6,713 research outputs found

    Segmentation of heart sounds by Re-Sampled signal energy method

    Get PDF
    Auscultation, which means listening to heart sounds, is one of the most basic medical methods used by physicians to diagnose heart diseases. These voices provide considerable information about the pathological cardiac condition of arrhythmia, valve disorders, heart failure and other heart conditions. This is why cardiac sounds have a great prominence in the early diagnosis of cardiovascular disease. Heart sounds mainly have two main components, S1 and S2. These components need to be well identified to diagnose heart conditions easily and accurately. In this case, the segmentation of heart sounds comes into play and naturally a lot of work has been done in this regard. The first step in the automatic analysis of heart sounds is the segmentation of heart sound signals. Correct detection of heart sounds components is crucial for correct identification of systolic or diastolic regions. Thus, the pathological conditions in these regions can be clearly demonstrated. In previous studies, frequency domain studies such as Shannon energy and Hilbert transformation method were generally performed for segmentation of heart sounds. These methods involve quite long and exhausting stages. For this reason, in this study, a re-sampled energy method which can easily segment heart sounds in the time domain has been developed. The results obtained from the experiments show that the proposed method segments S1 and S2 sounds very efficiently

    Exploring Mechanocardiography as a Tool to Monitor Systolic Function Improvement with Resynchronization Pacing

    Get PDF
    The thesis explores the utilization of mechanocardiography (MCG) as a novel approach to assess and quantify improvements in systolic cardiac function resulting from cardiac resynchronization therapy (CRT). The study focuses on patients with heart failure and reduced ejection fraction (HFrEF), a population commonly treated with CRT. The primary objective is to investigate the differences in MCG waveforms during CRT and single-chamber atrial (AAI) pacing, specifically comparing waveform characteristics. 10 patients with heart failure and previously implanted CRT pacemakers were included in the study. The MCG and ECG signals are recorded using accelerometers, gyroscopes, and Holter measurement unit placed on the lower chest and used in the analysis. ECG and MCG recordings were obtained during both CRT and AAI pacing at a consistent heart rate of 80 beats per minute. The analysis involved considering six MCG axes and three MCG vectors across various frequency ranges to derive key waveform characteristics such as energy, vertical range, electromechanical systole (QS2), and left ventricular ejection time (LVET). The results revealed significant differences between CRT and AAI pacing, with CRT consistently exhibiting higher energy and vertical range during systole across multiple axes. Notably, the study identified optimal differences in SCG-Y, GCG-X, and GCG-Y axes within the 6–90 Hz frequency range. However, any difference in QS2, LVET and waveform characteristics around aortic valve closure was not identified between the pacing modes. The findings suggest that MCG waveforms can serve as indicators of improved mechanical cardiac function during CRT. The use of accelerometers and gyroscopes may contribute to the development of a non-invasive and potentially predictive tool for optimizing CRT settings. The promising results underscore the need for further research to explore the differences in signal characteristics between responders and nonresponders to CRT. The overall aim is to enhance the clinical application of MCG, leveraging wearable technology and micro-electromechanical systems (MEMS), and ultimately improve the optimization and efficacy of CRT in heart failure (HF) management

    Coronary Angiography (IJECCE)

    Get PDF

    Blood

    Get PDF
    This book examines both the fluid and cellular components of blood. After the introductory section, the second section presents updates on various topics in hemodynamics. Chapters in this section discuss anemia, 4D flow MRI in cardiology, cardiovascular complications of robot-assisted laparoscopic pelvic surgery, altered perfusion in multiple sclerosis, and hemodynamic laminar shear stress in oxidative homeostasis. The third section focuses on thalassemia with chapters on diagnosis and screening for thalassemia, high blood pressure in beta-thalassemia, and hepatitis C infection in thalassemia patients

    A Comparison of Maximal Exercise Responses among Patients with a Total Artificial Heart, a Left Ventricular Assist Device, or Advanced Heart Failure

