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ABSTRACT

BREATHING PATTERN CHARACTERIZATION IN PATIENTS

WITH RESPIRATORY AND CARDIAC FAILURE

Ainara Garde Martinez

Departament d’Enginyeria de Sistemes, Automàtica i
Informàtica Industrial (ESAII)

Doctoral thesis

The main objective of this thesis is to study and characterize breathing pat-

terns through the respiratory flow signal applied to patients on weaning trials

from mechanical ventilation and patients with chronic heart failure. The aim

is to contribute to the understanding of the underlying physiological processes

and to help in the diagnosis of these patients. Acute respiratory, cardiac

and neurological failures lead to intubation and mechanical ventilation sup-

port. One of the most challenging problems in intensive care units is still the

process of discontinuing mechanical ventilation, as over 10% of patients who

undergo successful T-tube trials have to be reintubated in less than 48 hours.

Withdrawal of mechanical ventilation should be performed as soon as sponta-

neous respiration can be sustained. It is undesirable to unnecessarily delay the



discontinuation process or to take weaning trials too early. A failed weaning

trial is discomforting for patients, since it may induce cardiopulmonary dis-

tress and carries a higher mortality rate. Our purpose is to obtain indices that

provide enhanced information about the respiratory pattern and the dynamic

interaction between heart rate and breathing rate. This is achieved through

a comparison of patients with successful trials, patients who fail to maintain

spontaneous breathing in the weaning procedure and are reconnected, and

patients who successfully maintain spontaneous breathing and are extubated,

but require the reinstitution of mechanical ventilation in less than 48 hours

because they are unable to breathe spontaneously. Since electrocardiographic

(ECG) and respiratory flow signals can be measured noninvasively, this anal-

ysis could facilitate future automatic diagnoses of patients during weaning

trials.

This study was carried out using the weaning dataset, which contains 30-

minute ECG and respiratory flow signals acquired during T-tube tests. Three

groups of patients are considered: GS, 94 patients with successful weaning;

GF , 39 patients who failed to maintain spontaneous breathing; and GR, 21

patients with successful weaning trials, who needed to be reintubated in less

than 48 hours. The ECG and the respiratory flow signals used in this study

were acquired during T-tube tests and last 30 minute.

In a first study, the respiratory pattern was characterized by means of

a number of respiratory time series. Clustering and validation techniques en-

abled the selection of the best subset of input features. Histogram equalization

mapped the distribution of the selected features back to the distribution of the

feature that gave the best classification result. After a search for the most suit-



able features and the application of the histogram equalization method, a total

accuracy of 80% was obtained in the classification of GS versus GF through

support vector machines (SVM), using only 8 of the 35 features.

In a second study, the cardiorespiratory interactions of the patients on

weaning trials were studied by a nonlinear procedure. Joint symbolic dynamics

applied to time series of heart rate and respiratory frequency can be used

to describe the cardiorespiratory interactions of patients during the weaning

trial process. The values of cardiac interbeat and breath duration series were

synchronized and interpolated.

An optimized feature selection algorithm based on SVM was used to ob-

tain good predictive performance for a set of unbalanced data. We proposed

a new optimization metric for unbalanced classification problems, and estab-

lished a new SVM feature selection method, based on the balance index B.

The proposed B-based SVM feature selection provided a better balance be-

tween sensitivity and specificity in all classifications. The best classification

result was obtained with this new feature selection based on both accuracy

and the balance index, which classified GS and GF with an accuracy of 80%,

considering only 6 features. The advantage of this approach is that the clas-

sification is based on 6 features instead of 8. Moreover, good results and a

balance between sensitivity and specificity were obtained using this algorithm

with 4 features or more. In the classification of GS patients versus the rest of

the patients, the best result was obtained with 9 features, with an accuracy

of 81%. In the classification of GR versus GS, 83% of patients were correctly

classified with 9 features. Finally, in the classification of GR versus the rest of

the patients, 10 features were chosen from the SVM, which gave an accuracy of



81%. Therefore, the SVM-based method accurately classified different groups

of patients and maintained a good balance between sensitivity and specificity,

even for unbalanced datasets.

The results show good performance of the proposed SVM-based feature

selection, since it selects the most relevant features and maintains a balance

between sensitivity and specificity for unbalanced groups of data. It might be

a useful tool for enhancing the analysis of patients on weaning trials because it

adds objective information to the doctor’s expertise. Nevertheless, additional

features and clinical information about patient condition before the weaning

trial, should be considered to further increase the discrimination among these

three groups, and to identify the reintubated patients in particular.

Chronic heart failure (CHF) is an increasingly widespread, costly and

deadly disease that is frequently called an epidemic of the twenty-first cen-

tury. Despite advances in modern treatment, the mortality rate in CHF pa-

tients remains high. Risk stratification in these patients is still one of the major

challenges of contemporary cardiology. CHF patients often develop breathing

abnormalities, including various forms of periodic breathing patterns, such

as Cheyne-Stokes respiration (CSR) and periodic breathing without apnea.

Periodic breathing in CHF patients is associated with increased mortality, es-

pecially in CSR patients. Under the hypothesis that an in-depth study of

the respiratory pattern could improve identification of the risk level of a CHF

patient, our purpose is to obtain objective indices that can provide enhanced

information about the pathophysiological condition of these patients.

This study was carried out using a CHF dataset and a healthy dataset,

which contain 15-minute and 30-minute long respiratory flow signals of CHF



patients and healthy subjects, respectively. Subjects included 26 CHF patients

with periodic breathing (PB) and nonperiodic breathing (nPB) patterns and

35 healthy volunteers.

In a first study, we assumed the stationarity of the signals and developed

an envelope-based respiratory pattern characterization for CHF patients and

healthy subjects. The aim was to study respiratory pattern periodicity as a

risk index by characterizing the respiratory flow signal envelope. The objective

was to identify and characterize respiratory patterns from healthy subjects or

CHF patients with periodic or nonperiodic breathing. In a second study, the

nonstationarity of the signals was considered through time-varying AR mod-

elling applied to the respiratory envelope signal, to characterize the temporal

evolution of breathing patterns. Power-related parameters achieved the best

results in all of the classifications involving healthy subjects and CHF patients

with CSR, PB and nPB. The main pole magnitude produced good results in

the classification of PB and nPB patterns. The ROC curves validated the

results obtained for the identification of different respiratory patterns.

These results indicate that power-related parameters of the respiratory

envelope signal are powerful indices to detect periodic breathing. Additionally,

time-varying modulation of the respiratory envelope signal provided accurate

results that characterized the temporal evolution of respiratory patterns.

In a third study, we investigated the use of correntropy for the spectral

characterization of respiratory patterns in CHF patients. In contrast to the

conventional second-order correlation function, the correntropy function ac-

counts for higher-order moments and is robust to outliers. Due to the former

property, the respiratory and modulation frequencies appear at their actual
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locations along the frequency axis in the correntropy spectral density (CSD).

When correntropy was used to classify PB and nPB patients, the accuracy

(88.9%) was higher than that obtained with parameters derived from enve-

lope’s time–frequency representation. The importance of this results lies in

the fact that the present classification is based on only one parameter.

The main goal of this research was to identify CHF patients’ condition

noninvasively by characterizing and classifying respiratory flow patterns from

patients with PB and nPB. In general, the best results were achieved with

CSD-related parameters that characterized the power in the modulation and

respiration discriminant bands, which is defined as a frequency interval cen-

tred on the modulation and respiration frequency peaks, respectively. These

parameters achieved the best results in all the classifications performed with

CHF patients, including CSR patients, PB patients without apnea, and nPB

patients. All patients, i.e. both PB and nPB, exhibit various degrees of

periodicity depending on their condition, whereas healthy subjects have no

pronounced periodicity. The correntropy mean and the correntropy spectral

density mean provide excellent results in the classification of CHF and healthy

subjects, as well as that of nPB patients and healthy subjects (CHF versus

healthy 95.2%, and nPB versus healthy 94.4%).

The information extracted from the respiratory pattern appears to be useful

to identify periodic breathing patterns in CHF patients and can therefore

improve prognosis and serve as indicators of patient condition. The small

size of the dataset is a limitation of this research. Therefore, although the

results are promising, their significance needs to be further established using

a larger set.
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Chapter 1

Introduction

1.1 Thesis introduction

In order to help clinical doctors in the diagnosis of patients, in this research we analyse

the respiratory system of patients with different pathologies in depth. Specifically,

we study patients on weaning trials and patients with chronic heart failure.

The process of discontinuing mechanical ventilation that is referred to as weaning

is still one of the most challenging problems in intensive care units. Although a lot

of research has been done on this topic, a high percentage of patients who undergo

successful T-tube trials have to be reintubated in less than 48 hours. Reintubation

percentages that range from 6% to 47% have been reported for different populations.

Withdrawal of mechanical ventilation should be performed as soon as spontaneous

respiration can be sustained. Critical care clinicians must carefully assess the benefits

of prompt liberation from mechanical ventilation against the risks of premature tests

of spontaneous breathing and extubation. Both delayed and failed extubation have

detrimental consequences. A failed weaning trial is discomforting for patients, since

1



2 Chapter 1 Introduction

it may induce cardiopulmonary distress and carries a higher mortality rate.

Chronic heart failure (CHF) is an increasingly widespread, costly and deadly ma-

jor health problem that is frequently called an epidemic of the twenty-first century.

Despite advances in modern treatment, the mortality rate in CHF patients remains

high. Risk stratification in these patients is still one of the major challenges of con-

temporary cardiology. Patients with CHF often develop breathing abnormalities,

including various forms of periodic breathing (PB) patterns. Cheyne–Stokes respira-

tion (CSR) is characterized by repetitive gradual increases and subsequent gradual

decreases in ventilation, followed by periods of apnea. PB in CHF patients has a

similar increase and decrease in ventilation, but there are no periods of apnea. Both

ventilatory patterns may have the same mechanistic explanations, as PB is a less

severe form of CSR. The prevalence of PB in CHF patients is as high as 70%, and is

associated with increased mortality, especially in patients with CSR. The most rele-

vant accepted clinical predictors of the outcome of heart failure patients perform well

in the prediction of mortality due to disease progression, but the prediction of sudden

cardiac death appears more problematic. In ambulatory patients with less severe

CHF, symptoms may be less obvious and death is more often sudden in nature. The

importance of being able to identify mildly symptomatic CHF patients at risk from

sudden cardiac death is of paramount importance.

1.2 Thesis objective

The main objective of this thesis is to study and characterize breathing patterns

through the respiratory flow signal applied to patients on weaning trials from me-

chanical ventilation and patients with chronic heart failure. The aim is to provide
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information that could increase understanding of the underlying physiological pro-

cesses and help in the diagnosis of these patients.

One goal of this thesis is to obtain objective indices that provide relevant in-

formation about the respiratory pattern and the dynamic interaction between heart

rate and breathing rate. This could help to improve the weaning outcome in pa-

tients on weaning trials and reduce the number of patients who successfully maintain

spontaneous breathing and are extubated, but require the reinstitution of mechanical

ventilation in less than 48 hours, because they are unable to breathe spontaneously.

Under the hypothesis that an in-depth study of the respiratory pattern could im-

prove identification of the risk level of a CHF patient, another goal of this thesis is to

obtain objective indices that can provide enhanced information about the pathophys-

iological condition of these patients, which could help in the prognosis and subsequent

risk stratification of these patients.

A final study should be carried out for each problem, including all the relevant

clinical information and all the significant indices. This would increase our knowledge

of these patients and contribute to clinical practice.

1.3 Thesis outline

The thesis is organized as follows:

Chapter 2: Weaning and chronic heart failure. An overview is given of

the respiratory system. Acute respiratory failure and chronic heart failure are de-

scribed briefly, and the state-of-the-art in weaning readiness assessment and periodic

breathing in chronic heart failure is discussed.

Chapter 3: Pattern recognition techniques. The main issues in pattern



4 Chapter 1 Introduction

recognition techniques are reviewed. Support vector machines, and a number of

metrics employed to evaluate the performance of respiratory pattern recognition, are

described.

Chapter 4: Support vector machines applied to weaning. SVM is used

to study the differences between patients with successful weaning trials, patients with

unsuccessful trials and patients who successfully pass the trial, but cannot maintain

spontaneous breathing and require the reinstitution of mechanical ventilation. The

respiratory flow signal and the ECG of the patients are used to characterize the

respiratory pattern and cardiorespiratory interactions.

Chapter 5: Time-frequency analysis of the respiratory pattern. This

chapter describes a number of time-frequency techniques that are applied to the res-

piratory flow signal to characterize the respiratory pattern in patients with CHF. We

review pre-processing for artefact reduction, various envelope extraction techniques,

and a number of parametric and nonparametric methods for power spectral analysis

that are applied in all cases to the respiratory flow signal.

Chapter 6: Respiratory pattern analysis applied to chronic heart fail-

ure. This chapter analyses the breathing pattern through the respiratory flow signal

in CHF patients and healthy subjects using the envelope of the respiratory flow signal.

On the basis of autoregressive power spectral analysis of the envelope, the relevant

discriminant band is characterized by a number of spectral parameters.

Chapter 7: Correntropy-based respiratory pattern analysis. We intro-

duce the correntropy measure and a number of functions that are derived from it,

such as centred correntropy and correntropy spectral density. We use centred corren-

tropy to study the respiratory flow signal in CHF patients with periodic breathing

and nonperiodic breathing patterns, to define parameters that can improve prognosis
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and serve as indicators of patient condition.

Chapter 8: Conclusions. The outcome and contributions of this thesis are

summarized in this chapter. Some possible future extensions are briefly presented for

further work on this topic.

Publications derived from this thesis.

The publications that have resulted from this doctoral thesis are listed at the end of

the document.
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Chapter 2

Weaning and chronic heart failure

Breathing is essential to life and must occur in the conscious or unconscious state,

awake or asleep. The voluntary and involuntary control of the respiratory system is

unparalleled and a highly complex process. It constantly adapts to environmental

changes, from small environmental variations that are nearly imperceptible to the

senses to changes that provoke an explicit response, such as a cough or sneeze. In

spite of its relevance to our daily life, some aspects of the mechanics and physiology of

the respiratory system are still unknown. Thus, the study of the respiratory system’s

complexity has became a promising area, in which scientific progress can be made.

Respiratory failure is a dysfunction of one or more essential components of the

respiratory system and represents a medical emergency. Health care professionals

treat respiratory failure by restoring normal function, and by using devices such as

mechanical ventilators to maintain gas exchange until the respiratory system heals.

When mechanical ventilation is discontinued, problems may arise. Extubation failure

occurs in 6% to 47% [5] of cases in different populations.

An alteration in respiratory pattern provides a sensitive, consistent sign of res-

7
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piratory failure. Respiratory pattern is closely linked with the circulatory system,

therefore its abnormalities could reveal a loss of stability in the closed-loop chemical

control of ventilation. For instance, it has been reported in the literature that patients

with chronic heart failure develop specific breathing abnormalities.

To enhance the available information in the diagnosis of patients, we have studied

in depth the respiratory pattern of patients with different pathologies, specifically

patients on weaning trials and patients with chronic heart failure.

2.1 Respiratory system

The primary role of the respiratory system is to provide oxygen to the tissues and to

remove carbon dioxide (Fig. 2.1). To achieve these goals, respiration can be divided

into four major functions: (1) pulmonary ventilation, which means the inflow and

outflow of air between the atmosphere and the alveoli in the lungs; (2) diffusion of

oxygen and carbon dioxide between the alveoli and the blood; (3) transport of oxygen

and carbon dioxide in the blood and body fluids to and from the body’s tissue cells;

and (4) regulation of ventilation and other aspects of respiration [2].

2.1.1 Pulmonary ventilation

Breathing is the result of periodic contractions and expansions of the thoracic cavity,

which are produced by the intermittent contraction of respiratory muscles. Respira-

tory muscle movement forces the thoracic cavity to modify its volume, which creates

positive and negative pressures that bring air in and out of the lungs. The lungs are

expanded and contracted by the downward and upward movement of the diaphragm

to lengthen or shorten the thoracic cavity. Thoracic cavity expansion moves air into
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Figure 2.1 The respiratory system. The air is distributed to the lungs by
way of the trachea, bronchi and bronchioles (authorized by [2]).

the lungs and a return to the initial volume moves the air out. During inspira-

tion, contraction of the diaphragm pulls the lower surfaces of the lungs downward.

Then, during expiration, the diaphragm simply relaxes, and the elastic recoil of the

lungs, thoracic wall, and abdominal structures compresses the lungs and expels the

air (Fig. 2.2). Inspiration is an active process and expiration is generally a passive

process, due to the natural elasticity of the lungs.

Lung capacity for inspiration and expiration depends on the components of the

airways, thoracic cavity, respiratory muscles, and the features of the muscles. In

practice, different measures are used to evaluate these factors separately, although
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Figure 2.2 The process of inspiration and expiration (authorized by [2]).

there is no reliable method for properly evaluating pulmonary ventilation. Thus,

respiration is clinically studied through measurements of static and dynamic volume,

pressure and pulmonary capacity [6]

2.1.2 Pulmonary volumes and capacities

Pulmonary volume and capacity measurements can be used to investigate pulmonary

disorders, to characterize severity and to control responses to therapy. Measurements

are typically reported as absolute volumes, pulmonary capacities and percentages

of predicted values, using data derived from large populations of people who are

presumed to have normal lung function. The variables that are used to predict normal

values include age, sex, weight and height.

Some static and dynamic measurements are made through spirometry, which con-

sists of registering on a spirometer the whole inspiration and expiration cycle, either

under normal volumes or by forcing maximum inspiration and expiration. Static
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volume measurements are obtained by simple spirometry and dynamic measurements

are made by forced spirometry. Measurements are influenced by the state of each sub-

ject’s breathing mechanism and also by his/her characteristics. Table 2.1 describes

some of the static respiratory volume and pulmonary capacity measurements and

includes their normal ranges for a healthy subject (Fig. 2.3).

Figure 2.3 Spirogram with lung volume changes under different breathing
conditions. The air in the lungs has been subdivided into four volumes and
four capacities, which are the average for a young adult man (authorized
by [2]).
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Table 2.1 Static volume measures

Measurement Description Normal value

Tidal The amount of air moved into and
Volume (VT ) out of the lungs during a normal 500 ml

breath at rest.

Residual The amount of air left in the lungs
Volume (RV ) following a maximal exhalation. There

is always some air remaining to prevent 1200 ml
the lungs from collapsing.

Inspiratory The amount of extra air inspired
Reserve Volume (IRV ) (above the tidal volume) during 3000 ml

a deep breath.

Expiratory The amount of extra air exhaled
Reserve Volume (ERV ) (above the tidal volume) during 1200 ml

a forceful breath out.

Vital The most air you can exhale after
Capacity (V C) taking the deepest breath you can.

It can be up to ten times more 4500-5500 ml
than you would normally exhale.

Total Lung This is the total amount of air
Capacity (TLC) the lungs can hold, which is

the vital lung capacity plus 4400-6400 ml
the residual volume.

Inspiratory The volume of gas that can be taken
Capacity (IC) into the lungs in a full inspiration,

starting from the resting inspiratory 3600 ml
position. It is equal to the tidal volume
plus the inspiratory reserve volume.

Functional Residual The volume of gas in the lungs at the
Capacity (FRC) end of a normal tidal volume expiration.

It is equal to the residual volume plus 2400 ml
the expiratory reserve volume.
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The dynamic measurements resulting from spirometry can be used to evaluate the

existence of respiratory pathologies in the subject. Numerous parameters have been

proposed by different researchers, but spirometry can be fully interpreted with just

three of them. Some general considerations for appropriate lung function testing are

presented in [7] and some spirometric reference values are given in [8].

Forced Vital Capacity (FV C)

FV C is the maximum volume of air that a subject can forcibly exhale after taking a

maximal inspiration. It is a capacity measurement that quantifies pulmonary capacity.

It is expressed in litres, as is the percentage of the theoretical reference value. Values

greater than or equal to 80% of the theoretical value are considered normal FV C

measurements. The Spanish Society of Pulmonology and Thoracic Surgery (SEPAR)

has accepted a theoretical value for Barcelona’s population that is calculated by the

following expressions [9]

FV C (Male) = 0.0678 ·Height−0.0147 ·Age−6.0548 (2.1)

FV C (Female) = 0.0454 ·Height−0.0211 ·Age−2.8253 (2.2)

Forced Expiratory Volume in 1 second (FEV1)

FV E1 is the maximum volume of air that a subject can forcibly exhale in the first

second after taking a maximal inspiration. Like FV C, it is expressed in litres and as

a percentage of the theoretical reference value. Within Barcelona’s population, the

reference value for a healthy subject is given by

FV E1 (Male) = 0.0499 ·Height−0.0211 ·Age−3.8370 (2.3)
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FV E1 (Female) = 0.0317 ·Height−0.0250 ·Age−1.2324 (2.4)

In general, FV E1 increases from childhood and reaches a maximum value at around

25 years old. It has been proved to be a discriminating factor in the prediction of

obstructive disorders characterized by a reduction in airflow [9].

FEV1/FV C ratio

Represented as FEV1 / FV C or FEV1%, this is the percentage of FVC exhaled

during a forced expiration. A drop in this index implies the existence of respiratory

obstruction. The FEV1 / FV C value varies with age and is higher in healthy young

people than in older people. A percentage of 75% is considered normal in young

people and 70% in elderly people [9].

2.1.3 Respiratory flow and volume signals

The volume signal represents the circulating air volume in a subject’s airway. The

volume signal of healthy subjects generally has an oscillation waveform with an ampli-

tude and frequency that varies for each subject. The average amplitude and frequency

values are 500 ml and 12 breaths per minute, respectively. When deep breaths occur,

these average values can vary remarkably. Inspiratory volumes can reach up to 3500

ml and expiratory volumes can reach 1000 ml during a deep breath. In addition,

respiratory frequency can decrease unconsciously up to 5 breaths per minute during

sleep or during apnea events, and increase automatically to 70 breaths per minute

during intense effort. Therefore, a respiratory volume signal contains a large number

of breathing cycles that can vary in frequency and amplitude even when they are

consecutive.
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Respiratory flow occurs by convection, as a result of the pressure difference be-

tween the chest and the atmosphere. It is a measure of the circulating air volume

over time. Consequently, it can be estimated through a time derivative of the vol-

ume signal. During inspiration, the air volume increases and the airflow is positive.

In contrast, during expiration the volume decreases, which generates negative flow

values. Usually, the flow signal’s sign changes position to indicate the beginning and

the end of breathing cycles. Forced expiratory vital capacity and forced expiratory

volume are exceedingly useful as simple clinical pulmonary tests to study respiratory

abnormalities (Fig. 2.4).

2.1.3.1 Respiratory signal acquisition

The most common methods to acquire the respiratory flow signal are: plethysmogra-

phy, which is based on quantifying abdominal and thoracic respiratory movements,

and pneumotachography, which is based on quantifying the air that moves into and

out of the patient. Respiratory inductive plethysmography is a widely accepted

method for quantitative and qualitative noninvasive respiratory measurements. When

correctly calibrated, respiratory inductive plethysmography allows the measurement

of volume and time components of the breathing cycle, as well as the relative partic-

ipation of thorax and abdomen in this cycle [10].

A study by Strömberg [11] investigates the reliability of respiratory inductive

plethysmography compared to pneumotachography. In an analysis of the respiratory

phase that was chosen for the calibration, the authors observed that respiratory in-

ductive plethysmography underestimated lung volume at the start of inspiration and

overestimated lung volume at the end of inspiration. They found a similar tendency

during expiration.
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Figure 2.4 Forced vital capacity measurements in a healthy and with partial
airway obstruction subject (The “ zero” on the volume scale is the residual
volume), (authorized by [2]).

The most commonly used device to measure respiratory flow is the pneumotacho-

graph. In this device, the flow signal is derived from the pressure difference over a

fixed resistance. A linear relationship between pressure drop and flow is assumed to

exist, and thus Poiseuille’s law is valid in pneumotachograph measurements. Carry et

al. [12] assessed the accuracy of the respiratory inductive plethysmography waveform

by comparing it with the volume waveform obtained from the whole body plethys-
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mograph. The same comparison was carried out with the pneumotachograph as it is

currently used for breathing pattern analysis.

2.1.4 Respiratory failure or insufficiency

Respiratory failure is a syndrome of inadequate gas exchange due to the dysfunction

of one or more essential components of the respiratory system. The diagnosis and

treatment of most respiratory disorders depend heavily on understanding the basic

physiological principles of respiration and gas exchange. Some respiratory diseases

result from inadequate ventilation. Others result from abnormalities of diffusion

through the pulmonary membrane or abnormal blood transport of gases between the

lungs and the tissues. The therapy is often entirely different for these diseases, so it

is no longer satisfactory simply to diagnose “respiratory insufficiency”. Respiratory

failure can be classified into:

• Type I or hypoxemic respiratory failure: failure of oxygen exchange, the blood

oxygen saturation may fall critically.

• Type II or hypercapnic respiratory failure: failure to exchange or remove carbon

dioxide, which manifests as abnormally high carbon dioxide.

• Type III or perioperative respiratory failure: increased atelectasis due to low

functional residual capacity linked to abnormal abdominal wall mechanics. At-

electasis is defined as the lack of gas exchange within alveoli, due to alveolar

collapse or fluid consolidation.

• Type IV or respiratory failure in shock, which describes patients who are in-

tubated and ventilated in the process of resuscitation for shock. The goal of
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ventilation is to stabilize gas exchange and to unload the respiratory muscles,

thus lowering their oxygen consumption.

Respiratory failure represents a medical emergency. Health care professionals treat

respiratory failure by restoring normal function, assisting crippled function or using

devices such as mechanical ventilators to sustain gas exchange until the respiratory

system heals [2].

2.1.5 Mechanical Ventilation

Mechanical ventilation is a method to assist or replace spontaneous breathing. It is

the principal medical treatment for acute respiratory failure, and one of the most com-

monly used techniques in intensive care. Although mechanical ventilation provides

assistance for breathing when the patient’s spontaneous ventilation is not sufficient

to maintain life, it does not cure a disease. Hence, the patient’s underlying condition

should be resolved over time.

Mechanical ventilation is initiated in situations of apnea, oxygen deficiency, acute

ventilatory failure, imminent ventilatory failure, resuscitation from cardiorespiratory

arrest, under anaesthetics, in cases of drug overdose, muscular paralysis, central ner-

vous system malfunction, peripheral neuropathy, intoxications, loss of mechanical

integrity of the thorax, hydroelectrolytic imbalance, pulmonary contusion, correction

of mitral stenosis with severe pulmonary hypertension, acid aspiration and so on.

Invasive mechanical ventilation is associated with risks and complications that

prolong the duration of the procedure and increase the risk of death. Therefore,

discontinuation of mechanical ventilation should be performed as soon as possible.

The most commonly used ventilatory modes for mechanical ventilation are: con-
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trolled ventilation, assisted ventilation, assisted controlled ventilation, intermittent

mandatory ventilation, synchronized intermittent mandatory ventilation, pressure

support ventilation, high-frequency oscillatory ventilation and so on.

2.1.6 Modes of mechanical ventilation

Ventilation modes are generally classified into controlled or assisted ventilation. In

controlled ventilation, the ventilator initiates the breaths and does all the work of

breathing. In assisted ventilation, the patient initiates and terminates some or all

the breaths and the ventilator provides varying amounts of support throughout the

respiratory cycle [13]. In order to meet the specific needs of each patient, mechanical

support can be supplied by a number of ventilation modes, such as:

• Controlled ventilation (CV) is indicated primarily for patients who are unable

or not required to generate a voluntary respiratory effort. It is a time-cycling

process. The timing mechanism generates the inspiratory tidal volume breath,

independent of the patient’s respiratory effort. During this ventilation mode,

the ventilator does not allow the patient to self-generate a tidal volume breath

and assumes all the work.

• Assisted ventilation (AV) allows the patient to contribute to the ventilation,

unlike CV. It offers several advantages over controlled ventilation, since it can

reduce the need for sedation and paralysis, decrease the risk of barotrauma,

improve intrapulmonary gas distribution and prevent muscle atrophy. During

AV, ventilation is dependent on both the ventilator settings and the patient’s

ventilatory demand.
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• Assisted controlled ventilation (ACV) is a combination of the previous modes

(CV and AV). During assisted controlled ventilation, the patient receives a

predetermined mechanical respiratory rate and tidal volume, as with CV, but is

able to self-generate additional tidal volume breaths. The self-generated breaths

occur due to the negative pressure created by the patient within the ventilator

circuit.

• Intermittent mandatory ventilation (IMV) is similar to ACV, but it allows the

patient to breathe spontaneously between predetermined ventilator breaths.

The ventilator delivers a predetermined tidal volume at specific time intervals.

Moreover, patients can determine their own tidal volume and respiratory rate

during spontaneous breathing. This allows patients to slowly increase the work

of breathing and provides more independence from full ventilator support. IMV

can be used as full ventilator support with a high respiratory rate or as partial

ventilator support.

• Synchronized intermittent mandatory ventilation (SIMV) is similar to IMV.

The only difference is that the patient’s own spontaneous breathing pattern

is synchronous with the SIMV rate. During SIMV, the patient receives a pre-

determined number of mechanical ventilation breaths plus any additional self-

generated breaths. The system prevents the accumulation of breaths between

the mechanical breath and the patient’s spontaneous inspiratory tidal volume.

• Pressure support ventilation (PSV) provides pressure assistance during each

spontaneous breath. It can be used as full ventilator support or partial ventilator

support. To decrease the patient’s work of breathing, the PSV is used primarily

to overcome the airway resistance of the endotracheal tube and the dead space in
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the ventilator circuit. In addition, PSV is used as a tool for ventilator weaning,

since it requires full spontaneous respiratory effort by the patient.

• Continuous positive airway pressure (CPAP) consists of a continuous level of

elevated pressure that is provided through the patient circuit to maintain ad-

equate oxygenation and decrease the work of breathing. There is no cycle of

ventilator pressure, and the patient must initiate all breaths. Moreover, no ad-

ditional pressure above the CPAP pressure is provided during breaths. CPAP

may be used invasively through an endotracheal tube or non-invasively with a

face mask or nasal prongs.

2.2 Discontinuation of mechanical ventilation or

weaning

Weaning is usually carried out by gradually removing the mechanical support as

spontaneous breathing is resumed. It involves the entire process of liberating the

patient from mechanical support and from the endotracheal tube, including relevant

aspects of terminal care.

