects. In order to prevent unreliable
delivery of digital data, the communication protocols should implement Error Detection
and Correction techniques (EDAC). While the list of available EDAC techniques that can
be implemented in software is extensive and can be complex (e.g. Shirvani et al., 2000)
there are simple techniques that can be generally adopted with ease:
(a) Data integrity checks: checksumsor cyclic redundancy checks (CRC) ensure that the

transferred information has not suffered any modification.
(b) Acknowledgments: both positive and negative ACK segments are sent to signal the

correct reception of a packet.
(c) Handshakes: communication is only started after ensuring that both ends are pre-

pared.
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Figure B.4: Encapsulation of functionalities in abstraction levels.

(d) Timeouts: control the time between queries and replies to avoid hanging on dead-
locked processes.

2. Hardware and software watchdogs: watchdogs are timers that cause automatic resets
if the system under control is not responding (Beningo, 2010). Hardware watchdogs are
present in many devices (i.e. microcontrollers) and their use may prevent global failures
since they can restart the device when it is locked in unexpected deadlocks or failures.
At the same time, software-based watchdogs can also be implemented. Process heart-
beatscanbeutilized todetectdeadlocksand to reset theprocesseswhenever theyoccur.

3. Robust programming: establishing strict coding rules and standards is critical for the
management of a project with many collaborators. Stating rules that forbid certain pro-
gramming constructs in order to ensure security and reliability can be key in applications
where failure rate must be kept to the minimum. While the adoption of industrial stand-
ards is always thepreferredalternative, their complexity and lackof knowledge canbean
obstacle to many educational nano-satellite programs. Nonetheless, simpler alternat-
ives like the ones suggestedbyNASA/JPLLaboratory for ReliableSoftware in (Holzmann,
2006) can be applied with less effort and are highly recommended.

B.4 Structured design criteria for nano-satellite flight software
Considering the presented compendium of techniques and concepts as a fundamental star-
ing point, this section now poses three structured design rules that can be applied vertically
throughout nano-satellite software architectures. These criteria involve both structural and
functional artifacts that are complementary to the summarized techniques and which are spe-
cifically oriented to improve, even further, the groups of requirements presented in Section B.2.

While most of the practices gathered in the previous section could improve the system’s
modularity and cope with the inherent presence of failures, they also show that these ques-
tions can be solved under many perspectives and at many levels: from low-level procedures or
implementation recommendations to structural approaches and system designmethodologies.
Likewise, this section tries to contribute to the list of software design practices by proposing a
set of guidelines thatmimic some generic design rules while considering the specific needs and

253



In pursuit of Autonomous Distributed Satellite Systems C. Araguz

functional commonalities of nano-satellite flight software (i.e. mainly for Earth observation and
technology demonstration missions).

B.4.1 Robustness through hierarchy

The architectures introduced above exhibited efforts towards the system robustness; most of
themwere focused on accurately detecting andminimizing the effects of errors. However, none
of the practices boosted the robustness from a purely architectural perspective. Instead, they
provided measures to counteract the problems: disable modules, trigger contingency modes,
etc. Despite these measures being absolutely necessary, robustness can also be enriched in
an abstract and generic manner through the ordering of software components. In this regard,
the first proposed guideline is based on two fundamental concepts: encapsulation and goal-
oriented decomposition of functionalities.

Component encapsulation is, actually, the basis of any design and its correctness not only
will affect the performance of the system but can also worsen some other qualities (e.g. test-
ability, modularity). While most nano-satellite architectures simply juxtapose modules encap-
sulatedby the functionality of the spacecraft’s subsystems, this approachcomplicates compon-
ent interactions and lacks system perspective.

Conversely, softwaremodules can be organized to keep hierarchical relationships. Just like
organizations are divided into strata with different responsibility levels, a software architecture
can also be split into several levels of abstraction (i.e. layers) in order to model the system.
Each of these levels of abstraction requires the interaction with the adjacent ones to be able
to develop a global function, hence establishing a hierarchical relationship. The first benefit
of such modeling approach is the ability to remove error propagation paths. Layered structures
wheremodulesmaintain hierarchical relationshipsmay cut the propagation of errors ifmodules
in each layer are sufficiently isolated. Fig. B.4 illustrates this idea by representing an arbitrary
architecture divided into three levels of abstraction. The lines that connect each box represent
module inter-dependency (i.e. “use cases”) and reflect the hierarchical relationship explained
above. If the modules were implemented as sand-boxed processes, these relations would be
communication channels through which one process can invoke routines on another. Robust
inter-process communication could allow processes in layer B to be isolated from errors in pro-
cesses of layer C (e.g. a segmentation fault on module c1 would not affect module b1). There-
fore, it becomes critical that modules which maintain some kind of dependence with others be
provided with deterministic response to errors when external invocations fail unexpectedly.

