
An initial approach to distributed adaptive

fault-handling in networked systems
SICS Technical Report T2009:07

ISSN 1100-3154

April 2009

Rebecca Steinert and Daniel Gillblad

Swedish Institute of Computer Science,
Box 1263, SE-164 29 Kista, Sweden

{rebste, dgi}@sics.se

Abstract. We present a distributed adaptive fault-handling algorithm
applied in networked systems. The probabilistic approach that we use
makes the proposed method capable of adaptively detect and localize
network faults by the use of simple end-to-end test transactions. Our
method operates in a fully distributed manner, such that each network
element detects faults using locally extracted information as input. This
allows for a fast autonomous adaption to local network conditions in
real-time, with significantly reduced need for manual configuration of
algorithm parameters. Initial results from a small synthetically gener-
ated network indicate that satisfactory algorithm performance can be
achieved, with respect to the number of detected and localized faults,
detection time and false alarm rate.

Keywords: Adaptive probing, distributed fault-handling, anomaly detec-

tion, fault-localization.

1 Introduction

Effective methods for autonomous fault-handling becomes increasingly impor-
tant with the growing complexity of networked systems. In addition to wired
systems, various types of networks have emerged during the last decades, such
as wireless networks, sensor networks, mobile networks and ad-hoc networks with
dynamic setup. The applications and demands of networked systems have gradu-
ally changed and in effect the need for self-managing mechanisms for facilitating
fault-handling has increased, for example in networks with varying topology
in which nodes are added, removed or replaced and in networks with varying
configuration demands etc. In order to maintain quality of services and criti-
cal network functionality in such dynamic network environments, autonomous
methods for fault-handling that are self-configuring and operative based on local
network conditions are necessary in order to e.g. reduce configuration demands,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11434749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

shorten the reaction time of detected faults and increase the overall efficiency
of fault-handling. To qualify for these specific requirements, methods need to be
adaptive to varying conditions, while facilitating analysis of abnormal behaviour,
and preferably operate in a distributed manner.

Previous work indicate that anomaly detection and fault-localization are of-
ten based on network traffic analysis, such as traffic profiling, signature match-
ing, signal analysis, statistical analysis, etc (e.g. [1, 6, 8–10, 14]). Apart from
performing analyzes of network traffic, active probing is an alternative approach
to anomaly detection and fault-localization. For example, Rish et al propose a
method that uses probe selection in order to detect and localize network faults
with reduced traffic overhead [14]. Other methods for probe selection are pre-
sented by Natu and Sethi, based on so called probe stations which monitor a set
of other nodes on a path [11].

Apparently, many of these methods are developed for centrally managed net-
works with fixed network topologies and equipment, possibly relying on desig-
nated nodes for monitoring. However, in dynamic ad-hoc networks with varying
topology and network equipment, distributed methods for autonomous fault-
handling are more convenient.

In this report, we present a statistical, distributed approach to adaptive fault
detection and localization. In our method we use simple end-to-end transactions
between nodes and their neighbors while measuring the reply latencies and the
packet drop rate on the links. These measurements are then used as input to
our anomaly detection model in order to statistically and locally detect traffic
anomalies. For fault-localization of a detected anomaly, nodes collaborate locally
in order to resolve and report the detected fault. The method of local link mon-
itoring that we use is somewhat similar to that used in some routing protocols
such as BGP (Border Gate Protocol) - however, the purpose differs in that we
want to resolve errors to link and node level and report these as efficiently as pos-
sible for all entities in the network, while in real-time adapting to a wide variety
of link qualities, including e.g. very lossy wireless channels, such that the need of
manual intervention is significantly reduced. Our fault-localization approach is
also similar to heartbeat monitoring for fault-localization in distributed systems
(e.g. [15]) or local testing for fault detection (e.g. [13]), but the main difference
compared to our method is that these approaches do not resolve link or node
failures nor do they adapt fully to continuously varying local network conditions.

The statistical model that we use makes our method to fault-handling rela-
tively insensitive to link quality variations, which allows for a robust anomaly
detection with reduced false positives. Since both probing intervals and fault
detection mechanisms adapt to local measurements, our approach also reduces
link load caused by probe traffic, compared to other methods based on frequent
probing with fixed intervals.

2 Adaptive probing and distributed fault detection and

localization

Our method for distributed fault-handling is a two-step approach. In the first
step, abnormal network behaviour is statistically detected using local measure-
ments at each node, aggregate measures from subnets, and probes, in order to
test the accessibility on network level of links and nodes, or the availability of
services on the application level. The second step is initialized whenever a node
has detected a possibly anomalous node in the first phase, in order to localize
the fault to a certain node, process or link.

For the developed algorithm that we will describe, we assume that each node
can perform simple end-to-end test transactions (such as ICMP requests) on
its neighbours, and measure the latency of this request. We then estimate the
parameters of the distribution formed by the local measurements, and use them
in our statistical model. Further, each node needs to know the local topology,
which in this case means awareness of all other nodes within the topological
distance of two. In our simulation framework all nodes are initially aware of the
local topology, and thus we have not implemented any particular distributed
topology discovery mechanisms. However, in real-world network applications,
a relatively easy approach to distributed topology discovery could be that new
nodes announces its presence to all its connections in order to receive information
about all nodes within two hops, while existing nodes (to which the new node
is connected) notify all neighboring nodes such that all neighbour lists are kept
consistent.

2.1 Using local probes for detection of abnormal behaviour

For the purpose of both anomaly detection and fault-localization we use adap-
tive probing, which refers to the adaptation of the total probability distribution
of unsuccessful probes using locally extracted information from nodes in the net-
work. In order to detect anomalies so called probing tests are performed, during
which a series of probes are sent in order to increase the certainty of a potential
anomaly such that the number of false positives are reduced.

We assume that we have the total probability distribution that a probe fails.
Unless a response has been received for a probe, the probability of receiving a
response is adapted before each new probe. When the probability of a response
reaches below a threshold ψ, the network component is considered faulty and
the process of fault-localization is triggered.

During run-time, observations of probe reply delays are continuously col-
lected, forming a distribution from which we can calculate the probability of
receiving a probe response within a certain time delay. Here, the probability of
receiving a probe response within time ∆t is

P (R∆t) = (1 − P (D))

∫ ∆t

0

P (t)dt (1)

where P (t) is the probability density of probe responses at ∆t. Further, we
assume that the total probability of a response R given a set of statistically

independent probes in a probe test {R
(1)
∆t
, R

(2)
∆t
, . . . , R

(n)
∆t

} is

P (¬R|∆t(1), ∆t(2), . . . , ∆t(n)) =

n∏
i

(1 − P (R
(i)
∆t

)) (2)

such that with each failed probe the probability of a response decreases. When
the probability of not receiving a response given previous probes has reached
below a predefined threshold, a fault has been detected, and the process of
fault-localization is triggered. However, if a response is received, eq. (2) is reset

to P (¬R|∆t(1), ∆t(2), . . . , ∆t(n)) = 1.0.
The probability density function P (t) can be any type of distribution that

matches the characteristics of the data. Here, P (t) is a Gamma distribution,
which is an assumption based on a series of measurements performed on real-
world Ethernet networks (see section 3.1).