Weaning procedures are usually started only after the underlying disease process

that required mechanical ventilation has significantly improved or been resolved. The

patient should also have adequate gas exchange, appropriate neurological and muscle

status and stable cardiovascular function. There is still uncertainty about the best

methods for this process. The most notable methods are the T-tube trial and pressure

support ventilation.
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2.2.1 Weaning methods

Different modes of mechanical ventilation have been used in weaning. Indeed, some

modes, such as intermittent mandatory ventilation (IMV), were introduced specifi-

cally for weaning, and were then subsequently used for mechanical ventilatory sup-

port. Specifically, the ventilatory modes used for weaning include T-tube test, in-

termittent mandatory ventilation, synchronized intermittent mandatory ventilation,

pressure support ventilation, and so on [14] and [15].

T-tube test forces the patient to breathe spontaneously through a T-tube sys-

tem before the final disconnection from the ventilator. The T-tube system does not

introduce additional breathing work. Periods of spontaneous ventilation are grad-

ually lengthened, according to patient capability and endurance, until the patient

becomes free from mechanical ventilation day and night. Extubation is postponed

until successful weaning has been demonstrated. T-tube test is the simplest and most

commonly used weaning mode. Psychological preparation is essential for patients to

be weaned by this method. It is generally used in patients who have been venti-

lated for short periods, since some patients poorly tolerate the change from ventilator

support to complete spontaneous breathing.

Intermittent mandatory ventilation is the first alternative to a T-tube trial to

wean patients off the ventilator. It allows spontaneous breathing between the manda-

tory ventilator-delivered breaths, which enables the respiratory muscles to exercise.

It involves a gradual reduction in the amount of support provided by the ventila-

tor and a progressive increase in the amount of respiratory work performed by the

patient. There is no disconnection from the ventilator and all the monitoring and

alarm functions of the ventilator are retained. This method avoids the drastic change
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from continuous mechanical ventilation to spontaneous breathing. Ventilator deliv-

ered breathing is progressively reduced as the patient’s respiratory function improves.

The patient is then weaned to spontaneous breathing by a T-tube or a CPAP circuit

when the IMV ventilator’s breath rate is as low as 2-4 breaths/min. In synchro-

nized intermittent mandatory ventilation, the mechanical breaths are provided by

assisted ventilation. If no breath is generated within a predetermined time period, a

mandatory ventilator breath is automatically delivered.

Pressure support ventilation is the most commonly used weaning method. It

provides constant, preset airway pressure at the start of inspiration. Pressure support

stops after a given fraction of inspiratory time or when inspiratory flow falls below

a predetermined fraction of the initial inspiratory flow. Expiration is passive. The

pressure support level is gradually decreased as the patient improves, but the volume

is not controlled. This method also allows a gradual transition from mechanical to

spontaneous ventilation. Low levels of PSV (e.g. 5-10 cm H2O) increase spontaneous

tidal volumes and help to reduce inspiratory work from circuit impedance. High levels

of PSV (e.g. 20 cm H2O) are analogous to using the assisted ventilation mode in a

pressure cycled ventilator, and will result in variable tidal volumes in a patient with

unstable respiratory mechanics. When the required PSV is less than 2-3 cm H2O,

the patient is usually changed to spontaneous breathing by a T-tube system.

2.2.2 Weaning indices

In the assessment of extubation readiness, a number of indices have been defined to

determine whether a patient is able to come off the ventilator. Some of the objective

indices include: (a) ratio between arterial oxygen saturation and inspiratory oxygen

fraction (PaO2/FiO2) >150-200 mmHg; (b) level of positive end expiratory pressure
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(PEEP ) between 5-8 cm H2O; (c) FiO2 <50%; (d) pH >7.25; and (e) ability to

initiate spontaneous breaths. Some of the subjective indices include: (a) hemody-

namic stability; (b) absence of active myocardial ischemia; (c) absence of clinically

significant, vasopressor-requiring hypotension; (d) appropriate neurological examina-

tion; (e) improving or normal chest radiogram; and (f) adequate muscle strength that

enables the patient to initiate and sustain respiratory effort [16].

To determine which weaning parameters are clinically useful for evaluating a pa-

tient’s ability to breathe without mechanical ventilation, some studies have generated

a set of evidence-based clinical practice guidelines on managing the ventilator weaning

process and extubation [17]. Meade et al. [18] analysed the performance of various

clinical measurements as predictors of successful extubation. They then drew up a

list of several useful weaning and extubation indices that are widely used today (Ta-

ble 2.2). Despite the high sensitivity (78% to 100%) of these indices, the specificity

is very low (11% to 36%). This low specificity contributes to preventing weaning and

extubation in a certain percentage of patients who are otherwise able to breathec in-

dependently.
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Table 2.2 Commonly used clinical parameters that predict successful wean-
ing from mechanical ventilation

Parameter Desired value

Respiratory rate (f) Less than 30-38 breaths/min

Tidal volume (VT ) 4-6 ml/kg

Minute ventilation (V̇E) 10-15 l/min

Negative inspiratory force (NIF ) -20 to -30 cm H2O

Maximal inspiratory pressure (Pmax) -15 to -30 cm H2O

Mouth occlusion pressure 100 ms after the onset 0.3
of inspiratory effort (P0.1) divided by Pmax

Rapid shallow breathing index (RSBI) 60-105 breaths/min · l
(respiratory rate divided by tidal volume, f/VT )

Rapid shallow breathing index rate Less than 20%
[(RSBI2 - RSBI1)/RSBI1] · 100

CROP score (index including compliance, 13
rate, oxygenation and pressure)

2.2.3 Weaning versus extubation risks

Weaning procedures are usually started only after the underlying disease process that

necessitated mechanical ventilation has significantly improved or is resolved. During

the weaning process, mechanically ventilated patients are liberated from the ven-

tilator. Weaning and extubation are two separate processes. Extubation failure is

defined as the inability to sustain spontaneous breathing after removal of the artificial

airway, which may be an endotracheal tube or a tracheostomy tube, and the need for
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reintubation within a specified time period of 24-72 hours or up to 7 days. Weaning

predictors and outcomes have been extensively described in the literature. However,

most of them do not accurately predict extubation results. Intensive care units (ICU)

aim to predict extubation failure, since both delayed and failed extubation have detri-

mental consequences, including prolonged mechanical ventilation, a longer ICU stay,

a need for tracheostomy, higher treatment costs and greater mortality [19] and [20].

According to a study carried out by Kulkarni [5], the incidence of extubation fail-

ure varies between 6 and 47%. Patients who needed reintubation required mechanical

ventilation for significantly longer, had longer ICU and hospital stays and greater mor-

tality. The reported [19] and [21] mortality rates in patients with extubation failure

vary between 30 and 40%.

As stated by Kulkarni [5], deconditioned muscles, poor nutrition, upper airway

edema due to prolonged translaryngeal intubation, an inability to clear secretions, a

decreased level of consciousness due to the persistent effects of sedative and analgesics

and critical illness polyneuropathy can all lead to extubation failure.

Several hypotheses attempt to explain the increased mortality associated with

failed extubation. The first hypothesis is that increased mortality after extubation

failure may reflect a sicker group of patients, in which failed extubation acts as an

additional marker of severity of illness. A second hypothesis is that reintubation

itself might increase mortality, as it is an invasive procedure. This may be due to life-

threatening events during reintubation, such as cardiac arrest, esophageal intubation,

endobronchial intubation, aspiration of gastric contents and cardiac arrhythmias. In

addition, patients who required reintubation were found to be more likely to develop

nosocomial pneumonia (47% vs. 10%) with increased mortality. However, if reintu-

bation itself causes mortality, then mortality should not vary for different causes of
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extubation failure.

Esteban and colleagues [22] found lower mortality for patients who were reintu-

bated for upper airway obstruction than those reintubated for respiratory failure (7%

vs. 30%). This is because reintubation for upper airway obstruction rapidly corrects

respiratory dysfunction; whereas organ dysfunction that is related to other causes of

extubation failure may not be readily reversible.

The third hypothesis is that clinical deterioration occurs during spontaneous

breathing with the development of new organ dysfunction, thereby increasing mortal-

ity. This may partly explain the relationship between the cause of extubation failure

and the outcome. This hypothesis is further supported by the increase in mortality

with increasing time between extubation and reintubation, independent of the eti-

ology of the extubation failure. Mortality due to respiratory failure increased four

times when reintubation occurred >12 h after extubation.

Another similar hypothesis assumes that there is a relationship between delay in

reintubation and increased mortality. This delay allows progressive clinical deterio-

ration in the patient’s condition, which leads to organ dysfunction/failure.

2.2.4 Recommended weaning

2.2.4.1 Weaning process

Tobin proposed [23] six stages in the process of care, from intubation and initiation

of mechanical ventilation through to the initiation of the weaning effort and the

final liberation from mechanical ventilation and successful extubation. These stages

consist in:

• The treatment of acute respiratory failure.



28 Chapter 2 Weaning and chronic heart failure

• The clinician suspects that weaning may be possible.

• The clinician actually initiates a process of daily tests of readiness to wean so

as to confirm this suspicion.

• The spontaneous breathing trial (SBT) is performed when the results of the

daily test confirm a high enough probability of passing the SBT , which is

defined as a T-tube test or low-level pressure support (≤8 cm H2O).

• Extubation or removal of the endotracheal tube, if the SBT is successful.

• Reintubation with an endotracheal tube if the patient is unable to maintain

spontaneous breathing.

2.2.4.2 Spontaneous breathing trial, SBT

Some reports claim that the best method to assess whether a patient is able to

breathe on his/her own is to perform a trial of spontaneous ventilation. Numerous

studies [15], [22], [24] and [25] have shown that 60-80% of mechanically ventilated

patients can be successfully extubated after passing a spontaneous breathing trial

(SBT). The best technique for such trials is not yet clear.

SBT that compared the use of continuous positive airway pressure of 5 cm H2O

with a T-tube test for one hour revealed no difference in the percentage of patients who

failed extubation. In a study carried out by the Spanish Lung Failure Collaborative

Group, no differences were observed in the percentage of patients who remained

extubated 48 hours after trials of spontaneous breathing with either T-tube test or

pressure support ventilation of 7 cm H2O. In the case of the T-tube, 63% of patients

were successfully extubated, compared to 70% in the pressure support group. In
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addition, when SBT trials of 30 minutes were compared with those of 120 minutes,

no differences were found in the rate of successful extubation (84% vs. 89%) between

the members of the two study groups [22] who tolerated the SBT.

2.2.4.3 SBT readiness

According to the above information, the weaning process should start with an assess-

ment of readiness for weaning, which should be followed by SBT as a diagnostic test

to determine the probability of successful extubation. However, a literature review

indicates that the criteria for assessing readiness to wean a patient are not clearly

defined. According to the Consensus Conference on Intensive Care Medicine [1], a

patient who is ready to be weaned should meet the requirements reported in Table 2.3.
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Table 2.3 Considerations for assessing readiness to wean [1]

Clinical assessment

Adequate cough

Absence of excessive tracheobronchial secretion

Resolution of acute disease phase for which the
patient was intubated

Objective measurements

Clinical stability

Stable cardiovascular status (i.e. fC ≤ 140 beats/min,
systolic BP 90−160 mmHg, no or minimal vasopressors)
Stable metabolic status

Adequate oxygenation

SaO2 >90% on ≤FIO2 0.4 (or PaO2/FIO2 ≥150 mmHg)
PEEP ≤8 cm H2O

Adequate pulmonary function

fR ≤35 breaths/min
Pmax ≤-20 to -25 cm H2O

VT >5 ml/kg
V C >10 ml/kg
f/VT <105 breaths/min · l
No significant respiratory acidosis

Adequate mental state

No sedation or adequate mental state under sedation
(or stable neurologic patient)

fC : cardiac frequency; BP : blood pressure; SaO2: arterial oxygen saturation; FIO2: inspiratory

oxygen fraction; PaO2: arterial oxygen tension; PEEP : positive end expiratory pressure; f :

respiratory frequency; Pmax: maximal inspiratory pressure; VT : tidal volume; V C: vital capacity.

1 mmHg = 0.133 kPa
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2.2.4.4 SBT failure

Weaning success is defined as extubation and the absence of ventilatory support 48

hours after extubation. Weaning failure is defined as a failed SBT or reintubation

of the endotracheal tube for reinstitution of ventilatory support after a successful

extubation or death within 48 hours after extubation.

Numerous studies [15], [26], [22], [24] and [27] have demonstrated that approx-

imately 13% to 25% of patients who successfully pass the SBT and are extubated

require reintubation. In patients who do not receive an SBT and are extubated,

the failure rate is 40%. The criteria used to pass SBT include respiratory pattern,

adequate gas exchange, hemodynamic stability and subject comfort.

As recommended by consensus [1], when patients fail an initial SBT, the clinician

should repeat the SBT frequently (daily) to determine the earliest time at which the

patient can be successfully extubated. The criteria for SBT failure are defined in

Table 2.4.

2.2.4.5 Extubation

Extubation failure can occur for reasons that are not directly related to weaning

failure. In addition to a successful SBT, several important factors have to be carefully

considered prior to extubation, including the presence of a patent airway, the patient’s

ability to consistently protect the airway, the patient’s ability to clear secretions,

mental status compatible with maintenance of the airway, secretion clearance and

absence of any other reasons for potential extubation failure (e.g. severe pain that

prevents adequate respiratory function, presence of apnea, poorly controlled seizures,

risk of massive upper gastrointestinal bleeding, etc.) [16].
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Table 2.4 Failure parameters of spontaneous breathing trials [1]

Clinical assessment and subjective indices

Agitation and anxiety

Depressed mental status

Diaphoresis

Cyanosis

Evidence of increasing effort

Increased accessory muscle activity
Facial signs of distress
Dyspnoea

Objective measurements

PaO2 ≤50-60 mmHg on FIO2 ≥0.5 or SaO2<90%

PaCO2 >50 mmHg or an increase in PaCO2 >8 mmHg

pH <7.32 or a decrease in pH ≥0.07 pH units

f/VT >105 breaths/min

f >35 breaths/min or increased by ≥50%

fC >140 beats/min or increased by ≥20%

Systolic BP >180 mmHg or increased by ≥20%

Systolic BP <90 mmHg

Cardiac arrhythmias

PaO2: arterial oxygen tension; FIO2: inspiratory oxygen fraction; SaO2: arterial oxygen

saturation; PaCO2: arterial carbon dioxide tension; f : respiratory frequency; VT : tidal volume;

fC : cardiac frequency; BP : blood pressure. 1 mmHg = 0.133 kPa.
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Extubation failure is defined mainly by the clinical criteria shown in Table 2.5.

Table 2.5 Criteria for extubation failure [1]

f >25 breaths/min for 2 hours

fC >140 beats/min or sustained increase or decrease of >20%

Clinical signs of respiratory muscle fatigue or increased work of breathing

SaO2 <90%; PaO2 <80 mmHg on FIO2 ≥0.50

Hypercapnia (PaCO2 >45 mmHg or 20% from pre-extubation), pH <7.33

f : respiratory frequency; fC : cardiac frequency; SaO2: arterial oxygen saturation; PaO2: arterial

oxygen tension; FIO2: inspiratory oxygen fraction; PaCO2: arterial carbon dioxide tension. 1

mmHg = 0.133 kPa.

2.3 Weaning readiness prediction by means of sig-

nal processing

The number of patients who perform a successful SBT but have to be reintubated in

less than 48 hours is still below 25% for different populations. The management of

these patients is particularly difficult, largely because of our limited understanding

of the pathophysiological mechanisms that are responsible for weaning failure [17].

The maintenance of unnecessary ventilator support carries its own burden of risk

of infection and other complications and increases hospital costs. Therefore, critical-

care clinicians must carefully assess the benefits of prompt liberation from mechanical

ventilation, against the risks of a premature test of spontaneous breathing and extu-

bation [28].
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Since weaning indicator selection and threshold setting for these descriptors may

vary according to clinicians’ perceptions, we studied objective indices that were ex-

tracted from temporal data by signal processing. These indices might help clinicians

in their decisions to increase or decrease the level of respiratory support [25]. They

may minimize incorrect decisions and inter/intra expert variability.

Numerous studies have been carried out to detect which physiological variables

can identify readiness to undertake a weaning trial. The accuracy of a number of

variables has been assessed by statistical tests that determine whether significant

differences exist between a group of patients who underwent a successful weaning

trial, those who failed such a trial, and those who successfully passed a weaning

trial and the extubation process, but had to be reconnected because they were not

able to maintain spontaneous breathing. Most of the information collected in the

studies [29], [30], [14], [15], [31] and [26] establishes different guidelines for weaning

criteria and protocols.

Multiple signal processing methods have been used to assess weaning and the

extubation outcome. These techniques include tasks concerning the reduction of

artefacts in noisy temporal signals, the treatment of missing data, feature extraction

from temporal data, trend detection and processing techniques for multiple channel

data merging. Some of the signal processing methods that are used in the weaning

problem and their accuracy in weaning prediction are discussed in [29].

The extraction of weaning indices from a set of potentially informative temporal

data is the first step in distinguishing between patients who can maintain spontaneous

breathing, those unable to do so, and those who can maintain spontaneous breathing

for 30 minutes, but not for more than 48 hours. We link weaning indices to physi-

ological parameters that appear to be potential candidates for predicting whether a
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weaning process will be successful or a failure.

A number of factors may influence weaning prediction, such as weaning indices,

extubation criteria, days of mechanical ventilation before weaning, different clinical

procedures, differences between patient populations and even the etiology of the res-

piratory failure [26], [32], [33] and [34]. Although some weaning indices appear to be

useful in many studies, there is no one criterion available for all population groups [29].

Thus, indicators for accurate prediction are still under research.

2.3.1 Linear methods

One simple way of analysing the data is by applying descriptive statistics (means and

dispersion measures) to the dataset. From a physiological perspective, these methods

are easy to interpret, but they do not yield information on the system dynamics.

Analyses of respiratory function are commonly performed in terms of inspiration

and expiration time series, which are often referred to as breathing pattern vari-

ables [35]. Inspiratory time (TI), expiratory time (TE), breath duration (TTot), tidal

volume (VT ), fractional inspiratory time (TI/TTot), mean inspiratory flow (VT /TI)

and frequency-tidal volume ratio (f/VT ), where f is the respiratory frequency, are

some of the time series that are studied [36] and [37].

Traditional linear analysis time series methods measure the strength of oscilla-

tions within a specific frequency range. A number of time-frequency methods are

used to extract useful information from the temporal data. The Fourier transform is

generally used to study the frequency components of the signal. The signals can be

represented by autoregressive models which permit better frequency resolution of the

spectrum [38] and [39]. Complex mixed models have been developed to model the

respiratory system [40]. Short-time Fourier transform, wavelet analysis and adaptive
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parametric models have been analysed, which permit the study of signals simulta-

neously in the time and frequency domain, with limited resolution [41] and [42].

Although quadratic energy distributions might improve both the time and frequency

resolution, they are computationally very expensive and sensitive to artefacts. One

review examines the time-frequency methods used in biomedical engineering. It pro-

vides objective criteria that might help to choose the correct analysis technique for a

particular type of signal [43].

2.3.2 Nonlinear methods

Respiratory signal variations have traditionally been treated as uncorrelated noise

superimposed on the output of the respiratory signal. Descriptive statistics have

been used to quantify the effect of this type of noise. Averaging over many breathing

cycles is carried out prior to the estimation of these parameters. However, it has

been reported that variability in the breathing pattern is not only an artefact of bio-

logical noise, but also an integral component of respiratory control mechanisms [44].

Therefore, several analyses of weaning outcome assessment are based on the study of

respiratory pattern variability [34], [40] and [45] and its influence on weaning outcome

[33] and [32].

It is difficult to determine whether respiratory variability is random or determin-

istic, since random types create significant obstacles in the analysis of deterministic

ones and vice versa. Certain physiological failures are represented by a specific type

of variability. Thus, it may be useful to separate each of these types. As it is not

easy to isolate each type of variability, integrated measurements that reflect the total

complexity of a biological signal have been proposed [44] and [29].

Numerous nonlinear complexity assessment techniques have been used in the liter-
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ature as weaning descriptors or for breathing pattern variability analysis. Some com-

plexity metrics, including approximate entropy (ApEn) sample entropy (SampEn)

and cross-entropies derived from ApEn and SampEn, have been studied for the wean-

ing readiness decision in [33], [46] and [47]. Kolmogorov entropy was used in [48] to

conclude that the spontaneous breathing pattern during minimal mechanical venti-

latory support is more chaotic in patients who fail extubation trials than in patients

who pass such trials. Poincaré and phase plots with some automatic parameter ex-

traction were used for weaning prediction in [48] and [32]. A huge number of data

samples is needed for other nonlinear methods, such as correlation dimension and

fractals. Symbolic dynamics and Lempel-Ziv entropy evaluate the complexity of the

data from codified versions of the signal [49].

The aim of these nonlinear signal processing techniques is to extract variability

information from certain measured variables and to assess the potential usefulness of

this variability in predictions of the weaning outcome.

2.3.3 Multidimensional

Although most of the studies on postoperative patients showed that those who failed

an extubation trial had more irregular patterns than those who passed the trial [33], [29]

and [50], Bien et al. [32] found the opposite behaviour for postoperative patients re-

covering from systemic inflammatory response syndrome. The performance obtained

with a one-dimensional variability based feature may be controversial in real clinical

practice. However, when pattern variability is the only predictor, inconsistency arises

between different patient groups. This inconsistency suggests that pattern variability

should be combined with other potential predictors to improve the results of decisions

in heterogeneous intensive care unit environments. Recent studies have demonstrated
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that breathing pattern variability is a useful extubation readiness indicator, and that

performance improves when multiple respiratory signals are processed together [50].

Hsu et al. [51] combined several classical predictors with categorical variables that

took into account clinical issues. Twenty-seven variables in total were recorded. How-

ever, only 8 variables that reached a significant level were used for the support vector

machine (SVM) classification after logistic regression analysis. The result showed that

the successful prediction rate was as high as 81.5%. Hence, this method outperformed

a recently published predictor (78.6%) that used a combination of sample entropy of

three variables: inspiratory tidal volume, expiratory tidal volume, and respiration

rate.

The multidimensional classification scheme proposed in [52] was constructed using

sample entropy as the best performing extraction method. It was calculated over tidal

volume signals, with mean respiratory rates as additional input patterns, to generate a

two-dimensional Bayesian classifier with principal component analysis selection. The

classification rate (78.6%) and misclassification probability (21.4%) is acceptable if

compared with the performance of single feature classifiers.

Giraldo et al. [36] and [37] presented two proposals to predict readiness for ex-

tubation. Both studies were based on eight features of seven time series that were

extracted from respiratory signals (TI , TE , TTot, VT , TI/TTot, VT /TI and f/VT ) and

selected from an initial set of 35 features. Feature extraction was performed by mov-

ing a running window of several breathing cycles for each of the seven time series.

Five statistics (mean, standard deviation, skewness, kurtosis, and interquartile range)

were calculated for each window, which yielded 35 new time series. To obtain the

most representative values of the time series, a clustering method based on k-means

was applied. The time-varying statistics of the breathing pattern were clustered to
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represent the most general trend for each patient. Therefore, each patient was rep-

resented by a 35-component feature vector (the centroid of the main cluster), whose

final dimension was reduced to 8 after selection. The final classification was per-

formed by either a multilayer perceptron [37] (84.25% of correctly classified patients)

or an SVM classifier together with histogram equalization [36] (80%). The results are

slightly better than previously reported, and the proposed feature extraction allows

for nonstationary signal processing.

2.4 Cardiovascular system

As stated by Guyton [2], the function of the cardiovascular system is, in general, to

maintain an appropriate environment in all the tissue fluids of the body for optimal

cell function and survival. This is achieved by transporting nutrients to the body

tissues and waste products away, and by conducting hormones from one part of the

body to another. The rate of blood flow through most tissues is controlled, in response

to the tissue’s need for nutrients. In turn, the heart and circulation are controlled to

provide the cardiac output and arterial pressure required to ensure the tissue blood

flow. The heart, one of the main organs of the cardiovascular system, (Fig. 2.5) is

actually two separate pumps: a right heart that pumps blood through the lungs, and

a left heart that pumps blood through the peripheral organs. Each of these pumps

is composed of an atrium and a ventricle. Each atrium is a weak primer pump that

helps to move blood into the ventricle. The ventricles then supply the main pumping

force that propels the blood either through the pulmonary circulation by the right

ventricle or through the peripheral circulation by the left ventricle [2].
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Figure 2.5 Heart muscle (authorized by [2]).

2.4.1 Cardiac function: electrocardiogram

The electrocardiogram represents the electrical activity of the heart. As shown in

Fig. 2.6, a normal electrocardiogram is composed of a P wave, a QRS complex and a

T wave. The QRS complex is usually formed by three separate waves: the Q wave,

the R wave and the S wave.
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Figure 2.6 A normal electrocardiogram composed of a P wave, a QRS
complex and a T wave (authorized by [2]).

Normal electrocardiogram

The electrocardiogram is composed of depolarization and repolarization waves. Both

the P wave and the components of the QRS complex are depolarization waves. The P

wave is caused by electrical potentials generated during normal atrial depolarization,

before atrial contraction begins. The QRS complex is caused by potentials generated

when the ventricles depolarize before contraction. The T wave is known as a repo-

larization wave and is caused by potentials generated as the ventricles recover from

the state of depolarization. This process normally occurs in ventricular muscle from
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0.25 to 0.35 seconds after depolarization. The time between the beginning of the P

wave and the beginning of the QRS complex, which is referred to as the P-Q interval,

normally lasts 0.16 second. The Q-T interval is the contraction of the ventricle from

the beginning of the Q wave to the end of the T wave and normally lasts 0.35 second.

The normal heart rate is 60 beats per minute.

2.4.2 Heart failure

The term heart failure simply means failure of the heart to pump enough blood to

satisfy the needs of the body. Heart failure is one of the main ailments that must

be treated by physicians. Any heart condition that reduces the ability of the heart

to pump blood produces heart failure. The most usual cause of heart failure is

decreased contractility of the myocardium, resulting from diminished coronary blood

flow. However, it can also be caused by damaged heart valves, external pressure

around the heart, vitamin B deficiency, primary heart muscle disease or any other

abnormality that makes the heart an ineffective pump. If a heart suddenly becomes

severely damaged, its pumping ability is immediately depressed, which reduces cardiac

output and increases venous pressure.

When cardiac output falls precariously low, the sympathetic nerve signals become

strongly stimulated within a few seconds, and the parasympathetic nerve signals to

the heart become reciprocally inhibited at the same time. The sympathetic reflexes

become maximally developed in about 30 seconds. Sympathetic stimulation has two

major effects on circulation: on the heart, by strengthening the damaged musculature;

and on the peripheral vasculature, by increasing venous return, which increases the

tone of most of the blood vessels.

The dynamics of circulatory changes after acute heart failure are divided into
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three stages: the instantaneous effect of the heart damage, compensation by the

sympathetic nervous system, and chronic compensation resulting from partial heart

recovery and renal retention of fluid.

The cardiac reserve is reduced in people with compensated heart failure. Hence,

any attempt to perform heavy exercise usually causes immediate return of the symp-

toms of acute failure, because the heart is not able to increase its pumping capacity

to the levels required for the exercise.

When the heart becomes severely damaged, either by sympathetic reflexes or by

fluid retention, the weakened heart pump cannot achieve normal cardiac output. We

refer to this as decompensated heart failure. In this situation, the cardiac output is

not sufficient to excrete normal quantities of fluid and it is retained. This state of

events eventually leads to death.

2.4.3 Chronic heart failure

Chronic heart failure (CHF) is an increasingly widespread, costly and deadly dis-

ease that is frequently called a twenty-first century epidemic. Despite advances in

modern treatment, the mortality rate in CHF patients remains high. Risk stratifi-

cation in patients with CHF remains one of the major challenges of contemporary

cardiology [53].

The prevalence of CHF in the US population is 2%. Almost 5 million people are af-

fected in total, and 30–40% of all patients die within one year of diagnosis [54]and [55].

Patients with chronic heart failure (CHF) often develop breathing abnormalities, in-

cluding various forms of oscillatory breathing patterns that are characterized by rises

and falls in ventilation [56] and [57]. Periodic breathing (PB) in CHF is attributed

to many factors, including: low cardiac output, which increases the time it takes pul-
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monary venous blood to reach central and peripheral chemoreceptors; low lung vol-

ume; lung congestion; increased chemoreceptor sensitivity; and the narrow difference

between eupneic carbon dioxide tension and the apneic hypoventilatory threshold [58].

Periodic breathing patterns can be classified into Cheyne–Stokes respiration (CSR),

and ventilation without apnea [59] and [60]. CSR is characterized by repetitive grad-

ual increases and subsequent gradual decreases in ventilation, followed by periods of

apnea. It occurs in patients with a variety of diseases and conditions. PB in CHF

patients has a similar increase and decrease in ventilation, but there are no periods

of apnea. Both ventilatory patterns may have the same mechanistic explanations, as

PB is a less severe form of CSR [58].

The prevalence of periodic breathing is as high as 70% in CHF patients [61] and

is associated with increased mortality [62], especially in CSR patients [63] and [64].

Accurate risk stratification is crucial to establish the prognosis and to appropriately

allocate limited resources for advanced but expensive treatments, including heart

transplantation [65]. Breathing patterns are also influenced by wakefulness or sleep,

posture, physiological activity and mental activity [66]. Physiological parameters for

the characterization and detection of different breathing patterns have been suggested

in a number of clinical studies [67] and [68].

The most relevant clinical predictors of the outcome of heart failure patients are

the New York Heart Association (NYHA) class, the left ventricular ejection fraction,

systolic arterial pressure, and the peak V O2 at cardiopulmonary exercise testing.

Other risk factors include low exercise tolerance, arrhythmias, the cardiothoracic ra-

tio and disturbances in the autonomic nervous system. These accepted risk indices

perform well in the prediction of mortality due to disease progression, but the pre-

diction of sudden cardiac death (SCD) appears more problematic. In hospitalized,
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symptomatic CHF patients at high risk of all-cause mortality, death is often due to

progressive pump failure. However, in ambulatory patients with less severe CHF,

symptoms may be less obvious and death is more often sudden in nature. The impor-

tance of being able to identify mildly symptomatic CHF patients at risk from SCD is

of paramount importance [69].

Normal breathing cycles range from 3 to 5 s (i.e. 0.20–0.33 Hz). PB patterns have

cycles of 25 to 100 s (i.e. 0.01–0.04 Hz) [66]. The origin of the PB pattern is still a

matter of debate among researchers. Respiratory modulation frequency appears to

be essential for understanding periodic and nonperiodic breathing patterns in CHF

patients.

Some of the clinical parameters that are used to estimate the severity of CHF have

limitations, due to the heterogeneity and complexity of the syndrome. For example,

exertional oscillatory ventilation, which is evaluated during exercise, is associated

with a more advanced clinical status, cardiac functional impairment and reduced

exercise capacity, and may reflect a more severe alteration of the ventilatory control

system [65].

