214 research outputs found

    Selecting the best locations for data centers in resilient optical grid/cloud dimensioning

    Get PDF
    For optical grid/cloud scenarios, the dimensioning problem comprises not only deciding on the network dimensions (i.e., link bandwidths), but also choosing appropriate locations to install server infrastructure (i.e., data centers), as well as determining the amount of required server resources (for storage and/or processing). Given that users of such grid/cloud systems in general do not care about the exact physical locations of the server resources, a degree of freedom arises in choosing for each of their requests the most appropriate server location. We will exploit this anycast routing principle (i.e., source of traffic is given, but destination can be chosen rather freely) also to provide resilience: traffic may be relocated to alternate destinations in case of network/server failures. In this study, we propose to jointly optimize the link dimensioning and the location of the servers in an optical grid/cloud, where the anycast principle is applied for resiliency against either link or server node failures. While the data center location problem has some resemblance with either the classical p-center or k-means location problems, the anycast principle makes it much more difficult due to the requirement of link disjoint paths for ensuring grid resiliency

    Attack-Aware Routing and Wavelength Assignment of Scheduled Lightpath Demands

    Get PDF
    In Transparent Optical Networks, tra c is carried over lightpaths, creating a vir- tual topology over the physical connections of optical bers. Due to the increasingly high data rates and the vulnerabilities related to the transparency of optical network, security issues in transparent wavelength division multiplexing (WDM) optical net- works have become of great signi cance to network managers. In this thesis, we intro- duce some basic concepts of transparent optical network, the types and circumstances of physical-layer attacks and analysis of related work at rst. In addition, based on the previous researches, we present a novel approach and several new objective cri- terions for the problem of attack-aware routing and wavelength assignment. Integer Linear Programming (ILP) formulation is used to solve the routing sub-problem with the objective to minimize the disruption of physical-layer attack as well as to opti- mize Routing and Wavelength Assignment (RWA) of scheduled transparent optical network

    Resource Allocation in Survivable WDM Networks Under a Sliding Scheduled Traffic Model

    Get PDF
    In recent years there has been an increasing number of applications that require periodic use of lightpaths at predefined time intervals, such as database backup and on-line classes. A new traffic model, referred to as the scheduled traffic model, has been proposed to handle such scheduled lightpath demands. In this thesis we present two new integer linear program ( ILP) formulations for the more general sliding scheduled traffic model, where the setup and teardown times may vary within a specified range. We consider both wavelength convertible networks and networks without wavelength conversion capability. Our ILP formulations jointly optimize the problem of scheduling the demands ( in time) and allocating resources for the scheduled lightpaths. Simulation results show that our formulations are able to generate optimal solutions for practical sized networks. For larger networks, we have proposed a fast two-step heuristic to solve the demand scheduling problem and the RWA problem separately

    A Survey of the Routing and Wavelength Assignment Problem

    Get PDF

    Intelligent design of optical networks: which topology features help maximise throughput in the nonlinear regime?

    Get PDF
    The overarching goal in intelligent network design is to deliver capacity when and where it is needed. The key to this is to understand which network topology characteristics impact the achievable network throughput. This is explored through the use of a new generative network model, taking into account physical layer network characteristics

