

INSTITUTO UNIVERSITÁRIO DE LISBOA

Exploring ILP and heuristic formulations for planning multiband optical networks

Margarida Isabel Carreto Vaz

Master degree in Telecommunications and Computer Engineering,

Supervisor: PhD, Luís Gonçalo Lecoq Vences e Costa Cancela, Assistant Professor Iscte-Instituto Universitário de Lisboa

Co-Supervisor: PhD, João Lopes Rebola, Associate Professor Iscte-Instituto Universitário de Lisboa

November, 2022

Department of Information Science and Technology

Exploring ILP and heuristic formulations for planning multiband optical networks

Margarida Isabel Carreto Vaz

Master degree in Telecommunications and Computer Engineering,

Supervisor: PhD, Luís Gonçalo Lecoq Vences e Costa Cancela, Assistant Professor Iscte-Instituto Universitário de Lisboa

Co-Supervisor: PhD, João Lopes Rebola, Associate Professor Iscte-Instituto Universitário de Lisboa

November, 2022

Família

Acknowledgment

I am so thankful to Iscte-Instituto Universitário de Lisboa, for all the experiences and the knowledge I earned this past five years, and for making them much more enjoyable. I am also grateful to all the teachers, staff, and colleges that were always ready to help. Special thanks to the Instituto de Telecomunicações for the support to complete this dissertation. I would like to express my deepest gratitude to my supervisors Professor Luís Cancela and Professor João Rebola for the constant support, guidance, and time throughout all these months, and without whom I would not have been able to complete this dissertation.

I would like to thank my parents and friends for being supportive, patient, and for the constant encouragement throughout my years of studies and during this work. Lastly, I'd like to mention my brother for always assisting me in my studies.

Resumo

Para responder ao crescimento do número de pedidos de tráfego nas atuais redes de telecomunicações óticas, são necessárias soluções como a multibanda e grelha flexível para melhorar a eficiência na utilização do espectro e a capacidade de transmissão. Esta dissertação foca-se no planeamento do encaminhamento e da atribuição de comprimentos de onda (RWA) em redes multibanda utilizando soluções heurísticas e de programação inteira linear (ILP), para otimizar a alocação de espectro.

Desenvolveram-se ferramentas de planeamento de redes multibanda C+L para resolver o problema RWA em redes estáticas, utilizando grelhas flexíveis e fixas, explorando diferentes métricas de encaminhamento, como a distância e relação sinal-ruído ótica. Primeiro, comparou--se o desempenho de ferramentas RWA, uma heurística e outra ILP numa grelha fixa, em relação ao número de comprimentos de onda e tempo de computação, para diferentes topologias de rede. Depois, adaptou-se a ferramenta RWA heurística para suportar a grelha flexível, considerando, as limitações da camada física, para resolver problemas de encaminhamento, atribuição de formato de modulação e espectro (RMSA).

Concluiu-se que o RWA ILP atinge o número ótimo de comprimentos de onda, quando um pedido tem vários caminhos candidatos, contudo requer mais tempo de computação que a ferramenta heurística. Nos problemas RMSA, o número de intervalos de frequência (FSs) atribuídos depende da taxa de erro de bit (BER). Em redes com ligações mais curtas, são necessários mais FSs com a diminuição da BER. As redes com ligações mais longas requerem menos FSs com a diminuição da BER, pois os pedidos bloqueados aumentam.

Palavras-Chave: Limitações da camada física; programação inteira linear; encaminhamento, atribuição de formato de modulação e espectro; transmissão multibanda; planeamento de redes óticas.

Abstract

To keep up with the growth in traffic demands in nowadays optical telecommunications networks, solutions such as multiband and flexible grid are needed to improve spectrum efficiency and transmission capacity. This dissertation focuses on planning the routing and wavelength assignment (RWA) in multiband networks using both heuristic and integer linear programming (ILP) solutions to optimize the spectrum allocation.

We develop C+L multiband network planning tools to solve the RWA problem in static networks, using flexible and fixed grids, exploring different routing metrics, such as distance and optical signal-to-noise ratio. First, we compare the performance of two RWA tools, a heuristic and an ILP, considering a fixed grid, in terms of the number of wavelengths and computation time, for different network topologies. Then, we extend our RWA heuristic tool to deal with the flexible grid and be aware of the physical layer impairments, to be capable of solving routing, modulation format and spectrum assignment (RMSA) problems.

We have concluded that our RWA ILP achieves the optimum number of wavelengths, when it uses more than one candidate path per demand but requires more computing time than the RWA heuristic tool. In RMSA problems, the number of allocated frequency slots (FSs) is dependent on the bit error rate (BER). Networks with shorter links require more FSs as the BER decreases. Networks with longer links require less FSs as the BER decreases, since the blocked demands increase.

Keywords: Physical layer impairments; integer linear programming; routing, modulation format and spectrum assignment; multiband transmission; optical networks planning.

Contents

Acknowledgment	iii
Resumo	v
Abstract	vii
List of Figures	xi
List of Tables	xiii
List of Acronyms	xvii
List of Symbols	xix
 Chapter 1. Introduction 1.1. Motivation and context 1.2. Goals 1.3. Dissertation organization 1.4. Main contributions 	1 1 2 2 3
 Chapter 2. A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem 2.1. Introduction 2.2. Integer Linear Programming formulations 2.2.1. Link-Path formulation 2.2.2. Node-Link formulation 2.2.3. Restoration design problem 2.2.4. RWA problem 2.3. Heuristic algorithms 2.3.1. Routing algorithms 2.3.2. Wavelength assignment algorithms 2.4. Heuristic algorithms and ILP formulations applied in a real network scenario 2.5. Conclusion 	$5 \\ 5 \\ 5 \\ 13 \\ 17 \\ 21 \\ 29 \\ 29 \\ 30 \\ 31 \\ 33$
 Chapter 3. Physical Layer Impairments in C+L Multiband Optical Networks 3.1. Introduction 3.2. C+L multiband spectrum 3.3. ASE noise accumulation 3.4. Nonlinear interference and stimulated Raman scattering 3.5. Other physical layer impairments 3.6. Conclusion 	35 35 35 36 41 49 51 ix

Contents

Chapter 4. C+L Multiband Network Design Considering Physical Layer Impairments	53
4.1. Introduction	53
4.2. RWA problem with ILP and heuristic solutions	53
4.3. Multiband optical network simulator	57
4.4. Results and discussion	59
4.5. Conclusion	68
Chapter 5. Conclusions and Future Work	69
5.1. Final conclusions	69
5.2. Future work	70
References	71
Appendix A. Matlab scripts used in Chapter 2	75
A.1. Example 1	75
A.2. Example 3	76
A.3. Example 4	76
A.4. Example 7	77
A.5. Examples 8 and 9	79
A.6. Example 10	82
A.7. Examples 11 and 12	84
A.8. Example 13	87
A.9. ILP formulations applied in the portuguese backbone networked	90
Appendix B. OSNR path calculation details in Chapter 3	95
Appendix C. Complementary material used in Chapter 4	97
C.1. Real network topologies	97
C.2. First Fit and Most Used algorithms	98
C.3. ILP solution for RWA	102
C.4. Paths used to solve the RWA problem	105
C.5. Multiband optical network simulator	105
C.6. ASE and NLI noise power in the COST 239 network	116
C.7. RMSA solution	116
Appendix D. Scientific contributions	133
Appendices	75