In addition to that, this very vertical encapsulation of components, or “layering”, can be nat-
urally combined with the commonly implemented horizontal fragmentation based on function-
ality. This introduces the latter concept: goal-oriented decomposition of functionalities. While
modelling the software into different levels of abstraction allows to cut error propagation paths
easily, disseminating functionalities (fi) among the layers alsominimises the complexity of each
component. In accordance to this idea, a given functionality would be split into multiple tan-
gible actions, or “goals”, more or less abstract. Fig. B.4 illustrates possible goals with different
abstraction degrees. At the same time, the figure shows that high-level components are func-
tionally complex andmay encompass several functionalities as the abstraction increases.

With this decomposition approach, components that rely on hardware (i.e. modules that
control subsystems or interface with payloads) can be completely isolated from system-wide
controllers that operate at a much higher abstraction level and that are critical to the mission
management. Since high-level modules are untied to subsystem failures and implement ab-
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Table B.1: Low-level modules generic interface

Function Description

check() Verify that thesubsystem is readyanddoesnotpresentanyerrors. Runsunit tests
on devices, checks that there is no communication or power issue and if there are
some, reports themwith details.

init() Configures internal parameters or the underlying devices in order to begin the ex-
ecution of the Running routines. Acquires static resources (e.g. memory, data-
bases, digital buses) and ensures that the system does not accumulate any pre-
vious error.

run() Executes the routines that control the subsystem or payload. After an invocation
of this function, themodule can generate and process data, enable actuators and
can communicate with other modules.

halt() Reset all variables and devices, release resources and remove itself from the act-
ive list of modules (e.g. exit the process).

<osf>() Interrupt themain routineor spawnasecondary execution thread tohandlea cus-
tom request. Requests may trigger sub-state transitions, perform one-time ac-
tions or request instantaneous data.

stract functions (e.g. Finite State Machines), they become easier to implement and simpler to
verify by static source code analysers. The hardware detachment presented by higher modules
may enable themnot only to be designed simpler but to be implemented in protected hard-real-
timeenvironments73, inherently improving their robustnessbyallowingadeterministic schedul-
ing policy of those components.

B.4.2 Payload-oriented modularity

The ability of a software architecture to be extended and modified relies on its modularisation.
Generally, identifying the subsets which maximise internal coupling and minimise coupling
between modules is a demanding intellectual exercise and is influenced by subjectivity. None-
theless, a certain lack of generality is usually needed in all engineering areas in order to deliver
products that are tailored to the actual requirements and context. In this respect, software
architects can follow the steps in (Parnas, 1979) which state how to identify changeable parts
from an engineering perspective, namely:

1. Identification of the [system] items that are likely to change.
2. Location of the specialized components in separate modules.
3. Design inter-module interfaces that are insensitive to the anticipated changes, preventing

the changeable aspects to be revealed by the interface.

This encapsulation approach, based on the very definition of inter-module interfaces, can
be embraced by nano-satellite software designers to hid the changeable parts of their products
and produce replaceable modules. Besides minor modifications to correct or simplify parts of
the software, nano-satellite architectures are subject to changes in parts related to their sub-
systems and payloads. Changes in the subsystems do not necessarily imply the removal of any

73 They shall not access I/O devices nor perform any kind of non-deterministic call to external subsystem routine.
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Figure B.5: Low-level modules state transition network

of them; there is likely to be an Electrical Power System (EPS), an Attitude Determination and
Control System (ADCS) and a Communications System. However, the actual hardware and their
interfaces may dramatically change after a mission update. Similarly, the payloads hosted by
the spacecraft will differ from onemission to another.

In accordance to the aforementioned context, the guideline here presented proposes an en-
capsulation of low-level modules based on payloads and subsystems, together with the defin-
ition of generic interfaces for these components. The interface is defined as a set of functions
that can be invoked by other modules in the architecture and which modify the internal state of
the component (Fig. B.5). Four basic functions are defined, namely, check(), init(), run() and
halt(). Their implementations should account for the functionality described in Table B.1. This
basic API, which has some resemblance with Linux drivers management, allows the system to
start and stopmodules in a controlledmanner. Themodules could performa set of initial checks
before any other action is performed in order to guarantee that the underlying hardware or sub-
systemsareoperative. When these tests succeed, themodule remains in theChecked stateuntil
the init() function is invoked. A module can, then, transition to the Running state after it has
been correctly initialized (functions init() and run()). Most self-contained modules should be
able to operate the payload or subsystem autonomously and jump to the Finished state once
the Running routines are completed. Other modules, however, may never finish because they
control subsystems or devices which are always active.