    Get PDF
    The purpose of this study was to evaluate graded exercise responses to treadmill exercise in patients with a total artificial heat (SynCardia, Tucson, AZ). Additionally, this study sought to compare the exercise response in total artificial heart (TAH) patients to both advanced heart failure (HF) patients on medical management only and HeartMate II (Thoratec Corp., Pleasanton, CA) left‐ventricular assist device (HMII) patients. For patients with biventricular heart failure the TAH is a viable option to bridge patients until transplant becomes available. Its demonstrated improvement in mortality and increasing usage necessitates a shift in focus to quality of life in the TAH patient including functional ability. The evaluation of cardiorespiratory responses to graded exercise provides an objective measure of functional ability. There is very limited information in the literature on the exercise response of the mechanical circulatory support (MCS) device patient, particularly the TAH patient. A review was performed on MCS patients who underwent symptom‐limited cardiopulmonary exercise testing (CPET) following device implant of either TAH or HMII. ANOVA was performed to compare differences between the two device groups and HF patients listed for heart transplant. Fourteen TAH patients underwent CPET (9 male, 5 female) with peak oxygen consumption (VȩO2) of 0.926 + .168 L∙min, 36 + 8% % predicted, 11.0 + 2.3 ml.kg.min or 3.1 + 0.7 METs. Ventilatory anaerobic threshold (VAT) was 0.706 + .181 L∙min. Peak (VȩO2, % pred. (VȩO2 and VAT were significantly lower in the TAH compared with HMII and advanced HF (p = 0.0012, p = 0.0106, p = 0.0009, respectively). Peak RER was significantly higher (p = \u3c.0001) and OUES was significantly lower (p = 0.0004) in the TAH. Exercise capacity is significantly reduced in the TAH patient below that observed in HMII LVAD and advanced HF patients. This provides a baseline for expected functional status and has implications on the ADL tolerance of these individuals. The next step is to develop strategies to ameliorate this continued exercise intolerance. The documents herein contain a review of literature including a background in heart failure and the use of the exercise response in the heart failure patient. An overview is also presented on the use of MCS describing physiology, device function, and exercise physiology of the MCS device patient. A manuscript has also been included detailing a cross‐sectional review of the effects of graded exercise in the TAH patient and comparing it to the HMII and advanced HF patient

    Breathing pattern characterization in patients with respiratory and cardiac failure