List of Figures

2.1	Physical topology of a 4-node network and its corresponding logical topology.	6
2.2	Physical topology used for the network Examples 1 and 2 and the corresponding	
	candidate paths for each demand.	8
2.3	Physical topology used in Examples 3 and 4 and the corresponding candidate	
	paths for each demand.	11
2.4	Physical topology of an example network with six arcs.	14
2.5	Flow of demand between nodes for demands \hat{h}_{12} , \hat{h}_{13} and \hat{h}_{23} in the network	
	represented in Figure 2.4.	14
2.6	Logical and physical topology of the network considered in Example 6	16
2.7	Physical topology considered for the network Example 7, for the failure states	
	s=1 and $s=2$ and the corresponding candidate paths that can be used for each	
	demand and state.	18
2.8	Physical topology used for the network Examples 8 and 9 and the corresponding	
	normal and backup paths for each demand	20
2.9	Physical topology used for the network Example 8 considering state $s=1$ and	_0
2.0	Example 9 considering state $s=5$ with the corresponding normal and backup	
	paths for each demand	21
2.10	Physical topology used for the network Example 10, considering state $s=0$ with	21
2.10	two available colors $c=2$	24
2 11	Physical topology 6-node example network	24
2.11 2.12	Physical topology used for the network in Example 11 considering state $s=0$	21
2.12	with five available colors $c=5$	25
9 1 3	Physical topology used for the network in Example 12 considering state $s=0$	20
2.10	with six available colors $c=6$	$\overline{27}$
9.14	Physical topology 5-node example network	21
2.14 9.15	Physical topology used for the network in Example 13, considering state $c=0$	20
2.10	r hysical topology used for the network in Example 13, considering state $s=0$ with five available colors $c=2$	20
9.16	Physical topology used for the network in Example 14 considering state $a=0$	29
2.10	r hysical topology used for the network in Example 14, considering state $s=0$	20
9.17	with live available colors $c=1, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots$	29 21
2.17	Liple capacity of the portuguese backbone network	51
2.10	china with a houristic and an U.D. solution	9 9
	obtained with a neuristic and an ILP solution	აა
3.1	C and L band spectrum and corresponding frequencies according with the ITU-T	
	grid	36
3.2	Schematic of an optical amplified generic link i between two network nodes	37
3.3	COST 239 optical network, with 11 nodes, 26 links represented by e_i (where $i=1$	
	26), and corresponding link distances.	38

List of Figures

3.4	NLI coefficient as a function of the channel frequency without SRS and with SRS considering both coherent and incoherent scenarios with the parameters of	
	Table 3.8. 3.8.	43
3.5	NLI coefficient as a function of the number of spans without SRS and with SRS,	
	considering $f = -4$ THz and several modulation formats	47
3.6	NLI coefficient as a function of the number of spans without SRS and with SRS,	
	considering $f=0$ THz and several modulation formats	47
4.1	Link capacity obtained with heuristic solution and ILP with four candidate paths	
	per demand for COST 239 network	56
4.2	Flowchart of the Matlab simulator used to solve the RMSA problem in a flexible	
	grid C+L multiband network aware of the PLIs	58
4.3	FSs allocated in the different links for the different demands in the COST 239	
	network for BER= 4×10^{-2}	60
4.4	FSs allocated in the different links for the different demands in the COST 239	
	network for BER= 10^{-3}	64
4.5	Blocked demands percentage and allocated FSs percentage for three BERs,	
	4×10^{-2} , 10^{-2} , and 10^{-3} .	66
C1	Optical network COST 239 physical topology.	97
C2	Optical network NSFNET physical topology.	98
C3	Optical network UBN physical topology.	98
C4	Optical network CONUS 30 physical topology.	99

List of Tables

2.1	Unit cost per link	7
2.2	Demand volume for each demand	7
2.3	Candidate paths for each demand	7
2.4	Link-path relations.	8
2.5	Variables used in Link-Path formulation.	9
2.6	Possible solution for Example 1	10
2.7	Unit path cost of each candidate path for Example 4	13
2.8	Candidate paths for each demand in Examples 5 and 6	16
2.9	Unit path cost of each candidate path in Example 6	16
2.10	Link capacity solution for each one of the six states of Example 7	19
2.11	Link-path relations for the backup paths represented in Figure 2.8	20
2.12	Variables used in RWA problem based on the Link-Path formulation	22
2.13	Number of the variables and constraints needed to solve the RWA problem in	
	Example 10	23
2.14	Solution of Example 10	23
2.15	List of candidate paths for each demand	24
2.16	Number of the variables and constraints need to solve the RWA problem in	
	Example 11	25
2.17	Solution of Example 11	25
2.18	Candidate paths for each demand for Example 12	26
2.19	Number of the variables and constraints need to solve the WA problem in Ex-	
	ample 12	26
2.20	Solution of Example 12	27
2.21	Demand pairs for Example 13	28
2.22	Candidate paths list for each demand in Example 13	28
2.23	Number of the variables and constraints need to solve the WA problem in Ex-	
	ample 13	28
2.24	Traffic Matrix in VC-3.	32
2.25	Link Capacity for Dijkstra algorithm and ILP.	33
3.1	Fixed grid with Δ_{ch} =50 GHz and flexible grid with FS=12.5 GHz for C, L, and	
	C+L bands.	36
3.2	Demand pairs for demands 1 to 4 in COST 239 network	39
3.3	WDM system parameters used to calculate the OSNR for demands 1 to 4 in	
	COST 239 network	39
3.4	Candidate paths for the four demands considered in the COST 239 network	39
		xiii

List of Tables

3.5	Number of in-line amplifiers needed in link e_i , gain of each pre and in-line amplifier and corresponding noise figure for each optical link, and total ASE noise power of the links belonging to the candidate paths used in the four demands in	
	COST 239 network.	40
3.6	OSNRs for the candidate paths for the four demands considered in COST 239 network.	40
3.7	Optical paths with highest OSNR for the four demands considered in COST 239	
	network.	40
3.8	Parameters used to obtain Figure 3.4	42
3.9	WDM system parameters used to calculate the OSNR with NLI and SRS for the four demands considered in COST 239 network.	43
3.10	Number of spans needed in each link, NLI coefficient and noise power at the end of each link used by the candidate path for the four demands considered in the	4.4
3.11	OSNR considering only the NLI noise for the candidate paths of the four demands	44
3.12	considered in COST 239 network	44
	demands considered in COST 239 network	45
3.13	Optical paths with highest OSNR for the four demands considered in COST 239 network.	45
3.14	Modulation formats and corresponding excess kurtosis.	46
3.15	Link spans lengths, correction factor and NLI noise power	48
3.16	Total OSNR for the candidate paths for the four demands considered in COST 239 network for the QPSK modulation.	48
3.17	Modulation formats with corresponding theoretical ROSNRs and practical ROSNRs for $BER=10^{-3}$.	49
3.18	Optical paths with best OSNR for the four demands considered in COST 239 network for OPSK modulation	49
3.19	Total OSNR for the candidate paths for the four demands considered in COST 239 network for 16-OAM modulation	10
3.20	Optical paths with best OSNR for the four demands considered in COST 239 network with the respective modulation format	50
3.21	Number of nodes and amplifiers, safety margin and residual margin of the optical paths for the four demands considered in the COST 239 network	50
3.22	Modulation formats with corresponding theoretical ROSNRs and practical ROS- NRs for $\text{BER}=4 \times 10^{-2}$	51
3.23	Optical paths with best OSNR for the four demands considered in COST 239 network with the respective modulation format for BER= 4×10^{-2} .	51
		-
4.1 4.2	Physical and logical features for the network topologies considered	53
4.3	the WA heuristic algorithms, FF and MU, for different ordering strategies Total number of wavelengths used in the different network topologies obtained with the ILP formulation, given in equation (4.1) , as well as the respective	54
	computation time.	55

