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This paper presents a belief-based formulation and a novel approach for the robust solution
of optimal control problems under uncertainty. The introduced formulation, based on the
Belief Markov Decision Process model, reformulates the control problem directly in terms
of uncertainty distributions, called beliefs, rather than on realisations of the system state.
Successively, an approach inspired by navigation analysis is developed to transcribe and solve
such problem in the presence of observationwindows, employing a polynomial expansion for the
dynamical propagation. Finally, the developedmethod is applied to the robust optimisation of a
flyby trajectory of Europa Clipper mission in a scenario characterised by knowledge, execution
and observation errors.

I. Introduction and Motivation

Space trajectories are typically optimised to meet the science and flight system constraints in a nominal scenario.
However, in real-life applications, perfect compliance to the reference trajectory is impossible to achieve as uncertainty

always affects the system; uncertainty can be due to imperfect state knowledge, imperfectly known dynamical parameters,
missed thrust events or execution errors.

In the design phase, the reference trajectory robustness and reliability to these uncertainties is usually evaluated a
posteriori through a navigation analysis and the nominal design adjusted through several iterations. The robustness
and reliability evaluation is carried out by assessing the mission outcome when the trajectory is affected by different
uncertainty realizations. To improve the robustness, small tweaks to the trajectory are ensured either by adding propellant
margin and enforced coasting arcs for trajectory correction maneuvers (TCM), or by reducing the thrust level. Hence,
this iterative procedure mainly treats the nominal trajectory optimisation as decoupled from the uncertainty treatment
phase. This process is generally time-consuming and may lead to sub-optimal trajectories with over-conservative
margins.

Recent development in components and launchers are now enabling deep-space microsat and nanosat missions. Such
spacecraft have limited orbit control capabilities (limited DV), large uncertainties in the state knowledge (limited ground
station access) and in the execution (low TRL components), and low possibility of margins and system redundancy
(limited size and cost). Therefore, for these missions, the design of the trajectory is driven by its robustness to
uncertainties even more critically. While trajectory optimisation under uncertainty is an enabling methodology for
small spacecraft, large traditional missions would also benefit from stochastic trajectory optimisation both in terms of
performance improvement, because the stochastic optimal trajectory generally differs from the deterministic one with
empirical margins, and in terms of a reduction in the number of design iterations.

As said, currently the main practical approach is to allocate a posteriori empirical margins [1, 2]. Recent works
generated robust trajectories employing different formulations of the stochastic optimal control problem. Model
predictive control or stochastic closed-loop formulations were used to account for correction terms in the control
profile [3, 4]. The case of a temporary engine failure were investigated by stochastic programming [5, 6]. Differential
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dynamic programming was applied to trajectory optimisation with an expected value formulation for Gaussian-modelled
uncertainties [7]. Approaches based on evidence theory to model uncertainty was developed for the robust optimisation
of transfers under system and dynamical uncertainties [8–10].

As a contribution to this recent field and to the maturity of stochastic approaches, this paper presents novel
developments in stochastic optimal control problems for the robust design of space trajectories which extend previous
research on optimal control under epistemic uncertainty [11]. This previous work introduced a general formulation and
a novel generalised multiple shooting stochastic transcription for trajectory optimisation under uncertainty, capable of
handling a wide range of uncertainty models (parametric, non-parametric, imprecise set of distributions, etc.), while
keeping the familiar notation of deterministic optimal control problems. The present work generalises such method to
incorporate navigation in the formulation, thus including orbit determination (OD) arcs and closed-loop controllers, to
update the knowledge of the spacecraft state uncertainty in the presence of observations. This approach enables the
direct coupling of trajectory optimisation with navigation analysis by incorporating an uncertainty quantification (UQ)
procedure within the optimisation cycle. To this end, this paper also introduces a new efficient UQ approach for nonlinear
navigation analysis (NA) based on generalised polynomial expansions, which generalises the linear NA [12, 13] to
higher order representations of the dynamics.

The final goal is the generation of optimal nominal trajectories which are most robust and reliable to the possible
uncertainty realisations, that is optimally minimising a statistical objective index while respecting stochastic constraints.
Moreover, this method improves the overall trajectory design process by helping reducing the number of design iterations.

More in detail, first a formulation based on the Belief Markov Decision Process (BMDP) [14] is introduced to
directly model the problem in terms of uncertainty distributions. This is particularly suited to model the inference
step necessary for the state knowledge update when an orbit determination campaign is carried out. While BMDP is
typically used to find optimal closed-loop controls in problems with a discrete state space, the formulation presented
here is general enough to address both optimal open- and closed-loop control laws in continuous state space applications
with sparse observation feedback. The optimised solution resulting from this approach is highly informative as it
determines both the nominal control profile and a general control policy for possible deviations due to uncertainty, hence
directly providing empirical margins for correction manoeuvres. Furthermore, BMDP is defined for precise probability
distributions only, whereas the formulation employed here can accommodate epistemic and imprecise uncertainties
as well. In addition, such formulation is generalised to encompass the class of problems involving sensor control, i.e.
when the measurement policy itself has to be optimised, e.g. optimal planning of orbit determination arcs [15, 16],
scheduling of trajectory correction maneuvers [17], science orbit design with coupled optimisation of the trajectory and
measurements, and so on.

Successively, a practical approach to the solution of the optimal control problem under uncertainty (OCPUU) is
proposed. By taking inspiration from navigation analysis, possible observation realisations are drawn with a Monte
Carlo technique, and the uncertainty updates of orbit determination are solved with a sequential filter exploiting the
developed polynomial NA.

Finally, the developed method is applied to the robust optimisation of a leg of Europa Clipper flyby tour [18],
a scenario where proper uncertainty treatment is crucial to ensure appropriate close-approach conditions and low
probability of impact. The OCPUU formulation is employed to optimise the trajectory statistical ∆V , while respecting
expected value and chance constraints. The modelled uncertainty stems from knowledge error in the initial spacecraft
state, from execution errors introduced by the thrust pointing and magnitude inaccuracies when operating the engine,
and by measurement and sensor noises.

The remainder of the paper is structured as follows. Section II presents the overall uncertain scenario and the
development of the belief stochastic optimal control formulation, which can be used to frame a large variety of problems
in space trajectory design. Section III then introduces the stochastic transcription needed to convert the stochastic
optimal control problem into a discrete one which can be numerically solved. Specifically, this sections addresses in
depth how to incorporate measurement information in the robust trajectory design process, presents the polynomial NA
approach employed, and discusses practical strategies to propagate and update the uncertainty in different cases. In
Section IV, the developed methodology is applied to the robust optimisation of one part of the Europa Clipper flyby
tour. Here, the problem is first modelled and framed under the developed OCPUU formulation, and then the developed
optimisation approach is applied to solve for the robust trajectory. Finally, Section V concludes the paper with the final
remarks and a discussion on possible future applications.
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II. Stochastic Optimal Control Formulation
The deterministic optimal control problem can be formulated as

min
u, px

J = Φ(t f ,x f ) +

∫ t f

t0

L(t,x,u,px) dt (1a)

s.t. Ûx = f (t,x,d,u,px) (1b)
g(t,x,d,u,px) ∈ G (1c)
ψ(t0,x0, t f ,x f ) ∈ Ψ , (1d)

where t is the independent variable, x the state variable, d are static model parameters, u is the control law, while px

are static control parameters, e.g. maneuvers times. Such deterministic optimal control problem aims at finding the
optimal control profile u∗ and static control parameters px∗ which minimise the objective function in Equation (1a)
while respecting the dynamical nonlinear equations of motion in Equation (1b), path constraints in Equation (1c), and
boundary conditions in Equation (1d). Often, a discretised version of the optimal control problem is employed where
the trajectory is divided in arcs and the differential equations replaced by their integral counterparts. Indeed, control
problems are typically implemented digitally and the discretised solution converges to the time-continuous one for
decreasing discretisation arc width.

When uncertainty is taken into account, such formulation cannot be employed anymore. Hence, this section
introduces the stochastic formulation of optimal control problems that serves as framework to find trajectories which are
both optimal and robust to uncertainties.

A. Aleatoric Uncertainty

The stochastic optimal control problem addressed in this paper is defined by the following uncertain elements and
probability distributions:

• sources of uncertainty: X0, D
uncertain knowledge of the initial conditions, now modelled as a random variable with distribution X0 ∼ PX0 ,
and of the model parameters, likewise modelled as random variables D ∼ PD. Execution errors can be modelled
within D, while the control law u is deterministic. The uncertain variables D are nuisance parameters to be taken
into account but not to be estimated. We will consider the case of uncertain parameters partitioned as

D =
[
D0, D1, . . . ,DN−1

]
,

that is Dk affects the dynamical equations only in the discretised time interval t ∈ [tk, tk+1). Uncertain model
parameters which impacts the dynamical model in different (or all) time sub-intervals should be repeated in each
corresponding Dk .