CHF has been related to alterations in breathing pattern [70]. For example, sleep-

disordered breathing is associated with an accelerated decline in cardiac function and

increased morbidity and mortality [71] in up to 50% of patients with CHF [72]. Several

studies suggest that central sleep apnea is highly prevalent among patients with CHF,

and the treatment of this sleep-disordered breathing by continuous positive airway

pressure could be an important nonpharmacological complement to conventional drug

therapy [73] and [74]. In patients with mild to severe CHF, the power of cardiovascular

oscillations in the very low frequency band has been reported to be considerably

increased by the presence of periodic breathing, which may alter prognosis [75].
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Evidence that links exercise capacity to outcome in CHF patients has led to the use

of peak oxygen consumption, which is derived from maximal cardiopulmonary exercise

testing, and exertional oscillatory ventilation in prognostic assessment. However,

these two indices have certain limitations, due to the heterogeneity and complexity

of the syndrome [76].

Although CSR is a known sleep-related phenomenon, according to Poletti et

al. [63], central apnea and hypopnea also occur in a high percentage of CHF patients

during the daytime. Among all the risk factors for daytime CSR, the concentration

of plasma NT-proBNP is the best independent predictor of breathing abnormalities.

Daytime CSR is significantly associated with more severe clinical impairment, left

ventricular ejection fraction and functional capacity, and lower levels of resting. The

latter finding suggests that there is a common pathogenesis for daytime and noctur-

nal CSR. The absence of obstructive apneas in awake patients during the daytime

confirms that in awake states there is adequate stimulation of the dilator muscles to

maintain upper airway patency.

In a recent study, Brack et al. [77] proposed that CSR during 10% of the daytime

is an independent predictor of death, after adjusting for B-type Natriuretic Peptide

(BNP), age, and NYHA class. However, the authors only enrolled 60 patients and

employed a long-term recording device, without taking into account patient-to-patient

variations in postural changes, speech and physical daily activity.

Maestri et al. [78] studied all the main families of nonlinear methods and found

that several nonlinear indices of heart rate variability contained correlated informa-

tion, whilst others were strongly correlated with classical linear indices. Only two

nonlinear indices proved to have a prognostic value that was independent of major

clinical and functional predictors, such as symptom severity, left ventricular ejection
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fraction, peak V O2 at cardiopulmonary exercise testing, and systolic arterial pressure.

Therefore, the quantification of nonlinear properties of heart rate variability provides

important information for the risk stratification of CHF patients.

ECG parameters based on ambulatory Holter monitoring have been documented

to be independent risk predictors of total mortality and progression of heart failure.

Modern Holter monitoring serves as a valuable tool for investigating factors that may

contribute to the mechanism of sudden death. It provides complementary informa-

tion on myocardial vulnerability and the autonomic nervous system. Nevertheless,

data regarding its prognostic value in the prediction of sudden cardiac death remains

controversial and the positive predictive value of most Holter-based risk stratifiers is

low [53].

It is unlikely that one specific ECG risk predictor could be found to predict the

risk level or sudden death in a heterogeneous population of patients with chronic

heart failure. Therefore, it seems that the combination of various risk markers that

cover different information should be considered a better approach. Thus, in view

of the breathing abnormalities presented by CHF patients, we focused on extracting

information from the respiratory system.

We investigated the hypothesis that an in-depth study of the respiratory pat-

tern could improve the identification of the risk level of a particular pathological

disturbance and the compensatory response of the organism under pathophysiologi-

cal conditions. Our previous studies [38] and [39] were focused on characterizing the

frequency band that was determined by the peak of the power spectral density (PSD)

associated with the envelope of the respiratory flow signal. In [79], we expanded

considerably on the initial results obtained with this approach. We characterized the

respiratory flow signal in CHF patients and healthy subjects using the envelope. On
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the basis of autoregressive (AR) power spectral analysis of the envelope, the rele-

vant discrimination band (DB) was determined from the location of the modulation

frequency peak, and characterized by a number of spectral parameters.

It has been reported that the same patient might often present a mixture of

breathing patterns, ranging from nonperiodic breathing (without cyclic modulation

of ventilation) through to mild PB and CSR patterns [66]. Conventional spectral

analysis assumes stationarity in the signal and is therefore unable to identify pattern

changes. An approach which better accounts for such changes is the time-varying

autoregressive (TVAR) model [80].

A study of the time-varying envelope was carried out to characterize and study

dynamic changes in the respiratory flow signal in CHF patients and healthy sub-

jects. The characterization involved both spectral and temporal parameters, which

were extracted from the power spectrum of the respiratory flow envelope. The sta-

tistical distributions of these parameters accounted for the temporal evolution of the

breathing pattern [41].

To develop new quantitative parameters, our initial studies were focused on the

periodicity of the respiratory pattern through the modulation of the respiratory flow

signal. We characterized the relevant frequency band, which was determined by the

frequency peak of the power spectral density (PSD) and related to the envelope of

the respiratory flow signal [38] and [39]. Both respiratory modulation frequency and

respiratory frequency are essential to the study of periodic and nonperiodic breathing

patterns (PB and nPB, respectively).

The correlation function is probably the most widely used function in signal pro-

cessing for quantifying the similarity of two random variables. The success of this

measure depends on the assumption of Gaussian random variables, since it only con-
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siders second-order statistics. Santamaria et al. recently introduced a generalization of

the correlation function for stochastic processes, which was called correntropy [81] [82].

In [83] and [84], the respiratory flow signal in CHF patients with a PB and nPB pat-

tern is studied through correntropy to define parameters that can improve prognosis

and serve as indicators of a patient’s condition. Correntropy involves information on

higher-order statistics, which can be expected to facilitate the detection of respira-

tory nonlinearities that conventional second-order statistical techniques are unable to

identify.

2.5 Datasets

A weaning dataset is used in this research to extract indices that may help to predict

patients’ readiness to wean. Considering the breathing abnormalities presented by

chronic heart failure (CHF) patients, we analysed a dataset that includes the respira-

tion of a number of CHF patients. A dataset containing healthy subjects was used to

find differences between normal and pathological breathing patterns. These datasets

are described below.

2.5.1 Weaning dataset

Electrocardiographic (ECG) and respiratory flow signals were measured in 154 pa-

tients on weaning trials from mechanical ventilation (WEANDB database). These

patients were recorded in the Departments of Intensive Care Medicine at Santa Creu

i Sant Pau Hospital, Barcelona, Spain, and Getafe Hospital, Getafe, Spain, according

to protocols approved by local ethics committees. The patients gave their informed

consent to participate.
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Using clinical criteria based on the T-tube trial, the patients were included in

this study according to standard indices that initially determine the spontaneous

breathing test: resolution of the etiology of respiratory failure (with inspired oxygen

fraction [FiO2] ≤ 0.4, oxygen saturation [SO2] ≥ 90% and the need for positive

end-expiratory pressure [PEEP ≤ 5 cm to H2O]), hemodynamic stability (absence of

myocardium ischemia and/or heart failure, cardiac frequency ≤ 140 bpm, and stable

arterial tension with tolerance of a reduction in inotropic support), and adequate

respiratory muscle function (acceptable respiratory rate).

The patients underwent a test of spontaneous breathing, in which they were dis-

connected from the ventilator and maintained spontaneous breathing through an

endotracheal tube for 30 minutes. Patients who were able to maintain spontaneous

breathing were extubated, whereas patients who were not able to breathe sponta-

neously were reconnected. When the patients were still able to maintain spontaneous

breathing after 48 hours, the weaning trial process was considered successful. If not,

the patients were reintubated (Fig. 2.7).

Figure 2.7 Weaning trial process.

Patients included in the study were classified into three groups according to spon-

taneous breathing test outcome: GS, 94 patients (61 male, 33 female, 65 ±17 years)
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with successful trials who could maintain spontaneous breathing after 48 hours; GF ,

39 patients (24 male, 15 female, 67 ± 15 years) who failed to maintain spontaneous

breathing and were reconnected after 30 minutes of weaning trials; GR, 21 patients

(11 male, 10 female, 68 ± 14 years) who successfully passed the weaning trials but

had to be reintubated in less than 48 hours.

The ECG signal was obtained using a SpaceLabs Medical monitor. The respira-

tory flow signal was recorded using a pneumotachograph connected to an endotracheal

tube. The pneumotachograph consists of a Datex-Ohmeda monitor with a variable-

reluctance transducer (Validyne Model MP45-1-871). Both signals were recorded

synchronously with a sampling frequency of 250 Hz for 30 minutes. The time se-

ries of the cardiac interbeat interval, RR(k1), were extracted automatically from the

ECG signal using an algorithm based on wavelet analysis [42]. Ectopic beats were

determined, removed and interpolated using an algorithm based on local variance

estimation. The time series of the breath duration, TTot(k2), were extracted auto-

matically using an algorithm based on the zero-crossing of the respiratory flow signal.

Thereafter, they were visually inspected and edited, if necessary.

2.5.2 Chronic heart failure dataset

Respiratory flow signals were recorded from 26 CHF patients (7 female, 65±9 years,

19.6±3.4 breaths/min) at Santa Creu i Sant Pau Hospital, Barcelona, Spain. All

patients were studied according to a protocol approved by the local ethics committee.

The respiratory flow signals were acquired using a pneumotachograph, consisting of

a Datex-Ohmeda monitor with a Validyne Model MP45-1-871 variable-reluctance

transducer. The pneumotachograph was connected to a mask. The signals were

recorded at 250-Hz sampling rate and 12-bit resolution.
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The same patient might present a mixture of breathing patterns, ranging from

nonperiodic breathing (without cyclic modulation of ventilation) through to mild PB

and CSR patterns. The respiratory flow signals of CHF patients were acquired during

a check-up. Prior to data acquisition, a few minutes of adaptation were allowed, to en-

able the subjects to feel comfortable with the mask. The respiratory flow signals were

acquired for 15 minutes. All patients were seated and remained awake throughout

the data acquisition.

The classification of the CHF patients (PB, nPB and CSR) was undertaken by

medical doctors at the Santa Creu i Sant Pau Hospital, Barcelona, Spain. The CHF

patients were classified into two groups: 8 patients with PB patterns (1 female, 71±7

years, 18.4±2.2 breaths/min), and 18 patients with nonperiodic breathing (nPB)

pattern (5 female, 62±9 years, 22.5±4.3 breaths/min). Within the PB group, 3

patients were classified as CSR (1 female, 68±6 years, 21.7±4.2 breaths/min) and 5

patients as PB without apnea (no females, 73±8 years, 23.0±4.7 breaths/min).

For the 26 subjects, the respiratory frequency was found to range from 0.2 to

0.4 Hz, and the modulation frequency from 0.01 to 0.04 Hz. These frequency ranges

are in good agreement with those reported by Pinna et al. [66].

The flow signals were decimated from 250 to 2 Hz, using null-phase antialiasing

filtering to account for the fact that the frequencies of interest only range up to about

0.5 Hz. It is particularly important to avoid oversampling when the AR spectral

analysis is carried out [85].

CHF patients presented 19.6±3.4 breaths/min respiratory frequency and 0.95±0.26

l tidal volume in the nPB group, 19.42±3.16 breaths/min respiratory frequency and

1.66±0.48 l tidal volume in the PB group, and within the PB group, 18.11±1.86

breaths/min respiratory frequency and 1.76±0.59 l tidal volume in the periodic breath-
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ing without apnea group, and 21.60±4.07 breaths/min respiratory frequency and

1.49±0.20 l tidal volume in the CSR group.

2.5.3 Healthy dataset

Respiratory flow signals were recorded from 35 healthy volunteers (23 female, 27±7

years, respiratory frequency 15.5±3.7 breaths/min) at Santa Creu i Sant Pau Hos-

pital, Barcelona, Spain. All subjects were studied according to a protocol approved

by the local ethics committee. The respiratory flow signals were acquired using a

pneumotachograph, consisting of a Datex-Ohmeda monitor with a Validyne Model

MP45-1-871 variable-reluctance transducer. The pneumotachograph was connected

to a mask. The signals were recorded at 250-Hz sampling rate and 12-bit resolution.

Prior to data acquisition, a few minutes of adaptation were allowed to ensure that

the subjects felt comfortable with the mask. Respiratory flow signals were acquired

for 30 minutes. All subjects were seated and remained awake throughout the data

acquisition.

For the 35 subjects, the respiratory frequency was found to range from 0.2 to

0.4 Hz, and the modulation frequency from 0.01 to 0.04 Hz. These frequency ranges

are in good agreement with those reported by Pinna et al. [66].

The flow signals were decimated from 250 to 2 Hz, using null-phase antialiasing

filtering to account for the fact that the frequencies of interest only range up to about

0.5 Hz. It is particularly important to avoid oversampling when AR spectral analysis

is performed [85].

Healthy patients presented 15.5±3.7 breaths/min respiratory frequency and 0.49±

0.26 l tidal volume.
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Fig. 2.8 illustrates the different flow patterns observed in CSR, PB and nPB

patients, and a healthy subject.

Figure 2.8 The respiratory flow signal exemplified for (a) a Cheyne-Stokes
respiration patient, (b) a periodic breathing patient, (c) a nonperiodic breath-
ing patient, and (d) a healthy subject.

2.6 Summary

The respiratory system is one of the vital systems for sustaining life. Its function is

to allow gas exchange through all parts of the body.
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Breathing is the result of periodic contractions and expansions of the thoracic cav-

ity, which creates inspiration and expiration. Static and dynamic pulmonary volume

and capacity measurements are described, which can be used to control the correct

performance of the respiratory system. Both respiratory volume and flow signal repre-

sent the circulating air volume in a subject’ airway. The most commonly used device

for measuring respiratory flow is the pneumotachograph.

Respiratory failure is a dysfunction of the respiratory system and represents a

medical emergency. Mechanical ventilation is the main medical treatment for acute

respiratory failure, and one of the most commonly used techniques in intensive care.

Weaning involves the entire process of liberating the patient from mechanical

support and from the endotracheal tube, including relevant aspects of terminal care.

Weaning procedures are started only after the underlying disease process that required

mechanical ventilation has significantly improved or is resolved. A number of indices

have been defined to determine whether a patient can come off a ventilator.

Although much has been written about weaning predictors and outcomes, most of

the techniques do not accurately predict extubation results. Critical-care clinicians

must carefully assess the benefits of prompt liberation from mechanical ventilation

against the risks of premature tests of spontaneous breathing and extubation. Both

delayed and failed extubation have detrimental consequences. Patients who need

reintubation require mechanical ventilation for significantly longer, remain in the

intensive care unit and hospital for longer periods and have higher mortality.

A lot of research have been done on this topic, but the reintubation percentage

remains between 6% and 47% [5] for different populations. Here, we review some

of the more relevant studies that are based on predicting readiness for extubation

through signal processing.
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Chronic heart failure (CHF) is a major health problem. Despite advances in mod-

ern treatment, the mortality rate of CHF patients remains high. Risk stratification in

patients with CHF remains one of the major challenges of contemporary cardiology.

Patients with CHF often develop breathing abnormalities, including various forms

of oscillatory breathing patterns that are characterized by rises and falls in ventila-

tion. The prevalence of periodic breathing in CHF patients is as high as 70%, and is

associated with increased mortality, especially in patients with Cheyne-Stokes respi-

ration.

A number of indices have been proposed in the literature to predict the condition

of CHF patients, but many of them are correlated with clinical indices (no information

is added), and tend to have low sensitivities.

To help clinical doctors in the diagnosis of patients, in this research we analyse

the respiratory system of patients with different pathologies in depth. Specifically,

we study patients on weaning trials and patients with chronic heart failure. For this

purpose, we have used datasets that include patients on weaning trials, CHF patients

and healthy subjects.



Chapter 3

Pattern recognition techniques

The objective of this chapter is to summarize and compare some of the well-known

techniques that are used in a pattern recognition system. The design of a recognition

system requires careful attention to the following issues: pattern class definition, the

sensing environment, pattern representation, feature extraction and selection, cluster

analysis, classifier design and learning, selection of training and test samples, and

performance evaluation. Among the various frameworks in which pattern recognition

has traditionally been formulated, the statistical approach has been the most inten-

sively studied and used in practice. More recently, methods imported from statistical

learning theory, such as support vector machines, have been receiving increasing at-

tention. This chapter describes support vector machines and a number of metrics

that are employed to evaluate the performance of respiratory pattern recognition.

57
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3.1 Introduction

Pattern recognition or classification is concerned with predicting the class membership

of an observation. There are a number of definitions of this topic in the literature .

For instance, according to [3], pattern recognition is the study of how machines can ob-

serve the environment, learn to distinguish patterns of interest from their background,

and make sound and reasonable decisions about the categories of the patterns. Duda

and Hart [86] defined this as the assignment of a physical object or event to one of

several pre-specified categories. According to Ripley [87], given some examples of

complex signals and the correct decisions for them, pattern recognition consists of

making decisions automatically for a stream of future samples. Schalkoff [88] defined

it as a science that is concerned with the description or classification (recognition) of

measurements.

The characterization, automatic recognition, classification and grouping of pat-

terns are important problems in a variety of engineering and scientific disciplines,

including biology, psychology, medicine, marketing, computer vision, artificial intel-

ligence and remote sensing. A pattern can be defined as the opposite of chaos. Ex-

amples of patterns include a fingerprint image, a handwritten cursive word, a human

face and a speech signal [3] and [89].

A pattern recognition system involves data acquisition and preprocessing, data

representation, and decision-making. The real challenge lies in selecting the acqui-

sition system, finding the most convenient preprocessing and characterization tech-

nique, and choosing the most suitable classifier.

The four best-known approaches for pattern recognition are based on template

matching, statistical classification, syntactic or structural matching, and neural net-
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works [3]. However, in this research we focus on statistical methods for pattern

recognition.

3.2 Statistical pattern recognition

Statistical pattern recognition has been successfully applied to a number of pattern

recognition problems. A pattern is represented by a set of L features that can be

viewed as an L-dimensional feature vector. The decision boundaries between the dif-

ferent classes are established using concepts from statistical decision theory. Fig. 3.1

shows a statistical pattern recognition model that consists of two main processes:

training or learning, and testing or classifying.

Figure 3.1 Proposed model for statistical pattern recognition (slightly mod-
ified from the model proposed by [3]).

In the preprocessing stage, the training data are prepared for accurate feature

extraction by any operation that contributes to the compact characterization of the
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pattern. In the training process, the feature extraction and feature selection stages

calculate and find the appropriate features for representing the input patterns, and

the classifier is trained to divide the feature space. The training feedback permits

optimization of the preprocessing, feature extraction and selection stages. In the

testing process, the trained classifier assigns the input pattern to one of the pattern

classes under consideration, on the basis of the selected features.

3.3 Supervised and unsupervised learning

In statistical pattern recognition, there are two modes of training: supervised learn-

ing based on labelled training data samples; and unsupervised learning based on

unlabelled training data samples.

In supervised training, the class to be recognized is known for each sample in the

training data and a decision function is deduced from the labelled training data. The

training data consist of pairs of input vectors and target outputs. When the output of

the decision function is a continuous value, the process is known as regression. When

the output predicts a class label, the process is called classification.

The aim of supervised learning is to predict the value of the decision function for

any unlabelled input, after the study of a number of training examples that consist

of pairs of input vector and target output. To achieve this, the training data must be

generalized to unlabelled data.

Unsupervised learning is closely related to the problem of density estimation in

statistics. However, it includes many other techniques that seek to determine how the

data are organized. In contrast to supervised learning, there are no explicit target

outputs associated with each input. Instead, unsupervised learning brings to bear
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prior biases as to what aspects of the structure of the input should be captured in

the output.

One form of unsupervised learning is clustering. This is a common technique for

statistical data analysis that is used in many fields, including machine learning, data

mining, pattern recognition, image analysis and bioinformatics. Cluster analysis or

clustering is the assignment of a set of observations into subsets called clusters. It

reveals the inner structure of the data, and recovers the natural grouping of the sam-

ples in the feature space. These methods are usually employed in data visualization

procedures, data distribution structure understanding or as a support algorithms for

the initialization of other more complex algorithms based on radial basis function or

fuzzy approaches.

3.4 Generalization error

The goal of designing a recognition system is to classify future test samples that

are likely to be different from the training samples. The performance of a classifier

depends on the number of available training samples and the specific values of the

samples. The optimization of a classifier to maximize its performance on the training

set may not always result in the desired performance on a test set. The generalization

ability of a classifier refers to its performance in classifying test patterns that were

not used during the training stage. Poor generalization ability can be attributed to

any one of the following factors: 1) the number of features is too large relative to

the number of training samples, 2) the number of unknown parameters associated

with the classifier is large (e.g. polynomial classifiers or a large neural network), and

3) a classifier is too intensively optimized on the training set (overtrained); this is
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analogous to the phenomenon of overfitting in regression, which occurs when there

are too many free parameters.

3.5 Classification techniques

3.5.1 K-means clustering

K-means clustering is a non-hierarchical method for cluster analysis. It fixes the

number of partitions or clusters into which the data has to be split. First, the dataset

is divided into K clusters. In the initialization, data points are randomly assigned to

the clusters in such a way that each partition has approximately the same number of

data samples. After initialization, the distance to each cluster is computed iteratively

for each data sample, and each sample is assigned to the cluster at a minimum

distance. This process is repeated until convergence. The choice of the initial partition

is essential for cluster analysis, since it can dramatically affect the final convergence

solution.

3.5.2 Discriminant analysis

Discriminant analysis is a common supervised machine learning method. The features

of discriminant functions of the predictor are estimated in the training process. These

are then used to separate the classes in the testing process. This method is useful

for determining the accuracy of a set of features at predicting class membership.

The results can be employed to reduce the complexity and/or dimensionality of a

classification problem or as a classifier itself. Of the various discriminant analysis

techniques, linear discriminant analysis (LDA) is the most frequently used classifier,
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due to its simplicity and low computational cost.

The linear discrimination function is estimated by means of a set of data samples

that are labelled into predefined classes. It is based on a set of features and is given by

f(x) =
L∑
i=1

bi ·xi+ c (3.1)

where bi and xi represent the discriminant coefficients and the input features, respec-

tively and c is a constant. This discriminant function is used to predict the class of

a new observation that has an unknown class.

In addition to linear discriminant analysis, there are a number of different dis-

criminant functions, which are defined as:

• Diagonal linear discriminant analysis (DLDA): this is similar to ‘LDA’, but

has a diagonal covariance matrix estimate (naive Bayes classifiers). It is the

maximum likelihood discriminant rule for multivariate normal class densities

when they have the same diagonal variance-covariance matrix.

• Quadratic discriminant analysis (QDA): this fits multivariate normal densities

with covariance estimates that are stratified by class (unlike LDA, there is no

assumption that the covariance of each of the classes is identical).

• Diagonal quadratic discriminant analysis (DQDA): this is similar to QDA, but

has a diagonal covariance matrix estimate (naive Bayes classifiers).

• Mahalanobis discriminant analysis (MDA): this employs Mahalanobis distances

with stratified covariance estimates.
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3.5.3 Support vector machines (SVM)

3.5.3.1 Introduction

Support vector machines (SVM) are based on the theory of statistical learning that

was introduced by Vapnik [90] in the late seventies. This theory is the basis of

many applications and important theoretical results. In fact, the main area in which

statistical learning techniques have been used is the field of pattern recognition. SVM

have been used successfully in numerous applications, for example, as medical decision

support systems that have led to significant improvements [38], [91] and [92]. This

pattern recognition technique is successful, robust, efficient and versatile. In most

cases, its generalization performance is significantly better than that of competing

methods.

Support vector machines find a decision surface, formed by a hyperplane in the

feature space, which separates the data into two classes. They are mainly based on

two assumptions. Firstly, the transformation of data into a high-dimensional space

called the feature space converts a complex classification problem into a simpler one,

which can be solved by a linear discriminant function known as a hyperplane. Sec-

ondly, SVM are based on the training data that are close to the decision surface, as

it is assumed that these data provide all the most useful information for classifica-

tion. Therefore, SVM are mainly based on mapping the data to a predetermined high

dimensional feature space via a kernel function and finding the hyperplane that max-

imizes the margin between the two classes. If data are not separable, the SVM find

the hyperplane that maximizes the margin and minimizes misclassifications. This is

achieved by allowing errors in what is known as a soft separation [93], [94].
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3.5.3.2 Technique description

Separable case

Given a set of binary labelled training data vectors X = {x1, · · · ,xL}, where xi ∈ <n,

and their corresponding labels Y = {y1, · · · ,yL}, where yi ∈ {1,−1}, and assuming

that the data are linearly separable, a hyperplane H0 separates the positive exam-

ples (yi = 1) from the negative ones (yi = −1). If xi is an arbitrary vector, we de-

fine the function as

f(x) = x ·w+ b (3.2)

where w ∈<n is the normal vector to the hyperplane and |b|/‖w‖ is the perpendicular

distance from the hyperplane to the origin. The vectors xi that lie on the hyperplane

H0 satisfy f(x) = 0. H1 and H−1 are the two hyperplanes parallel to H0, which are

defined by f(x) = 1 and f(x) = −1, respectively. The distance between the hyper-

planes H1 and H−1 is referred to as the margin and is therefore |2|/‖w‖. For the

linearly separable case, the support vector algorithm simply looks for the separating

hyperplane with the largest margin.

Thus, the goal is to find the optimal linear classifier (a hyperplane), such that it

classifies every training example correctly and maximizes the classification margin.

The above description can be formulated in the following way:

xi ·w+ b≥+1, when yi = +1 and (3.3)

xi ·w+ b≤−1, when yi =−1 (3.4)

These can be combined into one set of inequalities

yi · (xi ·w+ b)≥+1, ∀i. (3.5)
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Thus, the maximum-margin separating hyperplane H0 is obtained by minimizing

1
2 ‖w‖

2 subject to yi · (xi ·w+ b)≥+1, ∀i. (3.6)

This minimization problem is convex, therefore there is a unique global minimum

value. Only one value of w and b provides the minimum, as long as the data are

linearly separable [93] and [95]. The technique of Lagrange Multipliers is applied to

solve this problem. By replacing the constraints with constraints on the Lagrange

multipliers themselves, the data will only appear in the form of a dot product between

vectors, which is a crucial property that will allow generalization of the procedure to

the nonlinear case. The primal optimization problem is therefore expressed by

LP = 1
2 ‖w‖

2−
L∑
i=1

αi [yi ·f(xi)−1] (3.7)

where the Lagrange Multipliers verify αi ≥ 0 ∀i.

The Lagrangian LP must be minimized with respect to w, b, which implies that

its gradient must vanish.

∂

∂w
LP = 0, ∂

∂b
LP = 0, (3.8)

requiring that the gradient of LP with respect to w and b vanish to give the conditions

L∑
i=1

αiyi = 0, (3.9)

and w =
L∑
i=1

αiyixi. (3.10)
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We arrive to the dual optimization problem LD by substituting these constraints

into Eq. (3.7)

LD =
L∑
i=1

αi−
1
2

L∑
i=1

L∑
j=1

αiαjyiyjxixj . (3.11)

Note that we have now given the Lagrangian different labels (P for primal, D for

dual) to emphasize that the two formulations are different: LP and LD arise from

the same objective function but with different constraints. The solution is found by

minimizing LP or by maximizing LD.

Support vector training for the separable case maximizes LD with respect to the

Lagrange multiplier αi, subject to the restriction Eq. (3.9) and the condition of αi≥ 0

with the solution given by Eq. (3.10). There is an αi for every training point. In the

solution, the data for which

• αi ≥ 0 are called “support vectors” and lie on one of the hyperplanes H1 and

H−1.

• αi = 0 are all the other training points and lie on the side of H1 or H−1.

Therefore, the support vectors are the critical data of the training set. They lie closest

to the decision boundary. If all other training points were removed and the training

was repeated, the same separating hyperplane would be found (Fig. 3.2).
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Figure 3.2 Two-class linear classification. The support vectors (coloured
in black) provide the useful information for classification.

Non-separable case

The samples that exceed a number of standard deviations of the signal’s data are

usually considered as outliers. Some of the acquired respiratory flow signals are

affected by outliers. If we take into account the outliers in the solution, the margin of

separation decreases in such a way that the solution does not generalize as well and

the data patterns may no longer be linearly separable. To account for the presence of

outliers, we can relax the constraints and soften the decision boundaries. This can be

achieved by introducing positive slack variables ξi for each training vector [96]. The

slack variables allow violations of the margin constraints and modify the equations in

the following way

xi ·w+ b≥+1− ξi, when yi = +1 and (3.12)

xi ·w+ b≤−1 + ξi, when yi =−1. (3.13)
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Thus, whenever an error occurs, the corresponding ξi must exceed unity, so ∑i ξi

is an upper bound on the number of training errors. Hence, a natural way to assign

an extra cost for errors is to change the primal optimization function, so that it is

minimized to

1
2 ‖w‖

2 +C ·∑L
i=1 ξi subject to (3.14)

yi · (xi ·w+ b)≥+1, ∀i.

where C is referred to as the penalty parameter and is a positive regularization con-

stant that controls the degree of penalization of the slack variables ξi. When C

increases, fewer training errors are permitted, although the generalization capacity

may decrease. This convex quadratic programming problem can be solved by the

dual formulation, maximizing

LD =∑L
i=1αi− 1

2
∑L
i=1αiαjyiyjxixj subject to (3.15)

0≤ αi ≤ C and ∑L
i=1αiyi = 0.

The resulting classifier is usually called a soft margin classifier. If C =∞, no

value for ξi except 0 is allowed. This is referred to as a hard margin SVM case. The

penalty parameter has to be chosen by the user.

The optimal αi of the data that lie outside the margin area is zero. The support

vectors are training data xi, which lie on the margin boundary or inside the margin

area and have non-zero αi. The SVM uses only the support vectors to create the

hyperplane. It is assumed that these vectors provide all the relevant information for

the classification. The classification problem consists of assigning to each input vector

x one of two classes according to the following decision function:

f(x) = sign(
M∑
i=1

αi ·yi · (xi ·x) + b) (3.16)
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whereM is the number of support vectors. Since the support vectors are a small part

of the training dataset, the SVM implementation is more practical for large data sets.

Nonlinear case

In some cases, the data requires a more complex, nonlinear separation. The same

techniques as those used for linear machines are applied to generalize the above ideas

to the nonlinear case. Since it is not possible to find a linear machine in the original

space of the training set, we first map the training set to a Euclidean space with

a higher dimension (or even an infinite dimension). This higher dimensional space

is called the feature space, as opposed to the input space, which is occupied by the

training set. With an appropriately chosen feature space of sufficient dimensionality,

any consistent training set can be made separable (Fig. 3.3). However, the translation

of the training set into a higher dimensional space implies both computational and

learning-theoretic costs.