4.4	System parameters used to solve the RMSA problem	59
4.5	System parameters used to calculate the OSNR of each path	59
4.6	RMSA solution for the COST 239 optical network with BER= 4×10^{-2}	61
4.7	RMSA solution for the COST 239 optical network with BER= 10^{-3}	63
4.8 4.9	RMSA solution for the real network topologies COST 239, NSFNET, UBN, and CONUS 30, for three different BERs - Part 1	65
	CONUS 30, for three different BERs - Part 2	67
A.1	Matlab results for Example 2	76
A.2	Matlab results for Example 3	76
A.3	Matlab results for Example 4	77
A.4	Comparison between RWA ILP formulation parameters and alternative RWA formulation parameters	87
B.1	Total OSNR with ASE noise for the candidate paths for demands 1 to 4 with C_{1} = 22 IB f = 4 = 1 COCT 220	05
B.2	G_{max} =23 dB for network COS1 239	95
B.3	P_m =1.46 dBm for network COS1 239	95
	P_m =1.46 dBm for network COST 239	95
C.1	Path list used to obtain Figure 4.1	106
C.2	NLI and ASE noise powers at the end of each link in the COST 239 optical $% \left({{\rm{ASE}}} \right)$	
	network for the modulation formats 64-QAM, 16-QAM and QPSK	117
C.3	Modulation formats with corresponding theoretical ROSNRs and practical ROS-	
~ .	NRs for BER= 10^{-3}	117
C.4	RMSA solution for the COST 239 optical network with $BER=10^{-2}$	118
C.5	RMSA solution for the NSFNET optical network with $BER=4 \times 10^{-2}$	119
C.6	Blocked demands in the RMSA solution for the NSFNET optical network with $BER=4\times10^{-2}$.	119
C.7	RMSA solution for the NSFNET optical network with BER= 10^{-2}	120
C.8	Blocked demands in the RMSA solution for the NSFNET optical network with	100
C A	$BER=10^{-2}$	120
C.9	RMSA solution for the NSFNET optical network with $BER=10^{-5}$.	120
C.10	Blocked demands in the RMSA solution for the NSFNET optical network with $BER=10^{-3}$.	121
C.11	RMSA solution for the UBN optical network with BER= 4×10^{-2} .	123
C.12	Blocked demands in the RMSA solution for the UBN optical network with	
	$BER=4\times10^{-2}$	123
C.13	RMSA solution for the UBN optical network with BER= 10^{-2}	124
C.14	Blocked demands in the RMSA solution for the UBN optical network with $BER=10^{-2}$.	125
C.15	RMSA solution for the UBN optical network with BER= 10^{-3}	125
C.16	Blocked demands in the RMSA solution for the UBN optical network with	
	$BER=10^{-3}.$	125

C.17	RMSA solution for the CONUS 30 optical network with BER= 4×10^{-2}	128
C.18	Blocked demands in the RMSA solution for the CONUS 30 optical network with	
	$BER=4\times10^{-2}$	128
C.19	RMSA solution for the CONUS 30 optical network with BER= 10^{-2}	130
C.20	Blocked demands in the RMSA solution for the CONUS 30 optical network with	
	$BER=10^{-2}.$	130
C.21	RMSA solution for the CONUS 30 optical network with BER= 10^{-3}	131
C.22	Blocked demands in the RMSA solution for the CONUS 30 optical network with $% \mathcal{A}$	
	$BER=10^{-3}.$	132

List of Acronyms

ASE: Amplified Spontaneous Emission **BER:** Bit Error Rate **COI:** Channel Of Interest **DVU:** Demand Volume Units **EDFA:** Erbium-Doped Fiber Amplifiers **FAR:** Fixed Alternate Routing FEC: Forward Error-Correction FF: First-Fit **FR:** Fixed-Path Routing FS: Frequency Slot HD: Hard-Decision **ILP:** Integer Linear Programming **ITU-T:** International Telecommunication Union LCU: Link Capacity Unit LPF: Longest Path First **MU:** Most Used **NLI:** Nonlinear Interference **OSNR:** Optical Signal-To-Noise Ratio **OTU:** Optical Transport Network **OXC:** Optical Cross-Connect **PDM:** Polarization-Division Multiplexing **PLIs:** Physical Layer Impairments **QAM:** Quadrature Amplitude Modulation QoS: Quality of Service **QPSK:** Quadrature Phase-Shift Keying **R:** Random Path policy **RMSA:** Routing, Modulation Format and Spectrum Assignment **ROADM:** Reconfigurable Optical Add/Drop Multiplexer **ROSNR:** Required Optical Signal-To-Noise Ratio. **RP:** Random Path Ordering **RWA:** Routing and Wavelength Assignment **SD:** Soft-Decision

List of Symbols

SMF: Single Mode Fibers
SNR: Signal-to-Noise Ratio
SPF: Shortest Path First
SPM: Self-Phase Modulation
SRS: Stimulated Raman Scattering
WA: Wavelength Assignment
WDM: Wavelength Division Multiplexing
WSS: Wavelength Selective Switch
XPM: Cross-Phase Modulation

List of Symbols

lpha	Fiber attenuation coefficient
α_{es}	Link availability
β_2	Group velocity dispersion parameter
β_3	Third order dispersion parameter
β_{edpq}	Back-up path link relations
Δ_f	Channel frequency separation
Δ_{ch}	Channel spacing
δ_{edp}	Link relations
η_{GN}	NLI coefficient
η_{SPM}	Closed- form NLI parameter of the SPM contribution
η_{XPM}	Closed-form NLI parameter of the XPM contribution
$\eta corr$	NLI parameter correction factor
γ	Nonlinear coefficient
\hat{c}_{arc}	Capacity of arc in the Node-Path formulation
\hat{h}_d	Demand volume in the Node-Path formulation
λ_0	Reference wavelength
$ u_0$	Optical frequency of a WDM channel
ω_{dps}	Binary availability coefficient of backup path (d, q) in situation s
$\overline{\alpha}$	Generic attenuation parameter
$\overline{n_2}$	Nonlinear refractive index
Φ	Excess kurtosis
ϕ	Phase mismatch term
\mathbf{F}	Objective function
$ heta_{dps}$	Binary availability coefficient of path (d, p) in situation s
$\tilde{x}_{d,p}$	Flow in demand d through path p in the Node-Path formulation
\underline{y}_{e}	Load on link e
ε	Coherence factor
ξ_e	Unit cost of link e
ξ_{arc}	Unit cost of the arc
ζ_{dp}	Unit cost of path p
A_{eff}	Fiber effective area
B_0	Optical bandwidth
B_k	Bandwidth of k -th interfering channel
B_m	COI channel bandwidth
B_{FS}	Frequency slots bandwidth
C	Total number of colors of the network
С	Specific color in the network

List of Symbols

c_e	Capacity of link e for capacitated problems
C_r	Raman gain slope
c_{light}	Speed of light
C_{WSS}	Number of cascaded WSSs
D	Total number of demands in the network
d	Specific demand in the network
$D_{\lambda 0}$	Dispersion
E	Total number of links in the network
e	Link
e_i	Specific link i in the network
f_k	Frequency of the k -th interfering channel
f_m	Frequency of the center channel
F_n	Noise figure
$f_{n,in,i,j}$	In-line amplifier noise figure
$f_{n,pos,i}$	Post-amplifier noise figure
$f_{n.pre.i}$	Pre-amplifier noise figure
g _{in.i.i}	In-line amplifier gain
G_{max}	EDFA maximum gain
$g_{pos,i}$	Post-amplifier gain
$g_{pre,i}$	Pre-amplifier gain
h	Planck constant
h_d	Volume of demand d
h_{ds}	Volume of demand d to be realized in situation s , expressed in number of
	light-paths
k_{paths}	Number of candidate paths
L_{sec}	Length of the link
L_{span}	Span length
M	Modulation format
m	Central channel
N_v	Number of nodes
N_a	Total number of optical amplifiers
N_{ch}	Total number of channels
$N_{in.i}$	Number of in-line amplifiers
N _{spans}	Number of spans
$osnr_{in,i,i}$	In-line amplifier OSNR
$osnr_{pos,i}$	Post-amplifier OSNR
$osnr_{pre,i}$	Pre-amplifier OSNR
$OSNR_{tot,m}$	Total OSNR in channel m
p	Candidate path
P_d	Total number of candidate paths in the demand d
P_m	Average launch signal power per channel
p_{ASE}	ASE noise power
P_{dp}	Specific candidate path p for demand d
P_{filt}	Filtering penalty

p_{NLI}	NLI power
P_{tot}	Total transmitted optical power
P_{xtalk}	Crosstalk penalty
q	Backup path
Q_{dpq}	Backup path for specific demand
$R_{b,i}$	Information bit rate
$R_{b,l}$	Line bit rate
$R_{s,l}$	Symbol rate
RM_m	Residual margin
8	Failure state
S_0	Dispersion slope
SM_m	Safety margin
u_{dpq}	Binary variable corresponding to flow x_{dpq0}
V	Total number of nodes in the network
v	Specific node in the network
x_{dpc}	Flow (number of light-paths) realizing demand d in color c on path p
x_{dpq0}	Normal flow of demand d allocated to pair (P_{dp}, Q_{dpq})
x_{dps}	Flow in demand d through path p for failure state s
x_{dp}	Flow allocated to path p of demand d
y_e	Capacity of link e for uncapacitated problems
z_{ce}	Number of times the color c is used in link e