• dynamical evolution: Xk = Fk
k−1(Xk−1,Dk−1,uk−1,px

k−1)

X0 and D, together with Equation (1b), induce the state at a later time to be a random variable Xt through the
push-forward measure resulting from the pointwise map

xk = Fk
k−1(xk−1,dk−1,uk−1,px

k−1) = xk−1 +

∫ tk

tk−1

f (τ,x,dk−1,uk−1,px
k−1) dτ , (2)

which is the integral form of the dynamical system equations. Hence, let P
(
Xk |Xk−1, uk−1,px

k−1
)
be the state

transition probability density describing the probabilistic dynamical evolution of the system due to uncertainty
in Dk−1. A discretised formulation is now employed, therefore the control profile uk and optimisable static
parameters pk are defined for each k-th time interval [tk, tk+1).

• observation step: Yk = hk
(
Xk, Ek, py

k−1
)

observations are employed to reduce the uncertainty associated to the system state. The received observation yk is
a realisation of a random variable Yk which depends on the uncertain state Xk , sensor and environment noises
modelled by the random variable Ek at time tk , and the sensor action py

k−1 which can be optimised, e.g. time or
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type of observation. The sensor action influences how the belief state updates as it directly impacts the observation
value. For ease of notation, the sensor action at time tk−1 controls the observation yk at time tk . Hence, let
P
(
Yk |Xk, py

k−1
)
be the conditional observation probability density describing the observation likelihood. This

relations expresses that, given Xk and the sensor action py
k−1, the density function of Yk is completely determined

by Ek [19].

Given these definitions, the stochastic optimal control problem under consideration is well described as a Partially
Observable Markov Decision Process [20], i.e. when the state is observed only through indirect measurements. This
model can be re-framed as a Belief Markov Decision Process [14], which employs an advantageous belief state
representation. That is, the state of the model is not a specific realisation xk , but rather the state is the probability
distribution PXk

of Xk . The probability distribution of the dynamical system state is henceforth called belief state. The
main advantage of such formulation is that the belief state is now completely observable as at any time the probability
distribution is known, whereas the specific state realisation is not.

Let p = [px, py] be the vector of optimisable static parameters, respectively containing both the control and sensor
actions to be optimised. Hence, the optimal control problem under uncertainty (OCPUU) is formulated as

min
u, p

J =
N−1∑
k=0

C
(
Xk,uk,pk

)
+ CN

(
XN

)
(3a)

s.t. Xk = T
(
Xk−1, Dk−1, Ek, uk−1,pk−1

)
(3b)

G
(
Xk,uk,pk

)
∈ ΦG for k = 0 , . . . ,N − 1 (3c)

GN

(
XN

)
∈ ΦGN (3d)

X0 ∼ PX0 , (3e)

where the time discretisation in sub-intervals [tk, tk+1) is employed. Equation (3a) is the objective index defined as sum
of real-valued cost functions C and CN , respectively for intermediate and final times, which take as input the state, as
random variable, and the controls, and return a deterministic value, e.g. its expected value or the probability of an
event. Similarly, G and GN are real-valued constraint functions expressed with a set inclusion condition, i.e. feasible
in Φ(·), to represent simultaneously equality and inequality constraints. Equation (3e) expresses the initial condition
for the belief state X0. Finally, the dynamical equations describing the pointwise motion in Equation (1b) have been
substituted by the transition function T in Equation (3b), which describes how the belief state evolves in time and after
an observation update. In direct approaches, the continuous control profile is parameterised with a suitable functional
relationship, and its parameters optimised by a numerical solver to find an optimal policy.

This belief formulation is very general and therefore it is suitable to frame a large range of problems in trajectory
optimisation. Indeed, depending on the practical problem to be solved and on design choices, the generality of C
and G functions allows the mission designer to impose objective and constraints in diverse fashions, e.g. in expected
value, in probability (chance constraints), and so on, depending on the specific case to solve. Furthermore, since no
assumptions are made on the nature of the probability distributions describing the uncertainties, or on the transition
function to propagate them, this formulation is appropriate also to model the uncertainty structure of realistic and
complex applications. This formulation further enables the concurrent optimisation of the open-loop thrust profile, the
closed-loop controllers and orbit determination parameters, thus coupling the trajectory optimisation process with the
navigation analysis.

In general, Problem (3) has no closed form solution, just like the deterministic optimal control problem. Hence, a
practical approach is needed to convert the dynamical control problem into a static constrained one, which is possible to
solve with well-established numerical routines, e.g. NLP solvers. The next section will present the development of a
stochastic transcription enclosing observation steps for the practical solution of the stochastic optimal control problem.

B. Epistemic Uncertainty

In some uncertain scenarios, the density function of a random variable is partially unknown, and a precise
specification is not possible. This is often the case with interval-valued model parameters, e.g. asteroid physical
characteristics, or poorly characterised systems, e.g. sensor noises, low TRL thrusters, and so on.

In such cases, a stochastic variable is modelled as epistemic uncertainty, that is when its density function is specified
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within a set rather than uniquely defined. Therefore, the distribution of the generic random variable Z is set-valued as

Z ∼ P(Z) ∈ PZ . (4)

For the considered applications, Z can represent the initial conditions, model parameters or sensor noise equivalently.
The imprecise set of distributions can be specified in different ways. One alternative is to parameterise the set with
epistemic parameters λ as

PZ ∈ PZ =
{
PZ(z; λ) | λ ∈ [λl, λu]

}
, (5)

where λl and λu are respectively the lower and upper parameter values. This option is to be chosen when the underlying
stochastic distribution is known, but some of its parameters are not completely characterised, e.g. a set of Gaussians
with interval-valued mean or covariance. Another alternative is to specify lower and upper functions, and allowing each
distribution between them to be a feasible one as

PZ ∈ PZ =
{
PZ(z) | PL

Z (z) ≤ PZ(z) ≤ PU
Z (z) ∀z ∈ Ωz

}
, (6)

where PL
Z and PU

Z are the lower and upper distributions. The latter case is known as imprecision and models the
uncertain scenarios when the family of distributions is unknown.

Epistemic uncertainty on either of these stochastic variables causes the belief state to be set-valued itself as

Xk ∼ PXk
∈ PXk

. (7)

Being the constraints and objective function maps from the probability function space to the real space, under epistemic
uncertainty their output is interval-valued as

G(Xk) ∈ [G, G ] for PXk
∈ PXk

, (8)

where the lower and upper bounds are defined as

G
(
Xk

)
= inf

PXk
∈PXk

G
(
Xk

)
G

(
Xk

)
= sup

PXk
∈PXk

G
(
Xk

)
,

(9)

with the same notation holding for the objective functions C.
Therefore, for the epistemic setting the OCPUU as formulated in Equation (3) becomes

min
µ∈U

J =
N−1∑
k=0

C
(
Xk,uk

)
+ CN

(
XN

)
(10a)

s.t. Xk = T
(
Xk−1, Dk−1, Ek, uk−1

)
(10b)

G
(
Xk,uk

)
∈ ΦG , G

(
Xk,uk

)
∈ ΦG for k = 0 , . . . ,N − 1 (10c)

GN

(
XN

)
∈ ΦGN

, GN

(
Xk

)
∈ ΦGN

(10d)

X0 ∼ PX0 ∈ PX0 . (10e)

For the objective index, the epistemic worst-case scenario C is selected for this formulation to obtain a conservative
robust solution, although different choices are possible. For the constraints, their lower and upper bounds can be
independently constrained depending on the specific application. This setting includes the case when the whole interval
[G, G ] should be contained in one compact set, in which case ΦG = ΦG.

III. Shooting Transcription

Solving an optimal control problem under uncertainty requires propagating the belief state from the initial condition
in Equation (3e) through the dynamics, and update it at observation times with the received observations. This task can
be tackled in a number of ways, e.g. Monte Carlo, just like the deterministic optimal control problem can be solved
with different transcriptions. Although Monte Carlo methods for uncertainty propagation are straightforward to employ
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as each sample can be propagated through the deterministic point-wise maps, they are often too expansive to be used
within an optimisation cycle due to their slow convergence.

This section presents a shooting-like stochastic transcription for the optimal control problem in Problem (3), which
employs a direct propagation of the uncertainty distribution. Specifically, it generalises the shooting transcription
developed in [11] to the presence of orbit determination arcs and controllers.