From distribution P (t), we also determine with which interval probes are sent.
This means that anomalies are adaptively detected with the use of short series
of probes which effectively reduces link loads caused by probe traffic, compared
to ordinary heartbeat-monitoring algorithms in which probes are frequently sent
without taking e.g. link quality into account.

The algorithm involves two types of intervals controlled by parameters τ and
θ, both based on the expected link latency and the cost of sending a probe. Here,
parameter τ is

τ = mτf(x) (3)

where mτ is a multiple based on the cost of sending a series of probes, f(x) is

the inverted cumulative density function of
∫ ∆t

0
P (t)dt, and x is a fraction that

is used to determine the corresponding delay. In a similar fashion the probing
interval θ in a probing test is determined by

θ = mθf(x). (4)

.
Parameter θ adaptively determines with which interval probes are sent in a

probe test, and is significantly smaller than τ . Parameter τ controls the interval
with which a probe test is performed (section 2.3). This way link load caused
by induced probing traffic is reduced during normal network behaviour, while
being somewhat increased when a potential anomaly is about to be detected.
The shorter probing interval θ relative τ allows for a faster anomaly detection
with increased certainty, such that the number of false positives is reduced.

It is reasonable to assume that probes sent with interval θ represents a much
lower cost than probes sent with interval τ ; if a link or node is faulty, the traffic
load induced by a higher probing rate is of small significance in the presence of
abnormal network behaviour and reduced service quality.

2.2 Fault-localization

Collaborative fault-localization is triggered whenever a node has detected an
anomaly on the connection to any of its neighboring nodes. The purpose of the
fault-localization process is to identify the root cause of the anomaly. Here, we
address two types of faults - node failures and link failures. In order to identify
whether the anomaly is caused by a node failure or a link failure, the neighbors
of the node to which the communication has failed are involved in the fault-
localization process.

We assume that each node n has a list of all neighbouring nodes within two
hops. The rate at which each node will probe a neighbour is determined locally
as described. Whenever a probe test from node n to a node n̂ fails, node n

will initiate a localization process involving collaboration with the neighbouring
nodes of n̂, {ñ, ñ2, . . . , ñi}, in order to test the connection to n̂ and report back
to n. If at least one of the nodes ñi reports a successful probe response, it is
concluded that the anomaly was caused by a link failure, otherwise the anomaly
was caused by a node failure in n̂ (fig. 1a). When the root cause has been
determined, the fault-localizing node n reports the fault to specified recipients
(e.g. the network operations center). If the anomaly was caused by a link failure,
information about the fault is spread by involved collaborating nodes to the other
node on the faulty link, in order to increase the fault-localization efficiency. If
instead the anomaly was caused by a node failure, all neighbors of the faulty
node are made aware of the fault.

However, in some cases the root cause of a detected anomaly is undecidable.
For example, consider the case that the only link between a probing node and
the inaccessible node is down and that there is no other route available for
communication between the neighbours of the inaccessible node (fig. 1b). In
such a situation it is undecidable whether it is the node or the link that has
failed, and the nodes that are affected will notify relevant recipients.

A similar situation might occur if the neighbouring node of the inaccessible
node is unavailable such that the probing node cannot request assistance from
collaborating nodes in order to confirm the fault (fig. 1c). In that case the node
that detected the anomalous behaviour will eventually notify relevant recipients
that the root cause of the anomaly is undecidable, because of the failure to
communicate with the collaborating node ñ. In our implementation, this noti-
fication will be sent after tr seconds has passed, counted from the beginning of
the fault-localization process (section 3.6).

2.3 Formal algorithm description

In this section, we describe the subroutines forming our anomaly detection al-
gorithm. Let n be a node in the network. Each node needs to keep track of
the set of neighbouring nodes, Nn, as well as the sets of neighbours to each
of these neighbours i, N i

n. As an example of how the algorithm can be set up
when run in networks under e.g. churn, we also provide descriptions of the proce-
dures when nodes are connected or disconnected to the network. The procedures

^n

n^

~n j
~n

i

^n

~n

a)

Requests

Failed Failed

Succeeded

b)

Access network

Notification

Failed

Backbone

c)

n
n

n

Failed

Request failed

n

Notification

Failed

Notification

Fig. 1: Figure a) shows the normal case. Node n cannot reach n̂ and sends requests to
ñi,ñj to test the connection of n̂. Since the probe between ñi and n̂ is successful, the link
between n and n̂ is considered broken. In figure b) n cannot access n̂ or its neighbor.
In that case n directly notifies relevant recipients (e.g. a network operations center).
In figure c) the neighbouring node ñi is unaccessible due to a faulty intermediate node
on the path. In this case the probing node n notifies relevant recipients that the cause
of the detected anomaly is undecidable.

taken when connecting node n̂ to n in the network are described in subroutines 1
and 2. These procedures have not been implemented in our simulations - instead
we have assumed that the network topology is fixed and that all nodes are aware
of all nodes within two hops.

Let each node n store an error state Si
n for each neighbour i. Each Si

n rep-
resents the current state of ni as viewed from n, and can be assigned one of the
following values:

– No fault. No fault has been detected in the neighbour.

– Link or node failure. A fault has been detected, but it has not been or it is
not possible to determine if it is a link or node failure.

– Link failure. A fault has been detected and diagnosed as a link failure.

– Node failure. A fault has been detected and diagnosed as a node failure.

Algorithm 1 Connect node n̂ to node n

Require: Valid nodes n and n̂
Nn ← Nn ∪ {n̂}
N n̂

n ← Nn̂ \ n
Monitor node n̂ from n

Algorithm 2 Disconnect node n

Require: Valid node n
for all n̂ ∈ Nn do

Nn̂ ← Nn̂ \ {n}
for all ñ ∈ N n̂

n do

N n̂
ñ ← N n̂

ñ \ {n}
end for

end for

Algorithm 3 Monitor node n̂ from node n

Require: n̂ ∈ Nn

repeat

if Test node n̂ from n fails then

if Sn̂
n = No fault then

for all ñ ∈ N n̂
n do

Confirm failure of n̂ for n in ñ
end for

if Any ñ ∈ N n̂
n report success then

Sn̂
n ← Link failure

Report failed link from n to n̂
else if All ñ ∈ N n̂

n report failure then

Sñ
n ← Node failure

for all ñ ∈ Nn do

Sn̂
ñ ← Node failure

end for

Report failed node n̂
else

Sn̂
ñ ← Link or node failure

Report link or node failure
end if

end if

else

if Sn̂
n 6= No fault then

Sn̂
n ← No fault

if Sn̂
n = Node failure then

for all ñ ∈ Nn do

Sn̂
ñ ← No fault

end for

end if

Report working link from n to n̂ and node n̂
end if

end if

Wait τ s
until n̂ disconnects

Algorithm 4 Test node n̂ from n

Require: n̂ ∈ Nn

repeat

Send test transaction to n̂
Wait θ s

until Any response or
Q

i
(1 − P (R

(i)
∆t)) < ψ

if Any response then

return Success
else

return Failure
end if

Algorithm 5 Confirm failure of n̂ for n in ñ

Require: n̂ ∈ Nñ, n ∈ N n̂
ñ

t← Test node n̂ from ñ

Report t to n

3 Simulation environment and implementation

We have implemented the algorithm in the discrete event simulator environment
OMNET++ [16], in which we simulate link latencies, fault events and varying
link qualities, such as drop rates. The OMNET++ was chosen as simulation
environment because of the modular framework and graphical user interface,
which not only fits our simulation needs, such as generation of traffic, fault
events etc, but also allows for future graphical demonstrations of our approach.
Further, the modular framework makes it relatively easy to add future extensions
to our fault-handling approach.