CHAPTER 1

Introduction

1.1. Motivation and context

The increased use of the Internet in everyday life has triggered a worldwide huge growth of data traffic in optical telecommunication networks. New technologies like 5G, Internet of Things, virtual reality, and the different social media platforms require new technical solutions to provide the large capacity needed to satisfy all traffic requests [1]. To accommodate such traffic growth, one solution is to expand the transmission beyond the C-band while maintaining the operation of the current optical fibers, which is known as the multiband solution [2]. This solution allows using the currently existing and deployed optical fibers, single mode fibers (SMF) with low-water peak G.652.D [3], and increase the available bandwidth/wavelengths by using the additional O-, E-, S-, and L-bands [1]. The current wavelengths range typically supported in installed SMF is from 1530 nm to 1565 nm, corresponding to the available C-band bandwidth of 35 nm [4]. By adding the L-band, as in recent deployed optical fiber links, whose bandwidth is 60 nm (1565-1625 nm), the multiband solution C+L spectrum achieves a much wider enhanced range of 95 nm [4].

Another solution considered to accommodate the traffic growth is to use a flexible grid instead of a fixed grid. With the fixed grid, the same bandwidth is allocated to each wavelength division multiplexing (WDM) channel, in order to accommodate a specific symbol rate. Typically, the channel width used in WDM channels with fixed grid is 50 GHz [5]. On the other hand, with a flexible grid, the optical spectrum is divided into smaller frequency slots (FSs) of 12.5 GHz, a solution that allows to increase the WDM bandwidth efficiency in SMFs [1]. The FSs are now going to be attributed depending on the demands bit rate [1], avoiding the waste of unused spectrum that occurs in the fixed grid solution. Hence, the flexible grid solution allows to spare network resources and to improve transmission capacity when comparing with the fixed grid.

In this scenario where the capacity of the optical network is increased, by using multiband solutions with the flexible grid, the efficiency in using the network resources is crucial, and, so well designed planning tools are of paramount importance. These tools determine how the network accommodates the traffic, and solve how the different demands are routed, protected, groomed (traffic aggregation), select the modulation formats used, and which wavelengths should be assigned, depending on the grid used [6]. The planning problems can be described using integer linear programming (ILP) and heuristic solutions. With the heuristic algorithms, the solution obtained may not be optimal, but it leads to satisfactory results in a reasonable amount of time [6]. On the other hand, with the ILP formalism, the solution reached is optimal, however, as the number of demands and the size of the network increases, the running time required to reach the optimal solution becomes significantly longer [6], becoming difficult to apply the ILP to solve the planning problem in larger networks with many nodes [7].

With the multiband solution, the network planning is more challenging, since there is more spectrum available to be assigned and there are also more pronounced physical layer impairments (PLIs) in comparison with the ones considered in C-band only transmission [1]. So, in this dissertation we will develop and analyze planning tools to solve routing, modulation format and spectrum assignment (RMSA) problems for multiband static networks with a flexible grid, aware of PLIs, considering different quadrature amplitude modulation (QAM) formats for different bit error rates (BERs).

1.2. Goals

The main goal of this dissertation is to develop a planning tool to route the demands in static C+L multiband networks. First, we developed a two-step RWA planning tool for a fixed grid optical network, based on a heuristic approach, using well-known algorithms such as the Dijkstra algorithm for routing, and First-Fit, Most-Used, and Random algorithms for WA. Then, we implement a single-step RWA planning tool based on an ILP formalism, and compare its performance with the one obtained with the two-step RWA heuristic tool. Finally, we improve the heuristic RWA planning tool to be aware of the PLIs, to select the modulation format and FSs assigned targeting the efficient use of the spectrum and the improvement of the performance in a multiband network with a flexible grid, hence, becoming a RMSA problem. The PLIs considered are the amplified spontaneous emission (ASE) noise, nonlinear interference (NLI) noise, stimulated Raman scattering (SRS) effect, crosstalk, filtering effects, and system aging. The impact of the PLIs is assessed through the computation of the optical signal-to-noise ratio (OSNR) of each link belonging to a particular optical path and the OSNR is used as a metric to perform the network optimization.

1.3. Dissertation organization

This dissertation is organized in five chapters.

In Chapter 2, we review routing and wavelength assignment algorithms based on ILP formulations and heuristic algorithms. The ILP formulations studied for routing are the Link-Path and Node-Link formulations. Based on the Link-Path formulation, we studied two restoration design problems, and an ILP formulation for solving the RWA problem in wavelength division multiplexing (WDM) transparent optical networks. The heuristic algorithms studied for routing are the Dijkstra algorithm and the Yen's k-shortest path algorithm, and the First-Fit, Most-Used, and Random algorithms are used for WA.

Chapter 3 is focused on the path OSNR degradation induced by the PLIs in a C+L optical network. The PLIs studied are the ASE noise power, the NLI noise power and SRS effect using closed-form formulas based on a Gaussian model that can incorporate or not the modulation format effect, the crosstalk, the filtering effects, and the system aging. We studied the PLIs effects with different amplifiers maximum gain, channel launch powers and BERs.

In Chapter 4, we solve and analyze the RWA and RMSA problems for different real network topologies. First, we solve the RWA problem with heuristic algorithms using different ordering strategies in a two-step approach, where the routing problem is solved first, and then, the WA is performed, and with a ILP formulation, where the RWA problem is solved in only one-step for a path list with various candidate paths. Then, we present the simulator developed to solve the RMSA problem in the C+L multiband considering the PLIs, and apply the simulator to four real network topologies.

Chapter 5 is dedicated to the final conclusions of this work, and some future work proposals are presented.

1.4. Main contributions

This dissertation has the following main contributions:

- Study and compare the common two-step RWA heuristic solution (based on the Dijkstra, First-Fit, and Most Used algorithms) with a single-step RWA ILP solution for several network topologies. The study is focused on the number of wavelengths assigned and the required computation time as a function of the number of candidate paths.
- Implementation of a PLI-aware simulator to solve the RMSA problem in a C+L multiband network, considering several real network topologies. The path OSNR is used as a routing metric with the aim of minimizing the number of FSs allocated in a static network scenario with a flexible grid.
- Study the allocation of FSs and the blocking of demands in several optical networks as a function of the BER.

CHAPTER 2

A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

2.1. Introduction

Routing and wavelength assignment is an important task in wavelength division multiplexing optical networks. RWA selects a path between the source and the destination node (routing) and reserves for each link that constitutes that path the most suitable wavelength (wavelength assignment), establishing a light-path to serve a given traffic demand [8].