In the general nonlinear case, the distribution of the belief state Xk+1 is computed with a two-step approach typical
of sequential state estimation filtering algorithms [21]:

• Tpredict : the belief state is propagated from tk to tk+1 with the Chapman-Kolgomorov equation employing the
conditional transition probability as

P−Xk
= p( xk | y1:k−1,u0:k−1,p0:k−1) =

∫
p(xk | xk−1,uk−1,px

k−1) p(xk−1 | y1:k−1,u0:k−1,p0:k−1) dxk−1 , (11)

where the superscript (·)− indicates that the distribution results from a dynamical prediction, y1:k are all the
observations up to time tk , and u0:k−1 and p0:k−1 are all the control profile and parameters until time tk−1. The
control histories u0:k−2 and p0:k−2 disappear in the transition probability because the belief state Xk is conditionally
independent on it given the belief state at the previous time Xk−1 (Markov property). Essentially, Equation (11)
is the belief counterpart of the point-wise dynamical propagation Fk

k−1 in Equation (2), therefore it is used to
propagate the state distribution itself rather than the state realisations.

• Tupdate: the belief state is updated using the Bayes’ inference rule as

PXk
= p(xk | y1:k,u0:k−1,p0:k−1) =

p(yk |xk,py
k−1) p(xk | y1:k−1,u0:k−1,p0:k−1)∫

p(yk |xk,py
k−1) p(xk | y1:k−1,u0:k−1,p0:k−1) dxk

, (12)

which is the posterior distribution incorporating the observation information yk . As for the transition probability,
the measurement yk is conditionally independent on the observation and control history, thus those terms disappear
in the observation likelihood p(yk |xk,py

k−1).

Hence, the generic transition function T in Equation (3b) has the following two-step form in the stochastic shooting
transcription:

T
(
Xk−1, Dk−1, Ek, uk−1, pk−1

)
=

{
X−
k
= Tpredict

(
Xk−1, Dk−1, uk−1, px

k−1
)

Xk = Tupdate
(
X−
k
, Ek, py

k−1
)
.

(13)

One interesting feature of the belief formulation is that, while the system point-wise state would dynamically evolve
through a one-to-many relationship in a standard MDP, the belief state of the BMDP evolves through the prediction and
update steps according to a one-to-one relationship.

Being the uncertain parameters partitioned as D =
[
D0, D1, . . . ,DN−1

]
, the main advantage of the shooting scheme

is that it decouples the uncertainty in the different sub-intervals [tk, tk + 1). When the belief is propagated from tk to tk+1,
the stochastic dimensionality is nξk = nx + ndk

, where nx and ndk
are respectively the state and uncertain parameters

Dk dimensionality, instead of being the total nξ = nx + nd as it would be with a vanilla Monte Carlo approach. This
efficient decoupling avoids the accumulation of uncertainty and the growth of the belief stochastic dimension in time,
thus helping containing the curse of dimensionality typical of uncertainty quantification problems. This feature is
computationally crucial for an uncertainty quantification method which is called within an optimisation loop numerous
times.

A. Navigation Analysis Approach
Treating observations in offline trajectory optimisation is a tricky task. Indeed, a measurement is a random function

of the true state of the system and sensor noise, which is however unknown at the time of offline planning. Therefore,
simulating a specific observation value yk , and its corresponding likelihood, rather than another value, is an arbitrary
choice corresponding to an arbitrary reduction in the state uncertainty (through the update equations). This problem is
depicted in Figure 1, where a single observation reduces the uncertainty dispersion.

While reducing the uncertainty is the goal of orbit determination in the operational life of a spacecraft, that is when
real measurements are available, when performing robust trajectory optimisation this simulation approach leads to
discarding entirely feasible regions of uncertainty.
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Xk Xk+1 Xk Xk+1 Xk Xk+1 Xk Xk+1

Fig. 1 Effect of single measurement simulation on the uncertainty propagation process. The leftmost frame
is the uncertainty propagation without any observation. The second frame indicates the generation of a single
observation. The third one shows the uncertainty update of the belief Xk given the new observation. The
rightmost is the new belief propagation after the new observation has been processed.

In navigation analysis, this problem is often dealt with a Monte Carlo simulation over the possible observation space,
where for each of the drawn M observation samples y(j)

k
, j = 1, . . . ,M , an inference step is performed. This results in a

set of possible posterior beliefs
X(j)
k
∼ PX( j)

k

= p (xk | y(j)1:k , u 0:k−1, p 0:k−1) , (14)

each resulting from a different observation realisation. In the developed formulation, this procedure corresponds to
having different belief states at time tk .

Such scenario is depicted in Figure 2, where multiple belief components are generated as a consequence of the
Monte Carlo samples over the observation space. With this approach, each sample represents a possible realisation of

Xk Xk+1 Xk Xk+1 Xk Xk+1 Xk Xk+1

Fig. 2 Effect of Monte Carlo measurement simulation on the uncertainty propagation process. The leftmost
frame is the uncertainty propagation without any observation. The second one indicates the generation of a
multiple observation samples by Monte Carlo. The third frame shows the multiple uncertainty updates of the
belief Xk given the Monte Carlo observation samples. The rightmost is the belief components propagation after
the new observations have been processed.

the operational life of the spacecraft. That is, when the satellite is actually flying and observations are taken, the updated
distribution would be one sample out of the multiple green ones (Figure 2). In such a way, when enough observation
samples are employed, no uncertainty region is arbitrarily discarded in this offline optimisation, while still each sample
have a reduced dispersion as result of the orbit determination process. In addition, each belief component can now
evolve according to a belief-specific control, therefore further enabling the modelling of controllers within the developed
approach.

In navigation analysis, each component is generally treated as an independent sample to then compute a statistical
quantity of interest for the output of the transcription. On the contrary, an advantageous feature of the developed belief
formulation when employing a navigation analysis approach is that a single posterior belief can be recovered. Indeed, a
belief Xk can be written as convex combination which summarises the set of M belief components, resulting from
different instances of the observation space, as

Xk =

M∑
j=1

b(j) X(j)
k
∼

M∑
j=1

b(j) P(j)Xk

M∑
j=1

b(j) = 1 ,

(15)

where b(j) is the belief degree, a weight quantifying the relative degree of likeliness of each P(j)Xk
depending on the

observation Monte Carlo sampling. Hence, the advantage of the convex combination is that we can control the posterior
components P(j)xk singularly through a belief-dependent policy, while at the same time retaining a formal single belief
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Pxk as a mixture, which can be used as general representation of the state uncertainty to evaluate the cost and constraints
functions.

From a theoretical standpoint, this operation can be seen as a sampled-base approximation of the marginalisation
over all the possible values of the observations, which, when leaving out the actions for ease of notation, is defined as

p(xk) =
∫
Y

p(xk |yk) p(yk) dyk ≈
M∑
j=1

b(j)p(xk |y(j)k ) , (16)

where b(j) are quadrature (or Monte Carlo) weights. This makes sense because, at the moment of trajectory planning,
the only information available is about the expected accuracy of the future measurement, i.e. its likelihood distribution,
but not the measurement value itself.

One could, therefore, wonder why to retain the multiple posteriors P(j)xk rather than using the single marginalized
distribution. The rationale behind preferring the multiple posteriors lays in the actual operational side of a space mission.
Indeed, during the operational lifetime of the satellite, one specific measurement value ȳk will be received and used to
process the state distribution to obtain a single posterior P̄Xk

= p(xk |ȳk). From it, the control profile will be updated to
reflect the updated posterior state knowledge. Hence, it makes sense, conceptually and practically, to retain multiple
posteriors, and define a control policy which depends on the belief component.

Another interesting justification for Equation (15) stems from the concept of Jeffrey conditionalisation [22]. This
conditionalisation rule describes how the probability of an event A updates given the occurrence of other events B(j)

with confidence belief degrees b(j), as

Pr
(
A | B(1) ≡ b(1), . . . ,B(M) ≡ b(M)

)
=

∑
j

b(j) Pr
(
A | B(j)

)
, (17)

when the condition events form a partition. This conditionalisation generalises the traditional conditional probability
measure, which is now a special case when event B(j) has been observed with certainty, i.e. when its belief degree is
b(j) = 100%, and therefore the belief degree of its conjugate is zero. Given this probability measure, we can interpret
the belief in Equation (15) as an overall inference step by Jeffrey conditionalisation over sampled observations y(j)

k
with

belief degrees b(j):

PXk
= P

(
xk | y(1)k ≡ b(1), . . . ,y(M)

k
≡ b(M)

)
=

M∑
j=1

b(j) P
(
xk |y(j)k

)
=

M∑
j=1

b(j) P(j)xk . (18)

The problem is that, in general, the sampled observations do not form a partition of the observation space which is
indeed continuous. However, we can approximate any continuous distribution as a probability mass function by using
samples drawn from the original one and the Dirac delta function as [21]

p(ξ) ≈
M∑
j=1

b(j)δ
(
ξ − ξ (j)

)
. (19)

If such approximation is introduced for the observation likelihood, then the Jeffrey conditionalisation provides a key
formal interpretation of the employed inference step with different sampled measurements for the navigation analysis
approach considered.

