
Using Ontologies in the Domain Analysis of
Domain-Specific Languages

Robert Tairas1, Marjan Mernik2, Jeff Gray1

1 University of Alabama at Birmingham, Birmingham, Alabama, USA
{tairasr,gray}@cis.uab.edu

2 University of Maribor, Maribor, Slovenia

marjan.mernik@uni-mb.si

Abstract. The design stage of domain-specific language development, which
includes domain analysis, has not received as much attention compared to the
subsequent stage of language implementation. This paper investigates the use of
ontology in domain analysis for the development of a domain-specific
language. The standard process of ontology development is investigated as an
aid to determine the pertinent information regarding the domain (e.g., the
conceptualization of the domain and the common and variable elements of the
domain) that should be modeled in a language for the domain. Our observations
suggest that ontology assists in the initial phase of domain understanding and
can be combined with further formal domain analysis methods during the
development of a domain-specific language.

Keywords: Domain Analysis, Domain-Specific Languages, Ontology

1 Introduction

The development of a Domain-Specific Language (DSL) requires detailed knowledge
of the domain in which the language is being targeted. Paradigms such as Generative
Programming [3] and Domain Engineering [5] also require an understanding of the
target domain, which is done through a process called domain analysis that produces a
domain model. An important theme in the domain analysis used by both paradigms is
the need to determine elements that can be reused. The reusable components or
software artifacts form the building blocks for developing new software systems. In
DSL development, in addition to the overall knowledge of the domain, the domain
model can reveal important properties that will influence the way the language is
shaped. In particular, the search for reusability in domain analysis can be translated
into realizing the commonalities and variabilities of a domain. This information can
assist in pointing out elements in the domain that can be fixed in the language and
those that must provide for variabilities; hence, domain analysis has the potential to
be beneficial if used during DSL development. However, clear guidelines for the use
of established domain analysis techniques in the process of DSL development are still
lacking [11].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital library of University of Maribor

https://core.ac.uk/display/67559961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ontology development is one approach that has contributed to the early stages of
domain analysis [5]. This paper investigates the use of ontology during domain
analysis in DSL development and how it contributes to the design of the language.
The rest of the paper is organized as follows: Section 2 describes the potential
connection between ontology and DSL development. Section 3 provides a case study
on the use of ontology in the development of a DSL for air traffic communication and
Section 4 provides some observations on ontology in DSL development based on the
case study. Related work, a conclusion, and future work are described in Sections 5
and 6.

2 Early Stage DSL Development

Chandrasekaran et al. [2] propose two properties related to ontologies: the first is a
representation vocabulary of some specialized domain. This vocabulary represents the
objects, concepts, and other entities concerning the domain. The second is the body of
knowledge of the domain using this representative vocabulary. This knowledge can
be obtained from the relationships of the entities that have been represented by the
vocabulary. Ontologies seek to represent the elements of a domain through a
vocabulary and relationships between these elements in order to provide some type of
knowledge of the domain.

An interesting connection can be observed between ontology and DSL design. As
it relates to DSL development [11], a domain model is defined as consisting of:

• a domain definition defining the scope of the domain,
• the domain terminology (vocabulary, ontology),
• descriptions of domain concepts, and
• feature models describing the commonalities and variabilities of domain concepts

and their interdependencies.

Not only is an ontology useful in the obvious property of domain terminology, but the
concepts of the domain and their interdependencies or relationships are also part of
the properties of an ontology [2]. The knowledge of the commonalities and
variabilities of the domain concepts can further provide crucial information needed to
determine the fixed and variable parts of the language. This part is a more open
question as to the potential of finding commonalities and variabilities through
information obtained from the ontology.

As it relates to the DSL development process as a whole, the insertion of ontology
development in the early stages of DSL development can potentially provide a
structured mechanism in the part of DSL development that is still lacking attention.
The early stages of DSL development (i.e., domain analysis) have not received as
much attention compared to the latter stages of development (i.e., language
implementation). Various DSL implementation techniques have been identified in
[11], including interpreter or compiler development and embedding in a General-
Purpose Language (GPL). In contrast, only four out of 39 DSLs evaluated in [11]
utilized a more formal domain analysis, such as FAST [14] and FODA [8]. These
formal approaches have shown to result in good language design, but their use is still

limited and it has yet to be seen how well they will be adopted by the community. The
question is whether other less formal approaches, such as Object-Oriented Analysis
(OOA) or ontology, can be reused in the early stages of DSL development. In order to
promote interest in the domain analysis stage of DSL development, this paper
advocates the use of ontology in DSL development, which is observed through a case
study of a DSL for air traffic communication.

