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ABSTRACT

In Transparent Optical Networks, traffic is carried over lightpaths, creating a vir-

tual topology over the physical connections of optical fibers. Due to the increasingly

high data rates and the vulnerabilities related to the transparency of optical network,

security issues in transparent wavelength division multiplexing (WDM) optical net-

works have become of great significance to network managers. In this thesis, we intro-

duce some basic concepts of transparent optical network, the types and circumstances

of physical-layer attacks and analysis of related work at first. In addition, based on

the previous researches, we present a novel approach and several new objective cri-

terions for the problem of attack-aware routing and wavelength assignment. Integer

Linear Programming (ILP) formulation is used to solve the routing sub-problem with

the objective to minimize the disruption of physical-layer attack as well as to opti-

mize Routing and Wavelength Assignment (RWA) of scheduled transparent optical

network.
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CHAPTER I

Introduction

1.1 Overview

Optical networks constitute a telecommunication network architecture on the ba-

sis of optical fibers, which uses signals encoded onto light to transmit information

among various nodes[13]. Optical communication provides large capacity over long

distances, high reliability transmission, interconnection and management for multi-

node networks. Optical networks rely on a series of optical components, e.g. optical

amplifiers, lasers or LEDs, multiplexer, demultiplexer, optical switch, etc. and wave-

length division multiplexing (WDM) technology, In recent years, optical network has

emerged to replace traditional metal communication network and is becoming more

and more widely used all over the world.

However, security issues of optical network has attracted great attention. Due

to the high data rates and the vulnerabilities associated with transparency, physical-

layer attacks caused by high-powered jamming signal can seriously degrade network

performance, lead to loss of user data and must be dealt with efficiently[2]. How

to well detect and localize the attack at the lowest possible cost has become a hot

issue. In this thesis, we proposed a new objective criterion for security-aware routing

and wavelength assignment (RWA) problem of scheduled network and formulate the

routing sub-problem as an integer linear program (ILP). The intention is to minimize

the threat of attack by reasonable network design and identify potential lightpaths

and switches which may be influenced by various types of attack.
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I. INTRODUCTION

1.1.1 Advantages of Optical Network

Optical network uses glass (or plastic) threads (fibers) to transmit data. As shown

in Fig. 1.1, a fiber optic cable consists of a bundle of glass threads, each of which is

capable of transmitting messages modulated onto light waves[12].

In comparison with traditional metal communication lines, fiber optics have sev-

eral advantages:

Fig. 1.1: Optical Fiber Cable & Metal Cable [12]

• Fiber optic cables are less susceptible than metal cables to interference.

• Fiber optic cables are much thinner and lighter than metal wires.

• Data can be transmitted digitally.

1.1.2 Wavelength-Division Multiplexing (WDM)

Fig. 1.2: WDM Components [13]

In fiber-optic communications,wavelength-division multiplexing(WDM) is a technol-

ogy which multiplexes a number of optical carrier signals onto a single optical fiberby

2



I. INTRODUCTION

using different wavelengths of laser light[22]. As demonstrated in Fig. 1.2, a WDM

system uses a multiplexer at the transmitter to join the several signals together and a

demultiplexer at the receiver to split them apart. The use of WDM makes it possible

that two or more optical signals with different wavelengths can transmit information

on the same optical cable, which reduces physical and manufacturing complexity and

boosts the reliability of the system. In addition, it can be fast recovered when faults

or attacks occur.

1.1.3 Opaque & Transparent Optical Network

According to whether or not the transmitted signal undergoes an optical to electronic

to optical (OEO) conversion at different places in the network, the optical network

can be mainly divided into (i) Opaque Network and (ii) Transparent Network.

Fig. 1.3: Opaque Optical Network Topology [14]

As described from Fig 1.3, it is a network topology of opaque optical network and

the OEO conversion occurs in the opaque switch.

Fig. 1.4: Transparent Optical Network Topology [14]

Fig 1.4 demonstrates a transparent optical network topology, from this graph

we can see that there are no WDM transponders in transparent optical network.

The lightpath signals remain in an optical format from the source to the destination

without undergoing OEO conversion.

3



I. INTRODUCTION

1.1.4 Routing and Wavelength Assignment (RWA)

Given a set of connections, the problem of setting up lightpaths by routing and

assigning a wavelength to each connection is called the Routing and Wavelength

Assignment (RWA) problem. That is to say, in setting up a lightpath, a route must

be selected and a wavelength must be assigned to the lightpath. If no wavelength is

available for this lightpath on the selected route, the connection request is blocked.

Also, the RWA problem must be subject to the following two constrains:

• Wavelength Continuity Constraint: If no wavelength converters are available,

the same wavelength must be assigned along the entire route of a lightpath.

• Wavelength Clash Constraint: Any two lightpaths sharing a common fiber link

cannot be assigned the same wavelength.

Fig. 1.5: a wavelength-routed optical network with lightpath connections [17]

Fig 1.5 illustrates a wavelength-routed network, where lightpaths have been set

up between pairs of nodes on different wavelengths. We can see from the diagram,

although two or more lightpath share the same optical link, they have to be provided

different wavelength. Typically, connection requests (demands) may be of three types:

static, scheduled and dynamic[23].

• Static Traffic: The demands are allocated for the entire duration of the network,

time dimension not being considered in general.

4



I. INTRODUCTION

• Dynamic Traffic: The start times and durations of demands are generated ran-

domly based on certain traffic distributions or probability

• Scheduled Traffic: In scheduled traffic, time dimension of demands should be

explicitly considered, which means we need to specify the specific time intervals.

As seen from Table 1.1, there are three demands, r1, r2 and r3. Each demand is

represented by a tuple (s,d,ts,te) where s and d are the source and destination

node, ts and te are the starting time and ending time.

TABLE 1.1: an Example of Scheduled Demand Set

Demands s d ts te

r1 2 9 05:00 09:20

r2 5 2 07:00 12:40

r3 3 7 08:00 14:00

1.2 Motivation

Along with the development and wide application of transparent wavelength divi-

sion multiplexing (WDM) optical networks, security issues and physical-layer attack

management have become increasingly important to the network manager. The major

advantages of transparent optical networks depend on their character of transparency,

which allows high-speed connections without undergoing optical to electronical to op-

tical (OEO) conversion at intermediate nodes. However, it is also the transparency

that leads to vulnerabilities in security and enhances the difficulties in detecting and

localizing attacks because monitoring must be performed in the optical domain[3]. In

addition, detecting techniques aiming at detecting and localizing attacks relied on

information from specialized optical monitoring equipment can be quite expensive.

In general the more reliable performance of the network required, the more resources

are needed and thus the cost of the security equipment is higher[9].

In this thesis, we are aiming at minimize the potential damage of various attacks

on the optical network without the need for specialized equipment. Accordingly, the

approach we propose takes into account the potential factors of physical-layer attacks

5



I. INTRODUCTION

when solving the RWA problem. Integer Linear Programming (ILP) is a mathemat-

ical optimization program which can be used to solve the routing sub-problem with

the objective to minimize the crosstalk attack radius and in-band attack radius in

scheduled optical network. In summary, our approach relies on optimally arranging

the set of lightpaths to minimize the possible disruptions caused by various attack

scenarios to reduce the number of lightpaths attacked, which can not only reduce the

potential network service disruption but also make failure detection and localization

algorithms be faster since they only need to search fewer potential lightpaths[4].

1.3 Problem Statement

In this thesis, we propose a novel algorithm which uses integer linear program (ILP) to

address the security-aware routing and wavelength assignment problem in scheduled

transparent WDM optical network. Given is a physical network which includes nodes

and links and a virtual topology, i.e. a set of scheduled lightpath demands. The phys-

ical edges are assumed to be bidirectional, each representing a pair of optical fibers.