In addition, somemodulesmaynot be able to autonomously control the subsystemandmay
require external triggers to transition to internal sub-states. The so-called One-Shot Functions
try to account for these triggering requirements. If the sub-states of amodulewere controlled by
hierarchically higher components, the designers could implement custom OSF to handle those
state transitions. Moreover, modules which are able to generate instantaneous data that is rel-
evant to the rest of the architecture, could also implement specific functions to retrieve it (e.g.
sensor readings, externally visible subsystem variables…)

Finally, either in Finalized or during Running, the function halt() can be called to cleanly
terminate the process and release the resources (e.g. memory regions, kernel services, open
databases or files, peripherals, etc.)

With this minimal, generic interface encapsulating routines that are close to the payload
and subsystemhardware, changeablemodules can be integrated seamlessly in an architecture.
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Provided that the interface is kept the same, replacing low-level components should be trans-
parent to higher-level components and should provide the required flexibility in future nano-
satellite generations.

B.4.3 On-board planning capabilities

Providing autonomous mission planning capabilities is, as a matter of fact, a very common ap-
proach towards autonomous spacecraft. Initially proposed by NASA for the DS-1 Remote Agent
eXperiment (Gamble and Simmons, 1998), and adopted in spacecraft developments since then,
the concept is fundamentally based on the definition of a set of high-level components that con-
form the so-called autonomysystem. Thesemodulesprovide the ability to both intelligentlyplan
and robustly execute a list of timed activities based on mission goals (either self-generated or
defined by ground operators), deterministic environmental conditions (e.g. orbit trajectory) and
system constraints (e.g. battery state-of-charge). This design guideline proposes the function-
ality of an autonomy system to be included in new nano-satellite developments and simplifies
its dissemination into the three elementary components shown in Fig. B.6.

On the one hand, a Task Planner module collects mission requirements in the form of ab-
stract tasks. These tasks can be defined at the beginning of the mission, can be uploaded or
modified during the satellite lifespan or can be autonomously generated by the autonomy sys-
tem itself. High-level tasks may encompass a priority level which allows to weight the import-
ance of each task. Tasks uploaded by the ground segment will tend to be prioritized over those
autonomously spawned by the system. Similarly, maintenance requirements (e.g. desaturate
reactionwheels, databasemaintenance)will likely have lower priorities to prevent them from in-
terfering with instrument activities. In conjunction with the Task Planner, a minimal autonomy
system should also encompass a robust Executive System that is able to decode the plan of
action and perform all the required procedures to achieve it. Both the Task Planner and the Ex-
ecutive Systemshould be consistentwith the environmental conditions and systemconstraints.
If an unexpected situation would occur or a constraint would be violated, the Executive System
would cancel any related routines, activate the system safe-mode and generate a failure dia-
gnosis report. Finally, complementing the two essential components a Task Generation Engine
could be included. This optional module shall be capable to propose tasks to the system: (a)
either because the previous plan has been aborted; (b) due to maintenance requests; or (c) as a
result of some external observation (i.e. instrument data analysis).

Ultimately, it is worth mentioning the computational burden that an autonomy system in-
flicts on the OBC. Scheduling tasks and comprehensively managing their execution is an oner-
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ousendeavour andmaydramatically increase theusageof computational andsystemresources
(e.g. CPU time, memory, power). This is specially the case of deliberative task planners, where
the computation required to find the optimal schedule for a finite timewindow can be high. Con-
tinually correcting the plan of action with up-to-date execution details and data analysis aug-
ments the autonomous capabilities of a spacecraft but may not be feasible in all cases. Be-
cause of that, nano-satellite developersmay be inclined to design autonomy systemswhich are
deployed in its wholeness at specific periods of time, generating plans of action that are not
re-planned until the last scheduling window is completed or which are reactive instead of delib-
erative.

B.5 Applying design criteria
Having presented three techniques which enhance the previously justified software qualities
and functionalities, this section describes an actual software architecture which applies these
criteria and embraces many of the concepts presented in Section B.3. This architecture is the
main controlling software on-board the CubeCAT-1 nano-satellite (3Cat-1), developed at the
Nano-Satellite and Payload Laboratory (NanoSat Lab) of the Technical University of Catalonia
(UPC BarcelonaTech). The 3Cat-1 is essentially a technology demonstration mission that in-
tegrates seven different payloads within a 1U form factor (Jové-Casulleras et al., 2017). The
design of its flight software has targeted modularity and re-usability in order to become the
precursor for future nano-satellite missions at the NanoSat Lab. Moreover, its architecture is
oriented to the exploration of autonomous operations and encompasses a task planner and
robust executive system as the controlling core for the satellite functionalities.