3.1 Parameter estimation

Based on empirical probe testing and latency measurements on Ethernet links
in different types of real-world networks (fig. 2 and 3), we assume that the
distribution of link latencies is Gamma distributed. Similar conclusions about
network traffic matching Gamma, Weibull, or other exponential distributions
have been made in a number of other papers, e.g. [2–5,7].

During simulation, the Gamma parameters are estimated and used to calcu-
late the probability of probe responses described in (1) and (2). For this purpose
we use a simple method of moments approach to estimate the parameters scale
α and shape β from the first and second sample moments of the latency ob-
servations collected during runtime. The motivation to our choice of estimation
approach is mainly to reduce computational demands, although there are more
accurate methods for parameter estimations. For example, it would be possible to
perform a maximum likelihood estimation using some numerical approximation
algorithm (e.g. Newton-Raphsons method), combined with the moment estima-
tion as an initial guess. However, since there is uncertainty in the data, the need

for high-precision estimates is in this case reduced, and hence we have chosen to
prioritize computational speed above accuracy.

Further, when a node is connected to the network, it sends a series of probes
to quickly obtain an initial estimate of α and β of the latency distributions to
each of its neighbors. When the node has obtained k successful probe responses,
the main algorithm is started, using the initially estimated parameters.

Server latency, low load

Latency

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0
10

20
30

40

Server latency, low load

Latency

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
20

40
60

80

Server latency, partial load

Latency

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
1

2
3

4
5

Server latency, high load

Latency

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
5

10
15

Fig. 2: Examples of latency distributions on a wired network. Starting at the upper
left, the graphs describe the latency distribution on a local Ethernet link on servers
with no, low, medium, and high load respectively.

3.2 Routing

We have implemented simple routing tables based on the shortest path from one
node to another. However, in real-world network applications it would be more
convenient to implement alternative paths, in order to increase the collabora-
tion efficiency between nodes involved in the localization processes of detected
anomalies. This is relevant in situations where the rate of failure events in a local
region of the network is high, for example.

3.3 Link latency

Randomly selected Gamma parameters, drawn from a normal distribution, are
used to symmetrically simulate traffic latencies in both directions of each link.

Wireless latency

Latency

D
en

si
ty

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Wireless latency, full density

Latency

D
en

si
ty

0 10000 20000 30000 40000 50000 60000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

Sensor node latency distribution

Latency

D
en

si
ty

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

Sensor node latency, full histogram

Latency

D
en

si
ty

0 10000 20000 30000 40000 50000 60000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

Fig. 3: Examples of latency distributions on wireless networks. The upper two graphs
represent latencies in a 802.11b network with very low signal strength, and the lower
two the latencies in a very simple sensor node. The graphs to the left show estimated
gamma distributions on truncated data, while the graphs to the right show (exagger-
ated) versions of the actual histograms, indicating that in both applications there are
connection problems that will be reported as intermittent error in our algorithm.

During simulation, each data packet is sent with a latency drawn from the
Gamma distribution with random parameters. Further, we make no assump-
tions of the queueing order of data packets since only the reply latencies are of
interest to measure. This means that data packets are not always processed in
the order of transmission. Since the model is based on probe reply delays, the
ordering of packets is in this case irrelevant.

3.4 Fault event generation

Fault events are randomly generated over the whole population of nodes and
links, drawn from a Poisson distribution with parameter λ specifying the ex-
pected number of fault events within a given time period. The Poisson distribu-
tion is a natural choice for modelling fault events occurring in a population of
the equipment in distributed systems.

3.5 Traffic drop rate

The amount of dropped packets is adjusted by the drop parameter ξ on a link
in one direction, such that a fraction p of randomly chosen packets are dropped

when sent from a node. This means that the effective drop rate that affects a node
on an undirected link converges toward 2p = P (D) (eq. 1). In the experiments,
the drop rate is equal in both directions on all links and randomly drawn from
a Gaussian distribution with mean ξ and deviation σ = 0.2ξ.

3.6 Fault modes and state transitions

Each node operates in two modes with respect to a neighboring node, namely in
abnormal or normal mode. A node has also four different states related to the
anomaly detection and fault-localization processes, namely IDLE, BUSY_PROBING,
WAITING_FOR_RESULT and WAITING_FOR_NOTIFICATION.

Normal and abnormal mode In normal mode, all probe tests sent from node
n to neighbor n̂ are successful and the communication is working free from any
local network anomalies. When n detects an anomaly in the communication with
n̂ and the fault has been localized and confirmed by the neighbors ñ of n̂, node
n makes a transition into abnormal mode with respect to n̂. In this mode, n
continues to send probes to n̂ but does not request confirmation from ñ as long
as the probe tests fail. As soon as any reply from n̂ is obtained, the node makes
a transition back to normal mode again.

IDLE state When node n is in IDLE state with respect to n̂, it sends probes
and operates either in normal or abnormal mode as described above.

BUSY PROBING state The node n makes a transition from IDLE state
to BUSY_PROBING state if any node ñ has requested confirmation of a detected
anomaly in communication with n̂. Node n immediately sends probes to n̂ in
order to confirm the communication failure. If several nodes request confirmation
from n about the same node n̂, the outcome of the probe test performed by n
will be sent to all requesting nodes.

WAITING FOR RESULT state When node n has detected an anomaly in
communication with neighbor n̂, it makes a transition into the WAITING_FOR_RESULT
state and requests confirmation from collaborating nodes ñ. For a duration of tr
seconds, n waits for all ñ to transmit the outcome of the confirmation procedure
with respect to n̂. If the anomaly can be concluded to be either a link failure or
a node failure in collaboration with ñ within time tr, node n notifies all relevant
recipients (including nodes ñ). Node n then makes a transition into IDLE state
and starts to operate in abnormal mode with respect to node n̂.

In case tr seconds has passed before the true failure has been localized, n
makes a transition to abnormal mode with respect to n̂ and notifies relevant
recipients about the undecidable fault. The reason to restrict the duration of
this state is to prevent the node from waiting infinitely for confirmation from

other nodes. This situation may occur if, for example, the node itself fails, or if
the communication fails on the path between n and ñ (as shown in section 2.2).

