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Abstract 

Service level objectives (SLOs) stipulate performance goals for cloud applications, microservices, and 

infrastructure. SLOs are widely used, in part, because system managers can tailor goals to their products, 

companies, and workloads. Systems research intended to support strong SLOs should target realistic 

performance goals used by system managers in the field. Evaluations conducted with uncommon SLO 

goals may not translate to real systems. Some textbooks discuss the structure of SLOs but (1) they only 

sketch SLO goals and (2) they use outdated examples. We mined real SLOs published on the web, 

extracted their goals and characterized them. Many web documents discuss SLOs loosely but few provide 

details and reflect real settings. Systematic literature review (SLR) prunes results and reduces bias by (1) 

modeling expected SLO structure and (2) detecting and removing outliers. We collected 75 SLOs where 

response time, query percentile and reporting period were specified. We used these SLOs to confirm and 

refute common perceptions. For example, we found few SLOs with response time guarantees below 10 

ms for 90% or more queries. This reality bolsters perceptions that single digit SLOs face fundamental 

research challenges. 
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I. Introduction 

Service level objectives (SLOs) outline quality of service goals. Service providers must satisfy 

these goals or risk penalties. For example, an SLO may require high availability goals, i.e., clients can 

request services at any time. Failure to meet this goal may reduce service provider compensation. 

Cloud computing workloads integrate SLOs deeply. SLOs govern power and resource delivery in 

data centers [9], [30], [32], networking infrastructure [35], [29], microservices [25], [28], and user-facing 

cloud applications. SLOs allow cloud applications to safely embed content from third parties [25], [20], 

integrate proprietary and open-source software, and account for resource usage [22], [11], [23]. 

Increasingly, cloud services include response time and percentile goals in SLOs [18], [31]. Figure 

1 plots self-reported usage of SLO performance goals in system manager surveys. Over 15 years, 

performance goals have become pervasive. In a recent survey, 4 in 5 system managers report setting up 

performance goals [24]. Satisfying performance goals requires software and hardware resource 

provisioning — a capability afforded in cloud computing environments. However, performance goals can 

differ greatly across products, companies, and workloads. As performance goals become commonplace, it 

is key to understand how they are applied in practice. 

 

 

 

Figure 1. Service level objectives (SLOs) have been widely adopted. Each dot represents the percentage of system administrators 

(Y axis) adopting performance-oriented SLOs in the surveyed year (X axis) [24], [5], [15], [10], [7], [6] 
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Some cloud computing textbooks discuss the structure of SLOs, including performance goals [4]. 

However, they only sketch goals and rely heavily on anecdotal examples. These sources introduce 

students to SLOs, but details regarding SLO goals could suffer bias. Further, performance goals are an 

emerging trend. Details change often. Textbook authors will struggle to keep content up to date, 

especially as new workloads and expectations emerge. 

This paper studies real SLOs, quantifies their performance goals and labels common perceptions 

about their goals as realities or myths. We found 9,634 web documents related to SLOs, but most 

contained vague descriptions and excluded key performance details. We used a systematic literature 

review (SLR) to prune results. First, we modeled the structure of cloud SLOs, pruning documents that 

didn’t include response time (delay), percentiles, and reporting period parameters. Then, we used outlier 

detection to study and remove anomalous SLOs. In total, we collected 75 SLOs from 34 academic sources 

and 41 industry sources (e.g., white papers and manuals). Our SLOs cover a wide range of cloud 

workloads, including databases, file systems, networking infrastructure, web tier workloads, and whole 

applications. 

Without concrete studies, researchers have relied on common assumptions about SLO 

performance goals. While 75 SLOs do not comprehensively represent all SLOs, our dataset does 

corroborate 3 common assumptions: (1) SLO delays differ greatly across workloads, (2) 90th, 95th and 

99th percentiles are widely used SLO percentile goals, and (3) strict SLOs targeting single digit delays are 

uncommon in practice. Our analysis does not corroborate the following assumptions: (1) Minute 

granularity reporting periods are common (2) response time goals used in academic papers mirror goals 

set in practice. These realities and myths have implications for systems and autonomic computing 

research. Resource scheduling techniques should be evaluated on multiple strict percentiles. Novel 

infrastructure should be evaluated across settings that affect response time goals. These heuristics would 
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align research evaluations and industry practices. Further, our analysis reveals research opportunities for 

ultra-low latency SLOs and for studying performance over long reporting periods. Our contributions are: 

1. We collected diverse and realistic cloud SLOs using systematic literature review. 

2. We group and compare SLOs by source, target workload and performance goals. Our analysis 

confirms common assumptions and provides reason to reconsider others. 