The 3Cat-1’s flight software architecture, depicted in Fig. B.7, is organized in four hierarch-
ical layers in accordance to the first design guideline, namely, System Core, Process Manager,
System Data Bus and Hardware-dependent Modules. Each of these layers has been implemen-
ted as a set of isolated processes (in some cases multi-threaded) or real-time tasks. The ar-
chitecture is executed on top of a soft-real-time OS composed of a Linux kernel and a Xenomai
hypervisor. This allows for an extra level of hierarchy, given that real-time tasks are scheduled
with higher priority than regular Linux processes. As a matter of fact, the entire Linux kernel is
run during the idle states of the RTOS’ scheduler. This guarantees that critical processes such
as those that control the system state, monitor health variables and control each of the under-
lying layers never suffer from CPU starvation nor priority inversions. The Xenomai framework
provides several kernel-managed services to communicate real-time tasks with non-real-time
processes. These services are used along with standard methods (e.g. named pipes, shared
memory regions, signals) to provide communication interfaces between the components of the
architecture.

B.5.1 System Core

The highest level of abstraction is set at the System Core (or Syscore, for short), which is com-
posed of five different modules. The System Safety and State Control (SS/SC) module is en-
tirely designed as a real-time component. It encompasses five Xenomai tasks which control the
state of the spacecraft at the functional and energy levels. Functional states relate to system-
wide actions that are taken by the spacecraft to fulfil its mission goals (e.g. perform scientific
experiments, enable certain functionalities such as attitude control, establish a link with the
ground segment). These functional states are coupled and induced by the energy reservoir of
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Figure B.7: 3Cat-1’s Flight Software architecture

the spacecraft, which is also monitored at this architectural layer. The battery state-of-charge
(SoC) is a critical variable provided by the EPS low-level module. Implementing SS/SC in the
real-time environment was a strong design requirement because this provided greater isolation
between components. While, teal-time tasks are managed by the real-time kernel and hyper-
visor, user-space Linux processes are scheduled by the low-priority non-real-time kernel. Thus,
execution of SS/SC is guaranteed, even when the non-real-time Linux kernel is locked in unex-
pected states. This design choice, forced the implementation of some EPS components to also
be implementedasRT tasks, although their timingand latencyarenot critical if keptwithin reas-
onable values. For the EPS task, this range of allowed latency corresponded to a fraction of its
period of execution, which is of 60 seconds. This range was chosen together with the hardware
watchdog of the EPSmicrocontroller, which will cause a reset if it is locked for 16 seconds. With
the EPS component providing critical data (i.e. SoC) to the SS/SC, a failure in this software com-
ponent or a delayed sending of data causes a soft-reset of the on-board computer along with
the corresponding logging activity to notify ground operators of this event.

Along with this real-time module, the Syscore includes part of the spacecraft’s autonomy
system: a task planner. The Task Planner is essentially a high-level system scheduler which
generates a list of time-tagged activities for a given time window. Its behaviour is purely delib-
erative (i.e. off-line), it executes the scheduling algorithm for a finite period of time until a single
solution is produced. The internal algorithm, implemented in Prolog, takes task descriptions
and scheduling characteristics defined at design-time and determines when they need to be
executed, within the future scheduling window. The state of the system resources are predicted
either by the Task Planner or by the Energy Manager. This latter component includes models
of the system that, together with the orbit propagation, allow to predict the necessary resource
profiles for the Task Planner algorithm. The number of resources controlled and allocated by
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the Task Planner is limited to four, namely: energy, instantaneous power, storage capacity and
operations simultaneity.

B.5.2 Process Manager

The second component of the autonomy system is a multi-threaded process named Process
Manager (or Procman). This non-real-time component implements the Executive System and
decomposes high-level commands and autonomously-generated mission plans into low-level
instructions andmodes of operation. Note that the Autonomy System of the 3Cat-1 lacks a Task
Generation Engine because none of the payloads or experiments required this functionality nor
were there maintenance tasks to be scheduled autonomously.

Most of the high-level states aremapped in Procman’s finite statemachines in order to set-
up,monitor andcontrol the low-level processesof this architecture. It is alsoat this architectural
level where the TT&C system is implemented and all the packets are processed and generated.
Thus, groundoperators are capable to overrideSyscore statesandhaveaccess to low-level com-
ponents easily.

At the same time, powermodes aremanaged by the Power and Power States Handler (PSH)
components. These threads interpret energy-related commands and enable or disable space-
craft functionalities. They also have the ability to control the power mode of the OBC, allowing
them to set low-power consumption modes when the energy is critical or the system is in idle
states.

