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Abstract 

Sprinting is an integral component of sporting performance, and therefore a large body of 

experimental biomechanics studies have been carried out to identify the kinematics- and 

kinetics-based variables linked with improved performance. However, to date, very few studies 

have been performed to assess the influence of technique modifications on sprinting 

performance, potentially due to the difficulties in doing so using experimental approaches. 

Furthermore, sprinting, as with many sporting skills, has coaching frameworks that coaches 

follow when developing athletes, although the recommendations proposed by such frameworks 

have received minimal support from a scientific perspective. The purpose of this thesis was 

therefore to develop a computational modelling and simulation framework for sprinting to 

explore potential performance-enhancing modifications to technique and to assess how they 

compare to the recommendations proposed by a prevalent coaching framework (front-side 

mechanics). The first investigation of this thesis featured the development of a computational 

modelling and simulation framework for sprinting and evaluating its ability to reproduce 

experimental data for different sprinting phases. The evaluation step was carried out by 

performing a series of data-tracking calibration and validation simulations. The data-tracking 

simulations also enabled dynamically consistent simulated outputs to be obtained and foot-

ground contact model parameters to be identified. The simulated outputs from the validation 

simulation were found to be in good agreement with the experimental data, with average root 

mean squared differences (RMSDs) less than 1.0° and 0.3 cm for the rotational and 

translational kinematics, respectively. The anterior-posterior ground reaction force component 

had the largest percentage RMSD (11.4%). The second study of this thesis explored how 

hypothetical modifications to technique affect accelerative sprinting performance by 

performing a series of (data-tracking and predictive) simulations using the framework 

developed in the first study. Technique modifications were explored through enabling either 

individual or combinations of the net lower-limb flexor-extensor joint moments (ankle, knee, 

and hip) to freely vary within the predictive simulations, whilst the remaining net joint 

moments were tracked (established from performing a data-tracking simulation). The ‘knee-

free’ simulations led to the greatest improvements to overall performance (22.0%; 1401.2 vs. 

1148.7 W) due to modifying the timing and magnitude of the net knee flexor-extensor 

moments. The kinematics aspects of the front-side mechanics coaching framework were not 

found to emerge from the performance-enhancing predictive simulations. 
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Introduction 
 

1.1 Motivation for studying sprinting 

The purpose of locomotion is to enable movement from one place to another. The two principal 

forms of terrestrial human locomotion are walking and running, and they collectively enable 

an individual to horizontally transport their body’s centre of mass (CoM) across a broad range 

of velocities. The preferred form of locomotion at low velocities is walking, and adults 

typically transition to running when horizontal velocities begin to approach ~2 m/s as it 

becomes less metabolically demanding to run instead of walk (Saibene and Minetti, 2003). 

Running can be further categorised as either sprint running (sprinting) or distance running 

(Mero et al., 1992; Novacheck, 1998). Sprinting enables the greatest horizontal velocities to be 

achieved, however it can only be sustained for short periods of time as it is heavily reliant upon 

anaerobic metabolism due to it being performed at maximal intensity. Conversely, distance 

running enables moderate horizontal velocities to be sustained for much longer periods of time, 

as the primary source of energy is from aerobic metabolism due to it being performed at 

submaximal intensity.  

 

Sprinting is an integral component of sporting performance, none more so than for athletes 

competing within the short distance track and field events (60-400 m) for whom their 

performance is based on their sprinting ability alone. At the highest levels of competition (e.g., 

Olympic Games and World Athletics Championships), the winning margin between athletes is 

often less than several hundredths of a second. For example, in the men’s 100 m final at the 

2004 Olympic Games in Athens, the first and second place finishers were separated by 0.01 s 

(IAAF, 2004). Coaches and athletes are therefore continually striving for improvements in 

sprinting technique which can culminate together to overcome the narrow winning margins. 

Sprinting is also of paramount importance within team-based sports (e.g., rugby, field hockey 

and soccer) (Figure 1.1–1) that require short distances to be covered quickly to enable attacking 

and defensive actions to be completed more effectively than their opponents, thus gaining a 

competitive advantage (Austin et al., 2011; Faude et al., 2012; Spencer et al., 2004). In rugby 

league, for example, 35 sprints per match are completed on average (Gabbett, 2012), with these 

sprints typically occurring during the critical periods of a match (Gabbett and Gahan, 2016). 

The benefits from understanding sprinting technique and performance have widespread 

application due to the significance of sprinting towards attaining sporting success, and this 
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therefore makes it a worthwhile topic to further study. The focus of this thesis will be linear 

sprinting (0-100 m) in relation to elite athletes (e.g., sprinters and soccer players), specifically 

from a biomechanical modelling and simulation perspective.  

 

 

 

 

 

 

 

 

 

 

 

 

A B 

C D 

Figure 1.1–1 Examples of sports in which sprinting features prominently. (A & B: short distance track and field 

events, C: soccer and D: American football) 



3 

 

1.2 Rationale for studying sprinting using a computational modelling and simulation 

approach 

The current body of sprinting literature which has concentrated on enhancing performance and 

technique suffers from two shortcomings. Firstly, the recommendations for technique 

modifications are based on cross-sectional group level analyses, which have shown particular 

biomechanical characteristics to be associated with higher performance levels. Cross-sectional 

group level analyses are useful for identifying potential trends in techniques between athletes 

of differing performance levels, and it is possible that the findings from such studies can be 

transferred to benefit the performance of elite athletes. However, individualised technique 

modifications are more likely to be necessary for elite athletes to further improve their 

performance levels by the sought-after small margins. Furthermore, there is also the possibility 

that applying the findings from the mean of group level analyses may lead to mean levels of 

overall performance, which is not desirable for elite athletes. Secondly, to date there has been 

a scarcity of intervention style studies which have attempted to implement the technique-based 

recommendations from the existing literature (e.g., minimising the horizontal touchdown 

distance between the CoM and foot) or technical coaching frameworks, such as front-side 

mechanics (Mann and Murphy, 2015), within a high-performance environment. Moreover, 

such studies have not succeeded at explaining how specific technique modifications influence 

sprinting performance. A predictive computer simulation and modelling approach can be used 

to overcome the issues listed above, particularly given the advancements made with this type 

of approach (e.g., ease of model development and tractability of performing simulations) since 

the pioneering long jump predictive simulation study by Hatze (1981). Furthermore, as also 

highlighted by Lin et al. (2018), the ability to perform predictive simulations is the last grand 

challenge to solve for biomechanists and engineers working within the field of computational 

modelling and simulation. In fact, the final goal is to enable simulations to be performed 

routinely and with relative ease to inform changes in the techniques of athletes and the coaching 

principles. Nevertheless, the usage of a predictive computer simulation and modelling approach 

with a view to enhance sprinting performance and technique has not yet featured prominently 

within the literature, thus presenting a potential avenue for further exploration. 
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1.3 Direct collocation optimal control 

Within biomechanics it is common to perform data-tracking and predictive simulations by 

formulating them as optimal control problems (OCPs) (Ackermann and van den Bogert, 2010; 

Anderson and Pandy, 1999; Anderson and Pandy, 2001; Falisse et al., 2019b; Lin and Pandy, 

2017; Porsa et al., 2016; Serrancolí et al., 2019; van den Bogert et al., 2012). An OCP is solved 

to determine the optimum state and control variables of a musculoskeletal model that lead to 

minimising (or maximising) a performance criterion for a specific circumstance, whilst the 

dynamics of the musculoskeletal model alongside any additional circumstance-specific 

requirements are satisfied. The standard method for solving an OCP within biomechanics relies 

on converting it to a nonlinear programming problem (NLP) by means of a direct method (e.g., 

direct collocation or direct shooting), and using specialised existing NLP solvers (e.g., IPOPT 

and SNOPT) to solve the problem. Direct collocation optimal control approaches have gained 

a significant interest from the biomechanics community as they are more computationally 

efficient, in terms of the amount of time needed to obtain an optimal solution, compared to 

direct shooting optimal control approaches (Porsa et al., 2016). In addition, this has resulted in 

the recent release of an open-source software package that utilises direct collocation optimal 

control approaches for biomechanics applications (Dembia et al., 2020). The computational 

efficiency of direct collocation optimal control approaches has also enabled researchers to use 

more sophisticated and realistic musculoskeletal models, such as three-dimensional 

musculoskeletal models with actuators comprising fast and slow contractile element properties 

(Lai et al., 2021). In addition, they also provide the opportunity to perform more demanding 

simulations that were previously viewed as intractable, for example simulating multiple 

consecutive gait cycles or performing predictive simulations with models representative of 

numerous participants to permit further statistical analyses of the outputs (Miller and Hamill, 

2015). To date, however, the application of a direct collocation optimal control approach 

together with a complicated three-dimensional musculoskeletal model for the purposes of 

exploring technique modifications and performance in sprinting has not yet featured within the 

literature. 
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1.4 Thesis purpose & aims 

The overarching purpose of this thesis was to develop a computational modelling and 

simulation framework for linear sprinting (0-100 m) to explore potential performance-

enhancing modifications to technique. Two studies were subsequently carried out to meet the 

purpose of this thesis. 

 

Study 1: Three-dimensional data-tracking simulations of sprinting using a direct 

collocation optimal control approach 

The main aims of the first study were to i) develop a computational modelling and simulation 

framework for sprinting using a direct collocation optimal control approach, and to ii) evaluate 

its capability of reproducing experimental data by performing a series of data-tracking 

simulations.  

 

Two secondary aims were also identified for this study: i) to improve the dynamic consistency 

of the simulations by enforcing the pelvis residuals to be null and ii) to identify foot-ground 

contact model parameters for performing predictive simulations of sprinting.  

 

Study 2: Modifications to the net knee moments lead to the greatest improvements in 

accelerative sprinting performance: a predictive simulation study 

The main aims of the second study were to i) explore how hypothetical modifications in 

technique influence accelerative sprinting performance, and ii) investigate how the 

modifications mirrored the theories of an existing sprinting coaching framework (front-side 

mechanics).  
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1.5 Thesis outline 

In the following chapters, a literature review of the relevant material together with two studies 

and a general discussion are presented. 

 

• Chapter 2 features a review of the relevant biomechanical literature pertaining to sprinting 

and computational modelling and simulation methods. 

 

• Chapter 3 contains the first study, which features the description and basis for initially 

performing data-tracking simulations of sprinting using the developed computational 

modelling and simulation framework. A thorough description of an empirical data 

collection for a single male international-level sprinter is also provided. 

 

• Chapter 4 contains the second study, in which the developed computational modelling and 

simulation framework is used to explore how hypothetical modifications in technique, 

through changes in the lower-limb net joint moments, affect performance during 

accelerative sprinting.  

 

• Chapter 5 provides a summary of the two studies, an overview of the studies’ limitations 

and avenues for further research, and a final conclusion.  
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Literature Review 
 

This chapter provides a comprehensive narrative review of the pertinent literature in relation 

to the broad purpose and aims of this thesis proposed at the end of the first chapter. The review 

is organised into the following four major themes: 1) sprinting preliminaries, 2) analyses of 

sprinting technique, 3) application of computer modelling and simulation approaches to 

sprinting, and 4) biomechanical modelling and simulation approaches. The first theme of the 

review introduces and outlines the fundamental aspects of sprinting (e.g., phases and 

spatiotemporal parameters). In the following two themes the key aspects of sprinting technique 

based upon the findings of intra- and inter-athlete experimental studies are critiqued alongside 

the findings from predictive computer simulation modelling studies. In addition, these sections 

also cover the advantages offered by predictive computer simulation modelling approaches to 

carrying out sprinting research in comparison to more conventional experimental approaches. 

The latter theme of the review concentrates on reviewing the major elements of biomechanical 

modelling and simulation approaches (e.g., model construction and evaluation) and includes 

the advancements made with such approaches, covering their advantages and disadvantages. 

In the final section of this chapter a more specific restatement of the thesis aims is provided 

and contextualised based upon the literature provided.  

 

2.1 Sprinting preliminaries 

When an athlete performs a sprint, from either standing, jogging or starting blocks, they 

transition through a series of phases, and these phases are typically referred to as the 

acceleration, maximum velocity attainment and velocity maintenance phases (Debaere et al., 

2013; Delecluse et al., 1995). The acceleration phase has also been recommended to be further 

subdivided into phases of early, middle, and late acceleration (Nagahara et al., 2014b). From 

inspection of an athlete’s horizontal velocity profile throughout the course of a sprint it is 

possible to recognise the three major phases (Figure 2.1–1). Successful sprinting performance 

within each of the phases relies on an athlete’s ability to: a) rapidly accelerate their CoM, b) 

attain maximum horizontal velocity in the least amount of time possible and c) maintain high 

horizontal CoM velocity (Mero et al., 1992; van Ingen Schenau et al., 1994). The differing 

biomechanical requirements for achieving a high level of sprinting performance between the 

phases highlights that been able to perform at a high level in a single phase does not guarantee 

a high level of performance in the other phases (Delecluse et al., 1992). It is therefore important 
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to acknowledge these differing requirements when assessments of sprinting performance and 

technique are made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum velocity phase is of critical importance to coaches and researchers alike, as the 

maximum horizontal velocity attained during this phase is strongly associated with the time 

taken to complete a 100 m sprint (Kersting, 1999; Slawinski et al., 2017), which is the most 

important measure of sprinting performance. Male sprinters (international-level) and soccer 

players have been found to achieve horizontal velocities of ~12 and 8.7 m/s, respectively, 

during the maximum velocity phase (Colyer et al., 2018b; Maćkała and Mero, 2013), and this 

emphasises the sprinting performance level disparities between specialised sprint athletes and 

team-based sport athletes. Previous studies have shown that the maximum velocity phase is 

attained at 30-70 m, with high calibre sprinters attaining the maximum velocity phase at greater 

distances compared to non-sprinters (Ae et al., 1992; Helene and Yamashita, 2010; Volkov 

and Lapin, 1979). However, performance during the acceleration phase should not be 

discounted as it is during this preceding phase where rapid increments in horizontal velocity 

are aggregated. Furthermore, athletes competing within team-based sports rarely perform 

sprints that surpass the acceleration phase (Bangsbo et al., 1991; Di Salvo et al., 2010; Gabbett, 

Figure 2.1–1 Exemplar horizontal velocity-time (top) and horizontal velocity-displacement (bottom) profiles of 

100 m sprinting to illustrate the three major phases: acceleration (light grey shading), maximum velocity 

attainment (dark grey shading) and velocity maintenance (black shading). The profiles were created from Usain 

Bolt’s 9.69 s 100 m performance at the 2008 Olympic Games in Beijing, China, using the data presented in 

Eriksen et al. (2009). 
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2012), and therefore sprinting research based on acceleration phase performance can be readily 

transferred to improve performance within team-based sports.  

 

Sprinting, as with other forms of terrestrial human locomotion, is achieved by the sequential 

execution of a series of steps. A step is defined as the instant of touchdown of one foot to the 

subsequent touchdown of the contralateral foot. Each step whilst sprinting features a stance 

phase in which contact with the ground is made with one foot, and this is followed by a flight 

phase which features neither of the feet been in contact with the ground. The stance phase is of 

a longer duration than the flight phase during the initial acceleration phase, with values reported 

in the literature ranging between 0.152-0.175 and 0.044-0.079 s, respectively, for the third step 

of the acceleration phase (von Lieres Und Wilkau et al., 2020; Walker et al., 2019). As 

horizontal CoM velocity continues to be increased throughout the remainder of the acceleration 

phase and the maximum velocity phase is reached, more time is spent in the flight phase than 

the stance phase. Several studies have collectively shown that the stance and flight phase 

durations during the maximum velocity phase range between 0.076-0.102 and 0.125-0.141 s, 

respectively, (Kunz and Kaufmann, 1981; von Lieres Und Wilkau et al., 2020). Additionally, 

the step duration (stance phase duration plus flight phase duration) has been shown to reduce 

from the early to middle acceleration phases, and then remain relatively constant from the 

middle to maximum velocity phases (Nagahara et al., 2014a; Nagahara et al., 2014b; von 

Lieres Und Wilkau et al., 2020). 

 

Given the significance of horizontal velocity towards sprinting performance it therefore seems 

pertinent to explore its determinants. The horizontal velocity of a given step is the product of 

the step frequency (the inverse of the time taken to complete one step – stance and flight phase 

duration) and the step length (the anterior-posterior displacement between the touchdown of 

one foot and the touchdown of the contralateral foot). It is therefore theoretically possible to 

increase an individual’s horizontal step velocity by either increasing one of the step 

characteristics (either step frequency or step length) whilst the other step characteristic is kept 

constant or does not decrease in the same proportion as the other increases, or by increasing 

both step characteristics simultaneously. The step frequency and step length have been found 

to range between 4.17-5.36 Hz and 1.08-1.57 m during the early acceleration phase for the 

finalists competing in the men’s 60 m at the 2018 World Indoor Championships (Walker et al., 

2019), and between 4.62-4.68 Hz and 2.21-2.29 m during the maximum velocity phase for a 

male sprinter with a 9.98 s 100 m PB (Bezodis et al., 2008a). Furthermore, step frequency 
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increases in the early acceleration phase and begins to plateau by approximately the eighth step, 

whilst step length increases throughout the acceleration phase and is thus responsible for 

increases in velocity during the late acceleration phase (Nagahara et al., 2014a; Nagahara et 

al., 2014b). 

 

A large number of studies have been conducted to determine which of the two step 

characteristics is of most significance to horizontal step velocity (Hunter et al., 2004a; 

Kuitunen et al., 2002; Kunz and Kaufmann, 1981; Luhtanen and Komi, 1978; Mero and Komi, 

1985; Salo et al., 2011), however the conclusions drawn from these studies are inconsistent 

and conflicted due to the use of intra- and inter-athlete group level analyses. Arguably the most 

comprehensive study conducted on this topic was carried out by Salo et al. (2011), and they 

concluded that the significance of either step frequency or step length amongst elite-level 

sprinters (during elite competition) was highly individualised, with a large variety of 

combinations existing. The step characteristics are readily used by coaches to guide the training 

and development process of their athletes as they are somewhat easy to measure and can be 

calculated in almost real-time which enables feedback to be provided in a timely manner. 

Whilst analyses of the step characteristics provide vital knowledge towards enhancing sprinting 

technique and performance, much greater insights can be obtained by assessing the processes 

which are responsible for the step characteristics (Wood, 1987) (Figure 2.1–2). 
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Figure 2.1–2 Diagram of the biomechanical processes underlying horizontal sprinting velocity. Adapted from 

Wood (1987). 

 

The step characteristics achieved together with the CoM motion an athlete undergoes during a 

step are governed by Newton’s Laws of Motion and are the consequence of the behaviour and 

properties of the neuromusculoskeletal system. The central nervous system is responsible for 

coordinating the recruitment of the muscles. The muscles in turn generate forces that are 

applied to the skeleton via tendons, and together with their moment arms they produce 

moments that cause the segments of the skeleton to accelerate. The acceleration of an athlete’s 

CoM is directly proportional to the external forces applied (Newton’s Second Law of Motion), 
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and the three external forces acting whilst sprinting are the ground reaction force (GRF), 

gravity and air resistance. During the stance phase of a step, the forces generated by the muscles 

are transmitted to the ground resulting in an equal and opposite GRF being applied to the foot 

in contact with the ground (Newton’s Third Law of Motion). The forces generated by the 

muscles during the flight phase can still cause the segments to move, although the CoM 

acceleration in this case is governed entirely by gravity and air resistance.  

 

The somewhat naïve conclusion from an understanding of the causes of CoM acceleration 

would be to recommend generating large GRF in short periods of time. However, due to the 

intrinsic constraints of the neuromusculoskeletal system alongside its nonlinear behaviours 

(e.g., muscle excitation-force and net joint moments-joint accelerations) achieving a high level 

of sprinting performance is not so straightforward, and requires a thorough understanding of 

technique. To obtain further insights into sprinting technique and performance studies to date 

have been based on analyses of the kinematics (Ae et al., 1992; Kunz and Kaufmann, 1981; 

Mann and Herman, 1985) and kinetics, external (Hunter et al., 2005; Yu et al., 2016) and 

internal (Bezodis et al., 2008a; Bezodis et al., 2014; Johnson and Buckley, 2001), obtained 

from empirical data collections during a discrete step. In the recent past, studies have also 

developed specialised experimental protocols (Morin et al., 2015b) and research facilities 

(Nagahara et al., 2014a; Nagahara et al., 2018) to provide a more comprehensive outlook on 

the kinematics and GRF required by athletes to accelerate their CoM more successfully across 

successive steps.  

 

Several studies to date have also attempted to elucidate how horizontal velocity increases by 

analysing the major lower-limb joint kinetics at a range of steady-state horizontal velocities 

(Belli et al., 2002; Schache et al., 2011; Schache et al., 2015), however the identified 

techniques may not be representative for when accelerating across successive steps (Dorn et 

al., 2012; Schache et al., 2014). Alas, minimal literature currently exists which has shown how 

athletes should coordinate their lower-limb joint kinetics to most successfully accelerate their 

CoM across successive steps. Lastly, theoretical studies, based on predictive computer 

simulation and modelling approaches, of sprinting have been performed (Bezodis et al., 2015; 

Celik and Piazza, 2013; van den Bogert and Ackermann, 2009). However, of the studies cited 

only one has attempted to explore the relationship between technique and performance, thus 

there is still great scope and potential to apply a predictive computer simulation and modelling 
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approach to investigate sprinting technique and performance for the purposes of providing 

individualised technique modifications and informing coaching practices.  

 

2.2 Analyses of sprinting technique – kinematics and kinetics 

The review up to this point has covered the temporal parameters and step characteristics for 

the different phases of sprinting, and highlighted the need to look beyond those variables to 

gain further insights into sprinting performance and technique. Thus, for the remainder of this 

review the findings from studies based on analyses of kinematics and kinetics (external and 

internal) will be reviewed, with a particular emphasis on studies conducted in relation to the 

acceleration phase. The decision to narrow the focus of the review to studies conducted during 

the acceleration phase was due to the significance of acceleration phase performance to overall 

track and field sprinting performance and the substantial role accelerative sprinting plays in 

contributing towards success within team-based sports. Lastly, the findings from studies that 

utilised a predictive computer simulation and modelling approach to study sprinting will be 

reviewed, irrespective of the phase in which they were conducted due to their scarcity within 

the existing literature. 

 

2.2.1 Kinematics 

Kinematic analyses of the human body are concerned with describing the linear and angular 

displacements, velocities and accelerations of the body’s segments, joints and CoM. Schache 

and colleagues reported how the major lower-limb joints (hip, knee and ankle) together with 

the trunk change during discrete steps of high (5.30 m/s2), medium (2.93 m/s2) and low         

(1.32 m/s2) CoM accelerations throughout the same accelerative sprinting trial (Schache et al., 

2019). The time histories of the lower-limb joint and global trunk angles during the stance 

phase for the different CoM acceleration magnitudes are shown in Figure 2.2-1. At the hip, 

touchdown was found to commence with a more flexed hip (65°) in the high acceleration 

condition compared to the low (45°), and the hip was shown to extend by ~60° throughout 

stance amongst all conditions despite the differences at touchdown. The knee was found to be 

further flexed at touchdown for the high acceleration condition (65°; 0° represented full 

extension) and extended until the latter ~5% of the stance phase (50° RoM), in contrast the 

knee flexion at touchdown for the low condition was ~30° and noticeable flexion-extension 

during the middle of the stance phase was observed with an overall ~20° RoM. The ankle 

undergoes flexion-extension during the stance phase irrespective of the acceleration condition. 
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At touchdown for the high and low acceleration conditions the ankle is dorsiflexed (15°) and 

plantarflexed (-5°), respectively, and they reach   -35° of plantarflexion by the end of the stance 

phase, which leads to greater RoM in the high acceleration condition (55 vs. 40°). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Arguably the most noticeable kinematic differences identified by Schache et al. (2019) were at 

the trunk. The trunk angle relative to the vertical started to decrease from ~65° to ~15° between 

the high and low acceleration conditions at touchdown and became more upright with a  ~10-

15° RoM during the stance phase of each condition. Nagahara et al. (2014a) carried out an 

extensive study of the kinematics throughout the entire acceleration phase amongst a cohort of 

12 sprinters with 100 m PBs ranging between 10.38-11.29 s. Similarly to Schache et al. (2019), 

Nagahara et al. (2014a) found that the trunk was more inclined during the early acceleration 

phase and becomes upright by the 14th step (22.2 m mark). As the trunk becomes more vertical 

throughout the course of a sprint it is also accompanied with a progressive rise in the CoM 

height, which rises from ~43% (relative to stature) and begins to plateau at ~53% also by the 

14th step (Nagahara et al., 2014a).  

Figure 2.2–1 Group mean global trunk and lower-limb joint angles plotted across the stance phase for the three 

acceleration conditions (high: blue, medium: red, and low: green). The stance phase was time normalised from 

0% (touchdown) to 100% (takeoff). A: trunk (the angle between the trunk segment and the vertical); B: hip 

(flexion is positive; extension is negative; 0° represents alignment between pelvis and thigh segments); C: knee 

(flexion is positive; extension is negative; 0° represents alignment between thigh and shank segments); D: ankle 

(dorsiflexion is positive; plantarflexion is negative; 0° represents plantigrade alignment between shank and foot 

segments). Figure taken from Schache et al. (2019). 
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The findings from Schache et al. (2019) and Nagahara et al. (2014a) provide an overview of 

the acceleration phase kinematics, however they do not enable inferences in terms of the major 

technique-related kinematic variables differentiating athletes of different performance levels. 