The RWA problem can be solved using a one-step process, or a two-step process [6]. The two-step RWA process starts by selecting the route, and then, by assigning the same wavelength to each link [6]. The one-step RWA treats the routing problem and the wavelength assignment problem at the same time. Using this method under heavy load conditions provides an improvement in network performance in comparison with the two-step RWA [6].

RWA problems can be solved using exact procedures that find the optimal solution or heuristic approaches that may not find the optimal solution. The heuristic algorithms are preferable for solving the RWA problem in large networks [8]. The exact procedure, e.g. based on an integer linear programming problem, is more suitable for smaller networks and with static traffic [8].

This chapter reviews some typical ILP formulations in Section 2.2 and heuristic approaches in Section 2.3 for solving the RWA problem in optical networks. Subsections 2.2.1 and 2.2.2 present two different formulations to solve network dimensioning problems with ILP formulations, respectively, the Link-Path formulation and the Node-Link formulation. The restoration design problem and the RWA problem are addressed, respectively, in subsections 2.2.3 and 2.2.4. Section 2.3 presents the most used heuristics algorithms for routing, in subsection 2.3.1, and wavelength assignment, in subsection 2.3.2. This chapter concludes with Section 2.4 that presents a real network scenario designed with both an exact algorithm based on a ILP formulation and the usual heuristics algorithms.

2.2. Integer Linear Programming formulations

An integer linear programming (ILP) formulation is a mathematical formulation of an optimization problem in which variables are restricted to integers [8]. This formulation allows obtaining optimal solutions for network design problems [8]. In this section we will introduce two common ILP formulations, the Link-Path and Node-Link formulations, and we will use the Link-Path formulation to solve a restoration design problem and a RWA problem.

2.2.1. Link-Path formulation

The formulation presented in this subsection that describes network dimensioning problems is called link-demand-path-identifier-based formulation, or shortly, Link-Path formulation [7].

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

In Figure 2.1, it is represented the physical and logical topologies of a four-node network, used to explain the Link-Path formulation and related network concepts. The physical topology of the network example consists of four nodes (vertices), designated with notation v=1, ..., 4, (where V represents the total number of nodes of the physical topology, in this scenario V=4), and five undirected links (edges) denoted as e_i with i=1,...,5 (where E represents the total number of links, in this scenario E=5). The corresponding network logical topology consists of three nodes (V=3) and three demands, d=1,...,3 (where D denotes the total number of demands in a network, in this scenario D=3). A demand corresponds to a flow of information between a pair of nodes and can be undirected (bi-directional), v - v' or directed (uni-directional), $v \rightarrow v'$.

In this network, only three of the four nodes generate demands, the fourth node (v=4) is a transit node. Transit nodes do not generate any demand. However, nodes that originate demands can also be transit nodes when they are intermediate nodes along the path of other demands.

Figure 2.1. Physical topology of a 4-node network and its corresponding logical topology.

Each demand d is characterized by a demand volume h_d . Each demand volume is quantified in demand volume units (DVU). The capacity of a link is characterized using the link capacity unit (LCU). The unit cost per link $e, \xi_e \ge 0$, is quantified in LCUs. The LCU and DVU must be consistent with each other. As an example, the unit used in this section is Mbps.

Table 2.1 indicates the considered links unit cost for the network example shown in Figure 2.1 and Table 2.2 shows the demand volume considered for each demand.

There are two different types of dimensioning problems, uncapacitated problems where the capacity of each link e is a variable of the problem and is represented by y_e , and capacitated

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

Link e	Unit Cost per Link ξ_e	
e=1	$\xi_1 = 2$	
e=2	$\xi_2 = 1$	
e=3	$\xi_3 = 1$	
e=4	$\xi_4 = 3$	
e=5	$\xi_5 = 1$	

Table 2.1. Unit cost per link.

Demand dDemand Volume h_d d=1 $h_1 = 15$ d=2 $h_2 = 20$ d=3 $h_3 = 10$

Table 2.2.Demand volumefor each demand.

problems where the capacity of each link e is known and represented by c_e . Next some examples of these dimensioning problems are presented.

The first example, named Example 1, corresponds to an uncapacitated problem, considering the network topology and demands shown in Figure 2.1. From the several paths available for the different demand volumes to be routed, as can be seen in Table 2.3 the only candidate path for d=1 is represented by P_{dp} where d=1 and p=1 and uses links e=2 and e=4. For d=2 there are two candidate paths, represented by P_{21} and P_{22} , where P_{21} uses only link e=5 and P_{22} uses links e=3 and e=4. Finally, for d=3 there are also two candidate paths, represented by P_{31} and P_{32} , where P_{31} uses only link e=1 and P_{32} uses links e=2 and e=3.

Demand d	Candidate paths P_{dp}
d = 1	$P_{11} = \{2, 4\}$
d=2	$P_{21} = \{5\} P_{22} = \{3, 4\}$
d=3	$P_{31} = \{1\} P_{32} = \{2,3\}$

Table 2.3. Candidate paths for each demand.

Each path will have a corresponding flow variable that is represented by x_{dp} , with d defining the demand and p the candidate path. The paths can be $p=1, ..., P_d$, where P_d represents the total number of candidate paths for demand d.

The demand volume h_d is obtained by summing the flows corresponding to each candidate path. The following demand equations correspond to the demands in the network shown in Figure 2.1.

$$x_{11} = h_1$$
 (2.1a)

$$x_{21} + x_{22} = h_2 \tag{2.1b}$$

$$x_{31} + x_{32} = h_3 \tag{2.1c}$$

These equations can be generalized for any demand d. The demand equation in a compact form is:

$$\sum_{p} x_{pd} = h_d, \quad d = 1, 2, ..., D$$
(2.2)

The link capacity y_e must also be taken into consideration, and the sum of all the flows that pass through each link has to be equal or inferior to y_e . The following inequations show the capacity inequalities corresponding to the five links of the network shown in Figure 2.1, considering the candidate paths shown in Table 2.3.

$$x_{31} \le y_1 \tag{2.3a}$$

$$x_{11} + x_{32} \le y_2 \tag{2.3b}$$

$$x_{22} + x_{32} \le y_3 \tag{2.3c}$$

$$x_{11} + x_{22} \le y_4 \tag{2.3d}$$

$$x_{21} \le y_5 \tag{2.3e}$$

7

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

The right side of the inequalities corresponds to the total link capacity, and the left side represents the link loads \underline{y}_e , that correspond to the sum of the flows that pass through a link e. The link loads must be inferior or equal to the link capacity $\underline{y}_e \leq y_e$. To write the capacity inequalities in a more compact notation, the relation between the links, demands, and candidate paths can be written as shown in Table 2.4. The relation between candidate paths p, demands d and links e are typically known as link-path relations [7].

Path P_{dp} Link e	$P_{11} = \{2, 4\}$	$P_{21} = \{5\}$	$P_{22} = \{3, 4\}$	$P_{31} = \{1\}$	$P_{32} = \{2, 3\}$
e=1	0	0	0	1	0
e=2	1	0	0	0	1
e=3	0	0	1	0	1
e=4	1	0	1	0	0
e=5	0	1	0	0	0

Table 2.4. Link-path relations.

In Table 2.4, if the path passes through the link, the entry is 1, and if it does not pass, the entry is 0. To write the link-path relations more compactly, the variable δ_{edp} is defined. If the candidate path p for demand d, uses link e, then $\delta_{edp} = 1$ otherwise, $\delta_{edp} = 0$. Using this variable, the capacity inequalities (2.3) can be written in a more general compact form as

$$\sum_{d} \sum_{p} \delta_{edp} x_{pd} \le y_e, \quad e = 1, 2, ..., E; \quad d = 1, 2, ..., D; \quad p = 1, 2, ..., P_d.$$
(2.4)

Knowing the demand equations (2.2) and the capacity inequalities (2.4), the dimensioning problem consists in finding the "best way" (i.e. the best paths) to route the demands across the network. This problem can lead to many possible solutions, so it is necessary to create goals to find the solution of best interest. Different goals can be defined, such as minimizing the total routing cost, minimize the capacity cost, or minimizing the congestion of the most congested link in the network. The goal of the dimensioning problem is represented by the objective function **F**.