B. Polynomial Navigation Analysis
Propagating the belief state in time is the most computationally intensive step of the call to the transcription as

it requires to solve the Chapman-Kolgomorov equation which has no closed-form solution in the general nonlinear
case. Furthermore, when several belief components are present, each of them require a separate solution of the integral
in Equation (11). Therefore, in navigation analysis some approximations are typically introduced to speed up the
uncertainty propagation. Among them, the most widely used are:

• Gaussian uncertainty: PXk
= N

(
Xk ; µxk

,Pxk

)
only the first two moments of the belief state are retained and the normal distribution is assumed as underlying
parametric density function;
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• Linear Dynamics: Fk
k−1(xk−1) ≈ Φ

k
k−1 xk−1

the dynamics is linearised around the nominal trajectory, and the state transition matrix Φk
k−1 is employed for

propagation;

• Linear Observation Model: hk(xk) ≈ Hk xk
the observation model is linearised around the nominal state to have a linear mapping between the state and the
measurement space.

When these approximations are enforced, the mean and covariance of each belief component are propagated in time
with inexpensive matrix multiplications. Furthermore, as the observation model is linearised, the uncertainty update
at observation times in Equation (12) reduces to the simple analytical linear Kalman Filter update. These common
approximations enable the use of a high number of Monte Carlo samples to the expenses, however, of losing accuracy in
the uncertainty propagation process.

In this paper, instead, an approach based on polynomial expansion is employed for efficient and accurate uncertainty
propagation. Consider the set Ωξk−1 of all possible uncertainty realisations ξk−1 = [xk−1,dk−1] at time tk−1, and the set
of compatible states at time tk defined as

Fk = {Fk
k−1(ξk−1) | ξk−1 ∈ Ωξk−1 } , (20)

where Fk
k−1 is the numerical mapping as defined in Equation (2). The ultimate goal is to construct a polynomial mapping

which maps the stochastic set Ωξk−1 to the state set Fk . It is importance to notice that no assumption is done on the
distribution of ξk−1, thus the interest lays in constructing an approximation which has good global accuracy over all the
set Ωξk−1 .

The numerical mapping can be expanded in an infinite polynomial series as [23, 24]

F k
k−1(ξk−1) =

∞∑
i=0

αk ,i Ψi(ξk−1) ∀ξk−1 ∈ Ωξk−1 , (21)

where Ψi is the i-th multivariate polynomial basis and αk ,i its coefficient. For practical applications, this expansion is
truncated to a finite order q and only the first Nq components retained as

F k
k−1(ξk−1) ≈ F̃ k

k−1(ξk−1) =

Nq∑
i=0

αk ,i Ψi(ξk−1) , (22)

where Nq depends on the choice of the multivariate polynomial space. The coefficients of the polynomial mapping can
be computed in numerous ways, e.g. intrusive or non-intrusive methods, by least square or quadrature rules, and so on.

In the current development of this transcription, the stochastic collocation approach is employed [25]: the original
function F k

k−1 is evaluated (numerical propagation) on a set of collocation points ξ (j)
k−1, which form the sparse grid, and

the response values used to construct the global polynomial approximation F̃ k
k−1 over the entire set of interest. Because

the stochastic dimension nξk of ξk can be rather high in space applications, the Smolyak polynomial space variant is
used to limit the growth of collocation points with nξk , and further fight the curse of dimensionality. The difference
in number of collocation points for grids constructed by full tensor product and by sparse Smolyak rule can be seen
in Figure 3 for two-dimensional grids constructed with 17 nodes per dimension. Such difference further grows with
the number of stochastic dimensions. In this work, Chebyshev polynomials will be used as basis functions Ψi of the
expansion, hence Clenshaw–Curtis collocation points (Chebyshev extrema) form the sparse grid.

There are several advantages of this sparse polynomial mapping by stochastic collocation over other methods for
uncertainty propagation in trajectory optimisation applications:

• being a non-intrusive method, the dynamical model is called as a black-box function, thus pre-existing libraries
can be easily interfaced with such transcription without alteration;

• the accuracy of the approximation in Equation (22) can be made as good as desired by increasing the degree q of
the polynomial space; the growth of the number of collocation points with the degree q is limited by the sparse
Smolyak variant;

• Chebyshev polynomials are employed for their global convergence properties over a compact set [24] and previous
applications in a number of aerospace cases [11, 26, 27].
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Full Tensor Product Sparse Smolyak GridFull Tensor Product Sparse Smolyak Grid

Fig. 3 Comparison of two-dimensional grids constructed by full tensor product (left) or sparse Smolyak rule
(right) of one-dimensional grids with 17 collocation points.

The constructed polynomial mapping in Equation (22) is therefore used to speed up the uncertainty propagation step
in place of the original numerical propagation, consequently enabling the practical usage of a high number of Monte
Carlo samples for the observation sampling (see Section III.A).

C. Practical Approach

Several approaches can be employed to transcribe the OCPUU (3). Among the possible solutions, this section
presents two approaches for the practical transcription computation which fits the sequential nature of the employed
shooting scheme. Specifically, Section III.C.1 shows the scheme to employ in the most general case of random variables
with no specific parametric distribution, whereas Section III.C.2 presents a specialised approach which more efficiently
transcribes the OCPUU when the involved uncertainty distributions are assumed Gaussian, which is often the case in
navigation analysis.

1. General Case
When no specific assumption or parameterisation is imposed on the stochastic distributions P(·), the equations in

Problem (3) have no closed-form solution and numerical techniques are required. In this case, Monte Carlo sampling
techniques can be extensively employed to compute the belief transition, objective and constraints mappings for the
OCPUU given the availability of inexpensive polynomial mappings.

The prediction and update steps of the belief transition function, in Equation (13), can be computed with the particle
filter [21], a sequential Monte Carlo method that approximates the posterior density function as a discrete one by using
samples x(i)

k
, drawn from a proposal importance distribution π (xk | xk−1,y1:k,u0:k−1,p0:k−1), as

PXk
= p(xk | y1:k,u0:k−1,p0:k−1) ≈

N∑
i=1

w
(i)
k
δ
(
xk − x(i)

k

)
, (23)

where δ(·) is the Dirac function, and the weights w(i)
k

are updated sequentially as

w
(i)
k
= w

(i)
k−1

p( yk | x(i)k ,p
y
k−1) p(x(i)

k
| x(i)

k−1,uk−1,px
k−1)

π (x(i)
k
| x(i)

k−1,y1:k,u0:k−1,p0:k−1)
, (24)

to account for the received observations and the known dynamical evolution. The main motive behind the particle
filter approach is that drawing samples directly from the posterior distribution PXk

is an unattainable task, whereas
evaluating their density value is relatively easy thanks to Equation (12). Therefore, the samples are drawn from a
proposal distribution π, whose support should be larger than the posterior one, and then corrective weights are employed
to target the posterior distribution PXk

.
The accuracy of the discrete approximation and the particle filter performance greatly depend on the number of

particles used, which is further critical for high-dimensional nonlinear problems like navigation analysis for space
trajectory. Therefore, the polynomial mapping F̃ k

k−1 constructed in the previous section results crucial in this scheme
as it allows one to employ a larger number of samples, which can be propagated through an inexpensive polynomial
evaluation.
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For the Monte Carlo navigation analysis approach, the same particle filter scheme can be applied just running a
single update step for each observation sample, and approximating the posterior as a convex combination of the resulting
posterior components. Hence, the updated posterior can be written as

PXk
=

M∑
j=1

b(j) P(j)Xk
=

M∑
j=1

b(j) p(xk | y(j)1:k,u0:k−1,p0:k−1)

≈

M∑
j=1

b(j)
N∑
i=1

w
(i, j)
k

δ
(
xk − x(i, j)

k

)
,

(25)

where x(i, j)
k
∼ π (xk | xk−1,y(j)1:k,u0:k−1,p0:k−1) have been drawn (propagated) from the proposal distribution that, in the

general case, may be chosen to depend on the particular belief component, i.e. y(j)1:k .
Once the belief state is propagated and approximated as in Equation (23), the value of the objective index C and

constraints G, which return a statistical quantity of interest given the belief state, can be easily estimated by the N
samples x(i)

k
used for the discrete approximation. As a relevant example, any G (or C) function in the form of an

expectation of a generic function φ, e.g. expected value constraints, chance constraints, in variance and so on, can be
immediately computed as

G
(
Xk

)
= E

[
φ
(
Xk

)
| y1:k

]
≈

N∑
i=1

w
(i)
k
φ
(
x(i)
k

)
, (26)

or similarmly for the case of multiple belief components Xk ∼
∑M

j=1 b(j)P(j)Xk
, as in Equation (25), the integral is

G
(
Xk

)
= E

[
φ
(
Xk

)
| y1:k

]
≈

M∑
j=1

b(j)
N∑
i=1

w
(i, j)
k

φ
(
x(i, j)
k

)
. (27)

This particle filter-based approach to the practical computation of the shooting transcription should be employed in
the most general case of non-Gaussian uncertainty, nonlinear dynamical system and observation model. This concludes
the transcription method for the OCPUU as formulated in Equation (3).