3 Case Study

Ontology development to assist in the design of a DSL is described through a case
study in this section. Section 3.1 provides a summary of the air traffic communication
problem domain. The ontology and its related competency questions are given in
Sections 3.2 and 3.3. The development of a class diagram, object diagram, context-
free grammar, and sample program related to the DSL and obtained from the ontology
is given in Section 3.4.

3.1 Air Traffic Communication

A case study was selected to apply the ontology development process and observe its
usefulness in domain analysis related to DSL development. The case study selected
focuses on the communication that occurs between the air traffic control (ATC) at an
airport and the pilot of an aircraft. More specifically, the communication is between
the ground controller that is responsible for the traffic between the runways and the
ramps containing gates in an airport, and the pilots of an aircraft that has just arrived
or is in the process of departure. The purpose is to develop a DSL that can standardize
the language for the communication between the two individuals. English is the
standard language in this domain, but more often the controllers or pilots of non-
English speaking countries may experience problems communicating in English. A
DSL that standardizes the communication can be translated into the native tongue of
the controller or pilot for better comprehension. A separate functionality could check
and verify the path that is given to a pilot by a ground controller. An example
communication sequence that highlights the potential communication problem is
given in Listing 1. The controller is asking the captain to hold short of taxiway
“MikeAlpha,” but the pilot continually assumes it is taxiway “November.”

Listing 1. Example of air traffic communication
ATC: Make the right turn here at Juliette. Join Alpha. Hold short

MikeAlpha.

Pilot: Right on Juliette hold sh ... Taxi Alpha. Hold November [...] Can
we taxi now?

ATC: Make the right turn here at Juliette. Join Alpha. Hold short of
MikeAlpha.

Pilot: Roger, join right Juliette. Join Alpha. Hold short November.

ATC: OK, I'll say it again. Hold short of Mike Alpha "M" - "A"
MikeAlpha, not November.

Pilot: OK, hold short of MikeAlpha.

3.2 Ontology Development

Following the ontology development process outlined by Noy and McGuinness [13],
competency questions are selected that serve as the purpose of the ontology. In order
to obtain a domain model as defined in Section 2, two competency questions were
selected: “What are the concepts of the domain and the interdependencies of these
concepts?” and “What are the commonalities and variabilities of the domain?”

Both the Ontolingua1 and DAML2 ontology libraries were searched for existing
ontologies related to the domain in this case study, but no related instances contained
the vocabulary necessary for the domain. Although a new ontology is needed for this
case study, the availability of an existing ontology in other cases provides a head start
to the development of a domain model as the important terms and relationships have
been determined already for the domain and can be used toward the subsequent steps
of DSL development.

Table 1. Listing of classes and associated slots

Class Description Slots

Name Description Values

Aircraft Arriving or departing
aircraft

Airline ID Name of the airline Two letters
Flight Number Flight Identification Integer

GroundControl Controller in charge of
airport ground traffic

Tower Controller in charge of
take-offs and landings

Runway Available take-off and
landing locations

Runway Number

Runway Identification 1 – 36 (i.e., runway
heading 10° – 360°)

Runway
Orientation

To distinguish parallel
runways

Class Left or Right

Taxiway Paths connecting
runways to ramps

Taxiway Name Taxiway Identification One or two letters
(digits)

Ramp Aircraft parking area Ramp Name Ramp Identification String
Gate Passenger embarkation

and disembarkation
Gate Letter Gate Identification One letter
Gate Number Gate Identification Integer

Turn Command to turn Direction Turning direction Class Left or Right
Taxiway Taxiway Identification Class Taxiway

HoldShort Command to hold short
of a runway or taxiway

Runway Runway Identification Class Runway
Taxiway Taxiway Identification Class Taxiway

Contact Command to contact a
separate controller

ATC Controller to contact Class Tower or
GroundControl

Follow Command to follow
behind another aircraft

Aircraft Aircraft Identification Class Aircraft

1 Ontolingua Ontology Library, http://www-ksl.stanford.edu/knowledge-sharing/ontologies/html
2 DAML Ontology Library, http://www.daml.org/ontologies

Utilizing the tool introduced by Noy and McGuinness [13] called Protégé 20003, the
ontology for the case study was developed. The terms in Protégé 2000 are stored as
classes. This allows for terms to be considered subclasses of other terms. In addition
to classes, Protégé 2000 also contains slots and instances. Slots are the properties and
constraints of the classes. Slots define the properties of classes and also determine the
values that can be set for each property. Instances are actual instances of the classes in
the ontology. These can be used to determine how well the ontology is representing a
domain.