The goal chosen for Example 1 is to minimize the capacity cost of the network represented in Figure 2.2.

Figure 2.2. Physical topology used for the network Examples 1 and 2 and the corresponding candidate paths for each demand.

The objective function \mathbf{F} for this uncapacitated problem is the sum of the product of each link capacity by the unit cost of each link given in Table 2.1, as:

$$\mathbf{F} = \xi_1 y_1 + \xi_2 y_2 + \xi_3 y_3 + \xi_4 y_4 + \xi_5 y_5$$

= 2y_1 + y_2 + y_3 + 3y_4 + y_5 (2.5)

The objective function \mathbf{F} , given by (2.5) for uncapacitated dimensioning problems can also be written in a compact form as:

$$\mathbf{F} = \sum_{e=1}^{E} \xi_e y_e = \sum_e \xi_e y_e \tag{2.6}$$

For a generic network, this dimensioning uncapacitated problem can be written as:

minimize:
$$\mathbf{F} = \sum_{e} \xi_{e} y_{e}$$

subject to: $\sum_{p} x_{pd} = h_{d}, \quad d = 1, 2, ..., D$
 $\sum_{d} \sum_{p} \delta_{edp} x_{pd} = y_{e}, \quad e = 1, 2, ..., E; \quad d = 1, 2, ..., D; \quad p = 1, 2, ..., P_{d}.$
(2.7)

$$x \ge 0, y \ge 0$$

Table 2.5 shows all the variables used in the Link-Path formulation.

Variable	Description		
V	Total number of nodes of the network		
v	v=1,, V denotes a specific node in the network		
E	Total number of links of the network		
e	e=1,,E denotes a specific link in the network		
D	Total number of demands of the network		
d	d=1,, D denotes a specific demand in the network		
h_d	Demand volume of demand d		
ξ_e	Unit cost of link e		
ζ_{dp}	Unit path cost for demand d with assigned path p		
c_e	Capacity of link e for capacitated problems		
y_e	Capacity of link e for uncapacitated problems		
P_d	Total number of candidate paths for demand d		
p	$p=1,\ldots,P_d$ denotes a candidate path for demand d		
P_{dp}	Candidate path p for demand d		
x_{dp}	Flow for demand d through path p		
\underline{y}_{e}	Link load for link e		
δ_{edp}	$\delta_{edp}=1$, if candidate path p for demand d uses link e; otherwise, $\delta_{edp}=0$		
\mathbf{F}	Objective function		

 Table 2.5.
 Variables used in Link-Path formulation.

For the network given in Figure 2.2, considering the values in Tables 2.1, 2.2 and 2.3, equations (2.7), and the variables described in Table 2.5 the ILP formulation for Example 1 can be written as in the equations and inequalities (2.8).

All the equations and inequalities (2.8) described will be used to reach the optimal solution for this uncapacitated dimensioning problem, corresponding to the network example of Figure 2.2. To obtain the optimal solution of minimizing the link capacity y_e , each link capacity must be fully used, meaning that the capacity inequalities (2.3) of link load and link capacity will become equalities, so $\underline{y}_e = y_e$. One non-optimal solution for this uncapacitated problem is represented in Table 2.6 [7].

minimize:
$$\mathbf{F} = 2y_1 + y_2 + y_3 + 3y_4 + y_5$$

 $x_{11} = 15$
 $x_{21} + x_{22} = 20$
 $x_{31} + x_{32} = 10$
subject to: $x_{31} \leq y_1$
 $x_{11} + x_{32} \leq y_2$
 $x_{22} + x_{32} \leq y_3$
 $x_{11} + x_{22} \leq y_4$
 $x_{21} \leq y_5$
 (2.8)

 $x_{11}, x_{21}, x_{22}, x_{31}, x_{32} \ge 0, \quad y_1, y_2, y_3, y_4, y_5 \ge 0.$

Link Capacity y_e	Flow x_{dp}
$y_1 = 5$	$x_{11} = 15$
$y_2 = 20$	$x_{21} = 15$
$y_3 = 10$	$x_{22} = 5$
$y_4 = 20$	$x_{31} = 5$
$y_5 = 15$	$x_{32} = 5$

 Table 2.6.
 Possible solution for Example 1.

With this solution [7], the objective function is $\mathbf{F} = 115$. This solution is not optimal since it does not minimize the capacity cost. To clarify this point, consider that the unit path cost (ζ_{dp}) is the total cost of the candidate path, given by:

$$\zeta_{dp} = \sum_{e} \delta_{edp} \xi_{e} \quad d = 1, 2, ..., D \quad p = 1, 2, ..., P_{d}.$$
(2.9)

In the solution given in Table 2.6, the second candidate path for the second demand $P_{22} = \{3, 4\}$ has five units of flows $(x_{22} = 5)$ attributed. The unit path cost for this path is $\zeta_{22} = \xi_3 + \xi_4 = 1 + 3 = 4$. The first path $(P_{21} = \{5\})$ for this demand has a unit path cost of one $(\zeta_{21} = \xi_5 = 1)$. So, in Example 1, if the flow from path P_{22} is moved to path P_{21} , the cost saved will be $\zeta_{22} - \zeta_{21} = 4 - 1 = 3$ per unit of flow, saving fifteen LCUs in total $(x_{22}(\zeta_{22} - \zeta_{21}) = 15)$. Since demand d=1 only has one candidate path, this demand is optimized. In demand d=3, both path costs are the same $(\zeta_{31} = \zeta_{32} = 2)$, and any division of the flow through the two paths is not going to affect the final cost; therefore, demand d=3 is also optimized.

In conclusion, moving all the flow from P_{22} to P_{21} will minimize the capacity cost in this problem and consequently the objective function **F**. With the new allocation of flow in demand d=2, the solution to minimize the capacity cost gives $\mathbf{F}^{opt}=100$ [7], which is optimal as denoted by the superscript *opt*. The flow and capacities solution for this dimensioning problem, which is optimal since it minimizes the cost function, are as follows:

$$\begin{aligned} x_{11}^{opt} &= 15 \\ x_{21}^{opt} &= 20, \ x_{22}^{opt} &= 0 \\ x_{31}^{opt} &= 10 - a, \ x_{32}^{opt} &= a, & \text{for any } 0 \le a \le 10 \\ y_{1}^{opt} &= 10 - a, \ y_{2}^{opt} &= 15 + a, \ y_{3}^{opt} &= a, \ y_{4}^{opt} &= 15, \ y_{5}^{opt} &= 20 \end{aligned}$$

where a represents a number between 0 and 10, and for any integer number in this interval, the dimensioning problem solutions will be optimal. The optimal solution for Example 1 with a=0 was confirmed with Matlab using function linprog. The corresponding Matlab code and results are shown in Appendix A.1.

Another example of an uncapacitated problem is given in the following, which is called Example 2. For this example problem, a restriction in the flows is imposed. Each demand can only use one candidate path to satisfy all the demand volume, using one flow per demand, which is a typical scenario in optical networks. Example 2 considers the network topology described in Figure 2.2, the candidate paths are the same as described in Table 2.3, and the goal for the objective function is also to minimize the capacity cost.

The restriction in the flows modifies the flow allocation for demands d=2 and d=3. With this restriction, the variable, *a* can only be 0 or 10. The optimal objective function is still $\mathbf{F}^{opt}=100$ and the dimensioning problem solution is given by:

$$\begin{aligned} x_{11}^{opt} &= 15 \\ x_{21}^{opt} &= 20, \ x_{22}^{opt} &= 0 \\ x_{31}^{opt} &= a, \ x_{32}^{opt} &= 10 - a, & \text{for } a = 0 \text{ or } a = 10 \\ y_1^{opt} &= 10 - a, \ y_2^{opt} &= 15 + a, \ y_3^{opt} &= a, \ y_4^{opt} &= 15, \ y_5^{opt} &= 20 \end{aligned}$$

Consider now Example 3. In this example, another candidate path for demand d=1 described in Table 2.3 is added. The flow restrictions in Example 2 are not considered for this example. The paths considered in Example 3 are represented in Figure 2.3.