The RWA problem which searches for physical paths corresponding to lightpath re-

quests should be subject to the wavelength continuity constraints and wavelength

clash constrains. We set enough wavelengths (channels) to accommodate the set of

lightpaths. We also select random time intervals between 1 and 24, during which

each lightpath request is acquired. In order to better measure physical-layer attack,

we introduce two concepts, i.e. Lightpath Attack Radius (LAR) and In-band Attack

Radius (IAR), which will be presented in detail in the next chapter. The approach to

optical networks security is aimed at minimizing the potential damage caused by sev-

eral major physical-layer attacks including gain competition, inter-channel crosstalk

attack and in-band crosstalk attack[2]. Several simulation scenarios (including differ-

ent number of nodes, lightpath demands, intervals, etc.) will be created to acquire

the objective values. Then we compare them with the cases which are also with the

objective of minimizing lightpath congestion (i.e. shortest path of each lightpath re-

quest) but only not considering the security, so that we can prove the advantages of

our security-aware routing and wavelength assignment approach in scheduled optical

6



I. INTRODUCTION

network.

1.4 Solution Outline

In this thesis, we present optimal Integer Linear Program (ILP) formulations for

solving security-aware scheduled RWA problems. IBM ILOG CPLEX Optimization

software is used to solve the formulations. The major contribution of this thesis are:

• A novel algorithm and ILP formulations to address the security-aware RWA

Problem for scheduled traffic which has not been done.

• Several objectives that comprehensively take both lightpath attack radius (LAR)

and in-band attack radius (IAR) into consideration.

• Comparison of the security performance (anti-attack capacities) between our

approach and traditional RWA approach without considering security for vari-

ous lightpath demands and different scales of network

1.5 Organization of Thesis

The remainder of the thesis is organized as follows: Chapter 2 presents the necessary

introductions of some important concepts such as physical layer attacks, differences

between network faults and attacks and the literature review of previous research

associated with network attack detection and localization, security-aware RWA prob-

lem, etc. In Chapter 3, we propose our algorithm and describe the details about ILP

formulations. Chapter 4 presents the simulation results that we carry out, analysis

about them and comparison with existing methods. Chapter 5 makes a conclusion of

our work and discusses some probable directions for further research and work.

7



CHAPTER II

Review of Related Work

2.1 Fault and Attack Management

The physical layer (layer 1) sits at the bottom of the Open System Interconnect (OSI)

model (As shown in Fig. 2.1), which is designed to transmit bit streams through

electric signals, lights or radio transmissions.

Fig. 2.1: the Seven Layers of OSI

Security issues due to transparency in optical network components is a major

challenges for network management[3]. The thesis titled Fault and Attack Manage-

ment in All-Optical Networks[4] covers management issues with particular emphasis

on complications due to the unique characteristics and behaviors of transparent net-

work components. In addition, an algorithm is also presented for multiple attack

localization and identification of optical networks.

8



II. REVIEW OF RELATED WORK

There are several kinds of attacks, including fiber cuts, power jamming (amplifier

attack), crosstalk attack (switch node attack) and correlated jamming (tapping at-

tack), etc[20].Among them, some can be seen as a kind of optical component fault, such

as fiber attack. Others, like crosstalk attack, can affect lightpaths that traverse the

same link or node with the attack connections. Crosstalk attack has higher damage

capabilities, which our approach mainly focuses on.

2.1.1 Differences between Attack and Fault

In general, there are three main differences between an attack and a fault.

• An attack appears and disappears sporadically in the network due to attack

signal injection, while a fault occurs usually because of physical natural fatigue

and aging of optical devices and components, so it happens slower than an

attack.

• Attacks may trigger multiple erroneous and undesirable alarms due to their

characteristic of propagation. For example, when a lightpath is being attacked,

it can in turn attack other lightpaths with which it shares the same physical

links or switches. But faults can only lead to single alarm, it will not affect

other lightpaths.

• For fault recovery, rerouting of traffic channels can solve all resulting problems.

However, the same approach cannot solve all resulting problems of an attack.

As describes in Fig 2.2, when the link (2,3) fails, rerouting Primary connection

can solve this problem (use Backup lightpath). If an attack signal is injected at

Node 1 and we still treat such attack as a component fault and reroute Primary

connection to Backup, we can see this method cannot solve the problem, because

Backup lightpath is still affected by attack signal.

9



II. REVIEW OF RELATED WORK

Fig. 2.2: Rerouting Connections can solve link failure

2.1.2 Attack Types in All-Optical Networks

All-Optical Networks provide transparency capabilities, allowing routing and switch-

ing of traffic without any modification or examination of signals in the network [4].

Admittedly, transparency character has many advantages in supporting high data rate

communications, it also brings new challenges that not exist in traditional networks.

Attacks can be considered from different viewpoints. From an attackers perspective,

attacks can be widely divided into six areas: traffic analysis, eavesdropping, data

delay, service denial, QoS degradation and spoofing [18]. Because some of these areas

have similar characters, the attacks can also be grouped into two main categories, i.e.

service disruption and eavesdropping.

TABLE 2.1: an Example of Scheduled Demand Set[9]

Attack Type Attack Method Component

Service Disruption

In-band jamming power Fiber

Out-of-band jamming power Fiber

Intentional Crosstalk

Splitter

Filter

Switch

Gain Competition Amplifier

Eavesdropping Unauthorized Observation
Fiber

Tap

10



II. REVIEW OF RELATED WORK

As it describes in the Table 2.1, there are various physical-layer attacks that can

happen in different components of TONs. Details about attack methods will be

presented below.

Gain Competition

In order to implement an attack, the attacker needs to gain access to the network.

For example, to commit an in-band or out-of-band jamming attack, the attacker can

take advantage of the specific characteristics of optical component such as optical

amplifiers and cause gain competition attack[4].

Fig. 2.3: Gain Competition in amplifiers

Fig 2.3 depicts the Gain Competition in an optical amplifier. The attacker injects

a high powered signal at wavelength λ1 (usually 20-30dB larger than user signal) into

a transparent optical network. When they traverse an amplifier, because the amplifier

cannot distinguish between attack signals and legitimate network signals, the attack

signal can acquire more energy and additionally increase its power, which leads to the

user signal power loss(the supply of gain is finite in amplifier). The scenario of power

robbery in amplifier is known as a gain competition attack. As a result, channel

λ1 robs channel λ2 of power and propagates downstream through successive optical

components, affecting other legal channels along its route and causing degrading or

denying network service.

11



II. REVIEW OF RELATED WORK

Fig. 2.4: Simulation diagram of gain competition attack

In the year 2010, Furdek et al. [19] verify the gain competition attack arise by high

power signal injected in Erbium Doped Fiber Amplifier (EDFA). EDFA is optical

amplifier that use a doped optical fiber as a gain medium to amplify an optical

signal. As described in Fig 2.4, the frequency of attack signal is 192.1 THz and the

user signal are 192.3, 192.5, 192.7, 192.9, 193.3, 193.5 THz. When the power of attack

signal is 10dB larger than user signal, the gain of user signal starts to decrease. The

more increase in the power of attack signal, the more decrease in the gain of user

signal.

Inter-channel Crosstalk Attack

Moreover, long distance transformation and high-power signals injection may re-

sult in another attack called Inter-channel Crosstalk[3].

