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In this contribution we present arbitrary arrow update model logic (AAUML). This is 
a dynamic epistemic logic or update logic. In update logics, static/basic modalities are 
interpreted on a given relational model whereas dynamic/update modalities induce 
transformations (updates) of relational models. In AAUML the update modalities formalize 
the execution of arrow update models, and there is also a modality for quantification over 
arrow update models. Arrow update models are an alternative to the well-known action 
models. We provide an axiomatization of AAUML. The axiomatization is a rewrite system 
allowing to eliminate arrow update modalities from any given formula, while preserving 
truth. Thus, AAUML is decidable and equally expressive as the base multi-agent modal 
logic. Our main result is to establish arrow update synthesis: if there is an arrow update 
model after which ϕ, we can construct (synthesize) that model from ϕ. We also point out 
some pregnant differences in update expressivity between arrow update logics, action model 
logics, and refinement modal logic.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Modal logic. In modal logic we formalize that propositions may not be merely true or false, but that they are necessarily or 
possibly true or false, or that they may be desirable, or forbidden, or true later, or never, or that they are known. A common 
setting is for such modal propositions to be interpreted in relational models, also known as Kripke models. They consist of a 
domain of abstract objects, called states or worlds; then, given a set of labels, often representing agents, for each such agent 
a binary relation between those states; and, finally, a valuation of atomic propositions on the domain, typically seen as a 
unary relation, i.e., a property satisfied on a subset of the domain. The truth of a modal proposition is relative to a state in 
the relational model, called the actual state or the point of the model. The unit of interpretation is thus a pointed model: a 
pair consisting of a relational model and an actual state.

If a pair (s, s′) is in the relation for a this can mean that after executing action a in state s the resulting state is s′ . But 
it can also mean that agent a considers state s′ desirable in case she is in state s. The interpretation that we focus on, is 
that of information. That is, it is consistent with a’s information in state s that the state would be s′ . In state s it is true that 
agent a knows ϕ (or believes ϕ , depending on the properties of the relation), notation �aϕ , if the formula ϕ is true in all 
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states s′ accessible from s, i.e., for all s′ with (s, s′) in the relation for a. The modal logics using that kind of interpretation 
of modalities are called epistemic logics [1,2].

As an example, consider two agents a, b (commonly known to be) uncertain about the truth of a propositional variable 
p. The uncertainty of a and b can be pictured as follows. We ‘name’ the states with the value of the variable p. The actual 
state is framed. Pairs in the accessibility relation are visualized as labelled arrows. In the actual state: p is true, agent a
does not know p because she considers a state possible wherein p is false (formally ¬�a p), agent a also does not know ¬p
because she considers a state possible wherein p is true (formally ¬�a¬p, also written as ♦a p), and similarly for agent b. 
Agent a also knows that she is ignorant about p, as this is true in both states that she considers possible. The accessibility 
relations for a and b are both equivalence relations. This is always the case if the modalities represent knowledge.

¬p pab

ab
ab

p

Update logic. In this work we focus on modal logics that are update logics. Apart from the modalities that are interpreted 
in a relational model, they have other modalities that are interpreted by transforming a relational model (and by then 
interpreting the formulas bound by that modality in the transformed model). If the modal logic is an epistemic logic, update 
logics are called dynamic epistemic logics. To distinguish them we call the former static and we call the latter dynamic.

The updates X that we consider can be defined as transformers of relational models. This transformation induces a 
binary update relation between pointed models. To an update relation corresponds an update modality (often also called 
update) that is interpreted with this relation, so we can see those as [X] or 〈X〉, where [X]ϕ means that ϕ is true in all 
pointed models transformed according to the X relation, and 〈X〉ϕ that there is a pair of pointed models in the relation. 
Given a relational model we can change its domain of states, the relations between the states, or the valuations of atomic 
propositions, or two or more of those at the same time. There are therefore many options for change. Change the valuation 
of a model is also known as factual change [3,4]. Update involving factual change is an interesting topic, but it is outside the 
scope of the current paper.

Public announcement logic. The basic update for states is the model restriction, and the basic update operation interpreted 
as a model restriction is a public announcement. The logic with epistemic modalities and public announcements is public 
announcement logic (PAL) [5,6]. A public announcement of ϕ restricts the domain to all states where the announced formula 
ϕ is true, thereby decreasing the uncertainty of the agents. As a result of the domain restriction, the relations and the 
valuation are adjusted in the obvious way. A condition for the transformation is that the actual state is in the restriction. 
This means that the announcement formula is true when announced.

As an example, after the public announcement of p, both a and b know that p:

¬p pab

ab
ab

⇒ p

ab

Arrow update logic. The basic update for relations is the relational restriction, i.e., a restriction of the arrows: a pair in the 
relation is called an ‘arrow’. This leaves all states intact, although some may have become unreachable. In arrow update 
logic (AUL), proposed in [7] we specify which arrows we wish to preserve, by way of specifying what formulas should be 
satisfied at the source (state) of the arrow and the target (state) of the arrow. This determines the model transformation. 
Such a specification is called an arrow update. The logic AUL contains modalities for arrow updates.

Given initial uncertainty about p with both agents, a typical arrow update is the action wherein Anne (a) opens an 
envelope containing the truth about p while Bill (b) observes Anne reading the contents of the letter. We preserve all 
arrows satisfying one of p →a p, ¬p →a ¬p, and � →b �. Therefore, only two arrows disappear, ¬p →a p and p →a ¬p.

¬p pab

ab
ab

⇒ ¬p pb

ab
ab
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The boundary between state elimination and arrow elimination is subtle. If p is true, the following arrow update with 
� →a p, � →b p is the same update as a public announcement of p. This is because there is no arrow from the p state to 
the ¬p state after the update. Therefore, if p is true, the ¬p state does not matter. In another formalism this arrow update 
is known as the arrow elimination semantics of public announcement [8,9].

¬p pab

ab
ab

⇒ ¬p pb

ab

Generalizations. In PAL and AUL the complexity (the number of states) of the relational model cannot increase. By general-
izing the mechanism underlying state elimination and arrow elimination we can achieve that, and thus express more model 
transformations. This increases their update expressivity. From the perspective of information change, this adds uncertainty 
about what is happening. We obtain action models [6] as a generalization of public announcements, and arrow update models
[10] as a generalization of arrow updates.

Action model logic. Action model logic (AML) was proposed by Baltag, Moss and Solecki in [6]. An action model is like a 
relational model but the elements of the domain are called actions instead of states, and instead of a valuation a precondition
is assigned to each domain element. The transformed relational model is then the modal product of the relational model 
and the action model, restricted to (state, action) pairs where the action can be executed in that state. We refer to Section 6
for a formal introduction.

An example is the action as above wherein Anne reads the contents of a letter containing p or ¬p, but now with 
the increasing uncertainty that Bill is uncertain whether Anne has read the letter (and that they are both aware of these 
circumstances). The action model is not depicted (details are in Section 6). The model transformation is as follows. In the 
resulting framed state, a knows that p, but b considers it possible that a is uncertain about p, i.e., �a p ∧♦b¬(�a p ∨�a¬p). 
In the figure we assume transitivity of the relation for b.

¬p ¬p pab

ab
ab

⇒ ¬p p

¬p p

ab

b

b b

ab ab

ab ab

Similar logics (or semantics) for action composition are found in [11,12,4,13,14]. Action model logic is often referred to 
as (the) dynamic epistemic logic. As said, we use the latter more generally, namely to denote any update logic with an 
epistemic interpretation.

Arrow update model logic. Generalized arrow update logic [10] is a (indeed) generalization of arrow update logic where the 
dynamic modalities for information change formalize execution of (pointed) arrow update models, structures akin to the 
action models of action model logic. In this contribution, instead of generalized arrow update logic we call it arrow update 
model logic (AUML). The arrow updates of [7] correspond to singleton arrow update models. The next Section 2 formally 
introduces them. The above is also an example of arrow update model execution — Section 6 explains how to get action 
models from arrow update models and vice versa, and to what extent they define the same update.

Quantification over information change. Another extension of update logics is with quantification over updates. Arbitrary 
public announcement logic (APAL) adds quantification over public announcements to PAL [15]. Arbitrary arrow update logic
(AAUL) [16] extends arrow update logic with quantifiers over information change induced by arrow updates: it contains 
dynamic modalities formalizing that there is an arrow update after which ϕ . Arbitrary action model logic (AAML) by Hales [17]
add quantifiers over action models to AML. In arbitrary arrow update model logic (AAUML), the topic of this paper, we add 
quantifiers over arrow update models to the logical language. It is like Hales’ arbitrary action model logic. Refinement modal 
logic (RML) [18] has a modality representing quantification over updates, but does not have (deterministic/concrete) update 
modalities in the object language to quantify over. We show that the AAML and AAUML quantifier behave much (but not 
quite) like the refinement quantifier in RML. Section 7 is devoted to it.

Fig. 1 gives an overview of the different logics discussed in the paper, in their relation to AAUML. The four logics in the 
left square are based on state manipulation, the four logics in the right square are based on arrow manipulation. Entirely 
on the left we find the base modal logic ML and the logic RML, that is also arrow manipulating.
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ML

RML

PAL

APAL

AML

AAML

AUL

AAUL

AUML

AAUML

Fig. 1. An overview of update logics discussed in the paper. Horizontal arrows informally represent more complex updates. Vertical arrows informally 
represent quantification over updates. The arrows can be interpreted as syntactic extensions (modulo the names of quantifiers) or as semantic generalizations. 
Assume transitive closure.

All these logics are equally expressive as ML and are decidable, which can be shown by truth-preserving rewriting 
procedures to eliminate updates (for AAUML this is one of the results of the paper), except for APAL and AAUL, which 
are more expressive and undecidable [15,19,16,20]. However, the logics greatly differ in update expressivity, as the typical 
examples above already demonstrated. See also Sections 5–7. Finally, it should be mentioned that all the logics are invariant 
under bisimulation. This is because the parameters of the model transforming dynamic modalities and quantifiers are (model 
restrictions induced by) formulas.

There are many other updates and update logics that we do not consider in this paper. In particular we do not consider 
updates X that can only be defined as pointed model transformers (that is, they cannot be globally defined on the entire 
model; they are defined locally: how they transform the model depends on the actual state). If such were the definition 
of an update, even the interpretation of a static modality can be seen as an update, namely transforming the model with 
point s into the model with point s′ , where the point has shifted given a pair (s, s′) in the relation for an agent. Such local 
update logics are often more expressive than modal logic, are often undecidable, are typically not invariant under (standard) 
bisimulation, and may lack axiomatizations. Examples are [21–23]. In [23] not only relational restriction is considered but 
also relational expansion (‘bridge’) and relational change that is neither restriction nor expansion, such as reversing the 
direction of arrows (‘swap’). It should finally be noted that the distinction between static modalities, interpreted in a model, 
and dynamic modalities, interpreted as updates, is not rigid: unifying perspectives include [4].

Synthesis. For these update logics we can ask whether there is an update that achieves a certain goal. For the logics 
without quantification this question cannot be asked in the object language but only meta-logically. That is, we can ask 
whether there is an update X such that 〈X〉ϕ is true. For the update logics with quantification this question can be asked 
in the object language. Let 〈?〉 be (the existential version of) that quantifier. Then 〈?〉ϕ asks whether there is an update X
that makes ϕ true.

Only knowing whether there is an update that achieves a goal is not very satisfying; we would also like to know which
update, if any, achieves the goal. So we would like to know not only whether the goal is achievable but also how it can be 
achieved. The process of constructing this update that achieves the goal is known as synthesis.

Formally, the synthesis problem for a given type of update takes as input a formula ϕ , and gives as output an update X
of that type such that, whenever ϕ can be achieved, then X achieves ϕ . In symbols, this is the validity of 〈?〉ϕ → 〈X〉ϕ .

This is a rather strong goal. We do not consider it sufficient to find, for every pointed model (M, s), an update X(M,s)
such that (M, s) satisfies 〈?〉ϕ → 〈X(M,s)〉ϕ . We want one single update Xϕ that achieves ϕ in every model where ϕ is 
achievable. Because this goal is so strong, there is, in general, no guarantee that synthesis is possible.

For PAL this strong kind of synthesis is impossible. If (M1, s1) satisfies 〈ψ1〉ϕ and (M2, s2) satisfies 〈ψ2〉ϕ , so if ϕ can 
be achieved in two different situations using two different public announcements, then there is typically no unifying public 
announcement ψ such that (M1, s2) satisfies 〈ψ〉ϕ and (M2, s2) satisfies 〈ψ〉ϕ .1

For AUL this strong kind of synthesis is also not possible. But, somewhat surprisingly, in [17], Hales showed that this 
synthesis is possible for AML. This result was surprising for the following reason. Hales obtained his synthesis result with 

1 For example, consider the four-state model below; p means that p is false in that state, etc. Both states where p, q, r are all true satisfy that 〈?〉(�a p ∧
¬�b p). In the top-left pqr-state this is true because 〈q〉(�a p ∧¬�b p) is true, whereas in the bottom-right pqr-state this is true because 〈r〉(�a p ∧¬�b p)

is true. However, there is no announcement ϕ such that 〈ϕ〉(�a p ∧ ¬�b p) is truth in both pqr-states. Assuming that there were such an announcement 
easily leads to a contradiction.

pqr pqr

pqr pqr

a

a

b b

ab ab

ab ab
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refinement modalities as quantifiers. It was already known that finite action model execution results in a refinement of the 
current relational model, but also that the other direction does not hold: there are refinements (i.e., updates) that can only 
be achieved by executing an infinite action model [24]. However, as the synthesis is with respect to making a given formula 
ϕ true, a finite syntactic object, synthesis for AML was after all possible.

In this contribution we show that synthesis is also possible for AUML. That is, for a given goal formula ϕ , we can 
construct an arrow update model X such that

For all (M, s): there is an arrow update model Y such that (M, s) satisfies 〈Y 〉ϕ , if and only if (M, s) satisfies 〈X〉ϕ .

In AAUML we also have a quantifier over arrow update models. Therefore, in that logic the synthesis translates to the 
above-mentioned validity 〈?〉ϕ → 〈X〉ϕ . In AUML / AAUML we synthesize a (single-)pointed arrow update model, whereas 
for AAUML Hales synthesizes a multi-pointed action model, and it can be easily shown that this cannot be single-pointed.