It should be pointed out that several nodes can transition into this state at
more or less the same time. In some situations (e.g. in network regions with bad
link quality), node failures can cause several neighboring nodes to almost simul-
taneously initialize a fault-localization process to confirm abnormal behaviour
of a common node. This means that a node that initiated a fault-localization
process can also be part in confirming a detected anomaly in another node. In
this case, confirmation information is directly exchanged between collaborating
nodes, without executing the fault confirmation (i.e. probe tests) process. In
other words, since these nodes have already detected an anomaly, the failure to
communicate with n̂ is directly confirmed and sent to node n that initiated the
fault-localization process. This behaviour is implemented in the simulator to in-
crease the robustness of the fault-localization process for node failures, such that
at least one of the initiating nodes n will be able to receive confirmation results
from all of its collaborators ñ. We chose to implement this behaviour because of
its simplicity, however an alternative solution would be to implement a negoti-
ation mechanism instead, such that the fault-localization process is initiated by
only one node.

WAITING FOR NOTIFICATION state Node n makes a transition from
BUSY_PROBING state into WAITING_FOR_NOTIFICATION state when the requested
confirmation procedure of n̂ is completed. For tn seconds, node n waits for a
notification from the requesting node that the failure has been localized. In
case no such notification is received, the node will eventually change state into
IDLE when tn seconds has passed. Here, tn is a multiple of the expected link
latency and the number of neighbors to the node of which the communication
has failed. The reason for this duration is to prevent the node to start a new
fault-localization process in collaboration with other nodes.

4 Experiments

In this section, we investigate different performance aspects of the algorithm. We
have tested the algorithm in various simulated conditions. Specifically we have
performed a series of experiments in which we have varied the number of fault
events and drop rates, while measuring the performance with different parameter
settings. For this purpose, the experiments were performed on a synthetically
generated network topology. All results shown in this report have been extracted
from various log files obtained during the simulations. The objective of our ex-
periments was not to achieve optimal performance results, but to investigate
algorithm performance with varying parameter values. In all our experiments,
we used a synthetic scale-free network of 30 nodes and 81 undirected links, gen-
erated with the Barabsi-Albert method, starting with 5 nodes and m = 3 links
added at each step [12]. To introduce nodes with single neighbors, 5% of the
links were randomly removed. The reason to use a scale-free network is that

the hub-like structure closely resembles the structure of a real-world network
topology.

In all the experiments we assumed that in each period of 14400 seconds a
mean number of λ = {10, 20, 40, 60, 80} fault events were generated on ran-
domly selected network equipment with uniform distribution. The fault du-
ration was uniformly random up to 3600 seconds. Simulated link latencies in
one direction were based on randomly drawn parameter values from a Gaus-
sian distribution, with µ = 0.0025, σ = 0.0005 for the scale parameter and
µ = 30, σ = 6 for the shape parameter. Further, we varied the mean drop rate
ξ = {0.025, 0.1, 0.2, 0.3, 0.4, 0.5}. In all of the experiments, we set tr = tn =
64.0ñf(0.8). The shorter probing interval used in the probe tests were set to
θ = f(0.8). For varying latency thresholds ψ and intervals τ between probe
tests, we used different parameter values ψ = {10−8, 10−6, 10−4, 10−2, 10−1, }
and τ = mτf(0.8), where mτ = {4, 16, 64, 256, 1024, 4096, 16384}. During ini-
tialization, each node sent k = 200 probes to obtain preliminary estimates of
link latencies. For statistical significance, all results are based on 4 days of sim-
ulated time and shown as the mean of 10 runs.

4.1 Reducing false positives by adjusted parameters

In this section, we investigate how the rate of false positives relates to the algo-
rithm parameters in combination with varying rates of drop and network failures.

0

0.1

0.2

0.3

0.4

0.5

1
1.5

2
2.5

3
3.5

4

0

0.2

0.4

0.6

0.8

1

ξ

False fault alarms for detected anomalies

log10(mτ)

F
al

se
 a

la
rm

 r
at

e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

0

0.1

0.2

0.3

0.4

0.5

−8
−7

−6
−5

−4
−3

−2
−1
0

0.2

0.4

0.6

0.8

1

ξ

False fault alarms for detected anomalies

log10(ψ)

F
al

se
 a

la
rm

 r
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Fig. 4: False positives of detected anomalies, obtained for varying settings of τ =
mτf(0.8) and ψ = 0.005 (fig. 4a) and varying ψ with mτ = 256 (fig. 4b), in combination
with different values of ξ and λ = 5. The number of false alarms increases for low τ

whereas it can be reduced using a very low value on ψ. Parameter settings for optimal
performance depends here mainly on the drop rate.

Figure 4 shows the number of false positives relative the number of simulated
faults when varying the rate of traffic drops. We observe that when the costmτ is
low, the algorithm is more sensitive to false alarms than when mτ is set to a high

cost (fig. 4a). For example, we see that the rate of false alarms produced under
high drop rates can be reduced by increasing mτ . Naturally, with a shorter τ ,
the detection of anomalies becomes more reactive to very small drop rates since
probing tests with interval θ are performed more often. Further, the rate of false
positives increases when ψ is set to larger values (fig. 4b). Statistically, a larger
ψ value means that the uncertainty demands of detected anomalies are relaxed
such that fewer probes are needed in order to detect an anomaly. Consequently,
this leads to a higher rate of false positives. In addition, we observe that the
number of false positives increases with increasing drop rate and fixed values of
ψ (fig. 4b). We also observe that the rate of false positives can be reduced when
the drop rate is increased, by adjusting ψ to a smaller value.

0
10

20
30

40
50

60
70

80

1
1.5

2
2.5

3
3.5

4

0

0.2

0.4

0.6

0.8

1

λ

False fault alarms for detected anomalies

log10(mτ)

F
al

se
 a

la
rm

 r
at

e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

0
10

20
30

40
50

60
70

80

−8
−7

−6
−5

−4
−3

−2
−1
0

0.2

0.4

0.6

0.8

1

λ

False fault alarms for detected anomalies

log10(ψ)

F
al

se
 a

la
rm

 r
at

e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Fig. 5: False positives of detected anomalies, obtained for varying settings of τ =
mτf(0.8) and ψ = 0.005 (fig. 5a) and varying ψ with mτ = 256 (fig. 5b), in combination
with increasing failure events λ and drop rate ξ = 0.025. We see that the number of
false positives can be reduced by adjusting parameter τ and ψ.

For varying number of failure events and fixed drop rate, we observe in fig. 5a
that the rate of false positives can be reduced by increasing the cost mτ . In
addition, we see that when the failure rate increases (specifically for small values
on mτ , the false positive rate is reduced since the number of induced faults is
higher relative the fixed drop rate. Further, we observe in fig. 5b that the rate
of false positives depends on the value of ψ rather than on the number of failure
events, compared to the previous case with varying drop rate shown in fig. 4.
This indicates that ψ in the future could be set adaptively based on the drop rate
(and possibly some other measure) for the purpose of further reducing efforts
on manual configuration, instead of having it set equally for all nodes which
currently is the case.