In the next section, a Gaussian tailored approach is presented to more efficiently tackle the common case of optimal
control problems under Gaussian-assumed uncertainty.

2. Gaussian Case
A special case, of particular interest for spacecraft navigation analysis applications, is the one where all the involved

uncertainty distributions are Gaussian:

X0 ∼ N
(
X0; µX0, PX0

)
(28a)

D ∼ N
(
D ; µD, PD

)
(28b)

Yk |xk ∼ N
(
Yk |xk ; µYk , PYk

)
(28c)

Xk ∼ N
(
Xk ; µXk

, PXk

)
, (28d)

where m indicates the mean and P the covariance of the normal distributions. The distributions in Equations (28a-c) are
Gaussian by construction, while the belief state in Equation (28d) is approximated as Gaussian.In this case, dedicated
methods exist to efficiently compute each quantity in Problem (3), which are more suitable than general Monte Carlo
methods for Gaussian distributions.

As for the prediction and update steps in the belief transition Equation (13), the Gaussian assumed density filter [28]
can be applied, whose main idea is to approximate the propagated and the posterior distributions as Gaussian ones,
that is only computing and retaining the first two moments. With this sequential filtering scheme, the two-step belief
transition becomes:

• X−
k
= Tpredict

(
Xk−1, Dk−1, uk−1,px

k−1
)
the predicted distribution is written as

X−k ∼ N
(
X−k ; µX−

k
, PX−

k

)
, (29)
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with mean and covariance given by

µX−
k
=

∫
F̃ k
k−1(z

−
k−1,uk−1,px

k−1) N
(
z−k−1 ; µZ−

k−1
,PZ−

k−1

)
dz−k−1

PX−
k
=

∫ (
F̃ k
k−1(z

−
k−1,uk−1,px

k−1) − µX−
k

) (
F̃ k
k−1(z

−
k−1,uk−1,px

k−1) − µX−
k

)T
N

(
z−k−1 ; µZ−

k−1
,PZ−

k−1

)
dz−k−1 ,

(30)

where Z−
k−1 = [Xk−1,Dk−1]

T is the joint random variable of the uncertain state and model parameters.

• Xk = Tupdate
(
X−
k
, Ek, py

k−1
)
the posterior distribution after receiving an observation yk is

Xk ∼ N
(
Xk ; µXk

, PXk

)
, (31)

with mean and covariance
µXk
= µ−Xk

+Kk(yk − µYk )

Pk = P−k −KkSkKT
k .

(32)

The observation mean µYk and Kalman gain Kk are computed as

µYk =

∫
h( zk ,py

k−1)N
(
zk ; µZk

,PZk

)
dzk

SYk =
∫ (

h( zk ,py
k−1) − µYk

) (
h( zk ,py

k−1) − µYk
)T
N

(
zk ; µZk

,PZk

)
dzk

CXYk
=

∫ (
xk − µ−Xk

) (
h( zk ,py

k−1) − µYk
)T
N

(
zk ; µZk

,PZk

)
dzk

Kk = CXYk
S−1
Yk

,

(33)

where Zk = [Xk,Ek]
T is the joint random variable of the uncertain state and sensor noise, SYk is the observation

covariance, whereas CXYk
is the cross covariance between state and observation.

Hence, both the prediction and update steps of the belief transition function can be reduced to the computation of
the expected value of a generic function φ, that is the function integral with Gaussian density distribution as weighting
function as

E[φ(Z)] =
∫

φ(z) N
(
z ; µZ,PZ

)
dz . (34)

Integrals of this type can be solved with a variety of well established numerical techniques. To optimally exploit
simultaneously the Gaussian nature of such integral and the constructed polynomial mapping F̃ k

k−1, the sample-based
Gauss-Hermite scheme is employed to compute such integrals with a multi-dimensional cubature rule as∫

φ(z) N
(
z ; µZ,PZ

)
dz ≈

N∑
i=1

w(i) φ (z(i)) , (35)

where z(i) are the roots of the multivariate Hermite polynomial and w(i) the corresponding weights.
The advantage of this approach over similar sample-based ones, e.g. Unscented Transform, is that the estimation

fidelity can be made as accurate as desired simply using more quadrature points, that is a higher order Hermite polynomial.
A high accuracy computation of the integrals in Equation (30) is made possible by the Chebyshev polynomial mapping
F̃ k
k−1, which can be employed to propagate a great number of samples inexpensively.
The multivariate Gauss-Hermite grid is usually constructed by Cartesian products of univariate ones. In order to

alleviate the curse of dimensionality encountered in high-dimensional problems, like the ones tackled in navigation
analysis, a sparseGauss-Hermite version is employed to contain the number of samples for high stochastic dimensions [25].

The Gaussian assumed density formulation in expectation in still applies to the case of belief state represented as
sum of belief components because of the linearity property of the integral operator. Indeed, if the probability density
function is a convex combination of probability components as

N
(
Z ; µZ,PZ

)
=

M∑
j=1

b(j)N
(
Z ; µ(j)Z ,P

(j)
Z

)
(36)
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then the generic integral in Equation (34) becomes∫
φ(z) N

(
z ; µZ,PZ

)
dz =

∫
φ(z)

M∑
j=1

b(j)N
(
Z ; µ(j)Z ,P

(j)
Z

)
dz =

=

M∑
j=1

b(j)
∫

φ(z) N
(
Z ; µ(j)Z ,P

(j)
Z

)
dz ≈

M∑
j=1

b(j)
N∑
i=1

w(i, j)φ (z(i, j)) ,

(37)

which is the sum of the expectations with respect to the belief components weighted for the corresponding belief degrees.
It is interesting to notice that both in the case of generic uncertainty tackled with a particle filter, and Gaussian

uncertainty solved with a quadrature filter, the end operation to perform is the computation of integrals by sample-based
approximations. The formulation is similar for both the cases, indeed Equation (26) is the same as Equation (35) for the
single belief representation, and Equation (27) is the same as Equation (37) for the mixture case, where only the weights
and samples come from different rules.

3. Epistemic Case
When some of the stochastic variables are modelled with epistemic uncertainty, the epistemic OCPUU requires the

computation of bounds (see Equation (9)) on the the constraints and objective functions. Such extrema are computed by
means of an optimisation routine which look for the distributions within the imprecise set P which correspond to the
infimum and supremum of the quantity of interest. Therefore, the procedure to solve Problem (10) involves two nested
optimisation loops: the outer one operates over the control variables to minimise the objective index and respect the
constraints; the inner one works with the epistemic parameters to compute the lower and upper bounds.

For the general case described in Section III.C.1, a generalisation of the particle filter to epistemic uncertainty was
developed [29] which employs importance sampling to substitute the optimisation over the distributions with an efficient
equivalent one over the importance weights. On the other hand, for the Gaussian case solved with a Kalman Filter as
in Section III.C.2, the inner optimisation operates over the imprecise set directly, requiring a new transcription call for
every evaluation.

In the practical solution of the epistemic case, the polynomial mapping in Equation (22) can be constructed only
once per iteration of the outer loop, and the subsequent inner loop optimisation performed exploiting the inexpensive
surrogate. This can be done on the basis that, while the outer loop may change significantly the reference trajectory, the
inner loop tunes only the stochastic distributions and therefore should still operate in the high-accuracy region of the
surrogate.

IV. Test Case: Europa Clipper Robust Optimisation
The problem of optimising the ∆V99 for one leg of the Europa Clipper tour is addressed in this application. The

goal is to compute the optimal nominal trajectory which minimises the sum of deterministic and statistical manoeuvres,
while respecting desired flyby parameters and a final boundary condition in expected value, and having a collision
probability after targeting, i.e. chance constraint, with Europa below 0.1%.

