451 research outputs found

    Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables

    Full text link
    We show that Branching-time temporal logics CTL and CTL*, as well as Alternating-time temporal logics ATL and ATL*, are as semantically expressive in the language with a single propositional variable as they are in the full language, i.e., with an unlimited supply of propositional variables. It follows that satisfiability for CTL, as well as for ATL, with a single variable is EXPTIME-complete, while satisfiability for CTL*, as well as for ATL*, with a single variable is 2EXPTIME-complete,--i.e., for these logics, the satisfiability for formulas with only one variable is as hard as satisfiability for arbitrary formulas.Comment: Prefinal version of the published pape

    On algorithmic expressivity of finite-variable fragments of intuitionistic modal logics

    Full text link
    We obtain poly-time embeddings of the intuitionistic modal logics FS and MIPC into their positive one-variable fragments.Comment: Semantical and Computational Aspects of Non-Classical Logics (Moscow + Online, June 13-17, 2023), Steklov International Mathematical Center, Moscow, 202

    Relation-changing modal operators

    Get PDF
    We study dynamic modal operators that can change the accessibility relation of a model during the evaluation of a formula. In particular, we extend the basic modal language with modalities that are able to delete, add or swap an edge between pairs of elements of the domain. We define a generic framework to characterize this kind of operations. First, we investigate relation-changing modal logics as fragments of classical logics. Then, we use the new framework to get a suitable notion of bisimulation for the logics introduced, and we investigate their expressive power. Finally, we show that the complexity of the model checking problem for the particular operators introduced is PSpace-complete, and we study two subproblems of model checking: formula complexity and program complexity.Fil: Areces, Carlos Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fervari, Raul Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hoffmann, Guillaume Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Modal mu-calculi

    Get PDF

    Refinement Modal Logic

    Full text link
    In this paper we present {\em refinement modal logic}. A refinement is like a bisimulation, except that from the three relational requirements only `atoms' and `back' need to be satisfied. Our logic contains a new operator 'all' in addition to the standard modalities 'box' for each agent. The operator 'all' acts as a quantifier over the set of all refinements of a given model. As a variation on a bisimulation quantifier, this refinement operator or refinement quantifier 'all' can be seen as quantifying over a variable not occurring in the formula bound by it. The logic combines the simplicity of multi-agent modal logic with some powers of monadic second-order quantification. We present a sound and complete axiomatization of multi-agent refinement modal logic. We also present an extension of the logic to the modal mu-calculus, and an axiomatization for the single-agent version of this logic. Examples and applications are also discussed: to software verification and design (the set of agents can also be seen as a set of actions), and to dynamic epistemic logic. We further give detailed results on the complexity of satisfiability, and on succinctness

    Propositional dynamic logic for searching games with errors

    Get PDF
    We investigate some finitely-valued generalizations of propositional dynamic logic with tests. We start by introducing the (n+1)-valued Kripke models and a corresponding language based on a modal extension of {\L}ukasiewicz many-valued logic. We illustrate the definitions by providing a framework for an analysis of the R\'enyi - Ulam searching game with errors. Our main result is the axiomatization of the theory of the (n+1)-valued Kripke models. This result is obtained through filtration of the canonical model of the smallest (n+1)-valued propositional dynamic logic

    Arrow update synthesis

    Get PDF
    In this contribution we present arbitrary arrow update model logic (AAUML). This is a dynamic epistemic logic or update logic. In update logics, static/basic modalities are interpreted on a given relational model whereas dynamic/update modalities induce transformations (updates) of relational models. In AAUML the update modalities formalize the execution of arrow update models, and there is also a modality for quantification over arrow update models. Arrow update models are an alternative to the well-known action models. We provide an axiomatization of AAUML. The axiomatization is a rewrite system allowing to eliminate arrow update modalities from any given formula, while preserving truth. Thus, AAUML is decidable and equally expressive as the base multi-agent modal logic. Our main result is to establish arrow update synthesis: if there is an arrow update model after which φ, we can construct (synthesize) that model from φ. We also point out some pregnant differences in update expressivity between arrow update logics, action model logics, and refinement modal logic
    corecore