Table 1 contains a selection of classes and slots of the ontology that was
developed in Protégé 2000 for the case study. In addition to the classes and slots in
Table 1, instances of these classes were also determined. These instances are based on
the information from a simplified diagram of the Birmingham International Airport
(BHM) as shown in Figure 1. For example, instances of the Runway class are 6, 24, 18,
and 36. Instances of the Taxiway class are A, B, F, G, H, M, A1, A2, A3, A4, B1, G1,
H2, and H4. The Ramp class consists of Cargo and Terminal.

3.3 Competency Questions Revisited

The usefulness of the ontology in Table 1 can be measured by how well the ontology
assists in answering the previously specified competency questions from Section 3.2.
Regarding the first question, the ontology provides the concepts of the domain
through the classes. The interdependencies between the concepts can be derived from
the constraints of the slots of the classes. For example, the HoldShort class is
dependent on either the Runway or Taxiway classes, as this command is always
followed by the location in which the pilot is to hold short.

Fig. 1. Simplified Diagram of Birmingham International Airport (BHM)

Answering the second question related to commonalities and variabilities is less
evident if observing only the ontology’s structure of classes and slots. Information
regarding the variabilities can be extracted by including the instances of classes, such

3 Protégé 2000, http://protege.stanford.edu

36

18

6

24

Cargo

Terminal

A1

A2

A3
A4

A

A

A

A

A

H

H

H2

H4

F

F

B

B

B

B

F

B1 G1

G

G

G

M

M

 Gates
B1-B3 Gates

C1-C5

as the instances from BHM. Classes Runway and Taxiway consist of many instances,
which could mean these classes have the variabilities property. Moreover, instances
that represent airports other than BHM will also contain different values for these
classes, which could also be interpreted as containing variabilities. The classes not
containing instances, such as most of the commands (i.e., Turn, HoldShort, and
Contact), could be interpreted as common concepts in all instances. These commands
are common in the ATC domain and represent standard commands that are used in all
airports. However, the specific airport elements (i.e., collection of instances of
runways and taxiways) may change depending on the airport.

3.4 Conceptual Class Diagram

The ontology process is similar to the process of object-oriented analysis [1].
However, one distinction is that ontology design is mainly concerned with the
structural properties of a class, whereas object-oriented analysis is primarily
concerned with the operational properties of a class [13]. The focus here is a
methodology that can assist in determining the domain concepts for DSL
development by reusing an approach from general software engineering.

Figure 2 presents a conceptual class diagram that was manually generated from the
structural information of the classes in the ontology from Table 1. In this case, the
development of the class diagram has been assisted by the information obtained from
the ontology. In Figure 2, similar classes are grouped together. For example, classes
Gate, Ramp, Runway, and Taxiway represent physical structures in the airport. Such
groupings identified the need for a generalized class for each group. A generalized
class was included in the diagram for Runway and Taxiway, because from the slot
properties of class HoldShort, two possible values can be used (i.e., Runway and
Taxiway). In the diagram, this is represented by abstract class Way. The classes at the
bottom of the diagram represent communication commands. These are associated
with other classes through their respective slot properties. Generalizations such as
Command and Way were not part of the original ontology and were only introduced
during the development of the class diagram. These classes in turn can be used to
update the ontology to further improve the structure of the ontology. This can be seen
as part of the process of iteratively refining the ontology to better represent the
domain.

