4,112 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    An initial approach to distributed adaptive fault-handling in networked systems

    Get PDF
    We present a distributed adaptive fault-handling algorithm applied in networked systems. The probabilistic approach that we use makes the proposed method capable of adaptively detect and localize network faults by the use of simple end-to-end test transactions. Our method operates in a fully distributed manner, such that each network element detects faults using locally extracted information as input. This allows for a fast autonomous adaption to local network conditions in real-time, with significantly reduced need for manual configuration of algorithm parameters. Initial results from a small synthetically generated network indicate that satisfactory algorithm performance can be achieved, with respect to the number of detected and localized faults, detection time and false alarm rate

    Monitoring of Wireless Sensor Networks

    Get PDF

    Lifeguard: Local Health Awareness for More Accurate Failure Detection

    Full text link
    SWIM is a peer-to-peer group membership protocol with attractive scaling and robustness properties. However, slow message processing can cause SWIM to mark healthy members as failed (so called false positive failure detection), despite inclusion of a mechanism to avoid this. We identify the properties of SWIM that lead to the problem, and propose Lifeguard, a set of extensions to SWIM which consider that the local failure detector module may be at fault, via the concept of local health. We evaluate this approach in a precisely controlled environment and validate it in a real-world scenario, showing that it drastically reduces the rate of false positives. The false positive rate and detection time for true failures can be reduced simultaneously, compared to the baseline levels of SWIM

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Towards distributed diagnosis of the Tennessee Eastman process benchmark

    Get PDF
    A distributed hybrid strategy is outlined for the isolation of faults and disturbances in the Tennessee Eastman process, which would build on existing structures for distributed control systems, so should be easy to implement, be cheap and be widely applicable. The main emphasis in the paper is on one component of the strategy, a steady-state-based approach. Results obtained by applying this approach are presented and knowledge limitations are discussed. In particular a way in which a knowledge-base might evolve to improve isolation capabilities is suggested and the role of the operator is briefly discussed

    Policies for Self Tuning Home Networks

    Get PDF
    A home network (HN) is usually managed by a user who does not possess knowledge and skills required to perform management tasks. When abnormalities are detected, it is desirable to let the network tune itself under the direction of certain policies. However, self tuning tasks usually require coordination between several network components and most of the network management policies can only specify local tasks. In this paper, we propose a state machine based policy framework to address the problem of fault and performance management in the context of HN. Policies can be specified for complex management tasks as global state machines which incorporate global system behaviour monitoring and reactions. We demonstrate the policy framework through a case study in which policies are specified for dynamic selection of frequency channel in order to improve wireless link quality in the presence of RF interference
    • …
    corecore