Results in the paper. In this contribution we present arbitrary arrow update model logic (AAUML), that further extends arrow 
update model logic AUML, namely with dynamic modalities formalizing that there is an arrow update model after which ϕ . For 
this logic AAUML we obtain various results. We provide an axiomatization of AAUML. The axiomatization is a rewrite system 
allowing to eliminate dynamic modalities from any given formula, while preserving truth. Thus, unlike AAUL, AAUML is 
decidable, and equally expressive as multi-agent modal logic. We establish arrow update model synthesis: if there is an arrow 
update model after which ϕ , we can construct (synthesize) that model from ϕ . We define a notion of update expressivity and 
we determine the relative update expressivity of AAUML and other arrow update logics and action model logics, and RML.

Overview of content. Section 2 presents the syntax and semantics of arbitrary arrow update model logic, AAUML, and ele-
mentary structural notions. In Section 3 we describe the procedure for synthesizing arrow update models. In that section 
we also introduce a number of validities that are useful when introducing an axiomatization for AAUML, which we do in the 
subsequent Section 4. Section 5 introduces the notion of update expressivity. Section 6 compares AAUML and AAML, and in 
particular their update expressivity. This comparison also includes examples of arrow update models that have exponentially 
larger corresponding action models. Section 7 compares AAUML to RML.

2. Arbitrary arrow update model logic

Throughout this contribution, let A be a finite set of agents and let P be a disjoint countably infinite set of propositional 
variables (or atoms).

2.1. Structures

A relational model is a triple M = (S, R, V ) with S a non-empty domain (set) of states (also denoted D(M)), R a function 
assigning to each agent a ∈ A an accessibility relation Ra ⊆ S × S , and V : P → S a valuation function assigning to each 
propositional variable p ∈ P the subset V (p) ⊆ S where the variable is true. For s ∈ S , the pair (M, s) is called a pointed 
relational model, and for T ⊆ S , the pair (M, T ) is called a multi-pointed relational model.

For any relation R on a domain X , instead of (x, y) ∈ R (where x, y ∈ X) we may write R(x, y) or xR y, and R(x) or Rx
for the set {y ∈ X | R(x, y)}. If R(x, y) we also say that R links x to y, or that there is an arrow from x to y. Relation R is: 
reflexive iff for all x ∈ X , R(x, x); serial iff for all x ∈ X there is y ∈ X such that R(x, y); transitive iff for all x, y, z ∈ X , if 
R(x, y) and R(y, z) then R(x, z); Euclidean iff for all x, y, z ∈ X , if R(x, y) and R(x, z) then R(y, z); an equivalence relation
iff it is reflexive, transitive, and Euclidean. Finally, for any Y , Z ⊆ X we let R(Y , Z) mean that for all y ∈ Y there is a z ∈ Z
such that R(y, z) and for all z ∈ Z there is a y ∈ Y such that R(y, z); this is known as relational lifting.

The class of relational models is known as K. The class of relational models where all accessibility relations are equiva-
lence relations is known as S5, and the class of relational models where all accessibility relations are serial, transitive, and 
Euclidean is known as KD45.

Let two relational models M = (S, R, V ) and M ′ = (S ′, R ′, V ′) be given. A non-empty relation R ⊆ S × S ′ is a bisimulation
if for all (s, s′) ∈ R and a ∈ A:

atoms s ∈ V (p) iff s′ ∈ V ′(p) for all p ∈ P ;
forth for all t ∈ S , if Ra(s, t), then there is a t′ ∈ S ′ such that R ′

a(s′, t′) and (t, t′) ∈ R;
back for all t′ ∈ S ′ , if R ′

a(s′, t′), then there is a t ∈ S such that Ra(s, t) and (t, t′) ∈R.

We write M ↔ M ′ (M and M ′ are bisimilar) iff there is a bisimulation between M and M ′ , and we write (M, s)↔ (M ′, s′)
((M, s) and (M ′, s′) are bisimilar) iff there is a bisimulation between M and M ′ linking s and s′ . Similarly, we write 
(M, T )↔ (M ′, T ′) iff there is a bisimulation between M and M ′ linking every state in T to a state in T ′ and linking every 
state in T ′ to a state in T .
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Using the above-defined notion of relational lifting, if M1 and M2 are sets of pointed models we say that M1 and M2
are bisimilar, denoted M1 ↔M2, if for every (M1, s1) ∈ M1 there is an (M2, s2) ∈ M2 such that (M1, s1)↔ (M2, s2) and 
for every (M2, s2) ∈M2 there is an (M1, s1) ∈M1 such that (M1, s2)↔ (M2, s2).2

We will now define arrow update models. We can think of them as follows. If you remove the valuation from a relational 
model you get a relational frame. We now decorate each arrow (pair in the accessibility relation for an agent) with two 
formulas in some logical language L: one for a condition that should hold in the source (state) of the arrow and the other 
that should hold in the target (state) of the arrow. The result is called an arrow update model.

Definition 1 (Arrow update model). Given a logical language L, an arrow update model U is a pair (O , R R) where O is a non-
empty domain (set) of outcomes (also denoted D(U )) and where R R is an arrow relation R R : A →P((O  ×L) × (O  ×L)).

For each agent a, the arrow relation links (outcome, formula) pairs to each other. We write R Ra for R R(a), and we write 
(o, ϕ) →a (o′, ϕ′) for ((o, ϕ), (o′, ϕ′)) ∈ R Ra , or even, if the outcomes are unambiguous, ϕ →a ϕ′ . Formula ϕ is the source 
condition and formula ϕ′ is the target condition of the a-labelled arrow from source o to target o′ . A pointed arrow update 
model, or arrow update, is a pair (U , o) where o ∈ O . Similarly, we define the multi-pointed arrow update model (U , Q ), where 
Q ⊆ O , known as well as arrow update. There is no confusion with the arrow updates of AUL [7], as those correspond to 
singleton pointed arrow update models.

Arrow update models are rather similar to the action models by Baltag et al. [6]. They are compared in Section 6.

2.2. Syntax

We proceed with the language and semantics of arbitrary arrow update model logic (AAUML).

Definition 2 (Syntax). The language L of AAUML consisting of formulas ϕ is inductively defined as

L � ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) |�aϕ | [U ,o]ϕ | [↑]ϕ
where p ∈ P , a ∈ A, and where U = (O , R R) with o ∈ O is an arrow update model with O finite and with R Ra finite for all 
a ∈ A, and with source and target conditions that are formulas ϕ .

The inductive nature of the definition may be unclear from the construct [U , o]ϕ . We should think of [U , o]ϕ as an n-ary 
operator where not only the formula bound by [U , o] is a formula but also all the source and target conditions in U .3 We 
read [U , o]ϕ as ‘after executing arrow update (U , o), ϕ (holds), and [↑]ϕ as ‘after an arbitrary arrow update, ϕ (holds)’. 
Other propositional connectives and dual diamond versions of modalities can be defined as usual by abbreviation: ♦aϕ :=
¬�a¬ϕ , 〈U , o〉ϕ := ¬[U , o]¬ϕ , and 〈↑〉ϕ := ¬[↑]¬ϕ . Expression ϕ[ψ/p] stands for uniform substitution of all occurrences 
of p in ϕ for ψ .

A formula is a modal formula if it has shape �aϕ , ♦aϕ , [↑]ϕ , 〈↑〉ϕ , [U , o]ϕ , or 〈U , o〉ϕ . The modal depth of a formula 
ϕ ∈ L is defined as: d(p) = 0, d(¬ϕ) = d(ϕ), d(ϕ ∧ ψ) = max(d(ϕ), d(ψ)), d(�aϕ) = d(〈↑〉ϕ) = d(ϕ) + 1, and d([U , o]ϕ =
d(U ) + d(ϕ) + 1, where d(U ) is the maximum modal depth of the source and target conditions occurring in U .

The propositional sublanguage is called Lpl (the propositional formulas). Adding the basic modal construct �aϕ to Lpl
yields Lml (the language of basic modal logic, the basic modal formulas). Additionally adding the construct [U , o]ϕ yields 
Lauml (the language of arrow update model logic). In the language L of AAUML, (modalities for) multi-pointed arrow update 
models are defined by abbreviation as [U , Q ]ϕ := ∧

o∈Q [U , o]ϕ . From here on we also consider such modalities as logical 
connectives, such that [U , Q ]ϕ is a formula in the logical language.

When doing synthesis, we will put formulas in disjunctive negation normal form. This fragment DNNF of L, that is inspired 
by the disjunctive normal form of propositional logic and the negation normal form of modal logic, is defined as

DNNF � χ ::= ψ | (χ ∨ χ)

ψ ::= ϕ | (ψ ∧ ψ)

ϕ ::= p | ¬p |�aχ | ♦aχ | [U ,o]χ | 〈U ,o〉χ | [↑]χ | 〈↑〉χ
where the source and target conditions in (U , o) are also formulas χ .

This means that a ϕ ∈ L is in disjunctive negation normal form if every subformula of ϕ is a disjunction of conjunctions 
of formulas that are an atom, or the negation of an atom, or that have one of �a, ♦a, [U , o], 〈U , o〉, [↑] or 〈↑〉 as main 

2 For the purpose of bisimilarity, we could have treated a multi-pointed model (M, T ) as a set of pointed models {(M, t) | t ∈ T }, so that 
(M1, T1)↔ (M2, T2) if and only if for every t1 ∈ T1 there is a t2 ∈ T2 such that (M1, t1)↔ (M2, t2), and vice versa. As a union of bisimulations is again a 
bisimulation, that would have defined the same notion as above.

3 The BNF informatics-style presentation obscures the inductive nature of the language definition, because the source and target conditions of (U , o) are 
implicit. The mathematics-style presentation of that clause may be clearer:

Let ϕ ∈ L, let U = (O , R R) be an arrow update with source and target conditions ϕ1, . . . , ϕn ∈ L and such that O and R Ra for all a ∈ A are finite, and 
let o ∈ O . Then [U , o]ϕ ∈ L.
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connective. In particular, this means that formulas have to be in DNNF at every modal depth. So, for example, p ∨ �(q ∨
(♦p ∧ ¬q)) is in DNNF, while p ∨�(q ∨ ¬(¬♦p ∨ q)) is not.

2.3. Semantics

We continue with the semantics. The semantics are defined by induction on ϕ ∈ L, and simultaneously with the execu-
tion of arrow update models.

Definition 3 (Semantics). Let a relational model M = (S, R, V ), a state s ∈ S , an arrow update model U = (O , R R), and a 
formula ϕ ∈L be given. The truth (or satisfaction) of ϕ in (M, s) is defined by induction on ϕ .

M, s |= p iff s ∈ V (p)

M, s |= ¬ϕ iff M, s �|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= �aϕ iff M, t |= ϕ for all (s, t) ∈ Ra

M, s |= [U ,o]ϕ iff M ∗ U , (s,o) |= ϕ where M ∗ U is defined in (�)

M, s |= [↑]ϕ iff M, s |= [U ,o]ϕ for all (U ,o) satisfying (��)

(�): M ∗ U = (S ′, R ′, V ′) is defined as

S ′ = S × O
For all a ∈ A,ϕ,ϕ′ ∈ L, s, s′ ∈ S,o,o′ ∈ O :

((s,o), (s′,o′)) ∈ R ′
a iff (s, s′) ∈ Ra, (o,ϕ) →a (o′,ϕ′), M, s |= ϕ, and M, s′ |= ϕ′

For all p ∈ P :
V ′(p) = V (p) × O

(��): (U , o) is an arrow update with all source and target conditions in Lml .
Formula ϕ is valid in M , notation M |= ϕ , iff M, s |= ϕ for all s ∈ S; and ϕ is valid iff for all relational models M we have 

that M |= ϕ . Formulas ϕ, ψ ∈ L are equivalent iff for all M = (S, R, V ) and for all s ∈ S , M, s |= ϕ iff M, s |= ψ . The set of 
validities, also more properly known as the logic, is called AAUML.

Formulas ϕ and ψ from different languages will also be called equivalent if they satisfy the above condition. The term 
AAUML will also continue to be informally used for arbitrary arrow update logic. The restriction of arrow formulas to Lml in 
the semantics of [↑]ϕ is to avoid circularity of the semantics, as [↑]ϕ could otherwise itself be one of those arrow formulas. 
However, because we will prove that AAUML is as expressive as basic modal logic, we also have

M, s |= [↑]ϕ iff M, s |= [U ,o]ϕ for all (U ,o)

without any restriction on the source and target conditions of U . We will prove this property in Proposition 16, later.
We conclude this subsection by noting two relatively simple properties of AAUML that will be useful in later sections. 

Firstly, AAUML is invariant under bisimulation, i.e., if (M, s)↔ (M ′, s′) then for all ϕ ∈L we have M, s |= ϕ iff M ′, s′ |= ϕ . In 
[16, Lemma 3] it was shown that AUML is invariant under bisimulation. The proof given in [16] can easily be extended to a 
proof that AAUML is also invariant under bisimulation.

Secondly, every formula ϕ ∈L is equivalent to a formula ϕ′ that is in DNNF. Proving the existence of such ϕ′ is concep-
tually simple but rather notationally complex. We therefore provide only an example, and trust that the reader can see that 
the demonstrated process can be generalized to any ϕ ∈ L. Suppose that ϕ = p ∧ ¬(�aψ1 ∧ ¬[U , o]ψ2). Our first step is to 
treat the non-propositional subformulas of ϕ as atoms, i.e., we treat the formula as p ∧ ¬(q1 ∧ ¬q2). This is a formula of 
propositional logic, so it is equivalent to a formula in disjunctive normal form: (p ∧ ¬q1) ∨ (p ∧ q2). Then we recall what q1
and q2 represent, and obtain (p ∧ ¬�aψ1) ∨ (p ∧ [U , o]ψ2). Using the fact that ¬�aψ1 is equivalent to ♦a¬ψ1, we find that 
ϕ is equivalent to (p ∧♦a¬ψ1) ∨ (p ∧ [U , o]ψ2). We then repeat this process for ¬ψ1, ψ2 and every formula χ that occurs 
as a source or target condition in U . The depth of ¬ψ1, ψ2 and every such χ is strictly lower than that of ϕ , so this process 
eventually terminates, resulting in formulas ψ ′

1, ψ ′
2 and χ ′ that are in DNNF and equivalent to ¬ψ1, ψ2 and χ , respectively. 

