

 University of Groningen

Arrow update synthesis
Ditmarsch ,van, Hans; Hoek, Wiebe van der; Kooi, Barteld; Kuijer, Bouke

Published in:
Information and Computation

DOI:
10.1016/j.ic.2020.104544

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Ditmarsch ,van, H., Hoek, W. V. D., Kooi, B., & Kuijer, B. (2020). Arrow update synthesis. Information and
Computation, 275, [104544]. https://doi.org/10.1016/j.ic.2020.104544

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-11-2022

https://doi.org/10.1016/j.ic.2020.104544
https://research.rug.nl/en/publications/c7158edf-d8d6-44ea-93c7-76ed30758e14
https://doi.org/10.1016/j.ic.2020.104544

Information and Computation 275 (2020) 104544
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Arrow update synthesis

Hans van Ditmarsch a,∗, Wiebe van der Hoek b, Barteld Kooi c, Louwe B. Kuijer b

a Université de Lorraine, CNRS, LORIA, F-54000 Nancy, France
b Computer Science, University of Liverpool, United Kingdom
c Department of Philosophy, University of Groningen, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 February 2018
Received in revised form 24 October 2019
Accepted 28 February 2020
Available online 13 March 2020

Keywords:
Modal logic
Synthesis
Dynamic epistemic logic
Expressivity

In this contribution we present arbitrary arrow update model logic (AAUML). This is
a dynamic epistemic logic or update logic. In update logics, static/basic modalities are
interpreted on a given relational model whereas dynamic/update modalities induce
transformations (updates) of relational models. In AAUML the update modalities formalize
the execution of arrow update models, and there is also a modality for quantification over
arrow update models. Arrow update models are an alternative to the well-known action
models. We provide an axiomatization of AAUML. The axiomatization is a rewrite system
allowing to eliminate arrow update modalities from any given formula, while preserving
truth. Thus, AAUML is decidable and equally expressive as the base multi-agent modal
logic. Our main result is to establish arrow update synthesis: if there is an arrow update
model after which ϕ, we can construct (synthesize) that model from ϕ. We also point out
some pregnant differences in update expressivity between arrow update logics, action model
logics, and refinement modal logic.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Modal logic. In modal logic we formalize that propositions may not be merely true or false, but that they are necessarily or
possibly true or false, or that they may be desirable, or forbidden, or true later, or never, or that they are known. A common
setting is for such modal propositions to be interpreted in relational models, also known as Kripke models. They consist of a
domain of abstract objects, called states or worlds; then, given a set of labels, often representing agents, for each such agent
a binary relation between those states; and, finally, a valuation of atomic propositions on the domain, typically seen as a
unary relation, i.e., a property satisfied on a subset of the domain. The truth of a modal proposition is relative to a state in
the relational model, called the actual state or the point of the model. The unit of interpretation is thus a pointed model: a
pair consisting of a relational model and an actual state.

If a pair (s, s′) is in the relation for a this can mean that after executing action a in state s the resulting state is s′ . But
it can also mean that agent a considers state s′ desirable in case she is in state s. The interpretation that we focus on, is
that of information. That is, it is consistent with a’s information in state s that the state would be s′ . In state s it is true that
agent a knows ϕ (or believes ϕ , depending on the properties of the relation), notation �aϕ , if the formula ϕ is true in all

* Corresponding author.
E-mail addresses: hans.van-ditmarsch@loria.fr (H. van Ditmarsch), Wiebe.Van-Der-Hoek@liverpool.ac.uk (W. van der Hoek), b.p.kooi@rug.nl (B. Kooi),

Louwe.Kuijer@liverpool.ac.uk (L.B. Kuijer).
https://doi.org/10.1016/j.ic.2020.104544
0890-5401/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2020.104544
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2020.104544&domain=pdf
mailto:hans.van-ditmarsch@loria.fr
mailto:Wiebe.Van-Der-Hoek@liverpool.ac.uk
mailto:b.p.kooi@rug.nl
mailto:Louwe.Kuijer@liverpool.ac.uk
https://doi.org/10.1016/j.ic.2020.104544

2 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
states s′ accessible from s, i.e., for all s′ with (s, s′) in the relation for a. The modal logics using that kind of interpretation
of modalities are called epistemic logics [1,2].

As an example, consider two agents a, b (commonly known to be) uncertain about the truth of a propositional variable
p. The uncertainty of a and b can be pictured as follows. We ‘name’ the states with the value of the variable p. The actual
state is framed. Pairs in the accessibility relation are visualized as labelled arrows. In the actual state: p is true, agent a
does not know p because she considers a state possible wherein p is false (formally ¬�a p), agent a also does not know ¬p
because she considers a state possible wherein p is true (formally ¬�a¬p, also written as ♦a p), and similarly for agent b.
Agent a also knows that she is ignorant about p, as this is true in both states that she considers possible. The accessibility
relations for a and b are both equivalence relations. This is always the case if the modalities represent knowledge.

¬p pab

ab
ab

p

Update logic. In this work we focus on modal logics that are update logics. Apart from the modalities that are interpreted
in a relational model, they have other modalities that are interpreted by transforming a relational model (and by then
interpreting the formulas bound by that modality in the transformed model). If the modal logic is an epistemic logic, update
logics are called dynamic epistemic logics. To distinguish them we call the former static and we call the latter dynamic.

The updates X that we consider can be defined as transformers of relational models. This transformation induces a
binary update relation between pointed models. To an update relation corresponds an update modality (often also called
update) that is interpreted with this relation, so we can see those as [X] or 〈X〉, where [X]ϕ means that ϕ is true in all
pointed models transformed according to the X relation, and 〈X〉ϕ that there is a pair of pointed models in the relation.
Given a relational model we can change its domain of states, the relations between the states, or the valuations of atomic
propositions, or two or more of those at the same time. There are therefore many options for change. Change the valuation
of a model is also known as factual change [3,4]. Update involving factual change is an interesting topic, but it is outside the
scope of the current paper.

Public announcement logic. The basic update for states is the model restriction, and the basic update operation interpreted
as a model restriction is a public announcement. The logic with epistemic modalities and public announcements is public
announcement logic (PAL) [5,6]. A public announcement of ϕ restricts the domain to all states where the announced formula
ϕ is true, thereby decreasing the uncertainty of the agents. As a result of the domain restriction, the relations and the
valuation are adjusted in the obvious way. A condition for the transformation is that the actual state is in the restriction.
This means that the announcement formula is true when announced.

As an example, after the public announcement of p, both a and b know that p:

¬p pab

ab
ab

⇒ p

ab

Arrow update logic. The basic update for relations is the relational restriction, i.e., a restriction of the arrows: a pair in the
relation is called an ‘arrow’. This leaves all states intact, although some may have become unreachable. In arrow update
logic (AUL), proposed in [7] we specify which arrows we wish to preserve, by way of specifying what formulas should be
satisfied at the source (state) of the arrow and the target (state) of the arrow. This determines the model transformation.
Such a specification is called an arrow update. The logic AUL contains modalities for arrow updates.

Given initial uncertainty about p with both agents, a typical arrow update is the action wherein Anne (a) opens an
envelope containing the truth about p while Bill (b) observes Anne reading the contents of the letter. We preserve all
arrows satisfying one of p →a p, ¬p →a ¬p, and � →b �. Therefore, only two arrows disappear, ¬p →a p and p →a ¬p.

¬p pab

ab
ab

⇒ ¬p pb

ab
ab

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 3
The boundary between state elimination and arrow elimination is subtle. If p is true, the following arrow update with
� →a p, � →b p is the same update as a public announcement of p. This is because there is no arrow from the p state to
the ¬p state after the update. Therefore, if p is true, the ¬p state does not matter. In another formalism this arrow update
is known as the arrow elimination semantics of public announcement [8,9].

¬p pab

ab
ab

⇒ ¬p pb

ab

Generalizations. In PAL and AUL the complexity (the number of states) of the relational model cannot increase. By general-
izing the mechanism underlying state elimination and arrow elimination we can achieve that, and thus express more model
transformations. This increases their update expressivity. From the perspective of information change, this adds uncertainty
about what is happening. We obtain action models [6] as a generalization of public announcements, and arrow update models
[10] as a generalization of arrow updates.

Action model logic. Action model logic (AML) was proposed by Baltag, Moss and Solecki in [6]. An action model is like a
relational model but the elements of the domain are called actions instead of states, and instead of a valuation a precondition
is assigned to each domain element. The transformed relational model is then the modal product of the relational model
and the action model, restricted to (state, action) pairs where the action can be executed in that state. We refer to Section 6
for a formal introduction.

An example is the action as above wherein Anne reads the contents of a letter containing p or ¬p, but now with
the increasing uncertainty that Bill is uncertain whether Anne has read the letter (and that they are both aware of these
circumstances). The action model is not depicted (details are in Section 6). The model transformation is as follows. In the
resulting framed state, a knows that p, but b considers it possible that a is uncertain about p, i.e., �a p ∧♦b¬(�a p ∨�a¬p).
In the figure we assume transitivity of the relation for b.

¬p ¬p pab

ab
ab

⇒ ¬p p

¬p p

ab

b

b b

ab ab

ab ab

Similar logics (or semantics) for action composition are found in [11,12,4,13,14]. Action model logic is often referred to
as (the) dynamic epistemic logic. As said, we use the latter more generally, namely to denote any update logic with an
epistemic interpretation.

Arrow update model logic. Generalized arrow update logic [10] is a (indeed) generalization of arrow update logic where the
dynamic modalities for information change formalize execution of (pointed) arrow update models, structures akin to the
action models of action model logic. In this contribution, instead of generalized arrow update logic we call it arrow update
model logic (AUML). The arrow updates of [7] correspond to singleton arrow update models. The next Section 2 formally
introduces them. The above is also an example of arrow update model execution — Section 6 explains how to get action
models from arrow update models and vice versa, and to what extent they define the same update.

Quantification over information change. Another extension of update logics is with quantification over updates. Arbitrary
public announcement logic (APAL) adds quantification over public announcements to PAL [15]. Arbitrary arrow update logic
(AAUL) [16] extends arrow update logic with quantifiers over information change induced by arrow updates: it contains
dynamic modalities formalizing that there is an arrow update after which ϕ . Arbitrary action model logic (AAML) by Hales [17]
add quantifiers over action models to AML. In arbitrary arrow update model logic (AAUML), the topic of this paper, we add
quantifiers over arrow update models to the logical language. It is like Hales’ arbitrary action model logic. Refinement modal
logic (RML) [18] has a modality representing quantification over updates, but does not have (deterministic/concrete) update
modalities in the object language to quantify over. We show that the AAML and AAUML quantifier behave much (but not
quite) like the refinement quantifier in RML. Section 7 is devoted to it.

Fig. 1 gives an overview of the different logics discussed in the paper, in their relation to AAUML. The four logics in the
left square are based on state manipulation, the four logics in the right square are based on arrow manipulation. Entirely
on the left we find the base modal logic ML and the logic RML, that is also arrow manipulating.

4 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
ML

RML

PAL

APAL

AML

AAML

AUL

AAUL

AUML

AAUML

Fig. 1. An overview of update logics discussed in the paper. Horizontal arrows informally represent more complex updates. Vertical arrows informally
represent quantification over updates. The arrows can be interpreted as syntactic extensions (modulo the names of quantifiers) or as semantic generalizations.
Assume transitive closure.

All these logics are equally expressive as ML and are decidable, which can be shown by truth-preserving rewriting
procedures to eliminate updates (for AAUML this is one of the results of the paper), except for APAL and AAUL, which
are more expressive and undecidable [15,19,16,20]. However, the logics greatly differ in update expressivity, as the typical
examples above already demonstrated. See also Sections 5–7. Finally, it should be mentioned that all the logics are invariant
under bisimulation. This is because the parameters of the model transforming dynamic modalities and quantifiers are (model
restrictions induced by) formulas.

There are many other updates and update logics that we do not consider in this paper. In particular we do not consider
updates X that can only be defined as pointed model transformers (that is, they cannot be globally defined on the entire
model; they are defined locally: how they transform the model depends on the actual state). If such were the definition
of an update, even the interpretation of a static modality can be seen as an update, namely transforming the model with
point s into the model with point s′ , where the point has shifted given a pair (s, s′) in the relation for an agent. Such local
update logics are often more expressive than modal logic, are often undecidable, are typically not invariant under (standard)
bisimulation, and may lack axiomatizations. Examples are [21–23]. In [23] not only relational restriction is considered but
also relational expansion (‘bridge’) and relational change that is neither restriction nor expansion, such as reversing the
direction of arrows (‘swap’). It should finally be noted that the distinction between static modalities, interpreted in a model,
and dynamic modalities, interpreted as updates, is not rigid: unifying perspectives include [4].

Synthesis. For these update logics we can ask whether there is an update that achieves a certain goal. For the logics
without quantification this question cannot be asked in the object language but only meta-logically. That is, we can ask
whether there is an update X such that 〈X〉ϕ is true. For the update logics with quantification this question can be asked
in the object language. Let 〈?〉 be (the existential version of) that quantifier. Then 〈?〉ϕ asks whether there is an update X
that makes ϕ true.

Only knowing whether there is an update that achieves a goal is not very satisfying; we would also like to know which
update, if any, achieves the goal. So we would like to know not only whether the goal is achievable but also how it can be
achieved. The process of constructing this update that achieves the goal is known as synthesis.

Formally, the synthesis problem for a given type of update takes as input a formula ϕ , and gives as output an update X
of that type such that, whenever ϕ can be achieved, then X achieves ϕ . In symbols, this is the validity of 〈?〉ϕ → 〈X〉ϕ .

This is a rather strong goal. We do not consider it sufficient to find, for every pointed model (M, s), an update X(M,s)
such that (M, s) satisfies 〈?〉ϕ → 〈X(M,s)〉ϕ . We want one single update Xϕ that achieves ϕ in every model where ϕ is
achievable. Because this goal is so strong, there is, in general, no guarantee that synthesis is possible.

For PAL this strong kind of synthesis is impossible. If (M1, s1) satisfies 〈ψ1〉ϕ and (M2, s2) satisfies 〈ψ2〉ϕ , so if ϕ can
be achieved in two different situations using two different public announcements, then there is typically no unifying public
announcement ψ such that (M1, s2) satisfies 〈ψ〉ϕ and (M2, s2) satisfies 〈ψ〉ϕ .1

For AUL this strong kind of synthesis is also not possible. But, somewhat surprisingly, in [17], Hales showed that this
synthesis is possible for AML. This result was surprising for the following reason. Hales obtained his synthesis result with

1 For example, consider the four-state model below; p means that p is false in that state, etc. Both states where p, q, r are all true satisfy that 〈?〉(�a p ∧
¬�b p). In the top-left pqr-state this is true because 〈q〉(�a p ∧¬�b p) is true, whereas in the bottom-right pqr-state this is true because 〈r〉(�a p ∧¬�b p)

is true. However, there is no announcement ϕ such that 〈ϕ〉(�a p ∧ ¬�b p) is truth in both pqr-states. Assuming that there were such an announcement
easily leads to a contradiction.

pqr pqr

pqr pqr

a

a

b b

ab ab

ab ab

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 5
refinement modalities as quantifiers. It was already known that finite action model execution results in a refinement of the
current relational model, but also that the other direction does not hold: there are refinements (i.e., updates) that can only
be achieved by executing an infinite action model [24]. However, as the synthesis is with respect to making a given formula
ϕ true, a finite syntactic object, synthesis for AML was after all possible.

In this contribution we show that synthesis is also possible for AUML. That is, for a given goal formula ϕ , we can
construct an arrow update model X such that

For all (M, s): there is an arrow update model Y such that (M, s) satisfies 〈Y 〉ϕ , if and only if (M, s) satisfies 〈X〉ϕ .