4.2 Probing and detection performance

In this section we investigate how the probing interval τ and latency threshold
ψ relates to the detection rate of generated fault events, the mean shortest
detection time and the number of probes sent to detect an anomaly, while the
drop rate ξ and the number of fault events λ are varied. The mean shortest
detection time was measured in seconds from the start of a generated fault event
to the time of detection and initialization of collaborative fault-localization.

In general, we see in fig. 6 that the detection rate of fault events while varying
drop rate ξ, is over 95% for both link and node failures. We observe that the
detection rate of generated fault events decreases slowly for small changes in
mτ , up to a certain point where mτ is set to very large values such that the
detection rate drops significantly (fig. 6a, 6b). Apart from some overlapping link
and node failures (involving the same nodes and links), other intermittent faults
remain undetected as a result of short fault durations less than τ . This applies
specifically to links (fig. 6b) rather than to nodes, since one link is monitored
only by two nodes whereas nodes are monitored by several other nodes (fig. 6a).
For various values on ψ, we see that the detection rates of generated fault events
remain quite fixed close to 100% for both node and link failures (fig. 6c, 6d).

In figure 7, we see that when the failure rate varies, more than 95% of the node
failures and more than 80% of the link failures can be detected for various values
of mτ (fig. 7a, 7b) and ψ (fig. 7c, 7d). Further, we observe that the detection
rate in general is more sensitive to increasing number of fault events, compared
to when only the drop rate is varied. With increasing number of fault events,
overlapping link and node failures involving the same network elements occur to
a higher degree, which in this case explains the increasing number of undetected
link failures (fig. 7b, 7d). In addition, some faults also remain undetected due to
short fault durations. Finally, we observe that the detection of node failures is
in general stable for different values on mτ and ψ for increasing number of fault
events λ, since most nodes are monitored by several other nodes (fig. 7a, 7c).

In figures 8 and 9, we see that faults can be detected with short detection
time, less than 10 seconds depending on the parameter settings. The mean short-
est detection time, measured from the start of a fault event to the initialization
of the fault-localization process, depends primarily on τ rather than on the drop
rate and the number of fault events (fig. 8a, 8b and fig. 9a, 9b). Up to a certain
point, we see that small values of τ have no significant effect on the detection
time. This means that small changes in the interval τ with which probing tests
are performed are insignificant relative the detection time, and as such satisfac-
tory results can be achieved with reduced need for fine-tuning τ . Compared to
the number of false positives (fig. 4a, 5a) and the detection rates (fig. 6a, 6b
and fig. 7a, 7b), we also see that satisfactory performance can be achieved using
quite sparse intervals up to a certain point where the performance with respect
to varying τ decreases. Thus, our results indicate that we can detect anomalies
without generating significantly large amounts of extra traffic load caused by
excessive probe testing in our anomaly detection method. Further, we see in

0

0.1

0.2

0.3

0.4

0.5

1
1.5

2
2.5

3
3.5

4

0

0.2

0.4

0.6

0.8

1

ξ

Detection of node faults

log10(mτ)

D
et

ec
tio

n
ra

te

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

(a)

0

0.1

0.2

0.3

0.4

0.5

1
1.5

2
2.5

3
3.5

4

0

0.2

0.4

0.6

0.8

1

ξ

Detection of link faults

log10(mτ)

D
et

ec
tio

n
ra

te

0.75

0.8

0.85

0.9

0.95

(b)

0

0.1

0.2

0.3

0.4

0.5

−8
−7

−6
−5

−4
−3

−2
−1
0

0.2

0.4

0.6

0.8

1

ξ

Detection of node faults

log10(ψ)

D
et

ec
tio

n
ra

te

0.98

0.985

0.99

0.995

1

(c)

0

0.1

0.2

0.3

0.4

0.5

−8
−7

−6
−5

−4
−3

−2
−1
0

0.2

0.4

0.6

0.8

1

ξ

Detection of link faults

log10(ψ)

D
et

ec
tio

n
ra

te

0.96

0.965

0.97

0.975

0.98

0.985

0.99

(d)

Fig. 6: Detection rates of faults with increasing ξ and fixed λ = 5. In fig. 6a and 6b, we
see results obtained with varying τ = mτf(0.8) and ψ = 0.005, whereas fig. 6c and 6d
show experimental results obtained with varying ψ and mτ = 256. We observe that
nearly 100% of the simulated faults can be detected.

0
10

20
30

40
50

60
70

80

1
1.5

2
2.5

3
3.5

4

0

0.2

0.4

0.6

0.8

1

λ

Detection of node faults

log10(mτ)

D
et

ec
tio

n
ra

te

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

(a)

0
10

20
30

40
50

60
70

80

1
1.5

2
2.5

3
3.5

4

0

0.2

0.4

0.6

0.8

1

λ

Detection of link faults

log10(mτ)

D
et

ec
tio

n
ra

te

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(b)

0
10

20
30

40
50

60
70

80

−8
−7

−6
−5

−4
−3

−2
−1
0

0.2

0.4

0.6

0.8

1

λ

Detection of node faults

log10(ψ)

D
et

ec
tio

n
ra

te

0.982

0.984

0.986

0.988

0.99

0.992

0.994

(c)

0
10

20
30

40
50

60
70

80

−8
−7

−6
−5

−4
−3

−2
−1
0

0.2

0.4

0.6

0.8

1

λ

Detection of link faults

log10(ψ)

D
et

ec
tio

n
ra

te

0.84

0.86

0.88

0.9

0.92

0.94

0.96

(d)

Fig. 7: Detection rates of faults with increasing λ and fixed ξ = 0.025. Figures 7a
and 7b show results obtained with varying τ = mτf(0.8) and ψ = 0.005, whereas
fig. 7c and 7d show detection rates with varying ψ and mτ = 256. The detection rates
vary primarily with the number of fault events and nearly independently from varying
parameter settings.

0

0.1

0.2

0.3

0.4

0.5

1
1.5

2
2.5

3
3.5

4

0

200

400

600

800

1000

1200

1400

1600

1800

ξ

Shortest mean detection time of node faults

log10(mτ)

M
ea

n
de

te
ct

io
n

tim
e

(in
 s

ec
on

ds
)

100

200

300

400

500

600

700

(a)

0

0.1

0.2

0.3

0.4

0.5

1
1.5

2
2.5

3
3.5

4

0

200

400

600

800

1000

1200

1400

1600

1800

ξ

Shortest mean detection time of link faults

log10(mτ)

M
ea

n
de

te
ct

io
n

tim
e

(in
 s

ec
on

ds
)

200

400

600

800

1000

1200

1400

(b)

0

0.1

0.2

0.3

0.4

0.5

−8
−7

−6
−5

−4
−3

−2
−1
0

200

400

600

800

1000

1200

1400

1600

1800

ξ

Shortest mean detection time of node faults

log10(ψ)

M
ea

n
de

te
ct

io
n

tim
e

(in
 s

ec
on

ds
)

6

8

10

12

14

16

18

20

22

(c)

0

0.1

0.2

0.3

0.4

0.5

−8
−7

−6
−5

−4
−3

−2
−1
0

200

400

600

800

1000

1200

1400

1600

1800

ξ

Shortest mean detection time of link faults

log10(ψ)

M
ea

n
de

te
ct

io
n

tim
e

(in
 s

ec
on

ds
)

10

15

20

25

30

35

40

45

50

55

(d)

Fig. 8: Detection time with varied ξ and λ = 5. In fig. 8a-8b, we see results obtained
with varying τ = mτf(0.8) and ψ = 0.005, whereas fig. 8c-8d show results with varying
ψ and mτ = 256. The detection time can be controlled by adjusting τ .