The remainder of this paper is as follows: Section II provides background and describes the 

structure of SLOs. Section III describes our SLR study. Section IV quantifies our SLO performance goals 

and uses them to confirm realities and refute myths. Section V discusses the impact of our study on 

systems and autonomic computing research. 
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II. Service Level Objectives 

Cloud services are networked, distributed workflows. Simple cloud services only retrieve and 

return data. Complex cloud services invoke simpler services and combine results; this is called a 

microservice architecture [25], [28]. In this context, request executions are the primary workload. Figure 

2 highlights a common workflow: A web tier processes requests and manages data aggregation while 

databases, key-value stores, and distributed file systems store and retrieve data. 

Cloud services can now link system events and their corresponding request executions. Linux 

Control Groups are widely used to monitor and allocate resources, such as CPU time, system memory and 

network bandwidth, among processes executing a request [14]. Such request tracking is the translation of 

prior systems research [27], [2]. Today’s systems generalize and advance early prototypes. Monitoring 

produces log files local to the execution context. Offline scripts merge them and create global views, 

tracking complex and simple services. Figure 2 depicts a global view of monitored events during request 

executions. The events are sorted by arrival. Such request tracking provides response time and percentile 

data and enables SLO performance goals. Note, networking services and other heavily used components 

may sample response time, e.g., by measuring short round-trip protocols. 

 

 

 

Figure 2. The structure of SLO performance goals (right) reflects the workflow of cloud services (left). Logs highlighted in blue 

are aggregated during a reporting period 
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A. SLO Structure 

Complex cloud services and simple microservices share common performance goals: Achieve 

low response time for almost all requests. SLO performance goals are structured to quantify these goals 

while allowing system managers to tailor details. Figure 2 depicts the core structure of SLO performance 

goals: (1) a response time limit is stipulated in absolute terms, (2) a percentile goal specifies the 

percentage of requests that must complete within the response time limit and (3) a reporting period 

defines how often log files are combined to assess whether objectives are met. 

Cloud services have diverse response time expectations. Interactive cloud applications used by 

humans can allow several seconds of delay. In contrast, microservices accessed repeatedly during a single 

request execution allow tens to hundreds of millisecond delays. 

SLO violations indicate response time or percentile goals were not satisfied during a reporting 

period. That is, log files reveal actual performance falls below goals. In contractual agreements where 

SLOs govern business partners, violations can trigger monetary charges. For example, Amazon Web 

Services refund clients if instances start and fail within 5 minutes [33], [13]. Cloud services that interact 

with humans can correlate profits and SLO violations. Walmart reports a 1% loss in profit with 10% 

degradation in response time [29]. Microservices also face consequences, because delays in simple 

services spread to complex services. 

B. SLO Examples 

The blue text in Figure 2 reports performance goals found through systematic literature review 

discussed in Section III. They reflect an industry case study, an SLO shared in a research paper and a 

widely used textbook. They are representative of the sources used in our study. We describe them here. 

1. CXENSE Service Level Agreement [8]. Cxense provides software as a service for advertising, 

data analytics, and search. Their service level agreement covers all subscribers. 95% of all ad 
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requests will achieve a response time of 300 milliseconds or less. Here, response time reflects 

time spent executing the request on Cxense servers or within their network (subscriber latency is 

excluded). It also excludes up to 90 minutes per month of downtime. Logs are aggregated 

monthly to determine violations. In Figure 2, this SLO is labeled app. 

2. WorldCom/UUNET VPN [21]. This paper discusses SLOs for IP traffic managed by the 

WorldCom VPN service. 99.8% of VPN traffic should transfer between customer premise 

equipment (CPE), e.g., routers, in less than 120 ms. Transfer times are reported monthly. This 

SLO provided generous headroom for the VPN service provider, and the paper discusses 

approaches to make the SLO stricter. In Figure 2, this SLO is labeled net. 