In AAUML we also have a quantifier over arrow update models. Therefore, in that logic the synthesis translates to the
above-mentioned validity 〈?〉ϕ → 〈X〉ϕ . In AUML / AAUML we synthesize a (single-)pointed arrow update model, whereas
for AAUML Hales synthesizes a multi-pointed action model, and it can be easily shown that this cannot be single-pointed.

Results in the paper. In this contribution we present arbitrary arrow update model logic (AAUML), that further extends arrow
update model logic AUML, namely with dynamic modalities formalizing that there is an arrow update model after which ϕ . For
this logic AAUML we obtain various results. We provide an axiomatization of AAUML. The axiomatization is a rewrite system
allowing to eliminate dynamic modalities from any given formula, while preserving truth. Thus, unlike AAUL, AAUML is
decidable, and equally expressive as multi-agent modal logic. We establish arrow update model synthesis: if there is an arrow
update model after which ϕ , we can construct (synthesize) that model from ϕ . We define a notion of update expressivity and
we determine the relative update expressivity of AAUML and other arrow update logics and action model logics, and RML.

Overview of content. Section 2 presents the syntax and semantics of arbitrary arrow update model logic, AAUML, and ele-
mentary structural notions. In Section 3 we describe the procedure for synthesizing arrow update models. In that section
we also introduce a number of validities that are useful when introducing an axiomatization for AAUML, which we do in the
subsequent Section 4. Section 5 introduces the notion of update expressivity. Section 6 compares AAUML and AAML, and in
particular their update expressivity. This comparison also includes examples of arrow update models that have exponentially
larger corresponding action models. Section 7 compares AAUML to RML.

2. Arbitrary arrow update model logic

Throughout this contribution, let A be a finite set of agents and let P be a disjoint countably infinite set of propositional
variables (or atoms).

2.1. Structures

A relational model is a triple M = (S, R, V) with S a non-empty domain (set) of states (also denoted D(M)), R a function
assigning to each agent a ∈ A an accessibility relation Ra ⊆ S × S , and V : P → S a valuation function assigning to each
propositional variable p ∈ P the subset V (p) ⊆ S where the variable is true. For s ∈ S , the pair (M, s) is called a pointed
relational model, and for T ⊆ S , the pair (M, T) is called a multi-pointed relational model.

For any relation R on a domain X , instead of (x, y) ∈ R (where x, y ∈ X) we may write R(x, y) or xR y, and R(x) or Rx
for the set {y ∈ X | R(x, y)}. If R(x, y) we also say that R links x to y, or that there is an arrow from x to y. Relation R is:
reflexive iff for all x ∈ X , R(x, x); serial iff for all x ∈ X there is y ∈ X such that R(x, y); transitive iff for all x, y, z ∈ X , if
R(x, y) and R(y, z) then R(x, z); Euclidean iff for all x, y, z ∈ X , if R(x, y) and R(x, z) then R(y, z); an equivalence relation
iff it is reflexive, transitive, and Euclidean. Finally, for any Y , Z ⊆ X we let R(Y , Z) mean that for all y ∈ Y there is a z ∈ Z
such that R(y, z) and for all z ∈ Z there is a y ∈ Y such that R(y, z); this is known as relational lifting.

The class of relational models is known as K. The class of relational models where all accessibility relations are equiva-
lence relations is known as S5, and the class of relational models where all accessibility relations are serial, transitive, and
Euclidean is known as KD45.

Let two relational models M = (S, R, V) and M ′ = (S ′, R ′, V ′) be given. A non-empty relation R ⊆ S × S ′ is a bisimulation
if for all (s, s′) ∈ R and a ∈ A:

atoms s ∈ V (p) iff s′ ∈ V ′(p) for all p ∈ P ;
forth for all t ∈ S , if Ra(s, t), then there is a t′ ∈ S ′ such that R ′

a(s′, t′) and (t, t′) ∈ R;
back for all t′ ∈ S ′ , if R ′

a(s′, t′), then there is a t ∈ S such that Ra(s, t) and (t, t′) ∈R.

We write M ↔ M ′ (M and M ′ are bisimilar) iff there is a bisimulation between M and M ′ , and we write (M, s)↔ (M ′, s′)
((M, s) and (M ′, s′) are bisimilar) iff there is a bisimulation between M and M ′ linking s and s′ . Similarly, we write
(M, T)↔ (M ′, T ′) iff there is a bisimulation between M and M ′ linking every state in T to a state in T ′ and linking every
state in T ′ to a state in T .

6 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
Using the above-defined notion of relational lifting, if M1 and M2 are sets of pointed models we say that M1 and M2
are bisimilar, denoted M1 ↔M2, if for every (M1, s1) ∈ M1 there is an (M2, s2) ∈ M2 such that (M1, s1)↔ (M2, s2) and
for every (M2, s2) ∈M2 there is an (M1, s1) ∈M1 such that (M1, s2)↔ (M2, s2).2

We will now define arrow update models. We can think of them as follows. If you remove the valuation from a relational
model you get a relational frame. We now decorate each arrow (pair in the accessibility relation for an agent) with two
formulas in some logical language L: one for a condition that should hold in the source (state) of the arrow and the other
that should hold in the target (state) of the arrow. The result is called an arrow update model.

Definition 1 (Arrow update model). Given a logical language L, an arrow update model U is a pair (O , R R) where O is a non-
empty domain (set) of outcomes (also denoted D(U)) and where R R is an arrow relation R R : A →P((O ×L) × (O ×L)).

For each agent a, the arrow relation links (outcome, formula) pairs to each other. We write R Ra for R R(a), and we write
(o, ϕ) →a (o′, ϕ′) for ((o, ϕ), (o′, ϕ′)) ∈ R Ra , or even, if the outcomes are unambiguous, ϕ →a ϕ′ . Formula ϕ is the source
condition and formula ϕ′ is the target condition of the a-labelled arrow from source o to target o′ . A pointed arrow update
model, or arrow update, is a pair (U , o) where o ∈ O . Similarly, we define the multi-pointed arrow update model (U , Q), where
Q ⊆ O , known as well as arrow update. There is no confusion with the arrow updates of AUL [7], as those correspond to
singleton pointed arrow update models.

Arrow update models are rather similar to the action models by Baltag et al. [6]. They are compared in Section 6.

2.2. Syntax

We proceed with the language and semantics of arbitrary arrow update model logic (AAUML).

Definition 2 (Syntax). The language L of AAUML consisting of formulas ϕ is inductively defined as

L � ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) |�aϕ | [U ,o]ϕ | [↑]ϕ
where p ∈ P , a ∈ A, and where U = (O , R R) with o ∈ O is an arrow update model with O finite and with R Ra finite for all
a ∈ A, and with source and target conditions that are formulas ϕ .

The inductive nature of the definition may be unclear from the construct [U , o]ϕ . We should think of [U , o]ϕ as an n-ary
operator where not only the formula bound by [U , o] is a formula but also all the source and target conditions in U .3 We
read [U , o]ϕ as ‘after executing arrow update (U , o), ϕ (holds), and [↑]ϕ as ‘after an arbitrary arrow update, ϕ (holds)’.
Other propositional connectives and dual diamond versions of modalities can be defined as usual by abbreviation: ♦aϕ :=
¬�a¬ϕ , 〈U , o〉ϕ := ¬[U , o]¬ϕ , and 〈↑〉ϕ := ¬[↑]¬ϕ . Expression ϕ[ψ/p] stands for uniform substitution of all occurrences
of p in ϕ for ψ .

A formula is a modal formula if it has shape �aϕ , ♦aϕ , [↑]ϕ , 〈↑〉ϕ , [U , o]ϕ , or 〈U , o〉ϕ . The modal depth of a formula
ϕ ∈ L is defined as: d(p) = 0, d(¬ϕ) = d(ϕ), d(ϕ ∧ ψ) = max(d(ϕ), d(ψ)), d(�aϕ) = d(〈↑〉ϕ) = d(ϕ) + 1, and d([U , o]ϕ =
d(U) + d(ϕ) + 1, where d(U) is the maximum modal depth of the source and target conditions occurring in U .

The propositional sublanguage is called Lpl (the propositional formulas). Adding the basic modal construct �aϕ to Lpl
yields Lml (the language of basic modal logic, the basic modal formulas). Additionally adding the construct [U , o]ϕ yields
Lauml (the language of arrow update model logic). In the language L of AAUML, (modalities for) multi-pointed arrow update
models are defined by abbreviation as [U , Q]ϕ := ∧

o∈Q [U , o]ϕ . From here on we also consider such modalities as logical
connectives, such that [U , Q]ϕ is a formula in the logical language.

When doing synthesis, we will put formulas in disjunctive negation normal form. This fragment DNNF of L, that is inspired
by the disjunctive normal form of propositional logic and the negation normal form of modal logic, is defined as

DNNF � χ ::= ψ | (χ ∨ χ)

ψ ::= ϕ | (ψ ∧ ψ)

ϕ ::= p | ¬p |�aχ | ♦aχ | [U ,o]χ | 〈U ,o〉χ | [↑]χ | 〈↑〉χ
where the source and target conditions in (U , o) are also formulas χ .

This means that a ϕ ∈ L is in disjunctive negation normal form if every subformula of ϕ is a disjunction of conjunctions
of formulas that are an atom, or the negation of an atom, or that have one of �a, ♦a, [U , o], 〈U , o〉, [↑] or 〈↑〉 as main

2 For the purpose of bisimilarity, we could have treated a multi-pointed model (M, T) as a set of pointed models {(M, t) | t ∈ T }, so that
(M1, T1)↔ (M2, T2) if and only if for every t1 ∈ T1 there is a t2 ∈ T2 such that (M1, t1)↔ (M2, t2), and vice versa. As a union of bisimulations is again a
bisimulation, that would have defined the same notion as above.

3 The BNF informatics-style presentation obscures the inductive nature of the language definition, because the source and target conditions of (U , o) are
implicit. The mathematics-style presentation of that clause may be clearer:

Let ϕ ∈ L, let U = (O , R R) be an arrow update with source and target conditions ϕ1, . . . , ϕn ∈ L and such that O and R Ra for all a ∈ A are finite, and
let o ∈ O . Then [U , o]ϕ ∈ L.

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 7
connective. In particular, this means that formulas have to be in DNNF at every modal depth. So, for example, p ∨ �(q ∨
(♦p ∧ ¬q)) is in DNNF, while p ∨�(q ∨ ¬(¬♦p ∨ q)) is not.

2.3. Semantics

We continue with the semantics. The semantics are defined by induction on ϕ ∈ L, and simultaneously with the execu-
tion of arrow update models.

Definition 3 (Semantics). Let a relational model M = (S, R, V), a state s ∈ S , an arrow update model U = (O , R R), and a
formula ϕ ∈L be given. The truth (or satisfaction) of ϕ in (M, s) is defined by induction on ϕ .

M, s |= p iff s ∈ V (p)

M, s |= ¬ϕ iff M, s �|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= �aϕ iff M, t |= ϕ for all (s, t) ∈ Ra

M, s |= [U ,o]ϕ iff M ∗ U , (s,o) |= ϕ where M ∗ U is defined in (�)

M, s |= [↑]ϕ iff M, s |= [U ,o]ϕ for all (U ,o) satisfying (��)

(�): M ∗ U = (S ′, R ′, V ′) is defined as

S ′ = S × O
For all a ∈ A,ϕ,ϕ′ ∈ L, s, s′ ∈ S,o,o′ ∈ O :

((s,o), (s′,o′)) ∈ R ′
a iff (s, s′) ∈ Ra, (o,ϕ) →a (o′,ϕ′), M, s |= ϕ, and M, s′ |= ϕ′

For all p ∈ P :
V ′(p) = V (p) × O

(��): (U , o) is an arrow update with all source and target conditions in Lml .
Formula ϕ is valid in M , notation M |= ϕ , iff M, s |= ϕ for all s ∈ S; and ϕ is valid iff for all relational models M we have

that M |= ϕ . Formulas ϕ, ψ ∈ L are equivalent iff for all M = (S, R, V) and for all s ∈ S , M, s |= ϕ iff M, s |= ψ . The set of
validities, also more properly known as the logic, is called AAUML.

Formulas ϕ and ψ from different languages will also be called equivalent if they satisfy the above condition. The term
AAUML will also continue to be informally used for arbitrary arrow update logic. The restriction of arrow formulas to Lml in
the semantics of [↑]ϕ is to avoid circularity of the semantics, as [↑]ϕ could otherwise itself be one of those arrow formulas.
However, because we will prove that AAUML is as expressive as basic modal logic, we also have

M, s |= [↑]ϕ iff M, s |= [U ,o]ϕ for all (U ,o)

without any restriction on the source and target conditions of U . We will prove this property in Proposition 16, later.
We conclude this subsection by noting two relatively simple properties of AAUML that will be useful in later sections.

Firstly, AAUML is invariant under bisimulation, i.e., if (M, s)↔ (M ′, s′) then for all ϕ ∈L we have M, s |= ϕ iff M ′, s′ |= ϕ . In
[16, Lemma 3] it was shown that AUML is invariant under bisimulation. The proof given in [16] can easily be extended to a
proof that AAUML is also invariant under bisimulation.

Secondly, every formula ϕ ∈L is equivalent to a formula ϕ′ that is in DNNF. Proving the existence of such ϕ′ is concep-
tually simple but rather notationally complex. We therefore provide only an example, and trust that the reader can see that
the demonstrated process can be generalized to any ϕ ∈ L. Suppose that ϕ = p ∧ ¬(�aψ1 ∧ ¬[U , o]ψ2). Our first step is to
treat the non-propositional subformulas of ϕ as atoms, i.e., we treat the formula as p ∧ ¬(q1 ∧ ¬q2). This is a formula of
propositional logic, so it is equivalent to a formula in disjunctive normal form: (p ∧ ¬q1) ∨ (p ∧ q2). Then we recall what q1
and q2 represent, and obtain (p ∧ ¬�aψ1) ∨ (p ∧ [U , o]ψ2). Using the fact that ¬�aψ1 is equivalent to ♦a¬ψ1, we find that
ϕ is equivalent to (p ∧♦a¬ψ1) ∨ (p ∧ [U , o]ψ2). We then repeat this process for ¬ψ1, ψ2 and every formula χ that occurs
as a source or target condition in U . The depth of ¬ψ1, ψ2 and every such χ is strictly lower than that of ϕ , so this process
eventually terminates, resulting in formulas ψ ′

1, ψ ′
2 and χ ′ that are in DNNF and equivalent to ¬ψ1, ψ2 and χ , respectively.

Let U ′ be the result of replacing every χ in U by the equivalent χ ′ . Then the formula (p ∧ ♦aψ
′
1) ∨ (p ∧ [U ′, o]ψ ′

2) is in
DNNF and equivalent to ϕ .

2.4. Example

First consider the action of the introductory section of Anne reading a letter containing the truth about p while Bill
remains uncertain whether she performs that action. The arrow update model producing the resulting information state is
depicted in the upper part of Fig. 2. In the figure, an arrow → labelled with ϕ i ϕ′ and linking outcomes o, o′ stands for
the arrow ϕ →i ϕ

′ between these outcomes, i.e., ((o, ϕ), (o′, ϕ′)) ∈ R Ri ; ϕ i j ϕ′ stands for ϕ →i ϕ
′ and ϕ → j ϕ

′ .

8 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
In the resulting model Bill considers it possible that Anne knows p, that she knows ¬p, and that she still is uncertain
about p: ♦b�a p ∧♦b�a¬p ∧♦b¬(�a p ∨�a¬p).

