2,213 research outputs found

    Centralized Management IoT Platform

    Get PDF
    On information technology topics, the word “innovation” is increasingly present every day. Regarding the Internet of Things (IoT) subject, it’s no different. Every year new IoT products and services are created and presented that allow users to make their lives easier and simpler, connecting people to devices remotely and automatically, generating mobility and operability of services through the heterogeneity of devices connected to the internet. Based on obstacles found in daily homes, this paperwork aims study the development of a unique and easy use platform. On this platform, it is possible to have IoT devices centralized on the same local network unit so that they can be managed and manipulated through a simple and intuitive graphical interface. Thus, management is unified and practical for any type of user who is interested in using this technology. In this thesis, good practices and the best solutions researched within the practice of IoT management were studied in different scenarios. Covering types of technologies, proposed architectures, configuration processes and compatibility analysis of features and functionality of different devices currently on the market. Thus, this work aims to present in detail the study of the prototype of a unified platform that allows configuring, monitoring, and managing the integration between heterogeneous devices currently on the market for residential usersinfo:eu-repo/semantics/publishedVersio

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Hierarchical video surveillance architecture: a chassis for video big data analytics and exploration

    Get PDF
    There is increasing reliance on video surveillance systems for systematic derivation, analysis and interpretation of the data needed for predicting, planning, evaluating and implementing public safety. This is evident from the massive number of surveillance cameras deployed across public locations. For example, in July 2013, the British Security Industry Association (BSIA) reported that over 4 million CCTV cameras had been installed in Britain alone. The BSIA also reveal that only 1.5% of these are state owned. In this paper, we propose a framework that allows access to data from privately owned cameras, with the aim of increasing the efficiency and accuracy of public safety planning, security activities, and decision support systems that are based on video integrated surveillance systems. The accuracy of results obtained from government-owned public safety infrastructure would improve greatly if privately owned surveillance systems ‘expose’ relevant video-generated metadata events, such as triggered alerts and also permit query of a metadata repository. Subsequently, a police officer, for example, with an appropriate level of system permission can query unified video systems across a large geographical area such as a city or a country to predict the location of an interesting entity, such as a pedestrian or a vehicle. This becomes possible with our proposed novel hierarchical architecture, the Fused Video Surveillance Architecture (FVSA). At the high level, FVSA comprises of a hardware framework that is supported by a multi-layer abstraction software interface. It presents video surveillance systems as an adapted computational grid of intelligent services, which is integration-enabled to communicate with other compatible systems in the Internet of Things (IoT)