Fig. 2.5: Inter-channel Crosstalk

12



II. REVIEW OF RELATED WORK

Fig 2.5 shows a high-power jamming signal, which uses a different wavelength from

user signal, injected on a link. The jamming signal is able to disrupt the lightpath it

is injected on and the other lightpaths with which it shares the common links.

In-band (Intra-channel) Crosstalk Attack Propagation

Marija Furdek et al. also propose a type of attack, which is similar to in-band

crosstalk attack introduced above, called in-band crosstalk attack propagation[2]. The

attack signal may not only affect connections traversing common switches, but also

if enough power is transferred to the affected connection, these connections may also

acquire attack abilities themselves [2]. That is to say, the attack can propagate to other

lightpaths through the network and disrupt other legitimate lightpaths far beyond the

original attacker [20].

Fig. 2.6: In-band crosstalk attack propagation[2]

Fig 2.6 displays a diagram about in-band crosstalk attack propagation. The attack

signal is injected into the network at switch a. First, it will attack User 1 ’s signal

at their common switch a. Then, the signal of legitimate User 1 acquires the attack

power and it attacks User 2 at switch b. Finally, the User 2 who also acquires the

attack power from user 1 disrupts User 3 at their common switch c. From this example

we can see that the attacker has the ability to affect User 2 ’s and User 3 ’s signal

even though they do not share any common physical components.

13
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Eavesdropping

Eavesdropping attack is a realization of unauthorized observation [21], which may

happen at several points in the network. Among them, two eavesdropping examples

require more attention. One example comes from component crosstalk: the demulti-

plexer is an important component in wavelength division multiplexing (WDM) optical

network which is used to split wavelength received from a single fiber onto separated

physical paths. The crosstalk level of demultiplexer is between 0.03% to 1.0%. How-

ever, it is just because of the low ratio of crosstalk level, a little of each wavelength

leaks onto the wrong path. If attackers detect the leaked signal and it is very likely

that some of data from the stream can be recovered. The other example of eavesdrop-

ping is relevant to the optical amplifier. When signals passing through the amplifier,

they will undergo a slight amplitude modulation on the basis of the presence or ab-

sence of signal on adjacent channels [21]. Due to the leak of signal, the attacker may

recover some intended signal on an adjacent channel.

2.2 Objectives for Attack-aware RWA Problem

The attack-aware routing and wavelength assignment (RWA) is aimed at minimizing

the potential damage caused by physical-layer attacks. We are trying to achieve the

prevention measures through careful network planning. In other words, by solving the

RWA problem, we try to reduce vulnerabilities to attacks without the requirement

of specific network monitoring components. So, proper objectives which are able to

estimate the impact of attack can definitely be an important part in RWA problem

solving.

2.2.1 Lightpath Attack Radius (maxLAR)

In order to better estimate the influence of inter-channel crosstalk attack, an objective

criterion for the RWA problem is maximum Lightpath Attack Radius (maxLAR)[3].

Lightpath Attack Radius (LAR) is defined for every specific lightpath to describe if

it is injected jamming signal, the number of legitimate data lightpaths it can attack
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(on links). However, maxLAR is aimed at the whole network, which is defined as the

number of legitimate data lightpaths any one jamming signal can attack (on links).

In other words, maxLAR describes the maximum number of lightpaths (including

itself) any one lightpath shares a common directed physical link with. What is more,

there is a relevant concept called Lightpath Attack Group (LAG). It depicts the set

of legitimate lightpaths which are probably attacked by the lightpath that is injected

jamming signal.

Moreover, in wavelength-convertible networks, the concept of network congestion

is the same as the number of wavelength used. As defined, maxLAR is also the upper

bound of network congestion as well as the number of wavelengths actually required.

By minimizing this value, we can not only reduce the threat of physical-layer attack,

but also decrease the worst case of congestion.

Fig. 2.7: maxLAR of two RWA schemes with the same lightpath demands

Fig 2.7 displays two RWA schemes with the same network topology, wavelength

assignment and lightpath requests. According to Fig 2.7 (a), the the set of lightpath

attack group (LAG) and the value of lightpath attack radius (LAR) for each lightpath

is shown in Table 2.2.
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TABLE 2.2: Lightpath Attack Radius of each lightpath in Fig 2.7 (a)

LP1 LP2 LP3 LP4 LP5

LAG {LP1} {LP2,LP4} {LP3,LP4} {LP2,LP3,LP4,LP5} {LP4,LP5}

LAR 1 2 2 4 2

Specifically, for example, the lightpath attack radius of Lightpath 1 is 1, because

it does not share any physical link with other lightpath, which means if the attack

signal being injected in LP1, it can only interfere LP1 itself. Similarly, for Lightpath

4 (LP4) in the topology, due to the fact that it shares the link 1-2 with LP5, link 2-4

with LP2 and link 4-6 with LP3, the value of LAR for LP4 is 4, which represents if

LP4 is attacked, except itself, LP2, LP3 and LP5 will also be disrupted because they

share at least one common link with LP4. According to the data of Table 2.2, the

maxLAR of the network topology Fig 2.7 (a) is

maxLAR = LARLP4 = 4

In comparison with Fig 2.7 (a), the only difference of Fig 2.7 (b) is the lightpath

route of LP4. In Fig 2.7 (a), LP4 traverses links 1-2, 2-4 and 4-6 while in Fig 2.7 (b)

the route is changed to 1-3, 3-5 and 5-6. So, the corresponding value of LAR for each

lightpath may be different.

TABLE 2.3: Lightpath Attack Radius of each lightpath in Fig 2.7 (b)

LP1 LP2 LP3 LP4 LP5

LAG {LP1,LP4} {LP2} {LP3} {LP1,LP4} {LP5}

LAR 2 1 1 2 1

We can see from Table 2.3, LP1 only shares the same link (3-5) with LP4 and

vise versa, so the values of LAR for LP1 and LP4 are both 1+1=2 for this network

topology. In addition, the values of LAR of LP2, LP3 and LP5 are all equal to 1

because these three lightpath share no links with other lightpaths. Hence the maxLAR
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of Fig 2.7 (b) is:

maxLAR = LARLP1 = LARLP4 = 2

Please note that the value of maxLAR can represent the degree of disruption by

physical attack. In this example, maxLAR of Fig 2.7 (a) is 4 but the value is 2 in

Fig 2.7 (b), which means a jamming signal injected on any legitimate lightpath could

disrupt at most 4 lightpaths if the lightpath routes arranged the same as Fig 2.7 (a),

however it can only disrupt at most 2 lightpaths in Fig 2.7 (b). From the example

above, we can come to the conclusion that the value of maxLAR is related to the

route of lightpaths. That is to say, it is reasonable to minimize the potential attack

threat of inter-channel crosstalk by rerouting the lightpaths.

2.2.2 In-band Crosstalk Attack Radius (maxIAR)

In-band crosstalk attack radius is also defined as a measure to estimate the impact of

in-band crosstalk attack. In length-selective switches, attack signals can attack other

lightpaths transmitted on the same wavelength with which they share at least one

common switch. That is to say, in-band crosstalk attack has two characteristics: (1)

Lightpaths which are on the same wavelength can be attacked; (2) it generally hap-

pened in switches including the source and destination nodes of a lightpath. Similar

to maxLAR, there are also In-band Attack Radius (IAR) and In-band Attack Group

(IAG) defined aiming at each lightpath. IAG describes the set of lightpaths with

which one specific lightpath shares the common switch and transmitted on the same

wavelength, while IAR describes the number of lightpaths in the set of IAG for each

lightpath.
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Fig. 2.8: maxIAR of two RWA schemes with the same lightpath demands

As demonstrated in Fig 2.8, two RWA schemes are of the same network topology,

channel assignment and lightpath demands. However, the lightpath route of LP2 and

LP4 are different. In Fig 2.8 (a), LP2 is routed via nodes 2-4-5, LP4 is routed via

nodes 1-2-4-6. In Fig 2.8 (b), LP2 is routed via nodes 2-3-5, whereas LP4 is routed

via nodes 1-3-5-6.