Nevertheless, very few studies have attempted this in relation to the acceleration phase. One of 

the rare studies to do so analysed the lower-limb joint kinematics of three male sprinters (100 

m PBs: 9.98, 10.22 and 10.51 s) during the first stance phase of the acceleration phase (Bezodis 

et al., 2008b). They found that the highest performing sprinter, as indicated by their 100 m PB 

and stance phase average horizontal external power, exhibited greater extension RoM 

compared with the lowest performing sprinter at both the hip (70 vs. 61°, respectively) and 

knee (53 vs. 35°, respectively). The findings from this study therefore indicate that greater hip 

and knee extension are linked with improved early acceleration phase performance.  

 

The sprinting literature during the maximum velocity phase has identified associations between 

a host of discrete kinematics-based technique variables (e.g., horizontal foot touchdown 

velocity, horizontal touchdown distance between the CoM and foot, hip and knee angular 

velocities at touchdown and during the stance phase (mean), hip and knee angles at takeoff, 

thigh excursion during the stance phase and mean thigh angular velocity during a step) and 

performance (Ae et al., 1992; Clark et al., 2020; Kunz and Kaufmann, 1981; Mann and 

Herman, 1985; Sides, 2014). Hunter et al. (2005) explored whether a subset of the kinematics-

based techniques identified from the maximum velocity phase were also of relevance during 

the 16 m mark of the acceleration phase. They found that reduced horizontal foot velocity 

before touchdown, reduced touchdown distance between the CoM and foot, and greater mean 

hip extension velocity were desirable for improved sprinting performance during the 

acceleration phase, and these findings coincided with those from studies conducted during the 

maximum velocity phase (Ae et al., 1992; Kunz and Kaufmann, 1981; Mann and Herman, 

1985; Sides, 2014). 

 

Hunter et al. (2005) stated that the relevance of greater mean hip extension velocity provided 

support in favour of the ‘hip extensor theory’ during the acceleration phase alongside the 

maximum velocity phase, for which it was originally intended. The ‘hip extensor theory’ 

proposes that during the stance phase, the thigh segment is rotated backwards (extended) by 

the major hip extensor muscles (e.g., gluteus maximus and hamstrings) and that this action is 

primarily responsible for producing the GRF needed to propel an athlete forward (Hunter et 

al., 2004b; Mann and Sprague, 1980; Wiemann and Tidow, 1995). However, Hunter et al. 
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(2004b) questioned the ‘hip extensor theory’ based upon the timing mismatches of the net hip 

extensor moment in relation to the period of the stance phase which features propulsive GRF 

generation. In more recent times, the findings by Clark et al. (2020) suggest that there is merit 

in the ‘hip extensor theory’, although the role of the hip extensor muscles may be to instead 

produce vertical GRF. The evidence to support this claim is based on the timing of the hip 

(thigh) kinematics and kinetics in relation to the generation of vertical GRF during the stance 

phase, as sprinters of a higher performance level have been shown to generate a greater and 

more asymmetrical vertical GRF (Clark and Weyand, 2014) together with greater thigh 

excursion during the stance phase (Clark et al., 2020). 

 

The study by Hunter et al. (2005) also interestingly found that the hip, knee and ankle angles 

at takeoff were not relevant to sprinting performance during the acceleration phase. This can 

be considered a surprising result as it appears to not matter whether the major lower-limb joints 

are fully extended at takeoff, which Hay (1994) advises to do. Furthermore, this result does not 

coincide with the front-side mechanics coaching framework (Mann and Murphy, 2015), which 

is heavily reliant upon kinematics-based criteria, suggesting that the orientation of the major 

lower-limb joints at takeoff are not as relevant as imagined. The front-side mechanics coaching 

framework (Figure 2.2–2) was developed by Mann and Murphy (2015), and they suggest that 

sprinting coaches have been following the principles of the framework for several decades. The 

front-side mechanics coaching framework advises that athletes should contain the actions of 

their major lower-limb segments to the front of their body during the stance phase to prevent 

inefficient GRF production and prolonging the stance phase duration. Nevertheless, the front-

side mechanics coaching framework has not been extensively researched and therefore 

warrants investigation from a scientific standpoint given its suggested prevalence amongst 

sprinting coaches.  

 

2.2.2 External kinetics 

Kinetics refers to both the forces and moments responsible for a body’s linear and rotational 

motion, respectively, and typically in biomechanics a distinction is made between external and 

internal kinetics (Zatsiorsky, 2002). The external kinetics of most interest to researchers and 

coaches are the GRF and impulse as they reflect an athlete’s ability to generate and transmit 

muscular forces to the ground in a specific amount of time, and together they are responsible 

for the linear change in an athlete’s CoM velocity during the stance phase. It has been 
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extensively documented that the stance phase commences with a braking impulse that is 

followed by a propulsive impulse. The collective findings from studies demonstrate that the 

proportion of time spent braking during the stance phase increases throughout the course of a 

sprint. The braking phase has been reported to constitute 6-11%, 24-32% and 40-44% of the 

stance phase during the early acceleration (Mero and Komi, 1987; Salo et al., 2005; von Lieres 

Und Wilkau et al., 2020), middle acceleration (von Lieres Und Wilkau et al., 2020; Yu et al., 

2016) and maximum velocity (Mero, 1988; von Lieres Und Wilkau et al., 2020; Yu et al., 

2016) phases, respectively. 

 

 

 

 

 

 

 

 

 

 

 

An increase in the horizontal CoM velocity during the acceleration phase is due to the 

production of positive net impulses (sum of braking and propulsive impulses), whilst there is 

no change in the horizontal CoM velocity during the maximum velocity phase as the net 

impulse is about zero (although there will be small positive GRF impulses needed to overcome 

air resistance). Previous studies have reported a net propulsive impulse of 87-92 Ns during the 

first step  (Mero, 1988; Salo et al., 2005), with the net propulsive impulse decreasing to 44 Ns 

by the fourth step (Salo et al., 2005). The net propulsive impulse has been shown to be               

18-19.5 Ns during the 14-16 m mark of the acceleration phase (Hunter et al., 2005; Johnson 

and Buckley, 2001), whilst during the maximum velocity phase it has been reported to be               

3.9-10.8 Ns (Bezodis, 2006; Sides, 2014). 

 

Figure 2.2–2 Schematic diagram highlighting front-side and back-side mechanics during the second step stance 

phase of a maximal effort sprint. The solid red line drawn parallel to the torso indicates when the lower-limbs are 

in front of the body and performing front-side mechanics or behind the body and performing back-side mechanics. 

The definitions of front-side and back-side mechanics are based upon those provided by Mann and Murphy 

(2015).  
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Several studies have shown that sprinting performance is strongly associated with the net 

propulsive impulse produced (Kawamori et al., 2013; Morin et al., 2015b; Nagahara et al., 

2018). It is important to recognise that the CoM velocity across a step can be changed through 

either reducing the braking impulse and/or increasing the propulsive impulse, and thus several 

studies have attempted to explore the independent relative importance of braking and 

propulsive impulses in relation to sprinting (Colyer et al., 2018a; Morin et al., 2015b; Nagahara 

et al., 2018). The consensus from these studies is that early acceleration phase performance 

relies on the generation of large propulsive impulses, via greater mean hip extension angular 

velocity during stance (Hunter et al., 2005), while late acceleration phase performance requires 

minimising the braking impulses. Strategies for reducing the braking impulse include reducing 

the horizontal foot touchdown velocity (Hunter et al., 2005; Mann and Sprague, 1983) and 

horizontal CoM-foot touchdown distance (Mann and Herman, 1985; Mann et al., 1984) by 

rapid hip extension late in the swing phase. Furthermore, Hunter et al. (2005) suggested that 

intervention studies were warranted to explore these potential mechanisms. It could, however, 

be argued that a predictive computer simulation and modelling approach is more suited to 

addressing this type of research, nevertheless application of such an approach has been limited 

within the sprinting literature.  

 

This section has so far concentrated on the anterior-posterior impulse, however during the 

stance phase athletes must also generate enough vertical impulse to terminate their downward 

CoM movement, due to gravity, and propel their CoM upwards for the subsequent flight phase. 

It has been suggested that athletes should generate the minimum vertical impulse to counter 

the effect of gravity and enable the lower-limbs to be repositioned for the following flight phase 

(Hunter et al., 2005), as larger than necessary vertical impulses may be detrimental to 

performance due to causing longer flight phases and thus reducing step frequency (Nagahara 

et al., 2018). The study by Nagahara et al. (2018) provided evidence to support this, as they 

found smaller vertical impulses were conducive to greater performance during the acceleration 

phase. The same study also identified that the ability to generate a large vertical GRF, as 

opposed to a large vertical impulse, was necessary for improved performance during the 

maximum velocity phase due to the combination of low stance phase durations together with 

the requirement of producing the required vertical impulse to maintain performance during this 

phase. This latter finding has also been supported by studies featuring cohorts of physically 

active participants (Weyand et al., 2000) and sprinters (von Lieres Und Wilkau et al., 2020), 
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and they found that applying a larger mean vertical GRF was associated with greater running 

velocities.  

 

2.2.3 Internal kinetics 

Analyses of the internal kinetics are commonly based on the net joint moments, and they are 

representative of the net sum of all the internal structures (e.g., active contraction of muscle, 

passive ligament resistance and other soft tissue behaviour) acting across a joint. Through an 

analysis of the net joint moments it is possible to obtain an understanding of the causes of the 

joint kinematics, and why the techniques exhibited by athletes of a higher sprinting 

performance level were able to achieve a superior performance. Furthermore, the net joint 

moments can be combined with the joint angular velocities to determine the net joint powers 

and work done by the major lower-limb joints. The net joint powers and work done provide a 

surrogate measure of whether the major muscle groups, as reflected through the net joint 

moments, are acting concentrically and generating energy, or eccentrically and absorbing 

energy (Winter, 2009).  

 

Schache and colleagues performed a comprehensive analysis of the lower-limb net joint 

kinetics, alongside the lower-limb kinematics, during different magnitudes of CoM 

acceleration (Schache et al., 2019). The time histories of the ankle, knee, and hip net joint 

moments and joint powers during the stance phase for the different CoM acceleration 

magnitudes are shown in Figure 2.2–3 and Figure 2.2–4, respectively. An overview of the main 

findings for each of the lower-limb joints will be provided separately, commencing with the 

hip joint. 

Figure 2.2–3 Group mean lower-limb net flexor-extensor joint moments plotted across the stance phase for the 

three acceleration conditions (high: blue, medium: red, and low: green). Net joint moments normalised to body 

mass. The stance phase was time normalised from 0% (touchdown) to 100% (takeoff). A: hip (extensor is positive; 

flexor is negative); B: knee (extensor is positive; flexor is negative); C: ankle (plantarflexor is positive; dorsiflexor 

is negative). Figure taken from Schache et al. (2019).   
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At the hip, a greater net extensor moment was identified at touchdown for the low acceleration 

condition compared to the high (2.5 vs. 1.6 Nm/kg). The net hip moment became flexor at 35% 

and 65% of the stance phase for the low and high acceleration conditions, respectively, and at 

takeoff the magnitude was greater for the high acceleration condition compared to the low         

(-2.3 vs. -2.0 Nm/kg). The net extensor-to-flexor hip moment pattern has been identified as a 

fundamental aspect of sprinting with front-side mechanics (Mann and Murphy, 2015). The net 

work done at the hip transitioned from net positive in the high acceleration condition to net 

negative in the low (0.48 vs. -0.29 J/kg).  

 

A small and similar net knee flexor moment was found at touchdown for the high and low 

acceleration conditions (-0.15 Nm/kg), and this transitioned to an extensor moment for both 

conditions at ~5% of the stance phase. The peak net knee extensor moment was greater (2.4 

vs. 1.7 Nm/kg) and achieved earlier in the stance phase (40% vs. 48%) for the low acceleration 

condition compared to the high. At takeoff, the net knee moment became flexor, and the 

magnitude was greater for the low acceleration condition compared to the high (-0.4 vs. -0.05 

Nm/kg). The net work done at the knee decreased across the acceleration conditions but 

remained net positive across the high and low acceleration conditions (0.56 vs. 0.05 J/kg).  

 

A net ankle plantarflexor moment was identified at touchdown, and the magnitude was greater 

for the low acceleration condition compared to the high (0.4 vs. 0.2 Nm/kg). The peak net ankle 

plantarflexor moment was greater (3.8 vs. 3.0 Nm/kg) and achieved earlier in the stance phase 

Figure 2.2–4 Group mean lower-limb net joint powers plotted across the stance phase for the three acceleration 

conditions (high: blue, medium: red, and low: green). Net joint powers were normalised to body mass. Power 

generation is positive and power absorption is negative. The stance phase was time normalised from 0% 

(touchdown) to 100% (takeoff). A: hip; B: knee; C: ankle. Figure taken from Schache et al. (2019). 
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(35% vs. 55%) for the low acceleration condition compared to the high. The net work done at 

the ankle also decreased across the acceleration conditions but remained net positive across the 

high and low acceleration conditions (1.19 vs. 0.41 J/kg), and across the acceleration conditions 

the ankle consistently performed the most net positive work compared to the other joints.  

 

The study by Schache et al. (2019) also found positive relationships between the impulse of 

the extensor moments at the hip and ankle and the acceleration magnitude. The collective 

findings from this study demonstrate the significance of the ankle and hip joints towards 

sprinting performance during the acceleration phase. The limited role of the knee joint may be 

due to the reduced amount of flexion at touchdown as the magnitude of acceleration decreases, 

thus limiting the RoM over the stance phase for which to generate a net extensor moment. 

Furthermore, the cross-sectional study design may have omitted important differences at an 

individual level. Bezodis et al. (2015) stated that during the early acceleration phase there is 

less negative vertical CoM velocity to be reversed, in which case this permits the knee to have 

a greater role in generating net positive work and consequently contributing towards forward 

acceleration.  

 

Charalambous et al. (2012) analysed the net lower-limb joint kinetics of an international-level 

male sprint hurdle athlete during the first stance phase of the acceleration phase. They reported 

that the knee kinematics were dissimilar, lacking flexion, to the middle acceleration (Johnson 

and Buckley, 2001) and maximum velocity (Bezodis et al., 2008a) phases. They also reported 

that the knee plays an important role in early acceleration phase sprinting performance, despite 

the small net extensor moment and power magnitudes compared to the ankle and hip. 

Charalambous et al. (2012) cite that the role of the knee is to stabilise the lower-limb, increase 

vertical CoM velocity and transfer energy from the hip to the ankle (Jacobs and van Ingen 

Schenau, 1992). It is also worthwhile noting that the study by Charalambous et al. (2012) had 

the opportunity to explore how changes in the net joint kinetics may have influenced 

performance during the early acceleration phase on an individualised basis, nevertheless the 

authors did not choose to do so. 

 

Bezodis et al. (2014) also analysed the net lower-limb joint kinetics during the first stance 

phase of the acceleration phase of three international-level sprinters (100 m PB sprinter A: 

10.14, B: 10.28 and C: 12.72 s). In addition, they also attempted to perform a between athlete 

analysis. Bezodis et al. (2014) found that sprinter B achieved the highest performance level 
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across the stance phase, as indicated by the average horizontal external power, and they found 

that this sprinter generated greater ankle energy than their counterparts which may have 

contributed to their superior performance. The authors of this study also noted that sprinter B 

generated greater knee energy compared to the other athletes, again they also speculated that 

this may have contributed to their superior performance, noting that this was largely due to an 

earlier rising and peak net knee extensor moment. Furthermore, Bezodis et al. (2014) suggested 

that the potentially more beneficial net knee extensor moment generated by sprinter B may 

have been assisted by their improved touchdown kinematics, as they were also found to exhibit 

a lower horizontal foot touchdown velocity which has been linked with reducing the braking 

impulse (Mann and Herman, 1985). Lastly, sprinter B was also found to perform greater 

negative work at the hip, and this strategy has been suggested to be necessary to reduce the 

backward velocity of the thigh segment. Performing negative work at the hip has been 

suggested to be important for performance during the maximum velocity phase (Mann and 

Sprague, 1980; Mann, 1981), and based on these results it also appears to be an important 

aspect of technique from the very beginning of performing a sprint. 

 

The human skeleton can be modelled as a multibody system comprising rigid segments, and 

with knowledge of the kinematics and external forces (e.g., GRF) they can be combined to 

calculate the net joint moments necessary to produce the observed motion by performing 

inverse dynamics. However, the net joint moments obtained by performing inverse dynamics 

are known to be sensitive to the processing of the input data (e.g., the choice of filter cut-off 

frequencies and calculating the derivatives of the kinematics) (Bisseling and Hof, 2006; Hatze, 

2005; Kristianslund et al., 2012) and the external force application point (Kim et al., 2007; 

McCaw and Devita, 1995). Furthermore, imperfections in the model and input data lead to 

dynamic inconsistencies and violations of Newton’s Second of Law of Motion (Delp et al., 

2007; Hicks et al., 2015). The dynamic inconsistencies, in the form of residual forces and 

moments at the unactuated joint of the segment connected to the ground, are commonly 

disregarded within the sports biomechanics literature, and therefore the validity of the findings 

from inverse dynamics studies must be questioned. In recent times, data-tracking simulations, 

formulated as optimal control problems, appear to have gained popularity as they can be 

performed to obtain dynamically consistent net joint moments (Lin and Pandy, 2017; Meyer et 

al., 2016; Pallarès-López et al., 2019), however this type of approach has yet to be explored 

within a highly dynamic task, such as sprinting.  

 



23 

 

The drivers for motion are the forces generated by muscles, and therefore it seems intuitive that 

they should be the focus when attempting to improve performance and technique. Nevertheless, 

measuring muscle forces in vivo requires invasive procedures (Pandy and Andriacchi, 2010), 

and it is therefore not feasible to do so, particularly in tasks such as sprinting. Muscle forces 

together with their operating conditions (e.g., region on the force-length relationship) can, 

however, be estimated non-invasively by using a musculoskeletal model in combination with 

optimisation theory. The application of optimisation theory is necessary to estimate muscle 

forces as the musculoskeletal system is mechanically redundant, for example, the hip joint is 

spanned by more than 15 muscles, and consequently a net joint moment can be produced by a 

multitude of muscle force combinations.  

 

To solve the muscle forces redundancy problem using optimisation theory a performance 

criterion must either be maximised or minimised subject to a set of constraints. Arguably the 

two most common optimisation approaches for solving the muscle forces redundancy problem 

are static and dynamic optimisation (Pandy, 2001; Pandy and Andriacchi, 2010). Static 

optimisation can be viewed as decomposing the net joint moments into individual muscle 

forces based on a performance criterion that typically involves minimisation of the sum of 

squared muscle activations. Dynamic optimisation, which is synonymous with optimal control 

within the biomechanics community, typically solves the redundancy problem by performing 

a simulation which aims to track experimental data whilst also simultaneously minimising the 

sum of squared muscle activations. An advantage of static optimisation is that it can be used to 

solve the redundancy problem in a timely manner due to solving a separate optimisation 

problem for each discretised time point of a movement, however using dynamic optimisation 

can take much longer as it accounts for all the discretised time points of a movement 

simultaneously. The main benefits of dynamic optimisation are that it permits the use of 

integrated performance criteria and enables muscle activation and contraction dynamics to be 

included, as it accounts for all the discretised time points of a movement simultaneously, whilst 

static optimisation is not suitable for including these features. Lastly, a major benefit of 

dynamic optimisation is that it can be used in circumstances where no experimental data is 

available, and thus it enables predictive simulations to be performed.  

 

Hamstring strain injuries are common amongst sports that involve sprinting (Dalton et al., 

2015; Duhig et al., 2016). Quantifying the forces generated by those muscles together with 

their operating conditions is therefore crucial from an injury perspective within sprinting, as 
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this information could be used to aid in determining the aetiology of hamstring strain injuries 

and improving the rehabilitation process. Whilst the knowledge of muscle forces is crucial from 

an injury prevention and conditioning perspective, their application to directly informing 

sprinting technique and performance must be questioned as providing feedback in relation to 

muscle forces may be difficult to implement. Conversely, technique-based recommendations 

related to net joint moments may potentially have a greater application for feedback and 

intuition.  

 

2.3 Application of predictive computer modelling and simulation approaches to sprinting 

To date, very few studies have developed a computer model and used it to perform predictive 

simulations of sprinting with a view to enhance performance. One of the rare studies to do so 

was carried out by Bezodis et al. (2015). The authors of this study developed a seven-segment 

two-dimensional model that was kinematically-driven and used it to explore the effects of 

manipulating horizontal CoM-foot touchdown distance and the range of ankle dorsiflexion 

during stance on performance in the first step of the acceleration phase. They found a nonlinear 

relationship between manipulating the horizontal CoM-foot touchdown distance and 

performance, and confirmed some of the beliefs regarding the benefit of reducing horizontal 

CoM-foot touchdown distance. External power production was found to decrease as the foot 

was moved further forward, reach a peak improvement (0.7%) as the foot was moved 

backwards and then decrease with further backwards movements. Exponential improvements 

in performance were observed with reductions in ankle dorsiflexion. A major strength of this 

study was that they performed a comprehensive evaluation of their model by performing a data-

tracking simulation and found it was a close match with reality. However, a limitation of this 

study was that the model was kinematically-driven. Kinematically-driven models have been 

recommended for movements which are not limited by strength (Yeadon and King, 2007), as 

the net joint moments can become unwieldy using such an approach, however strength is an 

important component of sprinting. Future studies attempting to utilise a modelling and 

predictive simulation approach should consider using a kinetically-driven model with realistic 

muscle-tendon unit force production capabilities. 

 

Previous studies have performed predictive simulations of walking and running across a single 

step (Ackermann and van den Bogert, 2010; Falisse et al., 2019b), however they typically 

impose a terminal constraint that enforces symmetry (e.g., the state and control variables must 

match at the beginning and end). However, in circumstances such as the acceleration phase, 
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where CoM velocity continually changes along with the kinematics and kinetics, this type of 

constraint does not permit multiple steps to be simulated. Celik and Piazza (2013) developed a 

three-segment two-dimensional model and used it to perform predictive simulations of 

sprinting across 20 m of the acceleration phase. They found that their model exhibited key 

features of sprinting during the acceleration phase, for example the trunk segment was initially 

more inclined and then became more upright with subsequent steps. They also noted that the 

model began to dive following the last step, which is commonly seen in sprinting to get over 

the finish line. This study provided evidence for the scope of simulating multiple successive 

steps without the need to impose a terminal symmetry constraint. However, due to the 

simplicity of the model it is difficult to translate these findings to an applied environment, and 

they also did not evaluate their model which would have likely suggested increasing its 

complexity to ensure it was a closer representation of reality. Lastly, the model’s actuators were 

idealised force and moment generators, and lacked physiological properties, which also makes 

transferring these findings difficult. Future research should therefore aim to simulate multiple 

steps of sprinting using a model with actuators governed by muscle physiology properties. 

Importantly, the model must also initially undergo a thorough evaluation to demonstrate it is 

suitable for its intended purposes. 

 

2.4 Biomechanical modelling and simulation approaches 

Within the field of biomechanics, research questions can be answered using theoretical and 

experimental approaches. Theoretical approaches rely upon the development of a computer 

simulation model. A computer model is a set of equations, usually in the form of linear or 

nonlinear differential equations, that are used to represent a physical system (Alexander, 2003). 

Most models of the human skeleton are based on a series of interconnected rigid segments and 

the dynamics equations for these models can be developed by applying Newtonian mechanics. 

Deriving the dynamics equations of computer models with a limited number of segments and 

degrees-of-freedom (DOFs) suffices using Newtonian mechanics. However, in circumstances 

where the human skeleton is modelled with more complexity (e.g., a greater number of 

segments and DOFs), which is often needed to ensure the model is a closer representation of 

reality, application of Lagrangian mechanics is more appealing as it leads to a reduced set of 

dynamics equations and is thus more favourable for subsequent usage (van den Bogert and 

Nigg, 2007). The Lagrangian formulation is based on describing a model’s DOFs with a set of 

generalised coordinates 𝒒 = [𝑞1 𝑞2 … 𝑞𝑛]𝑇. Application of the Lagrangian formulation leads 



26 

 

to the following set of coupled second-order nonlinear differential equations to describe the 

dynamics of the human skeleton: 

𝑴(𝒒) ∙ 𝒂 = 𝑪(𝒒, 𝒗) + 𝑮(𝒒) + 𝑬 + 𝑻 (1) 

where 𝒒, 𝒗 and 𝒂 are the vectors of generalised coordinates, velocities and accelerations, 

respectively, 𝑴(𝒒) is the mass matrix, 𝑪(𝒒, 𝒗) is the vector of centrifugal forces, 𝑮(𝒒) is the 

vector of gravitational forces, 𝑬 is the vector of external forces (e.g., GRF) and 𝑻 the vector of 

generalised forces. The generalised forces vector comprises the residual forces and moments, 

which should be null for unactuated DOFs, and the net joint moments.  

 

The dynamics equations (1) can be restructured as follows: 

𝒂 = 𝑴(𝒒)−1[𝑪(𝒒, 𝒗) + 𝑮(𝒒) + 𝑬 + 𝑻)] (2) 

𝑴(𝒒) ∙ 𝒂 − 𝑪(𝒒, 𝒗) − 𝑮(𝒒) − 𝑬 = 𝑻 (3) 

When the dynamics equations are expressed as per equation (2) they demonstrate the ‘natural 

flow of events’ by which humans perform movement (neural-to-muscular-to-skeletal events) 

(Yamaguchi, 2005). It is possible to integrate these equations forwards in time to determine the 

motion of the skeleton in response to the inputs, which in this case are the net joint moments. 