0
10

20
30

40
50

60
70

80

1
1.5

2
2.5

3
3.5

4

0

200

400

600

800

1000

1200

1400

1600

1800

λ

Shortest mean detection time of node faults

log10(mτ)

M
ea

n
de

te
ct

io
n

tim
e

(in
 s

ec
on

ds
)

100

200

300

400

500

600

700

800

900

1000

1100

(a)

0
10

20
30

40
50

60
70

80

1
1.5

2
2.5

3
3.5

4

0

200

400

600

800

1000

1200

1400

1600

1800

λ

Shortest mean detection time of link faults

log10(mτ)

M
ea

n
de

te
ct

io
n

tim
e

(in
 s

ec
on

ds
)

200

400

600

800

1000

1200

1400

1600

(b)

0
10

20
30

40
50

60
70

80

−8
−7

−6
−5

−4
−3

−2
−1
0

200

400

600

800

1000

1200

1400

1600

1800

λ

Shortest mean detection time of node faults

log10(ψ)

M
ea

n
de

te
ct

io
n

tim
e

(in
 s

ec
on

ds
)

6

8

10

12

14

16

(c)

0
10

20
30

40
50

60
70

80

−8
−7

−6
−5

−4
−3

−2
−1
0

200

400

600

800

1000

1200

1400

1600

1800

λ

Shortest mean detection time of link faults

log10(ψ)

M
ea

n
de

te
ct

io
n

tim
e

(in
 s

ec
on

ds
)

50

100

150

200

250

(d)

Fig. 9: Detection time with varied λ and ξ = 0.025. Figures 9a-9b show results obtained
with varying τ = mτf(0.8) and ψ = 0.005, whereas fig. 9c-9d show the detection time
obtained with varying ψ and mτ = 256. Changes in the detection time is small up to
a certain point where the interval τ is set to very large values.

fig. 8c, 8d and fig. 9c, 9d that the detection time is relatively fixed for different
values on ψ.

0

0.1

0.2

0.3

0.4

0.5

1
1.5

2
2.5

3
3.5

4

0

20

40

60

80

100

ξ

Number of probes sent to detect faults

log10(mτ)

N
um

be
r

of
 p

ro
be

s

5

10

15

20

25

30

35

40

(a)

0

0.1

0.2

0.3

0.4

0.5

−8
−7

−6
−5

−4
−3

−2
−1
0

20

40

60

80

100

ξ

Number of probes sent to detect faults

log10(ψ)

N
um

be
r

of
 p

ro
be

s

10

20

30

40

50

60

70

80

90

100

(b)

Fig. 10: Mean number of probes needed for detection of an anomaly, with varied ξ and
λ = 5. Figure 10a show results obtained with varying τ = mτf(0.8) and ψ = 0.005,
whereas fig. 10b show the results obtained when varying ψ and holding mτ = 256 fixed.
We observe that the number of probes needed to identify a fault is mainly dependent
on ψ and the drop rate.

0
10

20
30

40
50

60
70

80

1
1.5

2
2.5

3
3.5

4

0

10

20

30

40

50

λ

Number of probes sent to detect faults

log10(mτ)

N
um

be
r

of
 p

ro
be

s

5

10

15

20

25

30

35

(a)

0
10

20
30

40
50

60
70

80

−8
−7

−6
−5

−4
−3

−2
−1
0

10

20

30

40

50

λ

Number of probes sent to detect faults

log10(ψ)

N
um

be
r

of
 p

ro
be

s

4

6

8

10

12

14

(b)

Fig. 11: Mean number of probes needed for detection of an anomaly, with varied λ and
ξ = 0.025. Figure 11a show results obtained with varying τ = mτf(0.8) and ψ = 0.005,
whereas fig. 11b show the results obtained when varying ψ and holding mτ = 256 fixed.
The number of probes needed can be adjusted by varying the value of ψ.

In figure 10 we see that the number of probes needed to detect an anomaly
clearly varies with the drop rate. Specifically, we observe that for a certain degree
of packet drops, the number of probes varies with different values of ψ (fig. 10b),
while remaining relatively fixed when only mτ is varied (fig. 10a). Naturally,

for small values of ψ more probes are needed reduce the uncertainty about
a potential anomaly. Further, we see in figure 11 that the number of probes
needed to detect an anomaly is in general unaffected by increased number of
fault events when mτ and ψ are fixed. The peak in figure 11a occurs because
when τ is set to a very large value in combination with a high failure rate (or drop
rate), fewer probes are sent in normal mode and thus the parameter estimation
of the Gamma distribution is based on very few observations for some nodes.
Consequently, this can lead to very long probing sequences in different regions
of the network. Finally, we see in figure 11b that the number of probes varies
with different values of ψ, independently of the number of fault events.

4.3 Localization time and fault-localization performance

In this section we investigate the localization performance of detected faults.
Specifically, we have measured the rate of correctly localized faults and the mean
shortest localization time, using log files created during performed experiments
with varying τ and ψ, combined with either increasing drop rate ξ or failure
events λ. The localization time was measured from the time of detection of a
fault event, to the time when the collaborative fault localization process was
finished by the initiating node.

For different values on both τ and ψ, we see that the localization rate
with respect to the number of generated fault events decreases with increas-
ing drop rate and failure rate (fig. 12, 13). Further, we see that very high val-
ues of τ produces lower localization rates compared to the rest of the surface
(fig. 12a, 12b, 13a, 13b), which matches the results from previous sections (sec-
tion 4.1 and 4.2). Moreover, we see that different values on ψ have insignificant
effects on the overall localization performance (fig. 12c, 12d, 13c, 13d). In all
cases, we see that around 70% of the node failures and 95% of the link faults
can be correctly localized for certain parameter settings (fig. 12, 13). The re-
duced localization rates in both the cases of increased drop rate and failure rate
(fig. 12, 13) are essentially caused by increasingly ineffective communication
between nodes. In combination with packet drops, no alternative routing paths
and increasing number of overlapping faults, the information exchanged between
nodes in the collaborative fault-localization process becomes increasingly insuf-
ficient. This means that faults are detected, but undecidable to a higher degree
than when the drop rate or failure rate is low.