Figure 3.3 Example of transformation from a two-dimensional space to a
three-dimensional space.
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The decision function Eq. (3.16) depends only on the inner product between obser-

vations, which permits the generalization of the SVM to the nonlinear case by means

of different kernel functions. The kernel function κ, maps input data into a higher-

dimensional space called the feature space, by means of a nonlinear transformation

φ :<n→<l with l > n. If the kernel function is properly chosen, the inner product in

the feature space accomplishes κ(xi,xj) = φ(xi) ·φ(xj) and there is no need to know

the mapping function φ explicitly [97]. The kernel used in the study is a radial basis

kernel (the radial basis function, RBF), which is given by

κ(xi,xj) = exp

−1
2

(
‖xi−xj‖

σ

)2 . (3.17)

The support vectors are the centre of the RBF, and σ determines their area of

influence over the input space. The optimal hyperplane is then constructed in the

feature space, which creates nonlinear boundaries in the input space. The nonlinear

decision function has the form:

f(x) = sign

 L∑
i=1

αi ·yi ·κ(xi,x) + b

 . (3.18)

Different cost functions for positively and negatively labelled data are applied to

ensure that there are asymmetric soft margins [92]. According to the class populations

(N+ and N−), the relation between the penalty parameters (C+ and C− ) is fixed by

C+ = C− ·
N−
N+

(3.19)

The choice of the appropriate penalty parameters (C+,C−) and the kernel character-

istic parameter (σ) is essential to obtain a well tuned SVM.
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Advantages and disadvantages of support vector machines

As stated in [98], the main advantages of SVM are:

• There are no local minimums, because the solution is a quadratic optimization

problem.

• The optimal solution can be found in polynomial time.

• There are few model parameters to select: the penalty term C, the kernel

function and parameters (e.g. in the case of RBF kernels).

• The final results are stable and repeatable (e.g. no random initial weights).

• The SVM solution is sparse; it only involves the support vectors.

• SVM represent a general method for many pattern recognition problems: clas-

sification, regression, feature extraction, clustering, etc.

• SVM rely on principled learning methods.

• SVM provide a method for controlling complexity independently of dimension-

ality.

• SVM have been shown to have excellent generalization capabilities theoretically

and empirically.

The main disadvantages are:

• The choice of the kernel is crucial to the success of the SVM, since it constitutes

prior knowledge that is available about a task.

• The kernel function parameters and parameter C controls slack variables.



3.6 Performance evaluation measures 73

• High algorithmic complexity and extensive memory requirements for quadratic

programming in large-scale tasks.

• The disability of SVM to deal with non-static data (dynamic data, sequences).

• A lack of optimal design for multiclass SVM classifiers.

3.6 Performance evaluation measures

Performance evaluation is an important and challenging part of biomedical signal

processing required before any algorithm can be implemented in a clinical context.

There are several ways to evaluate the performance of supervised classification tech-

niques. Measures of the quality of classification are based on correctly and incorrectly

recognized data for each class. These measures are built from a confusion matrix

(Table 3.1), which shows a binary classification where tp are true positive, fp false

positive, tn true negative and fn false negative [99].

Table 3.1 Confusion matrix for binary classification

Recognized Recognized
Class as positive as negative

Positive tp fn

Negative fp tn

3.6.1 Accuracy

The accuracy assesses the overall effectiveness of the algorithm through

Acc= tp+ tn

tp+fp+ tn+fn
(3.20)
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Although this is the most commonly used empirical measure, it does not distinguish

between the number of correct labels of different classes.

3.6.2 Sensitivity / specificity

To develop an algorithm that accurately discriminates information obtained from

healthy subjects and patients with different condition, the performance may be eval-

uated in terms of its ability to correctly discriminate between the classes of healthy

and different condition diseased subjects. The most commonly used performance

evaluation measures for describing such discriminations are sensitivity and specificity,

which separately estimate a classifier’s performance on different classes [85].

Sensitivity = tp

tp+fn
(3.21)

Specificity = tn

fp+ tn
(3.22)

3.6.3 Precision/Recall/F-measure

The following measures focus on one of the classes. They are applied mainly when

the number of data samples belonging to one class is substantially lower than the

overall number of data samples.

Precision= tp

tp+fp
(3.23)

This estimates the predictive value of a label, which may be positive or negative,
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depending on the class for which it is calculated.

Recall = tp

tp+fn
(3.24)

Recall is the same as the sensitivity given in Eq. (3.21).

F −measure= (β2 + 1) ·Precision ·Recall
β2 ·Precision+Recall

(3.25)

This is a composite measure that favours algorithms with higher sensitivity and chal-

lenges those with higher specificity. The F -score is evenly balanced when β = 1. The

measure favours precision when β > 1, otherwise it favours recall.

The measures of Youden’s index γ and discriminant power DP combine sensitivity

and specificity and their complements. In addition, they have been used in medical

diagnoses to analyse tests [99].

3.6.4 Youden’s index and discriminant power

The avoidance of failure increases accuracy or the ability to correctly label examples.

Youden’s index evaluates the algorithm’s ability to avoid failure and gives equal weight

to its performance on positive and negative data samples.

γ = sensitivity− (1− specificity). (3.26)

Discriminant power also summarizes sensitivity and specificity, by means of

DP =
√

3
π

(logX+ logY ) (3.27)
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where X = sensitivity /(1-sensitivity) and Y= specificity / (1-specificity). DP evalu-

ates how accurately an algorithm distinguishes between both classes. The algorithm

is a poor discriminator if DP < 1, limited if DP < 2, fair if DP < 3, and good in all

other cases.

3.7 Validation methods

Some of the usual validation methods found in statistical pattern recognition are leave-

one-out cross-validation and n-fold cross-validation. Cross-validation is a technique

used to assess the performance of a learning algorithm by estimating the capacity of

a classifier to generalize for an independent data set. Mainly used in prediction, it

estimates how accurately a predictive model performs in practice. The classifier is

built only on data that are not used for evaluation (training data). The rest of the

data are employed to test the classifier (testing data). Cross-validation trades off bias

for variance, which means that it provides a better estimate in terms of bias, but with

a higher variance estimate.

In leave-one-out cross-validation, each data sample is retained in turn and the

classifier is built on the remaining samples. The class of the retained sample is then

predicted using the classifier. The classification accuracy is estimated by repeating

this process for the entire original dataset.

In n-fold cross-validation, the original dataset is randomly divided into n subsets.

A subset is retained as the validation data for testing the model, and the remaining n−

1 subsets are employed as training data. The cross-validation process is then repeated

n times (the folds), with each of the n subsets used exactly once as the validation data.

The n results from the folds are averaged to produce a single accuracy estimation.
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3.8 Feature selection

Proper feature selection is crucial for fast and accurate performance of a pattern recog-

nition system, since performance deteriorates in high dimensional spaces in which

many features are irrelevant. Thus, the dimensionality of the pattern representation

(i.e. the number of features) should be kept as small as possible. The accuracy is often

improved by reducing dimensionality and both cost and complexity are also reduced.

A small feature set simplifies both the pattern representation and the classifiers that

are built on the selected representation. Consequently, the resulting classifier will be

faster, simpler and will use less memory. However, a high reduction in the number

of features may lead to a loss in the discrimination power and thereby reduce the

accuracy of the resulting recognition system.

A number of well-known feature selection methods have been proposed in the

literature [100]. Although it might still be useful as a first step to select some indi-

vidually good features to reduce the size of very large feature sets, the simple method

of selecting just the best individual features may fail dramatically. Further selection

has to be performed by more advanced methods that take feature dependencies into

account. These methods operate either by evaluating growing feature sets (forward

selection) or by evaluating shrinking feature sets (backward selection). Sequential

forward selection selects the best single feature and then adds one feature at a time.

In combination with the selected features, this maximizes the criterion function. In

contrast, sequential backward selection starts with all the features and successively

deletes one feature at a time. The feature that is deleted is the one that contains the

least information, according to the criterion function.
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3.9 Unbalanced database: new balance metric

Despite progress in classification, problems may still occur when the training sample

or population is unbalanced. In the literature, a lot of work has been carried out to

address unbalanced classification by adjusting the class proportions [101], [102], [103]

and [104]. Efficient and effective classification is a core problem in biomedical data

mining. Most learning systems tend to assume that the training sets used for learning

are balanced. When learning is performed with unbalanced datasets, machine learning

algorithms tend to produce high predictive accuracy over the majority class, but poor

predictive accuracy over the minority class [105].

Support vector machines have been used successfully in numerous applications as

a medical decision support system [38], [91] and [92]. However, their classification

results significantly deteriorate when they have to deal with unbalanced data, in

which the number of positive and negative data items differs significantly [106]. This

problem is also reflected in the SVM-based feature selection process [107].

To measure the classification balance at each iteration, a new metric is defined as

the balance index (B), given by

B = |fpr−fnr|
fpr+fnr

(3.28)

where fpr and fnr are defined as the false positive rate and the false negative rate,

respectively [85] and [108] given by

fpr = 1
N−

∑
i∈I+

f(xi) = 1−Sp, where I+ = {i | yi =−1 & f(xi) = 1} (3.29)

fnr = 1
N+

∑
i∈I−

f(xi) = 1−Sn, where I− = {i | yi = 1 & f(xi) =−1} (3.30)
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being Sp and Sn are the specificity and sensitivity, respectively. Therefore, B is

based on the difference in misclassified data within each class. To maintain a balanced

classification outcome, aB threshold is fixed. The use of this threshold in optimization

processes like feature selection not only provides good classification but also enables

the maintenance of a minimum balanced classification error. However, as long as

the feature selection process improves the accuracy and there is a commitment to

balance, the balance index decreases.

3.10 Summary

A number of techniques have been developed in the literature for pattern recognition.

The characterization, automatic recognition, classification, and clustering of patterns

are important problems in engineering and scientific disciplines.

Statistical pattern recognition has been successfully applied to pattern recognition

and classification problems in which a pattern is represented by a set of L features

and the decision boundaries between the classes are established using concepts from

statistical decision theory. There are two modes for training in statistical pattern

recognition: supervised learning based on labelled training data samples; and unsu-

pervised learning based on unlabelled training data samples.

The accuracy of a pattern recognition systems depends directly on its generaliza-

tion ability, which refers to its performance in classifying test patterns that were not

used during the training stage. A classifier that is too intensively optimized on the

training set usually has poor generalization ability and leads to a phenomenon known

as overfitting.

A number of classification techniques are based on statistical pattern recognition.
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In this research, we focus on support vector machines, since we have used this pat-

tern recognition technique to distinguish between different pathological respiratory

patterns. The SVM are robust, efficient, versatile and, in most cases, their generaliza-

tion performance is significantly better than that of competing methods. They have

shown remarkable results in numerous applications, but their classification results

significantly deteriorate when they have to deal with unbalanced data. This problem

is also reflected in the feature selection process. Most biomedical data mining, and

particularly the clinical information acquired to help in medical diagnoses, is provided

by unbalanced structures, as in our case.

Suitable training and proper feature selection is essential for fast and accurate

performance of the SVM. To avoid the imbalance problem in both optimization pro-

cesses, a new metric called the balance index B is proposed in this chapter. A B

threshold is fixed to maintain a balanced classification outcome. The use of B leads

to good classification and the maintenance of a minimum balanced classification error.



Chapter 4

Support vector machines applied

to weaning

The objective of this chapter is to study one of the most challenging problems in

intensive care (ICU): the process of discontinuing mechanical ventilation. Extuba-

tion failure and the need for reintubation within 48 hours of extubation can cause

increased morbidity, higher costs, longer ICU and hospital stays and higher mortality.

Thus, critical-care clinicians must carefully assess the benefits of rapid liberation from

mechanical ventilation against the risks of premature trials of spontaneous breathing

and extubation. The percentage of extubation failure varies depending on the study

(25% according to Tobin [28], from 4% to 23% according to MacIntyre [17], 47%

according to Esteban et al. [109], etc). In their study, Kulkarni et al. [5] gathered

all the extubation failure percentages and stated that the incidence of failure varies

between 6 and 47%. The need for accurate prediction covers all phases of weaning:

from the initial reduction in mechanical support as patients are increasingly able to

support their own breathing, through the trials of unassisted breathing that often

81



82 Chapter 4 Support vector machines applied to weaning

precede extubation, and finally ending with extubation [18].

Various studies have been carried out to detect which physiological variables can

identify readiness to undertake a weaning trial. As a result, guidelines have been

established for weaning criteria and protocols [29], [30], [14], [15], [31] and [26]. Al-

though some weaning indices appear to be useful in many studies, there is no one

set of criteria available for all population groups [29]. Thus, research is still being

undertaken on objective indicators to predict extubation failure accurately.

The aim of the present chapter is to use support vector machines (SVM) to analyse

the differences between patients with successful weaning trials, patients with unsuc-

cessful trials, and patients who successfully pass the trial but cannot maintain spon-

taneous breathing and require the reinstitution of mechanical ventilation in less than

48 hours. For this purpose, we analyse the weaning database described in Chapter

1. The respiratory flow signal and the ECG of the patients are used to character-

ize the respiratory pattern and cardiorespiratory interactions. By the application of

methods from the field of signal processing, we aim to add objective information to

the doctor’s expertise, to reach a high enough level of reliability for the method to

act as a decision support system in respiratory treatments. This research effort aims

to exploit the capabilities of the SVM to improve prediction of the weaning outcome.

4.1 Medical application: weaning dataset

The American College of Chest Physicians, the American Association for Respiratory

Care, and the American College of Critical Care Medicine have created evidence-

based guidelines for weaning and discontinuing ventilatory support [17]. The need for

reintubation carries an 8-fold higher odds ratio for nosocomial pneumonia and a 6-fold
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to 12-fold increased mortality risk [17]. The reason for the higher mortality is still

unknown; it is not clearly related to the development of new problems after extubation

or to the complications of reinserting the tube [110]. However, the maintenance of

unnecessary ventilator support carries its own burden of patient risk for infection

and other complications. Moreover, it increases hospital costs. Nevertheless, it is

important to balance the advantages and disadvantages of removing the ventilator,

since mechanical ventilation discontinued prematurely carries its own set of problems,

including difficulty in reestablishing artificial airways and compromised gas exchange.

The duration of weaning from mechanical ventilation represents a large proportion of

the overall ventilation period. It has been estimated that as much as 42% of the time

that a medical patient spends on a mechanical ventilator is during the discontinuation

process [17].

Clinical tolerance to spontaneous breathing trials is considered poor when respi-

ratory frequency is greater than 35 breaths/min or has increased by 50% or more;

when heart rate is above 140 beats/min or has increased by 20% or more, or ar-

rhythmias have appeared; when systolic blood pressure is lower than 80 mmHg or

greater than 160 mmHg; or when patients show agitation, depressed mental status or

diaphoresis [26].

A total of 154 patients on weaning trials from mechanical ventilation underwent

a test of spontaneous breathing in the intensive care departments of the Santa Creu

i Sant Pau Hospital, Barcelona, Spain, and the Getafe Hospital, Getafe, Spain. The

patients were disconnected from the ventilator and maintained spontaneous breathing

through an endotracheal tube for 30 minutes. Patients who were able to maintain

spontaneous breathing were extubated, whereas patients who could not breathe spon-

taneously were reconnected. When patients were still able to maintain spontaneous
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breathing after 48 hours, the weaning trial process was considered successful. If not,

patients were reintubated.

The patients in the study were classified into three groups according to the spon-

taneous breathing test outcome: GS, 94 patients (61 male, 33 female, 65 ± 17 years)

with successful trials who were able to maintain spontaneous breathing after 48 hours;

GF , 39 patients (24 male, 15 female, 67 ± 15 years) who failed to maintain spon-

taneous breathing and were reconnected after 30 minutes of weaning trials; GR, 21

patients (11 male, 10 female, 68 ± 14 years) who successfully passed weaning trials,

but had to be reintubated in less than 48 hours.

Electrocardiographic (ECG) and respiratory flow signals were measured for each

patient. Both signals were recorded synchronously with a sampling frequency of

250 Hz for 30 minutes. Time series of the cardiac interbeat duration RR(k1) were

extracted automatically from the ECG signal using an algorithm based on wavelet

analysis [42]. Ectopic beats were determined, removed and interpolated using an

algorithm based on local variance estimation. Time series of the breath duration

TTot(k2) were extracted automatically using an algorithm based on zero-crossing of

the respiratory flow signal. Thereafter, they were visually inspected, and edited if

necessary.

4.2 Respiratory pattern analysis using SVM

The respiratory pattern describes the mechanical function of the pulmonary system.

One way to characterize the respiratory pattern is through the respiratory time series

that is extracted from the respiratory flow signal. One approach to finding differences

between the GS group, patients who can maintain spontaneous breathing, and the
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GF group, those who cannot, is to analyse respiratory pattern variability. An SVM-

based feature selection algorithm optimizes the feature subset for better classification.

4.2.1 Methodology

4.2.1.1 Respiratory pattern characterization

Several time series are obtained from the respiratory flow signal: inspiratory time

(TI), expiratory time (TE), breath duration (TTot), tidal volume (VT ), fractional

inspiratory time (TI/TTot), mean inspiratory flow (VT /TI) and frequency-tidal volume

ratio (f/VT ). These time series characterize the respiratory pattern.

Each one of the seven time series is processed by a running window that consists

of several consecutive breath cycles and has a width that ranges from 3 to 100. The

mean (m), standard deviation (s), kurtosis (k), skewness (Sk) and interquartile range

(I) of the value are calculated for each window. Thus, 35 new time series are obtained

for each patient. The optimal width of the running window is selected from between

3 to 100 using a Mann-Whitney test, and the best width result is 15, with p < 0.001

in all cases.

Once the window width has been selected, the data for each patient are analysed

independently by applying an algorithm based on the k-means method, which auto-

matically determines the best number of clusters for all patients. For the patients

in this study, one main cluster contains most of the patterns and has considerable

internal cohesion (low intra-cluster variance) that corresponds to more than 96% for

each group.

This result is exploited to reduce the data, so that a single pattern of 35 features is

associated with each patient. This pattern is computed as the mean value of the data
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points in the main (largest) conglomerate of the patient, using the k-means clustering

algorithm.

The patients are distributed as follows: 80% for training and 20% for testing. The

best classification result is obtained by applying leave-one-out cross-validation with

the following 8 features: s(TE), m(TTot), m(TI), m(TE), s(TTot), I(TTot), m(f/VT ),

m(TI/TTot). These features are used for the final SVM-based classification process.

4.2.1.2 Histogram equalization

A reduction in the overlap between successful and unsuccessful patients (GS and GF )

may be attained if the variances of the features are similar. However, variances cannot

always be expected to be similar. To solve this problem, we propose an equalization

of the histograms of the previously selected features, as a nonaffine normalization

process [111], [112] and [113].

Histogram equalization or cumulative distribution function (CDF) equalization

is a nonparametric method to match the CDF of some given data to a reference

distribution. The principle of this method is to find a nonlinear transformation to

reduce the mismatch of the two signals. This transformation maps the distribution

of a signal back to the distribution of the reference signal, and is defined by means of

the CDFs of the signals in the process.

The CDF is estimated by equally spaced intervals to obtain more reliable data.

Each interval x ∈ [qi, qi+1[ is represented by (xi, F (xi)), which corresponds to the

average of scores (xij) and the maximum cumulative distribution value F (xi), both

of which are calculated for each interval of the reference signal, given by

xi =
∑ki
j=1xij

ki
where F (xi) = Ki

M
(4.1)
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where xij = x ∈ [qi, qi+1[, ki is the number of data in the interval [qi, qi+1[, and Ki is

the number of data in the interval [q0, qi+1[, and M is the total number of data items.

F (xi) defines the boundaries of the intervals in the CDF that will be equalized.

These boundaries [q′i, q′i+1[ limit the interval of values that fulfil the following expres-

sion: F (qi)≤ F (y)< F (qi+1). All values of y that are in the interval [q′i, q′i+1[ will be

transformed to their corresponding xi value.

As a reference, the designed equalization takes the feature whereby the minor

classification error is obtained by the leave-one-out cross-validation process, which is

the s(TE) feature. Therefore, the CDF of this feature is the reference distribution.

4.2.2 Results

A grid search is performed to find the optimum penalty parameter, C. The minimum

C that provides the best classification error accuracy is selected (C = 15). Thus,

the cost and the generalization error are reduced. An internal n-fold cross-validation

shows that the best value of the parameter σ that is used in the kernel function is

σ = 0.5. When all 35 features are used for each patient, the average correct classi-

fication rate is 66.67%. A feature selection process is carried out to select the most

discriminative feature subset and to remove the remaining noisy features. Both the

computational cost and classification error are reduced. The histogram equalization

technique is applied to the selected features, to match their CDF to the distribution

of the most discriminative feature. This study showed a classification accuracy of

80%, a sensitivity of 86.67%, and a specificity of 73.34%.

Orthogonal projections with principal component analysis are used to visualize

the high dimensional input space data on a plane. Fig. 4.1 shows the overlapping

position of patients of GS and GF . Figs 4.2 and 4.3 show the final classification of
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the training set and test set, respectively.

Figure 4.1 Successful (GS) and unsuccessful (GF ) patients before the
classification. Orthogonal projections with principal component analysis are
used to represent the hyperspace data on a plane before the classification.

Figure 4.2 Training set of successful (GS) and unsuccessful (GF ) patients
after the classification. Appropriate feature selection and histogram equal-
ization are obtained with the training set before the final classification.
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Figure 4.3 Testing set of successful (GS) and unsuccessful (GF ) patients
after the classification. Appropriate variable selection and histogram equal-
ization are obtained with the training set before the final classification.

4.3 Cardiorespiratory interaction analysis using SVM

The assessment of autonomic control provides information about cardiophysiological

imbalances within the cardiorespiratory system. Cardiorespiratory interdependen-

cies during the weaning trials are specific aspects of dynamic autonomic functional

coordination. It is still not clear whether there are more stable functional relation-

ships between breaths and heart beats in patients with successful trials. To study

cardiorespiratory interactions in patients on weaning trials, we introduce the joint

symbolic dynamics of heart rate and respiratory dynamics. This might improve un-

derstanding of the physiological processes involved in the weaning procedure. Hence,

the study of cardiorespiratory dynamics is simplified to the description of bivariate

symbol sequences. Some detailed information is lost, but some of the invariant, robust

properties of the dynamics are kept. Univariate symbolic dynamics has been success-
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fully applied in heart rate variability analysis and respiratory pattern analysis [114].

Bivariate symbolic dynamics has provided an efficient nonlinear representation of

heart rate and systolic blood pressure interactions that offers simple physiological

interpretations [15], [115] and [49].

The aim is to use SVM to identify the best joint symbolic dynamic features for the

classification of patients with successful trials, GS; patients with unsuccessful trials,

GF ; and patients who successfully pass the trial but cannot maintain spontaneous

breathing and require the reinstitution of mechanical ventilation in less than 48 hours,

GR. Joint symbolic dynamic analysis might provide enhanced information about

cardiorespiratory interaction in patients on weaning trials.

4.3.1 Methodology

4.3.1.1 Joint symbolic dynamics

To apply joint symbolic dynamics (JSD), the values of the cardiac RR(k1) and res-

piratory TTot(k2) time series have to be synchronized [116]. The new RR(n) and

TTot(n) time series are obtained by 1-Hz synchronized sampling of the interpolated

original RR(k1) and TTot(k2) time series. If x is the bivariate sample vector of the

cardiac (c) time series RR(n) and the respiratory (r) time series TTot(n), as shown in

Eq. (4.2), then s represents a bivariate symbol vector, Eq. (4.3). This vector is gained

by transforming x using a symbol alphabet according to Eq. (4.4) and Eq. (4.5).

x=
{

[xcn,xrn]T
}
n=0,1,···

x ∈ < (4.2)

s=
{

[scn, srn]T
}
n=0,1,···

s ∈ 0,1 (4.3)
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scn = 0 : (xcn+1−xcn)≤ 0

1 : (xcn+1−xcn)> 0 (4.4)

srn = 0 : (xrn+1−xrn)≤ 0

1 : (xrn+1−xrn)> 0 (4.5)

Thus, the bivariate symbol vector consists of a= 4 symbols. Furthermore, this new

vector is fractionalized into words wk of length k. The maximum length of the words

is restricted by the occurrence probability p(wk) of each word type. Therefore, it is

indirectly restricted by the number of measured samples. There are two overlapping

symbols in consecutive words. Considering the sampling frequency and the 30-minute

recordings, the initial series contain 3600 samples and the length of the symbolic series

is N = 3598. The length of words is limited to k = 3, Eq. (4.6). This length spans

an 8 x 8 matrix Wraw (rows: c - word types of cardiac changes; columns: r - word

types of respiratory changes), which range from word type [000,000]T to [111,111]T .

Finally, 64 possible word types are obtained [116].

p(wk) = N

ak
= 3598

43 = 56.22 (4.6)

Three matricesWraw(τ) are calculated by shifting the symbol transformed cardiac

time series against the symbol-transformed respiratory time series and applying three

shift values ( τ = −2, 0 and +2 symbols).

The occurrence probability is calculated from the joint matrices W (τ) for each of

the 64 possible word types. To compare the word type distributions between different

lengths of datasets, the sum of all counted words is normalized to 1. The normalized
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probabilities of the occurrences of all single word types are computed as pn(wcr).

The sum of each row in Wraw(τ) is computed as Pn(wc) and corresponds to the

occurrence probability of each word from the cardiac time series, Eq. (4.7). The sum

of each column in Wraw(τ) is computed as Pn(wr) and corresponds to the occurrence

probability of each word from the respiratory time series, Eq. (4.8).

Pn(wc) =
∑
r
pn(wcr) where r takes values from “000” to “111” (4.7)

Pn(wr) =
∑
c
pn(wcr) where c takes values from “000” to “111” (4.8)

Therefore 92 features are proposed to discriminate the three groups of patients

(GS, GF and GR):

• Features 1 to 64: the occurrence probability of each single word type pn(wcr)

• Features 65 to 73: number of words wcr whose occurrence probability pn(wcr)

is higher than a probability threshold defined from 1% to 9%

• Features 74 to 81: the occurrence probability of each word from the cardiac

series Pn(wc)

• Features 82 to 89: the occurrence probability of each word from the respiratory

series Pn(wr)

• Feature 90: the sum of the occurrence probability of the principal diagonal

• Feature 91: the sum of the occurrence probability of the secondary diagonal

• Feature 92: Shannon entropy of the occurrence probability of cardiorespiratory

words
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4.3.1.2 Optimizing SVM feature selection

It is essential to choose the most robust features from the observed data in terms

of empirical accuracy, the general performance of classifiers and the computational

efficiency. The optimized feature selection proposed in this study depends directly on

the balance index B, which is defined in Chapter 3. This index measures the classifi-

cation balance at each iteration and permits the extraction of features that maximize

the classification accuracy and maintain a low difference between the misclassified

data in each group, in turn. The n-fold cross-validation technique is applied to all

error measures to avoid the overfitting introduced by the method.

The feature matrix (W (τ)) contains all the features. After optimized feature se-

lection, the most discriminative features are gathered in the optimized feature matrix

(WSVM ). Both the balance index (B) and any of the performance evaluation mea-

sures described in Chapter 3 are assessed for each feature. Only the features that have

a maximum performance evaluation and a B that remains below 40% are selected. If

the number of selected features is greater than 1, the feature whose B is minimum

is added to WSVM (τ) and removed from the feature matrix (W (τ)). This process is

repeated till the most discriminative features have been extracted.

The SVM’s accuracy should improve iteratively. However, in practice, beyond a

certain point the use of additional features could lead to saturation or even to a worse

performance. Therefore, we select the minimum number of features that jointly give

the best accuracy by increasing sensitivity (Sn) and specificity (Sp).

To evaluate the accuracy of the proposed balance index, we compare the accuracy

of conventional feature selection based only on a single performance evaluation mea-

sure, and the accuracy of feature selection based on the same measure combined with
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the balance index B. The evaluation measures studied in the forward feature selection

include: accuracy (Acc), sensitivity (Sn), specificity (Sp), F-measure, Youden’s index

(γ) and discriminant power (DP ). The whole process is summarized in Fig. 4.4.

Figure 4.4 Main stages of the feature selection method based on different
performance evaluation measures

4.3.2 Data analysis

Four classifications are used to evaluate accuracy in predicting the different groups

of patients:

• GS versus GF

• GS versus the rest of the patients (GF and GR)

• GR versus GS

• GR versus the rest of the patients (GS and GF )

A total of 276 features characterize each patient’s cardiorespiratory interaction

through joint symbolic dynamics, that is, 92 features for each shift value τ (−2, 0,

2). For each classification problem, SVM-based optimized feature selection is applied

to the feature matrix W (τ) and compared with the performance of stepwise linear

discriminant analysis (LDA). The most discriminative set of features that determine
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patient readiness for extubation and maintain a well-balanced classification outcome

are selected by a feature selection process based on SVM or LDA: WSVM (τ) and

WLDA(τ), respectively (Fig. 4.5).

Figure 4.5 Classification process using support vector machines (SVM) and
linear discriminant analysis (LDA).

4.3.3 Results

First, we present the statistical analysis of the time series. Then, we discuss the

results of the proposed feature selection, which is assessed by different performance

evaluation measures. Finally, we describe the results of the optimized feature selection

applied to the four classifications.

- Statistical analysis

Table 4.1 shows the mean valueMean(x), standard deviation SD(x) and interquartile

range IQR(x) of the RR(k1) and TTot(k2) series that are obtained by comparing the

GS patient group with the rest of the patients (GF and GR). The mean values of the

cardiac intervals RR(k1) and breath durations TTot(k2) present significant differences

in the classification of GS versus the rest of patients (GF and GR), whereas no
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significant differences are found in the classification of GS versus GF , GR versus GF

or versus the rest of the patients (GS and GF ).

Table 4.1 Mean(x), standard deviation SD(x) and interquartile range
IQR(x) of the interbeat durations (RR) and breath durations (TTot), and
p−value classifying group GS versus GF +GR.

GS GF +GR p−value

MeanRR [ms] 701±122 652±116 0.017

SD(RR) [ms] 72±80 62±49 n.s.

IQR(RR) [ms] 73±78 71±81 n.s.

MeanTTot [s] 2.80±0.73 2.4±0.93 0.00013

SD(TTot) [s] 0.85±0.96 0.67±0.76 n.s.

IQR(TTot) [s] 0.50±0.30 0.48±0.48 n.s.

- SVM feature selection based on different measures

After the previous grid search the appropriate SVM parameters (C+ and C−, and σ)

are in the range [50− 100] and [20− 100], respectively. The n-fold cross-validation

technique (N = 10) is applied in all cases to avoid the overfitting introduced by

the method. In the optimization process, we use various performance evaluation

measures to study the performance of feature selection, either independently or with

B. Table 4.2 displays the accuracy of the selected features in predicting GS patients

from unsuccessful GF patients.