In addition, models of muscle force production and geometry can be used in place of net joint 

moments. When the dynamics equations are used as per equation (2) it is referred to as forward 

dynamics, and this is most commonly associated with performing a simulation using a 

computer model (Vaughan, 1984). Conversely, when the dynamics equations are used as per 

equation (3) it is known as inverse dynamics, and this permits the net joint moments that must 

have been necessary to produce an observed motion to be calculated. It is also worthwhile 

highlighting that studies have developed approaches to perform simulations by using the 

dynamics equations in an inverse fashion (Falisse et al., 2019a; Meyer et al., 2016; Serrancolí 

et al., 2019; van den Bogert et al., 2011). 

 

Once a model has been developed it can be used to perform predictive and data-tracking 

simulations. Predictive simulations have a host of advantages for addressing sports 

biomechanics research questions which would otherwise not be feasible using experimental 

approaches, for example they enable ‘what if’ scenarios to be explored (e.g., hypothetical 

strength training improvements) and the identification of optimum technique. Data-tracking 

simulations can be performed to improve the dynamic consistency of modelled outputs, solve 

the muscle forces redundancy problem and calibrate model parameters (e.g., foot-ground 
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contact model parameters). Arguably the most beneficial aspect of performing data-tracking 

simulations is that they enable modelling assumptions to be assessed and they can be used to 

evaluate whether the model is of sufficient complexity. Yeadon and Challis (1994) stated that 

computer models used to perform predictive simulations typically undergo very little 

evaluation and thus their accuracy is unknown. In such cases it is therefore difficult to apply 

the findings in real world settings due to not knowing the level of accuracy. The evaluation of 

a computer model is consequently considered a vital step towards the development of a 

modelling and simulation framework. 

 

2.4.1 Model construction 

It is important to highlight that computer models of the human body are simplifications of 

reality as the human body comprises over 200 bones and 500 muscles (Yeadon and King, 

2007). The first step towards developing a computer model is therefore deciding on its 

complexity, and several authors have stated that the complexity of a model depends on its 

intended use (Pandy, 2001; Yeadon and King, 2007). For example, if the purpose of a study is 

to assess muscle coordination, a model which does not include actuators governed by properties 

of muscle physiology is not likely to be adequate for its intended use.  

 

Within the biomechanics literature, most computer models up until the early 2000s were two-

dimensional and grossly simplified, largely due to the limited computational power available 

at the time. Nevertheless, the benefit of simple computer models is that the results can be more 

easily interpreted. Whilst the results of simple computer models may be easier to interpret, their 

overly simplified nature limits the accuracy for which the findings can be applied to the real 

system. The improvements in computational power together with bespoke biomechanical 

modelling software (e.g., OpenSim and AnyBody) (Damsgaard et al., 2006; Delp et al., 2007) 

has seen the rise in three-dimensional computer models with far greater biofidelity. Arguably 

the greatest strength of these packages is that they come with a library of previously developed 

models, and this was a major bottleneck in the past as it meant that each model was purpose-

built. Now, however, these software packages cater for scaling the generic models to different 

participants and they permit modifications to be made to the models. Despite the relative ease 

with which features of a model can be modified within the software packages it is perhaps also 

one of their major weaknesses, it is therefore imperative to perform checks throughout to ensure 
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the modifications made produce expected results for simple circumstances and obey the 

physical laws. 

 

When developing a computer model, an important decision must be made with regards to how 

the model is driven, as they can be either kinematically- or kinetically-driven. Kinematically-

driven models have been previously used for modelling sporting tasks which are not limited 

by strength, such as the aerial phase of gymnastics manoeuvres (Yeadon et al., 1990). The 

benefit of kinematically-driven models is that they only require the accelerations of the model’s 

DOFs, however caution should be taken when using this approach as the net joint moments, 

which can be subsequently calculated, may become greater than feasibly achievable for a 

human. Kinetically-driven models fall into two categories: muscle and moment. Hereafter these 

approaches will be referred to as muscle- and moment-driven.  

 

Muscle-driven models involve modelling the geometry and force-producing elements of 

muscles. The geometry of a muscle is most often modelled as a single line segment between 

its origin and insertion, and to improve the representation of muscle in different joint 

configurations via-points and wrapping surfaces are also used. The lengths and moment arms 

of the modelled muscles using this approach are a function of the skeletal model’s generalised 

coordinates. The force-producing elements of muscle are typically based on the Hill model 

(Figure 2.4–1), which consists of three elements: an active contractile element, a parallel elastic 

element and a series elastic element. The contractile and parallel elastic elements are intended 

to represent the behaviour of the muscle fibres and passive elastic tissue that surrounds the 

muscle fibres, respectively, whilst the series elastic element is intended to represent the 

behaviour of the tendon and other tissues responsible for transmitting force from the muscle 

fibres to the skeleton (van den Bogert et al., 2011) (Figure 2.4–2). A strength of the Hill model 

is that it is dimensionless and thus force generation can be scaled for different muscles and 

individuals based on the following parameters: optimum fibre length, tendon slack length, 

maximum shortening velocity, maximum isometric force and pennation angle at optimum fibre 

length. 

 

Challenges with muscle-driven models include determining appropriate values for the 

parameters of the Hill model and accurately capturing the muscle geometry (Hicks et al., 2015). 

Due to the difficulties outlined, researchers have also utilised moment-driven models for 

sporting applications (Allen et al., 2013; Felton et al., 2020). Moment-driven models are based 
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on the moment-angle and moment-angular velocity relationships obtained from dynamometry 

testing. The greatest strength of this approach is that it permits subject-specific parameters for 

actuating the model to be determined (Yeadon et al., 2006), and this is particularly important 

for ensuring that the results from predictive simulations are within the limits of an individual’s 

strength. Nevertheless, this approach is limited to two-dimensional models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4–1 Schematic of the three-element equilibrium Hill muscle model, consisting of an active contractile 

element (CE), parallel elastic element (PE) and series elastic element (SE). 𝑎 is the pennation between the 

orientation of the CE and SE. LMTU, LCE and LSE are the length of the muscle, CE, and SE, respectively. FCE, FPE 

and FSE are the force generated by the CE, PE, and SE, respectively. 

 

Figure 2.4–2 Characteristic curves describing the behaviour of the Hill model elements. Top left: series elastic 

element force (FSE) and series elastic element length (LSE) relationship (LSE normalised to tendon slack length). 

Top middle: contractile element force (FCE), parallel elastic element force (FPE) and contractile element length 

(LCE) relationships (solid black line represents FCE and dashed black line represents FPE) (LCE normalised to 

optimum muscle fibre length). Top right: contractile element force velocity multiplier (F-VCE) and contractile 

element velocity (VCE) relationship (VCC normalised by maximum shortening velocity). Bottom middle: example 

of the CE activation (Act; solid black) following a maximal burst of excitation (Excit; dashed black). 
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2.4.2 Simulation 

To perform simulations of human movement, forward dynamics, a knowledge of the inputs to 

the model (e.g., muscle forces or accelerations) together with an integration scheme (e.g., Euler 

or Runge-Kutta) are needed to advance the model’s dynamics equations forwards in time and 

determine the resulting motion. The major challenge with predictive and data-tracking 

simulation approaches is the determination of the inputs that lead to a plausible output. A 

popular approach to determine the inputs relies on the application of optimal control theory. 

Optimal control theory enables the inputs of a dynamical system that optimise a specified 

performance criterion to be determined while satisfying any constraints on the behaviour of the 

system. Optimal control theory can therefore be used to determine the optimal inputs for 

performing predictive and data-tracking simulations, for example in the predictive scenario 

maximising jump height or in the data-tracking scenario minimise the error between simulated 

and measured variables.  

 

The numerical methods for solving optimal control problems (a simulation formulated using 

optimal control theory) can be divided into two classes: indirect methods and direct methods.  

Within the biomechanics literature, the direct methods have almost exclusively been used, as 

the indirect methods rely on applying the calculus of variations to determine the first-order 

optimality conditions for each optimal control problem, which is not feasible for problems that 

feature complicated models. Direct methods rely on discretising the original continuous time 

optimal control problem and converting it to a nonlinear optimisation or nonlinear 

programming problem (NLP), which can then be solved with an NLP solver (e.g., fmincon, 

IPOPT). Over the last 10 years within biomechanics, the direct collocation method has gained 

popularity. Direct collocation relies on discretising the model’s control (input) and state 

variables, whilst direct shooting and multiple shooting only discretise the model’s control 

variables. In the direct collocation method, the model’s dynamics equations do not need to be 

integrated, and instead they are enforced as equality constraints (Figure 2.4–3). In contrast, the 

direct shooting and multiple shooting methods require the dynamics equation to be integrated, 

and thus they have the possibility of suffering from integration errors. The direct shooting 

methods, particularly single shooting, are known to struggle with simulations that feature 

terminal constraints, and this is a consequence of the control variables at the beginning of the 

simulation influencing the state variables near the end of the simulation, and thus they are 

highly sensitive (Betts, 2010). Conversely, the direct collocation method does not suffer from 
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this issue due to splitting the entire trajectory into different sections and treating each section 

separately. 

  

Figure 2.4–3 Schematic of direct collocation process. The left plot features an example of a discretised state 

variable at N mesh points at a given iteration of the NLP solver. The right plot contains the same data as in the 

left plot but from t4 to t8 and illustrates how a particular model’s dynamics are enforced at each of the mesh 

intervals (in this case for two mesh intervals for visualisation purposes) using a forward Euler scheme. 
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2.5 Restatement of thesis aims 

This section provides a restatement of the aims of this thesis to highlight how they relate to 

literature reviewed.  

 

Study 1: Three-dimensional data-tracking simulations of sprinting using a direct 

collocation optimal control approach 

From reviewing the sprinting biomechanics literature, it became apparent that very few studies 

had utilised a predictive computer simulation and modelling approach to study the influence of 

technique modifications on sprinting performance, despite the advantages offered by such an 

approach compared to conventional experimental approaches. The rise in the usage of direct 

collocation optimal control approaches to perform more intricate simulations within 

biomechanics due to their advantages over (single and multiple) shooting approaches was also 

highlighted. However, it was also identified that a computational modelling and simulation 

framework must first undergo a thorough quantitative evaluation, prior to using it to perform 

predictive simulations, to establish how accurately it can reproduce ground-truth data. This 

resulted in the following main aims for the first study: 

i) Develop a computational modelling and simulation framework for sprinting using a 

direct collocation optimal control approach.  

ii) Evaluate the framework’s capability of reproducing experimental data by performing a 

series of data-tracking simulations.  

 

The literature review also identified that the net joint kinetics determined from inverse 

dynamics can contain dynamic inconsistencies in the form of the residuals, however, seldom 

are the dynamic inconsistencies acknowledged and dealt with in sports biomechanics 

applications. Furthermore, the development of a computer model for performing predictive 

simulations of sprinting necessitates a means of modelling foot-ground interaction and 

identifying an appropriate set of parameters for the model of foot-ground contact. In the 

literature review it was discussed that performing data-tracking simulations offers a means of 

overcoming the dynamic inconsistencies issues and identifying the parameters of a foot-ground 

contact model. This led to the following secondary aims of the first study: 

i) To improve the dynamic consistency of the simulations by enforcing the pelvis 

residuals to be null.   

ii) To identify foot-ground contact model parameters for performing predictive 

simulations of sprinting.  
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Study 2: Modifications to the net knee moments lead to the greatest improvements in 

accelerative sprinting performance: a predictive simulation study 

From reviewing the literature, accelerative sprinting performance emerged as been of 

significance to track and field athletes and team-based sports athletes. Furthermore, it was also 

recognised that the sprinting biomechanics literature contains numerous kinematics- and 

kinetics-based technique recommendations for improving performance from cross-sectional 

studies, however very few studies have explored how technique changes influence performance 

on an individualised basis. It was recognised that a predictive computer simulation and 

modelling approach was ideal for carrying out such research. Lastly, the primary sprinting 

coaching framework (front-side mechanics) was discussed, however it was recognised that 

minimal evidence currently exists to either support or reject it. This subsequently led to the 

following main aims for the second study:    

i) Explore how hypothetical modifications in technique influence accelerative sprinting 

performance. 

ii) Investigate how the modifications mirrored the theories of an existing sprinting 

coaching framework (front-side mechanics). 
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Three-dimensional data-tracking simulations of sprinting 

using a direct collocation optimal control approach 
 

3.1 Abstract 

Biomechanical simulation and modelling approaches have the possibility to make a meaningful 

impact within applied sports settings, such as sprinting. However, for this to be realised, such 

approaches must first undergo a thorough quantitative evaluation against experimental data. 

We developed a musculoskeletal modelling and simulation framework for sprinting, with the 

objective to evaluate its ability to reproduce experimental kinematics and kinetics data for 

different sprinting phases. This was achieved by performing a series of data-tracking 

calibration (individual and simultaneous) and validation simulations using a direct collocation 

optimal control approach, that also featured the generation of dynamically consistent simulated 

outputs and the determination of foot-ground contact model parameters. The simulated values 

from the calibration simulations were found to be in close agreement with the corresponding 

experimental data, particularly for the kinematics (average root mean squared differences 

(RMSDs) less than 1.0° and 0.2 cm for the rotational and translational kinematics, respectively) 

and ground reaction force (GRF) (highest average percentage RMSD of 8.1%). Minimal 

differences in tracking performance were observed when concurrently determining the foot-

ground contact model parameters from each of the individual or simultaneous calibration 

simulations. The validation simulation yielded results that were comparable (RMSDs less than 

1.0° and 0.3 cm for the rotational and translational kinematics, respectively) to those obtained 

from the calibration simulations. This study demonstrated the suitability of the proposed 

framework for performing future predictive simulations of sprinting, and gives confidence in 

its use to assess the cause-effect relationships of technique modification in relation to 

performance. Furthermore, this is the first study to provide dynamically consistent three-

dimensional muscle-driven simulations of sprinting across different phases. 
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3.2 Introduction 

Sprinting is the fastest mode of human bipedal locomotion, and the short distance events (60-

400-m) in modern athletics provide a means of assessing the limits of human sprinting 

performance. The objective for athletes competing within these events is to cover the set 

distance in the shortest possible time, and often the winning margin is hundredths of a second 

at the highest levels of competition. Coaches and athletes are therefore continually striving for 

improvements in technique which can enhance overall performance by such fine margins. 

Sprinting also plays an important role within team-based sports. For instance, sprinting has 

been shown to be pivotal in creating goal scoring opportunities within soccer (Faude et al., 

2012). Thus, the insights from further understanding sprinting technique and performance can 

have far reaching applications, as they can also be transferred to benefit performance in other 

sports. 

 

Most studies to date have advanced the knowledge of how to improve sprinting performance 

by assessing the ground reaction force (GRF) (Colyer et al., 2018a; Morin et al., 2011), joint 

kinematics and kinetics (Bezodis et al., 2008a; Schache et al., 2019; Smith et al., 2014), and 

spatiotemporal parameters (Hunter et al., 2004a; Salo et al., 2011). The studies focusing on 

joint kinetics (net joint moments, power, and work) potentially bear the most significance, as 

they can explain the causes of motion. However, the net joint moments calculated from inverse 

dynamics analyses (IDA) are known to be impacted by several factors (Derrick et al., 2020) 

(e.g., filtering and soft-tissue artefact), and necessitate fictitious residual forces and moments 

to be applied at the model’s root segment (e.g., pelvis) due to dynamic inconsistencies. These 

residuals are further exacerbated during explosive tasks, such as sprinting, where experimental 

errors and modelling assumptions are likely to become more critical. Methods such as the 

residual reduction algorithm (RRA) within OpenSim (Delp et al., 2007) and optimal control 

approaches (Lin and Pandy, 2017; Meyer et al., 2016; Pallarès-López et al., 2019) have been 

introduced to compensate for the residuals, although they have not seen widespread adoption 

within the sports biomechanics literature. Furthermore, within the sports biomechanics 

literature these residuals are typically neglected, raising questions on the errors in IDA and the 

validity of the corresponding findings. 

 

A further limitation within the current body of sprinting literature is that most studies have 

focused on identifying key aspects of technique from group level analyses. It is possible that 

the technique-based findings from group level analyses can be transferred to benefit the 
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performance levels of elite athletes. However, individualised technique modifications are more 

likely to be necessary for elite athletes to further improve their performance levels by the 

sought-after small margins. Furthermore, the existing literature provides various technique 

related factors associated with improved sprinting performance, as opposed to how specific 

technique modifications influence sprinting performance. Predictive computer simulation and 

modelling approaches within sports biomechanics can be used to overcome the aforementioned 

limitations, as they can be used to identify optimum technique on an individualised basis, 

explore cause-effect relationships, and assess ‘what-if’ scenarios (Neptune, 2000).  

 

Recently, there has been a noticeable increase in the number of modelling and simulation 

studies within sports biomechanics adopting an optimal control theory approach (Jansen and 

McPhee, 2020; Lin and Pandy, 2017; Porsa et al., 2016), also specifically within sprinting 

(Celik and Piazza, 2013; Schultz and Mombaur, 2010). Celik and Piazza (2013) found that 

their optimised solution of sprinting demonstrated several salient features that have been 

observed experimentally (e.g., forward trunk lean during early acceleration), although their 

model lacked a sufficient representation of the lower-limbs to adequately characterise their 

actions. Conversely, Schultz and Mombaur (2010) developed a three-dimensional model, and 

used it in an exploratory sense to determine the feasibility of performing predictive sprinting 

simulations. However, a limitation common to both of these studies is that they did not 

explicitly evaluate their outputs against experimental data.  

 

The evaluation of a modelling and simulation framework is needed to ensure that it is fit for its 

purposes and produces realistic results (Yeadon and Challis, 1994). Furthermore, within 

applied sports contexts the evaluation step is necessary to ensure that the results from predictive 

simulations can be transferred with confidence to drive real world changes. To conduct the 

evaluation step, data-tracking simulations using optimal control theory can be performed 

(Umberger and Miller, 2017), as they provide the opportunity to quantitatively determine how 

a modelling and simulation framework performs at reproducing experimental data. In addition, 

a major benefit of optimal control based data-tracking simulations is that they provide an 

elegant approach to improve the dynamic consistency of a simulation by either minimising or 

constraining the residuals, particularly when used with the direct collocation method (Lin and 

Pandy, 2017; Meyer et al., 2016; Pallarès-López et al., 2019). To date, however, no study has 

attempted to use this approach within a highly demanding sporting movement, such as 

sprinting. 
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Lastly, predictive simulations of sprinting necessitate a means of modelling the foot-ground 

interaction. One popular approach relies on distributing a finite set of contact elements across 

the surface of a foot and using a compliant foot-ground contact model to calculate the contact 

forces at each element (Dorschky et al., 2019; Falisse et al., 2019a; Falisse et al., 2019b; 

Gilchrist and Winter, 1996; Lin and Pandy, 2017; Serrancolí et al., 2019). The difficulty with 

using this approach is determining the foot-ground contact model parameters. Previous studies 

have obtained the foot-ground contact model parameters by fitting their model to mechanical 

testing data (Dorschky et al., 2019; Miller and Hamill, 2015), thus the values of the parameters 

can be used by further studies. However, the use of previously published foot-ground contact 

model parameter values can be problematic due to the differences in the formulations and 

constitutive laws between compliant foot-ground contact models. It is also possible to 

determine the values of the foot-ground contact model parameters by manually tuning them 

(Gilchrist and Winter, 1996), although this approach can be challenging to implement due to 

the nonlinear interactions of the parameters. An alternative approach is to perform data-

tracking simulations, as they enable the foot-ground contact model parameter values to be 

determined in addition to the evaluation of a modelling and simulation framework (Falisse et 

al., 2019a; Serrancolí et al., 2019). When using the latter approach, care must be taken to ensure 

that the parameters obtained are not unrealistic and overfit, particularly if they are determined 

from tracking a single trial. Consequently, further independent data-tracking simulations using 

the obtained foot-ground contact model parameters must be performed to ensure that they lead 

to simulated outputs that closely resemble the experimental data, and to provide confidence for 

their use within predictive simulations.  

 

The main aims of this study were to develop a musculoskeletal modelling and simulation 

framework for sprinting, and to evaluate its capability of reproducing experimental data (GRF, 

kinematics, kinetics, and electromyograms – EMGs) by performing data-tracking simulations. 

The secondary aims of this study were to improve the dynamic consistency of the simulated 

outputs by enforcing the residuals to be zero, thus further highlighting the advantages of the 

approach used, and to identify foot-ground contact model parameters such that they can be 

used within future predictive simulations of sprinting. 
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3.3 Methods 

3.3.1 Experimental data collection 

An international-level male sprinter (age: 24 years; height: 1.79 m; mass: 72.2 kg; 100 m PB: 

10.33 s; 200 m PB: 20.27 s) provided written informed consent to participate in the current 

study. Ethical approval for this study was obtained from the University of Bath’s Research 

Ethics Approval Committee for Health (EP 17/18 238). The data collection took place at the 

National Indoor Athletics Centre in Cardiff, UK (Figure 3.3–1). The protocol required the 

athlete to perform a series of maximal sprinting trials whilst GRF, three-dimensional marker 

trajectories and EMGs were recorded.  

 

Five force plates (× 4 type: 9287CA and × 1 type 9282BA, Kistler, Switzerland) were used to 

collect GRF at a sampling frequency of 2000 Hz. Three-dimensional marker trajectories were 

recorded using a 15-camera motion capture system (Qualisys AB, Sweden) sampling at 250 

Hz. The motion capture system was positioned on either side of the track segment which 

enclosed the force plates. Forty-nine retro-reflective markers were attached to the surface of 

the athlete’s skin and shoes using double-sided adhesive and medical tapes (Figure 3.3–1). 

Eight acrylic marker clusters were also attached to the athlete using double-sided adhesive tape 

Figure 3.3–1 Experimental data collection setup (A), and placement of retro-reflective markers, acrylic clusters, 

and EMG electrodes (B and C). The force plates setup provided a 4.5 m segment of the track to capture GRF, and 

this permitted GRF data from a minimum of two successive steps to be captured for each trial. The calibrated 

motion capture volume covered 9.5 (length)  1.5 (width)  2 (height) m3. 
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and medical bandages. Six wireless surface electrodes (Trigno Avanti, Delsys Inc., Boston, 

MA, USA) sampling at 2000 Hz with a 20-450 Hz bandwidth were used to record EMGs from 

the following right lower-limb muscles of the athlete: gluteus maximus (GMAX), biceps 

femoris (BF), medial gastrocnemius (GASTM), tensor fasciae latae (TFL), vastus medialis 

(VM) and soleus (SOL). The skin preparation and placement of the electrodes was in 

accordance with previously published guidelines (Hermens et al., 2000).  

 

The data collection commenced with a standing static trial of the athlete being captured. The 

athlete then performed two successful maximal effort sprints over three distances (0-10, 0-30 

and 0-60 m) following the completion of a self-led warm up. The chosen distances covered the 

three conventional phases (early acceleration, mid-acceleration and maximum velocity) of 

short distance sprinting events. Different starting positions, relative to the first force plate, were 

used to enable the sprinter to contact the force plates between 0-5, 10-15 and 45-50 m for each 

of the distances. A trial was deemed successful if the athlete’s entire foot landed within the 

boundaries of a single force plate whilst not noticeably altering their step. A rest period of up 

to 10 minutes between each sprint was given to the athlete. Each sprint was initiated by standard 

‘on your marks’ and ‘set’ commands by a member of the research team. The researcher then 

pressed a trigger button that provided an auditory sound signal through a sounder device (Wee 

Beastie Ltd, UK), and this also triggered the synchronous acquisition of GRF, three-

dimensional marker trajectories and EMGs through Qualisys Track Manager (version 2018.1, 

Qualisys AB, Sweden). 

 

3.3.2 Model 

We started with a generic three-dimensional full-body musculoskeletal OpenSim model 

(Hamner et al., 2010) (Figure 3.3–2) that had been previously used for applications in sprinting 

(Dorn et al., 2012; Lai et al., 2016). The original model represented the human skeleton as a 

multibody system comprising 20 rigid segments and 29 degrees-of-freedom (DOFs). We added 

DOFs for subtalar inversion-eversion, metatarsophalangeal (MTP) dorsiflexion-plantarflexion, 

and wrist flexion-extension and adduction-abduction. The configuration of the modified model 

was uniquely described by a set of generalised coordinates 𝒒 ∈ ℝ37, with each DOF being 

represented by a generalised coordinate. The modified model’s 37 DOFs were as follows: 6 

DOFs ground-to-pelvis joint, 3 DOFs hip joints, 1 DOF knee joints, 1 DOF ankle joints, 1 DOF 
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subtalar joints, 1 DOF MTP joints, 3 DOFs back joint, 3 DOFs shoulder joints, 2 DOFs elbow 

joints and 2 DOFs wrist joints. 