Finally, the Scheduling thread, which starts by Syscore request, parses the mission plan
generated by the Task Planner and spawns a single thread to handle each of the planned activ-
ities (Task Handlers). These handlers initialize dedicated, low-level processes and prepare the
hardware to be able to start their endeavors (e.g. enable DC/DC converters).

B.5.3 System Data Bus

Although the actions performed by the Procman involve access to the spacecraft subsystems
(i.e. hardware), they are never performed directly by this process. Instead, the Procman can
issue a set of low-level commands. This set of commands, which are still encapsulating several
instructions or procedures, can be mission-specific in some cases (e.g. One-Shot Functions),
but are usually generic in order to allow the Procman to transparently interface with whatever
low-level modules the architecture has. The interface with which the low-level modules and
Procman are connected is the System Data Bus (SDB). This layer acts as a command forwarder,
delivering requests and replies from any module connected to it. It provides a second level of
isolation apart from protected memory regions, given that the flow of all requests are always
controlled by the SDB process. The SDB implements a simple transport protocol with timeouts
which, despite not performingdata integrity checks, doesacknowledge the senderwhenasingle
command is executed/readby the receiver. At the same time, theSDBprotocol defines restricted
commands which are only available to some modules (e.g. low-level modules can not request
DC/DC converters to be enabled because this action is strictly solely restricted for the Procman;
however, all modules can request sensor measurements.)

B.5.4 Hardware-dependent Modules

The lower-level functionality is located in the Hardware-dependent Modules layer. This part of
the software is composed of specialized modules (orHWmod’s) that can be analogous to device
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drivers. AllHWmod’s implement the previouslymentioned generic interface (check(), init(), run
() and halt()) and, in some cases, custom OSF. HWmod’s execute device-level instructions like
R/W operations and digital pin control, and implement communication protocols for each of the
external devices connected through digital buses (e.g. UART, I2C, SPI). They are, indeed, subsys-
tem and payloads controllers and because of that, there is a single HWmod for each payload or
subsystem. While the details for each of the payloads and subsystems can be read in (Gorreta
et al., 2016; Jové-Casulleras et al., 2017), it is important to note that these software compon-
ents are not always running. With the exception of EPS, which is constantly monitoring battery
SoC and PV panel’s power, the rest of the HWmod’s are launched by demand when some of the
payload or subsystem activities have to be performed.

B.5.5 Interfaces, files and databases

A critical aspect of this hierarchical design is to be able to preclude error propagation from one
module to the other. Despite the fact that all modules run with virtually-separated memory
areas, there still are inter-process or inter-task communication methods. Most of the commu-
nication channels employed in this architecture are named-pipes (i.e. FIFO’s) where the pro-
cess always involves a timeout. If a given subsystem fails, bottom-up error propagation is pre-
cluded by catching the error in the upper layer (including, for instance, timeouts) and by restart-
ing whatever procedure or component presented the failure.

1 HW_TIMEOUT=1000000 # Microseconds
2 TIMEOUT_HANDSHAKE=2
3 TIMEOUT_SDS=5
4 TIMEOUT_EDS=5
5 TIMEOUT_ACK=7
6 ADAPTIVE_MODIFIER=1.0
7 HS_REPEAT=6
8 HSACK_REPEAT=10
9 ACK_REPEAT=5
10 LAST_REPEAT=3
11 SYNC_REPEAT=2
12 PROTOCOL_DELAY=1000 # Microseconds
13 SYNC_DELAY=100000 # Microseconds
14 FREQ2_RX=10 # Uplink freq.
15 FREQ1_RX=9D
16 FREQ0_RX=89
17 FREQ2_TX=10 # Downlink freq.
18 FREQ1_TX=D1
19 FREQ0_TX=3B
20 DRATE=F8 # Data-rate
21 SYNC1=D2
22 SYNC0=59
23 ADDR=00
24 FEC_DIS=0 # FEC enabled

Listing B.1: Comms. HWmod configuration file

On the other hand, data generated by the systemcan also be stored in the file system, either
as a regular file or in SQLite databases. The architecture encompasses up to four different data-
bases where processes can register new files and change their state, update the state of a task
and read or write system logs and housekeeping measurements (e.g. voltage, temperature, at-
titude states, etc.) In addition, most components of the architecture can be dynamically con-
figured through configuration files stored in the file system. These files, which usually have a
list of values for several configuration parameters, may allow ground operators to adjust the
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behavior of the system in-orbit (e.g. changing PID controller constants, changing the downlink
frequency, etc.) Listing B.1 above, shows an example of the contents of one of such configuration
files.