Let U ′ be the result of replacing every χ in U by the equivalent χ ′ . Then the formula (p ∧ ♦aψ
′
1) ∨ (p ∧ [U ′, o]ψ ′

2) is in 
DNNF and equivalent to ϕ .

2.4. Example

First consider the action of the introductory section of Anne reading a letter containing the truth about p while Bill 
remains uncertain whether she performs that action. The arrow update model producing the resulting information state is 
depicted in the upper part of Fig. 2. In the figure, an arrow → labelled with ϕ i ϕ′ and linking outcomes o, o′ stands for 
the arrow ϕ →i ϕ

′ between these outcomes, i.e., ((o, ϕ), (o′, ϕ′)) ∈ R Ri ; ϕ i j ϕ′ stands for ϕ →i ϕ
′ and ϕ → j ϕ

′ .
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In the resulting model Bill considers it possible that Anne knows p, that she knows ¬p, and that she still is uncertain 
about p: ♦b�a p ∧♦b�a¬p ∧♦b¬(�a p ∨�a¬p).

Next, consider the action of Anne privately learning that p while Bill remains unaware of her doing so. The arrow update 
model achieving that and the resulting relational model are depicted in the lower part of Fig. 2. In the resulting model it 
is true that, for example, Anne believes p but Bill incorrectly believes that Anne is uncertain about p: �a p ∧ �b¬(�a p ∨
�a¬p).

¬p pab

ab

ab

∗ •

◦

� b �

� ab �

p a p

¬p a ¬p

� b �

= (¬p,•) (p,•)

(¬p,◦) (p,◦)

ab

b

b b

ab ab

ab ab

¬p pab

ab

ab

∗ •

◦

� b �

� ab �

� a p

= (¬p,•) (p,•)

(¬p,◦) (p,◦)

ab

a

b b

ab ab

a

Fig. 2. Different ways of Anne learning that p.

The relation R Ra allows for multiple pairs between the same outcomes. This is necessary. For an example, the singleton 
arrow update with two reflexive arrows p →a q, r →a s (i.e., (o, p)R Ra(o, q) and (o, r)R Ra(o, s)) does not correspond to an 
arrow update where for any given agent a at most a single arrow links any two outcomes, see [7,10,16].

Arrow updates apply to any kind of relational model, and also in particular to relational models wherein all accessibility 
relations are equivalence relations, the class S5. These relations model knowledge of an agent. Relational models wherein all 
accessibility relations are serial, transitive, and Euclidean, are of the class KD45. These relations model consistent belief of 
an agent. As dynamic epistemic logics typically formalize change of knowledge or change of belief, i.e., epistemic change, of 
particular interest are therefore arrow updates that are S5-preserving or KD45-preserving, by which we mean that, given 
a relational model in class S5, the update will produce a relational model in class S5, and similarly for KD45.

The examples in this section are indeed typical in that sense. The first example is an S5-preserving update and the 
second example is a KD45-preserving update.

There is more to be learnt from these examples: the first arrow update ‘seems S5’ and the second update ‘seems 
KD45’. It is easy to make ‘seem’ precise: consider the following accessibility relation between outcomes induced by an 
arrow relation:

o →′
a o′ iff (o,ϕ) →a (o′,ϕ′) for some ϕ,ϕ′.

Let an arrow update be in class S5 if for all agents a, these induced →′
a are equivalence relations; and similarly for KD45. 

The first arrow update is therefore S5 and the second arrow update is KD45. However, an S5 arrow update of an S5
relational model may not result in an S5 relational model (whereas an S5 action model executed in an S5 relational model 
will always result in an S5 relational model). This is obvious, as the presence of arrows in the resulting model is also 
determined by source and target conditions. For example, if in the arrow update of the first example we change the arrow 
� →b � linking ◦ to • into ⊥ →b �, then the resulting model will no longer be reflexive. It is no longer S5. It is not known 
how to address such issues systematically (see Section 8).

As said, arrow updates are an alternative modelling mechanism to the better known action models. In Section 6, and in 
particular Subsection 6.5, we compare the two mechanisms in more detail, we will give action models that define the same 
update as the arrow updates in this section, and we will also present typical applications on which they perform differently.

3. Arrow update synthesis

The goal of synthesis for AUML is to find, given a goal formula ϕ , an arrow update (i.e., a pointed arrow update model) 
(U , o) that makes ϕ true. There are at least three ways in which we could interpret this goal, however.
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Definition 4 (Synthesis).

• The local synthesis problem takes as input a pointed model (M, s) and a goal formula ϕ . The output is an arrow update 
(U , o) such that M, s |= 〈U , o〉ϕ , or “NO” if no such arrow update exists.

• The valid synthesis problem takes as input a goal formula ϕ . The output is an arrow update (U , o) such that |= 〈U , o〉ϕ , 
or “NO” if no such arrow update exists.

• The global synthesis problem takes as input a goal formula ϕ . The output is an arrow update (U , o) such that for every 
pointed model (M, s), if there is some (U ′, o′) such that M, s |= 〈U ′, o′〉ϕ , then M, s |= 〈U , o〉ϕ .

We recall from the introduction that we take the third approach: when we say synthesis we mean global synthesis. An 
alternative, equivalent characterization of the global synthesis problem is that, for given ϕ , we want to find (U , o) such that, 
for all (M, s), M, s |= 〈↑〉ϕ ↔ 〈U , o〉ϕ (see Proposition 16).

Note that for the global synthesis problem, unlike the local synthesis problem and the valid synthesis problem, we do not 
allow “NO” as an output. As a result, it is not obvious that global synthesis for AUML is possible at all. We also recall from 
the introduction that synthesis is impossible for PAL and for AUL, but possible for AML [17]. We now show that synthesis 
for AUML is indeed also possible. Because our version of synthesis is global, it cannot depend on any specific model. So our 
synthesis process is purely syntactic.

In our synthesis, we make use of so-called reduction axioms. These reduction axioms are a set of validities that, when 
taken together, show that AAUML has the same expressive power as modal logic.

3.1. Reduction axioms for arrow update models

We start by considering the reduction axioms for the [U , o] operator.

Lemma 5 ([10]). Let (U , o) be an arrow update, p ∈ P , a ∈ A and ϕ, ψ ∈L. Then the following validities hold.

|= [U ,o]p ↔ p

|= [U ,o]¬ϕ ↔ ¬[U ,o]ϕ
|= [U ,o](ϕ ∧ ψ) ↔ ([U ,o]ϕ ∧ [U ,o]ψ)

|= [U ,o]�aϕ ↔
∧

(o,ψ)→a(o′,ψ ′)
(ψ → �a(ψ

′ → [U ,o′]ϕ))

Proof. The first three validities follow immediately from the semantics of [U , o]. The fourth validity also follows from the 
semantics, in the following way.

M, w |= [U ,o]�aϕ iff M ∗ U , (w,o) |= �aϕ
iff for all (w ′,o′) such that (w,o)Ra(w ′,o′) : M ∗ U , (w ′,o′) |= ϕ
iff for all (o′,ψ ′) and w ′ such that (o,ψ) →a (o′,ψ ′) and w Ra w ′ :

if M, w |= ψ and M, w ′ |= ψ ′ then M ∗ U , (w ′,o′) |= ϕ
iff for all (o′,ψ ′) such that (o,ψ) →a (o′,ψ ′) :

if M, w |= ψ then M, w |= �a(ψ
′ → [U ,o′]ϕ)

iff M, w |= ∧
(o,ψ)→a(o′,ψ ′)(ψ → �a(ψ

′ → [U ,o′]ϕ)) �

Note that, in particular, |= [U , o]¬ϕ ↔ ¬[U , o]ϕ implies that [U , o] is self-dual: we have |= [U , o]ϕ ↔ 〈U , o〉ϕ . This, 
of course, does not extend to the arbitrary arrow update operator: there are ϕ for which �|= [↑]ϕ ↔ 〈↑〉ϕ , for example, 
�|= [↑]�a p ↔ 〈↑〉�a p.

The above lemma shows that [U , o] commutes with ¬, distributes over ∧ and, in a somewhat complicated way, com-
mutes with �a . As discussed in [10], this suffices to show that [U , o] can be eliminated from the restriction of the language 
L to Lauml .

Corollary 6. For every ϕ ∈Lauml there is a formula ϕ′ ∈Lml such that |= ϕ ↔ ϕ′ .

3.2. Reduction axioms for the arrow update model quantifier

We can also write similar reduction axioms for [↑]. In practice, however, it turns out to be slightly more convenient 
to write them for the dual operator 〈↑〉. Note that in the lemmas in this subsection we restrict ourselves to the language 
Lauml , as some of those lemmas use that 〈↑〉 quantifies over arrow updates with source and target conditions in Lml , and 
because we can meet this constraint by applying Corollary 6. Later, in Theorem 15 in the next subsection, we will show 
that this restriction is unnecessary, and that the lemmas apply to L as well.



10 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
Lemma 7. For every ϕ ∈Lauml and every a ∈ A, we have

|= 〈↑〉♦aϕ ↔ ♦a〈↑〉ϕ

Proof. Let (M, w) be any pointed model, and suppose that M, w |= 〈↑〉♦aϕ . Then there is some (U , o) such that M ∗
U , (w, o) |= ♦aϕ . So (w, o) has an a-successor (w ′, o′) such that M ∗ U , (w ′, o′) |= ϕ .

This implies that M, w ′ |= 〈U , o′〉ϕ and therefore M, w ′ |= 〈↑〉ϕ . Since w ′ is an a-successor of w , we obtain M, w |=
♦a〈↑〉ϕ .

Now, suppose that M, w |= ♦a〈↑〉ϕ . Then there is an a-successor w ′ of w such that M, w ′ |= 〈↑〉ϕ . As witness for this 
〈↑〉 statement there must be some U ′, o′ such that M, w ′ |= 〈U ′, o′〉ϕ .

Let (U , o) be the arrow update obtained by adding one extra world o to U ′ , and a transition (o, �) →a (o′, �). Note 
that (M ∗ U ′, (w ′, o′)) is bisimilar to (M ∗ U , (w ′, o′)), and therefore M ∗ U , (w ′, o′) |= ϕ . Finally, note that (w ′, o′) is an 
a-successor of (w, o), so we have M ∗ U , (w, o) |= ♦aϕ and therefore M, w |= 〈↑〉♦aϕ . �

Note that the proof is constructive. That is, if we find (U ′, o′) such that M, w |= ♦a〈U ′, o′〉ϕ then not only do we know 
that M, w |= 〈↑〉♦aϕ , we can also find a specific (U , o) such that M, w |= 〈U , o〉♦aϕ .

Next, we consider a slightly stronger lemma.

Lemma 8. For every ϕ1, · · · , ϕn ∈Lauml and every a ∈ A we have

|= 〈↑〉
∧

1≤i≤n

♦aϕi ↔
∧

1≤i≤n

♦a〈↑〉ϕi

Proof. The left-to-right direction is obvious, so we show only the right-to-left direction. So suppose that M, w |= ∧
♦a〈↑〉ϕi . 

Then there are a-successors w1, · · · , wn of w and pointed arrow update models (U1, o1), · · · , (Un, on) such that M, wi |=
〈Ui, oi〉ϕi for all i.

Now, let (U , o) be the arrow update obtained by taking the disjoint union of all Ui and adding one extra outcome o, and 
adding arrows (o, �) →a (oi, �) for every oi .

For every i, (M ∗ Ui, (wi, oi)) is bisimilar to (M ∗ U , (wi, oi)), so we have M ∗ U , (wi, oi) |= ϕi . Finally, (wi, oi) is an a-
successor of (w, o) for every i. As such, we have M, w |= 〈U , o〉 ∧♦aϕi and therefore, as all the source and target conditions 
of U are in Lml , M, w |= 〈↑〉 ∧♦aϕi . �

Again, the proof is constructive, so given (Ui, oi) for all i, we can find the model (U , o). Note also that the ϕi need not 
be consistent with each other.

Some reflection may be in order as to why Lemma 8 holds. Suppose that M, w |= ∧
♦a〈↑〉ϕi . So for every i, there is 

some world wi that a considers possible as well as some event Ui and outcome oi such that, if (Ui, oi) were to happen in 
wi , then ϕi would become true.

Now let us look at the arrow update (U , o) that we constructed. Effectively, this arrow update represents us telling a
that “we are performing one of the actions Ui, oi , but we are not telling you which one.” Now, for every i agent a considers 
it possible that wi is the actual world, and that (Ui, oi) is the event that happened. As such, after we execute our event we 
are in a situation where every ϕi is held possible by a.

So far, we have only considered diamonds. Now, let us add a box modality.

Lemma 9. For every ϕ1, · · · , ϕn, ψ ∈Lauml and every a ∈ A, we have

|= 〈↑〉(
∧

1≤i≤n

♦aϕi ∧�aψ) ↔
∧

1≤i≤n

♦a〈↑〉(ϕi ∧ ψ)

Proof. The left-to-right direction is fairly obvious. Suppose that M, w |= 〈↑〉(∧1≤i≤n ♦aϕi ∧�aψ). Then there is a (U , o) such 
that M, w |= 〈U , o〉(∧1≤i≤n ♦aϕi ∧ �aψ). Therefore, M ∗ U , (w, o) |= �aψ and for each 1 ≤ i ≤ n, M ∗ U , (w, o) |= ♦aϕi . Let 
(wi, o′) be such that (w, o)Ra(wi, o′) and M ∗ U , (wi, o′) |= ϕi . From M ∗ U , (w, o) |=�aψ and (w, o)Ra(wi, o′) also follows 
that M ∗ U , (wi, o′) |= ψ . Combining both we have M ∗ U , (wi, o′) |= ϕi ∧ ψ . Therefore, M, wi |= 〈U , o′〉(ϕi ∧ ψ), from which 
it follows that M, wi |= 〈↑〉(ϕi ∧ ψ). From (w, o)Ra(wi, o′) it follows by definition that w Ra wi . From M, wi |= 〈↑〉(ϕi ∧ ψ)

and w Ra wi we get the required M, w |= ♦a〈↑〉(ϕi ∧ ψ). As i was arbitrary, M, w |= ∧
1≤i≤n ♦a〈↑〉(ϕi ∧ ψ).