3. Site Reliability at Google [4]. This textbook explains the structure and underlying concerns for 

service level objectives. In the section Defining Objectives, the authors provide performance 

goals for RPC microservices. Figure 2 labels this SLO web. 
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Iii. Systematic Literature Review 

Systematic literature review (SLR) helps researchers quantify data from qualitative, literary 

sources. It provides structure, bias mitigation, rigor and repeatable results [1]. Systematic reviews have 

well defined search strategies. Researchers can repeat strategies and compare alternative strategies to 

assess completeness [1]. Later studies can improve completeness. As described in Figure 3, SLR 

comprises 4 phases: search strategy, literature selection, quality assessment, and data extraction and 

synthesis. Below, we describe each phase in our study. 

 

 

Figure 3. Systematic literature review procedure 

 

A. Search Strategy 

PICOC criteria (Population, Intervention, Comparison, Outcomes, Context) constrains search 

structure [26]. These concepts are independent qualifiers on search phrases. Combined, they form a 

search string used to retrieve documents, as shown in Equation 1. 

string	 = 	population + intervention + outcome + context				(1) 
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The terms to the right of string represent different sets of phrases. A phrase was selected from 

each set and joined by OR/AND to construct the string. Population refers to the types of computer 

systems under review. Our study targeted interactive workloads, using phrases like cloud, networked 

systems, VPN service, web, databases, query systems, search engines, Internet services, etc. Intervention 

provides the types of SLO features sought. We used phrases like service level, response time, 

performance, percentile, percentage, latency, processing speed, etc. Outcome describes the target metrics 

from intervention, e.g., milliseconds, seconds, hours, 99th, averaged, peak, monthly and yearly. Context 

is the types of documents used in our search such as primary studies and company handbooks. The final 

strings were used to search Google, Bing and digital libraries. An example search targeting VPN Services 

is shown in Equation 2. To obtain more SLO data, we do not put a limit on the content of each phrase as 

long as it is relevant in the range of this study and meets the phrase category requirement. 

String	 = 	VPN	service	𝐴𝑁𝐷	latency	𝐴𝑁𝐷	ms	𝐴𝑁𝐷	University				(2) 

The literature selection process gathered SLOs from primary studies and assessed the quality 

based on the SLO features provided. Recall, we allowed a wide range of valid search terms using the 

PICOC process. As a result, we manually examined 8,530 academic papers and 1,104 other documents. 

We did this in two phases. First, we examined headings, URLs and search results to remove documents 

that did not contain SLO details or supplied only vague descriptions. After the first phase, roughly 300 

documents remained. In the second phase, we conducted a deep reading into the candidate documents and 

filtered them on authenticity and based on the SLO features they described. Namely, we excluded 

academic documents that did not reflect real-world SLOs, and we excluded documents that did not 

provide the minimum required SLO features. Table I shows a list of SLO features and indicates which 

features must be present in our search. Any SLO found without the required features were not considered. 

Only SLOs with a reporting period time, a latency time and a percentile requirement are included. For 
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practical reasons, documents in languages other than English, and documents that reported SLO features 

from other studies were also excluded. Filtering resulted in 81 SLOs that met the minimum requirements 

from less than 300 candidate documents. The quality of these SLOs were assessed based on their 

workloads. All SLOs for workloads in the computer science and general software were included. SLOs 

for anomalous workloads like help desk calling service failed the quality assessment check. We finally 

extracted 75 out of the 81 SLO candidates. 

 

 

Table I. Inclusion and Exclusion Criteria and Additional Features Extracted 

 

 

C. Data Extraction and Synthesis 

6 SLO features were recorded into a spreadsheet during the SLO extraction process. All the 

features in Table I except for uptime and type of cloud service process make up the 6 features. These 

features were found manually by reading through the document. In many cases, SLOs were not published 

with a similar naming scheme. Therefore, common regular expression tools offered little aid in this 



10 
 

process. Figure 4, Figure 5 and Figure 6 reports the synthesized data for academic and industry sources. 

Further details on these figures are discussed in Section IV. 