B.5.6 Development assets

Finally, it is worth noting that for updatability purposes, and thanks to the adoption of a Linux
OS, most of the architectural features are provided through dynamically-linked libraries. These
system libraries, which are loaded at runtime, implement the SDB protocol and interfaces for
HWmod’s, provide several wrappers to access and write to the databases, and decouple some
TT&Cprocedures and functions from theProcman process (therefore allowing in-orbit upgrades
of the telemetry system).

B.6 Conclusion
Regardless of the size of the spacecraft, the extremely harsh conditions of space can lead to a
myriad of system failures. Apart from the effects of ionized particles, which not only can induce
catastrophic softwaremisbehavior but can also cause severe power failures, thermal cycles and
extreme temperatures may deteriorate batteries and other components. This is specially true
for missions that integrate several COTS modules, which hardly include any rad-hard or space-
qualified component. Despite their reducedcost (and risk), nano-satellitemissions still demand
significant efforts in order to improve their robustness. At the same time, one common idea
within the small spacecraft paradigm is the development of reusable platforms that can ac-
commodate to several mission functional requirements. This approach, often crystallized into
payload-agnostic commercial products (e.g. Endeavor Platform74, by Tyvak Inc.), has expanded
the capacity limits of CubeSat missions and has fostered the exploration of modular and flex-
ible architectures. Noteworthy, low-cost and highly-modular designs have also turned nano-
satellites into suitable platforms to deploy complex satellite systems such as large constella-
tions involving thousands of units. In alignment with this idea, nano-satellites contributing to a
cooperative mission potentially require their autonomous capabilities to be enhanced, not only
to enable such distributed architectures but specially to ameliorate their recoverability and cope
with their restricted operability.

The work described in this paper has introduced these three essential requirements,
namely: (a) robustness; (b) payload-oriented modularity and (c) autonomy, and has mapped
them to three software design guidelines: (a) robustness through hierarchical decomposition of
system functionalities; (b) payload-orientedmodularity; and (c) on-board planning capabilities.
The presented guidelines showed ways to improve these system qualities and functionalit-
ies from the software perspective and at an architectural level. In that sense, the first two
guidelines proposed a way to structure and design software modules which is fundamentally
based on isolation of components and minimization of internal complexity, and encapsulation
of mission-dependent subsystems with a general purpose interface. Software architectures
that apply those concepts can easily replace, include or remove payload functionality and may
present an improved robustness if propagation of low-level errors (i.e. those related with hard-
ware and devices external to the on-board computer) is prevented or reliably handled. On the
other hand, such hierarchical ordering of components allows system critical modules to be im-
plemented in higher levels of the architecture and detached from hardware. Finally, this paper

74 http://www.tyvak.com/platform
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has proposed the design of a primitive autonomy system which is aimed at providing on-board
planning capabilities to the nano-satellite. The generic autonomy system, elaborated from pre-
vious mission concepts (e.g. RAX, EO-1), is described as a set of components with a delimited
goal.

Thederiveddesign criteria hasbeenultimately illustrated inanactual softwarearchitecture
for a nano-satellite mission, the 3Cat-1. Its software architecture has applied hierarchical or-
dering of components and payload-oriented modularization and presents a secure and reliable
message-passing interface that transparently connects low-level modules with the autonomy
system of the spacecraft. Moreover, the flight software is equipped with an autonomy system
consisting of amulti-threaded flight executive and a fully-elastic task planner that is able to al-
locate more than one system resource to each activity while generating a plan of action for the
spacecraft.
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C
Configuration files used in the design

characterisation of autonomous
operations

In an effort to facilitate the reproduction of results, both the source code of the simulation envir-
onment and the configuration files that were prepared for the design characterisation are avail-
able in an open repository: https://github.com/carlesaraguz/aeoss.

The configuration files used in design characterisation tests are all located under specific
folders within batch/set. Table C.1 below enumerates each individual file and provides details
about the corresponding test case.

Table C.1: Relation of configuration files used in design characterisation

Test case File name Configuration System definition file

Resource
constraints,
§6.2.1

energy_4a.yml na = 5, very constrained Randomly generated from conf. file

energy_4b.yml na = 10, very constrained Randomly generated from conf. file

energy_4c.yml na = 15, very constrained Randomly generated from conf. file

energy_4d.yml na = 20, very constrained Randomly generated from conf. file

energy_4e.yml na = 25, very constrained Randomly generated from conf. file

energy_4f.yml na = 30, very constrained Randomly generated from conf. file

energy_7a.yml na = 5, constrained Randomly generated from conf. file

energy_7b.yml na = 10, constrained Randomly generated from conf. file

energy_7c.yml na = 15, constrained Randomly generated from conf. file

energy_7d.yml na = 20, constrained Randomly generated from conf. file

energy_7e.yml na = 25, constrained Randomly generated from conf. file

energy_7f.yml na = 30, constrained Randomly generated from conf. file

energy_5a.yml na = 5, nominal Randomly generated from conf. file

energy_5b.yml na = 10, nominal Randomly generated from conf. file

energy_5c.yml na = 15, nominal Randomly generated from conf. file

energy_5d.yml na = 20, nominal Randomly generated from conf. file

(Continues in next page)
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Test case File name Configuration System definition file