We now show the right-to-left direction. So suppose that M, w |= ∧
1≤i≤n ♦a〈↑〉(ϕi ∧ ψ). Then for every 1 ≤ i ≤ n, there 

are an a-successor wi of w and (Ui, oi) such that M, wi |= 〈Ui, oi〉(ϕi ∧ ψ).
Let (U , o) be the model obtained by taking the disjoint union of all Ui , and adding a single outcome o with arrows 

(o, �) →a (oi, 〈Ui, oi〉ψ) for every i.
Consider (M ∗ U , (w, o)). By assumption, M, wi |= 〈Ui, oi〉(ϕi ∧ ψ), so M, wi |= 〈Ui, oi〉ψ . From that and the fact that 

model U contains arrow (o, �) →a (oi, 〈Ui, oi〉ψ) it follows that (wi, oi) is an a-successor of (w, o) in (M ∗ U ). Furthermore, 
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also from M, wi |= 〈Ui, oi〉(ϕi ∧ ψ) it follows that M, wi |= 〈Ui, oi〉ϕi , i.e., M ∗ Ui, (wi, oi) |= ϕi , and as (M ∗ U , (wi, oi)) is 
bisimilar to (M ∗ Ui, (wi, oi)) it follows that M ∗ U , (wi, oi) |= ϕi (the bisimulation is the identity relation on the restriction 
of the domain of M ∗ U to the domain of M ∗ Ui ). With (w, o)Ra(wi, oi) we thus get M ∗ U , (w, o) |= ♦aϕi , and as i was 
arbitrary, M ∗ U , (w, o) |= ∧

1≤i≤n ♦aϕi .
Additionally, note that every outgoing a-arrow in (U , o) has target condition 〈Ui, oi〉ψ for some i. Again observing that 

(M ∗ U , (wi, oi)) is bisimilar to (M ∗ Ui, (wi, oi)), it follows that for every (wi, oi) that is an a-successor of (w, o), we have 
M ∗ U , (wi, oi) |= ψ . It follows that M ∗ U , (w, o) |=�aψ .

Taken together, the above shows that M ∗ U , (w, o) |= ∧
1≤i≤n ♦aϕi ∧ �aψ and thus that M, w |= 〈U , o〉(∧1≤i≤n ♦aϕi ∧

�aψ). Furthermore, every formula χ occurring in U is either a basic modal formula, or of the form 〈Ui , oi〉ψ . Because 
ψ ∈Lauml , we have 〈Ui, oi〉ψ ∈Lauml and therefore, by Corollary 6, there is a formula χi ∈Lml that is equivalent to 〈Ui, oi〉ψ . 
Let U ′ be the arrow update model obtained from U by replacing 〈Ui, oi〉ψ by χi , for every i. Then we also have M, w |=
〈U ′, o〉(∧1≤i≤n ♦aϕi ∧ �aψ). Because U ′ only contains formulas of modal logic, it follows that M, w |= 〈↑〉(∧1≤i≤n ♦aϕi ∧
�aψ), as was to be shown. �

Once again, the proof is constructive. Note that on the right-hand side we have eliminated the �a connective. This is a 
consequence of the fact that as the designer of the arrow update model U , we have the freedom to inform a that certain 
worlds, which she might previously have considered possible, are not in fact the actual world. This results in the removal 
of the a-arrows to these worlds. So if we want to make �aψ true after the application of U , then we can simply have a
eliminate all successors where ψ would otherwise become false. In the construction used in the lemma, we do this using 
the target condition 〈Ui, oi〉ψ .

In the preceding three lemmas, we only considered ♦a and �a operators for one single agent a. However, when con-
structing (U , o) we can place arrows for different agents independently, so the same construction works for multiple agents 
at the same time. This yields the following lemma.

Lemma 10. For every a ∈ A, let �a ⊆Lauml be a finite set of formulas, and let ψa ∈Lauml be a formula. Then

|= 〈↑〉
∧

a∈A

(
∧

ϕa∈�a

♦aϕa ∧�aψa) ↔
∧

a∈A

∧

ϕa∈�a

♦a〈↑〉(ϕa ∧ ψa)

Proof. We proceed as in the previous Lemma 9, but simultaneously for all a ∈ A.
Again, the left-to-right direction is fairly obvious, and completely analogous to the treatment in Lemma 9. Suppose 

that M, w |= 〈↑〉 ∧a∈A(
∧

ϕa∈�a
♦aϕa ∧ �aψa). Then there is a (U , o) such that M, w |= 〈U , o〉(∧a∈A(

∧
ϕa∈�a

♦aϕa ∧ �aψa). 
Therefore, for all a ∈ A and for all ϕa ∈ �a , M ∗ U , (w, o) |= �aψ and M ∗ U , (w, o) |= ♦aϕa . As before we now obtain 
M, w |= ♦a〈↑〉(ϕa ∧ ψ), for all a ∈ A and for all ϕa ∈ �a , and thus M, w |= ∧

a∈A

∧
ϕa∈�a

♦a〈↑〉(ϕa ∧ ψ).

From right to left, suppose that M, w |= ∧
a∈A

∧
ϕa∈�a

♦a〈↑〉(ϕa ∧ ψa). Let �a = {ϕ1
a , . . . , ϕ|�a|

a } (�a may be empty). Then 
for every a ∈ A and for every 1 ≤ i ≤ |�a|, there are (U i

a, oi
a) and an a-successor wi

a of w such that M, wi
a |= 〈U i

a, oi
a〉(ϕ i

a ∧
ψa). Similarly to the previous lemma, we let (U , o) be the model obtained by taking the disjoint union of all U i

a (i.e., for all 
a ∈ A and for all 1 ≤ i ≤ |�a|), but still only adding a single outcome o with arrows (o, �) →a (oi, 〈Ui, oi〉ψ) for every a ∈ A
and 1 ≤ i ≤ |�a|. We then proceed as before. �

Lemma 10 is the most important reduction axiom for AAUML. However, not every formula is of a form such that the 
lemma can be applied. We therefore need two validities that allow us to put formulas in the correct form.

Lemma 11. For every ϕ1, ϕ2 ∈Lauml and every ϕ0 ∈Lpl, we have

|= 〈↑〉(ϕ1 ∨ ϕ2) ↔ (〈↑〉ϕ1 ∨ 〈↑〉ϕ2)

and

|= 〈↑〉(ϕ0 ∧ ϕ1) ↔ (ϕ0 ∧ 〈↑〉ϕ1).

Proof. The proof of this lemma is straightforward.
By the semantic definition, from M, w |= 〈↑〉(ϕ1 ∨ ϕ2) it follows that M, w |= 〈↑〉ϕ1 or that M, w |= 〈↑〉ϕ2, and therefore 

that M, w |= 〈↑〉ϕ1 ∨〈↑〉ϕ2. In the other direction, from M, w |= 〈↑〉ϕ1 ∨〈↑〉ϕ2 it follows that M, w |= 〈↑〉ϕ1 or that M, w |=
〈↑〉ϕ2, and therefore, by weakening either formula to the disjunction ϕ1 ∨ ϕ2, that M, w |= 〈↑〉(ϕ1 ∨ ϕ2).

For the second validity, we first observe that 〈↑〉ϕ0 ↔ ϕ0 (∗) is a validity of AAUML (all our logics are logics of informa-
tional change, not of factual change). From M, w |= 〈↑〉(ϕ0 ∧ ϕ1) now follows M, w |= 〈↑〉ϕ0 and M, w |= 〈↑〉ϕ1, and thus, 
using (∗), that M, w |= ϕ0 and M, w |= 〈↑〉ϕ1, and so M, w |= ϕ0 ∧ 〈↑〉ϕ1. For the other direction we observe that, on the 
assumption of M, w |= ϕ0 ∧ 〈↑〉ϕ1, any arrow update executed in (M, w) to make ϕ1 true will preserve, by (∗), the truth of 
ϕ0, so that M, w |= 〈↑〉(ϕ0 ∧ ϕ1). �
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It is important and non-trivial to note that the disjunction case can be made constructive. Suppose that we have already 
synthesized (U1, o1) and (U2, o2) such that |= 〈↑〉ϕ1 ↔ 〈U1, o1〉ϕ1 and |= 〈↑〉ϕ2 ↔ 〈U2, o2〉ϕ2. So we have two pointed 
arrow update models that make ϕ1 and ϕ2 true whenever possible. This does not, however, immediately give us a single-
pointed arrow update model (U , o) that guarantees ϕ = ϕ1 ∨ ϕ2 whenever possible.4 In order to find this (U , o), we have 
to combine (U1, o1) and (U2, o2). We do this in the following way.

First, we take the set of outcomes of U to be the disjoint union of the sets of outcomes of U1 and U2, plus one extra 
outcome o. Then, we add arrows as follows to U .

For every (o1, ψ) →a (o′, ψ ′) of U1, add an arrow (o, ψ ∧ 〈U1, o1〉ϕ1) →a (o′, ψ ′). For every (o2, ψ) →a (o′, ψ ′) of U2, 
add an arrow (o, ψ ∧ ¬〈U1, o1〉ϕ1) →a (o′, ψ ′).

When executed in a 〈↑〉ϕ1 world, this arrow update (U , o) will act as (U1, o1), since every such world satisfies 〈U1, o1〉ϕ1
and we added all arrows from o1 with an extra 〈U1, o1〉ϕ1 precondition. When executed in any ¬〈↑〉ϕ1 world, (U , o) acts 
as (U2, o2). As long as either 〈↑〉ϕ1 or 〈↑〉ϕ2 holds, we therefore have 〈U , o〉(ϕ1 ∨ ϕ2).

More formally, we have the following lemma.

Lemma 12. Let ϕ1, ϕ2 ∈ Lauml, and for i = 1, 2 let (Ui, oi) be such that |= 〈↑〉ϕi ↔ 〈Ui, oi〉ϕi , where Ui = (O i, R Ri). Furthermore, 
let U = (O , R R) be given as follows:

• O  = {o} � O 1 � O 2 ,
• R R contains exactly the following arrows:

1. (o′, ψ ′) →a (o′′, ψ ′′) ∈ R Ri , for i = 1, 2,
2. (o, ψ ∧ 〈U1, o1〉ϕ1) →a (o′, ψ ′) where (o1, ψ) →a (o′, ψ ′) ∈ R R1 ,
3. (o, ψ ∧ ¬〈U1, o1〉ϕ1) →a (o′, ψ ′) where (o2, ψ) →a (o′, ψ ′) ∈ R R2 .

Then |= 〈↑〉(ϕ1 ∨ ϕ2) ↔ 〈U , o〉(ϕ1 ∨ ϕ2).

Proof. The right-to-left direction is obvious, because, just as in the proof of Lemma 9, source conditions ψ ∧〈U1, o1〉ϕ1 and 
ψ ∧ ¬〈U1, o1〉ϕ1 can with Corollary 6 be assumed to be equivalent to modal logical formulas.

We now show the left-to-right direction. Suppose therefore that M, w |= 〈↑〉(ϕ1 ∨ ϕ2). Then, by Lemma 11, we have 
M, w |= 〈↑〉ϕ1 ∨ 〈↑〉ϕ2. We continue by a case distinction.

First, suppose that M, w |= 〈↑〉ϕ1. Then none of the (o, ψ ∧ ¬〈U1, o1〉ϕ1) →a (o′, ψ ′) arrows are applicable in w . The 
(o, ψ ∧〈U1, o1〉ϕ1) →a (o′, ψ ′) arrows, on the other hand, are applicable if and only if (o1, ψ) →a (o′, ψ ′) applies. Therefore, 
for every agent a, (w, o)Ra(w ′, o′) iff (w Ra w ′ and oRao′) iff (w Ra w ′ and o1 Rao′) iff (w, o1)Ra(w ′, o′). So there is an a-arrow 
from (w, o) to (w ′, o′) in M ∗ U if and only if there is an a-arrow from (w, o1) to (w ′, o′) in M ∗ U1. Furthermore, because U
contains a copy of U1, we have that for every o′, o′′ ∈ O 1 and every w ′, w ′′ ∈ W there is an a-arrow from (w ′, o′) to (w ′′, o′′)
in M ∗ U if and only if there is such an arrow in M ∗ U1. It follows that the relation R1 = {((w ′, o′), (w ′, o′)) | w ′ ∈ W , o′ ∈
O 1} ∪ {((w, o), (w, o1))} is a bisimulation between M ∗ U , (w, o) and M ∗ U1, (w, o1). (It also obviously satisfies atoms, as 
this depends on correspondence of the first argument in each (state, outcome) pair.) By assumption we have M, w |= 〈↑〉ϕ1
and therefore M, w |= 〈U1, o1〉ϕ1, which implies that M ∗ U1, (w, o1) |= ϕ1. Because AAUML is invariant under bisimulation 
it then follows that M ∗ U , (w, o) |= ϕ1 and therefore that M, w |= 〈U , o〉ϕ1, so that we also have M, w |= 〈U , o〉(ϕ1 ∨ ϕ2).

Suppose then that M, w �|= 〈↑〉ϕ1. Then we must have M, w |= 〈↑〉ϕ2. In this case, the (o, ψ ∧ 〈U1, o1〉ϕ1) →a (o′, ψ ′)
arrows are inapplicable while the (o, ψ ∧¬〈U1, o1〉ϕ1) →a (o′, ψ ′) arrows apply if and only if (o2, ψ) →a (o′, ψ ′) does. Sim-
ilarly to the previous case, the relation R2 = {((w ′, o′), (w ′, o′)) | w ′ ∈ W , o′ ∈ O 2} ∪{((w, o), (w, o2))} is therefore a bisimu-
lation between M ∗U , (w, o) and M ∗U2, (w, o2). From the assumption that M, w |= 〈↑〉ϕ2 it follows that M, w |= 〈U2, o2〉ϕ2
and therefore that M ∗ U2, (w, o2) |= ϕ2. Because AAUML is invariant under bisimulation we then obtain M ∗ U , (w, o) |= ϕ2
and therefore M, w |= 〈U , o〉ϕ2 and also M, w |= 〈U , o〉(ϕ1 ∨ ϕ2).