    Get PDF
    El objetivo principal de la tesis es estudiar los patrones respiratorios de pacientes en proceso de extubación y pacientes con insuficiencia cardiaca crónica (CHF), a partirde la señal de flujo respiratorio. La información obtenida de este estudio puede contribuir a la comprensión de los procesos fisiológicos subyacentes,y ayudar en el diagnóstico de estos pacientes. Uno de los problemas más desafiantes en unidades de cuidados intensivos es elproceso de desconexión de pacientes asistidos mediante ventilación mecánica. Más del 10% de pacientes que se extuban tienen que ser reintubados antes de 48 horas. Una prueba fallida puede ocasionar distrés cardiopulmonar y una mayor tasa de mortalidad. Se caracterizó el patrón respiratorio y la interacción dinámica entre la frecuenciacardiaca y frecuencia respiratoria, para obtener índices no invasivos que proporcionen una mayor información en el proceso de destete y mejorar el éxito de la desconexión.Las señales de flujo respiratorio y electrocardiográfica utilizadas en este estudio fueron obtenidas durante 30 minutos aplicando la prueba de tubo en T. Se compararon94 pacientes que tuvieron éxito en el proceso de extubación (GE), 39 pacientes que fracasaron en la prueba al mantener la respiración espontánea (GF), y 21 pacientes quesuperaron la prueba con éxito y fueron extubados, pero antes de 48 horas tuvieron que ser reintubados (GR). El patrón respiratorio se caracterizó a partir de las series temporales. Se aplicó la dinámica simbólica conjunta a las series correspondientes a las frecuencias cardiaca y respiratoria, para describir las interacciones cardiorrespiratoria de estos pacientes. Técnicas de "clustering", ecualización del histograma, clasificación mediante máquinasde soporte vectorial (SVM) y técnicas de validación permitieron seleccionar el conjunto de características más relevantes. Se propuso una nueva métrica B (índice de equilibrio) para la optimización de la clasificación con muestras desbalanceadas. Basado en este nuevo índice, aplicando SVM, se seleccionaron las mejores características que mantenían el mejor equilibrio entre sensibilidad y especificidad en todas las clasificaciones. El mejor resultado se obtuvo considerando conjuntamente la precisión y el valor de B, con una clasificación del 80% entre los grupos GE y GF, con 6 características. Clasificando GE vs. el resto de los pacientes, el mejor resultado se obtuvo con 9 características, con 81%. Clasificando GR vs. GE y GR vs. el resto de pacientes la precisión fue del 83% y 81% con 9 y 10 características, respectivamente. La tasa de mortalidad en pacientes con CHF es alta y la estratificación de estospacientes en función del riesgo es uno de los principales retos de la cardiología contemporánea. Estos pacientes a menudo desarrollan patrones de respiraciónperiódica (PB) incluyendo la respiración de Cheyne-Stokes (CSR) y respiración periódica sin apnea. La respiración periódica en estos pacientes se ha asociadocon una mayor mortalidad, especialmente en pacientes con CSR. Por lo tanto, el estudio de estos patrones respiratorios podría servir como un marcador de riesgo y proporcionar una mayor información sobre el estado fisiopatológico de pacientes con CHF. Se pretende identificar la condición de los pacientes con CHFde forma no invasiva mediante la caracterización y clasificación de patrones respiratorios con PBy respiración no periódica (nPB), y patrón de sujetos sanos, a partir registros de 15minutos de la señal de flujo respiratorio. Se caracterizó el patrón respiratorio mediante un estudio tiempo-frecuencia estacionario y no estacionario, de la envolvente de la señal de flujo respiratorio. Parámetros relacionados con la potencia espectral de la envolvente de la señal presentaron losmejores resultados en la clasificación de sujetos sanos y pacientes con CHF con CSR, PB y nPB. Las curvas ROC validan los resultados obtenidos. Se aplicó la "correntropy" para una caracterización tiempo-frecuencia mas completa del patrón respiratorio de pacientes con CHF. La "corretronpy" considera los momentos estadísticos de orden superior, siendo más robusta frente a los "outliers". Con la densidad espectral de correntropy (CSD) tanto la frecuencia de modulación como la dela respiración se representan en su posición real en el eje frecuencial. Los pacientes con PB y nPB, presentan diferentesgrados de periodicidad en función de su condición, mientras que los sujetos sanos no tienen periodicidad marcada. Con único parámetro se obtuvieron resultados del 88.9% clasificando pacientes PB vs. nPB, 95.2% para CHF vs. sanos, 94.4% para nPB vs. sanos.The main objective of this thesis is to study andcharacterize breathing patterns through the respiratory flow signal applied to patients on weaning trials from mechanicalventilation and patients with chronic heart failure (CHF). The aim is to contribute to theunderstanding of the underlying physiological processes and to help in the diagnosis of these patients. One of the most challenging problems in intensive care units is still the process ofdiscontinuing mechanical ventilation, as over 10% of patients who undergo successfulT-tube trials have to be reintubated in less than 48 hours. A failed weaning trial mayinduce cardiopulmonary distress and carries a higher mortality rate. We characterize therespiratory pattern and the dynamic interaction between heart rate and breathing rate toobtain noninvasive indices that provide enhanced information about the weaningprocess and improve the weaning outcome. This is achieved through a comparison of 94 patients with successful trials (GS), 39patients who fail to maintain spontaneous breathing (GF), and 21 patients who successfully maintain spontaneous breathing and are extubated, but require thereinstitution of mechanical ventilation in less than 48 hours because they are unable tobreathe (GR). The ECG and the respiratory flow signals used in this study were acquired during T-tube tests and last 30 minute. The respiratory pattern was characterized by means of a number of respiratory timeseries. Joint symbolic dynamics applied to time series of heart rate and respiratoryfrequency was used to describe the cardiorespiratory interactions of patients during theweaning trial process. Clustering, histogram equalization, support vector machines-based classification (SVM) and validation techniques enabled the selection of the bestsubset of input features. We defined a new optimization metric for unbalanced classification problems, andestablished a new SVM feature selection method, based on this balance index B. The proposed B-based SVM feature selection provided a better balance between sensitivityand specificity in all classifications. The best classification result was obtained with SVM feature selection based on bothaccuracy and the balance index, which classified GS and GFwith an accuracy of 80%, considering 6 features. Classifying GS versus the rest of patients, the best result wasobtained with 9 features, 81%, and the accuracy classifying GR versus GS, and GR versus the rest of the patients was 83% and 81% with 9 and 10 features, respectively.The mortality rate in CHF patients remains high and risk stratification in these patients isstill one of the major challenges of contemporary cardiology. Patients with CHF oftendevelop periodic breathing patterns including Cheyne-Stokes respiration (CSR) and periodic breathing without apnea. Periodic breathing in CHF patients is associated withincreased mortality, especially in CSR patients. Therefore it could serve as a risk markerand can provide enhanced information about thepathophysiological condition of CHF patients. The main goal of this research was to identify CHF patients' condition noninvasively bycharacterizing and classifying respiratory flow patterns from patients with PB and nPBand healthy subjects by using 15-minute long respiratory flow signals. The respiratory pattern was characterized by a stationary and a nonstationary time-frequency study through the envelope of the respiratory flow signal. Power-related parameters achieved the best results in all of the classifications involving healthy subjects and CHF patients with CSR, PB and nPB and the ROC curves validated theresults obtained for the identification of different respiratory patterns. We investigated the use of correntropy for the spectral characterization of respiratory patterns in CHF patients. The correntropy function accounts for higher-order moments and is robust to outliers. Due to the former property, the respiratory and modulationfrequencies appear at their actual locations along the frequency axis in the correntropy spectral density (CSD). The best results were achieved with correntropy and CSD-related parameters that characterized the power in the modulation and respiration discriminant bands, definedas a frequency interval centred on the modulation and respiration frequency peaks,respectively. All patients, i.e. both PB and nPB, exhibit various degrees of periodicitydepending on their condition, whereas healthy subjects have no pronounced periodicity.This fact led to excellent results classifying PB and nPB patients 88.9%, CHF versushealthy 95.2%, and nPB versus healthy 94.4% with only one parameter.Postprint (published version

    Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction survivors

    Get PDF
    Aims To assess the prognostic significance of infarct core tissue characteristics using cardiac magnetic resonance (CMR) imaging in survivors of acute ST-elevation myocardial infarction (STEMI). Methods and results We performed an observational prospective single centre cohort study in 300 reperfused STEMI patients (mean ± SD age 59 ± 12 years, 74% male) who underwent CMR 2 days and 6 months post-myocardial infarction (n = 267). Native T1 was measured in myocardial regions of interest (n = 288). Adverse remodelling was defined as an increase in left ventricular (LV) end-diastolic volume ≥20% at 6 months. All-cause death or first heart failure hospitalization was a pre-specified outcome that was assessed during follow-up (median duration 845 days). One hundred and sixty (56%) patients had a hypo-intense infarct core disclosed by native T1. In multivariable regression, infarct core native T1 was inversely associated with adverse remodelling [odds ratio (95% confidence interval (CI)] per 10 ms reduction in native T1: 0.91 (0.82, 0.00); P = 0.061). Thirty (10.4%) of 288 patients died or experienced a heart failure event and 13 of these events occurred post-discharge. Native T1 values (ms) within the hypo-intense infarct core (n = 160 STEMI patients) were inversely associated with the risk of all-cause death or first hospitalization for heart failure post-discharge (for a 10 ms increase in native T1: hazard ratio 0.730, 95% CI 0.617, 0.863; P < 0.001) including after adjustment for left ventricular ejection fraction, infarct core T2 and myocardial haemorrhage. The prognostic results for microvascular obstruction were similar. Conclusion Infarct core native T1 represents a novel non-contrast CMR biomarker with potential for infarct characterization and prognostication in STEMI survivors. Confirmatory studies are warranted

    The Use of Coronary CT Angiography for the Evaluation of Chest Pain

    Get PDF
    Coronary computed tomography angiography (CCTA) may improve the diagnosis and management of acute and stable chest pain syndromes. The key for caregivers of patients presenting with acute chest pain is the early identification and management of life-threatening conditions, such as acute coronary syndromes, pulmonary embolism, and acute aortic dissection. The main goal in stable chest pain syndromes is to determine the extent and severity of coronary artery disease. This review article will critically evaluate the current literature supporting the evidence for the clinical use of CCTA in acute and stable chest pain syndromes, considering the latest innovations in CCTA technology and their potential impact on patient care

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 182, July 1978

    Get PDF
    This bibliography lists 165 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1978
    corecore