Next, consider the action of Anne privately learning that p while Bill remains unaware of her doing so. The arrow update
model achieving that and the resulting relational model are depicted in the lower part of Fig. 2. In the resulting model it
is true that, for example, Anne believes p but Bill incorrectly believes that Anne is uncertain about p: �a p ∧ �b¬(�a p ∨
�a¬p).

¬p pab

ab

ab

∗ •

◦

� b �

� ab �

p a p

¬p a ¬p

� b �

= (¬p,•) (p,•)

(¬p,◦) (p,◦)

ab

b

b b

ab ab

ab ab

¬p pab

ab

ab

∗ •

◦

� b �

� ab �

� a p

= (¬p,•) (p,•)

(¬p,◦) (p,◦)

ab

a

b b

ab ab

a

Fig. 2. Different ways of Anne learning that p.

The relation R Ra allows for multiple pairs between the same outcomes. This is necessary. For an example, the singleton
arrow update with two reflexive arrows p →a q, r →a s (i.e., (o, p)R Ra(o, q) and (o, r)R Ra(o, s)) does not correspond to an
arrow update where for any given agent a at most a single arrow links any two outcomes, see [7,10,16].

Arrow updates apply to any kind of relational model, and also in particular to relational models wherein all accessibility
relations are equivalence relations, the class S5. These relations model knowledge of an agent. Relational models wherein all
accessibility relations are serial, transitive, and Euclidean, are of the class KD45. These relations model consistent belief of
an agent. As dynamic epistemic logics typically formalize change of knowledge or change of belief, i.e., epistemic change, of
particular interest are therefore arrow updates that are S5-preserving or KD45-preserving, by which we mean that, given
a relational model in class S5, the update will produce a relational model in class S5, and similarly for KD45.

The examples in this section are indeed typical in that sense. The first example is an S5-preserving update and the
second example is a KD45-preserving update.

There is more to be learnt from these examples: the first arrow update ‘seems S5’ and the second update ‘seems
KD45’. It is easy to make ‘seem’ precise: consider the following accessibility relation between outcomes induced by an
arrow relation:

o →′
a o′ iff (o,ϕ) →a (o′,ϕ′) for some ϕ,ϕ′.

Let an arrow update be in class S5 if for all agents a, these induced →′
a are equivalence relations; and similarly for KD45.

The first arrow update is therefore S5 and the second arrow update is KD45. However, an S5 arrow update of an S5
relational model may not result in an S5 relational model (whereas an S5 action model executed in an S5 relational model
will always result in an S5 relational model). This is obvious, as the presence of arrows in the resulting model is also
determined by source and target conditions. For example, if in the arrow update of the first example we change the arrow
� →b � linking ◦ to • into ⊥ →b �, then the resulting model will no longer be reflexive. It is no longer S5. It is not known
how to address such issues systematically (see Section 8).

As said, arrow updates are an alternative modelling mechanism to the better known action models. In Section 6, and in
particular Subsection 6.5, we compare the two mechanisms in more detail, we will give action models that define the same
update as the arrow updates in this section, and we will also present typical applications on which they perform differently.

3. Arrow update synthesis

The goal of synthesis for AUML is to find, given a goal formula ϕ , an arrow update (i.e., a pointed arrow update model)
(U , o) that makes ϕ true. There are at least three ways in which we could interpret this goal, however.

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 9
Definition 4 (Synthesis).

• The local synthesis problem takes as input a pointed model (M, s) and a goal formula ϕ . The output is an arrow update
(U , o) such that M, s |= 〈U , o〉ϕ , or “NO” if no such arrow update exists.

• The valid synthesis problem takes as input a goal formula ϕ . The output is an arrow update (U , o) such that |= 〈U , o〉ϕ ,
or “NO” if no such arrow update exists.

• The global synthesis problem takes as input a goal formula ϕ . The output is an arrow update (U , o) such that for every
pointed model (M, s), if there is some (U ′, o′) such that M, s |= 〈U ′, o′〉ϕ , then M, s |= 〈U , o〉ϕ .

We recall from the introduction that we take the third approach: when we say synthesis we mean global synthesis. An
alternative, equivalent characterization of the global synthesis problem is that, for given ϕ , we want to find (U , o) such that,
for all (M, s), M, s |= 〈↑〉ϕ ↔ 〈U , o〉ϕ (see Proposition 16).

Note that for the global synthesis problem, unlike the local synthesis problem and the valid synthesis problem, we do not
allow “NO” as an output. As a result, it is not obvious that global synthesis for AUML is possible at all. We also recall from
the introduction that synthesis is impossible for PAL and for AUL, but possible for AML [17]. We now show that synthesis
for AUML is indeed also possible. Because our version of synthesis is global, it cannot depend on any specific model. So our
synthesis process is purely syntactic.

In our synthesis, we make use of so-called reduction axioms. These reduction axioms are a set of validities that, when
taken together, show that AAUML has the same expressive power as modal logic.

3.1. Reduction axioms for arrow update models

We start by considering the reduction axioms for the [U , o] operator.

Lemma 5 ([10]). Let (U , o) be an arrow update, p ∈ P , a ∈ A and ϕ, ψ ∈L. Then the following validities hold.

|= [U ,o]p ↔ p

|= [U ,o]¬ϕ ↔ ¬[U ,o]ϕ
|= [U ,o](ϕ ∧ ψ) ↔ ([U ,o]ϕ ∧ [U ,o]ψ)

|= [U ,o]�aϕ ↔
∧

(o,ψ)→a(o′,ψ ′)
(ψ → �a(ψ

′ → [U ,o′]ϕ))

Proof. The first three validities follow immediately from the semantics of [U , o]. The fourth validity also follows from the
semantics, in the following way.

M, w |= [U ,o]�aϕ iff M ∗ U , (w,o) |= �aϕ
iff for all (w ′,o′) such that (w,o)Ra(w ′,o′) : M ∗ U , (w ′,o′) |= ϕ
iff for all (o′,ψ ′) and w ′ such that (o,ψ) →a (o′,ψ ′) and w Ra w ′ :

if M, w |= ψ and M, w ′ |= ψ ′ then M ∗ U , (w ′,o′) |= ϕ
iff for all (o′,ψ ′) such that (o,ψ) →a (o′,ψ ′) :

if M, w |= ψ then M, w |= �a(ψ
′ → [U ,o′]ϕ)

iff M, w |= ∧
(o,ψ)→a(o′,ψ ′)(ψ → �a(ψ

′ → [U ,o′]ϕ)) �

Note that, in particular, |= [U , o]¬ϕ ↔ ¬[U , o]ϕ implies that [U , o] is self-dual: we have |= [U , o]ϕ ↔ 〈U , o〉ϕ . This,
of course, does not extend to the arbitrary arrow update operator: there are ϕ for which �|= [↑]ϕ ↔ 〈↑〉ϕ , for example,
�|= [↑]�a p ↔ 〈↑〉�a p.

The above lemma shows that [U , o] commutes with ¬, distributes over ∧ and, in a somewhat complicated way, com-
mutes with �a . As discussed in [10], this suffices to show that [U , o] can be eliminated from the restriction of the language
L to Lauml .

Corollary 6. For every ϕ ∈Lauml there is a formula ϕ′ ∈Lml such that |= ϕ ↔ ϕ′ .

3.2. Reduction axioms for the arrow update model quantifier

We can also write similar reduction axioms for [↑]. In practice, however, it turns out to be slightly more convenient
to write them for the dual operator 〈↑〉. Note that in the lemmas in this subsection we restrict ourselves to the language
Lauml , as some of those lemmas use that 〈↑〉 quantifies over arrow updates with source and target conditions in Lml , and
because we can meet this constraint by applying Corollary 6. Later, in Theorem 15 in the next subsection, we will show
that this restriction is unnecessary, and that the lemmas apply to L as well.

10 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
Lemma 7. For every ϕ ∈Lauml and every a ∈ A, we have

|= 〈↑〉♦aϕ ↔ ♦a〈↑〉ϕ

Proof. Let (M, w) be any pointed model, and suppose that M, w |= 〈↑〉♦aϕ . Then there is some (U , o) such that M ∗
U , (w, o) |= ♦aϕ . So (w, o) has an a-successor (w ′, o′) such that M ∗ U , (w ′, o′) |= ϕ .

This implies that M, w ′ |= 〈U , o′〉ϕ and therefore M, w ′ |= 〈↑〉ϕ . Since w ′ is an a-successor of w , we obtain M, w |=
♦a〈↑〉ϕ .

Now, suppose that M, w |= ♦a〈↑〉ϕ . Then there is an a-successor w ′ of w such that M, w ′ |= 〈↑〉ϕ . As witness for this
〈↑〉 statement there must be some U ′, o′ such that M, w ′ |= 〈U ′, o′〉ϕ .

Let (U , o) be the arrow update obtained by adding one extra world o to U ′ , and a transition (o, �) →a (o′, �). Note
that (M ∗ U ′, (w ′, o′)) is bisimilar to (M ∗ U , (w ′, o′)), and therefore M ∗ U , (w ′, o′) |= ϕ . Finally, note that (w ′, o′) is an
a-successor of (w, o), so we have M ∗ U , (w, o) |= ♦aϕ and therefore M, w |= 〈↑〉♦aϕ . �

Note that the proof is constructive. That is, if we find (U ′, o′) such that M, w |= ♦a〈U ′, o′〉ϕ then not only do we know
that M, w |= 〈↑〉♦aϕ , we can also find a specific (U , o) such that M, w |= 〈U , o〉♦aϕ .

Next, we consider a slightly stronger lemma.

Lemma 8. For every ϕ1, · · · , ϕn ∈Lauml and every a ∈ A we have

|= 〈↑〉
∧

1≤i≤n

♦aϕi ↔
∧

1≤i≤n

♦a〈↑〉ϕi

Proof. The left-to-right direction is obvious, so we show only the right-to-left direction. So suppose that M, w |= ∧
♦a〈↑〉ϕi .

Then there are a-successors w1, · · · , wn of w and pointed arrow update models (U1, o1), · · · , (Un, on) such that M, wi |=
〈Ui, oi〉ϕi for all i.

Now, let (U , o) be the arrow update obtained by taking the disjoint union of all Ui and adding one extra outcome o, and
adding arrows (o, �) →a (oi, �) for every oi .

For every i, (M ∗ Ui, (wi, oi)) is bisimilar to (M ∗ U , (wi, oi)), so we have M ∗ U , (wi, oi) |= ϕi . Finally, (wi, oi) is an a-
successor of (w, o) for every i. As such, we have M, w |= 〈U , o〉 ∧♦aϕi and therefore, as all the source and target conditions
of U are in Lml , M, w |= 〈↑〉 ∧♦aϕi . �

Again, the proof is constructive, so given (Ui, oi) for all i, we can find the model (U , o). Note also that the ϕi need not
be consistent with each other.

Some reflection may be in order as to why Lemma 8 holds. Suppose that M, w |= ∧
♦a〈↑〉ϕi . So for every i, there is

some world wi that a considers possible as well as some event Ui and outcome oi such that, if (Ui, oi) were to happen in
wi , then ϕi would become true.

Now let us look at the arrow update (U , o) that we constructed. Effectively, this arrow update represents us telling a
that “we are performing one of the actions Ui, oi , but we are not telling you which one.” Now, for every i agent a considers
it possible that wi is the actual world, and that (Ui, oi) is the event that happened. As such, after we execute our event we
are in a situation where every ϕi is held possible by a.

So far, we have only considered diamonds. Now, let us add a box modality.

Lemma 9. For every ϕ1, · · · , ϕn, ψ ∈Lauml and every a ∈ A, we have

|= 〈↑〉(
∧

1≤i≤n

♦aϕi ∧�aψ) ↔
∧

1≤i≤n

♦a〈↑〉(ϕi ∧ ψ)

Proof. The left-to-right direction is fairly obvious. Suppose that M, w |= 〈↑〉(∧1≤i≤n ♦aϕi ∧�aψ). Then there is a (U , o) such
that M, w |= 〈U , o〉(∧1≤i≤n ♦aϕi ∧ �aψ). Therefore, M ∗ U , (w, o) |= �aψ and for each 1 ≤ i ≤ n, M ∗ U , (w, o) |= ♦aϕi . Let
(wi, o′) be such that (w, o)Ra(wi, o′) and M ∗ U , (wi, o′) |= ϕi . From M ∗ U , (w, o) |=�aψ and (w, o)Ra(wi, o′) also follows
that M ∗ U , (wi, o′) |= ψ . Combining both we have M ∗ U , (wi, o′) |= ϕi ∧ ψ . Therefore, M, wi |= 〈U , o′〉(ϕi ∧ ψ), from which
it follows that M, wi |= 〈↑〉(ϕi ∧ ψ). From (w, o)Ra(wi, o′) it follows by definition that w Ra wi . From M, wi |= 〈↑〉(ϕi ∧ ψ)

and w Ra wi we get the required M, w |= ♦a〈↑〉(ϕi ∧ ψ). As i was arbitrary, M, w |= ∧
1≤i≤n ♦a〈↑〉(ϕi ∧ ψ).

We now show the right-to-left direction. So suppose that M, w |= ∧
1≤i≤n ♦a〈↑〉(ϕi ∧ ψ). Then for every 1 ≤ i ≤ n, there

are an a-successor wi of w and (Ui, oi) such that M, wi |= 〈Ui, oi〉(ϕi ∧ ψ).
Let (U , o) be the model obtained by taking the disjoint union of all Ui , and adding a single outcome o with arrows

(o, �) →a (oi, 〈Ui, oi〉ψ) for every i.
Consider (M ∗ U , (w, o)). By assumption, M, wi |= 〈Ui, oi〉(ϕi ∧ ψ), so M, wi |= 〈Ui, oi〉ψ . From that and the fact that

model U contains arrow (o, �) →a (oi, 〈Ui, oi〉ψ) it follows that (wi, oi) is an a-successor of (w, o) in (M ∗ U). Furthermore,

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 11
also from M, wi |= 〈Ui, oi〉(ϕi ∧ ψ) it follows that M, wi |= 〈Ui, oi〉ϕi , i.e., M ∗ Ui, (wi, oi) |= ϕi , and as (M ∗ U , (wi, oi)) is
bisimilar to (M ∗ Ui, (wi, oi)) it follows that M ∗ U , (wi, oi) |= ϕi (the bisimulation is the identity relation on the restriction
of the domain of M ∗ U to the domain of M ∗ Ui). With (w, o)Ra(wi, oi) we thus get M ∗ U , (w, o) |= ♦aϕi , and as i was
arbitrary, M ∗ U , (w, o) |= ∧

1≤i≤n ♦aϕi .
Additionally, note that every outgoing a-arrow in (U , o) has target condition 〈Ui, oi〉ψ for some i. Again observing that

(M ∗ U , (wi, oi)) is bisimilar to (M ∗ Ui, (wi, oi)), it follows that for every (wi, oi) that is an a-successor of (w, o), we have
M ∗ U , (wi, oi) |= ψ . It follows that M ∗ U , (w, o) |=�aψ .

Taken together, the above shows that M ∗ U , (w, o) |= ∧
1≤i≤n ♦aϕi ∧ �aψ and thus that M, w |= 〈U , o〉(∧1≤i≤n ♦aϕi ∧

�aψ). Furthermore, every formula χ occurring in U is either a basic modal formula, or of the form 〈Ui , oi〉ψ . Because
ψ ∈Lauml , we have 〈Ui, oi〉ψ ∈Lauml and therefore, by Corollary 6, there is a formula χi ∈Lml that is equivalent to 〈Ui, oi〉ψ .
Let U ′ be the arrow update model obtained from U by replacing 〈Ui, oi〉ψ by χi , for every i. Then we also have M, w |=
〈U ′, o〉(∧1≤i≤n ♦aϕi ∧ �aψ). Because U ′ only contains formulas of modal logic, it follows that M, w |= 〈↑〉(∧1≤i≤n ♦aϕi ∧
�aψ), as was to be shown. �

Once again, the proof is constructive. Note that on the right-hand side we have eliminated the �a connective. This is a
consequence of the fact that as the designer of the arrow update model U , we have the freedom to inform a that certain
worlds, which she might previously have considered possible, are not in fact the actual world. This results in the removal
of the a-arrows to these worlds. So if we want to make �aψ true after the application of U , then we can simply have a
eliminate all successors where ψ would otherwise become false. In the construction used in the lemma, we do this using
the target condition 〈Ui, oi〉ψ .