In either case, we have M, w |= 〈U , o〉(ϕ1 ∨ ϕ2), as was to be shown. �

3.3. Reduction

Using the fact that [U , o] commutes with ¬, distributes over ∧ and, in a convoluted but not very complicated way, 
commutes with �a , Corollary 6 showed that every Lauml formula is equivalent to a Lml formula. In order to be able to 
finally perform synthesis, it remains to show that every L formula is also equivalent to a Lml formula. This is what we will 
show in this section.

4 An alternative technique to synthesize an arrow update for the disjunction is to take the double-pointed direct sum of (U1, o1) and (U2, o2); its points 
are {o1, o2}. This method is followed in [17].
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In Section 3.2 we showed that 〈↑〉 commutes, in a very complicated way, with boolean combinations of basic modal 
formulas. Also, like [U , o], a 〈↑〉 operator disappears once it encounters a propositional atom. From this we can show that, 
if ϕ is a formula of basic modal logic, then we can transform 〈↑〉ϕ into an equivalent formula ϕ′ of basic modal logic.

The proof that 〈↑〉ϕ can be transformed into ϕ′ is by induction on the order � given by: ϕ1 � ϕ2 if and only if (i) 
ϕ2 is a strict subformula of ϕ1 or (ii) ϕ2 has a (strictly) lower modal depth than ϕ1. Let us first show that this order is 
well-founded.

Lemma 13. The relation � is well-founded.

Proof. This follows from the fact that both the > relation on the natural numbers and the “strict subformula of” relation 
are well-founded.

Suppose towards a contradiction that there is an infinitely descending chain ϕ0 � ϕ1 � · · · of formulas. So for every 
i ∈ N we have either (i) ϕi+1 is a strict subformula of ϕi or (ii) d(ϕi) > d(ϕi+1). The modal depth of a formula is at least 
as large as that of its subformulas, so in either case we have d(ϕi) ≥ d(ϕi+1). Because the depth of a formula is a natural 
number and > is well-founded on N , there can be only finitely many i such that d(ϕi) > d(ϕi+1). So there is some k ∈ N
such that for all m ≥ k we have d(ϕm) = d(ϕk).

It follows that for every m ≥ k, the formula ϕm+1 must be a strict subformula of ϕm . This is impossible, however, since 
the “strict subformula of” relation is well-founded. We have arrived at a contradiction, so � does not have an infinitely 
descending sequence and is therefore well-founded. �

Now, we can prove the reduction from 〈↑〉ϕ to ϕ′ .

Lemma 14. For every ϕ ∈Lml, there is a formula ϕ′ ∈Lml such that |= 〈↑〉ϕ ↔ ϕ′ .

Proof. Every formula is equivalent to a formula in DNNF (See Sections 2.2 and 2.3), so we can assume without loss of 
generality that ϕ is in DNNF. We can also assume without loss of generality that every conjunction in ϕ contains exactly 
one conjunct of the form �aχ for every agent a. We now proceed by induction on the order �, which, by the previous 
lemma, is well-founded. Note that the minimal elements with respect to � are the formulas that are of depth 0 and have 
no strict subformulas, i.e., the atoms.

Suppose therefore, as a base case in our induction, that ϕ is an atom. Then |= 〈↑〉ϕ ↔ ϕ , so the lemma holds with 
ϕ′ = ϕ . Assume now as induction hypothesis that the lemma holds for every ϕ′ such that ϕ � ϕ′ . We then continue by case 
distinction.

First, suppose that ϕ = ϕ1 ∨ ϕ2. By Lemma 11 we have |= 〈↑〉(ϕ1 ∨ ϕ2) ↔ (〈↑〉ϕ1 ∨ 〈↑〉ϕ2). Furthermore, ϕ � ϕ1 and 
ϕ � ϕ2, so by the induction hypothesis there are ϕ′

1, ϕ
′
2 ∈ Lml such that |= 〈↑〉ϕ1 ↔ ϕ′

1 and |= 〈↑〉ϕ2 ↔ ϕ′
2. It follows that 

|= 〈↑〉ϕ ↔ (ϕ′
1 ∨ ϕ′

2).
Secondly, suppose that ϕ = ϕ0 ∧ ϕ1, where ϕ0 ∈ Lpl . Then, by Lemma 11, we have |= 〈↑〉(ϕ0 ∧ ϕ′) ↔ (ϕ0 ∧ 〈↑〉ϕ1). 

Furthermore, ϕ � ϕ1, so by the induction hypothesis there is a ϕ′
1 such that |= 〈↑〉ϕ1 ↔ ϕ′

1. It follows that |= 〈↑〉ϕ ↔
(ϕ0 ∧ ϕ′

1).
Finally, suppose that ϕ is a conjunction without a propositional conjunct. Then for every a ∈ A there are a finite 

set �a ⊆ Lml and a formula ψa ∈ Lml such that ϕ = ∧
a∈A(

∧
ϕa∈�a

♦aϕa ∧ �aψa). By Lemma 10, we have |= 〈↑〉ϕ ↔∧
a∈A

∧
ϕa∈�a

♦a〈↑〉(ϕa ∧ ψa). For every a ∈ A and ϕa ∈ �a , the modal depth of ϕa ∧ ψa is strictly lower than that of ϕ , 
so ϕ � ϕa ∧ ψa . Therefore, by the induction hypothesis, there is a formula ϕ′

a ∈ Lml such that |= 〈↑〉(ϕa ∧ ψa) ↔ ϕ′
a . Let �′

a
be the set of such ϕ′

a . It follows that |= 〈↑〉ϕ ↔ ∧
a∈A

∧
ϕ′

a∈�′
a
♦aϕ

′
a .

This completes the induction step and thereby the proof. �

We now have the following theorem.

Theorem 15. For every ϕ ∈L there is a formula ϕ′ ∈Lml such that |= ϕ ↔ ϕ′ .

Proof. We now use Lemma 14 (in dual form) that

for every ϕ ∈Lml there is a ϕ′ ∈Lml such that |= [↑]ϕ ↔ ϕ′ ,

and we also use the consequence of Lemma 14 that

for every ϕ ∈ Lml and arrow update (U , o) with source and target conditions in Lml there is a ϕ′ ∈ Lml such that 
|= [U , o]ϕ ↔ ϕ′ ,

in order to successively eliminate the innermost [U , o] or [↑] operators of any given formula of AAUML. We can thus 
transform this formula into an equivalent formula of modal logic. �



14 H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544
Table 1
Synthesis procedure.

Procedure Synth(ϕ)

Input: ϕ ∈ L.
Output: (Uϕ,oϕ) such that |= 〈↑〉ϕ ↔ 〈Uϕ,oϕ 〉ϕ.

1. If ϕ /∈ Lml , then use the reduction axioms to find a formula ϕmodal ∈ Lml

such that |= ϕ ↔ ϕmodal , and return Synth(ϕmodal). Otherwise, continue.
2. If ϕ is not in disjunction normal form, compute the DNNF ϕDNNF of ϕ and

return Synth(ϕDNNF). Otherwise, continue.
3. If ϕ = ϕ1 ∨ ϕ2, then compute Synth(ϕ1) and Synth(ϕ2), and combine

the two arrow update models as in Lemma 12. Return the combined
arrow update model.

4. If ϕ is not a disjunction, then since it is in DNNF it must be a conjunction,
where each conjunct is (i) a literal, (ii) of the form ♦aψ , or (iii) of the form �aχ .
Assume w.l.o.g. that for every a there is exactly one conjunct �aχa .
For every ♦aψ , compute Synth(ψ ∧ χa). Then use Lemma 9 to combine
the arrow update models, and return the result. If there are no ♦a operators for any
agent a, return the trivial arrow update model with one outcome and no arrows.

It follows that in Lemmas 7–12 the restriction to the sublanguage Lauml is unnecessary; the lemmas also hold for the 
full language L. In this form we will also later use these validities as axioms in the axiomatization. For the next section, it 
is important to keep in mind that the reduction axioms not only guarantee the existence of ϕ′ , but also enable us to find it.

Theorem 15 also allows us to prove a claim that we made in Section 2.3. There, we defined M, s |= [↑]ϕ by

M, s |= [↑]ϕ iff (M, s |= [U , o]ϕ for every arrow update (U , o) that has source and target conditions only in Lml).

Now that we have shown that every formula of L is equivalent to a formula of Lml , it follows immediately that the 
requirement of the source and target conditions being in Lml is unnecessary.

Proposition 16. For every ϕ ∈L and every pointed relational model (M, s), we have

M, s |= [↑]ϕ iff M, s |= [U , o]ϕ for every arrow update (U , o).

3.4. Synthesis

Recall that our goal, when performing synthesis, is to find, for given ϕ ∈ L, an arrow update (Uϕ, oϕ) such that |=
〈↑〉ϕ ↔ 〈Uϕ, oϕ〉ϕ . Using Theorem 15, we can transform ϕ into an equivalent formula of modal logic. Then, using the 
procedure outlined in Section 3.2, we can find (Uϕ, oϕ). The procedure is found in detail in Table 1.

Our arrow update synthesis was motivated by Hales’ already mentioned action model synthesis published in [17]. See 
also the next Section 4. Subsequently Hales et al. investigated these matters in [25] and in (his Ph.D. thesis) [26]. Alterna-
tively, action model synthesis by way of a dedicated action language was employed by Aucher in [27].

3.5. Example

In order to gain better understanding of Synth(ϕ), let us consider an example. Suppose ϕ = ♦a�b p ∧ ♦b(♦aq ∨ ♦ar) ∧
�b p). We want to perform synthesis for this ϕ .

Goal: find Synth(♦a�b p ∧♦b(♦aq ∨♦ar) ∧�b p).
Because ϕ ∈ Lml , ϕ is in DNNF and ϕ is not a disjunction, we continue past steps 1, 2 and 3. In step 4, it is assumed 

that for every agent there is exactly one � conjunct. This means we need to add a trivial conjunct �a�.
Of the conjuncts of ϕ , two have ♦ as primary operator. So we need to perform synthesis for two more formulas; 

because of ♦a�b p and �a� we need to find Synth(�b p ∧ �), and because of ♦b(♦aq ∨ ♦ar) and �b p we need to find 
Synth((♦aq ∨♦ar) ∧ p).

Subgoal 1: find Synth(�b p ∧ �).
Since we are doing synthesis for a conjunction, we continue in steps 1, 2 and 3. Because there are no ♦ operators in 
�b p ∧ �, we return the trivial arrow update model in step 4.
Subgoal 2: find Synth((♦aq ∨ ♦ar) ∧ p). In step 2, we need to put the formula in DNNF. We therefore continue with 
(♦aq ∧ p) ∨ (♦ar ∧ p). In step 3 we are then instructed to perform synthesis for the two disjuncts.

Sub-subgoal 2.1: find Synth(♦aq ∧ p).
We continue up to step 4. There, we first add a trivial conjunct �a�. Then, we are instructed to find Synth(q ∧ �).
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Sub-sub-subgoal 2.1.1: find Synth(q ∧ �).
We proceed to step 4. There, since there are no ♦ operators in q ∧ �, we return the trivial arrow update model 
(U0, o0).

Now, in order to find Synth(♦aq ∧ p), we take the trivial arrow update model found in sub-sub-subgoal 2.1.1, and 
add one extra outcome. Then, we connect this extra outcome to the trivial model by a � →a 〈U0, o0〉� arrow. The 
source condition of this arrow is � because step 4 uses the construction from Lemma 9, and that construction always 
gives precondition �. The arrow is for agent a, because we started with a ♦a operator. Finally, the target condition 
is 〈U0, o0〉� because the arrow update that the arrow points to is (U0, o0) and the �a conjunct was �a�. In other 
words, we obtain the arrow update depicted in Fig. 3.a, where the framed state indicates the designated outcome.
Sub-subgoal 2.2: find Synth(♦ar ∧ p).
Replacing the q of ♦aq ∧ p for an r does not change the arrow update model that we end up with. So in this 
sub-subgoal we find the same model as in sub-subgoal 2.1.

Now, in order to find Synth((♦aq ∧ p) ∨ (♦ar ∧ p)), we need to combine the models found in sub-subgoals 2.1 and 
2.2. Since we are working with a disjunction, we combine them as described in Lemma 12. That, is, we take copies of 
the two (identical) models and add one extra outcome. Then, we add two more arrows: every world that is reachable 
from the origin world of the model from sub-subgoal 2.1 by ψ1 →a ψ2, becomes reachable from the extra world by a 
ψ1 ∧ 〈↑〉(♦aq ∧ p) →a ψ2 arrow. Likewise, every world reachable by ψ1 →a ψ2 from the origin of the model from sub-
subgoal 2.2 becomes reachable from the extra world by ψ1 ∧ ¬〈↑〉(♦aq ∧ p) →a ψ2. We now get the model depicted in 
Fig. 3.b.

Now, all that is left to do is to combine the arrow update models found in subgoals 1 and 2. The model we obtain is 
depicted in Fig. 3.c, where (U1, o1) is the model that we found in subgoal 2. The root of the model is the leftmost outcome. 
Note that the depth (i.e., the maximum path length) of this arrow update model is 2, just like the depth (i.e., the maximum 
number of nested � or ♦ operators) of ϕ . In general, the depth of the synthesized arrow update model is bounded by that 
of the formula for which synthesis is performed.

Also, note that the arrow update model that we obtained can quite easily be modified to obtain a smaller model that is 
still sufficient. In particular:

• the two outcomes that are not reachable from the root can be eliminated,
• the formulas 〈U0, o0〉�, 〈U1, o1〉p, � ∧ 〈↑〉(♦aq ∧ p) and � ∧ ¬〈↑〉(♦aq ∧ p) can be replaced by the equivalent formulas 

�, p, ♦aq ∧ p and ¬(♦aq ∧ p), respectively,
• the three leaf outcomes can be merged into one,
• and ♦aq ∧ p →a � and ¬(♦aq ∧ p) →a � can be merged into one � →a � arrow.

With these optimizations, we get the more aesthetically pleasing arrow update depicted in Fig. 3.d.

4. Axiomatization

Using the reduction axioms introduced before, we can find an axiomatization for AAUML. Let AAUML be the axiomati-
zation shown in Table 2. In this section we show that the axiomatization AAUML is sound and complete, and we give some 
derivable (well-known) axiom schemata.

Lemma 17. Axiomatization AAUML is sound for the logic AAUML.

