12,872 research outputs found

    Topology of 2D and 3D Rational Curves

    Full text link
    In this paper we present algorithms for computing the topology of planar and space rational curves defined by a parametrization. The algorithms given here work directly with the parametrization of the curve, and do not require to compute or use the implicit equation of the curve (in the case of planar curves) or of any projection (in the case of space curves). Moreover, these algorithms have been implemented in Maple; the examples considered and the timings obtained show good performance skills.Comment: 26 pages, 19 figure

    An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks

    Full text link
    We present an exact and complete algorithm to isolate the real solutions of a zero-dimensional bivariate polynomial system. The proposed algorithm constitutes an elimination method which improves upon existing approaches in a number of points. First, the amount of purely symbolic operations is significantly reduced, that is, only resultant computation and square-free factorization is still needed. Second, our algorithm neither assumes generic position of the input system nor demands for any change of the coordinate system. The latter is due to a novel inclusion predicate to certify that a certain region is isolating for a solution. Our implementation exploits graphics hardware to expedite the resultant computation. Furthermore, we integrate a number of filtering techniques to improve the overall performance. Efficiency of the proposed method is proven by a comparison of our implementation with two state-of-the-art implementations, that is, LPG and Maple's isolate. For a series of challenging benchmark instances, experiments show that our implementation outperforms both contestants.Comment: 16 pages with appendix, 1 figure, submitted to ALENEX 201

    Learning Algebraic Varieties from Samples

    Full text link
    We seek to determine a real algebraic variety from a fixed finite subset of points. Existing methods are studied and new methods are developed. Our focus lies on aspects of topology and algebraic geometry, such as dimension and defining polynomials. All algorithms are tested on a range of datasets and made available in a Julia package

    Computing the topology of a real algebraic plane curve whose defining equations are available only “by values”

    Get PDF
    This paper is devoted to introducing a new approach for computing the topology of a real algebraic plane curve presented either parametrically or defined by its implicit equation when the corresponding polynomials which describe the curve are known only “by values”. This approach is based on the replacement of the usual algebraic manipulation of the polynomials (and their roots) appearing in the topology determination of the given curve with the computation of numerical matrices (and their eigenvalues). Such numerical matrices arise from a typical construction in Elimination Theory known as the Bézout matrix which in our case is specified by the values of the defining polynomial equations on several sample points

    Using implicit equations of parametric curves and surfaces without computing them: Polynomial algebra by values

    Get PDF
    The availability of the implicit equation of a plane curve or of a 3D surface can be very useful in order to solve many geometric problems involving the considered curve or surface: for example, when dealing with the point position problem or answering intersection questions. On the other hand, it is well known that in most cases, even for moderate degrees, the implicit equation is either difficult to compute or, if computed, the high degree and the big size of the coefficients makes extremely difficult its use in practice. We will show that, for several problems involving plane curves, 3D surfaces and some of their constructions (for example, offsets), it is possible to use the implicit equation (or, more precisely, its properties) without needing to explicitly determine it. We replace the computation of the implicit equation with the evaluation of the considered parameterizations in a set of points. We then translate the geometric problem in hand, into one or several generalized eigenvalue problems on matrix pencils (depending again on several evaluations of the considered parameterizations). This is the so-called “polynomial algebra by values” approach where the huge polynomial equations coming from Elimination Theory (e.g., using resultants) are replaced by big structured and sparse numerical matrices. For these matrices there are well-known numerical techniques allowing to provide the results we need to answer the geometric questions on the considered curves and surfaces

    Computing Periods of Hypersurfaces

    Full text link
    We give an algorithm to compute the periods of smooth projective hypersurfaces of any dimension. This is an improvement over existing algorithms which could only compute the periods of plane curves. Our algorithm reduces the evaluation of period integrals to an initial value problem for ordinary differential equations of Picard-Fuchs type. In this way, the periods can be computed to extreme-precision in order to study their arithmetic properties. The initial conditions are obtained by an exact determination of the cohomology pairing on Fermat hypersurfaces with respect to a natural basis.Comment: 33 pages; Final version. Fixed typos, minor expository changes. Changed code repository lin
    • …
    corecore