 

The generic modified model was linearly scaled to match the anthropometric and inertial 

characteristics of the athlete by using a measurement-based approach within OpenSim. Scaling 

factors for each segment were calculated using the relative distances between markers placed 

over anatomical landmarks recorded in the static trial and corresponding virtual markers which 

were placed on the modified generic model. A combination of uniform and non-uniform 

scaling factors were used to scale the properties of each segment, and the lower- and upper-

limbs were scaled to maintain bilateral symmetry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The upper-limbs were actuated by 14 joint actuators whose limits were set based upon the IDA 

results. The lower-limbs and trunk were actuated by 92 Hill-type muscle-tendon units (MTUs), 

and we used the dimensionless characteristic equations presented by De Groote et al. (2016) to 

describe the active and passive (series and parallel) components of force generation for each 

MTU. Five parameters are used to scale the dimensionless characteristic equations of Hill-type 

models for a specific MTU: pennation angle at optimum fibre length, optimum fibre length, 

tendon slack length, maximum shortening velocity and maximum isometric force. In our case 

Figure 3.3–2 Three-dimensional musculoskeletal model (Hamner et al., 2010) used in the current study. The 

same model was used to determine experimental kinematics and kinetics from inverse kinematics and dynamics 

analyses, respectively, and perform data-tracking simulations. The virtual model markers are denoted by pink 

spheres. 
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we used the pennation angle at optimum fibre length parameters reported in the generic model, 

whilst we used the optimum fibre length and tendon slack length parameters obtained following 

the scaling of our model. The scaling procedure updated those parameters while preserving the 

ratio between them from the generic model. We set the maximum shortening velocity 

parameter of all the MTUs to be 12 optimal fibre lengths per second based upon an in vivo 

estimate of the maximum shortening velocity of human muscle (De Ruiter et al., 2000). The 

maximum isometric force parameters were set to be two times greater than those reported 

within the generic model, and this enabled the MTUs of the lower-limbs DOFs, except the 

MTP DOFs, to exert net moments that more closely reflected the training status of our athlete. 

For example, the four MTUs responsible for extension of the knee DOF had the capacity to 

exert an isometric net moment that was approximately 18% greater than reported by Erskine et 

al. (2011) for a group of untrained individuals following 9 weeks of resistance training. We 

also included reserve actuators for each of the lower-limb and trunk DOFs. The upper limits of 

the reserve actuators for the MTP DOFs and the remaining lower-limb and trunk DOFs were 

set to 40 and 10 Nm, respectively. The reserve actuators for the MTP DOFs were set with a 

higher upper limit such that together with the four MTUs spanning each of the MTP DOFs they 

had the capacity to produce net MTP moments that were in a similar range to those reported 

from isometric dynamometry testing (Goldmann et al., 2013). To account for the behaviour of 

the athlete’s sprinting spikes and the passive structures surrounding the MTP DOFs we 

included a simple linear rotational spring. The stiffness of the rotational spring was set to 65 

Nm/rad by combining the rotational stiffness of sprinting spikes/sports shoes (Oh and Park, 

2017; Toon et al., 2006) with the rotational stiffness used previously for representing the 

passive structures surrounding the MTP DOFs (Sasaki et al., 2009).  

 

Polynomials were used to describe the lengths, velocities and moment arms of the MTUs as 

functions of the model’s generalised coordinates and velocities (Falisse et al., 2019a). The 

coefficients of the polynomials were determined by fitting them to the lengths and moment 

arms of the scaled model’s MTUs, which were obtained by performing a Muscle Analysis 

within OpenSim for a wide range of generalised coordinates values. We opted to describe the 

lengths, velocities and moment arms of the MTUs with differentiable and continuous 

polynomial functions as they are ideally suited to the gradient-based optimal control approach 

we used. 
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The aerodynamic drag force within sprinting is known to have an influence on overall 

performance (Quinn, 2003), even when analysing performance across multiple steps with zero 

wind velocity (Colyer et al., 2018a). To account for the aerodynamic drag force we used the 

approach presented by Samozino et al. (2016), and for this study we assumed that the wind 

velocity was zero as the experimental data collection took place in an indoor athletics centre. 

The aerodynamic drag force was applied to the pelvis segment, specifically at the model’s CoM 

position expressed in the local frame of the pelvis segment. We opted to apply the aerodynamic 

drag force to the pelvis segment as this segment was the closest to the model’s CoM position 

when visualised within the OpenSim graphical user interface for the trials processed. 

 

3.3.3 Data processing & analysis 

An open-source MATLAB toolbox (https://simtk.org/projects/matlab_tools) was used to 

convert the raw data into the file formats compatible with OpenSim (version 3.3, Stanford 

University, CA,USA) (Delp et al., 2007). For the purposes of this study we used experimental 

data that spanned an arbitrary right foot stance phase alongside portions of the flight phases 

prior to touchdown and after take-off from the first early acceleration and mid-acceleration 

phase trials and from both the maximum velocity phase trials. Touchdown and take-off were 

determined using a 20 N vertical GRF threshold. The analysed flight phases were identified by 

searching within the vertical GRF signal 50 frames backwards and forwards from touchdown 

and take-off, respectively, to then identify the frames which most closely coincided with the 

sampling intervals of the motion capture system. 

 

Global pelvis and relative joint kinematics for each trial were determined by performing inverse 

kinematics analyses within OpenSim from the recorded marker trajectories. The kinematics 

and GRF were filtered using a common 20 Hz fourth-order low-pass Butterworth filter. The 

cut-off frequency was determined by performing a residual analysis on the kinematics obtained 

from the inverse kinematics analyses (Winter, 2009). The filtered kinematics were also fitted 

using B-splines to enable velocities and accelerations to be determined. Net joint moments and 

pelvis residuals were calculated for each trial by performing IDA using the OpenSim C++ 

application programming interface. The splined kinematics, net joint moments and filtered 

GRF served as the experimental data to be tracked within the data-tracking simulations. 

 

The EMGs from each trial were full-wave rectified and filtered at 20 Hz using a fourth-order 

low-pass Butterworth filter. We selected the cut-off frequency based on previous studies which 

https://simtk.org/projects/matlab_tools
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assessed EMGs during running and sprinting (Santuz et al., 2020; Yong et al., 2014). Each 

filtered EMG was normalised to the maximum filtered amplitude of the respective EMG from 

within all the trials processed. Following the collection of the mid-acceleration and maximum 

velocity phase trials we noticed that the TFL and SOL electrodes, respectively, became 

detached from the surface of the athlete’s skin, consequently we excluded the TFL and SOL 

EMG from those trials during data processing and further analysis. 

 

3.3.4 Optimal control problem formulation 

The data-tracking simulations (calibration and validation) were formulated as optimal control 

problems (OCPs). The objective of the data-tracking simulations was to determine the state 𝒙 

and control 𝒖 variables (plus the foot-ground contact model parameters 𝒑 for the calibration 

simulations), that resulted in tracking the experimental data as closely as possible, while 

satisfying our model’s constraints.  

 

The skeletal dynamics of our musculoskeletal model (Figure 3.3–2) were described by a 

collection of 37 coupled second-order nonlinear differential equations. The contraction and 

activation dynamics of each MTU were described by two first-order nonlinear differential 

equations (De Groote et al., 2016; Zajac, 1989). Four state variables (𝒙 = [𝒒 𝒗 𝑭𝑻 𝒂], where 𝒒 

and 𝒗 are the scaled musculoskeletal model’s generalised coordinates and velocities, 

respectively, and 𝑭𝑻 and 𝒂 are the MTU normalised tendon forces and activations, 

respectively) were selected to enable the skeletal, contraction and activation dynamics to be 

represented as a system of first-order differential equations. We also included control variables 

for the upper-limb joint actuators 𝒖𝑼𝑳 and the reserve actuators 𝒖𝑹𝑬𝑺 that defined the 

instantaneous moment those actuators could produce.  

 

We formulated the differential equations governing skeletal and contraction dynamics 

implicitly (Falisse et al., 2019a) by introducing additional control variables for the time 

derivatives of the generalised velocities 𝒖�̇� and normalised tendon forces 𝒖�̇�𝑇
. The implicit 

formulation led to enforcing the first-order skeletal and contraction dynamics with simple 

constraints, and additional nonlinear equality path constraints were used to ensure the skeletal 

and contraction dynamics equations were enforced. Two sets of equality path constraints were 

used to enforce the skeletal dynamics equations of our model’s 37 DOFs. The first set enforced 

that the pelvis residuals (moments and forces at the 6 pelvis DOFs) obtained from evaluating 
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the skeletal dynamics equations were zero. The second set enforced that the net joint moments 

(moments at the 31 relative DOFs) obtained from evaluating the skeletal dynamics equations 

matched with those obtained from the actuators. The inclusion of the control variables for the 

upper-limb actuators was not mandatory since we used idealised upper-limb actuators together 

with an implicit skeletal dynamics formulation. For the contraction dynamics equations we 

imposed equality path constraints to enforce the Hill-equilibrium condition (the normalised 

tendon force matched the projected normalised muscle force). 

 

The differential equation describing activation dynamics was also formulated implicitly using 

the approach presented by De Groote et al. (2009), and we introduced additional control 

variables for the time derivatives of the activations 𝒖�̇�. This again led to enforcing the first-

order activation dynamics with simple constraints, and we enforced the activation dynamics 

equations by imposing two sets of linear inequality path constraints. These constraints can be 

derived from the original differential equation describing activation dynamics by using the 

upper and lower bounds of the excitations, which are often used as control variables. By 

formulating the activation dynamics in this manner we avoided the need to include excitations 

as control variables, and the resulting path constraints possessed favourable optimisation 

properties as they were linear.  

 

For the purposes of modelling foot-ground interaction we attached four and two contact spheres 

to our model’s right rearfoot and forefoot segments, respectively. The GRF generated by each 

of the contact spheres was based on a smooth foot-ground contact model (Serrancolí et al., 

2019). The smooth foot-ground contact model was designed to be compatible with gradient-

based optimal control approaches and is an approximation of a previously published foot-

ground contact model (Sherman et al., 2011). The equations used to calculate the normal and 

friction forces for the smooth foot-ground contact model can be accessed online at 

https://simbody.github.io/3.7.0/classSimTK_1_1SmoothSphereHalfSpaceForce.html. The 

position of each contact sphere relative to the segment it was attached to, and the stiffness and 

damping coefficients common to all the contact spheres were treated as parameters 𝒑 to be 

determined from the data-tracking calibration simulations. A constraint was added to ensure 

that the contact spheres lie on a horizontal plane when the ankle, subtalar and MTP DOFs were 

neutral. We used the default parameters for the constants responsible for smoothing the 

penetration and penetration rate terms, and the constant that enforces the derivative of the 

penetration term to be non-zero. For each contact sphere, the static, dynamic and viscous 

https://simbody.github.io/3.7.0/classSimTK_1_1SmoothSphereHalfSpaceForce.html
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coefficients of friction were set to 0.95, 0.3 and 0.3, respectively, and the transition velocity 

and radius were set to 0.001 m/s and 0.02 m, respectively. We also introduced GRF control 

variables 𝒖𝑮𝑹𝑭 for each of the contact spheres, similarly to Serrancolí et al. (2019). GRF control 

variables were introduced to improve the conditioning of the objective function, as the GRF 

computed from the contact model is susceptible to large changes with only minor changes in 

the musculoskeletal model’s state variables, which can lead to convergence issues. Equality 

path constraints were included to ensure the GRF from both the control variables and the 

contact model matched at the optimal solution.  

 

The objective function 𝐽 consisted of three terms: a data-tracking term 𝐽𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 that minimised 

the squared errors between the experimental and simulated kinematics, GRF and net joint 

moments, an effort term 𝐽𝑒𝑓𝑓𝑜𝑟𝑡 that minimised the squared activations, and a control variables 

term 𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 that minimised the squared reserve actuators control variables and those control 

variables introduced due to the use of the implicit differential equations: 

 

𝐽 = 𝐽𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 + 𝐽𝑒𝑓𝑓𝑜𝑟𝑡 + 𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (1) 

 

𝐽𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 =  𝑤1 ∑ ∫ (
𝑞𝑗

𝐸𝑋𝑃 − 𝑞𝑗
𝑆𝐼𝑀

𝑟𝑎𝑛𝑔𝑒(𝑞𝑗
𝐸𝑋𝑃)

)

2𝑡𝑓

𝑡0

𝑑𝑡

37

𝑗=1

+ 𝑤1 ∑ ∫ (
𝐺𝑅𝐹𝑛

𝐸𝑋𝑃 − 𝑢𝐺𝑅𝐹𝑛

𝑆𝐼𝑀

𝑟𝑎𝑛𝑔𝑒(𝐺𝑅𝐹𝑛
𝐸𝑋𝑃)

)

2𝑡𝑓

𝑡0

𝑑𝑡

3

𝑛=1

+ 𝑤2 ∑ ∫ (
𝜏𝑘

𝐸𝑋𝑃 − 𝜏𝑘
𝑆𝐼𝑀

𝑟𝑎𝑛𝑔𝑒(𝜏𝑘
𝐸𝑋𝑃)

)

2𝑡𝑓

𝑡0

𝑑𝑡

29

𝑘=1

 (2)

 

 

𝐽𝑒𝑓𝑓𝑜𝑟𝑡 = 𝑤3 ∑ ∫ (
𝐹𝑖

𝑚𝑎𝑥𝑎𝑖
𝑆𝐼𝑀2

∑ 𝐹𝑖
𝑚𝑎𝑥92

𝑖=1

)
𝑡𝑓

𝑡0

92

𝑖=1

𝑑𝑡 (3) 

 

𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑤4 ∑ ∫ (
𝑢𝑟𝑒𝑠𝑚

𝑆𝐼𝑀

𝑏𝑜𝑢𝑛𝑑(𝑢𝑟𝑒𝑠𝑚

𝑆𝐼𝑀 )
)

2

𝑑𝑡
𝑡𝑓

𝑡0

17

𝑚=1

+ 𝑤5 ∑ ∫ (
𝑢�̇�𝑗

𝑆𝐼𝑀

𝑟𝑎𝑛𝑔𝑒(�̈�𝑗
𝐸𝑋𝑃)

)

2

𝑑𝑡
𝑡𝑓

𝑡0

37

𝑗=1

+ 𝑤5 ∑ ∫ (
𝑢�̇�𝑇𝑖

𝑆𝐼𝑀

𝑏𝑜𝑢𝑛𝑑 (𝑢�̇�𝑇𝑖

𝑆𝐼𝑀)
)

2

𝑑𝑡
𝑡𝑓

𝑡0

92

𝑖=1

+ 𝑤5 ∑ ∫ (
𝑢�̇�𝑖

𝑆𝐼𝑀

𝑏𝑜𝑢𝑛𝑑(𝑢�̇�𝑖

𝑆𝐼𝑀)
)

2

𝑑𝑡
𝑡𝑓

𝑡0

92

𝑖=1

 (4)

 

 

where the superscripts 𝐸𝑋𝑃 and 𝑆𝐼𝑀 denote experimental and simulated variables, 

respectively, 𝑡0 and 𝑡𝑓 denote the initial and final times, respectively, of the experimental data 
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from the trial being tracked, 𝜏𝑘 are the net joint moments, 𝐹𝑖
𝑚𝑎𝑥 are the MTU maximal 

isometric force parameters, and 𝑤𝑖 are the weighting factors whose values were set based upon 

the importance of the term being tracked or minimised (𝒘 = [0.1 0.01 0.001 0.01 0.0001]).  

 

The objective function weighting factors were chosen heuristically, and we placed a greater 

emphasis on tracking the variables we believed were closer to the ground-truth (kinematics and 

GRF) whilst ensuring we obtained dynamically consistent solutions. To achieve those 

objectives it was necessary to place a lower weighting on the tracking of the net joint moments. 

Furthermore, we opted to not include the tracking of the net MTP moments, as we were not 

confident in the values obtained from IDA. We included the minimisation of the control 

variables introduced due to the use of the implicit differential equations with a very small 

weighting factor to avoid redundancy in the process of obtaining an optimal solution and to 

improve convergence. The experimental and simulated variable differences within 𝐽𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔, 

except for the anterior-posterior pelvis translation difference, and the time derivatives of the 

generalised velocities control variables were each normalised by 10% of their respective 

experimental range from the trial being tracked. The anterior-posterior pelvis translation 

difference was normalised by 0.01 m to ensure it was tracked closely, since the range was much 

greater in comparison to the other kinematic variables. The remaining variables within 𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

were normalised by their respective upper bounds. 

 

3.3.5 Optimal control problem solution approach 

We converted the data-tracking OCPs described in the previous section to discrete nonlinear 

programming problems (NLPs) using a direct collocation method. A flipped Legendre-Gauss-

Radau direct collocation method (Garg et al., 2011) was used to discretise the time horizon of 

the data-tracking simulations across 80 equally spaced mesh intervals, and each mesh interval 

was further discretised with 4 points. We set the number of mesh intervals based on a previous 

study that performed tracking simulations of a running stride using a direct collocation method 

(Lin and Pandy, 2017), and by considering the trade-off between the time taken for an optimal 

solution to be reached and the influence of discretising the experimental data to be tracked for 

different numbers of mesh intervals. The state variables were parameterised with third-order 

Lagrange polynomials within each mesh interval. The control variables were parameterised at 

the beginning of each mesh interval and assumed to be piecewise constant throughout a mesh 

interval. The first-order dynamics constraints were enforced at the collocation points, whilst all 
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the equality and inequality path constraints were enforced at the beginning of each mesh 

interval. We also included continuity constraints for the state variables between the ending and 

beginning of the mesh intervals.  

 

Four data-tracking calibration simulations were performed in total. Three of these calibration 

simulations featured tracking experimental data from the first trial of each of the sprinting 

phases (early acceleration, mid-acceleration and maximum velocity) independently whilst also 

determining the foot-ground contact model parameters (individual calibration simulations). In 

the fourth calibration simulation we tracked the experimental data from the same three trials 

simultaneously whilst also determining the foot-ground contact model parameters that were 

common across the trials (simultaneous calibration simulation). A data-tracking validation 

simulation was also performed, and we tracked the experimental data from the second 

maximum velocity phase trial whilst using the foot-ground contact model parameters obtained 

from the simultaneous calibration simulation. We selected to track the experimental data from 

the second maximum velocity phase trial for the validation simulation to demonstrate the 

worst-case scenario from a tracking perspective, as we noticed that the largest tracking errors 

for the calibration simulations were obtained from the first maximum velocity phase trial. 

 

For each simulation, the initial guess alongside the lower and upper bounds of the state and 

control variables were set using the experimental data of the trial being tracked where possible.   

The generalised coordinates and velocities state variables, and the time derivatives of the 

generalised velocities control variables were initialised using the splined experimental 

kinematics. The initial guess for the upper-limb joint actuators control variables was set using 

the results from IDA. The reserve actuators and GRF control variables were initialised as zero 

for all the simulations. We used the same initial guess as Falisse et al. (2019a) for the 

activations and normalised tendon forces state variables, and the derivatives of the activations 

and normalised tendon forces control variables for all the simulations. The stiffness and 

damping parameters for the initial guess were set to 1e6 N/m2 and 0.5 s/m, respectively, while 

the contact sphere position parameters were initialised so that they cover a plausible region of 

foot-ground contact during sprinting.   

 

The lower and upper bounds of the state and control variables pertaining to the skeletal 

dynamics were set to be 25% less than and more than the minimum and maximum values, 

respectively, obtained from the experimental data. We set the lower and upper bounds of the 
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variables pertaining to contraction and activation dynamics in accordance with those used by 

Falisse et al. (2019a). The bounds of the anterior-posterior and medial-lateral positions of the 

contact sphere parameters were set as to prevent the centres of the spheres from overlapping 

and to lie within the boundaries of the rearfoot and forefoot segments. The upper bounds of the 

vertical positions of the contact sphere parameters were set to be the origin of the rearfoot and 

forefoot segments, whilst the lower bounds of those parameters were set by accounting for 

length of the spikes attached to athlete’s sprinting spikes, the sole height of the sprinting spikes 

and the behaviour of the compliant foot-ground contact model. The lower and upper bounds of 

the stiffness and damping parameters were set in line with those reported by previous studies 

using similar foot-ground contact models (Falisse et al., 2019a; Lin and Pandy, 2017; Porsa et 

al., 2016; Serrancolí et al., 2019). 

 

The data-tracking simulations were formulated in MATLAB (2016b, MathWorks Inc., Natick, 

MA, USA) using CasADi (Andersson et al., 2019), and solved using IPOPT (Wächter and 

Biegler, 2006) with an adaptive barrier parameter strategy and NLP convergence tolerance of  

10-4. For each NLP, the variables were scaled to lie on the interval [-1,1] and we also scaled 

the constraints following the recommendations made by Betts (2010) to improve the 

convergence rate and numerical conditioning. As an example, the equality path constraints of 

the pelvis residual forces were scaled by the athlete’s bodyweight (BW), thus the largest 

permissible violation for these constraints was 0.0071 N given our NLP convergence criteria. 

To further increase the computational efficiency of our simulations we used modified versions 

of OpenSim and Simbody (Falisse et al., 2019a) for the purposes of evaluating the skeletal 

dynamic equations. These versions are interfaced with CasADi, which permits the calculation 

of derivatives using algorithmic differentiation. To evaluate the data-tracking simulations we 

calculated the root mean squared difference (RMSD) between the tracked experimental and 

simulated data. For each of the RMSDs reported below we calculated the average RMSD for 

categories of variables (e.g., global pelvis angles and net lower-limb joint moments), and for 

the calibration simulations those categorical RMSDs were averaged across the three trials. The 

GRF RMSD components were expressed relative to the athlete’s BW and as a percentage 

relative to the maximum absolute value of the GRF component obtained experimentally for the 

trial being tracked. As a further means of evaluating the data-tracking simulations, the filtered 

EMGs were compared to the corresponding simulated activations.   
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3.4 Results 

The kinematics and GRF obtained from all the data-tracking simulations were a close match 

with the experimental kinematics (Figures 3.4–1, 3.4–2 and 3.4–3) and GRF (Figures 3.4–4 

and 3.4–5). For both sets of calibration simulations, the average RMSDs were less than 1° and 

0.2 cm for the global pelvis angles and translations, respectively, and 1° for the relative joint 

angles (Table 3.4–1). Right ankle plantarflexion-dorsiflexion tended to exhibit the largest 

RMSD across each of the three trials and for both sets of calibration simulations (4.0° largest 

RMSD). For the validation simulation, the average RMSDs were less than 1° and 0.3 cm for 

the global pelvis angles and translations, respectively, and 1° for the relative joint angles. The 

largest kinematics tracking error for the validation simulation was also obtained for right ankle 

plantarflexion-dorsiflexion (5.5° RMSD). 

 

For the GRF components, the average percentage RMSDs for both sets of calibration 

simulations (individual and simultaneous) were 8.2% and 8.0% (anterior-posterior), 4.2% and 

4.1% (vertical), and 4.2% and 4.0% (medial-lateral). There was a noticeable trend for the 

tracking errors of the GRF components to increase from the early acceleration to the mid-

acceleration trials and from the mid-acceleration to maximum velocity trials for both sets of 

calibration simulations (Table 3.4–1). For the validation simulation, the percentage RMSDs of 

the GRF components were 11.4% (anterior-posterior), 5.9% (vertical) and 7.5% (medial-

lateral). 
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Figure 3.4–1 Subset of right (R) lower-limb joint angles for the first early acceleration (A-D), mid-acceleration 

(E-H) and maximum velocity (I-L) phase trials. Experimental joint angles are denoted by solid red lines. Simulated 

joint angles from the individual and simultaneous calibration simulations are denoted by dashed blue and green 

lines, respectively. Flex: flexion; ext: extension; dflex: dorsiflexion. 
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The patterns of the net joint moments obtained from the individual and simultaneous data-

tracking simulations were found to match the patterns of the experimental net joint moments 

(Figures 3.5–1 and 3.5–2), with average RMSDs of 16.9 and 17.2 Nm, respectively. The 

average RMSDs of the net lower-limb joint moments were 19.5 and 19.9 Nm for the individual 

and simultaneous calibration simulations, respectively (Table 3.5–1). For the validation 

simulation, the average RMSDs of the net joint moments and the net lower-limb joint moments 

were 17.7 and 23.6 Nm, respectively. The tracking errors for the validation simulation were 

lower than the corresponding tracking errors obtained from the individual (24.9 and 28.6 Nm 

Figure 3.4–2 Subset of global pelvis angles and translations for the first early acceleration (A-D), mid-

acceleration (E-H) and maximum velocity (I-L) phase trials. Experimental global pelvis angles and translations 

are denoted by solid red lines. Simulated global pelvis angles and translations from the individual and 

simultaneous calibration simulations are denoted by dashed blue and green lines, respectively. Ant-post: anterior-

posterior. 
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RMSD) and simultaneous (24.9 and 28.7 Nm RMSD) calibration simulations of the maximum 

velocity phase trial. For the calibration simulations, the pattern of the untracked net right MTP 

plantarflexion-dorsiflexion moment was markedly different around touchdown and mid-stance 

(18.2 Nm largest RMSD), whilst for the validation simulation it was in closer agreement (8.7 

Nm RMSD). 

 

 

Figure 3.4–3 Subset of right (R) lower-limb joint angles (A-D), and global pelvis angles and translations (E-H) 

for the second maximum velocity phase trial. Experimental joint angles, and global pelvis angles and translations 

are denoted by solid red lines. Simulated joint angles, and global pelvis angles and translations from the validation 

simulation are denoted by dashed blue lines. Flex: flexion; ext: extension; dflex: dorsiflexion; ant-post: anterior-

posterior. 
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The simulated activations of the GASTM, TFL, VM and SOL for both sets of calibration 

simulations displayed similarities in terms of magnitude and timing with the corresponding 

EMG data (Figure 3.5–3). The simulated GMAX and BF activations from both sets of 

calibration simulations were markedly different with respect to the corresponding EMG data. 

A noticeable difference during the end of the stance phase and the beginning of the following 

flight phase was observed between the simulated activations and EMG data of the GMAX, BF 

and GASTM, in which the simulated activations continued to ramp up or remain constant, 

whilst the EMG data tended to zero. For the validation simulation, the simulated activations of 

the BF, GASTM and VM displayed strong similarities with the corresponding EMG data 

(Figure 3.5–4). The simulated BF and GASTM activations for the validation simulation, as per 

the calibration simulations, continued to ramp up near the end of the stance phase and the 

beginning of the following flight phase, whilst the corresponding EMG data tended to zero. 