    Routing and Mobility on IPv6 over LoWPAN

    Get PDF
    The IoT means a world-wide network of interconnected objects based on standard communication protocols. An object in this context is a quotidian physical device augmented with sensing/actuating, processing, storing and communication capabilities. These objects must be able to interact with the surrounding environment where they are placed and to cooperate with neighbouring objects in order to accomplish a common objective. The IoT objects have also the capabilities of converting the sensed data into automated instructions and communicating them to other objects through the communication networks, avoiding the human intervention in several tasks. Most of IoT deployments are based on small devices with restricted computational resources and energy constraints. For this reason, initially the scientific community did not consider the use of IP protocol suite in this scenarios because there was the perception that it was too heavy to the available resources on such devices. Meanwhile, the scientific community and the industry started to rethink about the use of IP protocol suite in all IoT devices and now it is considered as the solution to provide connectivity between the IoT devices, independently of the Layer 2 protocol in use, and to connect them to the Internet. Despite the use of IP suite protocol in all devices and the amount of solutions proposed, many open issues remain unsolved in order to reach a seamless integration between the IoT and the Internet and to provide the conditions to IoT service widespread. This thesis addressed the challenges associated with the interconnectivity between the Internet and the IoT devices and with the security aspects of the IoT. In the interconnectivity between the IoT devices and the Internet the problem is how to provide valuable information to the Internet connected devices, independently of the supported IP protocol version, without being necessary accessed directly to the IoT nodes. In order to solve this problem, solutions based on Representational state transfer (REST) web services and IPv4 to IPv6 dual stack transition mechanism were proposed and evaluated. The REST web service and the transition mechanism runs only at the border router without penalizing the IoT constrained devices. The mitigation of the effects of internal and external security attacks minimizing the overhead imposed on the IoT devices is the security challenge addressed in this thesis. Three different solutions were proposed. The first is a mechanism to prevent remotely initiated transport level Denial of Service attacks that avoids the use of inefficient and hard to manage traditional firewalls. It is based on filtering at the border router the traffic received from the Internet and destined to the IoT network according to the conditions announced by each IoT device. The second is a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. The third is a network admission control framework that prevents IoT unauthorized nodes to communicate with IoT authorized nodes or with the Internet, which drastically reduces the number of possible security attacks. The network admission control was also exploited as a management mechanism as it can be used to manage the network size in terms of number of nodes, making the network more manageable, increasing its reliability and extending its lifetime.A IoT (Internet of Things) tem suscitado o interesse tanto da comunidade acadĂ©mica como da indĂșstria, uma vez que os campos de aplicação sĂŁo inĂșmeros assim como os potenciais ganhos que podem ser obtidos atravĂ©s do uso deste tipo de tecnologia. A IoT significa uma rede global de objetos ligados entre si atravĂ©s de uma rede de comunicaçÔes baseada em protocolos standard. Neste contexto, um objeto Ă© um objeto fĂ­sico do dia a dia ao qual foi adicionada a capacidade de medir e de atuar sobre variĂĄveis fĂ­sicas, de processar e armazenar dados e de comunicar. Estes objetos tĂȘm a capacidade de interagir com o meio ambiente envolvente e de cooperar com outros objetos vizinhos de forma a atingirem um objetivo comum. Estes objetos tambĂ©m tĂȘm a capacidade de converter os dados lidos em instruçÔes e de as comunicar a outros objetos atravĂ©s da rede de comunicaçÔes, evitando desta forma a intervenção humana em diversas tarefas. A maior parte das concretizaçÔes de sistemas IoT sĂŁo baseados em pequenos dispositivos autĂłnomos com restriçÔes ao nĂ­vel dos recursos computacionais e de retenção de energia. Por esta razĂŁo, inicialmente a comunidade cientĂ­fica nĂŁo considerou adequado o uso da pilha protocolar IP neste tipo de dispositivos, uma vez que havia a perceção de que era muito pesada para os recursos computacionais disponĂ­veis. Entretanto, a comunidade cientĂ­fica e a indĂșstria retomaram a discussĂŁo acerca dos benefĂ­cios do uso da pilha protocolar em todos os dispositivos da IoT e atualmente Ă© considerada a solução para estabelecer a conetividade entre os dispositivos IoT independentemente do protocolo da camada dois em uso e para os ligar Ă  Internet. Apesar do uso da pilha protocolar IP em todos os dispositivos e da quantidade de soluçÔes propostas, sĂŁo vĂĄrios os problemas por resolver no que concerne Ă  integração contĂ­nua e sem interrupçÔes da IoT na Internet e de criar as condiçÔes para a adoção generalizada deste tipo de tecnologias. Esta tese versa sobre os desafios associados Ă  integração da IoT na Internet e dos aspetos de segurança da IoT. Relativamente Ă  integração da IoT na Internet o problema Ă© como fornecer informação vĂĄlida aos dispositivos ligados Ă  Internet, independentemente da versĂŁo do protocolo IP em uso, evitando o acesso direto aos dispositivos IoT. Para a resolução deste problema foram propostas e avaliadas soluçÔes baseadas em web services REST e em mecanismos de transição IPv4 para IPv6 do tipo pilha dupla (dual stack). O web service e o mecanismo de transição sĂŁo suportados apenas no router de fronteira, sem penalizar os dispositivos IoT. No que concerne Ă  segurança, o problema Ă© mitigar os efeitos dos ataques de segurança internos e externos iniciados local e remotamente. Foram propostas trĂȘs soluçÔes diferentes, a primeira Ă© um mecanismo que minimiza os efeitos dos ataques de negação de serviço com origem na Internet e que evita o uso de mecanismos de firewalls ineficientes e de gestĂŁo complexa. Este mecanismo filtra no router de fronteira o trĂĄfego com origem na Internet Ă© destinado Ă  IoT de acordo com as condiçÔes anunciadas por cada um dos dispositivos IoT da rede. A segunda solução, Ă© uma framework de network admission control que controla quais os dispositivos que podem aceder Ă  rede com base na autorização administrativa e que aplica polĂ­ticas de conformidade relativas Ă  segurança aos dispositivos autorizados. A terceira Ă© um mecanismo de network admission control para redes 6LoWPAN que evita que dispositivos nĂŁo autorizados comuniquem com outros dispositivos legĂ­timos e com a Internet o que reduz drasticamente o nĂșmero de ataques Ă  segurança. Este mecanismo tambĂ©m foi explorado como um mecanismo de gestĂŁo uma vez que pode ser utilizado a dimensĂŁo da rede quanto ao nĂșmero de dispositivos, tornando-a mais fĂĄcil de gerir e aumentando a sua fiabilidade e o seu tempo de vida