From the class diagram in Figure 2, an initial context-free grammar (CFG) for the
DSL can be generated, as shown in Listing 2. This CFG was manually obtained from
the conceptual class diagram to CFG transformation properties defined in [12].
Relationships such as generalization and aggregation in the class diagram are
transformed into specific types of production rules in the CFG. For example, a
generalization where classes Runway and Taxiway are based on class Way is
transformed into the production rule WAY ::= RUNWAY | TAXIWAY. An aggregation
where class Gate is part of class Ramp is transformed into the production rule RAMP
::= GATES. In this case the non-terminal GATES is used, because the cardinality of this
aggregation is zero or more gates on a ramp (i.e., 0..*). An additional production rule
is generated to represent this cardinality (i.e., GATES ::= GATES GATE | ε).

-airlineID : string
-flightNumber : int

Aircraft

-aircraft : Aircraft
Follow

1

GroundControl-number : int
-orientation : Direction

Runway
-name : string

Taxiway

-name : string
Ramp

-letter : char
-number : int

Gate

-direction : Direction
-taxiway : Taxiway

Turn

-way : Way
HoldShortLeft

-atc : Air Traffic Control
Contact

Tower

Right

Direction

0..1

0..1

Way

1

1

1

-Code : string
Airport

0..*

Air Traffic Control

1..*1..*

Command

1..*

1

Fig. 2. Conceptual class diagram obtained from the ontology

Listing 2. Transformation of conceptual class diagram to context-free grammar
AIRPORT ::= WAYS RAMPS ATC
WAYS ::= WAYS WAY | WAY
WAY ::= RUNWAY | TAXIWAY
RUNWAY ::= number DIRECTION
TAXIWAY ::= name
RAMPS ::= RAMPS RAMP | RAMP
RAMP ::= name GATES

GATES ::= GATES GATE | ε
GATE ::= letter number
ATC ::= GROUNDCONTROL | TOWER
GROUNDCONTROL ::= COMMANDS
COMMANDS ::= COMMANDS COMMAND | COMMAND
COMMAND ::= CONTACT | FOLLOW | HOLDSHORT | TURN
CONTACT ::= ATC
FOLLOW ::= AIRCRAFT
HOLDSHORT ::= WAY
TURN ::= DIRECTION TAXIWAY

DIRECTION ::= LEFT | RIGHT | ε
AIRCRAFT ::= airlineID flightNumber

The transformation of the class diagram into the CFG above, albeit manual, followed
a predefined collection of transformation rules. The manual transformation of the
ontology into the class diagram is less formal, but was done by connecting the
properties of the classes in the ontology with the graphical representation of the class
diagram. In order to provide a more automated transformation between the ontology
and the class diagram, developing a transformation between an Web Ontology
Language (OWL) instance for the ontology and a textual representation of the class
diagram could be considered. Related to this, UML-based ontology development has
been proposed [6]. Specifically for this case, the transformation between an XML-
based OWL file into a class diagram represented in XMI could assist in the

automation of the ontology to class diagram step. After the transformation to a CFG,
some keywords have been added to the CFG for easier human parsing, as shown in
Listing 3.

Listing 3. Addition of keywords and production refactoring
AIRPORT ::= WAYS RAMPS ATC
WAYS ::= WAYS WAY | WAY
WAY ::= runway RUNWAY | taxiway TAXIWAY
RUNWAY ::= number DIRECTION
TAXIWAY ::= name
RAMPS ::= RAMPS RAMP | RAMP
RAMP ::= ramp name GATES

GATES ::= GATES GATE | ε
GATE ::= gate letter number
ATC ::= GROUNDCONTROL | TOWER
GROUNDCONTROL ::= COMMANDS
COMMANDS ::= COMMANDS COMMAND | COMMAND
COMMAND ::= CONTACT | FOLLOW | HOLDSHORT | TURN
CONTACT ::= contact ATC
FOLLOW ::= follow AIRCRAFT
HOLDSHORT ::= hold short WAY
TURN ::= turn DIRECTION on TAXIWAY

DIRECTION ::= left | right | ε
AIRCRAFT ::= airlineID flightNumber
TOWER ::= tower

An example of a program written in this DSL is shown in Listing 4 and is based on
the CFG of Listing 3. Even from this simple DSL for ground control, it can be seen
that some simple verification of aircraft path control can be checked. The
development of the DSL has been aided by the ontology that was initially produced,
which in turn assisted in the generation of a class diagram. This provided a means to
understand the domain in the early stages of DSL development, which provided input
to the subsequent structure of the DSL, as seen in the grammar in Listing 2.