Proof. Prop, K, MP, NecK, RE are known from modal logic, U1—U4 were demonstrated in Section 3.1 and originate in [10],
A1—A4 were shown to be valid in Section 3.2. �

It is important to note that U1—U4 and A1—A4 are so-called reduction axioms for the operators [U , o] and 〈↑〉, respec-
tively, as mentioned in the previous section. This means that they are equivalences, where the formula inside the scope of 
the [U , o] or 〈↑〉 operator on the left-hand side is more complex than the formulas inside the scope of that operator on the 
right-hand side.

The derivation rule RE is important as our reductions are inside-out, not outside-in. Without it, for example, the validity 
[U , o][U , o](p ∨ ¬p) would not be derivable.

The axioms A1—A4 could just as well have been formulated with the [↑] dual of the modality 〈↑〉, e.g., A2′ [↑](ϕ ∧ψ) ↔
([↑]ϕ ∧ [↑]ψ). We prefer the 〈↑〉 versions as they match our usage of these axioms in synthesis. Further note that there 
is no reduction of shape 〈↑〉¬ϕ ↔ . . . . We assume that subformulas bound by 〈↑〉 are first transformed into disjunctive 
negation normal form before a further reduction can take place (and again, for this, the derivation rule RE is essential).

Lemma 18. Axiomatization AAUML is complete for the logic AAUML.
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� a 〈U0,o0〉�
(a)

� a 〈U0,o0〉�

� a 〈U0,o0〉�

� ∧ 〈↑〉(♦aq ∧ p) a
〈U 0,

o0〉�

� ∧ ¬〈↑〉(♦
a q ∧ p)

a 〈U0 ,o0 〉�

(b) 

� a 〈U0,o0〉�

� a 〈U0,o0〉�

� ∧ 〈↑〉(♦aq ∧ p) a
〈U 0,

o0〉�

� ∧ ¬〈↑〉(♦
a q ∧ p)

a 〈U0 ,o0 〉�

� a
〈U 0,

o 0〉�

�
b 〈U1 ,o1〉p

(c)

�
b

p

�
a �

� a � (d)

Fig. 3. Different stages in the synthesis of ♦a�b p ∧♦b(♦aq ∨♦ar) ∧�b p).

Proof. Let ϕ ∈ L be valid. Using an induction argument, we can eliminate all [U , o] and 〈↑〉 operators from it: ϕ must be 
provably equivalent to a formula ϕ′ ∈ Lml . As ϕ′ must also be valid (Theorem 15), ϕ′ is provable in modal logic. From the 
provable equivalence between ϕ and ϕ′ and the derivation of ϕ′ we construct a derivation of ϕ in AAUML. �
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Table 2
The axiomatization AAUML of the logic AAUML.

Prop all tautologies of propositional logic
K �a(ϕ → ψ) → (�aϕ →�aψ)

U1 [U ,o]p ↔ p
U2 [U ,o]¬ϕ ↔ ¬[U ,o]ϕ
U3 [U ,o](ϕ ∧ ψ) ↔ ([U ,o]ϕ ∧ [U ,o]ψ)

U4 [U ,o]�aϕ ↔ ∧
(o,ψ)→a(o′,ψ ′)(ψ →�a(ψ

′ → [U ,o′]ϕ))

A1 〈↑〉ϕ0 ↔ ϕ0 where ϕ0 ∈ Lpl

A2 〈↑〉(ϕ ∨ ψ) ↔ (〈↑〉ϕ ∨ 〈↑〉ψ)

A3 〈↑〉(ϕ0 ∧ ϕ) ↔ (ϕ0 ∧ 〈↑〉ϕ) where ϕ0 ∈ Lpl

A4 〈↑〉∧
a∈A(

∧
ϕa∈�a

♦aϕa ∧�aψa) ↔ ∧
a∈A

∧
ϕa∈�a

♦a〈↑〉(ϕa ∧ ψa)

MP from ϕ → ψ and ϕ infer ψ

NecK from ϕ infer �aϕ
RE from χ ↔ ψ infer ϕ[χ/p] ↔ ϕ[ψ/p]

We have now shown that:

Theorem 19. Axiomatization AAUML is sound and complete for the logic AAUML.

In the proof system AAUML, we do not have necessitation for the [U , o] and [↑] operators. Such necessitation rules are 
derivable, however.

Proposition 20. The following two rules are derivable in AAUML.

• NecU: from ϕ infer [U , o]ϕ;
• NecA: from ϕ infer [↑]ϕ .

Proof. First, note that the axiom

U1′ [U ,o]ϕ0 ↔ ϕ0 where ϕ0 ∈Lpl

is derivable, using Prop, U1–U3 and MP. It is also convenient to use a variant of MP directly on bi-implications, instead of 
first converting the bi-implication to a single implication.

MP′ from ϕ ↔ ψ and ϕ infer ψ , and from ϕ ↔ ψ and ψ infer ϕ.

This MP′ is, of course, also easily derived. Using U1′ and MP′ , we can derive NecU in a reasonable number of steps:

1. ϕ premise
2. ϕ → (ϕ ↔ �) Prop
3. ϕ ↔ � MP(1,2)
4. [U ,o]� ↔ � U1′
5. � Prop
6. [U ,o]� MP′(5,4)
7. [U ,o]� ↔ [U ,o]ϕ RE(3)
8. [U ,o]ϕ MP′(6,7)

A derivation of NecA can be found in a similar way. Here, too, it is convenient to first derive an auxiliary axiom.

A1′ [↑]ϕ0 ↔ ϕ0 where ϕ0 ∈Lpl

This [↑]-version of A1 is of course derivable. We can then derive NecA analogously to how we derived NecU, with the 
application of U1′ replaced by A1′ . �

The axiomatization AAUML is inspired by the somewhat similar axiomatization by Hales of arbitrary action model logic
[17], although the shape of some axioms and rules is rather different. Axioms in Hales similar to our U1—U4, for the 
reduction for action models, are of course taken from action model logic instead. Axioms in Hales similar to our AI—A4, 
that are used for the reduction of the quantifier, are taken from refinement modal logic instead. There is nothing ‘of course’ 
about the latter: Hales’ mixture of AML and RML was, we think, a quite original move. One can also move in the other 
direction: our axioms U1—U4 allow an alternative axiomatization of refinement modal logic. However, as this seems out of 
scope, these results are not presented here.
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5. Update expressivity

5.1. Expressivity

Recall that we are considering the basic modal logic ML and the update logics PAL, APAL, AML, AAML, AUL, AAUL, AUML, 
AAUML, and RML, as shown in Fig. 1 on page 4. One natural thing to do with such related logics that are all interpreted 
on a similar class of structures is to compare their power to relate or to distinguish structures from that class. The most 
straightforward way to make such a comparison is to compare their expressivity.

Formally, given languages L1 and L2 interpreted on certain class of models M, a language L1 is at least as expressive as 
a language L2 if for every formula of L2 there is an equivalent formula of L1. Having equal expressivity or higher expressivity
(by which we always mean strictly higher expressivity) can be defined from the “at least as expressive” relation in the usual 
way. If neither language is at least as expressive as the other, we say that they are incomparable in expressivity. Informally, 
if L1 and L2 are the logics for languages L1 resp. L2 interpreted on M, we will also use the terminology for expressivity 
to compare these logics.

In [5] that introduced PAL it was shown that PAL is equally expressive as ML (on the class S5 of relational models, but 
this does not matter for the reduction), and in [6] that introduced AML it was also shown that AML is equally expressive as 
ML. It is trivial to show that PAL and AML are at least as expressive as ML, as they extend the logical language. That every 
formula of PAL or AML is equivalent to a formula in ML, was shown by reduction axioms and rules. Similarly, AUL [7], AUML 
[10] and AAML [17] were shown to be equally expressive as ML, and therefore also equally expressive as PAL and AML. In 
[18] it was shown that RML is equally expressive as ML. Here, in Theorem 15 in Section 3, we showed that AAUML is also 
equally expressive as ML.

The two remaining logics are APAL and AAUL. The logic APAL was shown to be more expressive than ML in [15] and 
AAUL was shown to be more expressive than ML in [16], wherein it was also shown that APAL and AAUL are incomparable. 
This means that the expressivity landscape is as shown in Fig. 4.

ML, PAL, AML, AAML, AUL, AUML, AAUML, RML

APAL AAUL

Fig. 4. The relative expressivity of the update logics discussed in the paper. Arrows indicate increasing expressivity. Absence of arrows indicates incomparable 
expressivity.

5.2. Update expressivity hierarchy

There is something a bit strange about this comparison, however. Although AML and PAL have the same expressivity, 
AML is clearly in some sense more powerful, since action models represent a far larger class of updates than public an-
nouncements. In order to capture the sense in which AML is more powerful than PAL, we use the term update expressivity. 
This concept was introduced as action equivalence in [28] (and its precursors) and also subsequently used in that sense in 
[10]. The definitions from [28,10] do not deal very well with multi-pointed update modalities and with arbitrary update 
modalities, however, so we use a slightly adapted version.

We recall from the introduction that the updates X we consider are relational model transformers and that such trans-
formations are defined by pairwise relating pointed models:

An update X is a relation between pointed relational models.

In fact, three different things are called update: the update relation between pointed models, the update modality in a logical 
language, and, in some sense, the update object, often a name, that can be associated with the modality or the relation, such 
as an arrow update (U , o). To simplify the presentation in this section we call the relations X, Y , . . . and the modalities 
[X], [Y ], . . . and we do not consider the update objects separately: we identify them with the update relations.

A relation between pointed relational models can be a one-to-one relation, i.e., a function or a partial function, a one-to-
finitely-many relation, and a one-to-infinitely-many relation. For example, it is a function for a pointed arrow update model, 
a partial function for a public announcement, a one-to-many relation for a multi-pointed arrow update model, and a one-to-
infinitely-many relation for an arrow update quantifier. In the first place, one would now like to say that update relations X
and Y are the same (are equivalent) if they define the same relation between pointed models, modulo bisimulation. In the 
second place, we also want to compare an update X that is a partial function, i.e., with a restricted domain, to an update 
Y that is a total function (or similarly for relations with restricted domains. In that kind of situation one would maybe 
like to say that updates X and Y are the same if X and Y define the same relation on the domain of X : we will then say 
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that X is conditionally equivalent to Y (this relation is asymmetric). Such a requirement seems common practice in dynamic 
epistemic logic, and it is also respected in [10]. We recall from Section 1 the ‘state eliminating’ public announcement of p (i) 
and the ‘arrow eliminating’ public announcement of p (ii), originating with [29]: whenever p can be truthfully announced, 
the pointed relational models resulting from executing (i) and (ii) are bisimilar, as in the example. But when p is false, (ii) 
can be executed but not (i). So (i) and (ii) are equivalent on condition of the truth of the announcement.

In view of these considerations, we propose the following definition. In the definition, for X(M, s) read {(M ′, s′) |
((M, s), (M ′, s′)) ∈ X}, and let dom(X) be {(M, s) | X(M, s) �= ∅}, i.e., dom(X) is the domain of X in the standard rela-
tional sense.5 Recall from Section 2.1 that two sets of pointed models are bisimilar if every pointed model in the first set is 
bisimilar to one in the second set and vice versa.

Definition 21 (Update equivalence, update expressivity). Given updates X and Y , X is conditionally update equivalent to Y , if for 
all (M, s) ∈ dom(X), X(M, s)↔ Y (M, s). Further, X is update equivalent to Y , if X is conditionally update equivalent to Y , and 
Y is conditionally update equivalent to X . Update modalities [X] and [Y ] are (conditionally) update equivalent, if X and Y
are (conditionally) update equivalent.

A language L is at least as update expressive as L′ if for every update modality [X] of L′ there is an update modality [Y ]
of L such that X is conditionally update equivalent to Y ; L is equally update expressive as L′ (or ‘as update expressive as’) if 
L is at least as update expressive as L′ and L′ is at least as update expressive as L.

We define ‘(strictly) more update expressive’ and ‘incomparable in update expressivity’ as usual. We also extend the 
usage of ‘update expressive’ to the logics for the languages that we compare. Instead of ‘update equivalent’ we may use 
‘equivalent’ if the context is clear. If updates X and Y are update equivalent, then [X]ϕ ↔ [Y ]ϕ is valid. In the other 
direction, this is not always the case! In Section 7 we give a counterexample.

We should stress that we do not claim that our definition is appropriate for all situations, merely that it gives an accurate 
view of the strengths of the different logics that we consider in this particular paper.

Let us now fill in the expressivity hierarchy for our target logics. The update expressivity of AUL is higher than that 
of PAL, and lower than that of AML [7]. The comparison between AML and AUML that we will address in Section 6 is 
less straightforward than that. In [10] it was shown that AML and AUML have the same update expressivity. That result 
does not distinguish between single-pointed and multi-pointed action models and arrow update models, however. Here, we 
therefore provide an alternative proof of their results that makes that distinction. Specifically, we show that the result from 
[10] only applies to the multi-pointed case, but that single-pointed arrow update models are more update expressive than 
single-pointed action models.

To formulate such results we need to slightly expand our notation. We recall that in the language L of AAUML (see 
Section 2.2) we permit multi-pointed arrow update modalities. If we only allow single-pointed arrow update modalities, let 
us call the set of validities AAUML1. For the ‘logic’ in the standard sense of the set of validities this makes no difference, 
so that out of the context of update expressivity we can continue to also let AAUML represent AAUML1. Similarly, without 
the quantifiers, we distinguish AUML1 from AUML, and we will later also introduce such a notational distinction for action 
model logics.

Adding quantification increases update expressivity, since the non-quantified logics cannot simulate a one-to-infinity re-
lation. So, for example, APAL is more update expressive than PAL, and AAUML is more update expressive than AUML. (The 
distinction between single-pointed and multi-pointed is irrelevant here, as quantifying over all single-pointed updates is 
equivalent to quantifying over all multi-pointed updates.) When comparing the quantified logics among themselves, most 
pairs are incomparable. These incomparability results are all rather trivial, so we do not prove them here. The only compa-
rable pair is (multi-pointed) AAUML and AAML, which have the same update expressivity because their underlying updates 
have the same update expressivity (Section 6). In Section 7 we will show that RML is incomparable to the other quantified 
logics, and in particular that the AAUML and AAML quantifiers are contained in the RML quantifier.