Figure 3.4–4 Normalised GRF components for the first early acceleration (A-C), mid-acceleration (D-F) and 

maximum velocity (G-I) phase trials. Experimental GRF components are denoted by solid red lines. Simulated 

GRF components from the individual and simultaneous calibration simulations are denoted by dashed blue and 

green lines, respectively. Ant-post: anterior-posterior; med-lat: medial-lateral. 
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The simulated GMAX activation for the validation simulation displayed similarities to the 

corresponding EMG data, although the magnitude was discernibly different. 

 

The optimised sphere position parameters were for the most part reasonably similar when 

obtained from the individual and simultaneous calibration simulations (Table 3.5–2 and Figure 

3.5–5). The optimised stiffness parameters displayed a trend of increasing from the early 

acceleration phase trial to the maximum velocity phase trial when determined from the 

individual calibration simulations. For the simultaneous calibration simulation, the optimised 

stiffness parameter, was similar to the average value determined from the individual calibration 

simulations. The optimised damping parameters were found to change minimally between the 

individual and simultaneous calibration simulations.  

 

 

 

 

 

 

 

 

 

Figure 3.4–5 Normalised GRF components for the second maximum velocity phase trial (A-C). Experimental 

GRF components are denoted by solid red lines. Simulated GRF components from the validation simulation are 

denoted by dashed blue lines. Ant-post: anterior-posterior; med-lat: medial-lateral. 
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Table 3.4–1 The root mean squared difference (RMSD) of the global pelvis translations and angles, subset of 

lower-limb joint angles and normalised GRF components. Ant-post: anterior-posterior; med-lat: medial-lateral; r: 

right; l: left; flex: flexion; ext: extension; dflex: dorsiflexion. 

 Early Acc Mid-Acc Max Vel Max Vel 

RMSD Indiv Simult Indiv Simult Indiv Simult Valid 

Pelvis Translations        

Pelvis Ant-Post (cm) 0.4 0.4 0.3 0.3 0.4 0.4 0.4 

Pelvis Vertical (cm) 0.1 0.2 0.1 0.1 0.1 0.1 0.2 

Pelvis Med-Lat (cm) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Pelvis Angles        

Pelvis List (°) 0.1 0.1 0.1 0.1 0.3 0.3 0.4 

Pelvis Tilt (°) 0.5 0.6 0.2 0.2 0.3 0.3 0.3 

Pelvis Rotation (°) 1.0 1.1 0.7 0.7 0.8 0.8 0.6 

Lower-limb Joint Angles        

R Hip Flex (°) 1.8 1.7 0.6 0.7 1.3 1.3 1.4 

R Knee Ext (°) 2.0 1.6 0.9 0.8 0.6 0.6 0.5 

R Ankle Dflex (°) 1.2 1.5 2.0 1.9 3.7 4.0 5.5 

R MTP Dflex (°) 0.3 0.3 0.4 0.4 0.3 0.3 0.2 

L Hip Flex (°) 2.7 2.7 1.5 1.3 1.4 1.5 2.7 

L Knee Ext (°) 0.3 0.4 0.2 0.2 0.6 0.6 1.4 

L Ankle Dflex (°) 0.3 0.3 0.2 0.2 0.2 0.2 0.2 

L MTP Dflex (°) 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2 

GRF        

Ant-Post (BW) 0.042 0.045 0.047 0.041 0.103 0.102 0.088 

Vertical (BW) 0.058 0.049 0.112 0.122 0.213 0.213 0.219 

Med-Lat (BW) 0.002 0.003 0.005 0.005 0.016 0.016 0.008 

Note: The values presented are from the individual (Indiv) and simultaneous (Simult) calibration simulations of the 

first early acceleration (Early Acc), mid-acceleration (Mid-Acc) and maximum velocity (Max Vel) phase trials, and 

from the validation (Valid) simulation of the second maximum velocity phase trial. 

 

 

3.5 Discussion 

The primary aims of the current study were to develop a musculoskeletal modelling and 

simulation framework for sprinting, and to evaluate its capability of reproducing highly 

dynamic experimental data. The secondary aims of this study were to generate dynamically 

consistent simulated outputs and to identify foot-ground contact model parameters for 

subsequent predictive simulations. To achieve our aims, we performed a series of data-tracking 

calibration and validation simulations, based upon a direct collocation optimal control 

approach. The data-tracking calibration simulations also enabled the determination of the foot-

ground contact model parameters from tracking either an individual trial or multiple trials 

simultaneously. We found that the outputs from the calibration and validation simulations 

closely matched the experimental data, and this provides confidence in using the framework to 

address applied sprinting research questions. Importantly, all the simulated outputs were 
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dynamically consistent, implying that no fictious residual forces and moments were necessary 

to satisfy the dynamics equations of our musculoskeletal model. The proposed framework also 

includes a novel contribution to the biomechanics modelling and simulation literature, as it 

enables dynamically consistent simulations of an explosive locomotor task to be performed 

(with the aerodynamic drag force included), whilst also identifying foot-ground contact model 

parameters. Furthermore, the simultaneous data-tracking calibration simulation enabled the 

foot-ground contact model parameters to be determined from multiple trials, which is key to 

avoid overfit bias.  

 

Figure 3.5–1 Subset of right (R) lower-limb net joint moments for the first early acceleration (A-D), mid-

acceleration (E-H) and maximum velocity phase trials. Net MTP moments were not tracked. Experimental net 

joint moments are denoted by solid red lines. Simulated net joint moments from the individual and simultaneous 

calibration simulations are denoted by dashed blue and green lines, respectively. Flex: flexion; ext: extension; 

dflex: dorsiflexion. 
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Table 3.5–1 The root mean squared difference (RMSD) of a subset of lower-limb net joint moments. R: right; l: 

left; flex: flexion; ext: extension; dflex: dorsiflexion. 

 Early Acc Mid-Acc Max Vel Max Vel 

RMSD Indiv Simult Indiv Simult Indiv Simult Valid 

Net Joint Moments (Nm)        

R Hip Flex 46.9 49.8 58.2 57.0 124.2 123.5 99.4 

R Knee Ext 26.1 30.3 21.8 21.4 29.1 28.5 30.2 

R Ankle Dflex 12.3 18.0 16.9 16.3 14.3 14.1 18.8 

R MTP Dflex 11.9 16.9 13.6 15.9 18.0 18.2 8.7 

L Hip Flex 33.7 34.1 25.9 26.5 42.4 44.2 40.5 

L Knee Ext 6.4 7.1 5.0 4.4 12.7 12.3 16.1 

L Ankle Dflex 0.5 0.4 0.3 0.3 0.8 0.9 0.7 

L MTP Dflex 2e-2 2e-2 2e-2 2e-2 5e-2 6e-2 5e-2 

Note: The values presented are from the individual (Indiv) and simultaneous (Simult) calibration simulations of the 

first early acceleration (Early Acc), mid-acceleration (Mid-Acc) and maximum velocity (Max Vel) phase trials, and 

from the validation (Valid) simulation of the second maximum velocity phase trial. 

 

The smooth foot-ground contact model used within our framework has been previously shown 

to be appropriate for reproducing the GRF within walking (Falisse et al., 2019a) and a sit-to-

stand task (Serrancolí et al., 2019). In this study, we showed for the first time that the smooth 

foot-ground contact model permits accurate reproduction of the GRF from different sprinting 

phases. Average RMSDs of less than 0.07, 0.15 and 0.01 BW for the anterior-posterior, vertical 

Figure 3.5–2 Subset of right (R) lower-limb net joint moments for the second maximum velocity phase trial (A-

D). Net MTP moments were not tracked. Experimental net joint moments are denoted by solid red lines. Simulated 

net joint moments from the validation simulation are denoted by dashed blue lines. Flex: flexion; ext: extension; 

dflex: dorsiflexion. 
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and medial-lateral GRF components, respectively, across all the simulations performed are 

comparable with another study (Lin and Pandy, 2017), in which similar methods were used to 

perform dynamically consistent data-tracking simulations of running. In our study we also 

observed that the GRF tracking errors were the highest for the maximum velocity phase trials, 

which is likely due to the rapid change in GRF dynamics in comparison to the early acceleration 

phase trial. This result has also been observed by Lin and Pandy (2017), who reported lower 

GRF tracking error in walking compared to running trials. Additionally, the simulated GRFs 

we obtained were noticeably smoother than those obtained by Lin and Pandy (2017), which 

exhibited unrealistic transients. This can potentially be attributed to the generic foot-ground 

contact model parameters used in that study, whilst in the current study those parameters were 

determined from the data-tracking calibration simulations. This study therefore adds to the 

existing literature which has demonstrated that the determination of the foot-ground contact 

model parameters via data-tracking simulations enables realistic GRF to be obtained (Falisse 

et al., 2019a; Serrancolí et al., 2019).  

 

The ability to track several different trials simultaneously permits a model’s parameters to be 

obtained with the confidence that they are less likely to suffer from overfitting. We observed 

that the individual data-tracking calibration simulations resulted in only minor improvements 

in terms of GRF tracking error when compared to those obtained from the simultaneous data-

tracking calibration simulation, thus demonstrating the foot-ground contact model’s ability to 

generalise across different sprinting phases. As a means of further evaluating our framework, 

we performed a data-tracking validation simulation using the foot-ground contact model 

parameters obtained from the simultaneous data-tracking calibration simulation. The low GRF 

tracking errors shown in the simultaneous calibration and validation simulations provide 

confidence in using the foot-ground contact model parameters obtained from the simultaneous 

data-tracking calibration simulation to perform future predictive simulations of sprinting. It is 

also worth highlighting that the formulation of a simultaneous data-tracking calibration 

simulation is greatly facilitated by the direct collocation method and requires minimal 

adjustments to the NLP problem formulation of tracking a single trial (increase in the number 

of variables and constraints). Future studies should therefore consider using a similar approach 

for circumstances in which the parameters cannot be easily obtained empirically. 
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Figure 3.5–3 EMGs and simulated activations from the right (R) lower-limb for the first early acceleration (A-

F), mid-acceleration (G-L) and maximum velocity (M-R) phase trials. The TFL EMG during the mid-acceleration 

and maximum velocity phase trials, and SOL EMG during the maximum velocity phase trial were omitted due to 

data collection issues. EMGs are denoted by solid red lines. Simulated activations from the individual and 

simultaneous calibration simulations are denoted by dashed blue and green lines, respectively. GMAX, gluteus 

maximus; BF, biceps femoris; GASTM; gastrocnemius; TFL, tensor fasciae latae; VM, vastus medialis; SOL, 

soleus. 
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From a kinematics perspective, the magnitude of the tracking errors across all simulations are 

in line with the study by Lin and Pandy (2017), who reported RMSDs of less than 1.5° and 0.6 

cm for rotational and translational tracked kinematics during running, respectively. In general, 

the patterns of simulated kinematics we obtained are in agreement with previous experimental 

sprinting kinematics (Lai, 2015; von Lieres Und Wilkau, 2017), and the kinematics errors we 

observe are in the same order of magnitude of the experimental error related to human motion 

capture measurement (Alenezi et al., 2016).We therefore believe that the current framework is 

of a sufficient accuracy to warrant its use within applied sprinting settings. An aspect of our 

framework which possibly warrants further improvement is the tracking of right ankle 

plantarflexion-dorsiflexion, for which the maximum RMSD was 5.5° and it was obtained from 

the data-tracking validation simulation. We were surprised by this result, as we anticipated the 

kinematics tracking errors from the validation simulation to be more evenly distributed 

Figure 3.5–4 EMGs and simulated activations from the right (R) lower-limb for the second maximum velocity 

phase trial (A-F). The TFL and SOL EMGs were omitted due to data collection issues. EMGs are denoted by solid 

red lines. Simulated activations from the validation simulation are denoted by dashed blue lines. GMAX, gluteus 

maximus; BF, biceps femoris; GASTM, gastrocnemius; TFL, tensor fasciae latae; VM, vastus medialis; SOL, 

soleus. 
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amongst all the DOFs and higher than those obtained from the equivalent sprinting phase trial 

of the calibration simulations. In any case, it is worthwhile noting that the smallest detectable 

difference for peak ankle dorsiflexion during the stance phase of running and bend sprinting is 

in excess of 10° (Alenezi et al., 2016; Judson et al., 2020), and the largest right ankle 

dorsiflexion difference we obtained during the stance phase of the validation simulation was 

8.9°. Interpreting these findings together suggests that the right ankle kinematics tracking error 

obtained is likely within the bounds of biological variation and measurement error.  

 

Table 3.5–2 Optimised foot-ground contact model parameters determined from the individual and simultaneous 

data-tracking calibration simulations. 

Parameter Early Acceleration Mid-Acceleration Maximum Velocity Simultaneous 

Sphere 𝑠1𝑥  (m) 0.070 0.066 0.069 0.070 

Sphere 𝑠1𝑦 (m) -0.030 -0.030 -0.030 -0.030 

Sphere 𝑠1𝑧 (m) -0.028 -0.020 -0.030 -0.029 

Sphere 𝑠2𝑥  (m) 0.010 0.035 0.031 0.029 

Sphere 𝑠2𝑦  (m) -0.030 -0.030 -0.030 -0.030 

Sphere 𝑠2𝑧 (m) 0.045 3.07e-7 3.04e-7 1.52e-8 

Sphere 𝑠3𝑥  (m) 0.150 0.150 0.150 0.150 

Sphere 𝑠3𝑦 (m) -0.028 -0.028 -0.028 -0.028 

Sphere 𝑠3𝑧 (m) 6.46e-6 5.41e-5 1.12e-6 6.88e-8 

Sphere 𝑠4𝑥  (m) 0.150 0.150 0.150 0.150 

Sphere 𝑠4𝑦 (m) -0.028 -0.028 -0.028 -0.028 

Sphere 𝑠4𝑧  (m) -0.025 -4.79e-5 -0.022 -0.023 

Sphere 𝑠5𝑥  (m) 0.120 0.070 0.070 0.070 

Sphere 𝑠5𝑦 (m) -0.028 -0.028 -0.028 -0.028 

Sphere 𝑠5𝑧 (m) 9.70e-6 0.045 0.045 0.045 

Sphere 𝑠6𝑥  (m) 0.120 0.120 0.120 0.120 

Sphere 𝑠6𝑦 (m) -0.028 -0.028 -0.028 -0.028 

Sphere 𝑠6𝑧 (m) -0.025 -2.08e-6 -9.32e-6 -6.09e-8 

Stiffness (N/m2) 1.17e6 1.64e6 1.79e6 1.60e6 

Damping (s/m) 0.073 0.110 0.063 0.072 

Note: Contact spheres s1 and s2 were attached to the forefoot segment, the rest were attached to the rearfoot segment. 

The x, y and z subscripts for the contact spheres correspond to the anterior-posterior, vertical and medial-lateral axes 

of the segments to which the spheres were attached. 

 

A wide range of values for the lower-limb net joint moments have been reported within the 

sprinting literature. For example, the peak net hip flexion-extension moment has been reported 

to range between ~180 and ~750 Nm during maximum velocity sprinting (Bezodis et al., 

2008a; Schache et al., 2019), whilst in the current study the peak value was ~400 Nm. While 

it is possible that these differences may be attributed to an individual athlete’s characteristics 

(e.g., individual strength differences and anthropometrics) or differences in performance levels, 

they are also likely to be influenced by the experimental data processing methods and 
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modelling assumptions applied to determine the net joint moments. We therefore opted to track 

the net joint moments with a lower weighting compared to the kinematics and GRF, which 

were considered as the most reliable data to track, due to the various uncertainties known to 

influence the calculation of net joint moments from an IDA (Derrick et al., 2020). Despite the 

choice to lower the weight of the net joint moments tracking term, we obtained simulated net 

joint moments that largely followed the general patterns of the net joint moments we 

determined from IDA and of those reported within the existing sprinting IDA literature 

(Bezodis et al., 2008a; Schache et al., 2019). We would also like to emphasise that the 

simulated net joint moments we obtained were from dynamically consistent  simulations, and 

they were potentially more physiologically plausible due to the use of Hill-type MTUs.  

 

 

Figure 3.5–5 Optimised contact sphere locations determined from the individual and simultaneous data-tracking 

calibration simulations. Sagittal and transverse plane views of the optimised contact sphere locations from the 

first individual early acceleration phase trial (A and B), mid-acceleration phase trial (C and D), maximum velocity 

phase trial (E and F) calibration simulations, and for the three simultaneous trials calibration simulation (G and 

H). Contact sphere numbers, and rearfoot and forefoot segment axes (I and J) have been included to aid with the 

interpretation of the optimised locations presented in Table 3.5–2 (red axis: anterior-posterior (x), yellow axis: 

vertical (y) and green axis: medial-lateral (z)). 
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In our data-tracking simulations we avoided tracking the net MTP moments, as we felt that the 

right net MTP moment was unreliable due to the difficulty to distribute the GRF between the 

rearfoot and forefoot segments. We believed that the right net MTP moments obtained from all 

the data-tracking simulations were more physiologically plausible and realistic in comparison 

to those obtained from IDA, which exhibited fluctuations during the first early acceleration and 

maximum velocity phase trials. Despite the challenges with calculating the net MTP moment 

from IDA, the MTP has been previously shown to undergo a substantial range of motion during 

the contact phase of sprinting (Smith et al., 2014). We therefore included a forefoot segment 

within our model to permit MTP motion. To date, most modelling and simulation studies have 

chosen to exclude modelling MTP motion, particularly those in which the model’s lower-limbs 

are actuated by Hill-type MTUs (Dorn et al., 2012; Lai et al., 2016). It is not necessarily 

surprising that previous studies have neglected modelling MTP motion during sprinting, as 

existing off the shelf musculoskeletal models, similar to the one we used, do not have the 

capacity to produce MTP moments that are in a similar magnitude to those obtained from 

isometric dynamometry testing (Goldmann et al., 2013). In our study, we set the upper limit of 

the MTP reserve actuators to 40 Nm, such that together with the Hill-type MTUs contained 

within the original model, they were able to better reflect the moment capacity at the MTP 

DOFs in relation to the existing literature. Future studies should consider exploring how to 

better model the MTP moment generating components to minimise the reserve actuator 

reliance. 

 

An encouraging aspect our study was the similarities between the EMGs and the corresponding 

simulated activations. We were surprised by the similarities obtained considering the cost 

function used to resolve the MTU force-sharing problem, minimisation of weighted squared 

activations, not capturing the time-dependent performance criteria of sprinting. Discrepancies 

were observed during the end of the stance phase and the beginning of the following flight 

phase between the simulated activations and EMGs of the BF and GASTM across all the 

simulations performed. The calibration of the MTU parameters by performing data-tracking 

simulations and/or the tracking of the EMGs may lead to removing the anomalous simulated 

activations not observed in the EMGs. The direct collocation optimal control approach we have 

used in this study also enables the MTU force-sharing problem to be resolved using a cost 

function that more closely captures the time-dependent performance criteria of sprinting, such 

as MTU power (Cavagna et al., 1971), and this may also reduce the aforementioned 

discrepancies.  
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The major benefit of the modelling and simulation approach used in this study is that it permits 

dynamically consistent simulations to be obtained. It is not uncommon to obtain large dynamic 

inconsistencies in the form of pelvis residual forces and moments that surpass 1000 N and 300 

Nm, respectively, when performing a standard IDA within sprinting (Aeles et al., 2018). The 

approach we have used in this study builds on work of other studies (Lin and Pandy, 2017; 

Pallarès-López et al., 2019) who demonstrated the ability of the direct collocation optimal 

control approach to reduce residuals within sporting tasks (hopping and running). In this study 

we demonstrated that it is possible to use this approach to generate dynamically consistent 

motions in a demanding task that spanned all three planes of motion. Consequently, we 

recommend that researchers within the sports biomechanics community adopt the approach we 

have used to increase the fidelity of their results and obtain dynamically consistent motions. A 

limitation of our study is that we used a generic linearly scaled model. We suspect that the use 

of a subject-specific model would lead to reduced residuals when performing a standard IDA, 

due to the model having more representative inertial properties and mass distribution, and we 

expect that this would improve the tracking of the experimental data due to not needing to 

overcome the sizeable residuals obtained when using a linearly scaled generic model.  

 

An alternative approach to generating motions that are closer to being dynamically consistent 

is RRA, which is included within OpenSim (Delp et al., 2007). RRA is based on using a 

multibody model actuated by a combination of joint and residual actuators, with the objective 

to track experimental kinematics whilst also minimising the use of the actuators. The reserve 

actuators are weighted heavily in comparison to the joint actuators such that the new motion 

obtained is closer to being dynamically consistent. A beneficial feature of RRA is that it 

provides recommendations for minimally adjusting the mass properties of the model, and this 

is a useful feature in circumstances when there are discrepancies between the model’s and 

subject’s mass distribution. RRA can then be performed again with the model in which the 

adjustments to the mass properties have been applied to further refine the dynamic consistency. 

A similar feature could also be incorporated within the data-tracking optimal control approach 

used in this study, similarly to how the foot-ground contact model parameters were determined. 

The downsides of RRA are that it must be performed iteratively to obtain a worthwhile 

dynamically consistent motion and that it necessitates explicit forward integration to satisfy the 

dynamics, which can be affected by integration errors. In contrast, the direct collocation 

optimal control approach used in this study needs only to be performed once to obtain a 
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dynamically consistent solution, and it imposes the dynamics for each time step simultaneously 

as the state variables are treated as design variables alongside the control variables.  

 

The most challenging elements to simulate were the transitions between touchdown and take-

off. For all the data-tracking simulations performed, we observed discrepancies between the 

simulated and experimental right lower-limb kinematics and GRF around touchdown and take-

off, and these discrepancies were most pronounced for the tracked maximum velocity phase 

trials (Figures 3.4–4 and 3.4–5). Noticeable differences in either knee flexion-extension or 

ankle plantarflexion-dorsiflexion were accompanied by a mismatch in GRF production timings 

(largest touchdown and take-off mismatches were 8.0 and 12.6 ms, respectively). More 

specifically, the right lower-limb appeared to extend earlier and further in the simulations in 

comparison to the experimental kinematics. This can be explained by the model attempting to 

position the foot closer to the ground to allow the foot-ground contact model, which is driven 

by the kinematics, to generate the matching GRF. Future work exploring the geometry of the 

foot-ground contact model, similar to Ezati et al. (2020), is possibly needed to improve the 

timing of GRF production.  

 

Another explanation for the GRF timing differences may concern the filtering we used to 

process the experimental GRF. We opted to filter both the experimental kinematics and GRF 

with the same cut-off frequency as per the current recommendations (Derrick et al., 2020). This 

was to avoid tracking oscillatory net joint moments, which cannot be produced by muscles as 

they are unable to activate/deactivate instantaneously. However, in this approach the cut-off 

frequency to filter the GRF is too low based on a residual analysis, which leads to artificially 

extending the ground contact phase (Mai and Willwacher, 2019; Robertson and Dowling, 

2003). Thus, the GRF onset/offset timing differences, in addition to the right lower-limb 

extension, can potentially be explained by the tracking of the filtered GRF. In fact, the 

kinematics during the contact phases are tracked closely, particularly for the calibration 

simulations, which supports this explanation. A further possibility to improve the GRF timings 

involves filtering the experimental data using matching time varying cut-off frequencies 

established from the kinematics data (Davis and Challis, 2020), in an attempt to limit the 

onset/offset discrepancies between the filtered and raw experimental GRF data. It is important 

to note that filtering the kinematics and GRF data with matching time-varying frequencies may 

also lead to oscillatory net joint moments when performing a standard IDA, although this has 

yet to be explored.  
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3.6 Conclusion 

In conclusion, we have developed a musculoskeletal modelling and simulation framework for 

sprinting, which is a highly dynamic locomotor task, using an optimal control theory approach. 

We quantitatively evaluated the framework’s ability to reproduce experimental data, which is 

a first step that is typically ignored within the sports biomechanics modelling and simulation 

community. The results from the evaluation suggest that the framework can reproduce 

experimental data from several sprinting phases with low tracking errors, such that we can 

proceed with performing predictive simulations to assess technique modifications in relation 

to performance. This is also the first study to provide dynamically consistent three-dimensional 

muscle-driven simulations of sprinting across different phases. Overlaid videos of the 

experimental and simulated kinematics, in addition to the corresponding data files, can be 

accessed online at https://doi.org/10.6084/m9.figshare.12656354. 

 

  

https://doi.org/10.6084/m9.figshare.12656354
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Modifications to the net knee moments lead to the greatest 

improvements in accelerative sprinting performance: a predictive 

simulation study 

 

4.1 Abstract 

Accelerative sprinting is an essential skill to improve for athletes participating within short 

distance track and field events and team-based sports (e.g., soccer and rugby). The current body 

of sprinting biomechanics literature together with the front-side mechanics coaching 

framework provide various kinematics- and kinetics-based technique recommendations for 

improving performance. However, very few studies have attempted to systematically explore 

technique modifications from a performance enhancement perspective, and the front-side 

mechanics coaching framework has not been rigorously investigated from a scientific 

perspective. The aims of this investigation were therefore to i) explore how hypothetical 

technique modifications affect accelerative sprinting performance, and ii) assess whether the 

hypothetical modifications support the front-side mechanics coaching framework. A 

computational modelling and simulation framework, featuring a direct collocation optimal 

control approach, was used to explore performance improvement via a series of predictive 

simulations of sprinting during the early acceleration phase. Technique modifications were 

systematically explored by enabling the framework to change the lower-limb net joint moments 

with respect to those determined in a data-tracking simulation. Specifically, individual and 

combinations of the major lower-limb net joint moments (ankle, knee, and hip) were allowed 

to vary within the predictive simulations. Each predictive simulation was also performed with 

the aim of improving performance, which was achieved by minimising the time taken to cover 

a set distance (obtained from the data-tracking simulation). It was found that the ‘knee-free’ 

simulations resulted in the greatest improvements to overall performance (22.0%; 1401.2 vs. 