In the preceding three lemmas, we only considered ♦a and �a operators for one single agent a. However, when con-
structing (U , o) we can place arrows for different agents independently, so the same construction works for multiple agents
at the same time. This yields the following lemma.

Lemma 10. For every a ∈ A, let �a ⊆Lauml be a finite set of formulas, and let ψa ∈Lauml be a formula. Then

|= 〈↑〉
∧

a∈A

(
∧

ϕa∈�a

♦aϕa ∧�aψa) ↔
∧

a∈A

∧

ϕa∈�a

♦a〈↑〉(ϕa ∧ ψa)

Proof. We proceed as in the previous Lemma 9, but simultaneously for all a ∈ A.
Again, the left-to-right direction is fairly obvious, and completely analogous to the treatment in Lemma 9. Suppose

that M, w |= 〈↑〉 ∧a∈A(
∧

ϕa∈�a
♦aϕa ∧ �aψa). Then there is a (U , o) such that M, w |= 〈U , o〉(∧a∈A(

∧
ϕa∈�a

♦aϕa ∧ �aψa).
Therefore, for all a ∈ A and for all ϕa ∈ �a , M ∗ U , (w, o) |= �aψ and M ∗ U , (w, o) |= ♦aϕa . As before we now obtain
M, w |= ♦a〈↑〉(ϕa ∧ ψ), for all a ∈ A and for all ϕa ∈ �a , and thus M, w |= ∧

a∈A

∧
ϕa∈�a

♦a〈↑〉(ϕa ∧ ψ).

From right to left, suppose that M, w |= ∧
a∈A

∧
ϕa∈�a

♦a〈↑〉(ϕa ∧ ψa). Let �a = {ϕ1
a , . . . , ϕ|�a|

a } (�a may be empty). Then
for every a ∈ A and for every 1 ≤ i ≤ |�a|, there are (U i

a, oi
a) and an a-successor wi

a of w such that M, wi
a |= 〈U i

a, oi
a〉(ϕ i

a ∧
ψa). Similarly to the previous lemma, we let (U , o) be the model obtained by taking the disjoint union of all U i

a (i.e., for all
a ∈ A and for all 1 ≤ i ≤ |�a|), but still only adding a single outcome o with arrows (o, �) →a (oi, 〈Ui, oi〉ψ) for every a ∈ A
and 1 ≤ i ≤ |�a|. We then proceed as before. �

Lemma 10 is the most important reduction axiom for AAUML. However, not every formula is of a form such that the
lemma can be applied. We therefore need two validities that allow us to put formulas in the correct form.

Lemma 11. For every ϕ1, ϕ2 ∈Lauml and every ϕ0 ∈Lpl, we have

|= 〈↑〉(ϕ1 ∨ ϕ2) ↔ (〈↑〉ϕ1 ∨ 〈↑〉ϕ2)

and

|= 〈↑〉(ϕ0 ∧ ϕ1) ↔ (ϕ0 ∧ 〈↑〉ϕ1).

Proof. The proof of this lemma is straightforward.
By the semantic definition, from M, w |= 〈↑〉(ϕ1 ∨ ϕ2) it follows that M, w |= 〈↑〉ϕ1 or that M, w |= 〈↑〉ϕ2, and therefore

that M, w |= 〈↑〉ϕ1 ∨〈↑〉ϕ2. In the other direction, from M, w |= 〈↑〉ϕ1 ∨〈↑〉ϕ2 it follows that M, w |= 〈↑〉ϕ1 or that M, w |=
〈↑〉ϕ2, and therefore, by weakening either formula to the disjunction ϕ1 ∨ ϕ2, that M, w |= 〈↑〉(ϕ1 ∨ ϕ2).

For the second validity, we first observe that 〈↑〉ϕ0 ↔ ϕ0 (∗) is a validity of AAUML (all our logics are logics of informa-
tional change, not of factual change). From M, w |= 〈↑〉(ϕ0 ∧ ϕ1) now follows M, w |= 〈↑〉ϕ0 and M, w |= 〈↑〉ϕ1, and thus,
using (∗), that M, w |= ϕ0 and M, w |= 〈↑〉ϕ1, and so M, w |= ϕ0 ∧ 〈↑〉ϕ1. For the other direction we observe that, on the
assumption of M, w |= ϕ0 ∧ 〈↑〉ϕ1, any arrow update executed in (M, w) to make ϕ1 true will preserve, by (∗), the truth of
ϕ0, so that M, w |= 〈↑〉(ϕ0 ∧ ϕ1). �

12 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
It is important and non-trivial to note that the disjunction case can be made constructive. Suppose that we have already
synthesized (U1, o1) and (U2, o2) such that |= 〈↑〉ϕ1 ↔ 〈U1, o1〉ϕ1 and |= 〈↑〉ϕ2 ↔ 〈U2, o2〉ϕ2. So we have two pointed
arrow update models that make ϕ1 and ϕ2 true whenever possible. This does not, however, immediately give us a single-
pointed arrow update model (U , o) that guarantees ϕ = ϕ1 ∨ ϕ2 whenever possible.4 In order to find this (U , o), we have
to combine (U1, o1) and (U2, o2). We do this in the following way.

First, we take the set of outcomes of U to be the disjoint union of the sets of outcomes of U1 and U2, plus one extra
outcome o. Then, we add arrows as follows to U .

For every (o1, ψ) →a (o′, ψ ′) of U1, add an arrow (o, ψ ∧ 〈U1, o1〉ϕ1) →a (o′, ψ ′). For every (o2, ψ) →a (o′, ψ ′) of U2,
add an arrow (o, ψ ∧ ¬〈U1, o1〉ϕ1) →a (o′, ψ ′).

When executed in a 〈↑〉ϕ1 world, this arrow update (U , o) will act as (U1, o1), since every such world satisfies 〈U1, o1〉ϕ1
and we added all arrows from o1 with an extra 〈U1, o1〉ϕ1 precondition. When executed in any ¬〈↑〉ϕ1 world, (U , o) acts
as (U2, o2). As long as either 〈↑〉ϕ1 or 〈↑〉ϕ2 holds, we therefore have 〈U , o〉(ϕ1 ∨ ϕ2).

More formally, we have the following lemma.

Lemma 12. Let ϕ1, ϕ2 ∈ Lauml, and for i = 1, 2 let (Ui, oi) be such that |= 〈↑〉ϕi ↔ 〈Ui, oi〉ϕi , where Ui = (O i, R Ri). Furthermore,
let U = (O , R R) be given as follows:

• O = {o} � O 1 � O 2 ,
• R R contains exactly the following arrows:

1. (o′, ψ ′) →a (o′′, ψ ′′) ∈ R Ri , for i = 1, 2,
2. (o, ψ ∧ 〈U1, o1〉ϕ1) →a (o′, ψ ′) where (o1, ψ) →a (o′, ψ ′) ∈ R R1 ,
3. (o, ψ ∧ ¬〈U1, o1〉ϕ1) →a (o′, ψ ′) where (o2, ψ) →a (o′, ψ ′) ∈ R R2 .

Then |= 〈↑〉(ϕ1 ∨ ϕ2) ↔ 〈U , o〉(ϕ1 ∨ ϕ2).

Proof. The right-to-left direction is obvious, because, just as in the proof of Lemma 9, source conditions ψ ∧〈U1, o1〉ϕ1 and
ψ ∧ ¬〈U1, o1〉ϕ1 can with Corollary 6 be assumed to be equivalent to modal logical formulas.

We now show the left-to-right direction. Suppose therefore that M, w |= 〈↑〉(ϕ1 ∨ ϕ2). Then, by Lemma 11, we have
M, w |= 〈↑〉ϕ1 ∨ 〈↑〉ϕ2. We continue by a case distinction.

First, suppose that M, w |= 〈↑〉ϕ1. Then none of the (o, ψ ∧ ¬〈U1, o1〉ϕ1) →a (o′, ψ ′) arrows are applicable in w . The
(o, ψ ∧〈U1, o1〉ϕ1) →a (o′, ψ ′) arrows, on the other hand, are applicable if and only if (o1, ψ) →a (o′, ψ ′) applies. Therefore,
for every agent a, (w, o)Ra(w ′, o′) iff (w Ra w ′ and oRao′) iff (w Ra w ′ and o1 Rao′) iff (w, o1)Ra(w ′, o′). So there is an a-arrow
from (w, o) to (w ′, o′) in M ∗ U if and only if there is an a-arrow from (w, o1) to (w ′, o′) in M ∗ U1. Furthermore, because U
contains a copy of U1, we have that for every o′, o′′ ∈ O 1 and every w ′, w ′′ ∈ W there is an a-arrow from (w ′, o′) to (w ′′, o′′)
in M ∗ U if and only if there is such an arrow in M ∗ U1. It follows that the relation R1 = {((w ′, o′), (w ′, o′)) | w ′ ∈ W , o′ ∈
O 1} ∪ {((w, o), (w, o1))} is a bisimulation between M ∗ U , (w, o) and M ∗ U1, (w, o1). (It also obviously satisfies atoms, as
this depends on correspondence of the first argument in each (state, outcome) pair.) By assumption we have M, w |= 〈↑〉ϕ1
and therefore M, w |= 〈U1, o1〉ϕ1, which implies that M ∗ U1, (w, o1) |= ϕ1. Because AAUML is invariant under bisimulation
it then follows that M ∗ U , (w, o) |= ϕ1 and therefore that M, w |= 〈U , o〉ϕ1, so that we also have M, w |= 〈U , o〉(ϕ1 ∨ ϕ2).

Suppose then that M, w �|= 〈↑〉ϕ1. Then we must have M, w |= 〈↑〉ϕ2. In this case, the (o, ψ ∧ 〈U1, o1〉ϕ1) →a (o′, ψ ′)
arrows are inapplicable while the (o, ψ ∧¬〈U1, o1〉ϕ1) →a (o′, ψ ′) arrows apply if and only if (o2, ψ) →a (o′, ψ ′) does. Sim-
ilarly to the previous case, the relation R2 = {((w ′, o′), (w ′, o′)) | w ′ ∈ W , o′ ∈ O 2} ∪{((w, o), (w, o2))} is therefore a bisimu-
lation between M ∗U , (w, o) and M ∗U2, (w, o2). From the assumption that M, w |= 〈↑〉ϕ2 it follows that M, w |= 〈U2, o2〉ϕ2
and therefore that M ∗ U2, (w, o2) |= ϕ2. Because AAUML is invariant under bisimulation we then obtain M ∗ U , (w, o) |= ϕ2
and therefore M, w |= 〈U , o〉ϕ2 and also M, w |= 〈U , o〉(ϕ1 ∨ ϕ2).

In either case, we have M, w |= 〈U , o〉(ϕ1 ∨ ϕ2), as was to be shown. �

3.3. Reduction

Using the fact that [U , o] commutes with ¬, distributes over ∧ and, in a convoluted but not very complicated way,
commutes with �a , Corollary 6 showed that every Lauml formula is equivalent to a Lml formula. In order to be able to
finally perform synthesis, it remains to show that every L formula is also equivalent to a Lml formula. This is what we will
show in this section.

4 An alternative technique to synthesize an arrow update for the disjunction is to take the double-pointed direct sum of (U1, o1) and (U2, o2); its points
are {o1, o2}. This method is followed in [17].

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 13
In Section 3.2 we showed that 〈↑〉 commutes, in a very complicated way, with boolean combinations of basic modal
formulas. Also, like [U , o], a 〈↑〉 operator disappears once it encounters a propositional atom. From this we can show that,
if ϕ is a formula of basic modal logic, then we can transform 〈↑〉ϕ into an equivalent formula ϕ′ of basic modal logic.

The proof that 〈↑〉ϕ can be transformed into ϕ′ is by induction on the order � given by: ϕ1 � ϕ2 if and only if (i)
ϕ2 is a strict subformula of ϕ1 or (ii) ϕ2 has a (strictly) lower modal depth than ϕ1. Let us first show that this order is
well-founded.

Lemma 13. The relation � is well-founded.

Proof. This follows from the fact that both the > relation on the natural numbers and the “strict subformula of” relation
are well-founded.

Suppose towards a contradiction that there is an infinitely descending chain ϕ0 � ϕ1 � · · · of formulas. So for every
i ∈ N we have either (i) ϕi+1 is a strict subformula of ϕi or (ii) d(ϕi) > d(ϕi+1). The modal depth of a formula is at least
as large as that of its subformulas, so in either case we have d(ϕi) ≥ d(ϕi+1). Because the depth of a formula is a natural
number and > is well-founded on N , there can be only finitely many i such that d(ϕi) > d(ϕi+1). So there is some k ∈ N
such that for all m ≥ k we have d(ϕm) = d(ϕk).

It follows that for every m ≥ k, the formula ϕm+1 must be a strict subformula of ϕm . This is impossible, however, since
the “strict subformula of” relation is well-founded. We have arrived at a contradiction, so � does not have an infinitely
descending sequence and is therefore well-founded. �

Now, we can prove the reduction from 〈↑〉ϕ to ϕ′ .

Lemma 14. For every ϕ ∈Lml, there is a formula ϕ′ ∈Lml such that |= 〈↑〉ϕ ↔ ϕ′ .

Proof. Every formula is equivalent to a formula in DNNF (See Sections 2.2 and 2.3), so we can assume without loss of
generality that ϕ is in DNNF. We can also assume without loss of generality that every conjunction in ϕ contains exactly
one conjunct of the form �aχ for every agent a. We now proceed by induction on the order �, which, by the previous
lemma, is well-founded. Note that the minimal elements with respect to � are the formulas that are of depth 0 and have
no strict subformulas, i.e., the atoms.

Suppose therefore, as a base case in our induction, that ϕ is an atom. Then |= 〈↑〉ϕ ↔ ϕ , so the lemma holds with
ϕ′ = ϕ . Assume now as induction hypothesis that the lemma holds for every ϕ′ such that ϕ � ϕ′ . We then continue by case
distinction.

First, suppose that ϕ = ϕ1 ∨ ϕ2. By Lemma 11 we have |= 〈↑〉(ϕ1 ∨ ϕ2) ↔ (〈↑〉ϕ1 ∨ 〈↑〉ϕ2). Furthermore, ϕ � ϕ1 and
ϕ � ϕ2, so by the induction hypothesis there are ϕ′

1, ϕ
′
2 ∈ Lml such that |= 〈↑〉ϕ1 ↔ ϕ′

1 and |= 〈↑〉ϕ2 ↔ ϕ′
2. It follows that

|= 〈↑〉ϕ ↔ (ϕ′
1 ∨ ϕ′

2).
Secondly, suppose that ϕ = ϕ0 ∧ ϕ1, where ϕ0 ∈ Lpl . Then, by Lemma 11, we have |= 〈↑〉(ϕ0 ∧ ϕ′) ↔ (ϕ0 ∧ 〈↑〉ϕ1).