The landscape of update expressivity is therefore as shown in Fig. 5.

6. Arrow updates versus action models

6.1. Action model logic

Arrow update model logic AUML is equally expressive as action model logic AML and their update expressivity relates in 
interesting ways. We build upon the results known from [10] but our constructions and proofs are slightly different. First 
we need to define action models and their execution in relational models. An action model [6] is a structure like a relational 

5 We recall that given a relational model M = (S, R, V ) or an arrow update model U = (O , R R), the sets S = D(M) resp. O  = D(U ) of objects on which 
the accessibility relations Ra resp. arrow relations R Ra are defined are also called domains. This causes confusion if the arrow update model U is considered 
as an update relation between sets of pointed relational models, with its domain dom(U ) of application defined as above. As the term ‘domain’ is extremely 
standard for both, we prefer to distinguish them by using different symbols D and dom, instead of introducing a non-standard term for either one or the 
other.
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AAML AAUML

RML

Fig. 5. The relative update expressivity of the update logics discussed in the paper. We assume transitive closure of arrows.

model but with a precondition function instead of a valuation function. Executing an action model into a relational model 
means computing what is known as their restricted modal product. This product encodes the new state of information, after 
action execution. These are the technicalities:

An action model E = (S, R, pre) consists of a domain S of actions e, f , . . . , an accessibility function R : A →P(S ×S), where 
each Ra is an accessibility relation, and a precondition function pre : S →L, where L is a logical language.

Let additional to a pointed action model (E, e) as above a pointed relational model (M, s) be given where M = (S, R, V ). 
Let M, s |= pre(s). The update (M ⊗ E, (s, e)) is the pointed relational model where M ⊗ E = (S ′, R ′, V ′) such that

S ′ = {(t, f ) | M, t |= pre( f )}
((t, f ), (t′, f ′)) ∈ R ′

a iff (t, t′) ∈ Ra and ( f , f ′) ∈ Ra

(t, f ) ∈ V ′(p) iff t ∈ V (p)

Action model modalities [E, e] are interpreted similarly to arrow update modalities but unlike arrow update modalities are 
partial and not functional. Their execution depends on the truth of the precondition of the actual action (point) e in the 
actual state s:

M, s |= [E, e]ϕ iff M, s |= pre(e) implies M ⊗ E, (s, e) |= ϕ

Similarly to arrow update modalities we can conceive a modal logical language with [E, e]ϕ as an inductive language 
construct, for action models E with finite domains. The logic is called action model logic AML. And also similarly we define 
multi-pointed action models by notational abbreviation, and informally consider such modalities as logical connectives bind-
ing formulas. As for AUML (see [10] and Section 4), there is a complete axiomatization, that is a rewrite system allowing 
to eliminate dynamic modalities [6,30]. If we further extend the logical language with a quantifier [⊗] over action models, 
such that

M, s |= [⊗]ϕ iff M, s |= [E, e]ϕ for all action models (E, e) satisfying (∗)

where (*) requires all preconditions of actions in E to be in Lml , we get the language and logic of arbitrary action model logic
AAML. Hales showed in [17] that the (*) requirement can be relaxed, similarly to our Proposition 16. If such a distinction is 
necessary, the action model logics with only single-pointed action models are AML1 and AAML1.

Example action models that are update equivalent to the example arrow update models of Section 2 are depicted in 
Fig. 6. We also depict their execution. The actions are given their preconditions as names. Note that the pointed relational 
model resulting from the (second) action of Anne privately learning that p is bisimilar to the four-state model in Section 2
(Fig. 2).
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Fig. 6. Examples of action model execution.

6.2. From action models to arrow updates

A given action model can be transformed into an arrow update model by decorating each arrow in the action model 
with a source condition that is the precondition of the source action and with a target condition that is the precondition of 
the target action. That is all. Technically:

Let E = (S, R, pre) be given. Arrow update model U (E) = (O , R R) is defined as: O  = S, and for all agents a and actions 
e, e′ , (e, pre(e)) →a (e′, pre(e′)) iff (e, e′) ∈ Ra .6 We can now show that (E, e) is update equivalent to (U (E), e), on condition 
of the executability of the action e, i.e., restricted to the denotation of pre(e).

Proposition 22 ([10]). (E, e) is conditionally update equivalent to (U (E), e).

Proof. Let M = (S, R, V ), M ⊗ E = (S ′, R ′, V ′) and M ∗ U (E) = (S ′′, R ′′, V ′′). Define the relation R by R = {((s, e), (s, e)) ∈
S ′ × S ′′ | (s, e) ∈ S ′}. We will show that if (M, s) ∈ dom(E, e), so if M, s |= pre(e), then R is a bisimulation linking (s, e) ∈ S ′
to (s, e) ∈ S ′′ .

Take any ((s1, f1), (s1, f1)) ∈ R. The atoms clause is trivially satisfied as the states s match (and updates do not 
change facts). We now consider forth. Suppose (s1, f1)R ′

a(s2, f2). Given the definition of action model execution, this 
implies that (s1, s2) ∈ Ra , ( f1, f2) ∈ Ra , M, s1 |= pre( f1) and M, s2 |= pre( f2). Because of how we constructed U (E), it 
follows from ( f1, f2) ∈ Ra that ( f1, pre( f1)) →a ( f2, pre( f2)). Then from M, s1 |= pre( f1) and M, s2 |= pre( f2) it follows 
that (s1, f1)R ′′

a (s2, f2). Also, ((s2, f2)(s2, f2)) ∈ R by the definition of the relation R. So forth is satisfied. Finally, we con-
sider back. Suppose (s1, f1)R ′′

a (s2, f2). Then we must have ( f1, pre( f1)) →a ( f2, pre( f2)) with ( f1, f2) ∈ Ra , since U (E) only 
contains arrows of that type. It follows that M, s1 |= pre( f1) and M, s2 |= pre( f2), so (s1, f1)R ′

a(s2, f2). Again, obviously, 
((s2, f2)(s2, f2)) ∈R. The back condition is therefore also satisfied.

We have now shown that R is a bisimulation. Since (s, e)R(s, e) this implies that M ⊗ E, (s, e)↔ M ∗ U (E), (s, e). This 
holds for every (M, s) ∈ dom(E, e), so (E, e) is conditionally update equivalent to (U (E), e). �

Corollary 23. Let F ⊆D(E). Then (E, F ) is conditionally update equivalent to (U (E), F ).

From Proposition 22 follows that, for all ϕ ∈ Lml , [E, e]ϕ is equivalent to pre(e) → [U (E), e]ϕ . See also [10][Cor. 3.9]. 
This can be used as a clause in an inductively defined translation from the language of AUML to the language of AML. In 
Corollary 23 the condition for update equivalence is 

∨
e∈F pre(e).

The arrow update models constructed by the above procedure from the action model for Anne reading the letter contain-
ing p while Bill may notice her doing so, and for Anne privately learning p, are as follows (Fig. 7). Note that they are update 
equivalent (namely on their domain of execution) to the arrow update models for these actions presented in Section 2. In 
the figure, by ϕ ab ϕ′ we mean the two arrows ϕ →a ϕ′, ϕ →b ϕ′ . On the left, the dual arrows for b between outcomes 
have not been labelled. They are as expected: � →b ¬p, p →b ¬p, p →b �. (They are update equivalent to the example 
arrow update models in Section 2.4 and Fig. 2.)

6 In [10], arrows (e, �) →a (e′, ϕ′) instead of (e, ϕ) →a (e′, ϕ′) are stipulated. Both constructions deliver the desired update equivalence.
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Fig. 7. From action models to arrow updates — example.

6.3. From arrow updates to action models

A given arrow update model can be transformed into an update equivalent action model by conditionalizing in each 
outcome over any possible ‘valuation’ of (any subset of) the source and target conditions of all outcomes. This leads to an 
exponential blowup. (See [10, Theorem 3.7]. Our construction and subsequent proof are different.) We proceed with the 
construction.

Let U = (O , R R) be given. Let � be the collection of all source and target conditions occurring in U :

� = {ϕ | there are a ∈ A,ϕ′ ∈ L,o,o′ ∈ O s.t. (o,ϕ) →a (o′,ϕ′) or (o,ϕ′) →a (o′,ϕ)}.
We consider the formulas in � as ‘atomic constituents’ over which we consider ‘valuations’ v ∈ 2� (lower case, to dis-
tinguish it from the relational model valuation V , upper case). The characteristic formula of a valuation is δv := ∧

ϕ∈� ϕ , 
where ϕ = ϕ if v(ϕ) = 1 and ϕ = ¬ϕ if v(ϕ) = 0. Action model E(U ) = (S, R, pre) is now such that:

S = O × 2�

((o, v), (o′, v ′)) ∈ Ra iff ∃ϕ,ϕ′ : (o,ϕ) →a (o′,ϕ′), v(ϕ) = 1, v ′(ϕ′) = 1
pre(o, v) = δv

Further, given (U , o), its single point o becomes a set of actions E(o) := {o} × 2� . The corresponding action model 
(E(U ), E(o)) is therefore multi-pointed (unless � = {�} or � = {⊥}). We note that the preconditions of actions need not 
be consistent formulas, just as source and target conditions of arrows need not be consistent formulas. Our construction 
is therefore different from that in [10], wherein only v ∈ 2� are considered for which δv is consistent. That construction 
is more economical, but computational efficiency is not our goal. We can now show that (U , o) is update equivalent to 
(E(U ), E(o)). Note that they both can be executed on the entire domain.

Proposition 24. (U , o) is update equivalent to (E(U ), E(o)).

Proof. Let M = (S, R, V ) and s ∈ S be given, and let M ∗ U = (S ′, R ′, V ′) and M ⊗ E(U ) = (S ′′, R ′′, V ′′). We show that for 
some (o, v) ∈ E(o), (M ∗ U , (s, o))↔ (M ⊗ E(U ), (s, o, v)). Define relation R as follows:

(s,o)R(s,o, v) iff M, s |= δv

We show that R is a bisimulation.
For forth, assume ((s1, o1), (s1, o1, v1)) ∈ R and ((s1, o1), (s2, o2)) ∈ R ′

a . The latter implies that there are ϕ1, ϕ2 ∈L such 
that (o1, ϕ1) →a (o2, ϕ2), and that M, s1 |= ϕ1 and M, s2 |= ϕ2. Choose v1 and v2 such that M, s1 |= δv1 and M, s2 |= δv2

(note that v1 and v2 exist and are unique). As M, s1 |= ϕ1 and M, s1 |= δv1 we have v1(ϕ1) = 1 and as M, s2 |= ϕ2 and 
M, s2 |= δv2 we have v2(ϕ2) = 1. We claim that (s2, o2, v2) is the requested witness to close the forth argument. Firstly, 
((s1, o1, v1), (s2, o2, v2)) ∈ R ′′

a because (s1, s2) ∈ Ra and ((o1, v1), (o2, v2)) ∈ Ra , where the latter follows from (o1, ϕ1) →a

(o2, ϕ2), v1(ϕ1) = 1 and v2(ϕ2) = 1 (see the definition of E(U ) above). Secondly, ((s2, o2), (s2, o2, v2) ∈R. Step back is very 
similar; now use that pre(o1, v1) = δv1 and that pre(o2, v2) = δv2 , and observe that (E(U ), E(o)) can always be executed, it 
has precondition 

∨
v∈2� δv , which is equivalent to �. �

Corollary 25. Let now Q ⊆D(U ). Then (U , Q ) is update equivalent to (E(U ), E(Q )).

As an example we now show the action models constructed by the above procedure from the two example arrow update 
models of Section 2. The set of source and target condition formulas is {p, ¬p, �}. Of their 8 valuations the two non-trivial 
(and different) valuations are characterized by p and ¬p. These formulas are also the action preconditions in the action 
points of the resulting action models. The reader may observe that these action models are, again, update equivalent to 
their ‘original’ action models at the start of this section (Fig. 8).
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Fig. 8. From arrow updates to action models — example.

6.4. Relative update expressivity

We are now prepared to harvest the update expressivity results. First, let us show that AUML1 is more update expressive 
than AML1.

Proposition 26. AUML1 is more update expressive than AML1.

Proof. From Proposition 22 follows that AUML1 is at least as update expressive as AML1. To show that the inclusion is 
strict, we need to show that for some (U , o), there is no (E, e) that induces the same relation.

Let U be the arrow update model with a single outcome o, and a single arrow (o, p) →a (o, �). Suppose towards a 
contradiction that there is a single-pointed action model (E, e) such that (M ∗ U , (s, o))↔ (M ⊗ E, (s, e)) for every (M, s). 
Then, in particular, (E, e) must be executable everywhere, so pre(e) is equivalent to �. Furthermore, if M, s |= p ∧ ♦a�, 
then (M ∗ U , (s, o)) has at least one a-successor (s′, o) (note that ♦a� enforces that s has an a-successor s′ , and the arrow 
s →a s′ satisfies p at the source and � at the target). By assumption, (M ⊗ E, (s, e)) is bisimilar to (M ∗ U , (s, o)), so it has 
an a-successor (s′, e′). This implies that eRae′ . Now, consider a different model (M ′, s) such that (i) M ′, s |= ¬p and (ii) s has 
an a-successor s′ such that M ′, s′ |= pre(e′). Then (M ′ ⊗ E, (s, e)) has an a-successor, but (M ′ ∗ U , (s, o)) has no a-successor, 
because p is false in state s. This contradicts the assumption that (M ∗ U , (s, o))↔ (M ⊗ E, (s, e)) for every (M, s). �

Proposition 27. AUML is as update expressive as AML.

Proof. From Corollary 23 follows that AUML is at least as update expressive as AML. From Corollary 25 follows that AML is 
at least as update expressive as AUML. �

It is obvious that AML is more update expressive than AML1, and that AUML is more update expressive than AUML1.

6.5. Applications illustrating the succinctness of arrow updates

In this section we give some application areas for the modelling of information change, where arrow updates are more 
succinct that corresponding (i.e., update equivalent) action models.