The mean shortest localization time is shown in figures 14 and 15. In all
the experiments, we see that the localization time is less than 50 seconds for
the node failures and less than 20 seconds for link failures. In most cases, node
failures are localized within 20 seconds whereas link failures are localized within
5 seconds. The rather rough appearance of the resulting surfaces are caused
by overlapping node and link failures, which can time the localization process.
We observe from the results that the localization time for node failures tend
to increase with larger values of mτ (fig. 14a, 15a). The reason is that when
mτ is small, more nodes detect the anomaly for a common node. This triggers
different localization processes with different localization time, which is at most

0

0.1

0.2

0.3

0.4

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

ξ

Localization of node faults

log10(mτ)

Lo
ca

liz
at

io
n

ra
te

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

0

0.1

0.2

0.3

0.4

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

ξ

Localization of link faults

log10(mτ)

Lo
ca

liz
at

io
n

ra
te

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(b)

0

0.1

0.2

0.3

0.4

0.5

−8

−7

−6

−5

−4

−3

−2

−1
0

0.2

0.4

0.6

0.8

1

ξ

Localization of node faults

log10(ψ)

Lo
ca

liz
at

io
n

ra
te

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c)

0

0.1

0.2

0.3

0.4

0.5

−8

−7

−6

−5

−4

−3

−2

−1
0

0.2

0.4

0.6

0.8

1

ξ

Localization of link faults

log10(ψ)

Lo
ca

liz
at

io
n

ra
te

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(d)

Fig. 12: Localization rate of faults with increasing ξ and fixed λ = 5. In fig. 12a-12b,
we see results obtained with varying τ = mτf(0.8) and ψ = 0.005, whereas fig. 12c-12d
show experimental results obtained with varying ψ and mτ = 256. We observe that
the localization rate decreases with increasing ξ.

0

20

40

60

80

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

λ

Localization of node faults

log10(mτ)

Lo
ca

liz
at

io
n

ra
te

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(a)

0

20

40

60

80

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

λ

Localization of link faults

log10(mτ)

Lo
ca

liz
at

io
n

ra
te

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

(b)

0

20

40

60

80

−8

−7

−6

−5

−4

−3

−2

−1
0

0.2

0.4

0.6

0.8

1

λ

Localization of node faults

log10(ψ)

Lo
ca

liz
at

io
n

ra
te

0.4

0.45

0.5

0.55

0.6

0.65

(c)

0

20

40

60

80

−8

−7

−6

−5

−4

−3

−2

−1
0

0.2

0.4

0.6

0.8

1

λ

Localization of link faults

log10(ψ)

Lo
ca

liz
at

io
n

ra
te

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

(d)

Fig. 13: Localization rate of faults with fixed ξ = 0.025 and varying λ. In fig. 13a
and 13b, τ = mτf(0.8) vary while ψ = 0.005 is fixed, whereas fig. 13c and 13d show
results obtained with varying ψ and mτ = 256. The localization rates decreases with
increasing λ.

0

0.1

0.2

0.3

0.4

0.5

1
1.5

2
2.5

3
3.5

4

0

50

100

150

200

ξ

Shortest mean localization time of node faults

log10(mτ)

M
ea

n
lo

ca
liz

at
io

n
tim

e
(in

 s
ec

on
ds

)

10

15

20

25

30

35

40

45

50

55

(a)

0

0.1

0.2

0.3

0.4

0.5

1
1.5

2
2.5

3
3.5

4

0

50

100

150

200

ξ

Shortest mean localization time of link faults

log10(mτ)

M
ea

n
lo

ca
liz

at
io

n
tim

e
(in

 s
ec

on
ds

)

2

4

6

8

10

12

14

16

18

20

22

(b)

0

0.1

0.2

0.3

0.4

0.5

−8
−7

−6
−5

−4
−3

−2
−1
0

50

100

150

200

ξ

Shortest mean localization time of node faults

log10(ψ)

M
ea

n
lo

ca
liz

at
io

n
tim

e
(in

 s
ec

on
ds

)

10

15

20

25

30

35

(c)

0

0.1

0.2

0.3

0.4

0.5

−8
−7

−6
−5

−4
−3

−2
−1
0

50

100

150

200

ξ

Shortest mean localization time of link faults

log10(ψ)

M
ea

n
lo

ca
liz

at
io

n
tim

e
(in

 s
ec

on
ds

)

5

10

15

20

25

30

35

(d)

Fig. 14: Localization time with varied ξ and λ = 5. In fig. 14a-14b, we see results
obtained with varying τ = mτf(0.8) and ψ = 0.005, whereas fig. 14c-14d show results
with varying ψ and mτ = 256. The localization time increases with ξ and can possibly
be improved by adjusting ψ.

tr (for undecidable faults). With a larger value of mτ , an anomaly is most likely
detected and localized by a single node, which may increase the mean shortest
localization time. For the ψ, we observe in fig. 14c and 14d, a slight increase in
the localization time with increasing drop rate and a fixed value of ψ, specifically
for the node failures, which matches the results with increasing number of probes
needed to detect (and confirm) anomalies (fig. 10b).

0
10

20
30

40
50

60
70

80

1
1.5

2
2.5

3
3.5

4

0

50

100

150

200

λ

Shortest mean localization time of node faults

log10(mτ)

M
ea

n
lo

ca
liz

at
io

n
tim

e
(in

 s
ec

on
ds

)

5

10

15

20

25

30

35

40

(a)

0
10

20
30

40
50

60
70

80

1
1.5

2
2.5

3
3.5

4

0

50

100

150

200

λ

Shortest mean localization time of link faults

log10(mτ)

M
ea

n
lo

ca
liz

at
io

n
tim

e
(in

 s
ec

on
ds

)

2

4

6

8

10

12

14

16

18

20

(b)

0
10

20
30

40
50

60
70

80

−8
−7

−6
−5

−4
−3

−2
−1
0

50

100

150

200

λ

Shortest mean localization time of node faults

log10(ψ)

M
ea

n
lo

ca
liz

at
io

n
tim

e
(in

 s
ec

on
ds

)

10

15

20

25

30

35

40

(c)

0
10

20
30

40
50

60
70

80

−8
−7

−6
−5

−4
−3

−2
−1
0

50

100

150

200

λ

Shortest mean localization time of link faults

log10(ψ)

M
ea

n
lo

ca
liz

at
io

n
tim

e
(in

 s
ec

on
ds

)

0.5

1

1.5

2

2.5

3

3.5

(d)

Fig. 15: Localization time with fixed ξ = 0.025 and varied λ. In fig. 15a-15b, we see
results obtained with varying τ = mτf(0.8) and ψ = 0.005, whereas fig. 15c-15d show
results with varying ψ and mτ = 256. We see from the results that faults can be
localized in less than 10 seconds.

5 Discussion

Without aiming for optimal performance, the results of performed experiments
show that it is possible to detect and localize at least 90% of generated link
failures and around 70% of the node failures. The results also show that traffic
anomalies can be detected within 10 seconds and localized within 50 seconds. By
adjusting the parameters ψ and mτ , the performance in terms of short detection

time and localization time, false positives and correctly localized faults can be
further improved.

In the current setting, it has been observed that some node failures are not
resolved, simply because the routes between collaborating nodes are blocked
by the faulty node in question. Introducing alternative paths for collaboration
purposes could therefore improve the the algorithm performance in terms of
correctly localized node failures. This, however, is out of scope of our approach
to anomaly detection, and is currently up to the user (i.e. the network operator)
of our algorithm to implement.