energy_5e.yml na = 25, nominal Randomly generated from conf. file

energy_5f.yml na = 30, nominal Randomly generated from conf. file

energy_6a.yml na = 5, ample Randomly generated from conf. file

energy_6b.yml na = 10, ample Randomly generated from conf. file

energy_6c.yml na = 15, ample Randomly generated from conf. file

energy_6d.yml na = 20, ample Randomly generated from conf. file

energy_6e.yml na = 25, ample Randomly generated from conf. file

energy_6f.yml na = 30, ample Randomly generated from conf. file

ISL
capabilities,
§6.2.2

comms_4a_2.yml No ISL, na = 4 system-prograde-retrograde_a.yml

comms_4b_2.yml CubeSat ISL, na = 4 system-prograde-retrograde_b.yml

comms_4c_2.yml Medium ISL, na = 4 system-prograde-retrograde_c.yml

comms_4d_2.yml Satcomm ISL, na = 4 system-prograde-retrograde_d.yml

comms_8a.yml No ISL, na = 8 system-prograde-retrograde_a.yml

comms_8b.yml CubeSat ISL, na = 8 system-prograde-retrograde_b.yml

comms_8c.yml Medium ISL, na = 8 system-prograde-retrograde_c.yml

comms_8d.yml Satcomm ISL, na = 8 system-prograde-retrograde_d.yml

comms_12a.yml No ISL, na = 12 walker-delta_12_a.yml

comms_12b.yml CubeSat ISL, na = 12 walker-delta_12_b.yml

comms_12c.yml Medium ISL, na = 12 walker-delta_12_c.yml

comms_12d.yml Satcomm ISL, na = 12 walker-delta_12_d.yml

comms_16a.yml No ISL, na = 16 walker-delta_16_a.yml

comms_16b.yml CubeSat ISL, na = 16 walker-delta_16_b.yml

comms_16c.yml Medium ISL, na = 16 walker-delta_16_c.yml

comms_16d.yml Satcomm ISL, na = 16 walker-delta_16_d.yml

Scheduling
granularity and
Kp, §6.2.3

schedwin_0a.yml ST66, lowestKp = 0 constellation-8.yml

schedwin_0b.yml ST33, lowestKp = 0 constellation-8.yml

schedwin_0c.yml LT75, lowestKp = 0 constellation-8.yml

schedwin_0d.yml LT50, lowestKp = 0 constellation-8.yml

schedwin_0e.yml LT25, lowestKp = 0 constellation-8.yml

schedwin_05a.yml ST66, very lowKp = 0.5 constellation-8.yml

schedwin_05b.yml ST33, very lowKp = 0.5 constellation-8.yml

schedwin_05c.yml LT75, very lowKp = 0.5 constellation-8.yml

schedwin_05d.yml LT50, very lowKp = 0.5 constellation-8.yml

schedwin_05e.yml LT25, very lowKp = 0.5 constellation-8.yml

schedwin_1a.yml ST66, lowKp = 1 constellation-8.yml

schedwin_1b.yml ST33, lowKp = 1 constellation-8.yml

schedwin_1c.yml LT75, lowKp = 1 constellation-8.yml

schedwin_1d.yml LT50, lowKp = 1 constellation-8.yml

schedwin_1e.yml LT25, lowKp = 1 constellation-8.yml

schedwin_3a.yml ST66, nominalKp = 3 constellation-8.yml

schedwin_3b.yml ST33, nominalKp = 3 constellation-8.yml

schedwin_3c.yml LT75, nominalKp = 3 constellation-8.yml

schedwin_3d.yml LT50, nominalKp = 3 constellation-8.yml

schedwin_3e.yml LT25, nominalKp = 3 constellation-8.yml

schedwin_12a.yml ST66, highKp = 12 constellation-8.yml

schedwin_12b.yml ST33, highKp = 12 constellation-8.yml

schedwin_12c.yml LT75, highKp = 12 constellation-8.yml

schedwin_12d.yml LT50, highKp = 12 constellation-8.yml

schedwin_12e.yml LT25, highKp = 12 constellation-8.yml

(Continues in next page)
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Test case File name Configuration System definition file