Therefore, here only one part of the full tour is robustly optimised to meet flight dynamics requirements. The final
boundary condition ensures that when the robust modified trajectory is substituted back in the full tour, the spacecraft
can actually continue the next legs of the tour according to the original design.

After the description of the applications setup, both the cases of pure aleatoric uncertainty and combined epistemic
and aleatoric uncertainty will be addressed in this section.

A. Problem Setup
For this application, the interest lays in finding the optimal open-loop control ∆v which corresponds to a trajectory

which is most robust and reliable to the considered uncertainties. Therefore, the closed-loop controllers δ∆v, steering
the different samples (belief components), are not optimised but their value is computed by an analytical linear law.

The problem scenario addressed is depicted in Figure 4 in its several phases. Specifically, this is the navigation
analysis performed during each optimisation call, i.e. for given ∆v controls, represented in green, while the analytical
controllers δ∆v are represented in red. In Figure 4(a), the trajectory starts from the Europa flyby E17 with the initial
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Fig. 4 Schematic representation of navigation analysis setup for part of Europa Clipper leg stochastic optimi-
sation test case.

dispersion X0 ∼ PX0 . X0 is propagated to the time of the clean-up,which is a post-flyby (∼ 3 days after) maneuver to
correct biases as resulting from navigation errors worsened by the previous close encounter. During such propagation,
orbit determination campaigns are carried out, represented in yellow, with a 8 hours ON 8 hours OFF schedule (dashed
line) to improve the spacecraft trajectory knowledge This 8 hours ON 8 hours OFF pattern is adopted to faithfully
model the part-time availability of the DSN tracking network for this mission. The OD stops at a cut-off time before the
subsequent maneuver, here set to one day, to model the time needed by the spacecraft operators to compute the updated
trajectory. The aforementioned MCNA approach is employed to simulate observation samples and update the belief
state until XCU−E17 ∼

∑M
j=1 b(j) X (j)

CU−E17. Hence, the deterministic maneuver ∆vCU−E17 is applied equally to each
belief component.

Then, as in Figure 4(b), the belief state is propagated and updated during OD arcs until XTRG−E18 at the time of
targeting, close to the trajectory apocenter, when the deterministic ∆vTRG−E18 is applied to the belief state to target the
next Europa flyby E18. The deterministic impulse is combined with a linear analytical controller δ∆v(j)

TRG−E18 to correct
for the state dispersions and target the desired B-plane conditions (B vector and Linearised Time-of-Flight) [30] at E18,
with a different velocity correction applied to different belief components X(j)

TRG−E18. The belief is then propagated
( Figure 4(c)) and observations incorporated until XAPR−E18 at the approach time, when a pre-flyby (∼ 3 days before)
controller δ∆v(j)

APR−E18 is enforced to perform final corrections before the forthcoming encounter. Again, this controller
applies component-specific impulses to linearly target the desired B-plane conditions for E18.

Figure 4(d) shows the subsequent belief transition until the E18 flyby after the approach maneuver. At E18, the
belief state XE18 is used to compute the expected value of the B-plane parameters to impose a constraint with the
target conditions in the optimisation loop. In Figure 4(e), the belief is propagated and updated until the next clean-up
maneuver, which has both nominal ∆vCU−E17 and statistical δ∆vCU−E17 components, to accurately target the final
position at the next apocenter, as in Figure 4(f). At the final time, the next apocenter in this case, the belief state XN is
employed to compute a final boundary condition in expected value for the position, and the final velocity mismatch.

The whole trajectory considered lasts 21 days, from E17 to the second apocenter passage. The employed inertial
reference frame is the Mean ecliptic and equinox of J2000 one. The motion is described in high-fidelity full-ephemeris
dynamics, taking into account the gravitational pull of Jupiter (central and J2), its moons Europa (central and J2), Io,
Ganymede and Callisto, and the Sun. The dynamics is integrated with the propagation module of the mission design
tool jTOP [31].
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B. Aleatoric Scenario

1. Aleatoric Uncertainty Model
The initial dispersion is modelled as a Gaussian random variable with covariance PX0 set as diagonal in the

Radial-Transversal-Normal (RTN) frame, with the square root of the diagonal values (standard deviations) as reported
in Table 1. This expected dispersion is reconstructed from OD campaigns post-flyby.

The execution errors of the impulsive maneuvers are modelled with Gates’ model [32], which decompose the error
in magnitude and pointing components. Execution errors are considered on both the nominal ∆v and statistical δ∆v
maneuvers.

As for the orbit determination campaigns, the measured quantity is the range and range-rate of the spacecraft with
respect to the Earth. The likelihood function is modelled as Gaussian, and its covariance characterizing the observation
accuracy is assumed diagonal.

The parameters for these uncertainty models are detailed in Table 1, set in line with values found in previous
navigation analysis studies for Europa Clipper [33, 34], which reports respectively the square root of the diagonal values
(standard deviations) for the initial dispersion, the Gates’ model parameters for the execution errors, and the standard
deviation values for the accuracy of each observation type.

Table 1 Parameters of uncertainty models considered in Europa’s moon flyby stochastic optimisation. The
initial dispersion is expressed in terms of standard deviation of position and velocity in RTN components. The
execution error is modelled by Gates’ model and the corresponding parameters are reported. The observation
noise is expressed in terms of 1-σ accuracy for range and rangerate components.

Uncertainty Component Value

Initial Dispersion Position (RTN) [3.7, 5.3, 9.3] [m]
Velocity (RTN) [2.3, 3.4, 5.9] [mm/s]

Execution Error Fixed Pointing 3.33 [mm/s]
Proportional Pointing 6.67 [mrad]
Fixed Magnitude 4.67 [mm/s]

Proportional Magnitude 0.33% [-]

Observation Accuracy Range 3.0 [m]
Rangerate 0.1 [mm/s]

2. Aleatoric Belief Stochastic Formulation
Given the scenario introduced in Section IV.A, the problem of optimising the ∆V99 for one leg of the Europa’s

Clipper tour is framed under the developed stochastic formulation as

min
∆vk1

∆V99 (38a)

s.t. Xk = T
(
Xk−1, ∆vk−1, Dk−1, Ek

)
(38b)

PrTRG

(
RE18 ≤ REUR

)
< 0.1% (38c)

E
[
BE18

]
= BE18 (38d)

E
[
R f

]
= r f (38e)

X0 ∼ NX0

(
µX0,PX0

)
, (38f)

where the index k1 = {CU-E17, T RG-E18, CU-E18} is for the open-loop deterministic ∆vs to optimise. The ∆V99 is
defined as the ∆V to address 99% of the possible uncertainty realisations, which in this scenario takes the form of

∆V99 = Q∆VCU -E17 (0.99) + Q{∆V+δ∆V }T RG-E18 (0.99)+
Qδ∆VAPR-E18 (0.99) + Q{∆V+δ∆V }CU -E18 (0.99) + Q∆VF (0.99) ,

(39)
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where Q(·)(0.99) is the quantile function of the subscript uncertain maneuver evaluated at 99% probability. The
closed-loop controllers δ∆v are not optimised, but still contribute to the objective index. ∆VF is the final velocity
mismatch between the final belief and the desired state, and it is taken into account to ensure the spacecraft can optimally
continue the rest of the original tour.

Equation (38b) is the belief transition function, with the execution errors modelled in Dk−1, which is computed with
the Gaussian assumed filtering scheme (see Section III.C.2) in this application as the Gates’ model is sampled from a
three-dimensional normal distribution. Equation (38c) is the delivered probability of impact after targeting, written
as probability of distance at flyby E18 to be smaller or equal to the radius of Europa, to be smaller than 0.1%. This
chance constraint is computed after targeting, that is without adding the approach maneuvers, to ensure environmental
protection to Europa even in the event of spacecraft loss after the targeting. Equation (38d) requires the expected value
of the B-plane flyby conditions to be fixed to a target vector, as well as Equation (38e) imposes the expected value of the
final belief to be equal to a final target position vector. Finally, Equation (38f) is the initial belief condition, whose PX0

is given in Table 1 while the mean µX0 comes from the full nominal tour.

3. Aleatoric Robust Optimisation Results
The deterministic optimal solution reported in Table 2 is employed as first guess for the stochastic optimisation. Such

solution meets the flyby and final boundary conditions, but violates the chance constraint as the resulting probability of
impact is Pr

(
DCA ≤ REUR

)
= 0.75 ≮ 0.1%.