TABLE 2.4: In-band Attack Radius of each lightpath in Fig 2.8 (a)

LP1 LP2 LP3 LP4 LP5

IAG {LP1,LP2,LP5} {LP1,LP2,LP3,LP5} {LP2,LP3} {LP4} {LP1,LP2,LP5}

IAR 3 4 2 1 3

Table 2.4 presents the value of IAR for each lightpath. If a high-powered signal

is injected on lightpath 1 (LP1) at its source node 1, the attacker can potentially

disrupt LP5 in their common node (switch) 1 and LP2 in their common node 5.

Therefore, the IAR of lightpath 1 is IARLP1=2+1=3, 1 represents LP1 itself. LP2

shares the common node 2, node 4 and node 5 with the lightpath LP5, LP3 and

LP1, respectively. So, the IAR value of LP2 is IARLP2=3+1=4. Similarly, LP3 can

affect LP2 at node 4 (IARLP3=1+1=2), LP5 may have impact on LP1 and LP2 at

node 1 and 2, respectively (IARLP5=2+1=3). Note that LP4 cannot being attacked

when LP2, LP3 or LP5 being injected attack signal, because they are on the different

wavelengths in spite of sharing at least one common switch. Therefore, LP4 cannot
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attack other lightpaths in this RWA scheme. From the table, we can get the maximum

in-band attack radius:

maxIAR = IARLP2 = 4

TABLE 2.5: In-band Attack Radius of each lightpath in Fig 2.8 (b)

LP1 LP2 LP3 LP4 LP5

IAG {LP1,LP2,LP5} {LP1,LP2,LP5} {LP3} {LP4} {LP1,LP2,LP5}

IAR 3 3 1 1 3

As can be seen in Table 2.5, the values of IAR for each lightpath in Fig 2.8 (b)

are 3, 3, 1, 1 and 3 for lightpath 1, 2, 3, 4 and 5, respectively. Therefore, the value of

maximum in-band attack radius for this RWA scheme is:

maxIAR = IARLP1 = IARLP2 = IARLP5 = 3

So, for Fig 2.8 (b), because we change the routes of lightpath 2 (LP2), causing LP2

and LP3 from sharing one common switch 4 in Fig 2.8 (a) to no common switch in

Fig 2.8 (b), reducing the value of maxIAR from 4 to 3, thus decreasing the potential

attack threat from in-band crosstalk attack.

2.3 Review of Related Work

A summary of Attack-aware planning and optimization in Transparent Optical Net-

work (TONs) can be found in [1]. It presents a novel security framework on the

basis of protection and provides an example of gain competition and propagating

intra-channel crosstalk attack-scenarios.

In referenced paper [3], Nina Skorin-Kapov et al. present a novel objective cri-

terion called maxLAR, which is used to measure the largest number of lightpaths

sharing a common link with any other lightpath. Most important, authors give an

ILP formulation for the routing sub-problem of RWA with the objective of minimiz-
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ing maxLAR and prove that by minimizing the value of maxLAR, we can limit the

maximal disruption caused by various physical-layer attacks including inter-channel

crosstalk attack. In order to solve the routing sub-problem for large network, they

propose a tabu search heuristic aimed at minimize maxLAR.

The concept of propagating crosstalk attack radius (P-CAR) is proposed in [2].

Marija Furdek et al. propose attack-aware wavelength assignment that minimizes the

worst-case potential propagation of in-band crosstalk jamming attacks. In this thesis,

P-CAR is defined as an objective criterion for routing sub-problem of RWA. Fig 2.9

displays an example of RWA scheme for P-CAR calculation.

Fig. 2.9: an example of RWA scheme for P-CAR

In Fig 2.9, there are four lightpath demands. If an attack signal is injected on

lightpath 1 (LP1) at its source node 1, the lightpath maybe attacks LP2 at their

common switch 2, which then propagate to lightpath 3 (LP3) in switch 4. So, P-

CAR of LP1 is P-CAR (LP1) = 2 + 1 = 3. Note that, LP4 cannot be affected

because it is on different channel from the other three lightpaths.

Through comparison with other algorithms, tests indicate that the proposed algo-

rithms in the paper can acquire much lower P-CAR values with little or no increase

in the number of wavelengths used. Moreover, the results reflect that only taking the

upper bound of P-CAR value (maxPCAR) into account is precise enough to acquire

result which is very close to the actual P-CAR value, but reduces complexity.

The paper [4] is related to fault and attack management in All-Optical Networks.

In TONs, the character of transparency makes the network vulnerable to multiple

forms of attack, such as service disruption, QoS degradation and eavesdropping at-
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tacks, causing large quantities of data to be lost or compromised. In order to deal

with the problem, authors compare existing supervisory and monitoring techniques

such as BER measurements, Optical Power Meters, Pilot tones, Optical Time Do-

main Reflectometers, etc. and their scales of application involving monitoring the

attack of in-band jamming, out-of-band jamming as well as time distortion, noise and

accuracy of these devices. In addition, an outline of Multiple Attack Localization and

Identification (MALI) algorithm has been proposed, which can make a contribution

to faults and attacks management of All-Optical Networks.

In referenced paper [5], the authors present and introduce various attack detection

methods by supervisory techniques for All-Optical Networks. The techniques can be

widely categorized into two types: Methods of statistical analysis of communication

data and methods of diagnosing a signal. Moreover, a new method for detecting

attacks is described in this paper. This method is based on the mathematical re-

lationship between input and output signals which is known by network manager.

Hence, we can detect an attack by comparing input signals with output signals.

Fig. 2.10: A New Detection Method[21]

As displayed in Fig 2.10, several input signals (S1, S2,...Sn) pass the monitoring

device from the left and exit at the right (Output signals: r1, r2,...rn). Function f

(r1,...rm,s1,...sn) measures device operation relevant to some parameters. Whether

or not an alarm is generated depends on the value of function f. The alarm port is
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connected to network management system which is applied to manage the alarms.

This is a basic idea of using monitor device to detect the attack. Therefore, combining

different approaches in Transparent Optical Network protection, it is a perfect way to

use attack-aware RWA to regulate the route of lightpaths and wavelength assignment

properly, then install some detection components in some possible places, where threat

of being attacked exists.

2.4 Summary of Referenced Paper

We have analyzed five papers in Chapter 2.3, which are the most related to our

research, Table 2.7 describes whether or not some important points relevant to our

research being included in these papers.