schedwin_75a.yml ST66, extremeKp = 75 constellation-8.yml

schedwin_75b.yml ST33, extremeKp = 75 constellation-8.yml

schedwin_75c.yml LT75, extremeKp = 75 constellation-8.yml

schedwin_75d.yml LT50, extremeKp = 75 constellation-8.yml

schedwin_75e.yml LT25, extremeKp = 75 constellation-8.yml

Cognitive
abilities, §6.2.4

memory_2a.yml eo = 2, βmax = 50 constellation-10.yml

memory_2b.yml eo = 2, βmax = 100 constellation-10.yml

memory_2c.yml eo = 2, βmax = 500 constellation-10.yml

memory_2d.yml eo = 2, βmax = 1000 constellation-10.yml

memory_2e.yml eo = 2, βmax = 5000 constellation-10.yml

memory_5a.yml eo = 5, βmax = 50 constellation-10.yml

memory_5b.yml eo = 5, βmax = 100 constellation-10.yml

memory_5c.yml eo = 5, βmax = 500 constellation-10.yml

memory_5d.yml eo = 5, βmax = 1000 constellation-10.yml

memory_5e.yml eo = 5, βmax = 5000 constellation-10.yml

memory_10a.yml eo = 10, βmax = 50 constellation-10.yml

memory_10b.yml eo = 10, βmax = 100 constellation-10.yml

memory_10c.yml eo = 10, βmax = 500 constellation-10.yml

memory_10d.yml eo = 10, βmax = 1000 constellation-10.yml

memory_10e.yml eo = 10, βmax = 5000 constellation-10.yml

memory_20a.yml eo = 20, βmax = 50 constellation-10.yml

memory_20b.yml eo = 20, βmax = 100 constellation-10.yml

memory_20c.yml eo = 20, βmax = 500 constellation-10.yml

memory_20d.yml eo = 20, βmax = 1000 constellation-10.yml

memory_20e.yml eo = 20, βmax = 5000 constellation-10.yml

Large-scale
system, §6.3

largescale.yml PlanetScope constellation flock-2018-operational.yml
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List of abbreviations

ACO Ant Colony Optimisation.

AI Artificial Intelligence.

BER Bit Error Rate.

BOL Beginning Of Life.

COTS Commercial-Off-The-Shelf.

DEM Digital Elevation Model.

DoD Depth of Discharge.

DoE Design of Experiments.

DSS Distributed Satellite System.

EO Earth Observation.

EOL End Of Life.

ESA European Space Agency.

EU European Union.

FDIR Fault Detection, Isolation and Recovery.

FSS Federated Satellite System.

GA Genetic Algorithm.

GAs GA-based Scheduler.

GNSS Global Navigation Satellite Systems.

GNSS-R GNSS Reflectrometry.

GS Greedy Search.

GSD Ground Sampling Distance.

HTN Hierarchical Task Network.

ISL Inter-Satellite Link.

ISN Inter-Satellite Network.

JPL Jet Propulsion Laboratory.

KDE Kernel Density Estimation.

LEO Low Earth Orbit.

LS Local Search.

MA Mean Anomaly.

MAS Multi-Agent System.

MAU Multi-Attribute Utility.

MAUT Multi-Attribute Utility Theory.

MATE Multi-Attribute Tradespace
Exploration.

MBSE Model-Based Systems Engineering.

MEO Medium Earth Orbit.

MDP Markov Decision Process.

MIT Massachusetts Institute of Technology.

MOEA Multi-Objective Evolutionary Algorithm.
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MOO Multi-Objective Optimisation.

MPS Mission Planning and Scheduling
system.

NASA National Aeronautics and Space
Administration.

ONION Operational Network of Individual
Observation Nodes.

OSCAR Observing Systems Capability Analysis
and Review.

PD Probability Distribution.

PDF Probability Distribution Function.

RBES Rule-based Expert Systems.

SA Simulated Annealing.

SAP System Architecting Problem.

SAR Synthetic Aperture Radar.

SAS System Architecting Synthesis.

SE Systems Engineering.

SFML Simple and Fast Multimedia Library.

SoS System-of-Systems.

SI Swarm Intelligence.

SSO Sun-Synchronous Orbit.

TAT-C Tradespace Analysis Tool for
Constellations.

TRL Technology Readiness Level.

TS Tabu Search.

TSP Travelling Salesman Problem.

UPC Universitat Politècnica de Catalunya
(Technical Univ. of Catalonia)

WGM Weighted Geometric Mean.

WMO World Meteorological Organisation.

WS Weighted Sum.
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