Table 2 Free variables, ∆V99 and Probability of Impact (PoI) for deterministic solution employed as first guess
for stochastic optimisation.

Solution ∆vCU-E17 [m/s] ∆vTRG-E18 [m/s] ∆vCU-E18 [m/s] Det ∆V [m/s] ∆V99 [m/s] ∆V99/Det ∆V [-] PoI [-]

Deterministic [+0.00, +0.00, +0.00] [−1.30, +2.86, +3.23] [+0.00, +0.00, +0.00] 4.51 8.05 1.79 0.75%

A visualization of the probability of impact for such solution is displayed in Figure 5, where the state uncertainty
at different moments during the trajectory is propagated to the B-plane without applying successive maneuvers or
performing new orbit determination campaigns. The top-left plot shows the delivered B-plane ellipses that would result
if the spacecraft was not controlled or observed anymore after the E17 clean-up. The top-right plot shows the B-plane
confidence regions delivered after the targeting maneuvers, that is the uncertainty on which the chance constraint for the
probability of impact is computed. For this deterministic trajectory, it is possible to see that indeed the 3-σ region has
a non-zero intersection with the B-plane equivalent surface of Europa (represented by the thick black line at h = 0
km), leading to an unmet PoI requirement. The bottom-left plot displays the B-plane uncertainty propagated without
new OD after the approach maneuver, which results notably smaller with respect to the after targeting one because of
the new OD arcs and the controller δ∆VAPR-E18. The bottom-right plot finally shows the uncertainty at the B-plane as
reconstructed using the OD arcs after the approach.

The estimated ∆V99 for the deterministic trajectory is approximately 80% larger than the deterministic one, a cost
increase in line with previous navigation analysis for the Europa Clipper trajectory [35].

Starting from this infeasible solution, the goal of the robust optimisation approach is to find the robust optimal
trajectory which minimises the ∆V99 while respecting the PoI constraint, and keeping the expected flyby conditions
and terminal position fixed. The belief optimal control problem (38) is solved by interfacing the stochastic shooting
transcription developed in this paper with the nonlinear programming solver MATLAB’s fmincon, using the interior-point
algorithm.

The stochastic belief optimisation approach found a feasible trajectory respecting the chance constraint below the
imposed threshold. Table 3 reports the optimum solution and the statistical quantities of interest for the converged robust
trajectory. The value of the constraints in expected value are not included as they are satisfied up to small thresholds.

Table 3 Free variables, ∆V99 and Probability of Impact (PoI) for robust solution optimised with the stochastic
belief approach.

Solution ∆vCU-E17 [m/s] ∆vTRG-E18 [m/s] ∆vCU-E18 [m/s] Det ∆V [m/s] ∆V99 [m/s] ∆V99/Det ∆V [-] PoI [-]

Stochastic [+0.12, +0.18, +0.09] [−2.09, +2.01, +1.99] [−1.21, +0.56, −1.79] 5.98 9.91 1.66 0.09%
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Fig. 5 Spacecraft delivered 1-, 2- and 3-σ confidence ellipses in B-plane parameters as mapped from the state
uncertainty at different times along the deterministic trajectory without successive maneuvers and observations
as resulting from aleatoric uncertainty.

Looking at the deterministic ∆v allocation, one can infer that the feasibility on the PoI constraint were realised by
trading off part of the targeting maneuver with the clean-up ones. The execution errors coming from an increased
∆vCU−E17 can be adjusted by the controller at the apocenter, while the lower ∆vTRG−E18 and associated execution
errors, results in a smaller uncertainty delivered at the B-plane (see in Figure 6). After the flyby, a ∆vCU−E18 is now
needed to return to the target trajectory at the final time.

Overall the optimal trajectory has a higher deterministic ∆V then the first guess, but the infeasibility is restored. We
observe that the percentage increase of the statistical ∆V99, with respect to the deterministic ∆V , is now lower, i.e. 66%,
indicating that the optimal trajectory can compensate the possible uncertainty realisations more efficiently and robustly.

Figure 6 shows the B-plane delivered uncertainties of the robust trajectory, which are considerably different from the
delivered uncertainties of the first guess . The top-right plot of the uncertainty mapped after targeting, used for the PoI
computation, shows that the 3-σ confidence ellipse does not cross the equivalent surface of Europa. By comparing
it with the corresponding plot in Figure 5, the robust B-plane ellipse has a smaller semi-major axis, which mainly
contributes to the PoI, whereas it has a larger semi-minor axis, which has a limited contribution to the PoI constraint.
The robust ellipse is also rotated counterclockwise, which leads to an even lower impact probability.

To quickly verify that the increase in the ∆V99 between the robust solution and the first guess is due to the initial
infeasibility, a stochastic optimisation has been run removing the PoI constraint and starting from the same initial guess.
Table 4 shows the unconstrained optimal solution, with a lower ∆V99 compared to that of the first guess, although the
deterministic ∆V is slightly higher. This result further confirms that the stochastic robust optimum differs from the
deterministic one, and that the statistical performance are indeed improved.

As done in Figure 6 for key events in the trajectory, the spacecraft state uncertainty can be mapped to B-plane
coordinates from any time during the trajectory. Figure 7 provides an insightful visualisation of how the maneuvers and
observation arcs affect the flyby uncertainties. In particular, the figure shows (y-axis) the semi-major (SMAA) and
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Fig. 6 Spacecraft delivered 1-, 2- and 3-σ confidence ellipses in B-plane parameters as mapped from the state
uncertainty at different times along the robust trajectory without successive maneuvers and observations as
resulting from aleatoric uncertainty.

Table 4 Free variables, ∆V99 and Probability of Impact (PoI) for verification solution optimised with the
stochastic belief approach without imposing the PoI constraint.

Solution ∆vCU-E17 [m/s] ∆vTRG-E18 [m/s] ∆vCU-E18 [m/s] Det ∆V [m/s] ∆V99 [m/s] ∆V99/Det ∆V [-] PoI [-]

Verification [+0.00, −0.01, −0.01] [−1.28, +2.89, +3.25] [−0.04, −0.02, +0.03] 4.6 8.02 1.74 0.76%

semi-minor (SMIA) axes of the B-plane 1-σ confidence ellipse, i.e. in-plane components, and of the uncertainty in
linearised time of closest approach (LTCA), i.e. out-of-B-plane component, as function of different times along the
trajectory (x-axis), if no other action is taken after that time (delivered uncertainty).
The value of the mapped uncertainty is around 10 km and 500 m in SMAA and SMIA, and 10 seconds in LTCA,
as resulting purely from the initial dispersion as in Table 1. The mapped uncertainty exhibits then a jump at the
E17 clean-up maneuver time because of the introduced executions errors. Successively, the orbit determination arcs
reduce the B-plane ellipsoid of more than one order of magnitude in SMAA and LTCA, whereas the reduction in
SMIA is more modest. The main targeting maneuver and its high execution errors cause a major spike in the delivered
uncertainty. The values of SMAA and SMIA at this event are critical for the robust optimisation process, as this B-plane
mapped uncertainty is the one employed for the probability of impact computation. Successive OD arcs help reducing
significantly the SMAA and LTCA mapped dispersion until another, more contained, jump at the approach maneuver
before E18. Finally, the measurements arcs before E18 reduce the mapped uncertainty even further, to have an expected
1-σ uncertainty at flyby of few hundred of meters in SMAA and SMIA, and few tens of ms for the LTCA.
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Fig. 7 Spacecraft state uncertainty mapped in B-plane coordinates for different times during the robust
trajectory.

C. Epistemic Scenario

1. Epistemic Uncertainty Components
Epistemic uncertainty is considered in the initial dispersion and execution errors parameters. The initial dispersion

considered in the aleatoric scenario is indeed the reconstructed uncertainty from simulated OD arcs post-flyby. Therefore,
the values in Table 1 are estimated during the navigation analysis in the mission design phase, whereas the actual
dispersion to consider during operations may vary from these values. This further uncertainty is modelled as epistemic,
and the imprecise initial set is parameterised as

Px0 = { PX0 : Px0 = N
(
x0; µx0, σ̃

2
x0

)
,

σ̃2
x0 = blkdiag( λx0−1 σ

2
x0 (1:3,1:3), λx0−2 σ

2
x0 (4:6,4:6)),

λx0−1 ∈ [0.5,2.0], λx0−2 ∈ [0.5,2.0] } ,

(40)

where σ2
x0 (1:3,1:3) and σ

2
x0 (4:6,4:6) indicate respectively the position block and the velocity block of the covariance

matrix σ2
x0 , the operator blkdiag indicates a block-diagonal matrix, λx0−1 and λx0−2 are two multipliers scaling the precise

covariance matrix σ2
x0 defined from the standard deviations in Table 1, independently for the position and velocity

coordinates. Being the multipliers defined within [0.5,2.0], they encompass distributions with covariance from half up
to double the magnitude of the pure aleatoric one.