Furthermore, ϕ � ϕ1, so by the induction hypothesis there is a ϕ′
1 such that |= 〈↑〉ϕ1 ↔ ϕ′

1. It follows that |= 〈↑〉ϕ ↔
(ϕ0 ∧ ϕ′

1).
Finally, suppose that ϕ is a conjunction without a propositional conjunct. Then for every a ∈ A there are a finite

set �a ⊆ Lml and a formula ψa ∈ Lml such that ϕ = ∧
a∈A(

∧
ϕa∈�a

♦aϕa ∧ �aψa). By Lemma 10, we have |= 〈↑〉ϕ ↔∧
a∈A

∧
ϕa∈�a

♦a〈↑〉(ϕa ∧ ψa). For every a ∈ A and ϕa ∈ �a , the modal depth of ϕa ∧ ψa is strictly lower than that of ϕ ,
so ϕ � ϕa ∧ ψa . Therefore, by the induction hypothesis, there is a formula ϕ′

a ∈ Lml such that |= 〈↑〉(ϕa ∧ ψa) ↔ ϕ′
a . Let �′

a
be the set of such ϕ′

a . It follows that |= 〈↑〉ϕ ↔ ∧
a∈A

∧
ϕ′

a∈�′
a
♦aϕ

′
a .

This completes the induction step and thereby the proof. �

We now have the following theorem.

Theorem 15. For every ϕ ∈L there is a formula ϕ′ ∈Lml such that |= ϕ ↔ ϕ′ .

Proof. We now use Lemma 14 (in dual form) that

for every ϕ ∈Lml there is a ϕ′ ∈Lml such that |= [↑]ϕ ↔ ϕ′ ,

and we also use the consequence of Lemma 14 that

for every ϕ ∈ Lml and arrow update (U , o) with source and target conditions in Lml there is a ϕ′ ∈ Lml such that
|= [U , o]ϕ ↔ ϕ′ ,

in order to successively eliminate the innermost [U , o] or [↑] operators of any given formula of AAUML. We can thus
transform this formula into an equivalent formula of modal logic. �

14 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
Table 1
Synthesis procedure.

Procedure Synth(ϕ)

Input: ϕ ∈ L.
Output: (Uϕ,oϕ) such that |= 〈↑〉ϕ ↔ 〈Uϕ,oϕ 〉ϕ.

1. If ϕ /∈ Lml , then use the reduction axioms to find a formula ϕmodal ∈ Lml

such that |= ϕ ↔ ϕmodal , and return Synth(ϕmodal). Otherwise, continue.
2. If ϕ is not in disjunction normal form, compute the DNNF ϕDNNF of ϕ and

return Synth(ϕDNNF). Otherwise, continue.
3. If ϕ = ϕ1 ∨ ϕ2, then compute Synth(ϕ1) and Synth(ϕ2), and combine

the two arrow update models as in Lemma 12. Return the combined
arrow update model.

4. If ϕ is not a disjunction, then since it is in DNNF it must be a conjunction,
where each conjunct is (i) a literal, (ii) of the form ♦aψ , or (iii) of the form �aχ .
Assume w.l.o.g. that for every a there is exactly one conjunct �aχa .
For every ♦aψ , compute Synth(ψ ∧ χa). Then use Lemma 9 to combine
the arrow update models, and return the result. If there are no ♦a operators for any
agent a, return the trivial arrow update model with one outcome and no arrows.

It follows that in Lemmas 7–12 the restriction to the sublanguage Lauml is unnecessary; the lemmas also hold for the
full language L. In this form we will also later use these validities as axioms in the axiomatization. For the next section, it
is important to keep in mind that the reduction axioms not only guarantee the existence of ϕ′ , but also enable us to find it.

Theorem 15 also allows us to prove a claim that we made in Section 2.3. There, we defined M, s |= [↑]ϕ by

M, s |= [↑]ϕ iff (M, s |= [U , o]ϕ for every arrow update (U , o) that has source and target conditions only in Lml).

Now that we have shown that every formula of L is equivalent to a formula of Lml , it follows immediately that the
requirement of the source and target conditions being in Lml is unnecessary.

Proposition 16. For every ϕ ∈L and every pointed relational model (M, s), we have

M, s |= [↑]ϕ iff M, s |= [U , o]ϕ for every arrow update (U , o).

3.4. Synthesis

Recall that our goal, when performing synthesis, is to find, for given ϕ ∈ L, an arrow update (Uϕ, oϕ) such that |=
〈↑〉ϕ ↔ 〈Uϕ, oϕ〉ϕ . Using Theorem 15, we can transform ϕ into an equivalent formula of modal logic. Then, using the
procedure outlined in Section 3.2, we can find (Uϕ, oϕ). The procedure is found in detail in Table 1.

Our arrow update synthesis was motivated by Hales’ already mentioned action model synthesis published in [17]. See
also the next Section 4. Subsequently Hales et al. investigated these matters in [25] and in (his Ph.D. thesis) [26]. Alterna-
tively, action model synthesis by way of a dedicated action language was employed by Aucher in [27].

3.5. Example

In order to gain better understanding of Synth(ϕ), let us consider an example. Suppose ϕ = ♦a�b p ∧ ♦b(♦aq ∨ ♦ar) ∧
�b p). We want to perform synthesis for this ϕ .

Goal: find Synth(♦a�b p ∧♦b(♦aq ∨♦ar) ∧�b p).
Because ϕ ∈ Lml , ϕ is in DNNF and ϕ is not a disjunction, we continue past steps 1, 2 and 3. In step 4, it is assumed

that for every agent there is exactly one � conjunct. This means we need to add a trivial conjunct �a�.
Of the conjuncts of ϕ , two have ♦ as primary operator. So we need to perform synthesis for two more formulas;

because of ♦a�b p and �a� we need to find Synth(�b p ∧ �), and because of ♦b(♦aq ∨ ♦ar) and �b p we need to find
Synth((♦aq ∨♦ar) ∧ p).

Subgoal 1: find Synth(�b p ∧ �).
Since we are doing synthesis for a conjunction, we continue in steps 1, 2 and 3. Because there are no ♦ operators in
�b p ∧ �, we return the trivial arrow update model in step 4.
Subgoal 2: find Synth((♦aq ∨ ♦ar) ∧ p). In step 2, we need to put the formula in DNNF. We therefore continue with
(♦aq ∧ p) ∨ (♦ar ∧ p). In step 3 we are then instructed to perform synthesis for the two disjuncts.

Sub-subgoal 2.1: find Synth(♦aq ∧ p).
We continue up to step 4. There, we first add a trivial conjunct �a�. Then, we are instructed to find Synth(q ∧ �).

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 15
Sub-sub-subgoal 2.1.1: find Synth(q ∧ �).
We proceed to step 4. There, since there are no ♦ operators in q ∧ �, we return the trivial arrow update model
(U0, o0).

Now, in order to find Synth(♦aq ∧ p), we take the trivial arrow update model found in sub-sub-subgoal 2.1.1, and
add one extra outcome. Then, we connect this extra outcome to the trivial model by a � →a 〈U0, o0〉� arrow. The
source condition of this arrow is � because step 4 uses the construction from Lemma 9, and that construction always
gives precondition �. The arrow is for agent a, because we started with a ♦a operator. Finally, the target condition
is 〈U0, o0〉� because the arrow update that the arrow points to is (U0, o0) and the �a conjunct was �a�. In other
words, we obtain the arrow update depicted in Fig. 3.a, where the framed state indicates the designated outcome.
Sub-subgoal 2.2: find Synth(♦ar ∧ p).
Replacing the q of ♦aq ∧ p for an r does not change the arrow update model that we end up with. So in this
sub-subgoal we find the same model as in sub-subgoal 2.1.

Now, in order to find Synth((♦aq ∧ p) ∨ (♦ar ∧ p)), we need to combine the models found in sub-subgoals 2.1 and
2.2. Since we are working with a disjunction, we combine them as described in Lemma 12. That, is, we take copies of
the two (identical) models and add one extra outcome. Then, we add two more arrows: every world that is reachable
from the origin world of the model from sub-subgoal 2.1 by ψ1 →a ψ2, becomes reachable from the extra world by a
ψ1 ∧ 〈↑〉(♦aq ∧ p) →a ψ2 arrow. Likewise, every world reachable by ψ1 →a ψ2 from the origin of the model from sub-
subgoal 2.2 becomes reachable from the extra world by ψ1 ∧ ¬〈↑〉(♦aq ∧ p) →a ψ2. We now get the model depicted in
Fig. 3.b.

Now, all that is left to do is to combine the arrow update models found in subgoals 1 and 2. The model we obtain is
depicted in Fig. 3.c, where (U1, o1) is the model that we found in subgoal 2. The root of the model is the leftmost outcome.
Note that the depth (i.e., the maximum path length) of this arrow update model is 2, just like the depth (i.e., the maximum
number of nested � or ♦ operators) of ϕ . In general, the depth of the synthesized arrow update model is bounded by that
of the formula for which synthesis is performed.

Also, note that the arrow update model that we obtained can quite easily be modified to obtain a smaller model that is
still sufficient. In particular:

• the two outcomes that are not reachable from the root can be eliminated,
• the formulas 〈U0, o0〉�, 〈U1, o1〉p, � ∧ 〈↑〉(♦aq ∧ p) and � ∧ ¬〈↑〉(♦aq ∧ p) can be replaced by the equivalent formulas

�, p, ♦aq ∧ p and ¬(♦aq ∧ p), respectively,
• the three leaf outcomes can be merged into one,
• and ♦aq ∧ p →a � and ¬(♦aq ∧ p) →a � can be merged into one � →a � arrow.

With these optimizations, we get the more aesthetically pleasing arrow update depicted in Fig. 3.d.

4. Axiomatization

Using the reduction axioms introduced before, we can find an axiomatization for AAUML. Let AAUML be the axiomati-
zation shown in Table 2. In this section we show that the axiomatization AAUML is sound and complete, and we give some
derivable (well-known) axiom schemata.

Lemma 17. Axiomatization AAUML is sound for the logic AAUML.

Proof. Prop, K, MP, NecK, RE are known from modal logic, U1—U4 were demonstrated in Section 3.1 and originate in [10],
A1—A4 were shown to be valid in Section 3.2. �

It is important to note that U1—U4 and A1—A4 are so-called reduction axioms for the operators [U , o] and 〈↑〉, respec-
tively, as mentioned in the previous section. This means that they are equivalences, where the formula inside the scope of
the [U , o] or 〈↑〉 operator on the left-hand side is more complex than the formulas inside the scope of that operator on the
right-hand side.

The derivation rule RE is important as our reductions are inside-out, not outside-in. Without it, for example, the validity
[U , o][U , o](p ∨ ¬p) would not be derivable.

The axioms A1—A4 could just as well have been formulated with the [↑] dual of the modality 〈↑〉, e.g., A2′ [↑](ϕ ∧ψ) ↔
([↑]ϕ ∧ [↑]ψ). We prefer the 〈↑〉 versions as they match our usage of these axioms in synthesis. Further note that there
is no reduction of shape 〈↑〉¬ϕ ↔ We assume that subformulas bound by 〈↑〉 are first transformed into disjunctive
negation normal form before a further reduction can take place (and again, for this, the derivation rule RE is essential).

Lemma 18. Axiomatization AAUML is complete for the logic AAUML.

16 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
� a 〈U0,o0〉�
(a)

� a 〈U0,o0〉�

� a 〈U0,o0〉�

� ∧ 〈↑〉(♦aq ∧ p) a
〈U 0,

o0〉�

� ∧ ¬〈↑〉(♦
a q ∧ p)

a 〈U0 ,o0 〉�

(b)

� a 〈U0,o0〉�

� a 〈U0,o0〉�

� ∧ 〈↑〉(♦aq ∧ p) a
〈U 0,

o0〉�

� ∧ ¬〈↑〉(♦
a q ∧ p)

a 〈U0 ,o0 〉�

� a
〈U 0,

o 0〉�

�
b 〈U1 ,o1〉p

(c)

�
b

p

�
a �

� a � (d)

Fig. 3. Different stages in the synthesis of ♦a�b p ∧♦b(♦aq ∨♦ar) ∧�b p).

Proof. Let ϕ ∈ L be valid. Using an induction argument, we can eliminate all [U , o] and 〈↑〉 operators from it: ϕ must be
provably equivalent to a formula ϕ′ ∈ Lml . As ϕ′ must also be valid (Theorem 15), ϕ′ is provable in modal logic. From the
provable equivalence between ϕ and ϕ′ and the derivation of ϕ′ we construct a derivation of ϕ in AAUML. �

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 17
Table 2
The axiomatization AAUML of the logic AAUML.

Prop all tautologies of propositional logic
K �a(ϕ → ψ) → (�aϕ →�aψ)

U1 [U ,o]p ↔ p
U2 [U ,o]¬ϕ ↔ ¬[U ,o]ϕ
U3 [U ,o](ϕ ∧ ψ) ↔ ([U ,o]ϕ ∧ [U ,o]ψ)

U4 [U ,o]�aϕ ↔ ∧
(o,ψ)→a(o′,ψ ′)(ψ →�a(ψ

′ → [U ,o′]ϕ))

A1 〈↑〉ϕ0 ↔ ϕ0 where ϕ0 ∈ Lpl

A2 〈↑〉(ϕ ∨ ψ) ↔ (〈↑〉ϕ ∨ 〈↑〉ψ)

A3 〈↑〉(ϕ0 ∧ ϕ) ↔ (ϕ0 ∧ 〈↑〉ϕ) where ϕ0 ∈ Lpl

A4 〈↑〉∧
a∈A(

∧
ϕa∈�a

♦aϕa ∧�aψa) ↔ ∧
a∈A

∧
ϕa∈�a

♦a〈↑〉(ϕa ∧ ψa)

MP from ϕ → ψ and ϕ infer ψ

NecK from ϕ infer �aϕ
RE from χ ↔ ψ infer ϕ[χ/p] ↔ ϕ[ψ/p]

We have now shown that:

Theorem 19. Axiomatization AAUML is sound and complete for the logic AAUML.

In the proof system AAUML, we do not have necessitation for the [U , o] and [↑] operators. Such necessitation rules are
derivable, however.

Proposition 20. The following two rules are derivable in AAUML.

• NecU: from ϕ infer [U , o]ϕ;
• NecA: from ϕ infer [↑]ϕ .

Proof. First, note that the axiom

U1′ [U ,o]ϕ0 ↔ ϕ0 where ϕ0 ∈Lpl

is derivable, using Prop, U1–U3 and MP. It is also convenient to use a variant of MP directly on bi-implications, instead of
first converting the bi-implication to a single implication.

MP′ from ϕ ↔ ψ and ϕ infer ψ , and from ϕ ↔ ψ and ψ infer ϕ.

This MP′ is, of course, also easily derived. Using U1′ and MP′ , we can derive NecU in a reasonable number of steps:

1. ϕ premise
2. ϕ → (ϕ ↔ �) Prop
3. ϕ ↔ � MP(1,2)
4. [U ,o]� ↔ � U1′
5. � Prop
6. [U ,o]� MP′(5,4)
7. [U ,o]� ↔ [U ,o]ϕ RE(3)
8. [U ,o]ϕ MP′(6,7)

A derivation of NecA can be found in a similar way. Here, too, it is convenient to first derive an auxiliary axiom.

A1′ [↑]ϕ0 ↔ ϕ0 where ϕ0 ∈Lpl

This [↑]-version of A1 is of course derivable. We can then derive NecA analogously to how we derived NecU, with the
application of U1′ replaced by A1′ . �

The axiomatization AAUML is inspired by the somewhat similar axiomatization by Hales of arbitrary action model logic
[17], although the shape of some axioms and rules is rather different. Axioms in Hales similar to our U1—U4, for the
reduction for action models, are of course taken from action model logic instead. Axioms in Hales similar to our AI—A4,
that are used for the reduction of the quantifier, are taken from refinement modal logic instead. There is nothing ‘of course’
about the latter: Hales’ mixture of AML and RML was, we think, a quite original move. One can also move in the other
direction: our axioms U1—U4 allow an alternative axiomatization of refinement modal logic. However, as this seems out of
scope, these results are not presented here.