    Exploring ILP and heuristic formulations for planning multiband optical networks

    Get PDF
    To keep up with the growth in traffic demands in nowadays optical telecommunications networks, solutions such as multiband and flexible grid are needed to improve spectrum efficiency and transmission capacity. This dissertation focuses on planning the routing and wavelength assignment (RWA) in multiband networks using both heuristic and integer linear programming (ILP) solutions to optimize the spectrum allocation. We develop C+L multiband network planning tools to solve the RWA problem in static networks, using flexible and fixed grids, exploring different routing metrics, such as distance and optical signal-to-noise ratio. First, we compare the performance of two RWA tools, a heuristic and an ILP, considering a fixed grid, in terms of the number of wavelengths and computation time, for different network topologies. Then, we extend our RWA heuristic tool to deal with the flexible grid and be aware of the physical layer impairments, to be capable of solving routing, modulation format and spectrum assignment (RMSA) problems. We have concluded that our RWA ILP achieves the optimum number of wavelengths, when it uses more than one candidate path per demand but requires more computing time than the RWA heuristic tool. In RMSA problems, the number of allocated frequency slots (FSs) is dependent on the bit error rate (BER). Networks with shorter links require more FSs as the BER decreases. Networks with longer links require less FSs as the BER decreases, since the blocked demands increase.Para responder ao crescimento do número de pedidos de tráfego nas atuais redes de telecomunicações óticas, são necessárias soluções como a multibanda e grelha flexível para melhorar a eficiência na utilização do espectro e a capacidade de transmissão. Esta dissertação foca-se no planeamento do encaminhamento e da atribuição de comprimentos de onda (RWA) em redes multibanda utilizando soluções heurísticas e de programação inteira linear (ILP), para otimizar a alocação de espectro. Desenvolveram-se ferramentas de planeamento de redes multibanda C+L para resolver o problema RWA em redes estáticas, utilizando grelhas flexíveis e fixas, explorando diferentes métricas de encaminhamento, como a distância e relação ao sinal-ruido ́ótica. Primeiro, comparou-se o desempenho de ferramentas RWA, uma heurística e outra ILP numa grelha fixa, em relação ao número de comprimentos de onda e tempo de computação, para diferentes topologias de rede. Depois, adaptou-se a ferramenta RWA heurística para suportar a grelha flexível, considerando, as limitações da camada física, para resolver problemas de encaminhamento, atribuição de formato de modulação e espectro (RMSA). Concluiu-se que o RWA ILP atinge o número ótimo de comprimentos de onda, quando um pedido tem vários caminhos candidatos, contudo requer mais tempo de computação que a ferramenta heurística. Nos problemas RMSA, o número de intervalos de frequência (FSs) atribuídos depende da taxa de erro de bit (BER). Em redes com ligações mais curtas, são necessários mais FSs com a diminuição da BER. As redes com ligações mais longas requerem menos FSs com a diminuição da BER, pois os pedidos bloqueados aumentam

    Resilient Resource Allocation Schemes in Optical Networks

    Get PDF
    Recent studies show that deliberate malicious attacks performed by high-power sig- nals can put large amount of data under risk. We investigate the problem of sur- vivable optical networks resource provisioning scheme against malicious attacks, more specically crosstalk jamming attacks. These types of attacks may cause ser- vice disruption (or possibly service denial). We consider optical networks based on wavelength-division multiplexing (WDM) technology and two types of jamming at- tacks: in-band and out-of-band attacks. We propose an attack-aware routing and wavelength assignments (RWA) scheme to avoid or reduce the damaging effects of potential attacking signals on individual or multiple legitimate lightpaths travers- ing the same optical switches and links. An integer linear programs (ILPs) as well as heuristic approaches were proposed to solve the problem. We consider dynamic traffic where each demand is dened by its start time and a duration. Our results show that the proposed approaches were able to limit the vulnerability of lightpaths to jamming attacks. Recently, large-scale failures caused by natural disasters and/or deliberate at- tacks have left major parts of the networks damaged or disconnected. We also investigate the problem of disaster-aware WDM network resource provisioning in case of disasters. We propose an ILP and efficient heuristic to route the lightpaths in such a way that provides protection against disasters and minimize the network vi resources such as the number of wavelength links used in the network. Our models show that signicant resource savings can be achieved while accommodating users demands. In the last few years, optical networks using Space Division Multiplexing (SDM) has been proposed as a solution to the speed bottleneck anticipated in data center (DC) networks. To our knowledge the new challenges of designing such communica- tion systems have not been addressed yet. We propose an optimal approach to the problem of developing a path-protection scheme to handle communication requests in DC networks using elastic optical networking and space division multiplexing. We have formulated our problem as an ILP. We have also proposed a heuristic that can handle problems of practical size. Our simulations explore important features of our approach

