1,469 research outputs found

    Computational Sprinting

    Get PDF
    Although transistor density continues to increase, voltage scaling has stalled and thus power density is increasing each technology generation. Particularly in mobile devices, which have limited cooling options, these trends lead to a utilization wall in which sustained chip performance is limited primarily by power rather than area. However, many mobile applications do not demand sustained performance; rather they comprise short bursts of computation in response to sporadic user activity. To improve responsiveness for such applications, this paper explores activating otherwise powered-down cores for sub-second bursts of intense parallel computation. The approach exploits the concept of computational sprinting, in which a chip temporarily exceeds its sustainable thermal power budget to provide instantaneous throughput, after which the chip must return to nominal operation to cool down. To demonstrate the feasibility of this approach, we analyze the thermal and electrical characteristics of a smart-phone-like system that nominally operates a single core (~1W peak), but can sprint with up to 16 cores for hundreds of milliseconds. We describe a thermal design that incorporates phase-change materials to provide thermal capacitance to enable such sprints. We analyze image recognition kernels to show that parallel sprinting has the potential to achieve the task response time of a 16W chip within the thermal constraints of a 1W mobile platform

    Computational Sprinting: Exceeding Sustainable Power in Thermally Constrained Systems

    Get PDF
    Although process technology trends predict that transistor sizes will continue to shrink for a few more generations, voltage scaling has stalled and thus future chips are projected to be increasingly more power hungry than previous generations. Particularly in mobile devices which are severely cooling constrained, it is estimated that the peak operation of a future chip could generate heat ten times faster than than the device can sustainably vent. However, many mobile applications do not demand sustained performance; rather they comprise short bursts of computation in response to sporadic user activity. To improve responsiveness for such applications, this dissertation proposes computational sprinting, in which a system greatly exceeds sustainable power margins (by up to 10Ã?) to provide up to a few seconds of high-performance computation when a user interacts with the device. Computational sprinting exploits the material property of thermal capacitance to temporarily store the excess heat generated when sprinting. After sprinting, the chip returns to sustainable power levels and dissipates the stored heat when the system is idle. This dissertation: (i) broadly analyzes thermal, electrical, hardware, and software considerations to analyze the feasibility of engineering a system which can provide the responsiveness of a plat- form with 10Ã? higher sustainable power within today\u27s cooling constraints, (ii) leverages existing sources of thermal capacitance to demonstrate sprinting on a real system today, and (iii) identifies the energy-performance characteristics of sprinting operation to determine runtime sprint pacing policies

    Characterizing Service Level Objectives for Cloud Services: Motivation of Short-Term Cache Allocation Performance Modeling

    Get PDF
    Service level objectives (SLOs) stipulate performance goals for cloud applications, microservices, and infrastructure. SLOs are widely used, in part, because system managers can tailor goals to their products, companies, and workloads. Systems research intended to support strong SLOs should target realistic performance goals used by system managers in the field. Evaluations conducted with uncommon SLO goals may not translate to real systems. Some textbooks discuss the structure of SLOs but (1) they only sketch SLO goals and (2) they use outdated examples. We mined real SLOs published on the web, extracted their goals and characterized them. Many web documents discuss SLOs loosely but few provide details and reflect real settings. Systematic literature review (SLR) prunes results and reduces bias by (1) modeling expected SLO structure and (2) detecting and removing outliers. We collected 75 SLOs where response time, query percentile and reporting period were specified. We used these SLOs to confirm and refute common perceptions. For example, we found few SLOs with response time guarantees below 10 ms for 90% or more queries. This reality bolsters perceptions that single digit SLOs face fundamental research challenges.This work was funded by NSF Grants 1749501 and 1350941.No embargoAcademic Major: Computer Science and EngineeringAcademic Major: Financ

    Aerodynamic analysis of human walking, running and sprinting by numerical simulations

    Get PDF
    The drag in walking, running, and sprinting locomotion can be assessed by analytical procedures and experimental techniques. However, assessing the drag variations by these three main locomotion’s (i.e., walking, running, and sprinting) were not found using computational fluid dynamics. (CFD). Thus, the aim of this study was two-fold: (1) to assess the aerodynamics of human walking, running, and sprinting by CFD technique; 2) compare such aerodynamic characteristics between walking and running. Three 3D models were produced depicting the walking, running, and sprinting locomotion techniques, converted to computer aided design models and meshed. The drag varied with 4 locomotion type. Walking had the lowest drag, followed-up by running and then sprinting. At the same velocities, the drag was larger in walking than in running and increased with velocity. In conclusion, drag varied with locomotion type. Walking had the lowest drag, followed-up by running and then sprinting. At the same velocities, the drag was larger in walking than in running and increased with velocity.This project was founded by the Portuguese Foundation for Science and Technology, I.P. (project UIDB04045/2020)info:eu-repo/semantics/publishedVersio

    On-Body Wireless Inertial Sensing Foot Control Applications

    Get PDF

    An experimental study on a motion sensing system for sports training

    Get PDF
    In sports science, motion data collected from athletes is used to derive key performance characteristics, such as stride length and stride frequency, that are vital coaching support information. The sensors for use must be more accurate, must capture more vigorous events, and have strict weight and size requirements, since they must not themselves affect performance. These requirements mean each wireless sensor device is necessarily resource poor and yet must be capable of communicating a considerable amount of data, contending for the bandwidth with other sensors on the body. This paper analyses the results of a set of network traffic experiments that were designed to investigate the suitability of conventional wireless motion sensing system design � which generally assumes in-network processing - as an efficient and scalable design for use in sports training
    corecore