When SLOs report response time and percentile goals, their settings are normally clear. However, 

reporting period was often omitted or implicit. We looked for clues that explained how often data was 

compiled and/or what penalties were incurred on violations to infer SLO reporting period, when 

necessary. For this study, we did not consider objectives targeting average latency. 
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Iv. Characterizing Realities and Myths 

Several assumptions are commonly made about the performance goals defined by SLOs across 

academia and industry. Our SLR results give insight on which assumptions are realities or myths. Each 

SLO collected is accompanied by 6 SLO features. There are 3 key features we focus on to either refute or 

confirm these assumptions. Figure 4 depicts the distributions of these features as SLO percentile, delay 

time, and reporting period. The data is partitioned by workload type because it is difficult to compare 

SLOs across competing types of services where latencies and expectations can differ by orders of 

magnitude. The workloads are software applications, web service, and networking system. Figure 5 (b-c) 

illustrates the distributions of SLO delay and percentile grouped by industry and academic sources. Figure 

5 (a) is a distribution of the sources by type. Figure 6 is a heat map of delays and percentiles from 

industry sources. 

 

 

 

Figure 4. Distributions of (a) SLO percentiles, (b) delay goals and (c) reporting periods. CDF stands for cumulative distribution 

function 
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Reality 1: SLO delays and reporting periods differ greatly across workloads. Figure 4(b) shows that 

approximately 40% of SLOs across the 3 workload types define their response time limits in the range 0-

100ms. The other 60% of response time limits vary greatly across workloads. We can see network and 

software applications rarely set their SLOs greater than 500ms. Figure 4(c) also illustrates a wide range of 

reporting periods across workloads. Network SLOs set their reporting periods less than 1 minute or more 

than 1 month but nothing in between. Web services and applications have reporting periods concentrated 

in the range of minutes to 1 month. 

 

 

Figure 5. (a) distribution of sources in our study, (b) distribution of SLO response time goals grouped by industry and academic 

sources, (c) distribution of SLO percentile goals grouped by source 

 

 

Reality 2: 90th, 95th and 99th percentiles are widely used SLO percentage goals. Figure 4(a) illustrates 

the percent of time workloads should meet their performance goals. Software applications and web 

services have a wide range of percentiles varying from 80% to 99.9%. However, there are a concentrated 
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number of SLOs at specific percentiles. Over 35% of SLOs for software applications use the 95th 

percentile while the majority of web services use 99th. A large fraction of SLOs for network services use 

the 99th percentile as well, but its distribution differs from the other workloads’. Web services and 

software applications tend to have significant amount of SLOs with 90th percentile. 

 

 

Figure 6. Heat map of delay and percentile goals from industry sources 

 

 

Reality 3: Strict SLOs targeting single-digit delays are uncommon in practice. The SLOs tend to focus on 

the top right corner in Figure 6, which stands for a smaller SLO percentile and a larger SLO delay time. 

The majority of delays are between 100-1000ms with most of the rest falling in the range of larger than 

1000ms. Only 3 SLO delays are less 100ms with only 1 of them of single-digit delay in millisecond. With 

increasingly more SLOs adopted in industry, single digit delays are still rare in practice. 
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Myth 1: 5 – 10 minute reporting periods. Consider microservices responding to requests in hundreds of 

microseconds. It is reasonable to expect SLO reporting periods of 5–10 minutes. This would capture 

enough samples for strict percentiles. Surprisingly, we found few SLOs with minute-granularity reporting 

periods. They consist of only less than 15% of our samples. Reporting periods in days and yearly length 

are most common, especially for complex services. Reporting periods of seconds are common for 

microservices and networking hardware. 

Myth 2: Response time goals used in academic papers mirror goals set in practice. Figure 5(b) shows that 

SLO delays in academic sources differ sharply from industrial sources. On network services, academic 

sources are much more lenient. For whole applications, they are too strict. To be sure, we cannot draw 

conclusions from our small sample— we simply cannot corroborate a common assumption. We can 

report that both distributions are significantly different (p=0.9). While delays differ, we observe that the 

SLO percentiles in industry are mirrored by academia. We see no significant difference in the 

distributions. 
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V. Discussion 

Our study examined SLOs available in public domain. Systematic literature review provided clear 

rules for inclusion and exclusion. These rules reduced our bias and simplified hard decisions on 

borderline cases. For example, web results from several large companies included SLOs with only 

availability and uptime goals. Even though we wanted to include industry sources, these results were 

excluded unless they also included response times goals. We were able to include SLOs that focused on 

availability only if they provided timeout thresholds for requests. 

Our sample size is small and limits our ability to extrapolate. Instead of quantifying distributional 

parameters, we use our data to corroborate widely held perceptions. As business contracts, SLOs are 

simply uncommon in the public domain. A larger sample would require proprietary data— perhaps from 

large surveys of system managers. Another weakness stems from the diverse sources used in our study. 