Thus, when feature selection is applied to unbalanced datasets, the results are

unbalanced. The inclusion of the B index in the optimization progress provides a

better balance of sensitivity and specificity in all cases. As shown in Table 4.2, optimal
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Table 4.2 Accuracy (Acc), balance index (B), sensitivity (Sn), specificity
(Sp) and the number of features applied in the SVM classification for every
τ value.

SVM based on #features B Acc Sn Sp

Accuracy 7 66.4% 80.8% 56.4% 91.2%

Accuracy+B 6 18.6% 80.0% 74.4% 82.4%

F_measure 10 48.9% 79.2% 61.5% 86.8%

F_measure+B 10 26.3% 76.9% 84.6% 73.6%

DP 8 72.7% 80.0% 51.3% 92.3%

DP +B 11 36.4% 76.2% 87.2% 72.5%

Y ouden′s index 10 48.9% 79.2% 61.5% 86.8%

Y ouden′s index+B 9 26.3% 76.2% 84.6% 73.7%

feature selection is based on both the accuracy and the balance index. Hence, we focus

on optimized feature selection based on the Acc and B index throughout the study.

- B-based SVM feature selection applied to weaning

First, we evaluate accuracy in predicting GS patients and unsuccessful patients (GF ).

We apply SVM-based optimized feature selection and stepwise LDA with a forward

selection algorithm. Figs. 4.6 and 4.7 respectively show the classification accuracy

with SVM and LDA, together with their sensitivity and specificity when only the

most discriminant features are considered.
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Figure 4.6 Accuracy (Acc), sensitivity (Sn) and specificity (Sp) when a
new selected feature is added in the classification of the GS group versus
GF , using LDA.
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Figure 4.7 Accuracy (Acc), sensitivity (Sn) and specificity (Sp) when a
new selected feature is added in the classification of the GS group versus
GF , using SVM.
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SVM-based feature selection provides the best results, with a global accuracy of

80.0%, sensitivity of 74.4%, and specificity of 82.4% and the use of only 6 features.

Only SVM seeks a balanced outcome as well as a good result. The best 6 features

selected by both feature selection methods are related to cardiorespiratory interaction

(Table 4.3). The most dominant words present alternating patterns in the cardiac

rate (101, 110 or 011) and in the respiratory dynamics (001 or 010). There are no

monotonous patterns.

Table 4.3 The best feature subset selected by discriminating the group of
patients GS from GF with both discriminant methods, using JSD without
shifting (τ = 0). *: two symbols shifted to the right (τ = 2), and **: two
symbols shifted to the left (τ =−2).

Features LDA SVM

f1 pn(wc011 r010) pn(wc101 r001)
f2 pn(wc011 r001) pn(wc101 r010)∗
f3 pn(wc101 r001) pn(wc110 r100)∗
f4 ∑(pn(wcr))≥ 8% pn(wc110 r001)
f5 ∑(pn(wcr))≥ 5% pn(wc001 r010)∗∗
f6 pn(wc110 r011) pn(wc101 r001)∗∗

The proposed B-based SVM feature selection algorithm is applied to predict GS

patients from the rest of the patients (GF and GR). The best classification result

is obtained with 9 features and has an accuracy of 81.3%, sensitivity of 83.3% and

specificity of 78.3%. Fig. 4.8 shows the classification accuracy, the sensitivity and the

specificity when the most discriminant features are added (Table 4.4).
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Figure 4.8 Accuracy (Acc), sensitivity (Sn) and specificity (Sp) when a
new selected feature is added in the classification of the GS group versus GF
and GR, using SVM.
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Table 4.4 The best feature subset selected by discriminating the group of
patients GS from the rest of the patients (GR+GF ) by applying SVM and
LDA and using JSD with two symbols shifted to the left τ =−2.

Features SVM

f1 Pn(wc101)
f2 Pn(wc100)
f3 pn(wc101 r100)
f4 pn(wc100 r011)
f5 pn(wc101 r101)
f6 ∑(pn(wcr))≥ 8%
f7 pn(wc010 r001)
f8 Pn(wc001)
f9 pn(wc010 r101)

The third classification is between patients who successfully passed the trial but

had to be reintubated in less than 48 hours (GR), and patients with successful weaning

(GS). Clinicians cannot distinguish between those groups, as the test outcome is

favourable in both cases. However, in less than 48 hours some patients need to be

reintubated. The challenge is to find out which features characterize these patients

(GR). The time series analysis (means, standard deviations and interquartile ranges)

does not present any significant differences between these two groups. The clinical

criteria that are followed to evaluate the readiness of the patients to start the protocol

test are the same in both cases.

Fig. 4.9 shows the accuracy, sensitivity and specificity when classifying GR versus

GS. Table 4.5 indicates the best 9 features selected through the proposed feature
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Figure 4.9 Accuracy (Acc), sensitivity (Sn) and specificity (Sp) when a
new selected feature is added in the classification of the group of patients
GR versus GS, using SVM.
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selection. Some of these features present words with monotonous patterns in the

cardiac and respiratory dynamics (000 or 111). The percentage of well-classified

patients rises to 82.7% with 81.0% of sensitivity and 83.2% of specificity.

Table 4.5 The best feature subset selected by discriminating the group of
patients GR from GS using SVM and JSD with two symbols shifted to the
left τ =−2.

Features SVM

f1 pn(wc111 r101)
f2 pn(wc011 r111)
f3 pn(wc011 r000)
f4 pn(wc000 r101)
f5 H(Wτ=−2)
f6 pn(wc110 r010)
f7 pn(wc000 r000)
f8 ∑(pn(wcr))≥ 5%
f9 pn(wc011 r011)

In the last classification, we consider reintubated patients (GR) versus the rest of

the patients (GS and GF ) (Fig. 4.10). The best result is obtained by applying SVM

with 10 features (accuracy of 81.0%, sensitivity of 71.4% and specificity of 82.2%).

Table 4.6 presents the best 10 features obtained by means of the feature selection,

when all the shift values are considered (τ =−2,0,2).
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Figure 4.10 Accuracy (Acc), sensitivity (Sn) and specificity (Sp) when a
new selected feature is added in the classification of the GR group versus GS
and GF , using SVM.
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Table 4.6 The best feature subset obtained by discriminating the group
of patients GR from the rest (GS+GF ) by applying SVM and JSD without
shifting (τ = 0). *: two symbols shifted to the right (τ = 2), and **: two
symbols shifted to the left (τ =−2).

Features SVM

f1 pn(wc110 r111)
f2 ∑(pn(wcr))≥ 4%**
f3 pn(wc011 r010)∗
f4 pn(wc000 r100)
f5 pn(wc001 r000)
f6 pn(wc110 r010)
f7 pn(wc010 r101)∗
f8 pn(wc011 r101)∗∗
f9 pn(wc011 r000)∗∗
f10 pn(wc011 r100)

4.4 Conclusion

The spontaneous breathing trial is the main diagnostic test to determine whether

patients can be successfully extubated [1]. It has been shown that the rate of successful

extubation does not change when the target duration of a spontaneous weaning trial

is reduced from 120 minute to 30 minute [15]. Therefore, the electrocardiographic

(ECG) and the respiratory flow signal used in this study were acquired during 30

minute spontaneous breathing trials.

In the first study, we used an SVM-based method to analyse respiratory pattern

variability in patients during weaning trials, in order to find differences between pa-

tients who can maintain spontaneous breathing GS, and patients who fail to maintain
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spontaneous breathing GF . Respiratory pattern characterization is developed by a

number of respiratory time series. Clustering and validation techniques enable the

selection of the best subset of input features, and histogram equalization maps the

distribution of the selected features back to the distribution of the most discriminant

feature.

Support vector machines trained with the whole set of 35 features achieved a

classification accuracy of 66.6%. After a search for the most suitable features and

the application of the histogram equalization method, in which the s(TE) feature is

taken as a reference, an accuracy of 80.0%, sensitivity of 86.67% and sensibility of

73.34% is obtained using only 8 of the 35 features. Hence, the SVM analysis can be

considered a suitable method for studying respiratory pattern variability in patients

on weaning trials.

Numerous clinical indices have been proposed as weaning predictors [18], [117].

Many of these have good sensitivities but most have low specificities, which gives them

a poor discrimination result. To achieve more robust and useful automatic indices, we

consider the nonlinear joint symbolic dynamic (JSD) procedure to study the cardiac

and respiratory signals. The cardiorespiratory dynamics of each patient is therefore

characterized by 276 features (92 features, for each τ = −2, 0 and +2), which are

extracted by applying JSD to the cardiac interbeat and breath duration series. These

matrices enable a coarse-grained quantitative assessment of a short-term nonlinear

analysis of these interactions.

In spite of having shown remarkable success in many applications, the ability of

SVM methods decreases when the datasets are unbalanced. Hence, a new metric

called the balance index B is proposed to deal with unbalanced classification prob-

lems. Optimized SVM-based feature selection that includes B can overcome this
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disadvantage. This method has good predictive performance and a better balance

between sensitivity and specificity for an unbalanced dataset. The best result is ob-

tained with optimized feature selection that is based jointly on the accuracy and the

balance index, with an accuracy of 80% in the classification of GS and GF , using

only 6 features. While the improvement in this study is perhaps not dramatic, it is

still of importance as the present classification is based on only 6 features instead of 8.

Moreover, good results and a balance between sensitivity and specificity are obtained

with 4 features and over.

Once the optimized feature selection method has been established, the prediction

of weaning outcome in patients on weaning trials is analysed (GS, GF and GR).

The proposed B-based SVM feature selection is compared to LDA. In all cases, SVM

feature selection and classification perform better. In the classification of GS patients

versus the rest of the patients, the best result is obtained with 9 features, with

an accuracy of 81.3% and an acceptable balance between sensitivity and specificity

(83.3%−78.3%). The features selected by the SVM-based algorithm, unlike the ones

selected by LDA, show less presence of respiratory dynamics than cardiac dynamics.

One relevant issue in clinical practice is to distinguish between reintubated and

successful patients, since these two groups have the same response to the weaning

trial, from a clinical point of view. A good prediction of patients who will require

reintubation after having successfully passed the spontaneous breathing test would

help in clinical decisions.

The features that are selected in the classification of GR and GS patients are di-

rectly related to cardiorespiratory interactions, and provide accurate results in 82.7%

of patients. These features present word types with some monotonous patterns in the

cardiac and respiratory dynamics, such as 000 or 111 patterns.
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Finally, in the classification of GR versus the rest of the patients, the 10 features

chosen from SVM are also directly related to cardiorespiratory interactions. In this

case, the percentage of well-classified patients is good (81.0%) and there is a balance

between sensitivity and specificity.

To sum up, JSD applied to time series of heart rate and respiratory frequency

appears to be suitable for the description of cardiorespiratory interactions of patients

during weaning trials. The results show good performance of the proposed SVM-

based feature selection, since it selects the most relevant features and maintains a

balance between sensitivity and specificity for unbalanced groups of data. Therefore,

it might be a useful tool for enhancing the analysis of patients on weaning trials,

as well as in other clinical studies that involve biomedical time series. This method

is versatile, since it could be applied to any classification problem with unbalanced

groups.

Nevertheless, additional features and clinical information about the patients before

the weaning trial should be considered to increase the discrimination between these

three groups, and particularly the reintubated patients.
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Chapter 5

Time-frequency analysis of

respiratory pattern

Numerous time-frequency techniques have been applied to the respiratory flow signal

to characterize the respiratory pattern of patients with chronic heart failure (CHF).

Some artefact reduction techniques are implemented to prepare the respiratory

flow signal for further analysis. We compare methods for extracting the envelope

of the respiratory flow signal to assess which is most appropriate for this research.

Stationary and nonstationary modelling is applied to the signals. The stationarity

of the signals is assumed and parametric and nonparametric power spectral density

(PSD) are applied to characterize the respiratory pattern in the frequency domain.

Finally, a time-varying PSD that is based on a time-varying autoregressive model, is

applied to the signals to study respiratory pattern changes over time.

The aim of this chapter is to introduce time-frequency techniques that are applied

to the respiratory flow signal to characterize the respiratory pattern in patients with

CHF and healthy subjects.

111
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5.1 Respiratory flow signal pre-processing

One key factor in biomedical signal processing is the study of artefacts in the signal,

to minimize their influence. A wide variety of artefacts can occur in respiratory

flow signals. Some of them are easily identified, such as a missing gap with no

respiration activity, but some are exceedingly difficult to distinguish from spontaneous

breathing. While the influence of artefacts of technical origin can be reduced by

paying more attention to signal acquisition, it is impossible to avoid the artefacts

of physiological origin. Consequently, more algorithms are dedicated to physiological

artefact removal. We review the most common artefacts in the respiratory flow signals

and the techniques designed for their reduction. As normal breathing frequency ranges

from 12 to 20 breaths per minute (i.e. 0.20-0.33 Hz), the respiratory flow signals are

downsampled to more appropriate sample frequencies (1-2 Hz) in various stages.

5.1.1 Artefact removal

Pre-processing of the respiratory flow signal involves artefact reduction to ensure

robust signal analysis. Such processing is essential, as certain artefacts can be difficult

to distinguish from a normal breath or normal respiratory events such as a deep

breath, cough, sigh or even swallowing. Assuming that these respiratory events take

more time than a outlier or spike, we have implemented the following outlier and

spike removal algorithms.

- Outlier removal

Samples that exceed a number of standard deviations of data are usually considered

outliers. The proposed outlier removal algorithm is based on rejection of the samples



5.1 Respiratory flow signal pre-processing 113

whose amplitude is below the 1st or above the 99th percentile of the entire signal’s

amplitude histogram. The outliers are replaced with the proper percentile value that

corresponds to the 1st or 99th percentile (Fig. 5.1). This artefact rejection is the

crudest approach, since it removes less probable data samples, even when they are

not artefacts. Thus, it is only appropriate for certain applications.

Figure 5.1 Outlier removal: (a) original flow signal with both thresholds
(1st and 99th percentile) and (b) overlapped original flow signal and pre-
processed flow signal.

- Spike removal

Short duration spike artefacts that are not removed with the percentile test are de-

tected using an auxiliary signal that results from a sampling rate decimation of the
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original flow signal to 25 Hz, followed by median filtering. A filter length of 11 is

found to be suitable. Whenever the difference between the original and median fil-

tered signals exceeds a certain threshold value, which we set to half the standard

deviation of the signal, the original samples are replaced by the median value of the

neighbouring samples (Fig. 5.2).

Figure 5.2 Spike reduction: (a) original flow signal, auxiliary signal and
the fixed threshold and (b) pre-processed flow signal.

- AR reconstruction

In a few patients, short gaps (< 1 s) with missing samples occurred due to uncontrolled

movements of the patients during acquisition. Rather than excluding these recordings

from the analysis, interpolation based on AR signal modelling is used to fill in the
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gaps [4] and [118]. This interpolation method estimates the AR coefficients from the

segment preceding the gap and then uses these coefficients to forward predict the

signal across the missing samples. The same process is repeated for the segment after

the gap, using backward extrapolation. The gap of missing samples is then replaced

by a cross-faded version of the two extrapolated values (Fig. 5.3), using the following

window:

w(n) =


1− 1

2(2u(n))α, u(n)≤ 1
2

1
2(2−2u(n))α, u(n)> 1

2

(5.1)

where u(n) = (n−ns)/(ne−ns), and ns and ne are the indices of the onset and end

of the gap, respectively. Cross-fading is carried out by multiplying the forward ex-

trapolated sequence by w(n) and the backward extrapolated sequence by 1−w(n).

A linear downslope is attained with α= 1, whereas a step-like transition results when

α→∞. The slope of the window is adjusted via the parameter α = 3. Finally, as

the respiratory frequency does not exceed 0.5 Hz, the respiratory flow signals are

decimated to 1 Hz, using appropriate lowpass filtering prior to downsampling.

- Avoiding missing or saturated samples

Another approach to processing signals that contain missing samples or signals that

become saturated could be to discard them from subsequent analyses, as they do

not reflect respiratory activity. However, the computation of further analyses, such

as spectral power, needs to be modified in this case. The first step is to detect the
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Figure 5.3 AR reconstruction process decomposition taken from [4].

samples to be discarded and represent them by the binary function g(n), defined by

g(n) =


1 existing,

0 discarded.
(5.2)

The information on discarded samples is introduced in the correlation function [119],

with an indication of whether or not the information given by the sample denoted

as x(n) is reliable or not. Hence, the autocorrelation function rx(m) and the corre-

sponding power spectral density Px(ejω) is estimated by

rx(k) =
∑N−k
n=1 x(n) ·x(n+k) ·g(n) ·g(n+k)∑N−k

n=1 g(n) ·g(n+k)
(5.3)
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Px(ejω) =
∞∑

k=−∞
rx(k)e−jωk . (5.4)

5.1.2 Downsampling

The sampling frequency (fs) of the acquired flow signals is 250 Hz, whereas the spec-

tral content of the respiratory flow signals is located in a much lower frequency range

(0.20-0.33 Hz) [66]. To condition the respiratory flow signal for a more appropriate

analysis, it is downsampled to 1 or 2 Hz, depending on the application.

The Nyquist theorem is accomplished, since the respiratory frequency can range

up to 0.5 Hz. However, to ensure that the sampling theorem is satisfied and aliasing

is avoided, a low pass filter is applied before the signal is downsampled. The overall

process, the filtering and the downsampling is called decimation. A type I eight-order

low-pass Chebyshev filter is applied with a cut frequency of 0.8∗ (fs/2)/L, where L

is the downsampling factor.

As the downsampling factor is very high (250/1, 250/2), the decimation process

is divided into 3 steps. First, we reduce the sampling frequency to 25 Hz, by a

downsampling factor of 10. The next decimation stage reduces the sample frequency

to 5Hz through a factor of 5. In the last stage, the sample frequency is decreased to

1 or 2 Hz by a resampling factor of 5 of 5/2, respectively.

5.2 Respiratory pattern characterization

Respiratory pattern characterization is based on the envelope of the respiratory flow

signal, since this may reflect periodicity in the pattern. The envelope of the respiratory

flow signal can be extracted by different methods.
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5.2.1 Envelope detection

The envelope of the respiratory flow signal might convey useful information. Specif-

ically, the respiratory modulation frequency appears to be essential in the study of

periodic and nonperiodic breathing patterns. Thus, this envelope is studied in depth.

Below, we review several envelope extraction methods that have been reported in the

literature [120], [121], [122], [123] and [124].

5.2.1.1 Envelope detection in time domain

The most representative time domain envelope extraction techniques are based on

calculating the absolute value, the energy, the Shannon energy and Shannon entropy

of the signal as a moving average. The respiratory flow signals are decimated to 1

Hz and normalized to between [-1 to 1] by xnorm(n) = x(n)/max(|x|), where x(n)

is the respiratory flow signal. The computed envelopes are based on the following

expressions that are evaluated over the resulting signal xnorm(n).

Shannon energy E(n) =−x2
norm(n) · log x2

norm(n)

Shannon entropy E(n) =−|xnorm(n)| · log |xnorm(n)|

Absolute value E(n) = |xnorm(n)|

Energy E(n) = x2
norm(n)

Normalized average Shannon energy, which is called the Shannon envelope, is a

popular technique for the envelope extraction of cardiac sound signals [120] and [121].

The sliding window is defined by fixing the segment and the overlap length. It eval-

uates the average Shannon energy in continuous signal segments by

E(n) = 1
N
·
N∑
n=1
−x2

norm(n) · log x2
norm(n) (5.5)
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where xnorm(n) is the x decimated and normalized sample signal and N is the signal

length in each segment, which corresponds to a frame. The most suitable sliding

window for this purpose is a 15-second window with a 5-second overlapping segment.

As illustrated in Fig. 5.4, the absolute value of the flow signal provides all the signal

with the same weight, whereas energy attenuates the effect of low value samples and

emphasizes the effect of high value samples. In contrast, Shannon entropy emphasizes

the effect of low value samples, which makes it more difficult to track the signal

outline. Shannon energy emphasizes medium value samples and attenuates the effect

of low value samples more than high value samples. It reduces the difference between

low and high values, which makes it more appropriate than the absolute value in

cardiac sound signal analysis.

5.2.1.2 Envelope detection in the frequency domain

A well-known technique based on the Hilbert transform (a 90-degree phase shifter)

extracts the envelope without any previous knowledge of its frequency and phase,

and without the need for a sliding window [85]. The respiratory flow signal can be

expressed through a deterministic low-pass signal, which is modulated by a cosine

with frequency ωm and phase φ by

x(n) = a(n)cos(ωmn+φ) (5.6)

where x(n) is the respiratory flow signal and a(n) the envelope of x(n) (the index n

represent a discretization of x(t) sampled every 1/fs seconds). The signal x(n) can

be expressed in the frequency domain as:

X(ejω) = 1
2
[
A(ej(ω−ωm−φ)) +A(ej(ω+ωm+φ))

]
(5.7)
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Figure 5.4 Time and frequency domain envelope extraction methods for a
real signal.
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where X(ejω) and A(ejω) are the discrete-time Fourier transform of x(n) and a(n),

respectively.

The envelope a(n) is obtained by cancelling out the negative frequencies and

shifting the right side spectrum to the origin [125]. The following expression cancels

the left side spectrum

XA(ejω) =X(ejω) + jH(ejω)X(ejω) =X(ejω) + jX̄(ejω) (5.8)

where H(ejω) is the linear time invariant filter, which is referred to as the Hilbert

transform. The output of the Hilbert transform applied to x(n) corresponds to a 90◦

shifted version of x(n), and is denoted x(n). Therefore, xA(n) represents a frequency-

shifted version of the envelope, and the positive-valued envelope is obtained without

any knowledge of ωm or φ by

xA(n) = a(n)e jωmn (5.9)

a(n) = |xA(n)|=
√
x2(n) + x̄ 2(n). (5.10)

Since the frequency bandwidth of the flow envelope signal a(n) is much lower than

the original x(n) signal, it is downsampled to 0.1 Hz.

We considered the properties and performance of each envelope detection method

and selected the one based on the Hilbert transform to extract the envelope of the

respiratory flow signal. This method has high computational efficiency and does not

require any previous normalization or subsequent reescalation.

We have observed that the behaviour of the respiratory flow signal in patients with

periodic breathing often resembles a signal that is subjected to amplitude modulation

(AM). Considering that the respiratory frequency normally ranges from 0.2 Hz to 0.4

Hz and the modulation frequency from 0.01 Hz to 0.04 Hz [66], an AM signal is
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simulated. This consists of a 0.3 Hz (fc) carrier wave modelled by a simple sinusoidal

wave of 0.02 Hz (fm). An example of the simulated signal segment and a real flow

signal segment is presented in Fig. 5.5.

Figure 5.5 (a) Respiratory flow signal segment of a PB patient and (b)
the simulated AM signal with a 0.3 Hz carrier and a 0.02 Hz sinusoid as
modulation.

The performance of each envelope extraction technique applied to the respiratory

flow signal of a patient with periodic breathing and to the simulated AM signal is

illustrated in Figs. 5.4 and 5.6, respectively.
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Figure 5.6 Time and frequency domain envelope extraction methods for
the AM signal.
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5.2.2 Envelope modelling

Autoregressive (AR) and autoregressive moving average (ARMA) models can effi-

ciently present abrupt peaks in their power spectral density, as required for our pur-

pose. Any ARMA model could be represented by an AR model with a sufficiently

high model order [126]. When we use an autoregressive AR model, which is also

referred to as an all-pole model, the respiratory envelope signal is approximated by

the following expression:

x[n] =−
p∑

k=1
a[k] ·x[n−k] +u[n] (5.11)

where u[n] denotes zero-mean white noise with σ (the estimated error variance), a[k]

are the autoregressive coefficients, p is the order of the model and x[n] the respiratory

flow signal.

Model coefficients can be estimated directly thought the autocorrelation function

by means of the Yule-Walker equations, which describe a nonlinear relation between

the AR coefficients and the autocorrelation function of the process. The AR coef-

ficients can therefore be determined by solving a system of linear equations with p

unknown variables. The Levinson-Durbin recursion is implemented to resolve this

equation system, by exploiting the symmetry and Toeplitz properties of the correla-

tion matrix Rx [127] and [128].

5.2.2.1 Selection of the AR model order

One of the most relevant aspects in power spectral density estimation through AR

modelling is the selection of the model order p. This is a trade-off between the fre-
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quency resolution and the spurious peaks. If the model order is too low, a highly

smoothed spectrum is obtained. If it is too high, spurious low level peaks might be

introduced into the spectrum. The accuracy of the AR model is evaluated through the

mean square prediction error. Different values are obtained for each power spectral

density estimator. The prediction error decreases as the order of the model is in-

creased. To select an appropriate model order, the rate of decrease can be monitored

to determine when it becomes slow. However, this method is imprecise in comparison

with the best known criteria for selecting the optimum model order, as proposed by

Akaike [129], [130], and Risssanen [131]. The first criterion proposed by Akaike is

the final prediction error criterion (FPE). The optimum model order minimizes the

function

FPE(p) = σ̂2
e

(
N +p+ 1
N −p−1

)
(5.12)

where N is the number of observed data items and σ̂e is the estimated variance of

the linear prediction error of a p-order AR model.

The second criterion proposed by Akaike is called the Akaike information criterion

(AIC). AIC selects the model order that minimizes

AIC(p) =N · ln(σ̂2
e) + 2 ·p. (5.13)

The criterion proposed by Rissanen is based on selecting the model order that

minimizes the description length (MDL), defined as

MDL(p) =N · ln(σ̂2
e) +p · ln(N). (5.14)

If we consider the results reported in [132], the FPE criterion tends to underes-

timate the model order. Unlike MDL, AIC is said to be statistically inconsistent
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when N →∞ [133]. We have used the methods described above to study the opti-

mum order for representing the respiratory flow signal and the respiratory envelope

signal. Figs. 5.7 and 5.8 illustrate the performance of each criterion using the forward-

backward approach, which is applied to the simulated AM signal and its envelope,

respectively.

Figure 5.7 (a) FPE criterion, (b) AIC criterion and (c) MDL criterion
evaluated by the simulated AM signal.
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Figure 5.8 (a) FPE criterion, (b) AIC criterion, and (c) MDL criterion
evaluated by the simulated AM signal’s envelope.

Figs. 5.9 and 5.10 illustrate the performance of each criterion using the forward-

backward approach, applied to the respiratory flow signal and the respiratory envelope

signal of a CHF patient, respectively.
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Figure 5.9 (a) FPE criterion, (b) AIC criterion and (c) MDL criterion
evaluated for the respiratory flow signal of a CHF patient.

For all the subjects in this study, these methods perform similarly for both the

respiratory flow and the envelope signal. However, when the simulated AM signal is

studied, FPE and MDL perform similarly but AIC criterion suggests higher order

models. Finally, Rissanen’s MDL criterion is employed in this research. The mean

of the optimum model order that was obtained for each CHF patient and healthy

subject is selected as the most appropriate. A 30th-order AR model appropriately

represents the respiratory flow signal and a 4th-order AR model represents the respi-

ratory envelope signal.
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Figure 5.10 (a) FPE criterion, (b) AIC criterion and (c) MDL criterion
evaluated for the respiratory flow envelope of a CHF patient.

5.2.2.2 Whiteness test

The model order should ensure that the model correctly represents the data. This

is achieved only when the prediction error results in a white noise sequence. Conse-

quently, some of the information is still in the prediction error, when it differs from

white noise, which means that the model cannot completely describe the signal. If the

prediction error sequence is white noise, the autocorrelation function is theoretically

zero. However, the sample autocorrelation is usually different from zero. We have

performed a statistical test on the sample autocorrelation of the prediction error. We
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have applied the Ljung–Box test Q(l) to prove the whiteness of the prediction error.

This tests whether any of a group of autocorrelations of a time series are different

from zero. Instead of testing randomness at each distinct lag, this statistical test

evaluates the randomness based on a number of lags, by means of

Q(l) =N · (N + 2)
l∑

i=1

r2
i

N − i
(5.15)

where N is the number of samples, l the number of lags studied, and ri is the autocor-

relation at lag i. We consider the following null hypothesis: H0 : ri = 0. If the Q value

is less than the theoretical value of a significant level of the chi-squared (χ2) distri-

bution (p≤ 0.05), the null hypothesis is rejected. From the prediction error and with

l = 100, we have Q(100) = 93. Since the model order is 30, the degree of freedom of

the χ2 distribution is 100−30 = 70. As χ2
1−0.05(70) = 43.22 and χ2

0.05(70) = 104.215,

H0 is not rejected. The residuals of all 61 signals except two are whitened by the

global AR model.

5.2.3 Envelope spectral analysis

Spectral analysis is a powerful technique for characterizing the respiratory flow signal

and its envelope, due to its oscillatory behaviour. There are two main classes of

spectral analysis: parametric and nonparametric analysis. Fourier-based spectral

analysis is referred to as nonparametric spectral estimation, since it does not make

any assumptions about how the data were generated. It essentially correlates the

data with the sines and cosines of various frequencies to produce a set of coefficients

that define the power spectral density (PSD). In contrast to nonparametric methods,

parametric methods assume an autoregressive (AR) model as the data generating
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process and try to fit the model to the signal by minimizing a given cost function. The

most frequently used parametric and nonparametric fundamentals of power spectral

estimators are described below.

5.2.3.1 Nonparametric spectral analysis

The power spectral density (PSD) of a stationary random signal x(n) is estimated by

Px(ejω) =
∞∑
−∞

rx(n) · e−jωn (5.16)

where rx(n) is the autocorrelation function that characterizes the random process.

In practice, only a single observation of the random process x(n) that consists

of a finite sample sequence x(1), ...,x(N) is available for computing the statistical

autocorrelation function. It can be approximated by a time average autocorrelation

function, if we assume that the process is ergodic in the first and second moments,

defined by

r̂x(n) =
N−1−n∑
k=0

x(n+k) ·x(n), n= 0, ...,N −1. (5.17)

When the definition of the PSD is combined with the autocorrelation function, the

PSD that is commonly known as the periodogram can be computed through

P̂x(ejω) =
N−1∑
−N+1

r̂x(n) · e−jωn, (5.18)

where negative lags are obtained by means of the symmetry property r̂x(n) = r̂x(−n).