    Modelling of Internet of Things (IoT) for Healthcare

    Get PDF
    Purpose: Information technology benefits the world, and it’s required for health care system, such as electronic medical records (EMR). We have proposed systematic model to study hoe IoT with 5g network has potential to benefit various healthcare services. For example, telemedicine may have some usage restrictions in rural areas and physicians may find it difficult to provide continuous monitoring to patients from such area. There are higher chances that the calls or video conferences getting significantly affected by poor networks and signals as well as non-compatible devices and patient may not get the treatment on time. 5G networking with IoT devices are believed to be the game changer for communication technology. The IoT model assists in attaining information by measuring its benefits through criteria which include 5G and IoT features along with a healthcare service requirement. Purpose of this paper is to present a model using Internet of Things (IoT) and 5G technology which will help to understand improved efficiency and efficacy of healthcare services. Our main research methodologies are literature review and modeling. The obtained results can be used for information technology applications in healthcare for various healthcare services and assist in increasing health quality in the healthcare industry.Method: Created a model to set the standard for incorporating 5G IoT devices health related technology and services. Reviewed through several models that serve as potential model to involve key factors that are unique certain healthcare services. We picked one model that can be easily incorporated in the system and can be revised to fit within the requirements using 5G IoT devices. Gathering of related literature served as a foundation in understanding the benefits of 5G IoT in the healthcare systems and parameters were pooled from it to revise the IoT model. Results: Incorporating 5G IoT features into a chosen model gave an overview of various determinants that can help understanding how IoT can influence any healthcare service and improve the quality of health. There are no rules and restrictions for use and utilization of this technology for health management yet in developing stage however, healthcare systems can rely on the 5G IoT devices for quality betterment. Conclusion: IoT with 5G has potential to improve healthcare management. The 5G world with an IoT will allow us to enter an era where real-time health services will become the part of the daily routine rather than the exception. However, further research needs to be done about its usage within any kind of specific health technology. Future research directions can utilize our model for other lesser known healthcare services

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network

    Designing smart pulse flow meters using diversion analysis

    Get PDF
    The operation of modern housing infrastructure is characterized by a constant increase in the cost of the limited resources used. This necessitates the priority implementation in the concept of a smart home of elements aimed at resource saving and their rational management. The study provides an overview of the implementation architectures of the internet of things (IoT) concept in the construction of home automation systems and the requirements they impose on the implementation of smart primary meters of controlled physical quantities. Based on a diversion analysis, a promising smart water meter was developed. The prototype is ergonomic and has a structural form factor convenient for further integration. The designed model of the electronic module of the water flow monitoring system implements, in addition to typical tasks, additional functionality: transfer of recorded indicators and technical information to the cloud storage, warning the user about an emergency situation, accumulation of current data in non-volatile memory. It is possible to use the accumulated statistics for training the predictive analysis module. The proposed architecture option will allow creating energy-efficient elements of home automation systems in the future

    Intelligent Personal Assistants Solutions in Ubiquitous Environments in the Context of Internet of Things

    Get PDF
    Internet of Things (IoT) will create the opportunity to develop new types of businesses. Every tangible object, biologic or not, will be identified by a unique address, creating a common network composed by billions of devices. Those devices will have different requirements, creating the necessity of finding new mechanisms to satisfy the needs of all the entities within the network. This is one of the main problems that all the scientific community should address in order to make Internet of Things the Future Internet. Currently, IoT is used in a lot of projects involving Wireless Sensor Networks (WSNs). Sensors are generally cheap and small devices able to generate useful information from physical indicators. They can be used on smart home scenarios, or even on healthcare environments, turning sensors into useful devices to accomplish the goals of many use case scenarios. Sensors and other devices with some reasoning capabilities, like smart objects, can be used to create smart environments. The interaction between the objects in those scenarios and humans can be eased by the inclusion of Intelligent Personal Assistants (IPAs). Currently, IPAs have good reasoning capabilities, improving the assistance they give to their owners. Artificial intelligence (AI), new learning mechanisms, and the evolution assisted in speech technology also contributed to this improvement. The integration of IPAs in IoT scenarios can become a case of great success. IPAs will comprehend the behavior of their owners not only through direct interactions, but also by the interactions they have with other objects in the environment. This may create ubiquitous communication scenarios where humans act as passive elements, being adequately informed of all the aspects of interest that surrounds them. The communication between IPAs and other objects in their surrounding environment may use gateways for traffic forwarding. On ubiquitous environments devices can be mobile or static. For example, in smart home scenarios, objects are generally static, being always on the same position. In mobile health scenarios, objects can move from one place to another. To turn IPAs useful on all types of environments, static and mobile gateways should be developed. On this dissertation, a novel mobile gateway solution for an IPA platform inserted on an IoT context is proposed. A mobile health scenario was chosen. Then, a Body Sensor Network (BSN) is always monitoring a person, giving the real time feedback of his/her health status to another person responsible by him (designated caretaker). On this scenario, a mobile gateway is needed to forward the traffic between the BSN and the IPA of the caretaker. Therefore, the IPA is able to give warnings about the health status of the person under monitoring, in real time. The proposed system is evaluated, demonstrated, and validated through a prototype, where the more important aspects for IPAs and IoT networks are considered
    • 

    corecore