Listing 4. An example program
// description of BHM airport
runway 6 runway 24 runway 18 runway 36
taxiway A taxiway A1 taxiway A2 taxiway A3 taxiway A4 taxiway B taxiway B1
taxiway F taxiway G taxiway G1 taxiway H taxiway H2 taxiway H4
ramp Cargo
ramp Terminal gate B1 gate B2 gate B3 gate C1 gate C2 gate C3 gate C4 gate C5

// commands from Ground Control
turn right on A
turn left on M
hold short runway 18
contact tower

An object diagram of the example program in Listing 4 is illustrated in Figure 3.
Airport-related structures such as gates, ramps, runways, and taxiways are represented
by multiple objects that will differ among various airports. However, the types of
commands issued by the ground control remain the same. The specific attributes of
the command objects are based on the objects of the structures of a particular airport,
e.g., taxiway A and M, and runway 18. As described in Section 3.3, evaluating the
instances of the classes provides information regarding the elements of the domain
that are common (or fixed) and those that are variable.

number : int = 6
orientation : Direction

runway1 : Runway

Code : string = BHM
airport : Airport

number : int = 24
orientation : Direction

runway2 : Runway

number : int = 18
orientation : Direction

runway3 : Runway

number : int = 36
orientation : Direction

runway4 : Runway

name : string = Cargo
ramp1 : Ramp

name : string = Terminal
ramp2 : Ramp

letter : char = B
number : int = 1

gate1 : Gate

letter : char = B
number : int = 2

gate2 : Gate

letter : char = B
number : int = 3

gate3 : Gate

letter : char = C
number : int = 1

gate4 : Gate

letter : char = C
number : int = 5

gate8 : Gate

name : string = A
taxiway1 : Taxiway

name : string = A1
taxiway2 : Taxiway

name : string = M
taxiway13 : Taxiway

name : string = A2
taxiway3 : Taxiway

direction : Direction = right
taxiway : Taxiway = A

command1 : Turn
direction : Direction = left
taxiway : Taxiway = M

command2 : Turn
way : Way = 18
command3 : HoldShort

atc : Air Traffic Control = tower
command4 : Contact

groundControl : GroundControl tower : Tower

Fig. 3. Object diagram from example program

4 Ontologies in DSL Development

Section 3 summarized the development of a preliminary ontology using the standard
development process as seen in literature using a well-known tool called Protégé
2000. The usefulness of the ontology was measured by answering several competency
questions that were selected to match the goals of domain analysis. Domain concepts
and their interdependencies were determined. In addition, commonalities and
variabilities as they relate to the DSL can be determined by observing the instances of
the classes in the ontology. It should be noted that the ontology and class diagram
went through several iterations before reaching the state described in Section 3.
However, further refinements may help to provide more satisfactory answers to the
competency questions. The ontology was then used to manually generate a conceptual
class diagram, which in turn produced an initial context-free grammar for the
proposed DSL.

The case study has shown the potential usefulness of ontology in the development
of a DSL specifically during the early stages of development. An ontology can
provide a well-defined and structured process to determine the concepts of a domain
and the commonalities and variabilities for a DSL, which can result in the generation
of a class diagram and subsequently a CFG from the information. Two further
observations highlight the benefits of an ontology-based approach. First, if an
ontology is already available for a domain, then this existing ontology can be used to

initiate the development of a DSL without the need to start from scratch. This was not
the case for the air traffic communication domain described in Section 3, but
ontologies for other domains could already exist and be utilized in the DSL
development for those domains. Second, the entire process outlined in Section 3 could
be used as an alternative to a more formal domain analysis technique such as FODA.
In a separate direction, the ontology alone can be combined with formal domain
analysis techniques (e.g., proposed by Mauw et al. in [10]) and be used as a supplier
of a well-defined input of domain concepts and relationships for further analysis.

5 Related Work

De Almeida Falbo et al. describe the use of ontology in domain engineering that has
the purpose of developing software artifacts for reuse [5]. A more recent publication
demonstrates the use of ontology in engineering design requirements capture [4].
Both cases propose methodologies of utilizing ontology in terms of providing the
knowledge about a specific domain, albeit more in a general case of engineering.
However, the utilization of ontology in domain analysis in these works translates well
to the similar effort in DSL development. Guizzardi et al. associate ontology with the
development of Domain-Specific Visual Languages (DSVL) [7]. The ontology is used
to assist in developing a representative language for a specific domain that is correct
and appropriate. Similarly, our initial investigation described in this paper utilizes
ontology as part of the main goal of developing a representative language for a
domain such as air traffic communication. However, in addition to this, the common
and variable elements of the domain are also considered through the ontology in order
to determine the structure of the domain-specific textual language (i.e., fixed and
variable language constructs).