Lying. You are lying if you say that something is true while you believe that it is false — and with the intention for the 
addressee(s) to believe that it is true. In the setting of public announcement logic a lie is a public announcement that is 
false. This is then contrasted to the (usual) public announcement that is true. Both are combined in the announcement that 
has no relation to its truth. This is known as the conscious update ([29], see the introduction) or, in a setting where lying 
is also distinguished, as the manipulative update [31]. The arrow update for the conscious/manipulative update of ϕ is the 
singleton arrow update model with arrows

(o,�) →a (o,ϕ)

for all agents. Lying as such, wherein ϕ is required to be false, is not an arrow update as arrow update models have no 
preconditions, but such executability preconditions can be simulated as antecedents of logical implications.

A problem with the manipulative update is that an agent who already believes the opposite of the lie, believes everything 
after incorporating the lie into her beliefs (believing a contradiction comes at that price). This is because the accessibility of 
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that agent becomes empty as a result of the update. A solution to that is the cautious update that is also known as lying to 
sceptical agents [32,7,33]: the agent only updates her beliefs if the new information is consistent with her current beliefs. 
The arrow update for the sceptical update of ϕ (again, we cannot model sceptical lying as this requires ϕ to be false) is a 
singleton arrow update model with arrows

(o,♦aϕ) →a (o,ϕ)

(o,�a¬ϕ) →a (o,�)

for all agents [7].
Given a group of agents, some may believe the announcement, and others not. The arrow update modelling allows for 

this. However, if we make an action model for announcements to sceptical agents, we need to distinguish all combinations 
explicitly (we used a similar construction to get action model E(U ) from arrow update U , above, in order to prove Proposi-
tion 24). For example, for two agents a and b, the action model consists of eight actions, with preconditions and accessibility 
relations as follows. In Fig. 9 we ‘name’ the actions with their preconditions. To simplify the visualization, we do not label 
arrows with a and b: solid arrows are for a and dashed arrows for b. We also assume transitive closure of accessibility.

♦aϕ ∧♦bϕ ∧ ϕ ♦aϕ ∧�b¬ϕ ∧ ϕ

�a¬ϕ ∧♦bϕ ∧ ϕ �a¬ϕ ∧�b¬ϕ ∧ ϕ

♦aϕ ∧♦bϕ ∧ ¬ϕ ♦aϕ ∧�b¬ϕ ∧ ¬ϕ

�a¬ϕ ∧♦bϕ ∧ ¬ϕ �a¬ϕ ∧�b¬ϕ ∧ ¬ϕ

Fig. 9. Action model for lying.

For n agents there are O (2n) actions in the action model. In [7] this example is treated in greater detail, and also other, 
similar, examples are shown for which arrow updates are shown to be more succinct (exponentially smaller).

Attentive announcements. Another example where action models are exponentially bigger than arrow updates is that of 
the attention-based announcements of [34]. This work presents a logic of announcements that are only ‘heard’ (received) 
by agents paying attention to it, paying attention to the announcer, so to speak. Such announcements are modelled em-
ploying an auxiliary set of designated ‘attention (propositional) variables’ ha expressing that agent a pays attention. The 
corresponding arrow update model has domain {o, o′}, both outcomes designated, and with arrows

(o,ha) →a (o,ϕ)

(o,¬ha) →a (o′,�)

(o′,�) →a (o′,�)

for all agents. It cannot be modelled with a (singleton) [7] arrow update, the resulting relational model is typically larger 
than then model before the update, as the agents not paying attention believe that no announcement was made, and thus 
reason about the structure of the entire initial model. Incorporating the announcements depends on ha being true or false, 
just as for sceptical announcements it depends on ♦aϕ being true or false. So, this is similar. But not entirely so, because 
an agent not paying attention is, so to speak, inconscious of the announcement, and thus believes that the (entire) original 
model still encodes her beliefs), whereas an agent believing the opposite of the announcement ‘knows’ that if she were 
to have found the announcement believable, she would have changed her beliefs. So these are different parts of the same 
model, it is a mere restriction of the accessibility relation. Again, for attentive announcements, a corresponding action model 
is of exponential size, as any subset of agents may or may not be paying attention. See [34].

Comparative size of action models and arrow updates. In general, if the observational powers of all agents are commonly 
known to be partial, then we can expect arrow updates for such dynamic phenomena to be exponentially smaller than 
corresponding action models. This was the case for announcements to sceptical lying and for attention-based announce-
ments, and also for: agents making broadcasts (to all agents), agents seeing each other depending on their orientation, 



H. van Ditmarsch et al. / Information and Computation 275 (2020) 104544 25
partial networks representing agents with neighbours or friends, etc. On the other hand, dynamic phenomena where all 
agents observe (some, few) designated agents have similarly-sized arrow updates and action models, such as: the private 
announcement to an individual agent or a subgroup of agents, and gossip scenarios where two agents call each other in 
order to exchange secrets, and where this call may be partially observed by all other agents. We do not know of scenarios 
where action models are more succinct than arrow updates.

7. Arbitrary arrow updates versus refinements

7.1. Refinement modal logic

We now compare the arbitrary arrow update modality of AAUML to the refinement quantifier of refinement modal logic 
RML [18]. Let us first be precise about its syntax and semantics.

We recall the definition of bisimulation in Section 2.1. If atoms and back hold, we call the relation a refinement (and 
dually, if atoms and forth hold, we call the relation a simulation). In [18] such a refinement relation is considered for any 
subset of the set of agents and defined as follows:

A relation RB that satisfies atoms, back-a, and forth-a for every a ∈ A \ B , and that satisfies atoms, and back-b for every 
b ∈ B , is a B-refinement, we say that (M ′, s′) refines (M, s) for group of agents B , and we write (M, s) �B (M ′, s′). An A-
refinement we call a refinement (clearly any B-refinement is also an A-refinement and thus a ‘refinement’ plain and simple), 
and (M, s) �A (M ′, s′) is denoted (M, s) � (M ′, s′). With this relation comes a corresponding modality in the obvious way. 
Let B ⊆ A, and (M, s) and ϕ given, then

M, s |= [�]Bϕ iff M ′, s′ |= ϕ for all (M ′, s′) such that (M, s) �B (M ′, s′).

We continue with the comparison of the refinement quantifier to the other quantifiers. We first focus on the refinement 
relation � for the set of all agents, to which corresponds the [�] modality. Consider three different ways to define quan-
tification in information changing modal logics. We formulate them suggestively so that their correspondences stand out, 
where we recall Proposition 16 that the restrictions on source and target conditions need not be met when interpreting [↑], 
and similarly, [17] showed that the restrictions on action preconditions need not be met when interpreting [⊗].

M, s |= [↑]ϕ iff M, s |= [U ,o]ϕ for all arrow update models (U ,o)

M, s |= [�]ϕ iff M ′, s′ |= ϕ for all refinements (M ′, s′)
M, s |= [⊗]ϕ iff M ′, s′ |= [E, e]ϕ for all action models (E, e)

Theorem 28. Let ϕ ∈Lml. Then [↑]ϕ , [�]ϕ , [⊗]ϕ are pairwise equivalent.

Proof. • The equivalence of [�]ϕ to [⊗]ϕ was shown in [17].
• To show that [⊗]ϕ is equivalent to [↑]ϕ , we use the semantics of these modalities. Let us do this for the diamond 

version. Both directions of the equivalence need to be shown.
First, suppose that
M, s |= 〈⊗〉ϕ .
According to the semantics of 〈⊗〉 this is equivalent to
∃(E, e) : M, s |= 〈E, e〉ϕ .
By Proposition 22 that, in turn, is equivalent to
∃(U (E), e) : M, s |= pre(e) and M, s |= 〈U (E), e〉ϕ .
This implies that, in particular,
∃(U (E), e) : M, s |= 〈U (E), e〉ϕ
and therefore, by the semantics of 〈↑〉, that
M, s |= 〈↑〉ϕ .

For the other direction, suppose that
M, s |= 〈↑〉ϕ .
According to the semantics of 〈↑〉 this is equivalent to
∃(U , o) : M, s |= 〈U , o〉ϕ .
By Proposition 24 that, in turn, is equivalent to
∃(E(U ), E(o)) : M, s |= 〈E(U ), E(o)〉ϕ .
In particular, this implies that for some e ∈ E(o) we have
∃(E(U ), e) : M, s |= 〈E(U ), e〉ϕ
and therefore, by the semantics of 〈⊗〉, that
M, s |= 〈⊗〉ϕ .

• To show that [↑]ϕ is equivalent to [�]ϕ we use the previous two equivalences. �
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The theorem is formulated to make the correspondence between the three quantifiers stand out. Alternatively, we can 
have an inductively defined translation between the language L (of AAUML) and the language of arbitrary action model 
logic AAML that is compositional to the extent that arrow update quantifiers are translated into action model quantifiers 
(Theorem 28) and arrow update models into action models (Proposition 24), and vice versa (Proposition 22).

7.2. Update expressivity

Considering that [⊗]ϕ , [↑]ϕ and [�]ϕ are equivalent for basic modal formulas ϕ (Theorem 28), and that [⊗] and [↑]
have the same update expressivity (Section 5), one might expect all three logics AAML, AAUML, and RML to have the same 
update expressivity. This, however, is not so, because [⊗] and [↑] are finitary quantifiers — they quantify over, respectively, 
finite action models and over finite arrow update models — whereas refinements can be infinitary.

For one example, consider the relational model N consisting of all valuations, with the universal relation on that domain 
for all agents, and any state t in that domain. Clearly, the restriction of N to the singleton model consisting of t (wherein 
the agents have common knowledge of the valuation in t) is a refinement of (N, t). It can be obtained by successively 
announcing the value of each of the infinite number of atoms. However, it cannot be obtained by a single announcement 
(or, equivalently, by any finite sequence of those).

For another example, consider the models M , with as single state s0, and M ′ , with s0 as its leftmost state, in Fig. 10. 
The pointed model (M ′, s0) is a refinement of (M, s0). But M ′ contains infinitely many states that are not bisimilar to one 
another. Furthermore, every arrow update model U in the logical language is finite, so every product of U with M is finite 
(and therefore contains finitely many non-bisimilar states). As a result, there is no (U , o) such that (M ′, s0) is bisimilar to 
(M ∗ U , (s, o)).

a

s0

· · ·
a a a a

a a

a

a

a

a

s0

Fig. 10. Arbitrary arrow updates and refinements are incomparable.

It follows that arbitrary arrow updates are not at least as update expressive as refinements. But it also follows that 
refinements are not at least as update expressive as arbitrary arrow updates, since you cannot choose to exclude the above 
model (M ′, s0) when performing a refinement in (M, s0).

Proposition 29. RML and AAUML are incomparable in update expressivity.

And therefore RML and AAML are also incomparable. The reason that [↑]ϕ and [�]ϕ (and [⊗]ϕ) are nonetheless equiv-
alent is that while there is no (U , o) such that (M ∗ U , (s0, o)) is bisimilar to (M ′, s0), it is the case that for every n there is 
an (Un, on) such that (M ∗ Un, (s0, on)) is n-bisimilar to (M ′, s0). Since every formula in the languages under consideration 
is of finite depth, such finite approximations of M ′ suffice.

Finally, we should note that the incomparability already applies to the language for RML with only the [�] modality. The 
language above, as in [18], has [�]B modalities for any subgroup B ⊆ A, meaning that, modulo bisimulation, only arrows 
in B are removed from a relational model. Similarly to the argument above it follows that this would only further increase 
expressivity.

8. Conclusions and further research

Conclusions. We presented arbitrary arrow update model logic (AAUML). We provided an axiomatization of AAUML, which 
also demonstrates that AAUML is decidable and equally expressive as multi-agent modal logic. We established arrow update 
model synthesis for AAUML. We determined the update expressivity hierarchy including AAUML and many other update 
logics, including other arrow update logics, action model logics, and refinement modal logic.

Further research on B-restricted arrow update synthesis. Let B be any subset of the set of all agents. Building upon the B-
refinements of [18] and motivated by a similar approach used in [17], a variant of the synthesis problem for AAUML is to 
consider B-restricted arrow update models. Roughly speaking, a B-restricted arrow update model represents an event where 
only the agents in B can gain more factual information, while the agents outside B remain at least as uncertain as they 
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were before the event. The B-restricted synthesis problem can be solved in a very similar way to the unrestricted problem 
that we presented in this paper.

Similarly to how arrow update models have the same update expressivity as action models and refinements, B-restricted 
arrow update models have the same update expressivity as B-restricted action models, and B-refinements have larger 
update expressivity.

Formally introducing B-restricted arrow update models, and showing that the results apply there as well, would require 
a lot of complicate notation and several complex definitions. So for the sake of readability we did not include them in this 
paper.

Knowledge and belief. Arrow updates result in changes of knowledge and belief. Of particular interest are therefore updates 
that preserve the S5 or KD45 nature of relational models. It is unclear how to enforce such preservation semantically, 
as discussed in Section 2.4. Such issues need to be resolved in order to find an axiomatization for arrow update logic, or 
arrow update model logic, or quantified versions of these, for the class S5 or KD45. These well-known problems [7,16]
are related to similar issues for refinement modal logic, as refinement also is relational change. Non-trivial S5 and KD45
versions of refinement modal logic have been proposed in work by Hales et al. [35,36], and particular mention deserves 
Hales’ Ph.D. thesis [26, Section 9.3, Section 9.4] wherein the axiomatization AAUML is adapted to the classes KD45 and S5, 
respectively. These diverse results might inspire similar solutions for truly ‘epistemic’ arrow update logics.

Work in progress on the complexity of synthesis. We have shown that it is possible to perform synthesis for AAUML, and 
described an algorithm that does this synthesis. We have not, however, discussed the computational complexity of that 
algorithm. The complexity is non-elementary. The non-elementary blowup occurs when 〈↑〉 operators are nested. In general, 
if ϕ is a basic modal formula, then the procedure outlined in this paper allows us to find a basic modal formula ϕ′ that 
is equivalent to 〈↑〉ϕ , but the size of this ϕ′ is, in the worst case, exponential in the size of ϕ . As a result, a formula ψ
containing n nested 〈↑〉 operators can be translated to an equivalent formula ψ ′ of modal logic using this method, but both 
the formula ψ ′ and the arrow update model synthesized for the outermost 〈↑〉 operator will have experienced exponential 
blowup n times, resulting in a non-elementary blowup overall. We suspect that this is unavoidable, i.e., that the difficulty 
of the synthesis problem is non-elementary. We do not, for now, have a hardness proof, however.
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