1148.7 W) due to modifying the timing and magnitude of the net knee flexor-extensor 

moments. The ‘hip-free’ simulations were found to demonstrate an earlier net hip flexor 

moment during the stance phase, which provides evidence in support of the front-side 

mechanics coaching framework. However, the kinematics aspects of the front-side mechanics 

coaching framework (e.g., keeping the lower-limb segments in front of the body at all times) 

did not emerge from the predictive simulations which improved performance. The results from 

this study therefore suggest that for athletes to improve their accelerative sprinting performance 
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they should attempt to modify the actions of the net knee and hip flexor-extensor moments as 

identified within this investigation.
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4.2 Introduction 

For athletes competing within the short distance track and field events (60-400 m), their ability 

to rapidly accelerate their centre of mass (CoM) during the preliminary steps of a race is 

considered to be of upmost importance (Mero et al., 1992; van Ingen Schenau et al., 1994). In 

addition, elite athletes are able to achieve well over 50% of their maximum horizontal CoM 

velocity by the point they complete their second step (Mann and Murphy, 2015). Accelerative 

sprinting is also believed to play an important role in contributing towards success for team-

based sports. For example, within rugby league and soccer 35 and 19 accelerative sprints, 

respectively, are completed on average during a match (Bangsbo et al., 1991; Gabbett, 2012), 

with these sprints notably occurring during the key instances of a match (Faude et al., 2012; 

Gabbett and Gahan, 2016).  

 

Despite the significance of accelerative sprinting towards sporting performance, very few 

research facilities in the world are equipped with arrays of multiple force plates and 

optoelectronic motion capture systems to further our understanding of how to improve 

accelerative sprinting performance from a biomechanical perspective. Consequently, most 

studies to date have carried out analyses of accelerative sprinting during a discrete step 

(Bezodis et al., 2014; Hunter et al., 2005; Johnson and Buckley, 2001; Yu et al., 2016). 

However, from a coaching science perspective it is more beneficial to assess accelerative 

sprinting performance across multiple steps to capture the changes in technique needed to 

accelerate most effectively. For this reason, in more recent times, several institutes have 

developed specialised research facilities (Colyer et al., 2018a; Nagahara et al., 2018) or 

experimental protocols (Morin et al., 2015b; Schache et al., 2019) to permit such analyses. Of 

the studies undertaken to date, irrespective of whether they analysed a single step or multiple 

steps of accelerative sprinting, the main focus of the research has been centred on ground 

reaction force production. There are three external forces (ground reaction force, gravity and 

drag) that act on an athlete whilst sprinting, with the most modifiable being the ground reaction 

force. The change in an athlete’s linear horizontal momentum is mainly explained by the net 

horizontal impulse they are able to generate during the stance phase. Thus, to improve 

accelerative sprinting performance, an athlete must generate greater horizontal net impulse, 

either through increasing the propulsive impulse, reducing the braking impulse or by doing 

both.  
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One strategy based upon the findings from current literature to reduce the braking impulse 

relies on an athlete generating high backward lower-limb velocities during the terminal swing 

phase, through net hip extensor and knee flexor moments (Mann and Sprague, 1983; Mann, 

1981). This is believed to reduce the horizontal foot velocity and CoM-foot touchdown 

distance, and in turn reduce the braking impulse (Hunter et al., 2005; Mann and Sprague, 1980; 

Mann and Sprague, 1983). Hunter et al. (2005) suggested that further research was necessary, 

in the form of an intervention study, to explore the potential benefits of the aforementioned 

technique-based recommendations. However, to date, no intervention studies have been carried 

out to ascertain this, perhaps due to the unwillingness of the athletes and their coaches to 

participate in such a study given its time-consuming nature and the potential negative effects 

on their performance. Most importantly, attempting to modify a particular aspect of an athlete’s 

technique in isolation is not feasible, as other aspects of their technique are likely to 

simultaneously change. Therefore, it is very challenging to assess the effect of modifying a 

single aspect of an athlete’s technique in isolation using a conventional intervention approach 

(Yeadon and King, 2007). A predictive computer simulation and modelling approach is instead 

very well-suited to performing such research, as this type of approach requires minimal athlete 

involvement, allows to systematically modify and assess the effect of single variables in 

isolation, and enables hypothetical ‘what if’ scenarios to be explored without the fear of 

jeopardising an athlete’s performance level (Neptune, 2000; Yeadon and King, 2007).  

 

A suggested strategy for maximising the propulsive impulse is to ensure that the thigh segment 

and hip joint of the stance limb rotate backwards at a high velocity (Mann et al., 1984; Mann 

and Sprague, 1980), which coincides with the strategy to minimise the braking impulse. Mann 

and Murphy (2015) suggest that the net hip extensor moment generated during the beginning 

of the stance phase is crucial for this strategy. The work by Schache et al. (2019) provides 

evidence to support the claim made by Mann and Murphy (2015), as they found that there was 

a strong association between the impulse of the net hip extensor moment and forward 

acceleration whilst sprinting. Furthermore, the same study also identified a strong association 

between the impulse of the net ankle extensor moment and forward acceleration. In a separate 

study, Bezodis et al. (2014) identified that amongst a group of three international calibre 

sprinters, the most distinguishing feature separating their performance levels during the first 

stance phase of accelerative sprinting was the magnitude and timing of the net knee extensor 

moment, which was greater and earlier in the highest performing sprinter. It is interesting to 

note that the hip generates a net extensor moment for the portion of the stance phase which 
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mainly involves braking, while the ankle and knee produce net extensor moments that span the 

braking portion and large parts of the propulsive portion. It is therefore possible that the net 

extensor moments produced by the knee and ankle may be of greater benefit to propulsive 

impulse generation. 

 

 

 

 

 

 

 

 

 

 

 

 

Mann and Murphy (2015) also recommend that athletes should produce a net hip flexor 

moment during the latter 75% of the stance phase. The proposed benefit of this technique-based 

recommendation is that it permits a greater ‘high knee’ position to be achieved during the swing 

phase, which subsequently permits the thigh to be accelerated through a greater range of motion 

in preparation for the next stance phase. The technique-based recommendations proposed by 

Mann and Murphy (2015) were based on their experiences of working alongside some of the 

best USA sprinters over the past 20 years, and they have since termed the coaching framework 

front-side mechanics. The front-side mechanics coaching framework is based on the notion 

that the lower-limb segments should not extend past an imaginary line drawn parallel to the 

trunk when viewed from the sagittal plane (Figure 4.2.1), and this is recommended from the 

onset of sprinting (independent of sprinting phase). In fact, when the lower-limb segments 

extend past this line, Mann and Murphy (2015) state that athletes sprint with back-side 

mechanics, which they deem as inefficient as minimal ground reaction force can be produced 

during back-side mechanics and it leads to a longer stance phase duration. 

 

Figure 4.2–1 Front-side and back-side mechanics schematic during the second step stance phase of a maximal 

effort sprint. The solid red line drawn parallel to the torso indicates when the lower-limbs are in front of the body 

and performing front-side mechanics or behind the body and performing back-side mechanics. 
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To date, however, the coaching framework proposed by Mann and Murphy (2015) has received 

limited attention from a scientific standpoint, with only one study focusing on it (Haugen et 

al., 2018). Interestingly, the findings in the study by Haugen et al. (2018) contradicted the 

proposed coaching framework, as greater thigh and knee extension at takeoff were associated 

with greater accelerative sprinting performance. However, the findings from this study were 

based on sub-elite male sprinters (mean ± standard deviation 100 m PB: 10.86 ± 0.22 s), and 

Mann and Murphy (2015) suggest that front-side mechanics is only performed by elite level 

sprinters, which is what sets them apart from the rest of their competitors. It is therefore still 

plausible that the front-side mechanics coaching framework is correct, however further studies 

are needed to address this. It is also worthwhile noting that the framework is based on anecdotal 

evidence, and it is possible that a different technical framework, yet to be uncovered, enables 

improved performance. Given that the majority of technical coaching within sports is based on 

anecdotes or information passed down between generations of coaches (Rasmussen et al., 

2012), it is possible that a better coaching model exists. For example, consider the variation in 

the techniques used in the high jump prior to the Fosbury flop technique. Predictive computer 

simulation and modelling approaches provide the platform for which to optimise the technique 

of a sporting movement, such as accelerative sprinting, and the usage of such an approach may 

help to provide further insights into the benefits of the front-side mechanics framework and 

demonstrate its merits from a scientific standpoint, which are currently lacking within the 

literature. 

 

Despite the potential opportunities offered by predictive computer simulation and modelling 

approaches described above, they have scarcely been applied to investigate sprinting, 

particularly from a technique and performance enhancement perspective. The study by Bezodis 

et al. (2015) is the only study to the authors’ knowledge to have done so, and they showed how 

performance during the first stance phase could be improved by reducing the horizontal CoM-

foot touchdown distance and limiting the amount of ankle dorsiflexion. To perform the 

predictive simulations, Bezodis et al. (2015) used a two-dimensional model that was 

kinematically-driven due to coaches already prescribing technique modifications based on 

kinematics criteria. However, the kinematics are determined by the kinetics (e.g., net joint 

moments) and thus it is more appropriate to modify the kinetics to subsequently obtain the 

desired kinematics. Indeed, a kinematically-driven model can lead to unrealistic net joint 

moments been produced when used to perform predictive simulations of maximal effort 

sporting tasks (Yeadon and King, 2007). Musculoskeletal models overcome this limitation as 
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they rely on actuators governed by principles of muscle physiology which provide limits on 

their ability to contribute towards the net joint moments of a model.   

 

In this investigation, a modelling and simulation framework was used to perform predictive 

simulations of the second and third steps of accelerative sprinting, and to assess how 

modifications in technique affected performance. This framework was previously shown to 

accurately reproduce sprinting data from multiple phases (early acceleration, mid-acceleration 

and maximum velocity) (Haralabidis et al., 2021). Technique modifications were explored 

from a net joint moments paradigm, where individual and combinations of the major flexor-

extensor net joint moments (ankle, knee, and hip) were allowed to freely vary within the 

physiological limits of the model during each of the predictive simulations. The remaining net 

joint moments were tracked during each of the predictive simulations. The secondary 

objectives of this investigation were to provide insights into the front-side mechanics coaching 

framework, and to investigate whether the technique modifications coincided with 

improvements in performance as explained by the front-side mechanics coaching framework.  

  

4.3 Methods 

In this study a three-dimensional musculoskeletal model scaled to an international-male 

sprinter was used in combination with optimal control theory to perform (data-tracking and 

predictive) simulations of accelerative sprinting during the preliminary steps. A data-tracking 

simulation was initially performed to: a) demonstrate that the modelling and simulation 

framework was able to reproduce experimental sprinting data with sufficient accuracy and b) 

to provide a reference of performance and technique for comparative purposes with the outputs 

of the predictive simulations. A series of predictive simulations were then performed to explore 

how technique modifications, governed through changes in the patterns of selected net joint 

moments, affected performance.  

 

4.3.1 Musculoskeletal model 

The three-dimensional full-body musculoskeletal model described in chapter 3 was used to 

perform the simulations in this study (Figure 4.3–1). The human skeleton was modelled with 

20 rigid segments and 37 degrees-of-freedom (DOFs). The lower-limb and trunk DOFs were 

actuated by 92 muscle-tendon units (MTUs) together with 17 reserve actuators. Each MTU 

was modelled as a three-element Hill-type model, with the contraction and activation dynamics 
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of De Groote et al. (2016) and Zajac (1989), respectively. The lengths, velocities, and moment 

arms of the MTUs were described using differentiable and continuous polynomial functions 

(Falisse et al., 2019b). The upper-limb DOFs were actuated by 14 joint actuators. The passive 

properties of sprinting spikes and the structures surrounding the forefoot were modelled by 

including a linear rotational spring at each of the metatarsophalangeal (MTP) DOFs. Foot-

ground interaction was modelled by attaching four and two smooth Hunt-Crossley contact 

spheres (Serrancolí et al., 2019) to both of the model’s lower rearfoot and forefoot segments, 

respectively. The position of each contact sphere, and the stiffness and damping coefficients 

common to all the contact spheres were set to the values determined from a previous data-

tracking simulation that tracked multiple trials simultaneously (Haralabidis et al., 2021). The 

aerodynamic drag force was also modelled by using the approach outlined by Samozino et al. 

(2016), and it was applied at the model’s CoM expressed in the local reference frame of the 

pelvis segment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3–1 The three-dimensional musculoskeletal model used in this study (adapted from Hamner et al. 

(2010)). The human skeleton was modelled with 20 rigid segments: a pelvis, trunk (torso plus head), right and 

left lower-limbs (thigh, shank, upper rearfoot, lower rearfoot and forefoot) and upper-limbs (upper-arm, lateral 

forearm, medial forearm and hand). The DOFs of model were as follows: ×6 pelvis-to-ground, ×7 per lower-limb 

(×3 hip, ×1 knee, ×1 ankle, ×1 subtalar and ×1 MTP), ×3 back, and ×7 per upper-limb (×3 shoulder, ×2 elbow 

and ×2 wrist). The virtual model markers and smooth Hunt-Crossley contact spheres are denoted by pink and 

turquoise spheres, respectively. This same model was also used to perform the inverse kinematics and dynamics 

analyses to determine the kinematics and kinetics experimental tracking data. Note: inverse dynamics was 

performed using measured ground reaction forces and without the aerodynamic drag force. 
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4.3.2 Optimal control problem formulation & discretisation 

The simulations were formulated as optimal control problems. The objective of an optimal 

control problem is to determine the optimal state 𝒙 and control 𝒖 variables (plus potentially the 

duration of the time horizon 𝑡𝑓) of a model that results in a specified performance criterion 

being minimised whilst also satisfying the model’s dynamics and any other additional 

constraints (e.g., task constraints and state/control variable bounds). Each optimal control 

problem was converted to a discrete nonlinear programming problem (NLP) by using direct 

collocation, which involves parameterising both the state and control variables, and in doing 

so the infinite dimensional optimal control problem becomes finite dimensional. Specifically, 

the time horizon of the simulations was discretised across 150 equally spaced mesh intervals, 

with each mesh interval been further discretised with 4 points, by using a flipped Legendre-

Gauss-Radau (LGR) direct collocation method (Garg et al., 2011). The number of mesh 

intervals used in this study was greater than we had used in our previous data-tracking 

simulations of sprinting study (Haralabidis et al., 2021) due to simulating multiple stance 

phases. The state variables within each mesh interval were parameterised with third-order 

Lagrange polynomials. The control variables were parameterised at the beginning of a mesh 

interval and assumed to be piecewise constant throughout a mesh interval. In the following 

subsections, the model’s state and control variables are defined together with a description of 

how the musculoskeletal model’s dynamics were handled within the simulations, and these 

were common amongst all the simulations. The unique aspects (e.g., performance criterion and 

additional constraints) to the data-tracking and predictive simulations are also outlined. 

 

4.3.3 Variables & handling of dynamics  

The generalised coordinates 𝒒 and velocities 𝒗 of the musculoskeletal model, and the 

normalised tendon forces 𝑭𝑻 and activations 𝒂 of the MTUs were selected as the state variables 

(𝒙 =  [𝒒 𝒗 𝑭𝑻 𝒂]𝑇). The upper-limb joint actuators 𝒖𝑼𝑳, reserve actuators 𝒖𝑹𝑬𝑺, time 

derivatives of the generalised velocities 𝒖�̇�, normalised tendon forces 𝒖�̇�𝑻
 and activations 𝒖�̇�, 

and ground reaction forces 𝒖𝑮𝑹𝑭 were selected as the control variables (𝒖 =

 [ 𝒖𝑼𝑳 𝒖𝑹𝑬𝑺 𝒖�̇� 𝒖�̇�𝑻
 𝒖�̇� 𝒖𝑮𝑹𝑭]

𝑇
). The chosen state and control variables enabled the differential 

equations underpinning the dynamics of the musculoskeletal model (skeletal, contraction and 

activation) to be represented in an implicit, as opposed to explicit, first-order state-space 

formulation (Falisse et al., 2019a; van den Bogert et al., 2011). The implicit dynamics 

formulation resulted in enforcing the musculoskeletal model’s first-order dynamics with simple 
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differential constraints, and algebraic path constraints were included to enforce the underlying 

differential equations of the musculoskeletal model (Table 4.3–1). The first-order dynamics 

constraints were enforced at the LGR points within a mesh interval, whilst all the algebraic 

path constraints were enforced at the beginning of each mesh interval. Continuity constraints 

for the state variables between the ending and beginning of the mesh intervals were also 

included. Equality path constraints were included to ensure the ground reaction forces from 

both the control variable and the foot-ground contact model matched at an optimal solution.  

 

Table 4.3–1 Overview of the musculoskeletal model’s constraints. 

  

4.3.4 Data-tracking simulation 

To perform the data-tracking simulation it was first necessary to perform an empirical data 

collection. A thorough overview of the data collection procedures can be found in Haralabidis 

et al. (2021), and thus a summary is given here. Three-dimensional marker trajectories (250 

Hz, Qualisys AB, Sweden) and ground reaction forces (2000 Hz, Kistler, Switzerland) were 

Dynamics Constraints 𝑑𝒒

𝑑𝑡
= 𝒗 (1.1) 

𝑑𝒗

𝑑𝑡
= 𝒖�̇� (1.2) 

𝑑𝑭𝑻

𝑑𝑡
= 𝒖�̇�𝑻

 (1.3) 

𝑑𝒂

𝑑𝑡
= 𝒖�̇� (1.4) 

 

Path Constraints 𝑴(𝒒) · 𝒖�̇� + 𝑪(𝒒, 𝒗) + 𝑮(𝒒) − 𝑱𝑬𝒙𝒕
𝑇 · 𝑬𝒙𝒕(𝒖𝑮𝑹𝑭, 𝑨𝒊𝒓𝑫𝒓𝒂𝒈) − [

𝟎
𝝉

] = 𝟎 (2.1) 

𝑭𝑻 − cos(𝜽(𝒒, 𝑭𝑻)) · (𝑭𝑪𝑬(𝒒, 𝒗, 𝑭𝑻, 𝒂) + 𝑭𝑷𝑬(𝒒, 𝑭𝑻)) = 𝟎 (2.2) 

𝟎 ≤ 𝒖�̇� +
𝒂

𝜏𝑑

;   𝜏𝑑 = 60 𝑚𝑠 (2.3) 

𝒖�̇� +
𝒂

𝜏𝑎

≤
1

𝜏𝑎

;  𝜏𝑎 = 15 𝑚𝑠 (2.4) 

𝑯 𝑪𝑮𝑹𝑭(𝒒, 𝒗) − 𝒖𝑮𝑹𝑭 = 𝟎 (2.5) 

 

Continuity Constraints 𝒙𝑖
𝐸𝑁𝐷 − 𝒙𝑖+1

1 = 𝟎 (3.1) 

Note: Skeletal dynamics were enforced as per equation (2.1), where 𝑴(𝒒) is the mass matrix, 𝑪(𝒒, 𝒗) is the 

vector of centrifugal forces, 𝑮(𝒒) is the vector of gravitational forces, 𝑱𝑬𝒙𝒕
𝑇 is the transpose of the external 

forces Jacobian matrix, 𝑬𝒙𝒕(𝒖𝑮𝑹𝑭, 𝑨𝒊𝒓𝑫𝒓𝒂𝒈) is the vector of external forces and 𝝉 is the vector of net joint 

moments (consisting of the moments generated by the MTUs, upper-limb and reserve actuators, and springs 

attached to the MTP DOFs). Contraction dynamics were imposed using the Hill model equilibrium condition 

(2.2), where the normalised tendon force must equal the projected sum of the normalised contractile 

𝑭𝑪𝑬(𝒒, 𝒗, 𝑭𝑻, 𝒂) and passive 𝑭𝑷𝑬(𝒒, 𝑭𝑻) muscle forces. Activation dynamics were enforced using the 

inequality constraint equations (2.2 − 2.3), and they were derived from the original differential equation 

describing activation dynamics (De Groote et al., 2009). Equation (2.5) was imposed to ensure consistency 

between the ground reaction forces calculated from the contact model 𝑯 𝑪𝑮𝑹𝑭(𝒒, 𝒗) and the controls 𝒖𝑮𝑹𝑭.  
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collected from an international-level male sprinter (age: 24 years; height: 1.79 m; mass: 72.2 

kg; 100m PB:10.33 s; 200 m PB: 20.27 s) as they performed two successful maximal effort 

sprints over three distances (0-10, 0-30 and 0-60 m). The participant provided written informed 

consent to take part in the data collection. The data collection protocol was approved by the 

University of Bath’s Research Ethics Approval Committee for Health (EP 17/18 238). For the 

purposes of this study, the data collected from between the touchdown of the second step (right 

foot) to the takeoff of the third step (left foot) during the first 0-10 m trial (early acceleration 

phase) was extracted for further use. The extracted data together with the model described 

above were then used to perform inverse kinematics (global pelvis and relative joint angles) 

and dynamics (net joint moments) analyses within OpenSim (version 3.3, Stanford University, 

CA, USA) (Delp et al., 2007). The kinematics and ground reaction forces were filtered using a 

fourth-order low-pass Butterworth filter with a 20 Hz cut-off frequency prior to performing the 

inverse dynamics analysis. B-splines were also fitted to the filtered kinematics data to enable 

velocities and accelerations to be determined. The splined kinematics, filtered ground reaction 

forces and net joint moments served as the experimental data to be tracked within the data-

tracking simulation. 

 

For the data-tracking simulation, the objective function 𝐽𝑇𝑟𝑎𝑐𝑘𝑆𝑖𝑚 consisted of three terms: a 

tracking term 𝐽𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 that minimised the errors between experimental and simulated 

kinematics, ground reaction forces and net joint moments (excluding the net MTP moments), 

an effort term 𝐽𝐸𝑓𝑓𝑜𝑟𝑡 that minimised the activations, and a control variables term 𝐽𝐶𝑜𝑛𝑡𝑟𝑜𝑙 that 

minimised the reserve actuators control variables and those control variables introduced to 

permit the use of an implicit dynamics formulation (𝒖�̇� 𝒖�̇�𝑻
 𝒖�̇�): 

𝐽𝑇𝑟𝑎𝑐𝑘𝑆𝑖𝑚 =  𝐽𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 + 𝐽𝐸𝑓𝑓𝑜𝑟𝑡 + 𝐽𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (4.1) 

 

𝐽𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑤1 ∑ ∫ (
𝑞𝑗

𝐸𝑋𝑃 − 𝑞𝑗
𝑆𝐼𝑀

𝑟𝑎𝑛𝑔𝑒(𝑞𝑗
𝐸𝑋𝑃)

)

2

𝑑𝑡
𝑡𝑓

0

37

𝑗=1

+ 𝑤2 ∑ ∫ (
𝐺𝑅𝐹𝑛

𝐸𝑋𝑃 − 𝑢𝐺𝑅𝐹𝑛

𝑆𝐼𝑀

𝑟𝑎𝑛𝑔𝑒(𝐺𝑅𝐹𝑛
𝐸𝑋𝑃)

)

2

𝑑𝑡
𝑡𝑓

0

6

𝑛=1

+ 𝑤3 ∑ ∫ (
𝜏𝑘

𝐸𝑋𝑃 − 𝜏𝑘
𝑆𝐼𝑀

𝑟𝑎𝑛𝑔𝑒(𝜏𝑘
𝐸𝑋𝑃)

)

2

𝑑𝑡
𝑡𝑓

0

29

𝑘=1

 (4.2)

 

 

𝐽𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑤4 ∑ ∫ (
𝐹𝑖

𝑚𝑎𝑥𝑎𝑖
𝑆𝐼𝑀2

∑ 𝐹𝑖
𝑚𝑎𝑥92

𝑖=1

) 𝑑𝑡
𝑡𝑓

0

92

𝑖=1

 (4.3) 
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𝐽𝐶𝑜𝑛𝑡𝑟𝑜𝑙 =  𝑤5 ∑ ∫ (
𝑢𝑟𝑒𝑠𝑚

𝑆𝐼𝑀

𝑏𝑜𝑢𝑛𝑑(𝑢𝑟𝑒𝑠𝑚

𝑆𝐼𝑀 )
)

2𝑡𝑓

0

𝑑𝑡

17

𝑚=1

+ 𝑤6 ∑ ∫ (
𝑢�̇�𝑗

𝑆𝐼𝑀

𝑟𝑎𝑛𝑔𝑒(�̈�𝑗
𝐸𝑋𝑃)

)

2
𝑡𝑓

0

𝑑𝑡

37

𝑗=1

+ 𝑤7 ∑ ∫ (
𝑢�̇�𝑇𝑖

𝑆𝐼𝑀

𝑏𝑜𝑢𝑛𝑑 (𝑢�̇�𝑇𝑖

𝑆𝐼𝑀)
)

2
𝑡𝑓

0

𝑑𝑡

92

𝑖=1

+ 𝑤7 ∑ ∫ (
𝑢�̇�𝑖

𝑆𝐼𝑀

𝑏𝑜𝑢𝑛𝑑(𝑢�̇�𝑖

𝑆𝐼𝑀)
)

2
𝑡𝑓

0

𝑑𝑡

92

𝑖=1

 (4.4)

 

 

where the superscripts 𝐸𝑋𝑃 and 𝑆𝐼𝑀 denote the experimental and simulated variables, 

respectively, 𝑡𝑓 (0.436 s) denotes the duration of the extracted data from the trial being tracked, 

𝜏𝑘 are the net joint moments, 𝐹𝑖
𝑚𝑎𝑥 are the MTU maximal isometric force parameters, and 𝑤𝑖 

are the weights whose values were set based upon the importance provided to the term being 

tracked or minimised (𝒘 = [0.1 0.05 0.01 0.01 0.001 0.0001 0.1]). The net MTP moments from 

the inverse dynamics analysis were not tracked due to experimental challenges related to the 

centre of pressure. The calculated differences between the experimental and simulated 

variables within 𝐽𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 (excluding the anterior-posterior pelvis translation difference), and 

the time derivatives of the generalised velocities control variables were normalised by 10% of  

each variables experimental range (determined from the trial being tracked. The anterior-

posterior pelvis translation difference was normalised by 0.01 m to ensure it was tracked 

accurately. The remainder of the variables within 𝐽𝐶𝑜𝑛𝑡𝑟𝑜𝑙 were normalised by their respective 

upper bounds.    