Gašević et al. describe efforts to associate the two technical spaces of Model-
Driven Architecture (MDA) and ontology, which include the utilization of MDA-
based UML in ontology development [6]. We follow a similar approach where a
connection is made between the ontology in Table 1 and the UML class diagram in
Figure 1. However, in addition to this association, we perform manual
transformations on the class diagram to obtain a context-free grammar for the DSL.

6 Conclusion and Future Work

An initial investigation of the usefulness of ontology in domain analysis in DSL
development was described in this paper. A case study demonstrated the insertion of
ontology development in the DSL development process, where a class diagram was
obtained from the ontology and subsequently a CFG was produced. The ontology
assisted in answering questions related to the domain, such as the main concepts and
their interdepencies, and the common and variable parts related to the DSL. The
ontology also provided a structured input to the subsequent stages of DSL
development. Continued exploration of ontology-driven domain analysis may provide
further proof of effectiveness in the analysis of domains for DSL development.

The class diagram in Figure 2 that was generated from the ontology can also serve
as the basis for creating a metamodel. Slight adaptations of this diagram could
represent the metamodel for a tool like the Generic Modeling Environment (GME)
[9], which provides a domain-specific modeling language that has a concrete syntax
that resembles concepts from the domain. Thus, the results of the domain analysis and
the observed ontology can inform technologies of both grammarware and modelware.
This direction will be explored as future work. In addition, the transformations that
were performed were done manually based on predefined transformation properties.
A possibility for a more automated step is the transformation of the Web Ontology
Language (OWL) representation into a Backus-Naur Form (BNF) representation for
the DSL. Such a transformation may map similar elements and perform some
alterations between the representations. This direction will also be considered in
future work.

Acknowledgments. This project is supported in part by NSF grant CPA-0702764.

References

[1] Booch, G.: Object-Oriented Development. IEEE Transactions on Software Engineering
12, 211--221 (1986)

[2] Chandrasekaran, B., Josephson, J., Benjamins, V.: What Are Ontologies, and Why Do We
Need Them? IEEE Intelligent Systems 14, 20--26 (1999)

[3] Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Boston (2000)

[4] Darlington, M., Culley, S.: Investigating Ontology Development for Engineering Design
Support. Advanced Engineering Informatics 22, 112--134 (2008)

[5] De Almeida Falbo, R., Guizzardi, G., Duarte, K.: An Ontological Approach to Domain
Engineering. In: International Conference on Software Engineering and Knowledge
Engineering (SEKE), pp. 351--358, Ischia, Italy (2002)

[6] Gašević, D., Djurić, D., Devedžić, V.: Model Driven Architecture and Ontology
Development. Springer, Berlin (2006)

[7] Guizzardi, G., Ferreira Pires, L., van Sinderen, M.: Ontology-Based Evaluation and
Design of Domain-Specific Visual Modeling Languages. In: International Conference on
Information Systems Development, Karlstad, Sweden (2005)

[8] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University (1990)

[9] Lédeczi, Á., Bakay, Á., Maróti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.:
Composing Domain-Specific Design Environments. IEEE Computer 34, 44--51 (2001)

[10] Mauw, S., Wiersma, W., Willemse, T.: Language-Driven System Design. International
Journal of Software Engineering and Knowledge Engineering 14, 625--664 (2004)

[11] Mernik, M., Heering, J., Sloane, A.: When and How to Develop Domain-Specific
Languages. ACM Computing Surveys 37, 316--344 (2005)

[12] Mernik, M., Črepinšek, M., Kosar, T., Rebernak, D., Žumer, V.: Grammar-Based
Systems: Definition and Examples. Informatica 28, 245--255 (2004)

[13] Noy, N., McGuinness, D.: Ontology Development 101: A Guide to Creating Your First
Ontology. http://www-ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-
mcguinness.pdf.

[14] Weiss, D., Lay, C.: Software Product Line Engineering. Addison-Wesley, Boston (1999)