Performance goals in some sources reflect real case studies whereas other sources reflect vague 

recollections of authors. We mitigated this problem by distinguishing the source characteristics, e.g., 

industry manual versus case study. Below, we share conclusions we have drawn from the study. 

1. Translational evaluation for systems research. Systems research is translational, i.e., direct 

applications in practice are a salient feature. Industry adopts research slowly, replicating and validating 

results before integration [20]. Our study suggests evaluation approaches used in research papers (not 

included in the study) may not reflect uses cases in practice. This burdens industry practitioners and could 

slow down translations. 

First, consider complex cloud services that combine data from multiple sources. Performance 

goals depend on microservices and suffer tail at scale effects where a few outliers inflate response time. 

These workloads are hard to configure for low response time. Instead, system managers tailor SLO 
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percentiles based on their resource scheduling and provisioning policies [4]. Figure 5(c) plots SLO 

percentile parameters for whole applications. Multiple strict percentiles are represented from 90.0% to 

99.9%. Research evaluation should follow suit, but often research papers evaluate only 1 set point [17], 

[34], [18], [12]. Janus et al. [16] are a positive example where research evaluation covers multiple 

percentiles. 

On the other hand, microservices and infrastructure are designed for ultra-low latency. Competing 

setups offer different latency— for example, secure transport versus direct memory access— but 

deployed services must meet strict percentiles. Figures 5(b & c) show networking infrastructure SLOs in 

practice. Percentiles cluster but delay varies. Cake [31] is a positive example where research evaluation of 

infrastructure components considers multi-model latencies. 

2. Open challenges for SLO performance goals. Response time limits below 10 milliseconds are 

challenging. Figure 6 reports one SLO with delay below 10 ms and it covers a networking infrastructure 

switch. Recent research discusses the killer micro-second, where many 10 us delays inflate response times 

by 10–40 ms [3]. Improvements in redesigning the system stack and modifying traditional low-level 

system optimization to be micro-second aware are needed 

Black swans prohibit extreme percentiles for complex software. Figure 6 reports few SLOs with 

99.8% and 99.5% percentile. 3 and 4 digit percentile SLOs are challenging in practice because a few 

correlated problems can negate slack built into the SLO. Prior research has shown it is possible to achieve 

extreme percentiles by inefficiently replicating resources [29]. However, cost-effective approaches remain 

elusive in practice. Computational sprinting has emerged as a possible solution [12], [22], [11]. Extreme 

percentiles cannot be evaluated over short reporting periods. Correlated events are rare and, in practice, 

system managers need slack in reporting periods to recover. Here, effective and representative time 
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dilation is the challenge for researchers: How can a paper produced over 1 year study an SLO with a 1-

year reporting period? 

Our work studied SLOs as they are defined in practice, using absolute response time latency. 

However, response time comprises processing and waiting time. Processing time, in particular, affects 

SLO settings. Unfortunately, we did not have reliable access to processing time for the services studied. 

In future work, we would like to characterize the slack afforded between processing time and SLO 

latency settings. 
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VI. Further Work 

This study has shown the potential application of short-term computational sprinting. Short term 

resource allocation can speed up targeted query executions and meet the performance goals as stipulated 

in SLOs. SRAM cache is a limited resource that processor caches use to speed up main memory accesses, 

and now cache lines can be allocated to specific workloads directly. [36] Yet cache allocation can 

increase cache contention for collocated workloads. If collocated workloads contend for shared cache 

lines, performance can suffer and the response time goals may not be met. [37] Intel Cache Allocation 

Technology (CAT) supports dynamic cache allocation for last level cache (LLC). [36] This enables 

computer systems to mitigate slowdowns caused by contention by setting short-term cache allocation 

policies. Prior work did not consider that contention can slow down collocated workloads while sprinting 

other workloads. We worked on a performance modeling method that predicts response time for 

collocated workloads given a short-term cache allocation policy while taking cache contention into 

consideration. 

We designed a test environment and used Intel CAT tools to implement short-term cache 

allocation policies. There are several workloads in the test environment and the workloads are divided 

into groups of two. The cache allocation policy states different situations where cache contention was 

increased to different levels. We profiled cache usage for each workload and used this data to train deep 

learning models. Finally, we used the models to explore short-term allocation policies in collocated 

settings.  
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