TABLE 2.6: Summary of Referenced Papers

Paper [1] Paper [2] Paper [3] Paper [4] Paper [5]

Proposed

Approach

ILP

(maxLAR,

P-CAR)

ILP

(P-CAR)

and Tabu

Search

ILP

(maxLAR)

Multiple Attack

Localization

and

Identification

Algorithm

(MALI)

Input and Output

Signals analysis

Solved

Attack

Type

In-band

Crosstalk,

Inter-channel

Crosstalk,

Gain

Competition

in-band

crosstalk

Gain

Competition,

inter-channel

crosstalk

help improve

faults and

attacks

management

sporadic jamming,

multipoint attacks,

Control System

and Protocol

Attacks

Traffic

Model
Static Static Static Static Static&Dynamic

From Table 2.6, we can see that [1],[2] and [3] propose ILP formulation to solve

the RWA problem. Among them, paper [1] can be seen as a summarization of using

ILP to solve in-band and out-of-band jamming attacks. Paper [2] is aimed at in-band
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crosstalk attack with the objective of P-CAR and propose Tabu search to deal with

large network and paper [3] targets at solving inter-channel crosstalk attack by ILP

formulation with the objective of maxLAR. In paper [4], authors propose Multiple

Attack Localization and Identification (MALI) Algorithm to help boost faults and

attacks management. In Paper [5], a novel input and output signals comparison

algorithm is proposed to solve various attacks.
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CHAPTER III

Security-aware Scheduled RWA

3.1 Introduction

In this chapter, we are going to introduce our proposed approach for solving the

security-aware Routing and Wavelength Assignment of Scheduled Networks. The

problem definition, detailed ILP formulation (including objectives, constraints) and

description about each constraint will be presented in the following sections. The

objectives of the proposed ILP formulation will combine In-band Attack Radius (IAR)

and Lightpath Attack Radius (LAR) to effectively minimize the potential damage

caused by both in-band and out-of-band attacks. Unlike previous work on attack-

aware RWA, our proposed approach considers the scheduled traffic model (STM),

which has not been addressed before.

In this chapter, we present different simulation cases and the results of RWA

problem from our proposed approach. We also compare the objective values obtained

using our approach ILP AR1, ILP AR2, ILP SUM AR2 and ILP SUM AR1 with

the corresponding values obtained using a traditional attack-unaware RWA scheme

(ILP SPATH).

Unlike existing attack-aware RWA techniques we consider the scheduled traffic

model, which means we consider the time dimension in our proposed ILP formula-

tion. Furthermore, traditional static RWA can be treated as a special case of our

approach (by setting a single time interval for all the lightpath demands). Finally,

the objectives in our ILP formulation take into account both in-band attack radius

(IAR) and lightpath attack radius (LAR), so it can handle multiple types of attacks.
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3.2 Problem Definition

We are given a network topology (as shown in Fig 3.1), with the set of available

wavelengths on each fiber. Each link in the physical network links is bi-directional,

which is implemented by a pair of uni-directional optical fibers. For example, Fig

3.1 shows a transparent optical network topology with 6 nodes and 8 bi-directional

physical links. We are also given a set of scheduled lightpath demands, with the

source, destination, start and end time specified for each demand (as shown in Fig.

3.2). We assume that the number of wavelengths is sufficient for accommodating all

the demands.

Fig. 3.1: an example of physical network topology

Fig. 3.2: lightpath demands and intervals for each demand
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3.2.1 LAR and IAR in Scheduled Networks

In this section, we discuss how to calculate the LAR and IAR values for scheduled

lightpaths, which is slightly different from the calculations for static lightpaths dis-

cussed in Sec. 2.2.

Fig. 3.3: an example of RWA and interval assignment

Fig. 3.3(a) shows five lightpath demands with their assigned routes and channels.

Fig. 3.3(b) displays the starting time and ending time of each lightpath request. We

have introduced the calculation methods of maxLAR and maxIAR in static networks.

In the scheduled traffic model, a lightpath p that shares a common link with lightpath

q is not automatically in the attack group of q. We have p∈AGq only if an additional

condition is satisfied that p and q overlap in time. A similar condition must also be

satisfied for the in-band attack group, if two lightpaths p and q share a common node

and wavelength. Also, unlike static lightpaths, the attack group for each lightpath is

not constant and may change with time as new lightpaths become active. Based on

this, the LAR (IAR) for each lightpath in Fig 3.3, during differnet intervals, is given

in Table 3.1 (Table 3.2).
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TABLE 3.1: the value of LAR of each lightpath during each interval

LP0 LP1 LP2 LP3 LP4

Interval 1 1 0 0 1 0

Interval 2 1 2 0 2 1

Interval 3 1 1 1 0 1

Interval 4 1 1 1 0 1

Interval 5 1 0 1 0 0

For example, in Interval 1, only LP0 and LP3 are active, but they do not traverse

any common link, so the values of LAR for LP0 and LP3 in Interval 1 are both 1.

For the other lightpaths (LP1, LP2 and LP4) which are not active during interval 1,

their values of LAR are set to be 0. In interval 2, because LP1 and LP3 are both

active and sharing the common links (1-3) and (3-5), hence LARLP1 and LARLP3 in

interval 2 is 1+1=2.

TABLE 3.2: the value of IAR of each lightpath during each interval

LP0 LP1 LP2 LP3 LP4

Interval 1 1 0 0 1 0

Interval 2 2 2 0 1 1

Interval 3 3 3 3 0 2

Interval 4 3 3 3 0 2

Interval 5 2 0 2 0 0

As described in Table 3.2, according to the definition of in-band Attack Radius,

for interval 1, although LP0 and LP3 are both active and sharing the same node 1,

they are not assigned the same wavelength, therefore the IAR values of LP0 and LP3
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in interval 1 are both 1, while other lightpaths which are not active during interval 1

are set to be 0. In interval 2, LP0, LP1, LP3 and LP4 are all active, but only LP0

and LP1 share the same node and are on the same wavelength, so IARLP0 = IARLP1

=2. The IAR values for each lightpath can be calculated in a similar fashion, for each

interval.

3.3 Proposed ILP Formulation

3.3.1 ILP Formulation : ILP AR1

In this section, we formulate the routing sub-problem as an ILP with different ob-

jectives combining LAR and IAR to solve the security-aware scheduled RWA problem.

Input Parameters

G(N,E): Physical network topology

N : Set of nodes.

E: Set of edges.

W : Set of channels (wavelengths) on a fiber.

M : Number of intervals in the network.

hmax: An upper bound on the number of hops of a lightpath.

P : set of lightpaths.

sp, dp: source, destination of lightpath p.

Input Parameters to be pre-calculated

tp,q ≥ ap,m · aq,m ∀p, q ∈ P, ∀m = 1, 2, ...,M (1)
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tp,q ≤
∑
m

ap,m · aq,m ∀p, q ∈ P (2)

Constraints (1)-(2) are used to calculate whether or not two different lightpaths are

time-disjoint or not. If tp,q = 1, it means that lightpath p and q are not time-disjoint,

i.e. there is at least one time interval (possibly more) during which both lightpaths

are active. The tp,q values are pre-calculated and given as input to the ILP.

Variables

ap,m =

 1 if lightpath p is active during interval m,

0 otherwise.

tp,q =


1 if lightpaths p and q are both active during one or more

common intervals,

0 otherwise.

xp,e =

 1 if lightpath p uses edge e ,

0 otherwise.

yp,i =

 1 if lightpath p passes through node i,

0 otherwise.

ωp,k =

 1 if lightpath p is assigned channel k,

0 otherwise.

αp,q =

 1 if lightpaths p and q share at least one common edge,

0 otherwise.

αe
p,q =

 1 if lightpaths p and q share a common edge e,

0 otherwise.

βp,q =

 1 if lightpaths p and q share at least one common node

0 otherwise.

βi
p,q =

 1 if lightpaths p and q share a common node i,

0 otherwise.
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γp,q =

 1 if lightpaths p and q use the same channel,

0 otherwise.

γkp,q =

 1 if lightpaths p and q both use channel k,

0 otherwise.

δp,q =


1 if lightpaths p and q use the same channel and have at least

one common node,

0 otherwise.

Notation Used

p,q : Used to identify an indivdual lightpath, p,q ∈ P .

e: Used to identify an a physical link (edge) of the network, e ∈ E.

i,j : Used to identify a specific node in the network, i,j ∈ N.

k : Used to identify a specific channel on a fiber, k ∈ W.

m: Used to identify a specific time interval number, m = 1,2,3, ... M.