    Characterization, design and re-optimization on multi-layer optical networks

    Get PDF
    L'augment de volum de tràfic IP provocat per l'increment de serveis multimèdia com HDTV o vídeo conferència planteja nous reptes als operadors de xarxa per tal de proveir transmissió de dades eficient. Tot i que les xarxes mallades amb multiplexació per divisió de longitud d'ona (DWDM) suporten connexions òptiques de gran velocitat, aquestes xarxes manquen de flexibilitat per suportar tràfic d’inferior granularitat, fet que provoca un pobre ús d'ample de banda. Per fer front al transport d'aquest tràfic heterogeni, les xarxes multicapa representen la millor solució. Les xarxes òptiques multicapa permeten optimitzar la capacitat mitjançant l'empaquetament de connexions de baixa velocitat dins de connexions òptiques de gran velocitat. Durant aquesta operació, es crea i modifica constantment una topologia virtual dinàmica gràcies al pla de control responsable d’aquestes operacions. Donada aquesta dinamicitat, un ús sub-òptim de recursos pot existir a la xarxa en un moment donat. En aquest context, una re-optimizació periòdica dels recursos utilitzats pot ser aplicada, millorant així l'ús de recursos. Aquesta tesi està dedicada a la caracterització, planificació, i re-optimització de xarxes òptiques multicapa de nova generació des d’un punt de vista unificat incloent optimització als nivells de capa física, capa òptica, capa virtual i pla de control. Concretament s'han desenvolupat models estadístics i de programació matemàtica i meta-heurístiques. Aquest objectiu principal s'ha assolit mitjançant cinc objectius concrets cobrint diversos temes oberts de recerca. En primer lloc, proposem una metodologia estadística per millorar el càlcul del factor Q en problemes d'assignació de ruta i longitud d'ona considerant interaccions físiques (IA-RWA). Amb aquest objectiu, proposem dos models estadístics per computar l'efecte XPM (el coll d'ampolla en termes de computació i complexitat) per problemes IA-RWA, demostrant la precisió d’ambdós models en el càlcul del factor Q en escenaris reals de tràfic. En segon lloc i fixant-nos a la capa òptica, presentem un nou particionament del conjunt de longituds d'ona que permet maximitzar, respecte el cas habitual, la quantitat de tràfic extra proveït en entorns de protecció compartida. Concretament, definim diversos models estadístics per estimar la quantitat de tràfic donat un grau de servei objectiu, i diferents models de planificació de xarxa amb l'objectiu de maximitzar els ingressos previstos i el valor actual net de la xarxa. Després de resoldre aquests problemes per xarxes reals, concloem que la nostra proposta maximitza ambdós objectius. En tercer lloc, afrontem el disseny de xarxes multicapa robustes davant de fallida simple a la capa IP/MPLS i als enllaços de fibra. Per resoldre aquest problema eficientment, proposem un enfocament basat en sobre-dimensionar l'equipament de la capa IP/MPLS i recuperar la connectivitat i el comparem amb la solució convencional basada en duplicar la capa IP/MPLS. Després de comparar solucions mitjançant models ILP i heurístiques, concloem que la nostra solució permet obtenir un estalvi significatiu en termes de costos de desplegament. Com a quart objectiu, introduïm un mecanisme adaptatiu per reduir l'ús de ports opto-electrònics (O/E) en xarxes multicapa sota escenaris de tràfic dinàmic. Una formulació ILP i diverses heurístiques són desenvolupades per resoldre aquest problema, que permet reduir significativament l’ús de ports O/E en temps molt curts. Finalment, adrecem el problema de disseny resilient del pla de control GMPLS. Després de proposar un nou model analític per quantificar la resiliència en topologies mallades de pla de control, usem aquest model per proposar un problema de disseny de pla de control. Proposem un procediment iteratiu lineal i una heurística i els usem per resoldre instàncies reals, arribant a la conclusió que es pot reduir significativament la quantitat d'enllaços del pla de control sense afectar la qualitat de servei a la xarxa.The explosion of IP traffic due to the increase of IP-based multimedia services such as HDTV or video conferencing poses new challenges to network operators to provide a cost-effective data transmission. Although Dense Wavelength Division Multiplexing (DWDM) meshed transport networks support high-speed optical connections, these networks lack the flexibility to support sub-wavelength traffic leading to poor bandwidth usage. To cope with the transport of that huge and heterogeneous amount of traffic, multilayer networks represent the most accepted architectural solution. Multilayer optical networks allow optimizing network capacity by means of packing several low-speed traffic streams into higher-speed optical connections (lightpaths). During this operation, a dynamic virtual topology is created and modified the whole time thanks to a control plane responsible for the establishment, maintenance, and release of connections. Because of this dynamicity, a suboptimal allocation of resources may exist at any time. In this context, a periodically resource reallocation could be deployed in the network, thus improving network resource utilization. This thesis is devoted to the characterization, planning, and re-optimization of next-generation multilayer networks from an integral perspective including physical layer, optical layer, virtual layer, and control plane optimization. To this aim, statistical models, mathematical programming models and meta-heuristics are developed. More specifically, this main objective has been attained by developing five goals covering different open issues. First, we provide a statistical methodology to improve the computation of the Q-factor for impairment-aware routing and wavelength assignment problems (IA-RWA). To this aim we propose two statistical models to compute the Cross-Phase Modulation variance (which represents the bottleneck in terms of computation time and complexity) in off-line and on-line IA-RWA problems, proving the accuracy of both models when computing Q-factor values in real traffic scenarios. Second and moving to the optical layer, we present a new wavelength partitioning scheme that allows maximizing the amount of extra traffic provided in shared path protected environments compared with current solutions. Specifically, we define several statistical models to estimate the traffic intensity given a target grade of service, and different network planning problems for maximizing the expected revenues and net present value. After solving these problems for real networks, we conclude that our proposed scheme maximizes both revenues and NPV. Third, we tackle the design of survivable multilayer networks against single failures at the IP/MPLS layer and WSON links. To efficiently solve this problem, we propose a new approach based on over-dimensioning IP/MPLS devices and lightpath connectivity and recovery and we compare it against the conventional solution based on duplicating backbone IP/MPLS nodes. After evaluating both approaches by means of ILP models and heuristic algorithms, we conclude that our proposed approach leads to significant CAPEX savings. Fourth, we introduce an adaptive mechanism to reduce the usage of opto-electronic (O/E) ports of IP/MPLS-over-WSON multilayer networks in dynamic scenarios. A ILP formulation and several heuristics are developed to solve this problem, which allows significantly reducing the usage of O/E ports in very short running times. Finally, we address the design of resilient control plane topologies in GMPLS-enabled transport networks. After proposing a novel analytical model to quantify the resilience in mesh control plane topologies, we use this model to propose a problem to design the control plane topology. An iterative model and a heuristic are proposed and used to solve real instances, concluding that a significant reduction in the number of control plane links can be performed without affecting the quality of service of the network

