73 research outputs found

    A Component-Based Approach for Specifying Reusable Visual Languages

    Get PDF
    International audienceModel-Driven Engineering (MDE) encourages the use of graphical modeling tools, which facilitate the development process from modeling to coding. Such tools can be designed using the MDE approach into metamodeling environments called metaCASE tools. It turned out that current metaCASE tools still require, in most cases, manual programming to build full tool support for the modeling language, especially for users' native methodologies and representational elements and suffer from gaps in terms of reusability. In this context, we propose MID, a set of metamodels supporting the specification of modeling editors by means of reusable components and explain how representational metamodeling is carried out with it

    The Graph Rewriting and Transformation Language: GReAT

    Get PDF
    In this paper, we describe the language and features of our graph transformation tool, GReAT.We begin with a brief introduction and motivation, followed by an overview of the actual language, the modeling framework, and the tools that were written to support transformations. Finally, we compare GReAT to other similar tools, discuss additional functionality we are currently implementing, and describe some of our experiences with the tool thus far

    An Active Pattern Infrastructure for Domain-Specific Languages

    Get PDF
    Tool support for design patterns is a critically important area of computer-aided software engineering. With the proliferation of Domain-Specific Modeling Languages (DSMLs), the adaptation of the notion of design patterns appears to be a promising direction of research. This paper introduces a new approach to DSML patterns, namely, the Active Model Pattern infrastructure. In this framework, not only the traditional insertion of predefined partial models is supported, but interactive, localized design-time manipulation of models. Optionally, the infrastructure can be adapted to handling transactional tracing information as well as transactional undo and redo operations. Possible realizations of the framework are also discussed and compare

    Using ontologies in the domain analysis of domain-specific languages

    Get PDF
    The design stage of domain-specific language development, which includes domain analysis, has not received as much attention compared to the subsequentstage of language implementation. This paper investigates the use of ontology in domain analysis for the development of a domain-specific language. The standard process of ontology development is investigated as an aid to determine the pertinent information regarding the domain (e.g., the conceptualization of the domain and the common and variable elements of the domain) that should be modeled in a language for the domain. Our observations suggest that ontology assists in the initial phase of domain understanding and can be combined with further formal domain analysis methods during the development of a domain-specific language

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Synthesizing Executable Simulations from Structural Models of Component-Based Systems

    Get PDF
    Experts in robotics systems have developed substantial software tools for simulation, execution, and hardware-in-the-loop testing. Unfortunately, many of these robotics-domain software infrastructures pose challenges for a robotics expert to use, unless that robotics expert is also familiar with middleware programming, and the integration of heterogeneous simulation tools. In this paper, we describe a novel modeling language designed to bridge these two domains in an intuitive visual representation. Using this metamodel-defined modeling language, we can design and build structural models of robotics systems, and synthesize experiments from these constructed models. The restrictions implicit (and explicit) in the visual language guide modelers to build only models that can be synthesized, a "correct by construction" approach. We discuss the impact of this language with a running example of an autonomous ground vehicle, and the hundreds of configuration parameters and several simulation tools that are necessary in order to simulate this complex example

    A Model Transformation for Automated Concrete Syntax Definitions of Metamodeled Visual Languages

    Get PDF
    Metamodeling techniques are popular in describing the rules of special domains, but these techniques do not support defining presentation for these domains , namely the concrete syntax. The aim of our research is to provide a method to create the concrete syntax for metamodeling systems in a flexible, efficient way. Several domain-specific languages have been created that support defining the concrete syntax, i.e. the visualization. The main concern of this paper is to present a model transformation method that processes our presentation definitions and transforms them automatically into source code. The source code implements a plug-in capable of editing the models. A termination analysis for the presented method is also provided

    Augmenting DSVL Meta-Tools with Pattern Specification, Instantiation and Reuse

    Get PDF
    This paper describes an approach for using patterns in domain-specific visual language (DSVL) meta-tools. Our approach facilitates DSVL development via high level design-for-reuse and design-by-reuse pattern modelling tools. It provides a simple visual pattern modelling language that is used in parallel with DSVL meta-model specifications for modelling and reusing DSVL structural and behavioural design patterns. It also provides tool support for instantiating and visualising structural patterns, as well as executing behavioural patterns on DSVL model instances
    corecore