 

The initial guess alongside the lower and upper bounds of the state and control variables were 

set using the experimental data of the trial being tracked where possible. The splined 

experimental kinematics were used to initialise 𝒒, 𝒗 and 𝒖�̇�, and their bounds were set to be 

25% more than and less than the maximum and minimum of the values, respectively, obtained 

from the splined kinematics. The initial guess for the 𝒖𝑼𝑳 was set using the results from the 

inverse dynamics analysis. The 𝒖𝑹𝑬𝑺 and 𝒖𝑮𝑹𝑭 were initialised as zero, with bounds of ± 10 

Nm (40 Nm MTP DOFs) and ± 2500 N, respectively. The same initial guess and bounds as 

Falisse et al. (2019a) was used for 𝑭𝑻, 𝒂, 𝒖�̇�𝑻
 and 𝒖�̇�.   

 

4.3.5 Predictive simulations 

In previous predictive simulation studies of sporting tasks, for instance jumping (Porsa et al., 

2016) and sprinting (Celik and Piazza, 2013), the objective has been to predict novel 

movements without considering technique changes. However, the primary objective of the 

predictive simulations carried out in this investigation was to explore how modifications in 
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sprinting technique can lead to improvements in performance during the early acceleration 

phase. We explored modifications to sprinting technique from a net joint moments paradigm 

as they are the drivers for movement, as described previously, and we specifically focused on 

the net ankle, knee, and hip flexor-extensor moments. Specifically, the predictive simulations 

were performed by enabling either individual or combinations of the listed net joint moments 

to freely vary whilst the remaining net joint moments within the predictive simulations aimed 

to coincide with those determined from the data-tracking simulation. The net joint moments 

which we were not attempting to modify were tracked to permit subsequent inferences to 

changes in performance to be attributed to the net joint moments which we gave the freedom 

to change. Seven predictive simulations were performed in total. Three of the predictive 

simulations enabled the net ankle, knee, and hip flexor-extensor moments to independently 

vary freely (A-free, K-free and H-free), another three predictive simulations enabled 

combinations of two of the net joint moments to independently vary freely (A-K-free, A-H-

free and K-H-free) and the final simulation enabled all three of the net joint moments to 

independently vary freely (A-K-H-free). The time horizon duration was also treated as a 

variable to be determined from each of the predictive simulations. The following constraints 

were imposed for each predictive simulation: 

[𝒒1
1 𝒗1

1]𝑇 =  [𝒒1𝑻𝒓𝒂𝒄𝒌

1  𝒗1𝑻𝒓𝒂𝒄𝒌

1 ]
𝑇

 (6.1) 

 

𝑞𝑝𝑒𝑙𝑣𝑖𝑠𝑥1
𝐸𝑁𝐷 =  𝑞𝑝𝑒𝑙𝑣𝑖𝑠𝑥1𝑇𝑟𝑎𝑐𝑘

𝐸𝑁𝐷  (6.2) 

 

−𝟏𝟎° ≤ 𝒒𝐽𝑜𝑖𝑛𝑡𝐴𝑛𝑔𝑙𝑒𝑠1
𝐸𝑁𝐷 − 𝒒𝐽𝑜𝑖𝑛𝑡𝐴𝑛𝑔𝑙𝑒𝑠1𝑇𝑟𝑎𝑐𝑘

𝐸𝑛𝑑 ≤ 𝟏𝟎° (6.3) 

the first constraint (6.1) was imposed to ensure the state variables of the musculoskeletal 

model’s multibody dynamics at the beginning of the simulation matched with those determined 

from the data-tracking simulation; the second constraint (6.2) ensured that the anterior-

posterior displacement of the musculoskeletal model’s pelvis segment at the end of the 

simulation matched with the value obtained from the data-tracking simulation; and the third 

constraint (6.3) was imposed to ensure that the relative joint angles of the musculoskeletal 

model at the end of the simulation fell within ± 10° of those obtained from the data-tracking 

simulation. 

 

For each of the predictive simulations, the cost function 𝐽𝑃𝑟𝑒𝑑𝑆𝑖𝑚 consisted of four terms: a 

duration of time horizon minimisation term 𝐽𝑇𝑖𝑚𝑒, a tracking term 𝐽𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 that minimised the 
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differences between certain data-tracking simulation and predictive simulation net joint 

moments, an effort term 𝐽𝐸𝑓𝑓𝑜𝑟𝑡 that minimised the activations, and a control variables term 

𝐽𝐶𝑜𝑛𝑡𝑟𝑜𝑙 that minimised the reserve actuators control variables and those control variables 

introduced to permit the implicit dynamics formulation (𝒖�̇� 𝒖�̇�𝑻
 𝒖�̇�): 

 

𝐽𝑃𝑟𝑒𝑑𝑆𝑖𝑚 = 𝐽𝑇𝑖𝑚𝑒 + 𝐽𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 + 𝐽𝐸𝑓𝑓𝑜𝑟𝑡 + 𝐽𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (5.1) 

 

𝐽𝑇𝑖𝑚𝑒 = 𝑊1𝑡𝑓
𝑃𝑟𝑒𝑑 (5.2) 

 

𝐽𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑊2 ∑ 𝑤𝑎
𝜏 ∫ (

𝜏𝑎
𝑇𝑟𝑎𝑐𝑘 − 𝜏𝑎

𝑃𝑟𝑒𝑑

𝑟𝑎𝑛𝑔𝑒(𝜏𝑎
𝑇𝑟𝑎𝑐𝑘)

)

2

𝑑𝑡
𝑡𝑓

𝑃𝑟𝑒𝑑

0

31

𝑎=1

 (5.3) 

 

𝐽𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑊3 ∑ ∫ (
𝐹𝑖

𝑚𝑎𝑥𝑎𝑖
𝑆𝐼𝑀2

∑ 𝐹𝑖
𝑚𝑎𝑥92

𝑖=1

) 𝑑𝑡
𝑡𝑓

𝑃𝑟𝑒𝑑

0

92

𝑖=1

 (5.4) 

 

𝐽𝐶𝑜𝑛𝑡𝑟𝑜𝑙 =  𝑊4 ∑ ∫ (
𝑢𝑟𝑒𝑠𝑚

𝑆𝐼𝑀

𝑏𝑜𝑢𝑛𝑑(𝑢𝑟𝑒𝑠𝑚

𝑆𝐼𝑀 )
)

2𝑡𝑓
𝑃𝑟𝑒𝑑

0

𝑑𝑡

17

𝑚=1

+ 𝑊5 ∑ ∫ (
𝑢�̇�𝑗
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𝑡𝑓
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0

𝑑𝑡
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𝑆𝐼𝑀
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)

2
𝑡𝑓

𝑃𝑟𝑒𝑑

0

𝑑𝑡

92

𝑖=1

 (5.5)

 

 

where 𝑡𝑓
𝑃𝑟𝑒𝑑 represents the to be determined duration of the time horizon, 𝜏𝑎

𝑇𝑟𝑎𝑐𝑘 and 𝜏𝑎
𝑃𝑟𝑒𝑑 

denote the 𝑎’th tracking and predictive simulation net joint moment, 𝑊𝑖 are the weights of the 

being minimised or tracked (𝑾 = [50 0.1 0.01 1 0.0001 0.1]), and 𝒘𝜏 is a ones-vector with the 

indices of the net joint moments not tracked changed to zero for each of the seven predictive 

simulations. The data-tracking simulation and predictive simulation variable differences within 

𝐽𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 were normalised by 2% of their respective range as determined from the data-tracking 

simulation. This was done to ensure that the net joint moments which we did not want to freely 

change were still tracked reasonably accurately. The threshold selected coincided with a 

permissible error of 5 Nm assuming a 250 Nm peak. The variables within 𝐽𝐶𝑜𝑛𝑡𝑟𝑜𝑙 were 

normalised as per the data-tracking simulation.    

 

The initial guess for the state and control variables for each simulation were set to the values 

determined from the data-tracking simulation. The lower and upper bounds of the state and 

control variables were identical to those used in the data-tracking simulation. The lower bound 
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of 𝑡𝑓
𝑃𝑟𝑒𝑑 was set to 5% less than the original value of 𝑡𝑓 used in the data-tracking simulation 

(0.414 s), whilst the upper bound was kept at the original value of 𝑡𝑓. 

 

4.3.6 Optimal control problem solution approach  

The data-tracking and predictive simulations were formulated in MATLAB (2017b; 

MathWorks Inc., Natick, MA, USA) using CasADi (Andersson et al., 2019), and solved using 

IPOPT (Wächter and Biegler, 2006) with an adaptive barrier parameter strategy and NLP 

convergence tolerance of 10-3. The variables for each NLP were scaled to lie on the interval    

[-1,1] and the constraints were scaled to improve the convergence rate and numerical 

conditioning as per recommendations of Betts (2010). 

 

4.3.7 Outcome measures 

The data-tracking simulation was evaluated by calculating the root mean squared difference 

(RMSD) between the tracked experimental data and simulated data, and the reported RMSDs 

are of categories of variables (e.g., global pelvis translations and net lower-limb flexor-extensor 

joint moments). The performance of the data-tracking and predictive simulations was 

quantified using average horizontal external power (Bezodis et al., 2010) and was calculated 

as the rate of change in kinetic energy between the start and end of each simulation. The 

horizontal CoM velocity at the end of each simulation and the time horizon duration were also 

extracted as performance outcomes. The horizontal impulses (net, propulsive and braking) 

were calculated across each stance phase using trapezoidal quadrature and previously identified 

kinematics-based technique variables at touchdown and takeoff instances were also extracted. 

To further foster comparison between the data-tracking and predictive simulations from a net 

joint moments perspective, the peak flexor and extensor net joint moments during stance were 

extracted. 

 

4.4 Results 

4.4.1 Data-tracking simulation 

The kinematics and kinetics from the data-tracking simulation were found to closely match the 

corresponding experimental data (Supplementary material Figures 4.7–1 to 4.7–4). The 

average RMSDs were less than 1° and 0.3 cm for the global pelvis angles and translations, 

respectively, and less than 1° for the relative joint angles. For the right and left stance phase 

ground reaction force components, they were tracked with an RMSD of 0.050 and 0.054 BW 
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(anterior-posterior), 0.034 and 0.033 BW (vertical) and 0.003 and 0.009 BW (medial-lateral). 

The average RMSDs of the tracked net joint moments and the net lower-limb joint moments 

were 16.3 and 17.5 Nm, respectively. These results demonstrate that the modelling and 

simulation framework used was a sufficient representation of reality and therefore suitable for 

performing the proposed predictive simulations. 

 

4.4.2 Predictive simulations 

Performance Outcomes 

Each of the predictive simulations performed resulted in improvements to overall performance 

as indicated by the average horizontal external power (Figure 4.4–1). The greatest 

improvement in performance was found for A-K-H-free (22.0%; 1401.2 vs. 1148.7 W), and 

this simulation also led to the greatest improvements in terminal horizontal CoM velocity 

(3.2%; 6.05 vs. 5.86 m/s) and time horizon duration (-4.4%; 0.417 vs. 0. 436 s).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Horizontal Impulses 

All the predictive simulations were found to generate greater net horizontal impulse during the 

right foot stance phase compared to the data-tracking simulation (68.4 (average) vs. 58.8 Ns). 

For the left foot stance phase, the net horizontal impulse generated was lower in several of the 

predictive simulations (A-free, H-free, A-K-free, H-A-free) compared to the data-tracking 

Figure 4.4–1 Metrics to quantify the sprint performance in the data-tracking (T) and predictive simulations (A-

free, K-free, H-free, A-K-free, H-K-free, H-A-free, A-K-H-free). Bar colours are matching the colour code used 

in the previous figures (black, red, scarlet, cranberry, blue, indigo, navy, green). 
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simulation (Figure 4.4–2), but not for the predictive simulation that led to the largest 

performance improvements (A-K-H-free). Despite the lower net horizontal impulse of those 

simulations, the net horizontal impulse surplus they generated during the right foot stance was 

still sufficient to produce an overall improvement in performance (average horizontal external 

power and terminal horizontal CoM velocity) (Figure 4.4–1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The predictive simulations were found to generate greater propulsive impulse during the right 

foot stance phase compared to the data-tracking simulation (69.4 (average) vs. 59.9 Ns). In 

comparison to the data-tracking simulation, all the predictive simulations were found to 

produce less propulsive impulse during the left foot stance phase (45.7 vs. 43.0 (average) Ns) 

(Figure 4.4–2). There was not a clear trend in the simulation results for the braking impulse, 

although the predictive simulations which led to the greatest improvements in performance (A-

K-H-free and H-K-free) produced lower braking impulses (average left: -0.5, average right:      

-0.6 Ns). 

Figure 4.4–2 Right (R) and left (L) stance phase anterior-posterior impulses for the data-tracking (T) and 

predictive simulations (A-free, K-free, H-free, A-K-free, H-K-free, H-A-free, A-K-H-free). Bar colours are 

matching the colour code used in the previous figures (black, red, scarlet, cranberry, blue, indigo, navy, green). 
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Figure 4.4–3 Right and left anterior-posterior, vertical and medial-lateral GRF from right foot touchdown to left 

foot takeoff for the data-tracking (T) and predictive simulations (A-free, K-free, H-free, A-K-free, H-K-free, H-

A-free, A-K-H-free). The horizontal bars at the top of the figure indicate the periods of stance. 
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Kinematics and Timings 

Very minor differences in the duration of the right foot stance phases were observed between 

the data-tracking and predictive simulations (0.189 vs. 0.185 (average) s), however potentially 

more meaningful reductions were found for the left foot stance phases (0.169 vs. 0.159 

(average) s). A trend was observed for the horizontal foot touchdown velocity of the left stance 

phase to be lower as performance was found to increase (Figure 4.4–4). The lowest horizontal 

foot touchdown velocity of the left stance was found to be 0.99 m/s for A-K-H-free. There was 

no noticeable trend for the horizontal CoM-foot touchdown distance of the left stance phase, 

with values ranging between -3.1 and 0.9 cm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4–4 Right (R) and left (L) touchdown kinematics and stance phase durations for the data-tracking (T) 

and predictive simulations (A-free, K-free, H-free, A-K-free, H-K-free, H-A-free, A-K-H-free). Bar colours are 

matching the colour code used in the previous figures (black, red, scarlet, cranberry, blue, indigo, navy, green). 

Note: horizontal CoM-foot touchdown distance and horizontal foot touchdown velocity are identical for right 

foot touchdown as the state variables of the musculoskeletal model’s multibody dynamics at the beginning of 

each simulation were constrained to match those determined from the data-tracking simulation. A negative 

horizontal CoM-foot touchdown distance indicates that the foot was behind the CoM. 
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There was no clear trend in hip extension (-1° to -10°) and knee flexion (-22° to -31°) takeoff 

angles for the right foot stance phases of the predictive simulations compared to the data-

tracking simulation (Figure 4.4–5). All the predictive simulations achieved a hip extension 

takeoff angle of approximately -7° for the left foot stance phase, and this also matched with the 

data-tracking simulation. All the predictive simulations reached a knee flexion takeoff angle of 

approximately -30° for the left foot stance phase, whilst for the data-tracking simulation the 

knee was more extended (-21°). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4–5 Right (R) and left (L) hip extension and knee flexion angles at takeoff  for the data-tracking (T) and 

predictive simulations (A-free, K-free, H-free, A-K-free, H-K-free, H-A-free, A-K-H-free). Bar colours are 

matching the colour code used in the previous figures (black, red, scarlet, cranberry, blue, indigo, navy, green).  

Note: full knee extension = 0° and knee flexion is negative; thigh aligned vertically with pelvis corresponds to 

hip flexion-extension = 0°, and hip flexion is positive and hip extension is negative. These are consistent with the 

model’s definitions.   
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Figure 4.4–6 Right and left ankle, knee, and hip flexion-extension angles from right foot touchdown to left foot 

takeoff for the data-tracking (T) and predictive simulations (A-free, K-free, H-free, A-K-free, H-K-free, H-A-

free, A-K-H-free). The horizontal bars at the top of the figure indicate the periods of stance. 
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Figure 4.4–7 Global pelvis angles and translations from right foot touchdown to left foot takeoff for the data-

tracking (T) and predictive simulations (A-free, K-free, H-free, A-K-free, H-K-free, H-A-free, A-K-H-free). The 

horizontal bars at the top of the figure indicate the periods of stance. 
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Peak Net Flexor and Extensor Moments 

The most discernible differences in the peak net flexor and extensor moments were observed 

for the knee and hip (Figure 4.4–8). The ‘knee-free’ simulations were found to generate a 

greater peak net knee flexor (average 100.3%; 141.2 vs. 70.5 Nm) and extensor moment 

(average 37.1%; 188.5 vs. 137.5 Nm) across both right and left stance phases compared to the 

data-tracking simulation. The H-K-free and A-K-H-free predictive simulations were found to 

generate a greater peak net hip flexor (average 23.6%; 194.5 vs. 157.3 Nm) and extensor 

moment (average 20.2%; 266.9 vs. 222.9 Nm) across both stance phases in comparison to the 

data-tracking simulation. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4–8 Right (R) and left (L) peak ankle, knee, and hip net flexor and extensor moments during the right 

and left stance phases for the data-tracking (T) and predictive simulations (A-free, K-free, H-free, A-K-free, H-

K-free, H-A-free, A-K-H-free). Bar colours are matching the colour code used in the previous figures (black, red, 

scarlet, cranberry, blue, indigo, navy, green).  
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Figure 4.4–9 Right and left ankle, knee, and hip net flexor-extensor moments from right foot touchdown to left 

foot takeoff for the data-tracking (T) and predictive simulations (A-free, K-free, H-free, A-K-free, H-K-free, H-

A-free, A-K-H-free). The horizontal bars at the top of the figure indicate the periods of stance. 
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4.5 Discussion 

The primary purpose of this investigation was to identify how modifications in technique 

influence performance during the preliminary steps of accelerative sprinting. This was 

achieved by using a predictive simulation and modelling approach where the major lower-limb 

(ankle, knee, and hip) flexor-extensor net joint moments were modified individually and in 

combination. We found that the predictive simulations which enabled the net knee moments to 

vary (K-free) resulted in the greatest improvements in performance. More specifically, the K-

free and K-H-free predictive simulations resulted in a 13.8% and 21.9% increase of average 

horizontal external power, respectively. The predictive simulation which permitted all the 

targeted net joint moments to change, A-K-H-free, was found to improve average horizontal 

external power production the greatest (22.0%) compared to all the other predictive 

simulations. The secondary aim of this study was to provide further insights into the front-side 

mechanics coaching framework, for which there is currently a limited amount of literature. The 

subset of ‘hip-free’ predictive simulations were found to coincide with the front-side mechanics 

coaching framework from a joint kinetics perspective, as we observed earlier and greater 

generation of net hip flexor moment during stance. However, the results from our predictive 

simulations did not provide evidence in support of the kinematics-based aspects of the front-

side mechanics coaching framework. Videos of the kinematics from the data-tracking and 

predictive simulations, in addition to the data files, can be accessed online at 

https://doi.org/10.6084/m9.figshare.14988051.  

 

The predicted changes in the timings and magnitude of the targeted lower-limb net joint 

moments are responsible for the improvements in performance, and the subset of ‘knee-free’ 

predictive simulations resulted in the greatest performance enhancement. For those predictive 

simulations, a greater and earlier net knee flexor moment during the late swing phase prior to 

the initiation of the left foot stance phase was found in comparison to the data-tracking 

simulation (Figure 4.4–9). The potential benefit of this aspect of technique is to reduce the 

magnitude of the braking impulse by driving the lower-limb backwards at touchdown and 

therefore reducing the horizontal touchdown velocity of the foot (Hunter et al., 2005; Mann 

and Sprague, 1980). Indeed, for the ‘knee-free’ predictive simulations, the magnitude of the 

braking impulse decreased (Figure 4.4–2), together with a reduction in the horizontal 

touchdown velocity of the foot (Figure 4.4–3). The net hip extensor moment during the late 

swing phase has been suggested to perform a similar role as the net knee flexor moment (Hunter 

et al., 2005; Mann and Sprague, 1980), and we observed this phenomenon in the H-free and 

https://doi.org/10.6084/m9.figshare.14988051
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H-K-free predictive simulations (Figure 4.4–9). Greater reductions in the horizontal foot 

touchdown velocity (left foot stance phase) and the braking impulses were observed in the H-

K-free predictive simulation, thus demonstrating the combined benefits of the actions of those 

net joint moments. The technique improvements from those net joint moments are potentially 

due to an enhanced coordination of the hamstring muscles, as they are responsible for both 

knee flexion and hip extension. Furthermore, Morin et al. (2015a) identified the significance 

of the hamstring muscles in the late swing phase in relation to ground reaction force production 

based on electromyography measurements. The computational modelling and simulation 

approach utilised in this study permitted exploring the behaviour of the hamstring muscles 

more thoroughly, however it was deemed beyond the scope of this study. In further work we 

will perform a detailed analysis of the results we have obtained in this study at a muscle level 

to explore potential changes in the coordination of the hamstring muscles.   

 

The above findings demonstrate that a key feature of improving acceleration performance is 

by minimising the braking impulses during the early portion of the stance phase via the 

generation of greater net knee flexor and net hip extensor moments. However, previous 

experimental studies (Colyer et al., 2018a; Morin et al., 2015b; Nagahara et al., 2018) have 

found that improved early accelerative sprinting is based on an individual’s ability to generate 

greater propulsive impulses as opposed to reduced braking impulses, which tends to 

differentiate sprinters more in the latter stages of accelerative sprinting. A potential explanation 

for this discrepancy is due to the different study designs embraced. The studies by Colyer et al. 

(2018a), Morin et al. (2015b) and Nagahara et al. (2018) used a cross-sectional study approach, 

whilst the predictive simulations carried out in this study can almost be viewed as enabling a 

highly controlled intervention study, where individualised enhancement in performance was 

achieved via reducing the braking impulses. However, it is possible that with a different athlete 

for which the musculoskeletal model was scaled to, the strategy for improving performance 

may have been different (i.e., increase propulsive impulses) due to differing organismic 

constraints (e.g., inertial or MTUs parameters) (Glazier and Davids, 2009; McErlain-Naylor et 

al., 2021). Nevertheless, we believe that this is a particular strength of the approach adopted, 

as individualised technique recommendations to improve performance can be administered 

instead of group level recommendations which may or may not be beneficial for a particular 

athlete.  
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The ‘knee-free’ predictive simulations were found to increase the magnitude of the peak net 

knee extensor moment during the late stance phase in comparison to the data-tracking 

simulation. This finding is in line with a previous study (Bezodis et al., 2014), which focused 

on the lower-limb net joint kinetics of three international calibre athletes during the first stance 

phase of accelerative sprinting. Specifically, Bezodis et al. (2014) identified that the most 

distinguishing feature of technique in relation to performance was the net knee extensor 

moment, as the highest performing athlete was found to generate a greater and earlier net knee 

extensor moment. The results from our predictive simulations therefore provide further 

evidence to support the existing notion of the link between the behaviour of the net knee 

extensor moment and early accelerative sprinting performance. Interestingly, Schache et al. 

(2019) found that there was a strong association between the impulses of the net hip and ankle 

extensor moments and forward acceleration during accelerative sprinting. Interpreting our 

findings together with the work of Schache et al. (2019) and Bezodis et al. (2014) suggest that 

the net knee joint moments have a major performance benefitting role in early accelerative 

sprinting. However, the net ankle and hip joint moments are also fundamental to continue 

enabling an athlete to accelerate their CoM whilst sprinting.  

 

In the A-K-H-free predictive simulation all the targeted net joint moments were able to vary, 

and we therefore anticipated that the optimal technique uncovered would likely coincide with 

the greatest improvements in performance. In fact, the A-K-H-free predictive simulation 

identified the optimal combination of the net joint moments that resulted in the greatest overall 

average horizontal external power improvement (22.0%). However, the performance 

improvement was not much greater than the H-K-free predictive simulation (Figure 4.4–1). A 

potential explanation for why we did not observe a greater improvement in performance for 

the A-K-H-free predictive simulation is due to the intrinsic physiological constraints of the 

MTUs (e.g., multiple roles per joint and biarticular), as they are required to both reproduce the 

tracked net joint moments whilst also generate the non-tracked net joint moments, and thus the 

scope for further improvements is limited due to a reduced space of potential solutions. It is 

also possible that the results we have obtained are due to the gradient-based optimal control 

approach we have used, which may have led to a local optimum solution as opposed to a global 

optimum solution. To assess this issue a previous study (Porsa et al., 2016), using similar 

methods to those used in this study, explored the use of different initial guesses. Nevertheless, 

in this study, the same initial guess was used to initialise each of the predictive simulations. 