If the autocorrelation function is expressed as a convolution r̂x(n) = 1
N · x(n) ∗

x(−n), a signal-dependent, periodogram expression can easily be derived from

P̂x(ejω) = 1
N

∣∣∣X(ejω)
∣∣∣2 = 1

N

∣∣∣∣∣∣
N−1∑

0
x(n) · e−jωn

∣∣∣∣∣∣
2

. (5.19)
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The PSD can be also estimated as the squared magnitude of the signal’s Fourier

transform X(ejω). Fourier-based spectral methods are linked to an infinite record

of data, therefore the use of a finite data sequence generates some problems. On

the one hand, the frequency resolution of these methods is at best equal to the

spectral length of the rectangular window, which is approximately 1/N at −3dB.

This cannot be improved by increasing the sample frequency or by zero-padding.

On the other hand, the effect of limiting the duration of the signal to N samples is

equivalent to multiplying the signal by a rectangular window. This is reflected as

the convolution of the respective Fourier transforms in the frequency domain. The

Fourier transform of the rectangular window presents a main lobe and several side

lobes. In the convolution, the main lobe smears the estimated spectrum and limits the

frequency resolution or the degree of detail that can be resolved in the PSD, whereas

side lobe convolution introduces side lobe energy that the real spectrum lacks. This

undesirable effect is commonly known as spectral leakage [134].

The variance of the estimation r̂x(n) decays to zero as N tends to ∞, which

makes the computed autocorrelation a consistent estimate of the true autocorrela-

tion. In contrast, the variance of the estimation P̂x(ejω) does not approach zero as

the number of samples increases to ∞ (it does not converge to the true PSD). The

periodogram is therefore not consistent enough to compute the PSD. This lack of con-

sistency, together with the problems of smearing, leakage and frequency resolution,

provide the motivation for the methods developed by Bartlett in 1948 and Welch

in 1967 [134], [128]. The goal of these methods is to reduce the power estimation

variance by decreasing the frequency resolution. The use of windowing and averaging

techniques diminishes the leakage effect and the periodogram’s variance, respectively.
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- The Bartlett method

To reduce variance in the periodogram, Bartlett proposed a division of the data

sequence into P non-overlapping segments. Each segment has length D (D ·P ≤N).

xi(n) = x(n+ iD) for


i= 0,1, ...,P −1

n= 0,1, ...,D−1
(5.20)

where x(n) and xi(n) are the signal and a segment of the signal, respectively. For

each segment, the periodogram is calculated by

P̂ (i)
x (ejω) = 1

D

∣∣∣∣∣∣
D−1∑
n=0

xi(n) · e−jωn
∣∣∣∣∣∣
2

, i= 0,1, ...,P −1. (5.21)

Bartlett’s periodogram consists of the average of the P segment periodograms:

P̂x Bartlett(ejω) = 1
P

P−1∑
i=0

P̂ (i)
x (ejω). (5.22)

If the length of the data is reduced from N to D samples, the spectral length of the

Bartlett window is increased by a factor of P , which decreases the frequency resolution

by the same factor. In exchange, the variance of the PSD estimate is reduced in a

way that is inversely proportional to the number of segments P , which increases the

stability of the estimator. However, this variance reduction decreases if the segments

are statistically dependent. The variance is given by

var
{
P̂x Bartlett(ejω)

}
≈ 1

P
·var

{
P̂ (i)
x (ejω)

}
≈ 1
P
P 2
x (ejω). (5.23)

Therefore, there is a trade-off between the frequency resolution and the variance of the

PSD. An increase in the number of samples in each segment D improves the frequency

resolution, and an increase in the number of segments P reduces the variance.
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- Welch method

Welch modified Bartlett’s method by windowing the data segments prior to computing

the periodogram and by allowing the data segments to overlap. The purpose of

applying the windowing is to reduce the effect of side lobe energy by decreasing the

frequency resolution. The aim of permitting overlap is to increase the number of

segments that are averaged, so that the variance of the estimate is reduced. If we

assume an offset of M samples between successive segments and a segment length of

D, the data segments are represented by

xi(n) = x(n+ iM) for


i= 0,1, ...,L−1

n= 0,1, ...,D−1
(5.24)

where i ·M is the starting point for the ith sequence. Note that the amount of overlap

between successive sequences is D−M . If M =D, the segments do not overlap and

the number of data segments L is equal to the number of segments in the Bartlett

method P . Nevertheless, if M =D/2, there is a 50% overlap between successive data

segments, and consequently L= 2 ·P segments are obtained. The result is a modified

periodogram given by

P̂ (i)
x (ejω) = 1

D ·U

∣∣∣∣∣∣
D−1∑
n=0

xi(n) ·w(n) · e−jωn
∣∣∣∣∣∣
2

, i= 0,1, ...,L−1 (5.25)

where U is the normalization factor for the power in the window function Eq. (5.26).

This factor removes the energy bias introduced by the windowing.

U = 1
D

D−1∑
n=0

w(n)2. (5.26)

The Welch PSD is estimated by averaging these modified periodograms through

P̂x Welch(ejω) = 1
L

L−1∑
i=0

P̂ (i)
x (ejω). (5.27)
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Similar to Bartlett’s periodogram, the variance of the PSD is inversely proportional

to the number of segments L, and is given by

var
{
P̂x Welch(ejω)

}
≈ 1

L
·var

{
P̂ (i)
x (ejω)

}
≈ 9

8LP
2
x (ejω). (5.28)

Due to the overlap, the number of segments L in Welch’s periodogram is higher

than in Bartlett’s and consequently the variance is lower. However, this variance

reduction decreases if the segments are statistically dependent, so a lot of overlap is

not recommended. Hence, there is a trade-off between the number of segments and

the overlap to reduce the variance.

Welch proposed the application of a Hanning window with an overlap between

segments of 50%. In this way, all the samples except for the D/2 samples of the signal

edges are used twice, which makes the treatment of each sample equal. The temporal

window w(n) controls the leakage effect. The application of a nonrectangular window

reduces the distortion introduced by the side lobes, but increases the width of the

main lobe. Below, we present the most frequently used window functions in the time

and frequency domain.

- Blackman-Tukey method

The Bartlett and Welch methods are both designed to reduce the variance of the

periodogram by averaging the periodograms and the modified periodograms, respec-

tively. Blackman-Tukey is another method for reducing the statistical variance of the

periodogram by smoothing the periodogram itself [135].

The periodogram is computed by taking the Fourier transform of a consistent

estimate of the autocorrelation sequence. However, for any finite data record of

length N , the variance of the autocorrelation estimate r̂x(n) will be large for values
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of n that are close to N . Note that the estimate of r̂x(n) at lag n=N −1 is

r̂x(N −1) = 1
N
x(N −1) ·x(0). (5.29)

Since little averaging occurs in the formation of the estimates of r̂x(n) for n≈N , no

matter how large N becomes, these estimates will always be unreliable. The variance

of the periodogram is decreased by reducing the variance of the autocorrelation es-

timate. This is achieved by averaging in both the Bartlett and Welch methods. In

contrast, in the Blackman-Tukey method the variance of the periodogram is reduced

by applying a window to reduce the contribution of unreliable estimates [134]. The

Blackman-Tukey PSD (P̂x Blackman) is given by

P̂x Blackman(ejω) =
M∑

n=−M
r̂x(n) ·w(n) · e−jωn. (5.30)

where w(n) is a lag window that is applied to the autocorrelation estimate. For exam-

ple, if w(n) is a rectangular window that extends from−M toM withM <N−1, then

the estimates of r̂x(n) that have the largest variance are set to zero. Consequently, the

PSD will have smaller variance. However, this variance reduction leads to a decrease

in the frequency resolution, since a smaller number of autocorrelation estimates are

used to compute the PSD. In the frequency domain, the Blackman-Tukey method

smooths the periodogram by convolving it with the Fourier transform of the autocor-

relation window W (ejω). Consequently, the window that is applied w(n) should be

conjugate symmetric so that W (ejω) is real-valued, and should have a non-negative

Fourier transform, so that P̂x Blackman(ejω) is guaranteed to be non-negative.

The variance of the PSD is given by

var
{
P̂x Blackman(ejω)

}
≈ P 2

x (ejω) · 1
N

M∑
n=−M

w2(n). (5.31)
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There is a trade-off between bias and variance. For a small bias,M should be large

to minimize the width of the main lobe of the W (ejω), whereas M should be small to

minimize the variance. It is suggested that M have a maximum value of N/5 [128].

5.2.3.2 Parametric spectral analysis

One of the main problems of the nonparametric methods is the windowing inherent

in finite length data sequences. This windowing implies the assumption that the data

outside of the observation window are zero. This assumption limits the frequency res-

olution and the quality of the PSD. Another inherent assumption in the periodogram

is that the data are periodic with period N . Neither of these assumptions are re-

alistic, consequently the PSD is biased. Parametric PSD estimation methods aim

to estimate a mathematical model that describes the random process. The model

can be constructed with a number of parameters that can be estimated from the

observed data. The advantage of model-based frequency estimation is its capacity to

predict future samples outside of the observation interval, instead of assuming zero.

Subsequently, parametric PSD estimation methods avoid the problem of leakage and

provide better frequency resolution than the Fourier-based, nonparametric methods

described in the preceding section [126], [85].

- Rational transfer function models

The parametric methods considered in this section are based on modelling the data

sequence x(n) as the output of a linear time-invariant digital filter driven by a white

noise signal. Eq. (5.32) corresponds to the most general linear model, which is referred

to as the autoregressive moving average model (ARMA). Without loss of generality,
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the transfer function of this filter is given (in z = ejω domain) by

H(Z) = B(z)
A(z) =

∑q
k=0 bk · z−k

1 +∑p
k=1ak · z−k

(5.32)

This expression is also called the transfer function of a causal stationary ARMAmodel

of order (p,q). The nth sample of the process that corresponds to this model satisfies

the following difference equation:

x(n) =−
p∑

k=1
ak ·x(n−k) +

q∑
k=0

bk ·u(n−k) (5.33)

where u(n) is the input sequence that consists of the samples of a zero-mean white

Gaussian noise process with variance σ2
u, and x(n) is the output sequence whose

samples are generated by this expression. When white Gaussian noise is used as

input, the goal is to find the filter H(z) that makes its output as close as possible

to x(n).

The first term on the right hand side of Eq. (5.33) is a finite order moving average

(MA) process, which is an output of a finite impulse response (FIR filter). The second

term, in which the value is composed as a weighted combination of past values of

x(n), is called an autoregressive (AR) process, which can be seen as the output of an

infinite impulse response (IIR filter) [134]. p is the order of the autoregressive part, q

is the order of the moving average part and ak and bk are the respective AR and MA

coefficients of the ARMA model.

If we assume that the input sequence and the observed data are a stationary

random process, the power spectral density of the data is

Px(z) = |H(z)|2 ·Pu(z) (5.34)

where Pu(z) is the PSD of the input sequence and H(z) is the frequency response
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of the model. To estimate the PSD Px(z), it is convenient to assume that the input

u(n) is a zero mean white noise sequence with autocorrelation Pu(z) = σ2
u. Then, the

PSD of the observed data x(n) is given by

Px(z) = σ2
u · |H(z)|2 = σ2

u
|A(z)|2

|B(z)|2
(5.35)

In the model-based approach, the PSD estimation consists of three steps Eq. (5.36).

First, the appropriate model that accurately represents the data is selected. Next,

the model’s coefficients (ak and bk) are estimated through the observed data, and

finally the model-based power spectral density Px(ejω) is computed by replacing the

estimated coefficients in the expression Eq. (5.35), evaluated for z = (ejω), which is

defined by [128]

Px(ejω) = σ2
u ·
∣∣∣H(ejω)

∣∣∣2 = σ2
u

∣∣∣A(ejω)
∣∣∣2

|B(ejω)|2
. (5.36)

If q = 0 and b0 = 1, the ARMA(p,q) process results in an all-pole filter H(z) =

1/A(z) and its output x(n) is a strictly autoregressive process of order p, which is

usually denoted as AR(p). Meanwhile, by setting A(z) = 1, so that H(z) = B(z), it

becomes an all-zero filter whose output is a a strictly moving average process, referred

to as MA(p).

- Autocorrelation-based model’s coefficient estimation

There is a basic relationship between the autocorrelation sequence rx(n) and the

coefficients of the model (ak and bk) that generates the random process. If we consider

an ARMA(p,q) process, the nonlinear relationship between the autocorrelation and

model’s coefficients is given by
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rx(n) =


r∗x(−n), n < 0

−∑p
k=1ak · rx(n−k) +σ2

u ·
∑q−n
k=0 bk+n ·h∗(k), 0≤ n≤ q

−∑p
k=1ak · rx(n−k) n > q

(5.37)

where h∗(k) is the conjugated linear impulse response to the linear system that trans-

forms the input white Gaussian noise into the random process x(n) and r∗x(−n) is the

conjugated autocorrelation.

For an AR process the relationship is simplified to

rx(n) =


r∗x(−n), n < 0

−∑p
k=1ak · rx(n−k) +σ2

u , n= 0

−∑p
k=1ak · rx(n−k) n > 0

(5.38)

In this case, we have a linear relationship between rx(n) and ak coefficients. These

equations are known as the Yule-Walker equations or normal equations for an AR

process. The ak coefficients can therefore be estimated by solving this system of

linear equations. The Yule-Walker equations can be expressed in the matrix form

Rx ·Ap = σ2
u · I, (5.39)

where Rx is the autocorrelation matrix from ATp =
[
1, a1, . . . , ap

]
(T is the trans-

posed vector), and IT =
[
1, 0, . . . ,0,

]
. This is more clearly expressed by



rx(0) rx(−1) · · · rx(−p)

rx(1) rx(0) · · · rx(−p+ 1)
... ... ... ...

rx(p) rx(p−1) · · · rx(0)


︸ ︷︷ ︸

Rx



1

a1
...

ap


=



σ2
u

0
...

0
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and the variance can be obtained from the equation

σ2
u = rx(0) +

p∑
k=1

ak · rx(−k). (5.40)

For a stationary stochastic process, the autocorrelation matrix Rx is a symmetric

and Toeplitz matrix [136]. The solution of the Yule-Walker equations turns out to

be very demanding. Levinson-Durbin recursion [127] and [137] is a fast and efficient

method that solves these equations by exploiting the symmetry and the Toeplitz

properties of the correlation matrix. Not only does it avoid the matrix inversion, but

it also provides a new perspective on linear prediction by introducing the lattice filter.

Finally, in an MA model, the autocorrelation sequence is related to the MA coef-

ficients bk by

rx =


r∗x(−n), n < 0

σ2
u ·
∑q
k=0 bk+n · bk, 0≤ n≤ q

0 n > q

(5.41)

- Election of the model

The type of model required and its order have to be specified before the parametric

power estimation. Models with poles (AR and ARMA) perform better at representing

abrupt peaks in the PSD, whereas models with zeros (MA and ARMA) perform

better at representing valleys. ARMA models seem to be the only ones that can

represent a PSD with both abrupt peaks and valleys. Kolmogorov’s theorem states

that any ARMA model can be represented by an AR model with a sufficiently high

model order [126]. This, and the fact that the relation between the autoregressive

coefficients and the autocorrelation is linear (unlike in ARMA and MA models that

are nonlinearly related to rx(n)), has meant that autoregressive modelling has received
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more attention than other linear models. AR models provide better spectral resolution

in the study of respiratory flow signal patterns, since they are able to efficiently present

abrupt peaks in their PSD, as required for our purpose.

- Autoregressive power spectral density estimation

The autoregressive coefficients ak with 1≤ k ≤ p and the variance of the input noise

σ2
u have to be estimated in Eq. (5.42) before the PSD can be calculated.

x̂(n) =−
p∑

k=1
ak ·x(n−k) +u(n) (5.42)

=−a1 ·x(n−1)−·· ·−ap ·x(n−p) +u(n).

The output signal is obtained by feeding zero-mean white Gaussian noise u(n) to a

filter of order p with a transfer function

HAR(z) = 1
A(z) = 1

1 +a1 · z−1 + · · ·+ap · z−p
(5.43)

Apart from the zero located at z = 0, H(z) is completely defined by its poles, thus

the AR model is often called an all-pole model.

Autoregressive modelling is closely related to the linear prediction problem in

which the current sample x(n) is predicted from the p previous samples x(n−1), ...,x(n−

p) using a FIR filter structure of the predictor. As a result of this relationship, the

optimum linear prediction coefficients, which minimize the mean square error, coin-

cide with the AR coefficients as long as the order of the AR model and the linear

predictor are identical. This property leads to different spectral estimation techniques

based on minimizing the mean squared prediction error [85].

In a linear prediction framework, a new sample x(n) can be predicted from a linear

combination of the p preceding samples by
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x̂(n) =−a1 ·x(n−1)−·· ·−ap ·x(n−p). (5.44)

The prediction error e(n) is defined by

e(n) = x(n)− x̂(n) = x(n) +
p∑

k=1
ak ·x(n−k). (5.45)

When the prediction error variance defined by σ2
e = E[e2

p(n)] is minimized, esti-

mates of the model coefficients can be determined. First, the linear prediction problem

is solved. Then, the resulting parameter estimates are substituted into the AR model.

In the same way, the variance of the input noise is estimated as the variance of the

prediction errors, σ2
u = σ2

e .

Once the AR coefficients and the variance σe have been estimated, the PSD of an

autoregressive process is computed by means of

P̂x AR(ejω) = σ2
e

|Ap(ejω)|2
= σ2

e∣∣∣1 +∑p
k=0ak · e−jωk

∣∣∣2 · (5.46)

There are different methods for estimating the AR parameters ak by means of a

finite sequence of observed data. Conceptually, the simplest method involves the use

of Yule-Walker equations to solve the system of linear equations. However, much bet-

ter results are obtained through algorithms that compute the AR coefficients directly

from the data, rather than through the autocorrelation sequence, particularly with

short data sequences. Three of the most frequently used methods are based on lin-

ear prediction by least-squares fitting. The Yule-Walker method and the Covariance

method minimize the forward prediction error in a least-square sense, whereas the

modified Covariance method minimizes both forward and backward prediction errors.

Other spectral estimation techniques such as Burg’s method are based on reflection

coefficients to minimize the forward and backward prediction error.
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Yule-Walker The Yule-Walker or autocorrelation method computes the AR coeffi-

cients through a biased autocorrelation estimate to solve Yule-Walker equations by

means of the Levinson-Durvin algorithm. A biased estimate of the autocorrelation

function should be used to ensure that the autocorrelation matrix is positive semidef-

inite. Hence, the matrix is invertible and a solution is guaranteed to exist. Although

the result is a stable AR model, it performs relatively poorly for short data sequences.

Covariance and Modified Covariance: The only difference between the Covari-

ance method and the autocorrelation method is that, in the latter, all the data that

are used are from the observed data sequence, i.e. there is no windowing. The spec-

tral estimates obtained with this method are similar to the ones obtained with the

autocorrelation method, particularly when the observed data sequence is much larger

than the model order. Modified Covariance provides high resolution for short data

sequences, because it minimizes both forward and backward prediction errors. Unlike

autocorrelation, covariance methods might produce unstable models. Moreover, the

frequency peaks in Modified Covariance might be slightly dependent on the initial

phase of the signal.

Burg: Burg’s method computes the AR coefficients through an order recursive least

squares lattice method, which is based on minimizing the forward-backward error

in linear predictors, while the Levinson-Durvin recursion is satisfied. In contrast to

other AR methods, it avoids calculations of the autocorrelation form of the data, and

instead estimates the reflection coefficients. It is computationally efficient, provide

high resolution for short data sequences and assures a stable AR model. However,

its accuracy is lower for long data sequences, high order models and high SNR ratios.
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Moreover, the power spectral density estimated by Burg’s method is susceptible to

frequency shifts that result from the initial phase of noisy sinusoidal signals.

5.3 Time-frequency applied to the respiratory flow

signal

Fig. 5.11 presents the performance of the spectral techniques applied to the envelope

of the simulated AM signal. Figs. 5.12, 5.13, 5.14, and 5.15 show the performance

of the aforementioned spectral estimation techniques when they are applied to the

envelope signal of CHF patients with different respiratory patterns and to that of a

healthy subject.

The Yule-Walker method provides lower resolution when the observed data se-

quence is too short. Burg and Modified Covariance provide similar frequency resolu-

tion that is better than the other two methods. However, the latter method is the

most suitable when the objective is to find sinusoid signals, since the power spectral

density estimated by Burg’s method depends more on the initial phase of the signal

than does Modified Covariance. All the techniques for estimating the PSD perform

quite similarly. Nevertheless, as this study focuses on the periodicity of the respira-

tory pattern through the respiratory flow envelope signal, Modified Covariance is the

most appropriate method.
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Figure 5.11 (a) Flow signal and its envelope, (b) Welch, (c) Blackman-
Tukey, (d) Yule-Walker, (e) Covariance, (f) Modified covariance, and (g)
Burg to estimate the PSD of the simulated AM signal envelope.
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Figure 5.12 (a) Flow signal and its envelope, (b) Welch, (c) Blackman-
Tukey, (d) Yule-Walker, (e) Covariance, (f) Modified covariance, and (g)
Burg to estimate the PSD of the envelope of a CHF patient with Cheyne-
Stokes respiration.
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Figure 5.13 (a) Flow signal and its envelope, (b) Welch, (c) Blackman-
Tukey, (d) Yule-Walker, (e) Covariance, (f) Modified covariance, and (g)
Burg to estimate the PSD of the envelope of a CHF patient with periodic
breathing.
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Figure 5.14 (a) Flow signal and its envelope, (b) Welch, (c) Blackman-
Tukey, (d) Yule-Walker, (e) Covariance, (f) Modified covariance, and (g)
Burg to estimate the PSD of the envelope of a CHF patient with nonperiodic
breathing.
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Figure 5.15 (a) Flow signal and its envelope, (b) Welch, (c) Blackman-
Tukey, (d) Yule-Walker, (e) Covariance, (f) Modified covariance, and (g)
Burg to estimate the PSD of the envelope of a healthy subject.
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5.4 Summary

The aim of this chapter is to review the time frequency techniques applied to the

study of the respiratory pattern.

A number of artefact removal techniques have been proposed to condition the

respiratory flow signal. Both outlier and spike removal stages have prepared the signal

for more robust further analyses. A technique based on autoregressive modelling has

been implemented to solve short gaps of missing samples. In our case, only two gaps

of a few seconds have been observed in the acquired respiratory flow signals. Some

applications permit the direct solution of this problem by modifying the computation

of further analyses so as to discard them from the processing.

The advantages and disadvantages of most popular methods of envelope detection

have been analysed. The method based on the Hilbert transform seemed the most

suitable for further spectral analysis. The respiratory pattern has been characterized

in the time and frequency domain by a number of parametric and nonparametric

techniques. It has been observed by means of different criteria FPE, AIC andMDL

and proved statistically by the Ljung–Box test that a 30th order autoregressive model

and a 4th order autoregressive model correctly represent the respiratory flow signal

and the envelope signal, respectively.

In terms of PSD estimation, it has been observed that the Yule-Walker method

provides lower resolution when the observed data sequence is too short. Both the Burg

and Modified Covariance methods provide more accurate spectrum estimates than the

other techniques. The PSD estimated by Burg’s method depends more on the initial

phase of the signal than does the Modified Covariance method. Thus, the latter fits

better with our objective, which is to analyse the periodicity of the respiratory pattern.
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Chapter 6

Respiratory pattern analysis

applied to chronic heart failure

6.1 Introduction

Patients with chronic heart failure (CHF) often develop breathing abnormalities,

including various forms of oscillatory breathing patterns that are characterized by

rises and falls in ventilation [56] and [57]. Previous studies have presented periodic

breathing (PB) during sleep or wakefulness as a powerful predictor of poor prognosis

in CHF patients [138]. Periodic breathing patterns can be classified into ventilation

with apnea, commonly known as Cheyne-Stokes respiration (CSR), or ventilation

without apnea [59] and [60]. In this chapter, we investigate the periodicity of the

respiratory pattern as an index that is related to the risk level of the CHF patients.

Normal breathing cycle lengths range from 3 to 5 s (i.e., 0.20–0.33 Hz), whereas

the PB patterns have cycle lengths from 25 to 100 s (i.e., 0.01–0.04 Hz) [66]. However,

the same patient often exhibits a mixture of breathing patterns, including nonperiodic

153
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breathing (with no cyclic modulation of ventilation), mild PB and CSR patterns. The

origin of the PB pattern is still a matter of debate among researchers. Respiratory

modulation frequency appears to be essential for the understanding of periodic and

nonperiodic breathing patterns in CHF patients.

The aim of this chapter is to analyse the breathing pattern in CHF patients

and healthy subjects, through the envelope of the respiratory flow signal. Based on

autoregressive (AR) power spectral analysis of the envelope, the relevant discriminant

band (DB) is determined from the location of the modulation frequency peak, and

characterized by a number of spectral parameters.

6.2 Dataset

In this chapter we work with the dataset of CHF patients and the dataset of healthy

subjects presented in Chapter 1. These datasets include the respiratory flow signal of

35 healthy volunteers and 26 CHF patients. According to clinical criteria, the CHF

patients were classified into two groups: 8 patients with PB patterns (1 female, 71±7

years, 18.4±2.2 breaths/min), and 18 patients with nonperiodic breathing (nPB)

pattern (5 female, 62±9 years, 22.5±4.3 breaths/min). Within the PB group, 3

patients were classified as CSR (1 female, 68±6 years, 21.7±4.2 breaths/min) and

5 patients as PB without apnea (no females, 73±8 years, 23.0±4.7 breaths/min).

Fig 6.1 illustrates the different flow patterns observed in CSR, PB and nPB patients,

and a healthy subject.
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Figure 6.1 The respiratory flow signal exemplified for (a) a Cheyne-Stokes
respiration patient, (b) a periodic breathing patient, (c) a nonperiodic breath-
ing patient, and (d) a healthy subject.
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6.3 Respiratory pattern in CHF patients and healthy

subjects

The respiratory flow signal is pre-processed to reduce artefacts and thus ensure robust

signal analysis. Outlier and short-duration spike artefacts are detected and reduced

using the techniques described in Chapter 5. In a few patients, short gaps (< 1 s)

with missing samples occurred due to uncontrolled movements of the patients during

acquisition. To include these recordings in the analysis, interpolation based on AR

signal modelling is used to fill in the gaps [4] and [118].

Respiratory pattern characterization is based on the envelope of the respiratory

flow signal, which is extracted using the Hilbert transform without any previous

knowledge of the frequency and phase [85]. Due to the oscillatory nature of respira-

tory flow signals, AR modelling is employed for spectral analysis. Therefore, the mean

value of the envelope is subtracted and AR modelling is performed on the envelope

signal. It is essential to have high spectral resolution in the vicinity of the modu-

lation peak, and therefore the optimum order is determined in each subject using

the minimum description length criterion [131]. Then, the maximum of the resulting

model order estimates is selected and used as a global model order in the subsequent

signal analysis. The Ljung–Box statistical test is applied to prove the whiteness of

the prediction error.

6.3.1 Parameter extraction

The most discriminative differences between groups of subjects are observed around

the envelope’s frequency peak. Thus, we defined the discriminant frequency band

(DB) as the frequency interval (∆f ) centred at the modulation frequency peak (fp).
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Various spectral parameters are extracted from the DB, to characterize the respira-

tory pattern’s modulation in the frequency domain. The investigated set of parame-

ters comprise the radius of a complex conjugate pole pair (r) and various spectral pa-

rameters, which are listed in Table 6.1 and extracted from the discriminant frequency

band (DB). Fig. 6.2 displays the spectral parameters that involve the power (P ), right

side power (PR), left side power (PL), slope (S) and kurtosis measure (K) of the DB.

The respiratory frequency of the 61 subjects in the dataset is found to range from

0.2 to 0.4 Hz, whereas the modulation frequency ranges from 0.01 to 0.04 Hz [66].

Consequently, the modulating frequency peak (fp) is tracked around 0.005 to 0.05

Hz. After a study of the PSD presented by different patients and healthy subjects, the

frequency interval is fixed to ∆f = 0.02 Hz. Fig. 6.3 shows an example of the differ-

ent discriminant bands presented by CHF patients with different breathing patterns

(CSR, PB without apnea, nPB) and a healthy subject. Each subject is characterized

by these spectral parameters extracted from the discriminant frequency band (DB),

and by the AR coefficients and the two complex conjugate pole radii.

6.3.2 Data analysis

The accuracy of our pattern characterization is evaluated using linear discriminant

analysis for the following three classification problems: CHF patients versus healthy

subjects, nonperiodic breathing patients versus healthy subjects, and CHF patients with ei-

ther periodic or nonperiodic breathing.

Firstly, a statistical analysis of the parameters is performed for each classification.

Secondly, the p-value of the most statistically significant parameters is estimated

for every classification by means of the Mann-Whitney test. Thirdly, a parameter

selection process is implemented over the previously evaluated significant parameters
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Table 6.1 Parameter description

P Power in the discriminant band [fp−∆f/2, fp+ ∆f/2]

PR Power in the “right band” [fp, fp+ ∆f/2]

PL Power in the “left band” [fp−∆f/2, fp]

S Slope from fp to “right band” end

K Kurtosis measure

ai AR coefficients i= 1 to 4

ri Poles radii i= 1,2

fp : Frequency peak
∆f : Frequency interval

Figure 6.2 Parameters extracted from the discriminant band of the power
spectral density.
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Figure 6.3 Discriminant band (DB) of a CSR patient, a PB patient without
apnea, an nPB patient, and a healthy subject.

to select the most relevant subset. The leave-one-out cross-validation technique is

applied to the whole optimization process, due to the limited number of CHF patients

(26 CHF patients and 35 healthy subjects).

6.3.3 Results

Table 6.2 presents the mean and the standard deviation of the most relevant pa-

rameters for each group of patients and the healthy subjects. Table 6.3 shows the

p-value of the most statistically significant parameters. Fig. 6.4 illustrates the statis-

tical distribution of the most significant non-correlated parameters (power P , slope

S, kurtosis K and main pole radius r1) in healthy subjects versus CHF patients, in

healthy subjects versus nPB patients, and in PB versus nPB patients. The mean of
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the P , S, K and r1 values in CHF patients is higher than in healthy subjects. PB

patients show higher P , S, K and r1 values than nPB patients, since the respiratory

peak is much higher and sharper in PB patients and highest in CSR patients.

Table 6.2 Mean and standard deviation of P , PR, PL, S, K and r1 for
each group of subjects

P ∗ P ∗R P ∗L

Healthy 0.91±0.11 0.04±0.06 0.05±0.06

CHF 1.6±2.4 0.7±0.1 0.9±1.4

PB 4.1±3.3 1.8±1.4 2.3±1.9

nPB 0.6±0.5 0.3±0.2 0.3±0.3

S∗ K r1

Healthy 0.06±0.06 2.22±0.79 0.61±0.10

CHF 10±26 3.91±2.85 0.77±0.14

PB 33±41 5.74±3.78 0.89±0.08

nPB 0.85±0.96 3.13±2.01 0.73±0.14

* The values have been divided by 108 for ease of legibility

The behaviour of CHF patients with periodic breathing patterns is studied by

analysing their envelope’s PSD, which is parametrically calculated through AR mod-

elling. We also study the radii of the two complex conjugate poles that define the AR

model, and the envelope’s autocorrelation.