18 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
5. Update expressivity

5.1. Expressivity

Recall that we are considering the basic modal logic ML and the update logics PAL, APAL, AML, AAML, AUL, AAUL, AUML,
AAUML, and RML, as shown in Fig. 1 on page 4. One natural thing to do with such related logics that are all interpreted
on a similar class of structures is to compare their power to relate or to distinguish structures from that class. The most
straightforward way to make such a comparison is to compare their expressivity.

Formally, given languages L1 and L2 interpreted on certain class of models M, a language L1 is at least as expressive as
a language L2 if for every formula of L2 there is an equivalent formula of L1. Having equal expressivity or higher expressivity
(by which we always mean strictly higher expressivity) can be defined from the “at least as expressive” relation in the usual
way. If neither language is at least as expressive as the other, we say that they are incomparable in expressivity. Informally,
if L1 and L2 are the logics for languages L1 resp. L2 interpreted on M, we will also use the terminology for expressivity
to compare these logics.

In [5] that introduced PAL it was shown that PAL is equally expressive as ML (on the class S5 of relational models, but
this does not matter for the reduction), and in [6] that introduced AML it was also shown that AML is equally expressive as
ML. It is trivial to show that PAL and AML are at least as expressive as ML, as they extend the logical language. That every
formula of PAL or AML is equivalent to a formula in ML, was shown by reduction axioms and rules. Similarly, AUL [7], AUML
[10] and AAML [17] were shown to be equally expressive as ML, and therefore also equally expressive as PAL and AML. In
[18] it was shown that RML is equally expressive as ML. Here, in Theorem 15 in Section 3, we showed that AAUML is also
equally expressive as ML.

The two remaining logics are APAL and AAUL. The logic APAL was shown to be more expressive than ML in [15] and
AAUL was shown to be more expressive than ML in [16], wherein it was also shown that APAL and AAUL are incomparable.
This means that the expressivity landscape is as shown in Fig. 4.

ML, PAL, AML, AAML, AUL, AUML, AAUML, RML

APAL AAUL

Fig. 4. The relative expressivity of the update logics discussed in the paper. Arrows indicate increasing expressivity. Absence of arrows indicates incomparable
expressivity.

5.2. Update expressivity hierarchy

There is something a bit strange about this comparison, however. Although AML and PAL have the same expressivity,
AML is clearly in some sense more powerful, since action models represent a far larger class of updates than public an-
nouncements. In order to capture the sense in which AML is more powerful than PAL, we use the term update expressivity.
This concept was introduced as action equivalence in [28] (and its precursors) and also subsequently used in that sense in
[10]. The definitions from [28,10] do not deal very well with multi-pointed update modalities and with arbitrary update
modalities, however, so we use a slightly adapted version.

We recall from the introduction that the updates X we consider are relational model transformers and that such trans-
formations are defined by pairwise relating pointed models:

An update X is a relation between pointed relational models.

In fact, three different things are called update: the update relation between pointed models, the update modality in a logical
language, and, in some sense, the update object, often a name, that can be associated with the modality or the relation, such
as an arrow update (U , o). To simplify the presentation in this section we call the relations X, Y , . . . and the modalities
[X], [Y], . . . and we do not consider the update objects separately: we identify them with the update relations.

A relation between pointed relational models can be a one-to-one relation, i.e., a function or a partial function, a one-to-
finitely-many relation, and a one-to-infinitely-many relation. For example, it is a function for a pointed arrow update model,
a partial function for a public announcement, a one-to-many relation for a multi-pointed arrow update model, and a one-to-
infinitely-many relation for an arrow update quantifier. In the first place, one would now like to say that update relations X
and Y are the same (are equivalent) if they define the same relation between pointed models, modulo bisimulation. In the
second place, we also want to compare an update X that is a partial function, i.e., with a restricted domain, to an update
Y that is a total function (or similarly for relations with restricted domains. In that kind of situation one would maybe
like to say that updates X and Y are the same if X and Y define the same relation on the domain of X : we will then say

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 19
that X is conditionally equivalent to Y (this relation is asymmetric). Such a requirement seems common practice in dynamic
epistemic logic, and it is also respected in [10]. We recall from Section 1 the ‘state eliminating’ public announcement of p (i)
and the ‘arrow eliminating’ public announcement of p (ii), originating with [29]: whenever p can be truthfully announced,
the pointed relational models resulting from executing (i) and (ii) are bisimilar, as in the example. But when p is false, (ii)
can be executed but not (i). So (i) and (ii) are equivalent on condition of the truth of the announcement.

In view of these considerations, we propose the following definition. In the definition, for X(M, s) read {(M ′, s′) |
((M, s), (M ′, s′)) ∈ X}, and let dom(X) be {(M, s) | X(M, s) �= ∅}, i.e., dom(X) is the domain of X in the standard rela-
tional sense.5 Recall from Section 2.1 that two sets of pointed models are bisimilar if every pointed model in the first set is
bisimilar to one in the second set and vice versa.

Definition 21 (Update equivalence, update expressivity). Given updates X and Y , X is conditionally update equivalent to Y , if for
all (M, s) ∈ dom(X), X(M, s)↔ Y (M, s). Further, X is update equivalent to Y , if X is conditionally update equivalent to Y , and
Y is conditionally update equivalent to X . Update modalities [X] and [Y] are (conditionally) update equivalent, if X and Y
are (conditionally) update equivalent.

A language L is at least as update expressive as L′ if for every update modality [X] of L′ there is an update modality [Y]
of L such that X is conditionally update equivalent to Y ; L is equally update expressive as L′ (or ‘as update expressive as’) if
L is at least as update expressive as L′ and L′ is at least as update expressive as L.

We define ‘(strictly) more update expressive’ and ‘incomparable in update expressivity’ as usual. We also extend the
usage of ‘update expressive’ to the logics for the languages that we compare. Instead of ‘update equivalent’ we may use
‘equivalent’ if the context is clear. If updates X and Y are update equivalent, then [X]ϕ ↔ [Y]ϕ is valid. In the other
direction, this is not always the case! In Section 7 we give a counterexample.

We should stress that we do not claim that our definition is appropriate for all situations, merely that it gives an accurate
view of the strengths of the different logics that we consider in this particular paper.

Let us now fill in the expressivity hierarchy for our target logics. The update expressivity of AUL is higher than that
of PAL, and lower than that of AML [7]. The comparison between AML and AUML that we will address in Section 6 is
less straightforward than that. In [10] it was shown that AML and AUML have the same update expressivity. That result
does not distinguish between single-pointed and multi-pointed action models and arrow update models, however. Here, we
therefore provide an alternative proof of their results that makes that distinction. Specifically, we show that the result from
[10] only applies to the multi-pointed case, but that single-pointed arrow update models are more update expressive than
single-pointed action models.

To formulate such results we need to slightly expand our notation. We recall that in the language L of AAUML (see
Section 2.2) we permit multi-pointed arrow update modalities. If we only allow single-pointed arrow update modalities, let
us call the set of validities AAUML1. For the ‘logic’ in the standard sense of the set of validities this makes no difference,
so that out of the context of update expressivity we can continue to also let AAUML represent AAUML1. Similarly, without
the quantifiers, we distinguish AUML1 from AUML, and we will later also introduce such a notational distinction for action
model logics.

Adding quantification increases update expressivity, since the non-quantified logics cannot simulate a one-to-infinity re-
lation. So, for example, APAL is more update expressive than PAL, and AAUML is more update expressive than AUML. (The
distinction between single-pointed and multi-pointed is irrelevant here, as quantifying over all single-pointed updates is
equivalent to quantifying over all multi-pointed updates.) When comparing the quantified logics among themselves, most
pairs are incomparable. These incomparability results are all rather trivial, so we do not prove them here. The only compa-
rable pair is (multi-pointed) AAUML and AAML, which have the same update expressivity because their underlying updates
have the same update expressivity (Section 6). In Section 7 we will show that RML is incomparable to the other quantified
logics, and in particular that the AAUML and AAML quantifiers are contained in the RML quantifier.

The landscape of update expressivity is therefore as shown in Fig. 5.

6. Arrow updates versus action models

6.1. Action model logic

Arrow update model logic AUML is equally expressive as action model logic AML and their update expressivity relates in
interesting ways. We build upon the results known from [10] but our constructions and proofs are slightly different. First
we need to define action models and their execution in relational models. An action model [6] is a structure like a relational

5 We recall that given a relational model M = (S, R, V) or an arrow update model U = (O , R R), the sets S = D(M) resp. O = D(U) of objects on which
the accessibility relations Ra resp. arrow relations R Ra are defined are also called domains. This causes confusion if the arrow update model U is considered
as an update relation between sets of pointed relational models, with its domain dom(U) of application defined as above. As the term ‘domain’ is extremely
standard for both, we prefer to distinguish them by using different symbols D and dom, instead of introducing a non-standard term for either one or the
other.

20 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
APAL AAUL

ML PAL AUL

AML1 AUML1

AML AUML

AAML AAUML

RML

Fig. 5. The relative update expressivity of the update logics discussed in the paper. We assume transitive closure of arrows.

model but with a precondition function instead of a valuation function. Executing an action model into a relational model
means computing what is known as their restricted modal product. This product encodes the new state of information, after
action execution. These are the technicalities:

An action model E = (S, R, pre) consists of a domain S of actions e, f , . . . , an accessibility function R : A →P(S ×S), where
each Ra is an accessibility relation, and a precondition function pre : S →L, where L is a logical language.

Let additional to a pointed action model (E, e) as above a pointed relational model (M, s) be given where M = (S, R, V).
Let M, s |= pre(s). The update (M ⊗ E, (s, e)) is the pointed relational model where M ⊗ E = (S ′, R ′, V ′) such that

S ′ = {(t, f) | M, t |= pre(f)}
((t, f), (t′, f ′)) ∈ R ′

a iff (t, t′) ∈ Ra and (f , f ′) ∈ Ra

(t, f) ∈ V ′(p) iff t ∈ V (p)

Action model modalities [E, e] are interpreted similarly to arrow update modalities but unlike arrow update modalities are
partial and not functional. Their execution depends on the truth of the precondition of the actual action (point) e in the
actual state s:

M, s |= [E, e]ϕ iff M, s |= pre(e) implies M ⊗ E, (s, e) |= ϕ

Similarly to arrow update modalities we can conceive a modal logical language with [E, e]ϕ as an inductive language
construct, for action models E with finite domains. The logic is called action model logic AML. And also similarly we define
multi-pointed action models by notational abbreviation, and informally consider such modalities as logical connectives bind-
ing formulas. As for AUML (see [10] and Section 4), there is a complete axiomatization, that is a rewrite system allowing
to eliminate dynamic modalities [6,30]. If we further extend the logical language with a quantifier [⊗] over action models,
such that

M, s |= [⊗]ϕ iff M, s |= [E, e]ϕ for all action models (E, e) satisfying (∗)

where (*) requires all preconditions of actions in E to be in Lml , we get the language and logic of arbitrary action model logic
AAML. Hales showed in [17] that the (*) requirement can be relaxed, similarly to our Proposition 16. If such a distinction is
necessary, the action model logics with only single-pointed action models are AML1 and AAML1.

Example action models that are update equivalent to the example arrow update models of Section 2 are depicted in
Fig. 6. We also depict their execution. The actions are given their preconditions as names. Note that the pointed relational
model resulting from the (second) action of Anne privately learning that p is bisimilar to the four-state model in Section 2
(Fig. 2).

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 21
¬p pab

ab

ab

⊗ �

¬p p

bb

b

ab

abab

= (¬p,�) (p,�)

(¬p,¬p) (p, p)

ab

b

b b

ab ab

ab ab

¬p pab

ab

ab

⊗ �

p

b

ab

a

= (¬p,�) (p,�)

(p, p)

ab

bb

ab ab

a

Fig. 6. Examples of action model execution.

6.2. From action models to arrow updates

A given action model can be transformed into an arrow update model by decorating each arrow in the action model
with a source condition that is the precondition of the source action and with a target condition that is the precondition of
the target action. That is all. Technically:

Let E = (S, R, pre) be given. Arrow update model U (E) = (O , R R) is defined as: O = S, and for all agents a and actions
e, e′ , (e, pre(e)) →a (e′, pre(e′)) iff (e, e′) ∈ Ra .6 We can now show that (E, e) is update equivalent to (U (E), e), on condition
of the executability of the action e, i.e., restricted to the denotation of pre(e).

Proposition 22 ([10]). (E, e) is conditionally update equivalent to (U (E), e).

Proof. Let M = (S, R, V), M ⊗ E = (S ′, R ′, V ′) and M ∗ U (E) = (S ′′, R ′′, V ′′). Define the relation R by R = {((s, e), (s, e)) ∈
S ′ × S ′′ | (s, e) ∈ S ′}. We will show that if (M, s) ∈ dom(E, e), so if M, s |= pre(e), then R is a bisimulation linking (s, e) ∈ S ′
to (s, e) ∈ S ′′ .

Take any ((s1, f1), (s1, f1)) ∈ R. The atoms clause is trivially satisfied as the states s match (and updates do not
change facts). We now consider forth. Suppose (s1, f1)R ′

a(s2, f2). Given the definition of action model execution, this
implies that (s1, s2) ∈ Ra , (f1, f2) ∈ Ra , M, s1 |= pre(f1) and M, s2 |= pre(f2). Because of how we constructed U (E), it
follows from (f1, f2) ∈ Ra that (f1, pre(f1)) →a (f2, pre(f2)). Then from M, s1 |= pre(f1) and M, s2 |= pre(f2) it follows
that (s1, f1)R ′′

a (s2, f2). Also, ((s2, f2)(s2, f2)) ∈ R by the definition of the relation R. So forth is satisfied. Finally, we con-
sider back. Suppose (s1, f1)R ′′

a (s2, f2). Then we must have (f1, pre(f1)) →a (f2, pre(f2)) with (f1, f2) ∈ Ra , since U (E) only
contains arrows of that type. It follows that M, s1 |= pre(f1) and M, s2 |= pre(f2), so (s1, f1)R ′

a(s2, f2). Again, obviously,
((s2, f2)(s2, f2)) ∈R. The back condition is therefore also satisfied.

We have now shown that R is a bisimulation. Since (s, e)R(s, e) this implies that M ⊗ E, (s, e)↔ M ∗ U (E), (s, e). This
holds for every (M, s) ∈ dom(E, e), so (E, e) is conditionally update equivalent to (U (E), e). �

Corollary 23. Let F ⊆D(E). Then (E, F) is conditionally update equivalent to (U (E), F).

From Proposition 22 follows that, for all ϕ ∈ Lml , [E, e]ϕ is equivalent to pre(e) → [U (E), e]ϕ . See also [10][Cor. 3.9].
This can be used as a clause in an inductively defined translation from the language of AUML to the language of AML. In
Corollary 23 the condition for update equivalence is

∨
e∈F pre(e).

The arrow update models constructed by the above procedure from the action model for Anne reading the letter contain-
ing p while Bill may notice her doing so, and for Anne privately learning p, are as follows (Fig. 7). Note that they are update
equivalent (namely on their domain of execution) to the arrow update models for these actions presented in Section 2. In
the figure, by ϕ ab ϕ′ we mean the two arrows ϕ →a ϕ′, ϕ →b ϕ′ . On the left, the dual arrows for b between outcomes
have not been labelled. They are as expected: � →b ¬p, p →b ¬p, p →b �. (They are update equivalent to the example
arrow update models in Section 2.4 and Fig. 2.)

6 In [10], arrows (e, �) →a (e′, ϕ′) instead of (e, ϕ) →a (e′, ϕ′) are stipulated. Both constructions deliver the desired update equivalence.