(1) Objective functions

Objective 1: Minimize

maxAR1 (3)

maxAR1 is the upper bound of AR1p,m = IARp,m + LARp,m, for any lightpath p in

any interval m of the network.

Subject to the following constraints:
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1. Flow Conservation Constraints

∑
e:i→j∈E

xp,e −
∑

e:j→i∈E

xp,e =


1 if i = sp

−1 if i = dp ∀i ∈ N,∀p ∈ P

0 otherwise.

(4)

∑
e:i→j∈E

xp,e ≤ 1 ∀i ∈ N, ∀p ∈ P (5)

Constraints (4) and (5) ensure flow conservation of lightpaths. Constraint (4) finds a

valid path over the physical topology, for each lightpath. Constraint (5) ensures that

the path does not contain any loops.

2. Wavelength continuity constraint

∑
k

ωp,k = 1 ∀p ∈ P (6)

Constraints (6) ensures that a lightpath must be assigned the same wavelength on

each link it passes without wavelength conversion.

3. Defining αp,q (link sharing)

xp,e + xq,e − αe
p,q ≤ 1 ∀p, q ∈ P, p 6= q,∀e ∈ E (7)

xp,e ≥ αe
p,q ∀p, q ∈ P, p 6= q,∀e ∈ E (8)

xq,e ≥ αe
p,q ∀p, q ∈ P, p 6= q,∀e ∈ E (9)

αp,q ≥ αe
p,q ∀p, q ∈ P, p 6= q,∀e ∈ E (10)
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αp,q ≤
∑
e∈E

αe
p,q ∀p, q ∈ P, p 6= q (11)

Constraints (7)-(9) sets the value of αe
p,q = 1 if lightpath p and lightpath q are both

routed over link e. Constraints (10) and (11) determine if two lightpaths p and q

share at least one (possibly more) common link(s), and if so, set αp,q = 1.

4. Node usage constraint

yp,i =
∑

e:i→j∈E

xp,e ∀p ∈ P, ∀i ∈ N, i 6= dp (12)

yp,dp = 1 ∀p ∈ P (13)

Constraint (12) determines if a lightpath p traverses a specific node i in its selected

route. If so the value of yp,i is set to 1. Constraint (13) states that the destination

node of a lightpath must be on the selected route.

5. Defining βp,q (node sharing)

yp,i + yq,i − βi
p,q ≤ 1 ∀p, q ∈ P, p 6= q,∀i ∈ N (14)

yp,i ≥ βi
p,q ∀p, q ∈ P, p 6= q,∀i ∈ N (15)

yq,i ≥ βi
p,q ∀p, q ∈ P, p 6= q,∀i ∈ N (16)

βp,q ≥ βi
p,q ∀p, q ∈ P, p 6= q,∀i ∈ N (17)

32



III. SECURITY-AWARE SCHEDULED RWA

βp,q ≤
∑
i∈N

βi
p,q ∀p, q ∈ P, p 6= q (18)

Constraint (14)-(18) are very similar to constraint (7)-(11) and are used to determine

if two lightpaths p and lightpath q pass through at least one (possibly more) common

node(s). If so these constraints are used to set βp,q=1.

6. Defining γp,q (channel sharing)

ωp,k + ωq,k − γkp,q ≤ 1 ∀p, q ∈ P, p 6= q,∀k ∈ W (19)

ωp,k ≥ γkp,q ∀p, q ∈ P, p 6= q,∀k ∈ W (20)

ωq,k ≥ γkp,q ∀p, q ∈ P, p 6= q,∀k ∈ W (21)

γp,q =
∑
k

γkp,q ∀p, q ∈ P, p 6= q (22)

Similarly, constraint (19)-(22) are applied to define channel-sharing and set the value

of γp,q = 1, if lightpath p and lightpath q are assigned the same channel (or wave-

length) k.

7. Defining δp,q (node-channel sharing)

βp,q + γp,q − δp,q ≤ 1 ∀p, q ∈ P, p 6= q (23)

βp,q ≥ δp,q ∀p, q ∈ P, p 6= q (24)
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γp,q ≥ δp,q ∀p, q ∈ P, p 6= q (25)

Constraint (23)-(25) define node-channel sharing. If lightpath p and q pass through

at least one common node (i.e. βp,q = 1) and share the same channel (i.e. γp,q = 1),

then we set δp,q=1. The value of this variable determines if lightpath p might be in

the attack group of lightpath q.

8. wavelength clash constraint

αp,q + γp,q + tp,q ≤ 2 ∀p, q ∈ P, p 6= q (26)

Constraint (26) ensures that if two or more lightpaths share a common fiber link,

they cannot be assigned the same wavelength.

9. LAR/IAR of lightpath p (attack radius in interval m)

LARp,m = ap,m · (
∑

q∈P,p6=q

αp,q · aq,m + 1) ∀p ∈ P, ∀m = 1, 2, ...,M (27)

IARp,m = ap,m · (
∑

q∈P,p6=q

δp,q · aq,m + 1) ∀p ∈ P, ∀m = 1, 2, ...,M (28)

Constraint (27) (constraint (28)) is used to calculate Lightpath Attack Radius (LAR)

( In-band Attack Radius (IAR)) value for lightpath p during interval m. The goal is

to keep this value as low as possible.

10. Total LAR and IAR of lightpath p (over all intervals)

LARp =
∑

q∈P,p6=q

αp,q · tp,q + 1 ∀p ∈ P (29)
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IARp =
∑

q∈P,p6=q

δp,q · tp,q + 1 ∀p ∈ P (30)

Constraint (29) (constraint (30)) defines the total Lightpath Attack Radius (LAR)

(In-band Attack Radius (IAR)) value for lightpath p over all intervals.

11. MaxAR1 in interval m

IARp,m + LARp,m ≤ maxAR1 ∀p ∈ P, ∀m = 1, 2, ...,M (31)

Constraint (31) ensures that the total attack radius of any lightpath p during any

given time interval m (i.e. AR1p,m = IARp,m + LARp,m) is no greater than the

maxAR1, which is the value being minimized.

12. Total maxAR2 over all intervals

IARp + LARp ≤ maxAR2 ∀p ∈ P (32)

Constraint (32) ensures that the total attack radius of any lightpath (over all inter-

vals), maxAR2. This variable can be minimized (instead of maxAR1 ) as an alternative

objective function

13. Hop Bound Constraints

∑
e:i→j∈E

xp,e ≤ hmax ∀p ∈ P (33)

Constraint (33) ensures that the maximum number of hops (i.e. path length) of a

lightpath does not exceed a pre-specified upper limit hmax.
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By solving the ILP formulation above, we can get the optimal routing scheme

with regard to proposed objective function.

3.4 Alternative objective functions

In this section, we consider some alternative objective functions that can be used,

with the same set of constraints as discussed in the previous section.

3.4.1 ILP Formulation : ILP AR2

This formulation is similar to ILP AR1 presented in the previous section, with the

following modification.

Objective function is modified as follows:

Objective 2: Minimize

maxAR2 (34)

maxAR2 is the upper bound of AR2p = IARp + LARp, for all lightpath p ∈ P. So

this objective minimizes the maximum Attack Radius (AR2 value) for any lightpath.

All other variables and constraints are identical to ILP AR1.

3.4.2 ILP Formulation : ILP SUM AR2

The ILP formulation regarding ILP SUM AR2 is also similar to ILP AR1 presented

in the previous section, with the following modification.