A clear frequency peak centred between 0.005 and 0.03 Hz can be observed in the

PSD of Figs. 6.5 and 6.6. The main pole radius is close to the unit circle that reflects
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oscillation, and both show periodicity in their autocorrelation functions.

However, modulation is clearer in CSR patients, since they present a powerful fre-

quency peak and the main pole is next to the unit circle. The power of the frequency

peak presented by the nonperiodic breathing patient is considerably lower than the

previous PB patterns (Fig. 6.7). The healthy subject presents the least powerful peak

(Fig. 6.8), in which the main poles are closer to the origin and the autocorrelation

shows no clear periodicity.

Table 6.3 p-value of the most statistically significant parameters for
each classification

p-value CHF vs. nPB-CHF vs. PB vs. nPB

Healthy Healthy (CHF)

P 4.3 ·10−9 7.3 ·10−7 6.8 ·10−4

PR 1.3 ·10−8 2.4 ·10−6 4.6 ·10−4

PL 3.2 ·10−9 5.2 ·10−7 1.4 ·10−3

S 9.0 ·10−10 1.3 ·10−7 3.1 ·10−4

K 4.7 ·10−6 5.2 ·10−4 1.3 ·10−2

r1 5.4 ·10−6 7.3 ·10−4 4.1 ·10−3

Fig. 6.9 shows the PSD of the groups of patients and healthy subjects. The

power of the frequency peak is much higher in CHF patients with PB than in healthy

subjects and is highest in CSR patients. Notable differences in the frequency peak

position are shown by the patient groups, since the CSR patients’ modulation peak

is clearly right shifted, which reflects a higher modulation frequency.
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Figure 6.4 Normalized distribution of the most significant non-correlated
parameters P , S, K and r1 selected for each linear classification: (a, b, c, d)
CHF patients versus healthy subjects, (e, f, g, h) nPB patients vs. healthy
subjects, and (i, j, k, l) PB vs. nPB patients.
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Figure 6.5 (a) The pre-processed flow signal and its envelope, (b) the PSD,
(c) the poles of the autoregressive model, and (d) the autocorrelation signal
of a patient with Cheyne-Stokes respiration (CSR).
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Figure 6.6 (a) The pre-processed flow signal and its envelope, (b) the PSD,
(c) the poles of the autoregressive model, and (d) the autocorrelation signal
of a patient with periodic breathing without apnea.
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Figure 6.7 (a) The pre-processed flow signal and its envelope, (b) the PSD,
(c) the poles of the autoregressive model, and (d) the autocorrelation signal
of a patient with nonperiodic breathing (nPB).
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Figure 6.8 (a) The pre-processed flow signal and its envelope, (b) the PSD,
(c) the poles of the autoregressive model, and (d) the autocorrelation signal
of a healthy subject.
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Figure 6.9 PSD of the subjects: (a) CSR patients, (b) PB patients, (c)
nPB patients, and (d) healthy subjects.
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6.3.4 Performance evaluation

Table 6.4 illustrates the results obtained by applying LDA with the most discrimi-

nant parameter for each classification. In general, the best classification results are

obtained with parameters related to the spectral power, and with the radius of the

main pole. An accuracy of 85.5% and 85.2% is obtained in the classification of CHF

patients versus healthy subjects and nPB patients versus healthy subjects, respec-

tively. Similar results have been observed with PL and PR. The ROC curves of

the most statistically significant parameters are also studied for each classification.

Fig. 6.10 and Table 6.5 present the ROC curve and the area under the curve (AUC),

respectively for the three classifications. The AUC values validate the results ob-

tained in all classifications with leave-one-out cross-validation. Similar performance

is obtained with power-related parameters. The accuracy slightly decreases with the

radius of the main pole.

Table 6.4 Sensitivity (Sn), specificity (Sp), and total accuracy (Acc) ob-
tained with the best parameter for each classification using leave-one-out
cross-validation

Classifications Parameter Sn Sp Acc

CHF vs. Healthy P 85.2% 85.7% 85.5%

nPB-CHF vs. Healthy P 84.2% 85.7% 85.2%

PB vs. nPB (CHF) r1 87.5% 79.0% 81.5%
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Table 6.5 Area under the curve (AUC)

CHF vs. nPB-CHF vs. PB vs. nPB

Healthy Healthy (CHF)

P 93.8% 91.1% 92.1%

PR 92.4% 89.2% 93.4%

PL 94.1% 91.7% 89.5%

r1 83.9% 78.0% 85.5%

(a) (b) (c)

Figure 6.10 ROC curves of the most significant parameters: power-related
parameters (P , PL, PR) and main pole radius r1 in the classification of (a)
CHF patients vs. healthy subjects, (b) nPB patients vs. healthy subjects,
and (c) PB vs. nPB within the CHF patients.
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6.4 Time-varying respiratory pattern in CHF pa-

tients and healthy subjects

In our first studies, we assumed stationarity in the respiratory flow signal and char-

acterized the relevant frequency band that was determined by the modulation fre-

quency peak extracted from the respiratory flow envelope signal’s power spectrum [38]

and [39]. However, it has been reported [66] that the same patient could presents a

mixture of breathing patterns, ranging from nonperiodic breathing (with no cyclic

modulation of ventilation) through to mild PB and CSR patterns. Conventional

spectral analysis assumes stationarity in the signal and is therefore unable to identify

pattern changes. One way to overcome this disadvantage could be to permit the AR

coefficients to be time-varying. This method is called time-varying autoregressive

modelling (TVAR).

We cannot assume that the parameters are arbitrarily time-varying, since the pa-

rameter estimation problem would be severely underdetermined, with an infinity of

parameter evolutions that yield vanishing prediction errors. Such parameter evolu-

tions are clearly meaningless. One approach to make the estimates meaningful is to

assume that the parameter evolution is either slow, smooth or both. There are two

approaches to solving the TVAR problem. The stochastic approach, which is based

on the recursive estimation of the time-varying coefficient evolution, and the deter-

ministic regression approach, which constrains the temporal evolution of the model

coefficients so that it is characterized by a linear combination of a set of basis func-

tions with appropriate properties [139]. The stochastic approach is widely used in

biomedical signal processing [80] and [140]. These methods are also called adaptive

methods, and the most popular algorithms are the least mean square, the recursive



6.4 Time-varying respiratory pattern in CHF patients and healthy subjects 171

least square and the Kalman filter.

The respiratory flow pattern might present some slowly changing spectral proper-

ties [66]. Thus, one of our main aims is to analyse changes in the respiratory pattern in

CHF patients and healthy subjects. For this purpose, we characterize the behaviour

of the respiratory envelope signal by means of a TVAR model. The characterization

involves both spectral and temporal parameters that are extracted from the power

spectrum for each time sample.

6.4.1 Time-varying spectral estimation

A TVAR estimate is used to model the respiratory pattern modulation, assuming that

there are slow changes in its spectral properties. Thus, the envelope of the respiratory

flow signal is analysed by the following TVAR model

x̂(n) =−
p∑

k=1
ak(n)x(n−k) +u(n) (6.1)

where u(n) denotes zero-mean white noise, ak(n) for k = 1,2, · · · ,p are the AR coef-

ficients, p the model order and x̂(n) is the prediction of the envelope signal provided

by the AR model. In addition to the AR coefficients, the input noise u(n) is also

assumed to be time-varying with variance σu(n)2. Hence, the PSD of a time-varying

process at each time n is given by

P̂x AR(ejω,n) = σu(n)2∣∣∣1 +∑p
k=0ak(n) · e−jωk

∣∣∣2 . (6.2)

Time-varying AR coefficients are determined through an adaptive method that is

based on the recursive least squares (RLS) algorithm. The basics of this method are

reviewed below.
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Recursive least squares

In recursive implementations of the least squares method, the initial conditions are

computed and the information contained in the new data is then used to update

the old estimates. Thus, the length of the observed data sequence is variable. We

introduce the cost function to be minimized as C(n) Eq. (6.3), where n is the variable

length of the observed data and e(i) is the prediction error. We introduce a weighting

factor (β(n,i)) in the definition of the cost function.

C(n) =
n∑
i=1

β(n,i) · |e(i)|2 . (6.3)

The prediction error defined in Eq. (5.45) assumes stationarity, but in this non-

stationary scheme the prediction error is described by

e(i) = x(i)− x̂(i) = x(i) +
p∑

k=1
ak(i) ·x(i−k) (6.4)

where p is the order of the model, x(i) the desired output, x̂(i) the predicted se-

quence, and ak(i) are the time-varying AR coefficients defined at time i as ATk (i) =

[a1(i),a2(i), · · · ,ak(i)]. The weighting factor satisfies 0<β(n,i)≤ 1, for i= 1,2, · · · ,n.

The role of the weighting factor is to ensure that data in the distant past are forgot-

ten, so that the statistical variations of the observed data can be followed when the

model operates in a nonstationary environment. A frequent form of weighting is the

exponential weighting factor, defined by

β(n,i) = λn−i, i= 1,2, · · · ,n (6.5)

where λ, commonly known as the forgetting factor, is a constant that is close to, but

less than, unity. The inverse of the forgetting factor 1−λ is defined as a measure

of the memory of the algorithm. When λ = 1, it corresponds to the ordinary least
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square method. According to this forgetting factor, we minimize the following cost

function

C(n) =
n∑
i=1

λn−i · |e(i)| (6.6)

The optimum value of the time-varying AR coefficient vector Ap(n), for which the

cost function reaches its minimum value, is defined by the normal equations. This

can be expressed in terms of matrices by Rx(n) ·Ap(n) = rx̂x(n), where rx̂x(n) is the

cross-correlation between the desired signal and the predicted one. The coefficients

that minimize the cost function at the time sample n are found by solving this ex-

pression. A recursive solution of the form Ap(n) =Ap(n−1)+∆Ap(n−1) is derived,

where ∆Ap(n−1) is a correction factor at time n−1. The cross-correlation rx̂x(n) is

expressed in terms of rx̂x(n−1) by

rx̂x(n) = rx̂x(n−1) +x(n) · x̂∗(n) (6.7)

where x̂∗ is the conjugate of x̂. Similarly, Rx(n) is expressed in terms of Rx(n− 1)

by

Rx(n) =Rx(n−1) + x̂(n)∗ · x̂T (n). (6.8)

To generate the AR coefficient’s correction factor at time n−1 ∆Ap(n−1), the inverse

of the autocorrelation matrix is computed by applying the matrix inversion lemma

or Woodbury’s identity [141], [142] and [143].

The predicted error (the difference between the observed data sequence x(n) and

the predicted sequence x̂(n)) is weighted by an exponential window that moves with

the data. It provides a better estimate of the model coefficients and better tracking of

the time-varying signals. This recursive algorithm updates the AR coefficient vector

for each new sample (Fig. 6.11).
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Figure 6.11 Time-varying autoregressive modelling process by means of
recursive least squares.

Note that the performance of this algorithm depends on the choice of the forgetting

factor λ ∈]0,1], which controls the length of the prediction error and therefore the

amount of memory in the model. Small values of λ imply high potential variability of

the AR coefficients, while high values between (0.9 - 0.99) are usually more relevant

in practice.

The forgetting factor that minimizes the least square error between the predicted

envelope and the real one is selected from the recommended λ range [80].

On average, a value of 0.975 is obtained for CHF patients healthy subjects. According

to the results obtained in the stationary case, a 4th order TVAR is optimized for the

time-varying characterization of the respiratory pattern. (In the stationary case, the

global AR model order is found to be 4. When the Ljung–Box test is applied, the

residuals of all 61 signals are found to be whitened by the global AR model.)

The time-varying PSD is estimated by computing the PSD at successive time in-

tervals from the estimated AR coefficients. Fig. 6.12 displays the time-varying power

spectrum of each CHF patient group (PB, nPB and CSR patient) and a healthy sub-
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ject. The most striking feature of these diagrams is the temporal evolution of the

modulation frequency peak.

6.4.2 Time-varying parameter extraction

In addition to the AR coefficients and the two complex conjugate pole radii, the

spectral parameters described in Table 6.6 and presented in Fig. 6.13 are extracted

from the discriminant frequency band (DB(n)), but are know for each time sample n.

Table 6.6 Time-varying parameter description

fp(n) Frequency peak at each time sample

P (n) Power in the DB at each time sample

PR(n) Power in the “right band’ at each time sample

PL(n) Power in the “right band’ at each time sample

S(n) Slope at each time sample

K(n) Kurtosis at each time sample

ai(n) AR coefficients at each time sample, for i= 1 to 4

ri(n) Poles radii at each time sample, for i= 1,2

The whole parameter set would characterize the behaviour of the respiratory pat-

tern at each time sample. To identify the most frequent pattern presented by each pa-

tient and healthy subject, the statistical distribution is evaluated for each time-varying

parameter. Table 6.8 summarizes the different parameters and their statistics: mean

(m), standard deviation (s), interquartile range (I) and coefficient of variation (c).
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Figure 6.12 Time-varying power spectrum of (a) a CSR patient, (b) a PB
patient, (c) an nPB patient, and (d) a healthy subject.



6.4 Time-varying respiratory pattern in CHF patients and healthy subjects 177

Figure 6.13 Time-varying parameters extracted from the discriminant
band.

Table 6.7 Parameter description and statistics

fp; mfp, sfp, Ifp, cfp Frequency peak

P; mP, sP, IP, cP Power of DB

S; mS, sS, IS, cS Slope

K; mK, sK, IK, cK Kurtosis

ai; mai, sai, Iai, cai AR coefficients (i= 1, . . . ,4)

ri; mri, sri, Iri, cri Poles radii (i= 1,2)

6.4.3 Data analysis

Linear discriminant analysis is performed between 26 CHF patients and 35 healthy

subjects to study the accuracy of the pattern characterization. The following clas-
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sifications are carried out: CHF patients versus healthy subjects, nPB patients ver-

sus healthy subjects and an internal CHF patient classification of PB versus nPB.

Through the statistics extracted from each parameter distribution, feature selection is

applied to the statistically significant parameters, to select the most discriminant sub-

set using leave-one-out cross-validation.

6.4.4 Results

Table 6.8 presents the mean and the standard deviation of statistically significant

parameters for each group of patients and healthy subjects. Table 6.9 shows the

p-value of these parameters using the Mann-Whitney test.

Table 6.8 Mean and standard deviation of mP , mK, mS, mr1, ca1, cK,
cP and cS for each group of subjects

mP ∗ mK mS∗ mr1

Healthy 1.24±4.82 3.65±6.26 4.0±16.7 0.62±0.08

CHF 1.30±1.79 5.40±6.25 22.0±6.1 0.77±0.11

PB 2.80±2.74 10.36±9.91 72.2±97.6 0.85±0.11

nPB 0.64±0.37 3.31±1.67 0.88±1.38 0.73±0.09

ca1 cK cP ∗ cS∗

Healthy 0.11±0.07 0.34±0.71 0.08±0.11 0.10±0.14

CHF 0.19±0.14 1.62±2.59 0.58±0.99 5.93±20.32

PB 0.32±0.17 3.41±4.15 1.39±1.54 19.0±35.8

nPB 0.13±0.09 0.86±0.96 0.24±0.27 0.42±0.83

*The values have been divided by 104 for ease of legibility
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Table 6.10 presents the classification results with the most discriminative param-

eters. High accuracy is obtained with a single parameter in all classifications. These

results improve slightly when a second parameter is added. Similar results have been

observed with the statistics of the other parameters: mK, cK, cS, mS, and cP .

Fig. 6.14 presents the ROC curve and the AUC for the three classifications.

(a) (b) (c)

mP : 83.1% mP : 83.1% mP : 83.1%

mr1: 88.0% mr1: 88.0% mr1: 88.0%

mK: 81.5% mK: 78.2% cP : 90.1%

cK: 81.8% cK: 76.5% cS: 92.8%

cS: 82.9% cS: 76.1% mS: 87.5%

Figure 6.14 ROC curves of the most significant parameters: (a) CHF
patients vs. healthy subjects, (b) nPB patients vs. healthy subjects, and (c)
PB vs. nPB within the CHF patients.
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Table 6.9 p-value of the classifications: CHF patients versus healthy sub-
jects, nPB patients versus healthy subjects, and within the CHF patients,
PB versus nPB

mP mK mS mr1

CHF vs. Healthy 9.1 ·10−6 2.4 ·10−5 6.8 ·10−5 3.3 ·10−7

nPB(CHF) vs. Healthy 4.5 ·10−4 0.01 0.03 2.7 ·10−5

nPB vs. PB (CHF) 0.03 0.02 0.002 0.013

ca1 cK cP cS

CHF vs. Healthy 0.02 1.9 ·10−5 1.44 ·10−5 1.04 ·10−5

nPB(CHF) vs. Healthy n.s. 0.01 0.02 0.02

nPB vs. PB (CHF) 0.001 0.03 0.001 0.001

Table 6.10 Sensitivity (Sn), specificity (Sp), and total accuracy (Acc)
obtained with the best parameters for each classification using leave-one-out
cross-validation

Classifications Best Features Sn Sp Acc

CHF vs. mr1 74.1% 88.6% 82.3%

Healthy mr1 +mP 74.1% 91.4% 83.9%

nPB-CHF vs. mr1 73.7% 82.9% 79.6%

Healthy mr1 +mP 79.0% 85.7% 83.3%

PB vs. ca1 75.0% 89.5% 85.2%

nPB (CHF) ca1 +mP 75.0% 94.7% 88.9%
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6.5 Conclusion

This chapter introduces envelope-based respiratory pattern characterization of CHF

patients and healthy subjects. We study respiratory pattern periodicity as a risk index

by means of characterization of the respiratory flow signal envelope. Our previous

studies [38] and [39] introduced the fact that respiratory periodicity could be detected

from the envelope of the flow signal using time-frequency analysis. This method could

be used to discriminate respiratory patterns in CHF patients. To extend this work,

which only studied CHF patients, in this study we derive various parameters from the

time-frequency characterization of the envelope and use these parameters to identify

different respiratory patterns in CHF patients and healthy subjects.

One advantage of this study is that an outlier removal pre-processing stage pre-

pares the respiratory flow signals for robust envelope extraction. Although different

methods have been tried to extract the respiratory flow envelope, the one based on

the Hilbert transform performed best in our study.

The main goal of this study is to identify and characterize respiratory patterns

derived from subjects with periodic or nonperiodic breathing. Although statistically

significant differences are found for a variety of parameters, the best cross-validated

discrimination between them was in general achieved with the power evaluated over

the discriminant band.

Power-related parameters achieve the best results in all the classifications per-

formed with healthy subjects and CHF patients, which includes patients with periodic

breathing patterns with and without apnea, and patients with nonperiodic breath-

ing patterns. However, the main pole radius produces good results when periodic

and nonperiodic breathing patterns are classified in CHF patients. The ROC curves
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validate the results for the identification of different respiratory patterns.

In addition, time-varying AR modelling is proposed to characterize the temporal

evolution of respiratory flow signal patterns. The time-variant AR coefficients, pole

radius, and various spectral parameters can be used to study changes in patterns

and to classify CHF patients and healthy subjects. The statistical distribution is

evaluated for each parameter, to identify the predominant respiratory pattern. After

feature selection, the percentage of subjects who are correctly classified with the mr1

(mean of the main pole radius) and the mP (mean of the DB power) is 83.9%, with

74.1% of sensitivity and 91.7% of specificity when CHF patients are classified versus

healthy subjects, and 83.3%, with 79.0% of sensitivity and 85.7% of specificity when

nPB patients are classified versus healthy subjects. The parameters mP and the

ca1 (coefficient of variation of the first AR coefficient), which are selected as the most

discriminant in the classification of PB and nPB within CHF patients, result in 88.9%

of patients who are well-classified with 75.0% of sensitivity and 94.7% of specificity.

The ROCs validate the results obtained in all classifications with leave-one-out cross-

validation.

These results indicate that power-related parameters and the main pole position

of the respiratory envelope signal are powerful indices for the identification of periodic

breathing. Additionally, time-varying modulation of the flow envelope signal can be

used to accurately characterize the temporal evolution of respiratory patterns. The

significance of our results needs to be further established using a larger dataset.



Chapter 7

Correntropy-based respiratory

pattern analysis

Natural processes that are of interest for engineering have two basic characteristics:

a statistical distribution of data and a time structure. Time itself is fundamental

to many real-world problems and random variables are hardly ever independently

distributed. A number of methods are based on studying the statistical distribution,

and ignore the time structure. Other methods only focus on quantifying the time

structure. An accurate description of a stochastic process requires information about

its distribution and its time structure. A single measure that includes both char-

acteristics would greatly enhance the theory of stochastic random processes. Thus,

Santamaria et al. [81] recently introduced a generalization of the correlation function

for stochastic processes, called correntropy. The advantage of this new measure is that

it contains information on both the statistical distribution and the time structure of

the underlying dataset, simultaneously.

Second-order statistics in the form of correlation and the mean square error (MSE)

183
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are probably the most widely utilized methods for quantifying the similarity between

two random variables [82]. However, the optimality of these methods is limited by

the Gaussianity and linearity of the data. Therefore, autocorrelation and power

spectrum algorithms only characterize second-order statistics. In many applications

where non-Gaussianity and nonlinearities are present, these second-order statistical

methods might fail to provide all the relevant information about the signals under

study.

In the literature, kernel-based techniques, such as support vector machines [144],

kernel principal component analysis [145], kernel Fisher discriminant analysis [146],

and kernel canonical correlation analysis [147] and [148], represent a major develop-

ment in machine learning. This is mainly because kernel methods exploit information

about the inner products between data items. The use of kernel methods makes cor-

rentropy computationally efficient, since it can be computed directly from the data.

Another property of the correntropy function is its robustness against impulsive noise.

Correntropy has been successfully applied to signal processing and machine learn-

ing problems, such as blind equalization [81], minimum average correlation energy

filter [149], principal component analysis [150] and others.

This chapter introduces the correntropy measure and a number of functions that

are derived from it, such as centred correntropy and correntropy spectral density.

Correntropy involves information on higher-order statistics that can be expected to

facilitate the detection of respiratory nonlinearities. These nonlinearities cannot be

identified by conventional techniques based on second-order statistics. The aim of

this chapter is apply centred correntropy to the study of the respiratory flow signal in

chronic heart failure (CHF) patients with periodic breathing (PB) and nonperiodic

breathing (nPB) patterns. Thus, we define parameters that can improve prognosis
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and serve as indicators of patient condition. For this purpose, we work with the

datasets of CHF patients and healthy subjects that were presented in Chapter 1.

7.1 Correntropy: definition

The correlation function is probably the most widely utilized similarity measure.

However, as it only considers second-order statistics, its success depends on the as-

sumption of the Gaussianity of the variables. Inspired by information theoretical

learning (ITL), a new localized similarity measure has recently been defined called

the generalized correlation function (GCF) or correntropy.

Correntropy is a localized similarity measure that is defined in terms of inner

products of vectors in a kernel feature space. It involves a positive definite kernel

function which implicitly transforms the original signal into a high dimensional re-

producing kernel Hilbert space (RKHS) [151] in a nonlinear way, and then efficiently

calculates the generalized correlation in that RKHS. The inner product, as a natural

way of norm or similarity measure, reflects the interaction between vectors in the

feature space. These vectors are separated by a time delay in the input space. As

correntropy is directly related to Renyi’s quadratic entropy calculated through Parzen

windowing [152], it provides information about statistical distribution in the input

space. The ability to reflect nonlinear characteristics of the signal makes correntropy

a well-qualified candidate for the characterization of nonlinear dynamics.

Correntropy is a positive definite kernel function that implicitly transforms the

original signal into a high dimensional space in a nonlinear way, and efficiently cal-

culates the generalized correlation in that space.

In addition to the time structure, it adds statistical distribution information that
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consists of information about higher order moments of the probability density func-

tion. As it is not restricted to second-order statistics, correntropy is very useful in

non-Gaussian signal processing.

Correntropy transforms component-wise data to the feature space by φ(·) and

then calculates the correlation. Therefore, it can be presented as an inner product in

the feature space as V (x,y) =E[φ(x)φ(y)]. This inner product permits generalization

of the correlation to the nonlinear case by means of different kernel functions. The

kernel function κ, maps the data of the input space into the feature space. If the

kernel is positive definite and satisfies Mercer’s conditions [97] and [153], the inner

product in the feature space satisfies κ(x,y) = φ(x)φ(y). This idea enables us to

obtain nonlinear versions of any linear algorithm expressed in terms of inner product.

There is no need to know the mapping function φ(·) explicitly, as only the kernel

function κ(·, ·) is required. This makes it easier to calculate the correntropy directly

from the data.

7.2 Correntropy: estimation

For a discrete-time, strictly stationary stochastic process x(n), n = 0, . . . ,N − 1, in

which N is the number of samples, the correntropy function V (m) is defined as [81]

and [154]

V (m) = E[κ(x(n),x(n−m))], (7.1)

where E[·] is the statistical expectation operator, κ(·) is a symmetric, positive definite

kernel function, and N is the number of samples.

In the literature, sigmoidal, Gaussian, polynomial, and spline kernels are among

the most commonly used symmetric positive definite kernel functions. They are
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applied in diverse areas such as machine learning, function approximation, density

estimation, and support vector machine classification [144] and [155]. The Gaussian

kernel function that is applied in the present study is given by

κ(x(n),x(n−m)) = 1√
2πσ

exp
[
−(x(n)−x(n−m))2

2σ2

]
, (7.2)

where σ is referred to as the kernel size (“standard deviation”).

When the Taylor series expansion is applied to the Gaussian kernel, we can rewrite

the correntropy function as

V (m) = 1√
2πσ

∞∑
k=0

(−1)k
2σ2kk!E

[
(x(n)−x(n−m))2k

]
, (7.3)

which contains all even-order moments of the random variable (x(n)−x(n−m)).

Different kernel functions would yield different expansions, but all the aforemen-

tioned kernel functions are nonlinear and therefore include higher-order statistical

information about the stochastic process.

The emphasis given to higher-order moments is controlled by σ. In this study, σ

is determined by Silverman’s rule of density estimation [156]:

σ = 0.9AN−1/5, (7.4)

where A is the smaller value of the standard deviation of data samples and the data

interquartile range scaled by 1.34, and N is the number of samples. This rule is simple

to apply and is known to produce reasonable values with scalar signals, such as flow

signals. As σ increases, the high-order moments decay and the second-order moments

tend to dominate. In fact, for kernel size values that are 10 times higher than the

size suggested by Silverman, correntropy starts to approach correlation [149].
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7.3 Centred correntropy

The mean of the transformed data is subtracted in the centred correntropy function

Vc(m), to reduce the effect of output DC bias [154] and [149]. This function is

defined by

Vc(m) = Ex(n)x(n−m)[κ(x(n),x(n−m))]−Ex(n)Ex(n−m)[κ(x(n),x(n−m))] (7.5)

where Ex(n)Ex(n−m)[κ(x(n),x(n−m)] is the square mean of the transformed data

and corresponds to the correntropy mean value (V ), which can be estimated through

the kernel function from the original data as

V = 1
N2

N∑
n=1

N∑
m=n+1

κ(x(n),x(n−m)) (7.6)

Note that correntropy is the joint expectation of κ(x(n),x(n−m)), while centred cor-

rentropy is the difference between the joint expectation and the product of marginal

expectations of κ(x(n),x(n−m)). The results are therefore based on centred corren-

tropy, which is estimated by V̂c(m) = V̂ (m)−V .

Correntropy modification

The flow signals sometimes contain missing samples or become saturated. Such sam-

ples must be discarded from subsequent analyses, as they do not reflect respiratory

activity (as described in Chapter 5). However, samples that are to be discarded are

easily detected, and are here represented by the binary function g(n), defined by

g(n) =


1 existing,

0 discarded.
(7.7)
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Information on discarded samples is introduced in the correntropy estimator in a way

similar to that of the sample estimator of the correlation function [119]. Hence, the

sample estimator of V (m) in (7.1) is given by

V̂ (m) = 1
U(m)

N∑
n=m

κ(x(n),x(n−m))g(n)g(n−m), (7.8)

where

U(m) =
N∑

n=m
g(n)g(n−m). (7.9)

In addition to the aforementioned signal problems, a variety of other artefacts are

observed in flow signals. In general, these problems call for various pre-processing

algorithms that condition the acquired signal (see Chapter 5). One great advantage

of correntropy is its robustness against impulsive noise, as the Gaussian kernel makes

κ(x(n),x(n−m))≈ 0 when either x(n) or x(n−m) is an outlier. Due to this property,

the results of this research are obtained without any kind of pre-processing.

7.4 Correntropy: properties

Some important properties of correntropy are presented below [82]. These properties

consider a discrete-time, strictly stationary stochastic process x(n). Note that the

properties are also satisfied for continuous-time processes.

• Property 1: considering x(n) ∈ < and n ∈ T where T is an index set, for

any symmetric positive definite kernel (i.e. the Mercer kernel) κ(x(n),x(n−m))

defined on < x <, the correntropy defined as V (m) = E [κ(x(n),x(n−m))] is a

reproducing kernel, RKHS.

• Property 2: V (m) is a symmetric function V (m) = V (−m).
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• Property 3: V (m) reaches its maximum at the origin, with a maximum value

of V (m)≤ V (0), ∀m.

• Property 4: V (m)≥ 0 and V (0) = 1/
√

2πσ.

• Property 5: if the samples x(n), n = 0, . . . ,N −1 are drawn independently and

identically distributed according to some unknown (but fixed) probability distri-

bution of the samples in the process, then the mean value of the correntropy con-

verges asymptotically to the estimate of information potential obtained through

Parzen windowing with Gaussian kernels.

• Property 6: given V (m) for m = 0, · · · ,p− 1, then the correntropy matrix of

dimensions p×p is Toeplitz and positive definite [136], [128].

V=



V (0) V (−1) · · · V (−p)

V (1) V (0) · · · V (−p+ 1)
... ... ... ...

V (p) V (p−1) · · · V (0)


This property opens up the possibility of applying the new function to all the

signal processing methods that use conventional correlation matrices: signal

and noise subspace decompositions, projections, etc. In particular, we defined

a generalized power spectral density.

• Property 7: If we consider x(n) ∈ <, n ∈ T , then we have a discrete-time,

wide-sense stationary zero-mean Gaussian process with autocorrelation function

r(m) = E(x(n)−x(n−m)). The correntropy function for this process is given
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by

V (m) =


1√
2πσ m= 0

1√
2π(σ2+σ2(m)

m 6= 0
(7.10)

where σ is the kernel size and σ2(m) = 2(r(0)− r(m)).