22 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
�

¬p p

� b p¬p b �

¬p b p

� ab �

p ab p¬p ab ¬p

�

p

p b �

� ab �

p a p

Fig. 7. From action models to arrow updates — example.

6.3. From arrow updates to action models

A given arrow update model can be transformed into an update equivalent action model by conditionalizing in each
outcome over any possible ‘valuation’ of (any subset of) the source and target conditions of all outcomes. This leads to an
exponential blowup. (See [10, Theorem 3.7]. Our construction and subsequent proof are different.) We proceed with the
construction.

Let U = (O , R R) be given. Let � be the collection of all source and target conditions occurring in U :

� = {ϕ | there are a ∈ A,ϕ′ ∈ L,o,o′ ∈ O s.t. (o,ϕ) →a (o′,ϕ′) or (o,ϕ′) →a (o′,ϕ)}.
We consider the formulas in � as ‘atomic constituents’ over which we consider ‘valuations’ v ∈ 2� (lower case, to dis-
tinguish it from the relational model valuation V , upper case). The characteristic formula of a valuation is δv := ∧

ϕ∈� ϕ ,
where ϕ = ϕ if v(ϕ) = 1 and ϕ = ¬ϕ if v(ϕ) = 0. Action model E(U) = (S, R, pre) is now such that:

S = O × 2�

((o, v), (o′, v ′)) ∈ Ra iff ∃ϕ,ϕ′ : (o,ϕ) →a (o′,ϕ′), v(ϕ) = 1, v ′(ϕ′) = 1
pre(o, v) = δv

Further, given (U , o), its single point o becomes a set of actions E(o) := {o} × 2� . The corresponding action model
(E(U), E(o)) is therefore multi-pointed (unless � = {�} or � = {⊥}). We note that the preconditions of actions need not
be consistent formulas, just as source and target conditions of arrows need not be consistent formulas. Our construction
is therefore different from that in [10], wherein only v ∈ 2� are considered for which δv is consistent. That construction
is more economical, but computational efficiency is not our goal. We can now show that (U , o) is update equivalent to
(E(U), E(o)). Note that they both can be executed on the entire domain.

Proposition 24. (U , o) is update equivalent to (E(U), E(o)).

Proof. Let M = (S, R, V) and s ∈ S be given, and let M ∗ U = (S ′, R ′, V ′) and M ⊗ E(U) = (S ′′, R ′′, V ′′). We show that for
some (o, v) ∈ E(o), (M ∗ U , (s, o))↔ (M ⊗ E(U), (s, o, v)). Define relation R as follows:

(s,o)R(s,o, v) iff M, s |= δv

We show that R is a bisimulation.
For forth, assume ((s1, o1), (s1, o1, v1)) ∈ R and ((s1, o1), (s2, o2)) ∈ R ′

a . The latter implies that there are ϕ1, ϕ2 ∈L such
that (o1, ϕ1) →a (o2, ϕ2), and that M, s1 |= ϕ1 and M, s2 |= ϕ2. Choose v1 and v2 such that M, s1 |= δv1 and M, s2 |= δv2

(note that v1 and v2 exist and are unique). As M, s1 |= ϕ1 and M, s1 |= δv1 we have v1(ϕ1) = 1 and as M, s2 |= ϕ2 and
M, s2 |= δv2 we have v2(ϕ2) = 1. We claim that (s2, o2, v2) is the requested witness to close the forth argument. Firstly,
((s1, o1, v1), (s2, o2, v2)) ∈ R ′′

a because (s1, s2) ∈ Ra and ((o1, v1), (o2, v2)) ∈ Ra , where the latter follows from (o1, ϕ1) →a

(o2, ϕ2), v1(ϕ1) = 1 and v2(ϕ2) = 1 (see the definition of E(U) above). Secondly, ((s2, o2), (s2, o2, v2) ∈R. Step back is very
similar; now use that pre(o1, v1) = δv1 and that pre(o2, v2) = δv2 , and observe that (E(U), E(o)) can always be executed, it
has precondition

∨
v∈2� δv , which is equivalent to �. �

Corollary 25. Let now Q ⊆D(U). Then (U , Q) is update equivalent to (E(U), E(Q)).

As an example we now show the action models constructed by the above procedure from the two example arrow update
models of Section 2. The set of source and target condition formulas is {p, ¬p, �}. Of their 8 valuations the two non-trivial
(and different) valuations are characterized by p and ¬p. These formulas are also the action preconditions in the action
points of the resulting action models. The reader may observe that these action models are, again, update equivalent to
their ‘original’ action models at the start of this section (Fig. 8).

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 23
(•,¬p) (•, p)

(◦,¬p) (◦, p)

ab

b

b b

ab ab

ab ab

(•,¬p) (•, p)

(◦,¬p) (◦, p)

ab

a

b b

ab ab

a

Fig. 8. From arrow updates to action models — example.

6.4. Relative update expressivity

We are now prepared to harvest the update expressivity results. First, let us show that AUML1 is more update expressive
than AML1.

Proposition 26. AUML1 is more update expressive than AML1.

Proof. From Proposition 22 follows that AUML1 is at least as update expressive as AML1. To show that the inclusion is
strict, we need to show that for some (U , o), there is no (E, e) that induces the same relation.

Let U be the arrow update model with a single outcome o, and a single arrow (o, p) →a (o, �). Suppose towards a
contradiction that there is a single-pointed action model (E, e) such that (M ∗ U , (s, o))↔ (M ⊗ E, (s, e)) for every (M, s).
Then, in particular, (E, e) must be executable everywhere, so pre(e) is equivalent to �. Furthermore, if M, s |= p ∧ ♦a�,
then (M ∗ U , (s, o)) has at least one a-successor (s′, o) (note that ♦a� enforces that s has an a-successor s′ , and the arrow
s →a s′ satisfies p at the source and � at the target). By assumption, (M ⊗ E, (s, e)) is bisimilar to (M ∗ U , (s, o)), so it has
an a-successor (s′, e′). This implies that eRae′ . Now, consider a different model (M ′, s) such that (i) M ′, s |= ¬p and (ii) s has
an a-successor s′ such that M ′, s′ |= pre(e′). Then (M ′ ⊗ E, (s, e)) has an a-successor, but (M ′ ∗ U , (s, o)) has no a-successor,
because p is false in state s. This contradicts the assumption that (M ∗ U , (s, o))↔ (M ⊗ E, (s, e)) for every (M, s). �

Proposition 27. AUML is as update expressive as AML.

Proof. From Corollary 23 follows that AUML is at least as update expressive as AML. From Corollary 25 follows that AML is
at least as update expressive as AUML. �

It is obvious that AML is more update expressive than AML1, and that AUML is more update expressive than AUML1.

6.5. Applications illustrating the succinctness of arrow updates

In this section we give some application areas for the modelling of information change, where arrow updates are more
succinct that corresponding (i.e., update equivalent) action models.

Lying. You are lying if you say that something is true while you believe that it is false — and with the intention for the
addressee(s) to believe that it is true. In the setting of public announcement logic a lie is a public announcement that is
false. This is then contrasted to the (usual) public announcement that is true. Both are combined in the announcement that
has no relation to its truth. This is known as the conscious update ([29], see the introduction) or, in a setting where lying
is also distinguished, as the manipulative update [31]. The arrow update for the conscious/manipulative update of ϕ is the
singleton arrow update model with arrows

(o,�) →a (o,ϕ)

for all agents. Lying as such, wherein ϕ is required to be false, is not an arrow update as arrow update models have no
preconditions, but such executability preconditions can be simulated as antecedents of logical implications.

A problem with the manipulative update is that an agent who already believes the opposite of the lie, believes everything
after incorporating the lie into her beliefs (believing a contradiction comes at that price). This is because the accessibility of

24 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
that agent becomes empty as a result of the update. A solution to that is the cautious update that is also known as lying to
sceptical agents [32,7,33]: the agent only updates her beliefs if the new information is consistent with her current beliefs.
The arrow update for the sceptical update of ϕ (again, we cannot model sceptical lying as this requires ϕ to be false) is a
singleton arrow update model with arrows

(o,♦aϕ) →a (o,ϕ)

(o,�a¬ϕ) →a (o,�)

for all agents [7].
Given a group of agents, some may believe the announcement, and others not. The arrow update modelling allows for

this. However, if we make an action model for announcements to sceptical agents, we need to distinguish all combinations
explicitly (we used a similar construction to get action model E(U) from arrow update U , above, in order to prove Proposi-
tion 24). For example, for two agents a and b, the action model consists of eight actions, with preconditions and accessibility
relations as follows. In Fig. 9 we ‘name’ the actions with their preconditions. To simplify the visualization, we do not label
arrows with a and b: solid arrows are for a and dashed arrows for b. We also assume transitive closure of accessibility.

♦aϕ ∧♦bϕ ∧ ϕ ♦aϕ ∧�b¬ϕ ∧ ϕ

�a¬ϕ ∧♦bϕ ∧ ϕ �a¬ϕ ∧�b¬ϕ ∧ ϕ

♦aϕ ∧♦bϕ ∧ ¬ϕ ♦aϕ ∧�b¬ϕ ∧ ¬ϕ

�a¬ϕ ∧♦bϕ ∧ ¬ϕ �a¬ϕ ∧�b¬ϕ ∧ ¬ϕ

Fig. 9. Action model for lying.

For n agents there are O (2n) actions in the action model. In [7] this example is treated in greater detail, and also other,
similar, examples are shown for which arrow updates are shown to be more succinct (exponentially smaller).

Attentive announcements. Another example where action models are exponentially bigger than arrow updates is that of
the attention-based announcements of [34]. This work presents a logic of announcements that are only ‘heard’ (received)
by agents paying attention to it, paying attention to the announcer, so to speak. Such announcements are modelled em-
ploying an auxiliary set of designated ‘attention (propositional) variables’ ha expressing that agent a pays attention. The
corresponding arrow update model has domain {o, o′}, both outcomes designated, and with arrows

(o,ha) →a (o,ϕ)

(o,¬ha) →a (o′,�)

(o′,�) →a (o′,�)

for all agents. It cannot be modelled with a (singleton) [7] arrow update, the resulting relational model is typically larger
than then model before the update, as the agents not paying attention believe that no announcement was made, and thus
reason about the structure of the entire initial model. Incorporating the announcements depends on ha being true or false,
just as for sceptical announcements it depends on ♦aϕ being true or false. So, this is similar. But not entirely so, because
an agent not paying attention is, so to speak, inconscious of the announcement, and thus believes that the (entire) original
model still encodes her beliefs), whereas an agent believing the opposite of the announcement ‘knows’ that if she were
to have found the announcement believable, she would have changed her beliefs. So these are different parts of the same
model, it is a mere restriction of the accessibility relation. Again, for attentive announcements, a corresponding action model
is of exponential size, as any subset of agents may or may not be paying attention. See [34].

Comparative size of action models and arrow updates. In general, if the observational powers of all agents are commonly
known to be partial, then we can expect arrow updates for such dynamic phenomena to be exponentially smaller than
corresponding action models. This was the case for announcements to sceptical lying and for attention-based announce-
ments, and also for: agents making broadcasts (to all agents), agents seeing each other depending on their orientation,

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 25
partial networks representing agents with neighbours or friends, etc. On the other hand, dynamic phenomena where all
agents observe (some, few) designated agents have similarly-sized arrow updates and action models, such as: the private
announcement to an individual agent or a subgroup of agents, and gossip scenarios where two agents call each other in
order to exchange secrets, and where this call may be partially observed by all other agents. We do not know of scenarios
where action models are more succinct than arrow updates.

7. Arbitrary arrow updates versus refinements

7.1. Refinement modal logic

We now compare the arbitrary arrow update modality of AAUML to the refinement quantifier of refinement modal logic
RML [18]. Let us first be precise about its syntax and semantics.

We recall the definition of bisimulation in Section 2.1. If atoms and back hold, we call the relation a refinement (and
dually, if atoms and forth hold, we call the relation a simulation). In [18] such a refinement relation is considered for any
subset of the set of agents and defined as follows:

A relation RB that satisfies atoms, back-a, and forth-a for every a ∈ A \ B , and that satisfies atoms, and back-b for every
b ∈ B , is a B-refinement, we say that (M ′, s′) refines (M, s) for group of agents B , and we write (M, s) �B (M ′, s′). An A-
refinement we call a refinement (clearly any B-refinement is also an A-refinement and thus a ‘refinement’ plain and simple),
and (M, s) �A (M ′, s′) is denoted (M, s) � (M ′, s′). With this relation comes a corresponding modality in the obvious way.
Let B ⊆ A, and (M, s) and ϕ given, then

M, s |= [�]Bϕ iff M ′, s′ |= ϕ for all (M ′, s′) such that (M, s) �B (M ′, s′).

We continue with the comparison of the refinement quantifier to the other quantifiers. We first focus on the refinement
relation � for the set of all agents, to which corresponds the [�] modality. Consider three different ways to define quan-
tification in information changing modal logics. We formulate them suggestively so that their correspondences stand out,
where we recall Proposition 16 that the restrictions on source and target conditions need not be met when interpreting [↑],
and similarly, [17] showed that the restrictions on action preconditions need not be met when interpreting [⊗].

M, s |= [↑]ϕ iff M, s |= [U ,o]ϕ for all arrow update models (U ,o)

M, s |= [�]ϕ iff M ′, s′ |= ϕ for all refinements (M ′, s′)
M, s |= [⊗]ϕ iff M ′, s′ |= [E, e]ϕ for all action models (E, e)

Theorem 28. Let ϕ ∈Lml. Then [↑]ϕ , [�]ϕ , [⊗]ϕ are pairwise equivalent.

Proof. • The equivalence of [�]ϕ to [⊗]ϕ was shown in [17].
• To show that [⊗]ϕ is equivalent to [↑]ϕ , we use the semantics of these modalities. Let us do this for the diamond

version. Both directions of the equivalence need to be shown.
First, suppose that
M, s |= 〈⊗〉ϕ .
According to the semantics of 〈⊗〉 this is equivalent to
∃(E, e) : M, s |= 〈E, e〉ϕ .
By Proposition 22 that, in turn, is equivalent to
∃(U (E), e) : M, s |= pre(e) and M, s |= 〈U (E), e〉ϕ .
This implies that, in particular,
∃(U (E), e) : M, s |= 〈U (E), e〉ϕ
and therefore, by the semantics of 〈↑〉, that
M, s |= 〈↑〉ϕ .

For the other direction, suppose that
M, s |= 〈↑〉ϕ .
According to the semantics of 〈↑〉 this is equivalent to
∃(U , o) : M, s |= 〈U , o〉ϕ .
By Proposition 24 that, in turn, is equivalent to
∃(E(U), E(o)) : M, s |= 〈E(U), E(o)〉ϕ .
In particular, this implies that for some e ∈ E(o) we have
∃(E(U), e) : M, s |= 〈E(U), e〉ϕ
and therefore, by the semantics of 〈⊗〉, that
M, s |= 〈⊗〉ϕ .

• To show that [↑]ϕ is equivalent to [�]ϕ we use the previous two equivalences. �

26 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
The theorem is formulated to make the correspondence between the three quantifiers stand out. Alternatively, we can
have an inductively defined translation between the language L (of AAUML) and the language of arbitrary action model
logic AAML that is compositional to the extent that arrow update quantifiers are translated into action model quantifiers
(Theorem 28) and arrow update models into action models (Proposition 24), and vice versa (Proposition 22).

7.2. Update expressivity

Considering that [⊗]ϕ , [↑]ϕ and [�]ϕ are equivalent for basic modal formulas ϕ (Theorem 28), and that [⊗] and [↑]
have the same update expressivity (Section 5), one might expect all three logics AAML, AAUML, and RML to have the same
update expressivity. This, however, is not so, because [⊗] and [↑] are finitary quantifiers — they quantify over, respectively,
finite action models and over finite arrow update models — whereas refinements can be infinitary.