Figure 2.3. Physical topology used in Examples 3 and 4 and the corresponding candidate paths for each demand.

The addition of path $P_{12} = \{1, 5\}$, changes equation (2.1a) for the demand d=1 and the capacity inequality (2.3) corresponding to the link capacities that this new path uses, y_1 and y_5 as:

$$\begin{array}{rcl}
x_{11} + x_{12} &= 15 \\
x_{12} &+ x_{31} \leq y_1 \\
x_{12} + x_{21} &\leq y_5
\end{array}$$
(2.10)
For Example 3, the problem of minimizing the capacity cost can be written as:

$$\begin{array}{rll} \textbf{minimize:} \quad \mathbf{F} = 2y_1 + y_2 + y_3 + 3y_4 + y_5 \\ x_{11} + x_{12} & = 15 \\ x_{21} + x_{22} & = 20 \\ x_{31} + x_{32} = 10 \\ \textbf{subject to:} \quad & x_{12} & + x_{31} & \leq y_1 \\ x_{11} & & + x_{32} \leq y_2 \\ & & x_{22} & + x_{32} \leq y_2 \\ & & x_{11} & & + x_{22} \\ & & & x_{12} + x_{21} & \leq y_5 \end{array}$$

$$(2.11)$$

 $x_{11}, x_{12}, x_{21}, x_{22}, x_{31}, x_{32} \ge 0, \quad y_1, y_2, y_3, y_4, y_5 \ge 0.$

The unit path cost for the first candidate path for demand d=1 is $\zeta_{11} = 1 + 3 = 4$ ($P_{11} = \{2,4\}$) and the unit path cost for the new added path is $\zeta_{12} = 2 + 1 = 3$. Knowing the new cost, the solution for this example that minimizes the objective function, for demand d=1, is $x^{opt}_{11} = 0$ and $x^{opt}_{12} = 15$. So, the dimensioning problem solution is given by:

$$\begin{aligned} x_{11}^{opt} &= 0 \ x_{12}^{opt} = 15 \\ x_{21}^{opt} &= 20, \ x_{22}^{opt} = 0 \\ x_{31}^{opt} &= 10 - a, \ x_{32}^{opt} = a & \text{for any } 0 \le a \le 10 \\ y_1^{opt} &= 15 + (10 - a), \ y_2^{opt} = a, \ y_3^{opt} = a \ y_4^{opt} = 0, \ y_5^{opt} = 35 \end{aligned}$$

The new optimal capacity cost for this example is $\mathbf{F}^{opt}=85$, decreasing the cost by 15 LCUs, in comparison with the previous example. The solution of Example 3 shows how important it is to choose the path list to obtain an optimal solution. A brute force strategy, which results also in an optimal solution, is to consider all the possible paths, although it can be time consuming for large networks with many demands. Example 3 was also solved in Matlab using function linprog, as shown in Appendix A.2.

Now, let us consider Example 4 which is a capacitated problem. The network physical topology, and the candidate paths are represented in Figure 2.3. For this example, the capacity of each link is known, and is represented by c_e . Capacitated problems equations can be written in a compact generic form by:

$$\sum_{p} x_{pd} = h_d, \quad d = 1, 2, ..., D$$

$$\sum_{d} \sum_{p} \delta_{edp} x_{pd} = c_e, \quad e = 1, 2, ..., E; \quad d = 1, 2, ..., D; \quad p = 1, 2, ..., P_d. \quad (2.12)$$

$$x_{pd} \ge 0,$$

The capacity of each link, considered in Example 4 is $c_e = (c_1, c_2, c_3, c_4, c_5) = (10, 15, 5, 15, 30)$. The goal for the objective function **F** for this example is to minimize the total routing cost,

$$\mathbf{F} = \zeta_{11}x_{11} + \zeta_{12}x_{12} + \zeta_{21}x_{21} + \zeta_{22}x_{22} + \zeta_{31}x_{31} + \zeta_{32}x_{32} \tag{2.13}$$

Table 2.7 has the path cost of each candidate path.

Candidate Paths P_{dp}	Unit Path Cost ζ_{dp}
$P_{11} = \{2, 4\}$	$\zeta_{11} = 4$
$P_{12} = \{1, 5\}$	$\zeta_{12} = 3$
$P_{21} = \{5\}$	$\zeta_{21} = 1$
$P_{22} = \{3, 4\}$	$\zeta_{22} = 4$
$P_{31} = \{1\}$	$\zeta_{31} = 2$
$P_{32} = \{2, 3\}$	$\zeta_{32} = 2$

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

Table 2.7.	Unit	path	$\cos t$	of	each	candidate	path	for	Example	4.
10010 1011	0 1110	poor	0000	~	occorr	oundraceo	pauli	101	Lincompro	

So, the capacitated problem for Example 4 can be written as:

minimize: $\mathbf{F} = 4x_{11} + 3x_{12} + x_{21} + 4x_{22} + 2x_{31} + 2x_{32}$

	$x_{11} + x_{12}$	2		= 15		
subject to		$x_{21} + x_{22}$	2	= 20		
			$x_{31} +$	$x_{32} = 10$		
	x_{12}	!	$+ x_{31}$	≤ 10	('	2 14)
Subject to.	x_{11}		+	$x_{32} \le 15$	(4	2.1-1)
		x_{22}	2 +	$x_{32} \le 5$		
	x_{11}	$+ x_{22}$	2	≤ 15		
	x_{12}	$x + x_{21}$		≤ 30		

 $x_{11}, x_{12}, x_{21}, x_{22}, x_{31}, x_{32} \ge 0,$

The optimal solution for Example 4, obtained using Matlab function linprog is:

$$x_{11}^{opt} = 10, \ x_{12}^{opt} = 5$$
$$x_{21}^{opt} = 20, \ x_{22}^{opt} = 0$$
$$x_{31}^{opt} = 5, \ x_{32}^{opt} = 5$$
$$\mathbf{F}^{opt} = 95$$

The Matlab script for Example 4 is shown in Appendix A.3.

2.2.2. Node-Link formulation

Another formulation that can be used for dimensioning problems is the Node-Link formulation [7]. In this formulation, the links and demands are considered to be directed. Each node has a flow conservation law, meaning that if a node is the source for the demand in consideration, the out coming flow minus the incoming flow is equal to that demand volume, so flows entering the node are negative and flows exiting the node are positive.

The network topology represented in Figure 2.4 is a three-node (V=3) network with three links (E=3). Each undirected link in this notation is composed by two directed links, also known as arcs. For example, the undirected link 1-2 is now represented by two arcs, $1 \rightarrow 2$ and $2 \rightarrow 1$.

All three demands (D=3) are now directed. In this case, it is enough to choose only one direction for the flow to pass through. Considering demand volume \hat{h}_{12} , between nodes v=1and v=2 with origin in v=1 and destination v=2, the directed demand is represented by $\langle 1:2 \rangle$. From the node 1 (v=1) perspective, there are two possibilities to provision the demand volume from the source node, arc $1 \rightarrow 2$ for flow allocated $\tilde{x}_{12,12}$ ($\tilde{x}_{d,p}$ where p is the candidate path for the directed demand d) and arcs $1 \rightarrow 3$ and $3 \rightarrow 2$ for flow allocated vector $\tilde{x}_{13,12}$ and $\tilde{x}_{32,12}$. In this formulation, for the flow allocation, the first subscript pair represents the arc and the

Figure 2.4. Physical topology of an example network with six arcs.

second refers to the directed demand pair. Figure 2.5 shows the candidate paths for the directed demands $\langle 1:2\rangle$, $\langle 1:3\rangle$ and $\langle 2:3\rangle$, respectively. In this formulation, it is added a "tilde" (~) to the flow and a "hat" (^) to the demand volume to differentiate the Node-Link notation from the Link-Path formulation.