For the execution errors, epistemic uncertainty is modelled by allowing interval-valued parameters in the Gates’
model. Indeed, these parameters are estimated by testing the engine in nonoperational conditions, and then updated
multiple times during the spacecraft operational life with possible substantial changes, e.g. during Cassini mission [36].
Specifically, the intervals for the model parameters considered in this analysis are reported in Table 5, which include the
precise values previously employed.

2. Epistemic Belief Stochastic Formulation
The Europa’s Clipper optimal control problem under epistemic uncertainty can be framed under the general

formulation in Equation (10) as

19



Table 5 Gates’ parameters of epistemic uncertainty model for execution errors considered in Europa’s moon
flyby stochastic optimisation.

Uncertainty Component Value

Execution Error Fixed Pointing [1.67, 4.00] [mm/s]
Proportional Pointing [3.33, 8.00] [mrad]
Fixed Magnitude [2.33, 6.60] [mm/s]

Proportional Magnitude [0.17, 0.40]% [-]

min
∆vk1

∆V99 (41a)

s.t. Xk = T
(
Xk−1, ∆vk−1, Dk−1, Ek

)
(41b)

PrTRG

(
RE18 ≤ REUR

)
< 0.1% (41c)

E
[
BE18

]
= BE18 (41d)

E
[
R f

]
= r f (41e)

X0 ∼ NX0

(
µX0,PX0

)
, (41f)

where ∆V99 and PrTRG are the upper bounds, resulting from the epistemic uncertainty, respectively for the ∆V99 and
PoI after targeting, computed as in Equation (9). This problem formulation corresponds to an epistemic worst-case
scenario, where the optimisation is carried out conservatively to minimise the maximum propellant consumption while
keeping the worst impact probability below a threshold as resulting from epistemic uncertainty.

3. Epistemic Robust Optimisation Results
The same initial solution as for the aleatoric case is employed for the stochastic optimisation of the epistemic

scenario. The upper PoI bound is 2.29 ≮ 0.1%, violating the chance constraint more severely than in the precise case as
expected. The upper value for the ∆V99 is significantly higher than the one in the aleatoric case, mainly due to larger
execution errors considered (epistemic multiplier larger than one).

Table 6 Free variables, ∆V99 and upper Probability of Impact (PoI) for deterministic solution employed as
first guess for stochastic epistemic optimisation.

Solution ∆vCU-E17 [m/s] ∆vTRG-E18 [m/s] ∆vCU-E18 [m/s] Det ∆V [m/s] ∆V99 [m/s] ∆V99/Det ∆V [-] PoI [-]

Deterministic [+0.00, +0.00, +0.00] [−1.30, +2.86, +3.23] [+0.00, +0.00, +0.00] 4.51 8.65 1.92 2.29%

The corresponding B-plane uncertainty ellipses delivered from the maneuver instants along the trajectory are
visualised in Figure 8. For each frame, multiple 3-σ ellipsoids are reported by sampling the epistemic uncertainty
intervals with anHalton sequence and evaluating the stochastic transcription for each sample. By comparingwith Figure 5,
in every frame the possible delivered ellipses result changed in size and at times rotated due to the epistemic uncertainty
considered. For the chance constraint on the PoI after targeting, the inner optimisation routine looks for the epistemic
sample which yields to the ellipse with the largest intersection with the equivalent Europa surface in the top-right frame.

The feasible robust solution for Problem (41), found by the developed tool, is reported in Table 7. Again, the
values of the expected value constraints are not reported as they are met up to the required threshold, that is the new
trajectory respects the required flyby conditions and final position in expected value. The PoI after targeting constraint
is satisfied by trading part of the targeting maneuver with the E17 and E18 clean-up maneuvers. The latter is now the
largest maneuver employed to steer the spacecraft back to the desired final conditions. The value of the upper ∆V99 is
significantly higher than the precise one in Table 3 due to:

• the higher initial infeasibility (2.29% vs 0.75%) caused by the more severe epistemic uncertainty effects;
• the larger execution errors causing bigger deviations and therefore higher statistical δ∆Vs;
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Fig. 8 Spacecraft delivered 3-σ confidence ellipses in B-plane parameters asmapped from the state uncertainty
at different times along the deterministic trajectory without successive maneuvers and observations as resulting
from both aleatoric and epistemic uncertainty.

Table 7 Free variables, ∆V99 and upper Probability of Impact (PoI) for robust epistemic solution optimised
with the stochastic belief approach.

Solution ∆vCU-E17 [m/s] ∆vTRG-E18 [m/s] ∆vCU-E18 [m/s] Det ∆V [m/s] ∆V99 [m/s] ∆V99/Det ∆V [-] PoI [-]

Stochastic [−0.35, +1.12, +0.16] [−1.73, +1.57, +1.30] [+1.43, −2.13, −3.24] 7.99 14.76 1.84 0.04%

• the upper bound ∆V99 is the epistemic worst case scenario, meaning that this budget is a conservative estimate
given the ignorance coming from the epistemic structure of the problem.

A visualisation of the B-plane parameters 3-σ confidence ellipses for the robust solution is depicted in Figure 9,
where again an Halton sequence has been used to sample the epistemic uncertainty.

By comparing it with Figure 8, the top-left plot displays an evident change in mapped B-plane parameters after
E17-CU, as the larger clean-up maneuver steer the delivered uncertainty closer to the target flyby conditions. The
top-right box, representing the mapped uncertainty after targeting, shows that there is no intersection between the
largest 3-σ ellipse and the equivalent surface of Europa, confirming that the PoI constraint is met also in the epistemic
case. Similarly to the precise case, the ellipses have smaller semi-major axes, larger semi-minor axes and are rotated
counterclockwise to reduce the PoI while keeping the mean on the desired flyby conditions. The bottom-left plot
reveals an increase in the delivered uncertainty after approach due to the larger statistical maneuvers. Finally, the
bottom-right plot shows how the range and rangerate observations reduce the reconstructed uncertainty at flyby, mainly
in the T-component, whereas the R-component results unobservable from the employed Earth-based measurements.
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Fig. 9 Spacecraft delivered 3-σ confidence ellipses in B-plane parameters asmapped from the state uncertainty
at different times along the robust trajectory without successive maneuvers and observations as resulting from
both aleatoric and epistemic uncertainty.

V. Conclusions
This paper proposed novel developments in optimal control problems under uncertainty for the design of space

trajectories with the goal of generating nominal trajectories which are both optimal and robust to the considered
uncertainties.

The main contribution of this work is the generalisation of the OCPUU formulation and the corresponding stochastic
transcription to the case of orbit determination arcs and statistical controllers.

The belief-based formulation presented can frame a large variety of problems in robust trajectory design, requiring no
assumption on the uncertainty models to employ, which can be both aleatoric and epistemic. In addition, it encompasses
also the case of joint thrust and sensor control optimisation. The introduced methodology enables the direct coupling
of nominal trajectory optimisation with navigation analysis by working directly with a statistical objective index and
stochastic constraints.

The developed transcription method, based on a stochastic shooting scheme, is composed of a propagation step,
to map the uncertainty forward in time, and an update step, to incorporate the measurement information during orbit
determination arcs. Hence, a new polynomial navigation analysis approach was developed to create a nonlinear, yet
inexpensive, mapping of the dynamics to speed up the uncertainty propagation of the Monte Carlo samples over the
observations.

In this work, the developed formulation and approach were successfully applied to the robust optimisation of a
leg of Europa Clipper flyby tour subject to a chance constraint, namely the probability of impact with Europa, and
constraints in expected value, namely flyby conditions and final position. Both aleatoric and epistemic uncertainties

22



were considered in the initial conditions, execution errors and observation noises. The belief stochastic optimisation was
able to solve for the initial infeasibility in PoI of the deterministic optimum, and find a robust trajectory able to satisfy
the statistical constraints while minimising the ∆V99. As a verification, it was shown that the stochastic optimisation
statistically outperformed the deterministic optimum ∆V99 when no PoI is considered, that is when the deterministic
trajectory is feasible.

Among possible future applications, the concurrent thrust and sensor control optimisation for joint trajectory and
orbit determination planning could be addressed to find the optimal interactions between the control and estimation
efforts. Furthermore, another suitable scenario where stochastic optimisation can result highly beneficial is the robust
design of biasing maneuvers for planet flybys during interplanetary trajectories.
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