    Intelligent performance inference: A graph neural network approach to modeling maximum achievable throughput in optical networks

    Get PDF
    One of the key performance metrics for optical networks is the maximum achievable throughput for a given network. Determining it, however, is a nondeterministic polynomial time (NP) hard optimization problem, often solved via computationally expensive integer linear programming (ILP) formulations. These are infeasible to implement as objectives, even on very small node scales of a few tens of nodes. Alternatively, heuristics are used although these, too, require considerable computation time for a large number of networks. There is, thus, a need for an ultra-fast and accurate performance evaluation of optical networks. For the first time, we propose the use of a geometric deep learning model, message passing neural networks (MPNNs), to learn the relationship between node and edge features, the network structure, and the maximum achievable network throughput. We demonstrate that MPNNs can accurately predict the maximum achievable throughput while reducing the computational time by up to five-orders of magnitude compared to the ILP for small networks (10–15 nodes) and compared to a heuristic for large networks (25–100 nodes)—proving their suitability for the design and optimization of optical networks on different time- and distance-scales

    Real-Time Energy Price-Aware Anycast RWA for Scheduled Lightpath Demands in Optical Data Center Networks

    Get PDF
    The energy consumption of the data center networks and the power consumption associated with transporting data to the users is considerably large, and it constitutes a significant portion of their costs. Hence, development of energy efficient schemes is very crucial to address this problem. Our research considers the fixed window traffic allocation model and the anycast routing scheme to select the best option for the destination node. Proper routing schemes and appropriate combination of the replicas can take care of the issue for energy utilization and at the same time help diminish costs for the data centers. We have also considered the real-time pricing model (which considers price changes every hour) to select routes for the lightpaths. Hence, we propose an ILP to handle the energyaware routing and wavelength assignment (RWA) problem for fixed window scheduled traffic model, with an objective to minimize the overall electricity costs of a datacenter network by reducing the actual power consumption, and using low-cost resources whenever possible
    corecore