Objective function is modified as follows:

Objective 3: Minimize

∑
p∈P

LARp + IARp (35)

Objective 3 tries to minimize the total attack radius (combining LAR and IAR)

36



III. SECURITY-AWARE SCHEDULED RWA

of all the lightpath over all intervals. It is the summation of AR2 of each lightpath.

All other variables and constraints are identical to ILP AR1.

3.4.3 ILP Formulation : ILP SUM AR1

The ILP formulation with regard to ILP SUM AR1 is also similar to ILP AR1

presented in the previous section, with the following modification.

Objective function is modified as follows:

Objective 4: Minimize

∑
m

∑
p∈P

LARp,m + IARp,m (36)

Objective 4 minimizes the total attack radius (AR1 p,m = IARp,m + LARp,m) over

all lightpaths and all intervals.

All other variables and constraints are identical to ILP AR1.

3.4.4 ILP Formulation : ILP SPATH

This formulation does not consider attacks but simply minimizes the total path

length of all lightpaths. So, this is a traditional attack-unaware ILP for RWA.

Objective function is modified as follows:

Objective 5: Minimize

∑
p∈P

∑
e∈E

xp,e (37)

All other variables and constraints are identical to ILP AR1.
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3.4.5 Summary of ILP Objectives

In summary, there are five objective functions proposed in this chapter, as presented

below:

TABLE 3.3: Proposed ILP formulations and objectives

ID ILP Formulation Name Objectives

Objective 1 ILP AR1 Minimize maxAR1

Objective 2 ILP AR2 Minimize maxAR2

Objective 3 ILP SUM AR2 Minimize
∑

p LARp + IARp

Objective 4 ILP SUM AR1 Minimize
∑

m

∑
p LARp,m+IARp,m

Objective 5 ILP SPATH Minimize
∑

p

∑
e x p,e

Objective 1 to Objective 4 are our proposed attack-aware objectives in order to

minimize the attack radius of a network, while Objective 5 is a traditional attack-

unaware approach aimed at minimizing the total physical links used. Then we will

create C programs to implement all the five ILP formulations and run different simula-

tion cases in CPLEX Optimization Studio 12.6. The running results will be presented

in the next chapter.
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CHAPTER IV

Experimental Results

In this chapter, we present different simulation cases and the results of RWA problem

from our proposed approach.We also compare the objective values obtained using

our approach ILP AR1, ILP AR2, ILP SUM AR2 and ILP SUM AR1 with the cor-

responding values obtained using a traditional attack-unaware RWA scheme.

Unlike existing attack-aware RWA techniques, we consider the scheduled traffic

model, which means we consider the time dimension in our proposed ILP formulation,

Furthermore, traditional static RWA can be treated as a special case of our approach

(by setting a single time interval for all the lightpath demands). Finally, the objectives

in our ILP formulation takes into account both in-band attack radius (IAR) and

lightpath attack radius (LAR), so it can handle multiple types of attacks.

4.1 Experimental Setup

We test the proposed ILP formulation with different network topologies and lightpath

demand sets. For each topology and demand set size, we considered 3 levels of traffic

load - low, medium and high, and for each case, we used 5 randomly generated de-

mand sets. So, the results reported in this chapter are the average of 5 simulation runs.

• Simulations of different network topologies


20 demands for 10-node network

20 demands for 14-node network

20 demands for 20-node network
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• Simulations of different demand size


14-node network with 10 demands

14-node network with 20 demands

14-node network with 40 demands

4.1.1 Physical Topologies

We have considered 3 well-known physical topologies: a 10-node network with 22

bi-directional links[32], a 14-node network with 21 bi-directional links[31] and a 20-

node network with 31 bi-directional links[30]. We also assume that each fiber (uni-

directional) can accommodate 16 channels (wavelengths). Each physical topology is

saved in a text file, following the format in Fig. 4.1.

1 2

1 3

1 4

2 1

3 1

3 4

4 1

4 3

(b)

Fig. 4.1: an example of network topology and its physical-link storage format

Fig 4.1(a) shows a simple network topology with 4 nodes and 4 bi-directional links

(8 uni-directional fibers). Each row in Fig.4.1(b) represents a uni-directional fiber link

specified by the starting and ending node of the link.

4.1.2 Lightpath Demand Sets

A set of scheduled lightpath demands is specified as a m*4 matrix, where m is the

demand set size, i.e. the number of lightpaths in the demand set. Each row represents

a single lightpath (p) and specifies its source (sp), destination (dp), start time(stp)

and end of window(etp) respectively. Each demand set is stored in a separate file.
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1 4 3 10

1 2 5 23

1 3 17 19

(b)

Fig. 4.2: an example of (a)RWA scheme and (b)its lightpath demand storage format

Fig 4.2(b) shows a set of 3 lightpath demands (Row 1: LP0, Row 2: LP1, Row 3:

LP2). For example, (LP0: 1 4 3 10) means LP0 is a lightpath demand from node 1

to node 4 and it is active during interval 3 to interval 10. A possible routing for the

demand set of Fig. 4.2(b) is shown in Fig. 4.2(a).

In addition, we classify the lightpath demand sets into three categories according

to the time span of each demand. The longer the duration of a demand, the more

resources it uses. Also, if a demand set consists of longer demands, it is likely that

that there will be more overlap (in time) among different demands leading to a larger

attack group. Based on this observation, we define the following three classes of

demand sets:

• Low demand overlap (LDO): For a LDO demand set, the duration of each

demand is between 1 and 10 intervals.

1 ≤ (last interval − first interval) ≤ 10

• Medium demand overlap (MDO): For a MDO demand set, the duration of each

demand is between 1 and 24 intervals.

1 ≤ (last interval − first interval) ≤ 24

• High demand overlap (HDO): For a HDO demand set, the duration of each
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demand is between 10 and 24 intervals.

10 ≤ (last interval − first interval) ≤ 24

Next, we will run the ILP formulation with the objectives of our approach ILP AR1,

ILP AR2, ILP SUM AR2, ILP SUM AR1 and the shortest path ILP SPATH for all

the parts of simulations presented above.

4.2 Results of Experiment

In this section, we will run our ILP formulation with the 5 different objective functions

presented in Chapter 3, denoted as ILP AR1 for Objective 1, ILP AR2 for Objective

2, ILP SUM AR2 for Objective 3, ILP SUM AR1 for Objective 4 and ILP SPATH

for Objective 5. CPLEX ver. 12.6 is used for solving linear programming problems.

For each network topology, the lightpath demands are randomly generated based on

the demand size traffic load (LDO, MDO, HDO).

We compare our proposed algorithm with a traditional security-unaware algorithm

(denoted as ILP SPATH), which aims at minimizing the total path length for the set

of lightpaths and does not consider their vulnerability to attacks.

4.2.1 Comparison of objective values for different networks

Table 4.1 compares the value of Objective 1 (maxAR1 ) for the proposed approach

and the attack-unaware approach for different network sizes and traffic loads. Each

value in the table below is the average of 5 test cases.
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TABLE 4.1: Comparison of Objective 1 for 20 Demands

Objective function: maxAR1

LDO MDO HDO

No. of

Nodes

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

10 2 4 2 5 3 6

14 3 4 3 5 5 6

20 3 5 4 7 7 9

We can see from Table 4.1 that the values of maxAR1 obtained using our proposed

algorithm (ILP AR1) are consistently lower than those obtained using the traditional

attack-unaware algorithm (ILP SPATH). The achieved reductions range from 16.7%

- 60%. Comparisons for Objectives 2, 3, and 4 are presented in Table 4.2, 4.3 and 4.4

respectively.