7.5 Correntropy spectral density

Similar to the conventional correlation function, the correntropy function is positive

definite and therefore lends itself to use in many signal processing techniques. Since

we are particularly interested in exploring the spectral properties of respiratory flow

signals, correntropy spectral density (CSD) is introduced, which is a generalization

of the conventional PSD [81]. The CSD is based on the Fourier transform of the

correntropy function, i.e.

P̂ (ejω) =
N−1∑

m=−(N−1)
V̂c(m)e−jωm . (7.11)

As the flow signal is oscillatory in nature, with a spectrum that exhibits pro-

nounced peaks, nonparametric and parametric spectral analysis is applied. Periodogram-

based spectral analysis, such as the Welch and Blackman-Tukey methods described

in Chapter 5 are used. The autoregressive (AR) coefficients can be estimated from

the correntropy function using the Yule–Walker equations, or any other of the many

well-known estimation techniques [157]. This can be achieved because the corren-

tropy matrix, whose elements are defined by V̂c(m), is Toeplitz and positive definite,

as is the conventional correlation matrix [81]. Autoregressive spectral analysis offers
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better spectral resolution than periodogram-based spectral analysis.

In this research, it is essential to have high spectral resolution in the vicinity

of the respiratory and modulation peaks. Consequently, the following procedure is

adopted. First, the optimum order is determined for each subject using the mini-

mum description length criterion [131]. Then, the maximum of the resulting model

order estimates is selected and used as a global model order in the subsequent signal

analysis. This model order ensures that the data is represented correctly when the

prediction error is a white sequence. We apply a statistical test (Ljung–Box) to prove

the whiteness of the prediction error.

7.6 Parameter extraction

In the time domain, the respiratory pattern is characterized by the correntropy mean

V , i.e. Renyi’s entropy. In the frequency domain, the correntropy spectral density

mean and three parameters are derived from the two CSD frequency bands that are

centred either around the respiratory frequency (∆fr: the respiratory frequency band-

width) or the modulation frequency (∆fm: the modulation frequency bandwidth).

The modulation frequency of PB patterns typically ranges from 0.005 to 0.05 Hz.

Therefore, the modulation frequency peak (fpm) is located in this band with ∆fm =

0.02 Hz. The respiratory frequency peak (fpr) is tracked in the band from 0.2 to

0.4 Hz with ∆fr = 0.2 Hz. The individual powers of the two frequency bands, Pm and

Pr, their ratio R = Pm/Pr, and the correntropy spectral density mean P constitute

the four spectral parameters that were investigated (Table 7.1). These parameters

are derived from parametric and nonparametric CSD.
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Table 7.1 Parameter description

Parameter Description

Pm Power of the modulation frequency band

Pr Power of the respiratory frequency band

R Pm/Pr

V Correntropy mean or information potential

P Correntropy spectral density mean

7.6.1 Simulated data

The behaviour of the respiratory flow signal in PB patients often resembles that of

a signal subjected to amplitude modulation (AM). To illustrate certain properties of

the method’s performance, the following AM signal is studied

x(n) = (1 +µcos(ωmn))cos(ωcn), (7.12)

where fc = ωc/2π is the carrier frequency, fm = ωm/2π is the modulation frequency,

and µ ∈ [0,1] is the modulation index. Fig. 7.1 shows an example in which the char-

acteristics of the respiratory flow signal and the AM signal are quite similar.

7.6.2 Data analysis

The pattern characterization accuracy of the proposed parameters is evaluated in

terms of the following three classification problems: CHF patients with either PB

or nPB, CHF patients versus healthy subjects, and nPB patients versus healthy sub-

jects. Linear discriminant analysis is used to implement a parameter selection process
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Figure 7.1 (a) A respiratory flow signal acquired from a PB patient, and
(b) a simulated AM signal with 0.3 Hz carrier (“respiratory”) frequency, 0.02
Hz modulation frequency, and µ= 0.8.

that is based on leave-one-out cross-validation. Only the single most discriminative

parameter is considered for each classification.

7.7 Results

For the 61 subjects, the respiratory frequency is found to range from 0.2 to 0.4 Hz, and

the modulation frequency from 0.01 to 0.04 Hz. These frequency ranges are in good

agreement with those reported by Pinna et al. [66]. The flow signals are decimated

from 250 to 2 Hz, using null-phase antialiasing filtering, to account for the fact that

the frequencies of interest only range up to about 0.5 Hz. It is particularly important

to avoid oversampling when the AR spectral analysis is undertaken [85].
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In the AR approach, the global AR model order is found to be 30 when the

optimum order selection procedure is applied. When the Ljung–Box test is applied,

the residuals of all 61 signals except two are found to be whitened by the global AR

model. Within periodogram-based spectral analysis, Blackman-Tukey have provided

good spectral resolution using a Hamming window and 200 lags. The sole design

parameter of the method σ is determined by Silverman’s rule in (7.4) (referred to as

σopt), and is investigated for some deviating values (0.1∗σopt and 10∗σopt). To make

the figures comparable, the scales have been normalized to unity.

7.7.1 Simulated signals

Fig. 7.2 illustrates the performance of the aforementioned methods in terms of the

power spectrum of the AM signal. This figure shows that spectra based on corren-

tropy and correlation have very different characteristics. The main difference is the

location of fm. For correntropy-based spectra, fm is found in the baseband and fc is

accompanied by a number of harmonics. For correlation-based spectra, the peaks are

located at fm−fc, fc and fm+fc, respectively, as suggested by classical AM analysis.

Note that Blackman-Tukey’s method is unable to resolve the two peaks at fm− fc

and fm + fc (Fig. 7.2(e)); no harmonic pattern is present in the correlation-based

spectra. Thus, correntropy-based spectra has the advantage of exhibiting peaks at

the positions of fm and fc, which are easy to detect. The sideband peaks of the

correlation-based spectra can be difficult to detect as they tend to smear with the

respiratory peak at fc.
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Figure 7.2 (a) A simulated AM signal with 0.3 Hz carrier frequency, 0.02
Hz modulation frequency, and µ= 1, (b) its correntropy function and (c) its
correlation function. The CSD obtained with (d) Yule–Walker’s method and
(f) Blackman-Tukey’s method. The PSD obtained with (e) Yule–Walker’s
method and (g) Blackman-Tukey’s method.
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Fig. 7.3 illustrates the robustness of the correntropy technique by adding randomly

occurring impulsive noise to the AM signal analysed in Fig. 7.2. The modulation

peaks present in Fig. 7.2(e) can no longer be discerned in Fig. 7.3(e).

Figs. 7.4 and 7.5 show the performance of the centred correntropy by analysing

the same AM signal distorted by impulsive noise, with different kernel sizes (0.1σopt

and 10σopt, respectively). In both cases, the performance of the correntropy becomes

significantly worse. As σ increases, the higher-order moments influence decay and the

correntropy becomes more similar to the correlation signal. However, as σ decreases,

the higher-order moments become more relevant in the correntropy and more peaks

appear in the CSD, which makes it difficult to detect the respiratory and modulation

peak.
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Figure 7.3 (a) The simulated AM signal (0.3 Hz carrier frequency, 0.02
Hz modulation frequency and µ = 1) with some outliers randomly added,
(b) its correntropy function computed with σopt and (c) its correlation func-
tion. The CSD obtained with (d) Yule–Walker’s method and (f) Blackman-
Tukey’s method. The PSD obtained with (e) Yule–Walker’s method and (g)
Blackman-Tukey’s method.
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Figure 7.4 (a) The simulated AM signal (0.3 Hz carrier frequency, 0.02 Hz
modulation frequency and µ = 1) with some outliers randomly added, (b)
its correntropy function computed with 0.1σopt and (c) its correlation func-
tion. The CSD obtained with (d) Yule–Walker’s method and (f) Blackman-
Tukey’s method. The PSD obtained with (e) Yule–Walker’s method and (g)
Blackman-Tukey’s method.
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Figure 7.5 (a) The simulated AM signal (0.3 Hz carrier frequency, 0.02 Hz
modulation frequency and µ = 1) with some outliers randomly added, (b)
its correntropy function computed with 10σopt and (c) its correlation func-
tion. The CSD obtained with (d) Yule–Walker’s method and (f) Blackman-
Tukey’s method. The PSD obtained with (e) Yule–Walker’s method and (g)
Blackman-Tukey’s method.
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As shown in these figures, the selection of the kernel size has considerable influence

on the correntropy performance when the signal is contaminated with impulsive noise.

Since the respiratory flow signals contain a smaller amount of impulsive noise than

in the above simulation, the selection of kernel size is less critical.

7.7.2 Real Signals

Spectral analysis is also performed on signals from CHF patients (Figs. 7.6–7.8) and

a healthy subject (Fig. 7.9), to illustrate differences in respiratory patterns. The

respiratory peak is clearly visible in both types of spectra. The correntropy-based

spectra of the healthy subject (Fig. 7.9(d)) lacks a peak that corresponds to the mod-

ulation frequency, unlike the spectra of CHF patients. The PB patients present much

more prominent modulation peaks (Figs. 7.6(d) and 7.7(d)) than the nPB patients

(Fig. 7.8(d)). It is clear from these examples that the modulation frequency peak is

easily detected in correntropy-based spectra, but not in correlation-based spectra. In

fact, the latter type of spectrum does not even lend itself to sideband peak detection.
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Figure 7.6 (a) The respiratory flow signal of a CSR patient, (b) its cor-
rentropy function, and (c) its correlation function. The CSD obtained with
(d) Yule–Walker’s method and (f) Blackman-Tukey’s method. The PSD ob-
tained with (e) Yule–Walker’s method and (g) Blackman-Tukey’s method.
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Figure 7.7 (a) The respiratory flow signal of a CHF patient with PB, (b)
its correntropy function, and (c) its correlation function. The CSD obtained
with (d) Yule–Walker’s method and (f) Blackman-Tukey’s method. The PSD
obtained with (e) Yule–Walker’s method and (g) Blackman-Tukey’s method.
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Figure 7.8 (a) The respiratory flow signal of a CHF patient with nPB, (b)
its correntropy function, and (c) its correlation function. The CSD obtained
with (d) Yule–Walker’s method and (f) Blackman-Tukey’s method. The PSD
obtained with (e) Yule–Walker’s method and (g) Blackman-Tukey’s method.
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Figure 7.9 (a) The respiratory flow signal of a healthy subject, (b) its
correntropy function, and (c) its correlation function. The CSD obtained
with (d) Yule–Walker’s method and (f) Blackman-Tukey’s method. The PSD
obtained with (e) Yule–Walker’s method and (g) Blackman-Tukey’s method.
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7.7.3 Sensitivity to σ

The choice of σ is illustrated for an AM signal and a flow signal using the CSD,

Fig. 7.10. The σ-value was chosen with reference to the optimal value σopt given by

Silverman’s rule. For the AM signal, it is obvious that the power of the modulation

peak decreases as σ increases, i.e. 10σopt, whereas the power of the spurious harmonics

increases as σ decreases, i.e. 0.1σopt. When these three σ-values are considered, the

two peaks of interest are most easily detected for σopt. For the flow signal, similar

behaviour is observed, although the changes in spectral shape are less pronounced for

different values of σ than for the AM signal.

7.7.4 Performance evaluation

Table 7.2 presents the mean and the standard deviation of the most relevant parame-

ters for each group of patients and healthy subjects, and Table 7.3 shows the p-value

of each parameter for every classification.

Table 7.2 Mean and standard deviation of V and R for each group of
subjects *

V RY ule P Y ule RBlackman PBlackman

Healthy 0.12±0.05 8.4±8.4 0.61±0.24 6.9±2.0 2.39±0.89

CHF 0.04±0.02 9.2±4.9 0.21±0.08 9.3±5.7 0.85±0.30

PB 0.03±0.01 14.2±5.8 0.18±0.06 15.6±7.0 0.74±0.24

nPB 0.04±0.02 7.1±2.4 0.22±0.08 6.6±1.8 0.89±0.32

* The values have been multiplied by 100 for ease of legibility
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Figure 7.10 (a) A simulated AM signal and (b) a respiratory flow signal of
a PB patient. Their respective (c), (d) PSDs, (e), (f) parametric CSDs and
(g), (h) nonparametric CSDs evaluated all for the kernel values 0.1σopt, σopt,
and 10σopt.
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Table 7.3 p-value of the classifications: CHF patients versus healthy sub-
jects, nPB patients versus healthy subjects, and PB versus nPB within the
CHF patients

V RY ule P Y ule RBlackman PBlackman

CHF vs. Healthy 1.1 ·10−10 n.s. 1.0 ·10−10 n.s. 1.1 ·10−10

nPB(CHF) vs. Healthy 1.1 ·10−8 n.s. 8.9 ·10−9 n.s. 1.1 ·10−8

nPB vs. PB (CHF) n.s. 2.1 ·10−3 n.s. 2.0 ·10−4 n.s.

Table 7.4 Sensitivity (Sn), specificity (Sp) and accuracy (Acc) obtained
with the best parameter for each classification using leave-one-out cross-
validation

Classification Parameter Sn Sp Acc

CHF vs. Healthy V 96.3% 94.3% 95.2%

P 96.3% 94.3% 95.2%

nPB-CHF vs. Healthy V 94.7% 94.3% 94.4%

P 94.7% 94.3% 94.4%

PB vs. nPB (CHF) R 75.0% 94.7% 88.9%

Table 7.4 shows the classification results obtained when only the most discrimi-

native parameter is applied. The parameters derived from Blackman-Tukey and AR

modelling provide very similar classification results. The accuracy obtained with the

ratio (R) derived from the Blackman method RBlackman is slightly lower than that ob-

tained with the ratio derived from the AR modelling RY ule, (85.2% versus 88.9%). In

general, the best classification results have been obtained with power-related spectral
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parameters. However, the correntropy mean V and the correntropy spectral density

mean P provide similar results when they are used to classify patients versus healthy

subjects, and nPB patients versus healthy subjects (95.2% and 94.4%, respectively).

When PB and nPB patients are classified within the CHF group, only the power-

related spectral parameters are found to produce good results, with an accuracy of

88.9%.

Sensitivity to different values of σ is evaluated as described before for 0.1σopt,σopt,

and 10σopt, with respect to the three classification tasks and involving only the most

discriminative parameter. Fig. 7.11 and Table 7.5 present the ROC curve for the

three classifications. The choice of σ is not critical for the classification, as the area

under the ROC is essentially unchanged for the different values of σ. As shown in

Figs. 7.4 and 7.5, the selection of kernel size has considerable influence on corren-

tropy performance when the signal is contaminated with impulsive noise. Since the

respiratory flow signal does not contain as large an amount of impulsive noise as in

the above simulation, the selection of kernel size is less critical.

Table 7.5 Sensitivity of the kernel parameter σ in terms of the area under
the ROC obtained for the best parameter for each classification

Area under the ROC Parameter 0.1σopt σopt 10σopt

CHF vs. Healthy V 0.98 0.98 0.98

P 0.98 0.98 0.96

nPB-CHF vs. Healthy V 0.97 0.97 0.98

P 0.98 0.98 0.96

PB vs. nPB (CHF) R 0.70 0.88 0.90
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(a) (b) (c)

Figure 7.11 Sensitivity of the kernel parameter σ in terms of the area under
the ROC obtained for the best parameters in the classification of (a) CHF
patients vs. healthy subjects, (b) nPB patients vs. healthy subjects, and (c)
PB vs. nPB within the CHF patients.

7.8 Conclusion

This chapter investigates the use of correntropy for the spectral characterization of

respiratory patterns in CHF patients. In contrast to the conventional second-order

correlation function, the correntropy function accounts for higher-order moments and

is robust to outliers. As a result of the former property, respiratory and modulation

frequencies appear at their actual locations along the frequency axis in the CSD (see

Appendix A for an explanation of this property). Hence, correntropy circumvents

problems that may arise when the modulation frequency peak is identified directly

from the conventional PSD, due to insufficient spectral resolution. This problem is

illustrated for the simulated AM signal. In addition, the use of correntropy elimi-

nates the demodulation step, which was an integral part of our previous studies [38]

and [39], as described in Chapter 6. In those studies, respiratory periodicity was

detected from the envelope of the flow signal and various parameters were derived
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from its time–frequency representation and used in the classification of respiratory

patterns in CHF patients. Using a three-parameter procedure which involved the AR

coefficients, an accuracy of 84.6% was achieved in classifying PB and nPB patients.

Obviously, this result is inferior to the one achieved here, which had an accuracy

of 88.9%. While this improvement is perhaps not dramatic, it is still of importance

as the present classification is based on only one parameter instead of three. The

inferior result of the previous study was primarily due to difficulties in identifying the

modulation frequency.

Another attractive property of the correntropy function is its robustness against

outliers, which is explained by the fact that the inner product is computed via the

Gaussian kernel in the parameter space that tends to zero when outliers occur. Such

robustness is essential in the analysis of respiratory signals, since they are frequently

corrupted with noise and spike artefacts. In the present research, this property has

meant that the pre-processing required for outlier rejection in our previous stud-

ies [38] and [39] could be completely eliminated without impairing the classification

performance. Accordingly, the present method is considerably more efficient than our

previous methods, from a computational perspective.

The choice of σ is found to be uncritical, as rather large changes in value do

not greatly alter performance. Using Silverman’s rule, the performance in terms of

sensitivity and specificity remained essentially the same, even when the value was 10

times larger or 10 times smaller than the value given by the rule. However, a further

increase of σ causes the importance of higher-order moments to decay much faster, so

that correntropy approaches the second-order correlation, whereas a further decrease

in σ leads to meaningless spectral estimation.

The proposed method is very simple in structure, as σ constitutes the only design
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parameter. The model order, which would be treated as a design parameter by

some [158] and [85], was fixed for all subjects once it had been estimated from the

dataset. The chosen model order of 30 is, in fact, less critical as the classification

performance was virtually identical when orders between 25 and 35 were used.

The main goal of this research has been to identify CHF patients’ condition nonin-

vasively by characterizing and classifying respiratory flow patterns from patients with

PB and nPB. In general, the best results were achieved with CSD-related parame-

ters that characterize the power in ∆fm and ∆fr, i.e., Pm and R. These parameters

achieved the best results in all the classifications performed with CHF patients, in-

cluding CSR patients, PB patients without apnea, and nPB patients. It should be

noted that all patients, i.e. both PB and nPB, exhibit various degrees of periodicity

depending on their condition, whereas healthy subjects have no pronounced period-

icity.

Since patients with PB patterns exhibit a larger modulation peak in proportion

to the respiratory peak than nPB patients, the ratio between the power in the mod-

ulation band and the respiration band is a suitable parameter for classifying PB and

nPB patients. The promising classification results are explained by the fact that the

CSD provides a clearer-cut representation of the modulation peak than the PSD. In

general, CHF patients present an increased amplitude on ventilation, which is re-

flected in their respiratory flow signal. Since correntropy is based on the distance

between samples, the correntropy mean is higher in healthy subjects than in CHF

patients. Consequently, the mean of the spectral power that is based on correntropy

is higher in healthy subjects. Therefore, the correntropy mean and the correntropy

spectral density mean both provide excellent results in the classification of CHF and

healthy subjects, as well as of nPB patients and healthy subjects (CHF vs. healthy
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95.2%, and nPB vs. healthy 94.4%).

The main goal of most studies of breathing patterns in CHF patients differs from

the present one, as other studies have focused on the prediction of mortality, e.g.

by exploring the properties of heart rate variability with linear [159] and [160] and

nonlinear techniques [161]. Consequently, it is difficult to compare the present results

with those obtained in other studies.

The small size of the dataset is a limitation of the present study. Hence, al-

though the results are promising, their significance needs to be further established

using a larger set. As a consequence of the small size, we decided to investigate the

performance of single-parameter linear classification only.
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Chapter 8

Conclusions

This thesis research has mainly focused on the study and characterization of breathing

patterns through the respiratory flow signal of patients on weaning trials from me-

chanical ventilation, and patients with chronic heart failure (CHF). Different studies

have been developed to extract enhanced information about the respiratory pattern

and cardiorespiratory interactions, to improve the weaning outcome in patients with

mechanical ventilation and to help in the diagnosis of patients with CHF.

To study these two challenging problems, we have proposed a proper description

of the breathing pattern by means of various classical signal processing techniques

including time-frequency analysis, linear and nonlinear analysis, time-varying analy-

sis, as well as innovative techniques that have not yet been used in the study of the

respiratory signal, such as correntropy.

The first part of this research is related to the study of patients on weaning tri-

als. We compare patients with successful trials, patients with unsuccessful trials and

patients who successfully pass the trials but cannot maintain spontaneous breathing

and require the reinstitution of mechanical ventilation in less than 48 hours.

215
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New indices have been proposed that are based on the variability of breathing

pattern and/or cardiorespiratory interactions to characterize these groups of patients

and predict the weaning outcome. Pattern recognition algorithms and new support

vector machine-based (SVM-based) feature selection have been implemented to ex-

tract the most robust indices for these patients, and to help in the assessment of the

best time to extubate the patient. A reduction in weaning failure will decrease the

distress suffered by reintubated patients and the mortality rate of patients on weaning

trials.

The second part of this research is related to patients with CHF. A number of

different techniques have been applied to recognize periodic breathing patterns, non-

periodic breathing patterns and Cheyne-Stokes respiration. As reported in clinical

practice, these patterns are related to the condition of CHF patients. Therefore, res-

piratory pattern characterization could help in the diagnosis and stratification of the

CHF patients.

Different classification techniques have been evaluated and compared to estimate

the best characterization of breathing pattern for each case. A multivariable statistical

analysis has been developed to determine the most significant indices in the study of

patients undergoing extubation and those with heart failure.

This dissertation contributes to the analysis of biomedical signals, specifically in

these two challenging problems of clinical practice. The original contributions of

this thesis focuses on the identification and automatic classification of respiratory

patterns.

The small size of the datasets is a limitation of the present research. Therefore, the

cross-validation technique is used throughout. Although the results are promising,

their significance needs to be further established on a larger set.



8.1 Weaning readiness assessment 217

8.1 Weaning readiness assessment

The study of respiratory pattern variability and cardiorespiratory interactions pro-

vided enhanced information about the weaning procedure. The use of signal pro-

cessing techniques and pattern recognition enabled us to obtain new indices for the

characterization of different respiratory patterns. Below, we summarize our contribu-

tion to the study of weaning procedure. In our first study [36] we proposed a method

based on support vector machines to analyse respiratory pattern variability in pa-

tients during weaning trials. The respiratory pattern characterization was developed

by means of a number of respiratory time series. Clustering and validation techniques

enabled us to select the best subset of input features. Histogram equalization mapped

the distribution of the selected features back to the distribution of the feature that

gave the best classification result. Significant differences were found between patients

who were capable of maintaining spontaneous breathing and those who failed to main-

tain spontaneous breathing. The results enabled us to consider SVM analysis as a

missing method to study respiratory pattern variability in patients on weaning trials.

Numerous clinical indices have been proposed in the literature as weaning pre-

dictors [18] and [117]. Many of them are sufficiently sensitive, but most have low

specificity, which leads to poor discrimination results. Thus, our second study [162]

and [163] proposed a nonlinear procedure for studying cardiac and respiratory flow

signals, to provide more robust and useful indices. The results showed that joint

symbolic dynamics applied to time series of heart rate and respiratory frequency was

suitable for the description of cardiorespiratory interactions of patients during the

weaning trial process. An optimized SVM-based feature selection was implemented

for unbalanced datasets, based on a new metric called the balance index B. This
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procedure provided accurate results in the classification of different groups of pa-

tients, and maintained a good balance between sensitivity and specificity, even for

unbalanced datasets.

Therefore, these methods could be suitable for reducing the number of patients

who successfully pass the trial, but cannot maintain spontaneous breathing and need

to be reintubated in less than 48 hours.

8.2 Chronic heart failure

The study and characterization of periodic breathing patterns, nonperiodic breathing

patterns and Cheyne-Stokes respiration provide enhanced information for the progno-

sis of CHF patients. These patterns have been compared with the breathing pattern

of healthy subjects. Periodic breathing could be used as a risk index and enable the

automatic classification of CHF patients with different conditions and healthy sub-

jects. Below we summarize our contribution to the study of periodic breathing in

CHF patients.

Our first research [38] and [39] was based on the study of the envelope of the

respiratory flow signal through a time-frequency analysis to characterize and dis-

criminate respiratory patterns in these patients. As an extension of previous stud-

ies [79], various parameters were derived from the time-frequency characterization of

the envelope and used to identify different respiratory patterns in CHF patients and

healthy subjects. The temporal evolution of the respiratory flow patterns was studied

through a time-varying AR modelling [41]. The statistical distribution is evaluated

for each parameter derived from the time-varying respiratory pattern characteriza-

tion, to identify the predominant pattern. The results enable us to consider power
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related parameters of the respiratory envelope signal as powerful indices to identify

periodic breathing. Additionally, time-varying modulation of the flow envelope signal

provides accurate results in the characterization of the temporal evolution of these

respiratory patterns.

The use of correntropy provides better classification results with only one pa-

rameter and eliminates the demodulation step, which was an integral part of our

previous studies. The promising classification results are explained by the fact that

the correntropy spectral density provides a more clear-cut representation of the mod-

ulation peak than the power spectral density. In general, CHF patients present an

increased amplitude on ventilation, which is reflected in their respiratory flow signal.

Since correntropy is based on the distance between samples, the correntropy mean

is higher in healthy subjects than in CHF patients. Consequently, the mean of the

correntropy-based spectral power is also higher in healthy subjects. Therefore, both

the correntropy mean and the correntropy spectral density mean provide excellent

results in the classification of CHF patients and healthy subjects, as well as that of

nonperiodic breathing patients and healthy subjects.

8.3 Future extension

Future research could focus on implementing a continuous periodicity risk index for

patients with CHF. The purpose of this index is to provide a percentage of periodicity

for each subject, which might reflect the patient’s condition. Moreover, as we have

developed a time-varying method to characterize the signal, we could implement this

index so that it is time-varying. By means of the time-varying periodicity index, we

might be able to control the condition of the patient at each moment.
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One limitation of the research is the small number of patients in the dataset.

Therefore, one of the main objectives for the future is new database acquisition that

includes not only the respiratory flow and ECG signals, but also the blood pressure

signal. This database would enable the validation of all the studies developed in this

thesis.

Since correntropy involves information on higher-order statistics and enables the

detection of respiratory nonlinearities that conventional techniques based on second-

order statistics cannot identify, another future goal is to exploit the nonlinear infor-

mation provided by correntropy in CHF patients and healthy subjects, and compare

the performance of this method with that of other nonlinear techniques.

The respiratory pattern of CHF patients has been characterized, but we have

not studied cardiorespiratory interactions to date. A number of techniques could be

used to characterize cardiorespiratory dynamics, such as joint symbolic dynamics and

innovative cross-correntropy.

A final study should be carried out that includes all the relevant clinical infor-

mation and all the significant indices. This would increase our knowledge of these

patients and contribute to clinical practice.
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Appendix A

Correntropy in detail

This appendix explains why correntropy makes the respiratory and modulation fre-

quency peaks more discernible without requiring demodulation. The starting point

is the AM signal,

x(n) = (1 +µM(n))C(n), (A.1)

beingM(n) = cos(ωmn) and C(n) = cos(ωcn). The corresponding correlation function

is given by

Rx(n) = (1 +µ2RM (n))cos(ωcn), (A.2)

where RM (n) denotes the correlation function of M(n). Thus, Rx(n) is proportional

to RM (n), and is modulated by ωc.

It can be shown that the correntropy function of x(n) is proportional to both VM (n)

and VC(n). For a Gaussian kernel, VM (n) reaches its maximum only when M(n) =

M(n+m). When this occurs, we have κ(xn−xn−m) = 1/
√

2πσ, and

M(n) =M(n+m)→ cos(ωmn) = cos(ωm(n+m)), ⇔mωmn= 2πk, k = 1,2, . . ..
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The maximum values are obtained when m=mm = 2πk/ωm = TmFsk, where Fs is

the sampling rate and Tm is the modulation period. The correntropy VM (n) reaches its

maximum for each mm and decreases rapidly when the difference M(n)−M(n+m)

increases. For VC(n), the maximum values are reached whenm=mc = 2πk/ωc = TcFsk,

where Tc is the carrier period.

The correntropy function Vx(n) reaches its maximum when m is a multiple of both

Tm and Tc, whereas the relative maximum values are reached when m = mc, as

ωm ≤ ωc→ Tm ≥ Tc→mm ≥mc. Thus, the maximum value is given by the modula-

tion signal (mm).

The maximum value 1/
√

2πσ is only reached when both periods are multiples, i.e.

Tm = kTc, otherwise the value is lower. The maximum value appears in each modula-

tion period, which explains why the modulation frequency peak is sometimes higher

than the respiratory frequency peak. Thus, it can be stated that correntropy enhances

the modulation peak. Figure A.1 demonstrates the property that Rx(n)∝ RM (n) is

modulated by C(n), whereas Vx(n)∝ γVM (n) +βVC(n), where γ and β are positive

constants.

Renyi’s entropy is estimated as:

Ha(X) = 1
1−α log

∑
paX(x) (A.3)

where

Ha(X) = 1
1−α log

∫
faX(x)dx (A.4)

Information Potential IP (as an estimator of quadratic entropy). A nonparametric

estimate of quadratic entropy is obtained directly from the data, through IP.
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Figure A.1 (a) An AM signal, (b) its correntropy function, using σ given
by Silverman’s rule, and (c) its correlation function.
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H2(X) =−logIP (x) (A.5)

where

IP (X) = 1
N2

N∑
j=1

N∑
i=1
κ√2σ(xj−xi) (A.6)

The probability density that is estimated with Parzen kernels can be considered to

define an information potential field over the space of the samples. The entropy is

now expressed in terms of potential energy. Entropy maximization becomes equiva-

lent to the minimization of information potential. As this is similar to the kernel trick

used in support vector machines, and due to the Mercer conditions, we never have

to explicitly estimate the probability density function (PDF), which greatly increases

the applicability of the method.

Parzen window method , also called the kernel estimation method, this is one

of the most popular nonparametric methods used to estimate the PDF of a random

variable. First, the kernel function has to be determined. In this study, we use a

Gaussian kernel:

G (x,σ2) = 1√
2πσ

exp
[
−x

Tx

2σ2

]
(A.7)

where σ is a kernel size and x is an n dimensional variable. Therefore, the whole

density (f(x)) is the average of all the kernel functions obtained by applying the

kernel to all samples.

f(x) = 1
N

N∑
i=1
G(x−a(i),σ2) (A.8)

being, the data set = {a(i)|i= 1, . . . ,N}.
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