For simple OCPs with low complexity models it is feasible to initialise them with different 
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initial guesses to prevent the possibility of achieving a local optimal solution. However, given 

the complexity of our OCPs and the model we have used we did not explore this, as in our 

experience a poor initial guess can lead to simulations not converging or making very trivial 

progress between iterations. Thus, we opted to initialise each of the predictive simulations from 

a feasible solution, which was in this case the data-tracking solution. 

 

 

 

Figure 4.5–1 Right and left takeoff configurations for the data-tracking (blue model) and predictive simulations 

(red model). 
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A further important aspect of technique we identified was the increase in magnitude and timing 

of the net hip flexor moment, particularly for the second stance phase, in the ‘hip-free’ 

predictive simulations. This technique aspect has been suggested to be imperative for reversing 

the rotation of the hip (extension to flexion), and Mann and Murphy (2015) have stipulated that 

the highest calibre athletes generate a net hip flexor moment for the latter ~75% of the stance 

phase. More specifically, it is thought to prevent unnecessary extension at the hip and permits 

front-side mechanics dominance. In the ‘hip-free’ predictive simulations we see the transition 

to earlier and greater net hip flexor moments when compared to the data-tracking simulation, 

with ~60% of the stance phase been net hip flexor moment dominant. This provides some 

evidence towards the front-side mechanics coaching framework.  

 

Interestingly, the discrete kinematics variables suggested to be important for demonstrating 

front-side mechanics, for example knee flexion and hip extension angles at takeoff (Figure 4.4–

5), did not reveal any clues to further support or reject the front-side mechanics coaching 

framework. Furthermore, the pose of the model at takeoff was not found to demonstrate front-

side mechanics (Figure 4.5–1). For the predictive simulations, the trunk was found to become 

more vertical at takeoff and this was accompanied by a concomitant reduction in thigh 

extension, however the reduced thigh extension was not sufficient to clearly demonstrate front-

side mechanics at takeoff. It is possible that the kinematics-based criteria of front-side 

mechanics did not emerge from the predictive simulations due to the margins of improvement 

in performance. For instance, the eight male finalists, competing at the 2018 60 m World 

Athletics Championships, achieved second and third stance phase durations between 0.153-

0.193 and 0.120-153 s, respectively, (Walker et al., 2019). Meanwhile the lowest second and 

third stance phase durations for the predictive simulations were 0.183 and 0.153 s, respectively, 

and a previous study has reported a strong association between stance phase duration and 

accelerative sprinting performance have been reported (Morin et al., 2012). Whilst these stance 

phase durations give credibility to the predictive simulation results, the lack of front-side 

mechanics may explain why they are higher than the lower bounds achieved by the finalists. 

This also coincides with the beliefs held by Mann and Murphy (2015), in which only the highest 

calibre athletes are able to perform with front-side mechanics. The lack of clear front-side 

mechanics dominance emerging from our predictive simulations may also be due to insufficient 

strength within the musculoskeletal model or the properties and geometry of the MTUs not 

been representative of sprinters. For instance, the moment arms of the major knee extensor 

muscles have been shown to be greater in sprinters compared to non-sprinters (Miyake et al., 
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2017). Future work should therefore aim to disentangle the ability to perform front-side 

mechanics by potentially using a predictive computational modelling and simulation approach, 

as per this study, with a subject-specific model informed by medical imaging (e.g., magnetic 

resonance imaging) to explore the confounding factors described above. 

 

Previous studies have performed predictive simulations of sprinting to address a variety of 

research purposes (Bezodis et al., 2015; Celik and Piazza, 2013; van den Bogert and 

Ackermann, 2009). However, to the authors’ knowledge this is the first study to perform 

predictive simulations of sprinting whilst using state-of-the-art computational modelling and 

simulation approaches (e.g., three-dimensional musculoskeletal model) for the purposes of 

exploring the interactions between technique and performance. In previous studies, model 

complexity and simulation duration were sacrificed likely due to the large computational cost 

incurred to solve an OCP together with the inefficient means of discretising the OCP. In this 

study we performed predictive simulations of sprinting by transcribing the OCP using direct 

collection, formulated the musculoskeletal dynamics implicitly and used algorithmic 

differentiation, and together they have been shown to increase computational efficiency and 

the ability of obtaining an optimal solution (De Groote et al., 2016; Porsa et al., 2016). 

Furthermore, previous studies which have performed predictive simulations of walking, 

running, or sprinting (Falisse et al., 2019b; van den Bogert and Ackermann, 2009) have 

imposed a symmetry constraint at the end of their simulations to improve computational 

tractability, however this is not appropriate in circumstances in which asymmetry between 

steps is likely, such as accelerative sprinting which was the form of locomotion studied in this 

investigation. 

 

The simulation approach used in this study was similar to the approaches utilised by Meyer et 

al. (2016) and van den Bogert et al. (2012) for performing predictive simulations of walking 

and running, respectively. In those cited studies, the cost functions also included a tracking 

element, which in our case was a subset of the entire set of net joint moments. We opted to 

embrace such an approach to ensure we were subsequently able to infer changes in performance 

through systematic modifications to the net ankle, knee, and hip flexor-extensor moments, and 

to ensure the predicted outputs were still representative of accelerative sprinting. However, we 

recognise this is a limitation of our study as assigning different weightings to the tracking 

(subset of the entire net joint moments) and performance (minimisation of the time horizon 

duration) terms would have led to different results. Interestingly, the weighting assigned to the 
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minimisation of the time horizon duration meant that it never reached its lower bound, and we 

believe that this ensured a balancing of the two terms in the cost function such that neither was 

too heavily minimised.  

 

An interesting finding from the predictive simulations was that they tended to show a trend of 

increasing the net and propulsive impulses in the first stance phase compared to the data-

tracking simulation, whilst the net and propulsive impulses of the second stance were less than 

those obtained in the data-tracking simulation. Considering that all the predictive simulations 

improved performance compared to the data-tracking simulation, a greater surplus of net 

impulse from the first stance phase had to be produced by the predictive simulations such that 

overall performance was still enhanced. We believe that this result can be attributed to the 

inequality constraint enforcing that the relative joint angles at the end of the predictive 

simulations were within ± 10° of those obtained at the end of the data-tracking simulation, as 

this may have restricted the possibility of achieving optimal solutions featuring greater net and 

propulsive impulses for the second stance phase. We imposed the inequality constraint to 

ensure that the musculoskeletal model was posed such that it had the possibility of performing 

a subsequent step. Without imposing this type of constraint, the final solution obtained by the 

algorithm more closely resembled jumping/hopping/diving as opposed to accelerative 

sprinting, as we found in our preliminary work (Haralabidis et al., 2020). In further work it 

would be interesting to simulate more than two stance phases as done in this investigation to 

explore whether the imposed inequality constraint was the cause of this result.  

 

4.6 Conclusion 

The results from the predictive simulations highlighted that modifications in technique due to 

the timing and magnitude of the net knee flexor-extensor moments resulted in the greatest 

improvements to overall performance. The ‘hip-free’ predictive simulations revealed a net hip 

flexor moment pattern in support of the front-side mechanics coaching framework, specifically 

an earlier net hip flexor moment during the stance phase. However, the variables previously 

linked to front-side mechanics were not sufficiently conclusive to support the plausibility of 

the front-side mechanics coaching framework. It is worthwhile noting that the improvements 

in accelerative sprinting performance we found can be viewed as short-term technique 

modifications, as opposed to long-term adaptations via strength and conditioning programs for 

example, as the properties of the musculoskeletal model were kept constant between predictive 

simulations. Lastly, for coaches and sport scientists working to improve the early accelerative 
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sprinting performance of their athletes, the major technique-based recommendations rely on 

the actions of the net knee and hip flexor-extensor moments, particularly during the late swing 

phase and the stance phase, and therefore cueing the actions of those joints based on the 

accompanying kinematics patterns is recommended. 

 

4.7 Supplementary material 

Time histories of the flexion-extension ankle, knee, and hip joint angles and net joint moments, 

pelvis kinematics, and ground reaction forces for the data-tracking simulation together with the 

tracked experimental data are presented in Figures 4.7–1 to 4.7–4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7–1 Right and left ankle, knee, and hip flexion-extension angles from right foot touchdown to left foot 

takeoff. Experimental joint angles are denoted by solid red lines (EXP). Simulated joint angles are denoted by 

dashed blue lines (TRACK). 
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Figure 4.7–2 Right and left net ankle, knee, and hip flexor-extensor moments from right foot touchdown to left 

foot takeoff. Experimental net joint moments are denoted by solid red lines (EXP). Simulated net joint moments 

are denoted by dashed blue lines (TRACK). 

 

Figure 4.7–3 Global pelvis angles and translations from right foot touchdown to left foot takeoff. Experimental 

global pelvis angles and translations are denoted by solid red lines (EXP). Simulated global pelvis angles and 

translations are denoted by dashed blue lines (TRACK). 
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Figure 4.7–4 Right and left anterior-posterior, vertical and medial-lateral GRF from right foot touchdown to left 

foot takeoff. Experimental GRF components are denoted by solid red lines (EXP). Simulated GRF components 

are denoted by dashed blue lines (TRACK). 
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General Discussion 

 

5.1 Summary 

The overarching purpose of this thesis was to develop a computational modelling and 

simulation framework to enable technique modifications in relation to accelerative sprinting 

performance to be explored. An important novelty of the framework developed in this thesis is 

that it provides individualised recommendations for improving performance, instead of group 

level or generic recommendations as provided by the existing body of cross-sectional 

experimental studies. Furthermore, the technique changes identified by the framework were 

compared with those of the existing literature and coaching frameworks to further inform, and 

potentially challenge, current coaching practices. To achieve the purpose of this thesis a 

computational modelling and simulation framework, which combined a complex three-

dimensional musculoskeletal with a direct collocation optimal control approach, was 

developed.   

 

The first study featured the development of the computational modelling and simulation 

framework and evaluating its ability to reproduce ground-truth sprinting data by performing a 

series of data-tracking simulations. A novel aspect of this investigation was that it also enabled 

dynamically consistent simulated outputs to be obtained for a highly dynamic activity whilst 

still ensuring the simulated outputs were a close match with reality. It is therefore 

recommended that a similar approach be adopted to avoid dynamic inconsistencies. The study 

featured the acquisition of conventional biomechanical experimental data (three-dimensional 

marker trajectories, GRF and EMGs) from an international-level male sprinter as they 

performed a series of maximal effort sprints. This data was subsequently used to linearly scale 

a three-dimensional musculoskeletal model and further procedures (inverse kinematics and 

dynamics analyses) were performed to generate the ground-truth data to be tracked and 

evaluated. The data-tracking simulations also enabled the foot-ground contact model 

parameters to be determined. Calibration data-tracking simulations, in the form of either 

tracking experimental data from a single trial individually or from several separate trials 

simultaneously, were performed to initially identify the foot-ground contact model parameters. 

The foot-ground contact model parameters obtained from the simultaneous data-tracking 

simulation, which featured data from the early acceleration, mid-acceleration and maximum 
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velocity phase trials being tracked simultaneously, were used to perform a subsequent data-

tracking validation simulation. A validation data-tracking simulation was performed to assess 

how well the calibrated foot-ground contact model parameters were able to reproduce data 

from the trial they were not calibrated from. The outputs from the data-tracking simulations, 

calibration and validation, were found to be a close match with the ground-truth data, which 

provided confidence in the framework’s ability to be used to perform predictive simulations.  

 

The body of sprinting literature contains technique-based recommendations for improving 

performance, alas limited studies have documented how modifications to technique affect 

performance, especially from an individualised perspective. Furthermore, arguably the most 

widely adopted sprinting coaching framework, front-side mechanics, has received limited 

evidence to either support or reject its claims. In the second study, for the first time in the 

literature, dynamically consistent modifications to sprinting technique, which led to 

performance improvements, were identified and compared to the technique-based 

recommendations from the existing literature and the front-side mechanics coaching 

framework during the early acceleration phase. Sprinting during the acceleration phase was 

selected due to its importance within track and field sprinting but also for team-based sport 

athletes, for whom accelerative sprinting features prominently. In doing so, the applicability of 

the findings to the real world could be maximised.  

 

The second study featured the same musculoskeletal model used in the first study to perform a 

data-tracking simulation and a series of predictive simulations. A data-tracking simulation was 

initially performed to provide a reference of performance and technique for comparative 

purposes with the outputs from the predictive simulations. The predictive simulations explored  

modifications to technique from a net joint moments perspective. More specifically, individual 

and combinations of the major lower-limb flexor-extensor net joint moments (ankle, knee, and 

hip) were allowed to vary within the physiological limits of the musculoskeletal model, whilst 

the remaining net joint moments were tracked during each of the predictive simulations.  

 

The subset of predictive simulations which gave the freedom to the net knee flexor-extensor 

moments to vary were found to lead to the greatest improvements in performance, as indicated 

by average horizontal external power production compared to the data-tracking simulation. In 

those simulations, a greater net knee flexor moment was found to be produced during the late 

swing phase and at touchdown compared to the data-tracking simulation, which were also 
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accompanied by reductions in the braking impulse and the horizontal touchdown velocity of 

the foot. Furthermore, freely varying the hip flexor-extensor moments led to these variables 

been further improved upon. These findings are extremely novel as they emphasise that 

improvements in performance on an individualised basis are due to a strategy that collectively 

reduced the braking impulse. A greater peak net knee extensor moment during the stance phase 

was also identified during the ‘knee-free’ predictive simulations, which coincided with the 

associations noted by Bezodis et al. (2014) during accelerative sprinting in elite male athletes. 

In the ‘hip-free’ predictive simulations it was identified that a greater and earlier net hip flexor 

moment was produced when compared to the data-tracking simulation, with 60% of the stance 

phase been net hip flexor moment dominant. This provides some evidence in favour towards 

the front-side mechanics coaching framework, which states that the highest calibre sprinters 

generate a net hip flexor moment for almost 75% of the stance phase. However, discrete 

kinematics variables suggested to be important for demonstrating front-side mechanics were 

not found to occur with the optimal techniques uncovered by the predictive simulations, thus 

providing unconvincing evidence to further support the front-side mechanics coaching 

framework.  

 

5.2 Limitations and future work 

The work produced in this thesis carries with it some limitations that need to be considered. In 

this section those limitations are acknowledged, and an overview of how further work can be 

performed to potentially overcome them is provided. 

 

Model personalisation 

The investigations carried out in this thesis featured a linearly scaled three-dimensional 

musculoskeletal model that was originally developed from a combination of participants that 

were from a nonathletic background. Thus, it is very likely that the inertial and MTUs 

parameters, for example, are not representative of an elite-level sprinter. For example, a 

previous study has shown that sprinters have 22% greater lower-limb muscle volume than non-

sprinters, with markedly larger hip- and knee-crossing muscles (Handsfield et al., 2017), and 

this is important to acknowledge as muscle volume plays a critical role in the overall moment 

generating capacity of muscle (Fukunaga et al., 2001). In addition, previous studies have also 

demonstrated morphological differences in terms of moment arms between sprinters and non-

sprinters, with sprinters possessing shorter and longer ankle plantarflexor (Baxter et al., 2012) 

and knee extensor (Miyake et al., 2017) moment arms, respectively. Furthermore, a forefoot 
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segment was included within the model to permit MTP motion as it has been shown to undergo 

a substantial range of motion during sprinting (Smith et al., 2014), which is novel as the foot 

is often modelled as a single segment. Nevertheless, more work is needed to permit the net 

MTP plantarflexor moment capacity to match with measured values without necessarily relying 

on an idealised reserve actuator. To account for these discrepancies within our model future 

work should consider exploring a personalised musculoskeletal model from medical images, 

such as magnetic resonance imaging. Barriers to this do, however, exist in the form of 

segmenting the medical images and creating a model that is compatible with standard 

musculoskeletal modelling software together with hours of processing and specialised training 

and they have prevented their usage. However, in recent times semi-automatic and automatic 

tools for segmenting the images (Burton II et al., 2020) and generating the models (Modenese 

and Renault, 2021) have been developed to aid in the creation of personalised models. There 

has been a surge in the past decade to develop the tools needed to create personalised models 

for enhancing the rehabilitation/surgery given to patients, and therefore there is also the scope 

for the development of personalised models to aid with the training recommendations 

administered to athletes on an individualised basis. 

 

Multiple steps 

One of the major advantages of developing a predictive modelling and simulation framework 

is that it could be used to simulate multiple steps of walking, running or sprinting. Despite this, 

previous studies have enforced symmetry from touchdown to the subsequent touchdown 

(Ackermann and van den Bogert, 2010; Falisse et al., 2019b). However, to gain insights into 

the techniques used by athletes to accelerate across successive steps this was not a viable 

approach for this programme of work. In the second investigation of this thesis, successive 

stance phases of the early acceleration phase were simulated with a complex three-dimensional 

model, and whilst this demonstrates the feasibility of simulating multiple steps, simulating 10 

m of the acceleration phase, for example, would have enabled further insights into sprinting 

technique and performance to be obtained. However, the size of the OCPs based on our 

formulations would have potentially become too large, in which case the NLP solver may have 

found difficulties in reaching an optimal solution. A potential means of overcoming this, that 

is yet to be explored from a biomechanics perspective, still involves the use of direct collocation 

optimal control, but instead of using low order polynomials to approximate the state variables 

between mesh intervals, a higher order polynomial is used for the entire interval. By utilising 

this approach, the number of discretised state variables needed to be optimised for would 
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reduce, and in doing so create a more computationally tractable problem to solve. However, it 

is worthwhile noting that due to the transient dynamics at touchdown and takeoff that this 

approach may encounter difficulties.  

 

In the predictive simulations performed, a terminal inequality constraint was also specified to 

ensure that the state variables pertaining to the multibody dynamics would enable the model to 

be suitably posed for performing a subsequent step, as without this constraint the model 

appeared to dive at the end, which would not be ideal for an investigation during the 

acceleration phase. Celik and Piazza (2013) demonstrated the possibility of performing 

predictive simulations of sprinting using a simple two-dimensional model and found 

encouraging results. The same authors also attempted to utilise a more complex model, 

including ankle and knee joints, however their optimal solutions were not found to be too 

dissimilar to their initial guess. To address these shortcomings, it may also be worthwhile 

exploring approaches from the computer graphics and robotics literature, such as contact 

invariant optimisation (Mordatch et al., 2012; Mordatch et al., 2013) and through-contact (Posa 

et al., 2014), as these approaches have been applied to simulate successive steps of movement 

for humanoids and robots with remarkably encouraging results. A further alternative to explore 

this difficulty is reinforcement learning. This approach has recently found application within 

the biomechanics and computer science community whereby a competition was hosted 

(Kidziński et al., 2018a) to determine the control variables for a two-dimensional 

musculoskeletal model that travelled as far as possible in 10 s. The results from this competition 

also look promising (Kidziński et al., 2018b) and are worthy of future exploration.   

 

Objective function 

The objective function used to perform the predictive simulations in the second study featured 

a performance term, minimisation of time horizon duration, and a tracking term, minimisation 

of error between subset of predictive and data-tracking simulation net joint moments. Different 

weightings were assigned to each of the terms, and this was a compromise between attempting 

to improve performance whilst still retaining the net joint moments for those joints which were 

tracked. We acknowledge that different weightings on the two terms would have led to different 

results. The tracking term was included in an attempt to permit subsequent inferences to 

changes in performance to be explained by the net joint-moments which were free to vary. This 

approach was embraced as it coincides with modifying a single variable to assess its influence 

(cause-effect relationship), which is one of the often-cited advantages of predictive computer 
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simulation and modelling approaches. However, the approach embraced presents some 

difficult issues that warrant acknowledging, as the tracked net joint moments combined with a 

reduction in time lead to differing joint angular displacements. In a simple scenario such as 

determining the magnitude of the moment to move a pendulum upwards in the least amount of 

time, applying the same pattern and magnitude of moment in half the time leads to half the 

angular displacement. Furthermore, because of dynamic coupling, each net joint moment 

(alongside the gravitational forces etc.) is capable of accelerating all the joints (Zajac and 

Gordon, 1989). Care must therefore be exercised when interpreting the findings of this study 

by acknowledging the above limitations. A potential way in which to further explore the 

findings from this study would be to apply an induced acceleration analysis. The challenge of 

performing predictive simulations to inform technique and performance therefore still remains. 

Perhaps performing the predictive simulations by means of progressively reducing the lower 

bound of the time horizon duration between simulations and not tracking any data would have 

been a better approach to explore technique modifications and performance. However, the 

difficulty with this approach is that many of the variables change and it therefore becomes 

difficult to ascertain what is causing performance to change. Furthermore, the athlete used in 

the investigations was an international-level sprinter and consequently drastic improvements 

in technique were not anticipated, which therefore suggests that such an approach (e.g., no 

tracking terms) was not warranted. 

 

Dynamics formulations 

In the two studies carried out in this thesis, the musculoskeletal model’s dynamics were 

formulated implicitly as opposed to explicitly. Formulating the dynamics implicitly together 

with a direct collocation method has been previously shown to improve the computational 

efficiency of obtaining an optimal solution (De Groote et al., 2016). To do so requires the 

introduction of additional control variables, and in the case of the multibody dynamics 

introducing time derivatives of the generalised velocities. The performance benefit of doing so 

is believed to be due to bypassing the necessity of calculating the time derivatives of the 

generalised velocities from the multibody dynamics equations, which can lead to difficulties 

due to needing to invert the model’s mass matrix (Serrancolí and Pàmies-Vilà, 2019; van den 

Bogert et al., 2011). Serrancolí and Pàmies-Vilà (2019) stated that the benefit in performance 

from the implicit formulation required including the additional control variables in the cost 

function. In the studies carried out in this thesis the variables introduced due to the implicit 

formulations were minimised within the respective cost functions, although it is questionable 
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whether for highly demanding tasks that this is appropriate, in which case an explicit 

formulation may have been more appropriate. Future studies exploring the differences between 

the two formulations are warranted, particularly during maximal effort sporting movements.   

 

Translating the findings 

The findings from the second investigation carried out in this thesis have contributed to the 

sprinting biomechanics and coaching literature, although the findings were not translated to a 

real world setting to improve performance, despite the framework’s ability to accurately 

reproduce experimental sprinting data. However, this also appears to be a recurrent theme for 

studies which have performed predictive simulations of sporting movements to optimise 

performance, and this can be seen within cricket fast-bowling (Felton et al., 2020), triple 

jumping (Allen et al., 2013), gymnastics (Hiley et al., 2015), golf (Brown et al., 2020) and 

track cycling (Jansen and McPhee, 2020). Hatze (1983) provides the only evidence of the 

findings from predictive simulations been transferred to enhance sporting performance in the 

real world, although the evidence of this is circumstantial and limited. Hatze (1983) states that 

the technique-based recommendations (delaying hip joint extension at takeoff) for improving 

the performance of an athlete’s long jump based on the findings of his 1981 study (Hatze, 1981) 

were implemented, and within three weeks the athlete improved their PB performance from 

6.96 to 7.12 m. A similar trend is also noticeable within the clinical biomechanics field, with 

the only evidence of translating the findings from predictive simulations to the real world in a 

knee osteoarthritis setting (Fregly et al., 2007). Fregly et al. (2007) performed a predictive 

simulation of walking that featured minimisation of the net knee adduction moment, which is 

linked with medial knee osteoarthritis generation, and they subsequently trained the patient to 

walk in the manner predicted by the simulation and reported that the osteoarthritis risk reduced 

by a factor of 10.  Future work should therefore involve translating the findings from predictive 

simulations to the real world, in doing so this will also improve the acceptance of applying the 

findings and build a reputation for their merit.  

 

5.3 Conclusion 

This thesis has focused on developing and applying state-of-the-art modelling and simulation 

approaches to explore how technique modifications affect sprinting performance. In the first 

investigation, the developed modelling and simulation framework was found to be a suitable 

match with reality (e.g., experimental sprinting data). Novel aspects of the first investigation 

included dynamically consistent simulated outputs and the calibration of foot-ground contact 
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model parameters from tracking multiple trials simultaneously. The second investigation 

featured using the evaluated modelling and simulation framework to perform a series of 

predictive simulations to explore how technique modifications affect accelerative sprinting 

performance and how they coincide with the front-side mechanics coaching framework. A 

novelty of the second investigation was that it featured identifying an individualised strategy 

for improving accelerative sprinting performance, which was predominantly based upon the 

actions of the net knee flexor-extensor moments. A further novelty of the second investigation 

was the emergence of the actions of the net hip flexor-extensor moments coinciding with the 

front-side mechanics coaching framework, although unconvincing evidence was found for the 

kinematics aspects of the framework.  

 

The work carried out in this thesis has taken an important step towards identifying how an 

individual athlete can improve their accelerative sprinting performance and it also has the 

potential to transform sports coaching practices. However, this is just the beginning, as the era 

of using personalised computer models to provide individualised modifications to sporting 

technique or long-term training adaptations based upon predictive simulations is upon us. 

Furthermore, two of arguably the world’s most pioneering groups (Griffith Centre of 

Biomedical and Rehabilitation Engineering, Griffith University, Australia and Neuromuscular 

Biomechanics Lab, Stanford University, USA) in computational modelling and simulation for 

biomechanical applications have recently embarked on a mission to apply such approaches for 

sporting applications. The realisation of the benefits afforded by utilising computer modelling 

and simulation approaches within sporting contexts is there for all to see, and the next decade 

within this field promises to have some exciting times ahead. Hopefully within the same decade 

the results from the predictive simulations will have been transferred to the relevant sporting 

organisations to have a measurable impact.               
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