For one example, consider the relational model N consisting of all valuations, with the universal relation on that domain
for all agents, and any state t in that domain. Clearly, the restriction of N to the singleton model consisting of t (wherein
the agents have common knowledge of the valuation in t) is a refinement of (N, t). It can be obtained by successively
announcing the value of each of the infinite number of atoms. However, it cannot be obtained by a single announcement
(or, equivalently, by any finite sequence of those).

For another example, consider the models M , with as single state s0, and M ′ , with s0 as its leftmost state, in Fig. 10.
The pointed model (M ′, s0) is a refinement of (M, s0). But M ′ contains infinitely many states that are not bisimilar to one
another. Furthermore, every arrow update model U in the logical language is finite, so every product of U with M is finite
(and therefore contains finitely many non-bisimilar states). As a result, there is no (U , o) such that (M ′, s0) is bisimilar to
(M ∗ U , (s, o)).

a

s0

· · ·
a a a a

a a

a

a

a

a

s0

Fig. 10. Arbitrary arrow updates and refinements are incomparable.

It follows that arbitrary arrow updates are not at least as update expressive as refinements. But it also follows that
refinements are not at least as update expressive as arbitrary arrow updates, since you cannot choose to exclude the above
model (M ′, s0) when performing a refinement in (M, s0).

Proposition 29. RML and AAUML are incomparable in update expressivity.

And therefore RML and AAML are also incomparable. The reason that [↑]ϕ and [�]ϕ (and [⊗]ϕ) are nonetheless equiv-
alent is that while there is no (U , o) such that (M ∗ U , (s0, o)) is bisimilar to (M ′, s0), it is the case that for every n there is
an (Un, on) such that (M ∗ Un, (s0, on)) is n-bisimilar to (M ′, s0). Since every formula in the languages under consideration
is of finite depth, such finite approximations of M ′ suffice.

Finally, we should note that the incomparability already applies to the language for RML with only the [�] modality. The
language above, as in [18], has [�]B modalities for any subgroup B ⊆ A, meaning that, modulo bisimulation, only arrows
in B are removed from a relational model. Similarly to the argument above it follows that this would only further increase
expressivity.

8. Conclusions and further research

Conclusions. We presented arbitrary arrow update model logic (AAUML). We provided an axiomatization of AAUML, which
also demonstrates that AAUML is decidable and equally expressive as multi-agent modal logic. We established arrow update
model synthesis for AAUML. We determined the update expressivity hierarchy including AAUML and many other update
logics, including other arrow update logics, action model logics, and refinement modal logic.

Further research on B-restricted arrow update synthesis. Let B be any subset of the set of all agents. Building upon the B-
refinements of [18] and motivated by a similar approach used in [17], a variant of the synthesis problem for AAUML is to
consider B-restricted arrow update models. Roughly speaking, a B-restricted arrow update model represents an event where
only the agents in B can gain more factual information, while the agents outside B remain at least as uncertain as they

H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 27
were before the event. The B-restricted synthesis problem can be solved in a very similar way to the unrestricted problem
that we presented in this paper.

Similarly to how arrow update models have the same update expressivity as action models and refinements, B-restricted
arrow update models have the same update expressivity as B-restricted action models, and B-refinements have larger
update expressivity.

Formally introducing B-restricted arrow update models, and showing that the results apply there as well, would require
a lot of complicate notation and several complex definitions. So for the sake of readability we did not include them in this
paper.

Knowledge and belief. Arrow updates result in changes of knowledge and belief. Of particular interest are therefore updates
that preserve the S5 or KD45 nature of relational models. It is unclear how to enforce such preservation semantically,
as discussed in Section 2.4. Such issues need to be resolved in order to find an axiomatization for arrow update logic, or
arrow update model logic, or quantified versions of these, for the class S5 or KD45. These well-known problems [7,16]
are related to similar issues for refinement modal logic, as refinement also is relational change. Non-trivial S5 and KD45
versions of refinement modal logic have been proposed in work by Hales et al. [35,36], and particular mention deserves
Hales’ Ph.D. thesis [26, Section 9.3, Section 9.4] wherein the axiomatization AAUML is adapted to the classes KD45 and S5,
respectively. These diverse results might inspire similar solutions for truly ‘epistemic’ arrow update logics.

Work in progress on the complexity of synthesis. We have shown that it is possible to perform synthesis for AAUML, and
described an algorithm that does this synthesis. We have not, however, discussed the computational complexity of that
algorithm. The complexity is non-elementary. The non-elementary blowup occurs when 〈↑〉 operators are nested. In general,
if ϕ is a basic modal formula, then the procedure outlined in this paper allows us to find a basic modal formula ϕ′ that
is equivalent to 〈↑〉ϕ , but the size of this ϕ′ is, in the worst case, exponential in the size of ϕ . As a result, a formula ψ
containing n nested 〈↑〉 operators can be translated to an equivalent formula ψ ′ of modal logic using this method, but both
the formula ψ ′ and the arrow update model synthesized for the outermost 〈↑〉 operator will have experienced exponential
blowup n times, resulting in a non-elementary blowup overall. We suspect that this is unavoidable, i.e., that the difficulty
of the synthesis problem is non-elementary. We do not, for now, have a hardness proof, however.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

Hans van Ditmarsch is also affiliated to IMSc, Chennai, India. Support from ERC project EPS 313360 is kindly acknowl-
edged. We are very grateful to the reviewers of the journal for their comments.

References

[1] P. Blackburn, J. van Benthem, F. Wolter (Eds.), Handbook of Modal Logic, Elsevier, 2006.
[2] H. van Ditmarsch, J. Halpern, W. van der Hoek, B. Kooi (Eds.), Handbook of Epistemic Logic, College Publications, 2015.
[3] H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic epistemic logic with assignment, in: Proc. of 4th AAMAS, ACM, 2005, pp. 141–148.
[4] J. van Benthem, J. van Eijck, B. Kooi, Logics of communication and change, Inf. Comput. 204 (11) (2006) 1620–1662.
[5] J. Plaza, Logics of public communications, in: Proc. of the 4th ISMIS, Oak Ridge National Laboratory, 1989, pp. 201–216.
[6] A. Baltag, L. Moss, S. Solecki, The logic of public announcements, common knowledge, and private suspicions, in: Proc. of 7th TARK, Morgan Kaufmann,

1998, pp. 43–56.
[7] B. Kooi, B. Renne, Arrow update logic, Rev. Symb. Log. 4 (4) (2011) 536–559.
[8] J. Gerbrandy, W. Groeneveld, Reasoning about information change, J. Log. Lang. Inf. 6 (1997) 147–169.
[9] B. Kooi, Expressivity and completeness for public update logics via reduction axioms, J. Appl. Non-Class. Log. 17 (2) (2007) 231–254.

[10] B. Kooi, B. Renne, Generalized arrow update logic, in: Proc. of 13th TARK, 2011, pp. 205–211, poster presentation.
[11] H. van Ditmarsch, Knowledge Games, Ph.D. thesis, University of Groningen, 2000, iLLC Dissertation Series DS-2000-06.
[12] B. Kooi, Knowledge, Chance, and Change, Ph.D. thesis, University of Groningen, 2003, iLLC Dissertation Series DS-2003-01.
[13] G. Aucher, Characterizing updates in dynamic epistemic logic, in: Proceedings of Twelfth KR, AAAI Press, 2010.
[14] J. van Eijck, F. Sietsma, Y. Wang, Composing models, J. Appl. Non-Class. Log. 21 (3–4) (2011) 397–425.
[15] P. Balbiani, A. Baltag, H. van Ditmarsch, A. Herzig, T. Hoshi, T.D. Lima, ‘Knowable’ as ‘known after an announcement’, Rev. Symb. Log. 1 (3) (2008)

305–334.
[16] H. van Ditmarsch, W. van der Hoek, B. Kooi, L. Kuijer, Arbitrary arrow update logic, Artif. Intell. 242 (2017) 80–106.
[17] J. Hales, Arbitrary action model logic and action model synthesis, in: Proc. of 28th LICS, IEEE, 2013, pp. 253–262.
[18] L. Bozzelli, H. van Ditmarsch, T. French, J. Hales, S. Pinchinat, Refinement modal logic, Inf. Comput. 239 (2014) 303–339.
[19] T. French, H. van Ditmarsch, Undecidability for arbitrary public announcement logic, in: Advances in Modal Logic, vol. 7, College Publications, London,

2008, pp. 23–42.
[20] H. van Ditmarsch, W. van der Hoek, L. Kuijer, The undecidability of arbitrary arrow update logic, Theor. Comput. Sci. 693 (2017) 1–12.
[21] J. van Benthem, An essay on sabotage and obstruction, in: Mechanizing Mathematical Reasoning, in: LNCS, vol. 2605, Springer, 2005, pp. 268–276.
[22] G. Aucher, P. Balbiani, L. Fariñas del Cerro, A. Herzig, Global and local graph modifiers, Electron. Notes Theor. Comput. Sci. 231 (2009) 293–307.

http://refhub.elsevier.com/S0890-5401(20)30032-8/bib181B154FEA0BF44191B7CC1FD5F2B66Es1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib99FBFF254BDFA1506132BB6B9702BD6Bs1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibB072E64A382929162E07FF3C8062B91Es1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib6716FC6907BDFA750AFBE09CAA8CC118s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib814A223915D8049DC1DA9582FD018FCBs1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibCACC721E9C626868E841AB726B0C92F8s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibCACC721E9C626868E841AB726B0C92F8s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib59606848AA3DAB660C146CC09D8D31CBs1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib4372E5E73D26A96CF0BCDDFB91DC62D1s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib19DA7F7AFA4947CF9F1820A7D5D0ED35s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib88C00FB1695F41CD5DFDE3E99E5D9576s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib63AD72E0DBFC667C0264E2269C9CA0E3s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib8B0A0CD01DF007292E2E7A41A7B4E57Cs1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib98F65FB5F1BCDC0C743DD7B7B9F5762Bs1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib1087286DB1B95DE882CB80CC7A7C7B82s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib40AFED12E0183F1DF72399655E74BB49s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib40AFED12E0183F1DF72399655E74BB49s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib6E5AA6AF5059CD757E6FD98EC062C9B5s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibE3D051069C9458814D40B3239893D1F8s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib3523DDA15AA45A5FC4FE99B0DE14B608s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib7006284D13DEDEAB3FE0A86A231B4998s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib7006284D13DEDEAB3FE0A86A231B4998s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib6BC690E92353AD8743F74030DA5CD1AAs1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib1CA133C4ECB58BFA6C90225F6C93E554s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibA75B0A4E3A8FE15F50447CE2B2D3ED96s1

28 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
[23] C. Areces, R. Fervari, G. Hoffmann, Moving arrows and four model checking results, in: Proc. of 19th WoLLIC, in: LNCS, vol. 7456, Springer, 2012,
pp. 142–153.

[24] H. van Ditmarsch, B. Kooi, Semantic results for ontic and epistemic change, in: Proc. of 7th LOFT, in: Texts in Logic and Games, vol. 3, Amsterdam
University Press, 2008, pp. 87–117.

[25] T. French, J. Hales, E. Tay, A composable language for action models, in: R. Goré, B. Kooi, A. Kurucz (Eds.), Advances in Modal Logic, vol. 10, College
Publications, 2014, pp. 197–216.

[26] J. Hales, Quantifying Over Epistemic Updates, Ph.D. thesis, School of Computer Science & Software Engineering, University of Western Australia, 2016,
https://research -repository.uwa .edu .au /en /publications /quantifying -over-epistemic -updates.

[27] G. Aucher, DEL-sequents for progression, J. Appl. Non-Class. Log. 21 (3–4) (2011) 289–321.
[28] J. van Eijck, J. Ruan, T. Sadzik, Action emulation, Synthese 185 (1) (2012) 131–151.
[29] J. Gerbrandy, Bisimulations on Planet Kripke, Ph.D. thesis, University of Amsterdam, 1999, iLLC Dissertation Series DS-1999-01.
[30] H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic Epistemic Logic, Synthese Library, vol. 337, Springer, 2008.
[31] H. van Ditmarsch, J. van Eijck, F. Sietsma, Y. Wang, On the logic of lying, in: Games, Actions and Social Software, in: LNCS, vol. 7010, Springer, 2012,

pp. 41–72.
[32] D. Steiner, A system for consistency preserving belief change, in: Proc. of the ESSLLI Workshop on Rationality and Knowledge, 2006, pp. 133–144.
[33] H. van Ditmarsch, Dynamics of lying, Synthese 191 (5) (2014) 745–777.
[34] T. Bolander, H. van Ditmarsch, A. Herzig, E. Lorini, P. Pardo, F. Schwarzentruber, Announcements to attentive agents, J. Log. Lang. Inf. 25 (1) (2016)

1–35.
[35] J. Hales, T. French, R. Davies, Refinement quantified logics of knowledge, Electron. Notes Theor. Comput. Sci. 278 (2011) 85–98.
[36] J. Hales, T. French, R. Davies, Refinement quantified logics of knowledge and belief for multiple agents, in: Advances in Modal Logic, vol. 9, College

Publications, 2012, pp. 317–338.

http://refhub.elsevier.com/S0890-5401(20)30032-8/bib968F25E776EAB97DB3DAEBBEEE0F9C93s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib968F25E776EAB97DB3DAEBBEEE0F9C93s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib8111807FA586657A995E6ABE77EAFE3As1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib8111807FA586657A995E6ABE77EAFE3As1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibDC9E76DF4C8BC611B4406F003F28332As1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibDC9E76DF4C8BC611B4406F003F28332As1
https://research-repository.uwa.edu.au/en/publications/quantifying-over-epistemic-updates
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib49342FB7B876117E81CBBCC11F82518Es1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibDAE35C54FD5BC1953AF04ECBFE5A4546s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib67DF0D4C526957F5F520FCAEBC7E5B61s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibBEE57A2695065D4D396BE5A94B917F59s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibEAEBECA487B4D7E1B34396C47B6B7965s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibEAEBECA487B4D7E1B34396C47B6B7965s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib202715CBD179899B8D48CA55EEE36EBCs1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib77C7FE7ADE3E945CCC07FABEA81F3128s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibEC08E2B7EA28A5366A8DEAB2FD904884s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bibEC08E2B7EA28A5366A8DEAB2FD904884s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib033A618E6599928DEACC93D5D66CAD12s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib8A4634C4682E8D4DEA2DA289ADA37A52s1
http://refhub.elsevier.com/S0890-5401(20)30032-8/bib8A4634C4682E8D4DEA2DA289ADA37A52s1

	Arrow update synthesis
	1 Introduction
	2 Arbitrary arrow update model logic
	2.1 Structures
	2.2 Syntax
	2.3 Semantics
	2.4 Example

	3 Arrow update synthesis
	3.1 Reduction axioms for arrow update models
	3.2 Reduction axioms for the arrow update model quantifier
	3.3 Reduction
	3.4 Synthesis
	3.5 Example

	4 Axiomatization
	5 Update expressivity
	5.1 Expressivity
	5.2 Update expressivity hierarchy

	6 Arrow updates versus action models
	6.1 Action model logic
	6.2 From action models to arrow updates
	6.3 From arrow updates to action models
	6.4 Relative update expressivity
	6.5 Applications illustrating the succinctness of arrow updates

	7 Arbitrary arrow updates versus refinements
	7.1 Refinement modal logic
	7.2 Update expressivity

	8 Conclusions and further research
	Acknowledgments
	References