TABLE 4.2: Comparison of Objective 2 for 20 Demands

Objective function: maxAR2

LDO MDO HDO

No. of

Nodes

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

10 2 4 2 6 3 6

14 3 4 5 6 5 7

20 3 6 5 7 8 10

43



IV. EXPERIMENTAL RESULTS

TABLE 4.3: Comparison of Objective 3 for 20 Demands

Objective function:
∑

p LARp + IARp

LDO MDO HDO

No. of

Nodes

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

10 40 50 40 60 47 80

14 41 54 48 79 56 93

20 43 62 53 82 64 97

TABLE 4.4: Comparison of Objective 4 for 20 Demands

Objective function:
∑

m

∑
p LARp,m+IARp,m

LDO MDO HDO

No. of

Nodes

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

10 210 253 304 394 689 965

14 190 230 448 571 823 995

20 208 254 450 618 850 1169

Table 4.2 - Table 4.4 clearly demonstrate that our proposed approach results in

smaller values of attack radius for all cases. The average reductions range from 16.7%

(for Objective 2) to 66.7% (for Objective 2).

Fig. 4.3 - Fig. 4.5 show the comparison results for Objective 4 for different levels

of demand overlap. The network size is shown along the x-axis and the value of attack

radius on y-axis. The improvements range from 17.0% (for LDO case) to 28.6% (for

HDO case). For each network, the objective value increases with the level of demand

overlap (from LDO to HDO), indicating that vulnerability to attacks increase with
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more interactions among lightpaths. The results for the other objectives follow a

similar pattern.

Fig. 4.3: Results of Objective 4 for LDO with 20 demands

Fig. 4.4: Results of Objective 4 for MDO with 20 demands
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Fig. 4.5: Results of Objective 4 for HDO with 20 demands

4.2.2 Comparison of objective values of various demand sizes

Table 4.5 - Table 4.8 show how each objective value varies with the demand size for

the 14-node network topology.

TABLE 4.5: Comparison of Objective 1 values with
different demand sizes for 14-node Network

Objective function: maxAR1

LDO MDO HDO

No. of

Demands

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

10 2 4 2 5 2 6

20 3 4 3 5 5 6

40 5 6 6 10 7 12
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TABLE 4.6: Comparison of Objective 2 values with
different demand sizes for 14-node Network

Objective function: maxAR2

LDO MDO HDO

No. of

Demands

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

10 2 4 2 4 2 6

20 3 4 5 6 5 7

40 5 7 7 13 7 12

TABLE 4.7: Comparison of Objective 3 values with
different demand sizes for 14-node Network

Objective function:
∑

p LARp + IARp

LDO MDO HDO

No. of

Demands

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

10 20 38 25 46 31 54

20 41 54 48 79 56 93

40 117 146 157 247 194 265
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TABLE 4.8: Comparison of Objective 4 values with
different demand sizes for 14-node Network

Objective function:
∑

m

∑
p LARp,m+IARp,m

LDO MDO HDO

No. of

Demands

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

Proposed

Approach

Attack-

unaware

Approach

10 96 162 132 166 278 460

20 190 230 448 571 823 995

40 507 601 1062 1317 2323 2867

As expected the objective values increase steadily with demand size for all net-

works for both the proposed approach and the attack-unaware approach. The average

improvements obtained using the proposed approach range from 16.7% to 66.7%.

Fig. 4.6: Variation of Objective 4 with demand size in 14-node network for LDO
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Fig. 4.7: Variation of Objective 4 with demand size in 14-node network for MDO

Fig. 4.8: Variation of Objective 4 with demand size in 14-node network for HDO

Fig. 4.6 - Fig. 4.8 show how the values for Objective 4 vary with demand size, in a

14-node network, for LDO, MDO and HDO traffic respectively. The demand set size

is shown along the x-axis and the value of attack radius on y-axis. The improvements
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range from 15.6% (for LDO case) to 40.7% (for LDO case). For each network, the

objective value increases with the size of the demand set. The results for the other

objectives follow a similar pattern.

4.2.3 Comparison of path lengths

Table 4.9 - Table 4.11 compare the average path length of a lightpath using the

different approaches for LDO, MDO and HDO traffic respectively.

TABLE 4.9: Comparison of average path lengths for LDO traffic

Average path length obtained using

Proposed approach Attack-unaware

No. of

Nodes
Objective 1 Objective 2 Objective 3 Objective 4 ILP SPATH

10 2.15 2.0 2.2 2.3 1.6

14 2.55 2.8 3.35 3.35 1.95

20 4.05 3.65 4.35 3.9 2.9

TABLE 4.10: Comparison of average path lengths for MDO traffic

Average path length obtained using

Proposed approach Attack-unaware

No. of

Nodes
Objective 1 Objective 2 Objective 3 Objective 4 ILP SPATH

10 2.2 2.1 2.25 2.35 1.55

14 3 2.8 3 3.45 1.95

20 4.3 3.8 4.2 4.25 2.95
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TABLE 4.11: Comparison of average path lengths for HDO traffic

Average path length obtained using

Proposed approach Attack-unaware

No. of

Nodes
Objective 1 Objective 2 Objective 3 Objective 4 ILP SPATH

10 2.35 2.35 2.15 2.05 1.6

14 2.45 2.4 2.7 2.85 1.95

20 3.4 3.5 3.85 3.7 2.75

Based on Tables 4.9 - 4.11, we can see that the attack-unaware algorithm (ILP SPATH)

results in shorter paths on average. This is because it always selects the shortest

path, even if the route is heavily congested. The attack-aware approaches on the

other hand try to distribute the load so that potential interactions among lightpaths

is minimized. This may result in selecting longer, but less congested, paths for some

lightpaths. However, considering the security issue, the increase of path lengths is

still acceptable.
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CHAPTER V

Conclusion and Future Work

5.1 Conclusion

Due to the increasing high data rates and the vulnerabilities in transparent opti-

cal networks, security issues related to transparency has become of great importance.

There are many types of physical-layer attacks such as gain competition, inter-channel

crosstalk and in-band crosstalk. All of these can lead to serious damage of network

such as user data loss, performance degradation, etc. In order to minimize the disrup-

tion due to these attacks, various approaches have been proposed for attack detection

and localization. Our proposed approach does not need some specialized detection

devices, instead, it relies on the application of ILP formulation to solve the routing

and wavelength assignment (RWA) problem and minimize the overall attack radius,

thus reducing the potential threat of attacks. Unlike previous work in this area, we

address the attack-aware RWA problem for the scheduled traffic model, which has

not been considered before. We also take into account both in-band and out-of-band

attacks. In order to evaluate the performance of our approach, we use various net-

work topologies, lightpath demands and compare our results with their corresponding

values obtained from using a traditional shortest path algorithm. The results indicate

that the proposed approach reduces the attack radius at the cost of increasing the

path length of the demands, compared to security-unaware approaches.
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5.2 Future Work

In this thesis, we have considered the security-aware RWA problems for the fixed

window scheduled traffic model, which means the starting time and ending time of

a lightpath demand is given in advance. In the future, this can be extended to also

consider the sliding scheduled traffic model. In sliding scheduled traffic model, the

starting time and ending time of a demand is not fixed, instead, the demand holding

time τ is specified along with a larger time window when the demand can be allocated.

This gives additional flexibility to the ILP, which must determine the start time of

each demand in addition to performing RWA.

It is also possible to consider faults and incorporate fault management techniques

such as path protection and restoration into the ILP. For larger networks, with hun-

dreds of demands, it may be necessary to develop fast heuristic algorithms, which can

generate good solutions in a reasonable time.
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