In all of the experiments, ψ was set equal over all nodes and independent to
any local traffic properties. To improve both adaptivity and autonomicity of our
algorithm towards a zero-configuration approach, it is desirable to let ψ in the
future be set based on a cost similarly to τ . However, the latency threshold ψ

should not depend on the expected link latency, as is the case for τ . The reason
is that ψ in the definition of the anomaly detection model is more related to
drop rate (which was also verified by the experimental results) than expected
link latency - setting ψ to a multiple of the expected cost would only make the
detection of a fault dependent on the actual link latency, such that reduction
in the uncertainty of a detected fault on slower links would be lesser than for
fast links. Instead, the ψ should co-vary with the measured drop rate in order
to compensate the level of uncertainty and reduce the number of false positives.
In practice, this means that we want lower ψ for high levels of traffic drops
and vice versa, such that more probes are sent in order to reduce the number
of false positives. It is feasible that we in the future will investigate the degree
of improvement a redefinition of ψ with drop rate included might have on the
performance.

In general the cost mτ controlling the probing parameter τ is a trade-off
between performance and induced link load - with a high cost, probes are sent
with sparse intervals which can lead to a higher degree of undetected faults,
longer detection time, and fewer false positives. However, with a small cost,
probes are sent with short intervals which increases the link load and the number
of false positives. Our results indicate that with a relatively large value of τ , our
adaptive approach to anomaly detection performs satisfactory without inducing
unnecessary link load caused by excessive probe testing. This makes our method
a potential candidate for practical use, compared to other heartbeat-monitoring
methods without an adaptive model.

In addition to detection of traffic anomalies caused by network component
failures, we aim to extend the current model to include detection of link latency
deviations. In real world networks, small deviations in the expected link latency
can indicate failures in network services or equipment. This could relatively easily
be used for e.g. early detection and localization of traffic anomalies caused by
congestion. Thus, with an extension of our model, degeneration in traffic flow
and network services can quickly be detected and resolved. For this purpose, the
same model for the expected link latency described in eq. (1) can be applied
in combination with a mathematical expression for the detection of the latency

deviation. In near future it is feasible to develop this kind of model extension
and investigate the overall performance.

6 Conclusion

We have investigated the performance of a distributed, statistical approach to
anomaly detection and fault-localization. Results of performed experiments in-
dicate satisfactory algorithm performance - by adjusting algorithm parameters,
the performance can be fine-tuned for fast responses to anomalies and accurate
localizations of the root causes.

The main benefit of our statistical approach is that the time interval with
which a probe is sent, and the number of probes used to reduce the uncertainty of
a potential fault, are adapted to the measured link latency such that only short
series of probes are needed to detect an anomaly. This way, the traffic load on
the link is minimally affected by probe traffic, compared to ordinary heartbeat
monitoring in which probes are sent frequently at fixed time intervals. Since
probe intervals are determined autonomously for each individual link, the need
for manual configuration is significantly reduced while satisfactory monitoring
performance can be achieved.

As both anomaly detection and fault-localization are performed in a dis-
tributed manner, our approach should scale well with the number of network
components while adapting to local conditions. Further, our method is easily
used in dynamic networks with varying topology caused by so called churning
(i.e. addition, removal or replacement of nodes) because of the simple initial-
ization procedures that we have proposed. In addition, network equipment of
today already fulfils most of the requirements needed to carry out described
operations - the implementation of the protocols needed to run the described
algorithm should therefore be relatively easy.

Future work include further investigation of parameter settings relative algo-
rithm performance and scalability, tested on both synthetically generated net-
works and realistic topologies with known link latencies. Further, the algorithm
will be extended to include detection of anomalies related to abnormal probe
reply latencies, based on the same probabilistic model as described in this re-
port. Finally, we aim to investigate how to further reduce the need for manual
configuration towards a zero-configuration approach to anomaly detection and
localization.

References

1. P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis of network traffic
anomalies. In IMW’02, pages 71–82, Marseille, France, 2002.

2. E. Casilari, A. Reyes-Lecuona, F. Gonzlez, A. Diaz-Estrella, and F. Sandoval.
Characterization of web traffic. In In Proc: GLOBECOM 2001, pages 1862–1866,
2001.

3. H. K. Choi and J. O. Limb. A behavioral model of web traffic. In ICNP ’99:
Proceedings of the Seventh Annual International Conference on Network Protocols,
page 327, Washington, DC, USA, 1999. IEEE Computer Society.

4. D. Ersoz, M. S. Yousif, and C. R. Das. Characterizing network traffic in a cluster-
based, multi-tier data center. In ICDCS ’07: Proceedings of the 27th International
Conference on Distributed Computing Systems, page 59, Washington, DC, USA,
2007. IEEE Computer Society.

5. J. Färber. Network game traffic modelling. In NetGames ’02: Proceedings of the
1st workshop on Network and system support for games, pages 53–57, New York,
NY, USA, 2002. ACM.

6. H. Hajji. Statistical analysis of network traffic for adaptive faults detection. IEEE
Transactions on Neural Networks, 16:1053–1063, 2005.

7. C. Heyaime-Duverge and V. K. Prabhu. Modeling action and strategy internet-
games traffic. IEEE 55th Vehicular Technology Conference, 3:1405–1409, 2002.

8. L. Huang, X. Nguyen, M. Garofalakis, M. I. Jordan, A. Joseph, and N. Taft. In-
network pca and anomaly detection. In Advances in Neural Information Processing
Systems 19, pages 617–624. MIT Press, Cambridge, MA, 2007.

9. A. Lakhina, M. Crovella, and C. Diot. Characterization of network-wide anomalies
in traffic flows. In IMC’04, pages 201–206, Taormina, Sicily, Italy, 2004.

10. M. V. Mahoney. Network traffic anomaly detection based on packet bytes. In
SAC’03, Melbourne, Florida, USA, 2003.

11. M. Natu and A. S. Seti. Efficient probing techniques for fault diagnosis. Second
International Conference on Internet Monitoring and Protection (ICIMP 2007),
pages 2085–2090, 2007.

12. M. E. J. Newman. The structure and function of complex networks. SIAM Review,
45:167–256, 2003.

13. S. Rangarajan, A. Dahbura, and E. Ziegler. A distributed system-level diagnosis
algorithm for arbitrary network topologies. IEEE Transactions on Computers,
44(2):312–334, 1995.

14. I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik, and K. Her-
nandez. Adaptive diagnosis in distributed systems. IEEE Transactions on Neural
Networks, 16:1088–1109, 2005.

15. A. Subbiah and D. M. Blough. Distributed diagnosis in dynamic fault environ-
ments. IEEE Transactions on Parallel and Distributed Systems, 15(5):453–467,
2004.

16. A. Varga and R. Hornig. An overview of the omnet++ simulation environment.
In Simutools ’08: Proceedings of the 1st international conference on Simulation
tools and techniques for communications, networks and systems & workshops,
pages 1–10, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