Figure 2.5. Flow of demand between nodes for demands \hat{h}_{12} , \hat{h}_{13} and \hat{h}_{23} in the network represented in Figure 2.4.

For demand $\langle 1 : 2 \rangle$, knowing that the nodes must obey the flow conservation law, the demand equations for nodes 1 (source node), 3 (transit node) and 2 (destination node) are given, respectively, by:

$$-\hat{h}_{12} - \tilde{x}_{21,12} - \tilde{x}_{31,12} + \tilde{x}_{12,12} + \tilde{x}_{13,12} = 0.$$
(2.15a)

$$-\tilde{x}_{13,12} - \tilde{x}_{23,12} + \tilde{x}_{31,12} + \tilde{x}_{32,12} = 0.$$
(2.15b)

$$-\tilde{x}_{12,12} - \tilde{x}_{32,12} + \tilde{h}_{12} + \tilde{x}_{21,12} + \tilde{x}_{23,12} = 0.$$
(2.15c)

In this case, as shown in Figure 2.5, in each directed arc, the flow only goes through one direction so, the flow allocated to vectors $\tilde{x}_{21,12}$, $\tilde{x}_{31,12}$ and $\tilde{x}_{23,12}$ is zero. With this, the following flow conservation equations for demand $\langle 1:2 \rangle$ can be obtained:

$$\tilde{x}_{12,12} + \tilde{x}_{13,12} = h_{12}
- \tilde{x}_{13,12} + \tilde{x}_{32,12} = 0
- \tilde{x}_{12,12} - \tilde{x}_{32,12} = -\hat{h}_{12}$$
(2.16)

For demand $\langle 1:3 \rangle$, considering the representation of the flows and demand volumes for each node represented in Figure 2.5, the flow conservation equations for demand $\langle 1:3 \rangle$ are given by

14

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

$$\tilde{x}_{12,13} + \tilde{x}_{13,13} = \tilde{h}_{13}
- \tilde{x}_{12,13} + \tilde{x}_{23,13} = 0
- \tilde{x}_{13,13} - \tilde{x}_{23,13} = - \hat{h}_{13}$$
(2.17)

For demand $\langle 2:3 \rangle$, following the same reasoning, the demand equations are given by:

$$\begin{array}{rcl} x_{21,23} + x_{23,23} = & h_{23} \\ \tilde{x}_{13,23} - \tilde{x}_{21,23} & = & 0 \\ - \tilde{x}_{13,23} & - \tilde{x}_{23,23} = & -\hat{h}_{23} \end{array}$$
(2.18)

The inequalities for the link capacity concerning arcs $1 \rightarrow 2$ and $2 \rightarrow 1$ are given by:

$$\tilde{x}_{12,12} + \tilde{x}_{12,13} \le \hat{c}_{12}.$$
 (2.19)

$$\tilde{x}_{21,23} \le \hat{c}_{21}.$$
 (2.20)

For arcs $2 \rightarrow 3$ and $3 \rightarrow 2$ the inequalities are:

$$\tilde{x}_{23,13} + \tilde{x}_{23,23} \le \hat{c}_{23}. \tag{2.21}$$

$$\tilde{x}_{32,12} \le \hat{c}_{32}.$$
 (2.22)

And for arc $1 \rightarrow 3$ the inequality is:

$$\tilde{x}_{13,12} + \tilde{x}_{13,13} + \tilde{x}_{13,23} \le \hat{c}_{13}.$$
 (2.23)

As arc $3 \rightarrow 1$ does not have any incoming or out coming flow, $\hat{c}_{31}=0$.

Considering now the capacitated problem described in the following example, named Example 5. The network topology used is the one represented in Figure 2.4. The goal of this capacitated problem is to minimize the total routing cost, assuming that the unit cost of every arc is one, $\xi_{arc} = 1$.

With the capacity link inequalities (2.16) - (2.18) and demand equations (2.19) - (2.23), the problem to minimize the total routing cost can be written as:

minimize: $\mathbf{F} = \tilde{x}_{12,12} + \tilde{x}_{13,12} + \tilde{x}_{32,12} + \tilde{x}_{12,13} + \tilde{x}_{13,13} + \tilde{x}_{23,13} + \tilde{x}_{21,23} + \tilde{x}_{13,23} + \tilde{x}_{23,23}$

subject to

 $\tilde{x}_{12,12} + \tilde{x}_{13,12}$ \hat{h}_{12} = 0 $-\tilde{x}_{13,12}+\tilde{x}_{32,12}$ = $-\tilde{x}_{32.12}$ $= -\hat{h}_{12}$ $-\tilde{x}_{12.12}$ \hat{h}_{13} $\tilde{x}_{12,13} + \tilde{x}_{13,13}$ = $-\tilde{x}_{12,13}$ $+\tilde{x}_{23,13}$ 0 = $= -\ddot{h}_{13}$ $-\tilde{x}_{13,13}-\tilde{x}_{23,13}$ $\tilde{x}_{21,23}$ $+\tilde{x}_{23,23} =$ h_{23} $-\tilde{x}_{21,23} + \tilde{x}_{13,23}$ = 0 $-\tilde{x}_{13,23} - \tilde{x}_{23,23} = -\tilde{h}_{23}$ $\tilde{x}_{12,12} +$ \leq \hat{c}_{12} $\tilde{x}_{12,13}$ \leq \hat{c}_{21} $\tilde{x}_{21,23}$ \leq $+ \tilde{x}_{13,23}$ $\tilde{x}_{13,12}$ $+\tilde{x}_{13,13}$ \hat{c}_{13} $+\tilde{x}_{23,23} \leq$ \hat{c}_{23} $\tilde{x}_{23,13}$ \leq $\tilde{x}_{32,12}$ \hat{c}_{32} (2.24) The candidate paths used in Example 5 are represented in Figure 2.5. The capacity considered for each arc is $\hat{c}_{arc} = (\hat{c}_{12}, \hat{c}_{21}, \hat{c}_{13}, \hat{c}_{31}, \hat{c}_{23}, \hat{c}_{32}) = (10,10,10,10,15,15)$, and the demand volume considered for each directed demand is $\hat{h}_d = (\hat{h}_{12}, \hat{h}_{13}, \hat{h}_{23}) = (5,7,8)$.

The optimal solution for Example 5, is to route the flow for each directed demand through the direct arc from the source node to the destination node, as follows,

$$\hat{x}_{12,12}^{opt} = 5, \ \hat{x}_{13,12}^{opt} = 0, \ \hat{x}_{32,12}^{opt} = 0$$
$$\hat{x}_{13,13}^{opt} = 7, \ \hat{x}_{21,13}^{opt} = 0, \ \hat{x}_{32,13}^{opt} = 0$$
$$\hat{x}_{23,23}^{opt} = 8, \ \hat{x}_{21,23}^{opt} = 0, \ \hat{x}_{13,23}^{opt} = 0$$
$$\mathbf{F}^{opt} = 20$$

In order to compare the Node-Link and Link-Path formulations, the same problem is represented for the Link-Path formulation in example. Figure 2.6 represents the physical and logical topologies for this Example 6. This network consists of three nodes (V=3) and three undirected links (E=3).

Figure 2.6. Logical and physical topology of the network considered in Example 6.

The variables demand volume and link capacity are the same as considered for Example 5, but adapted to the Link-Path formulation, i.e., $h_d = (h_1, h_2, h_3) = (5, 7, 8) c_e = (c_1, c_2, c_3) = (10, 10, 15)$. The candidate paths used in this example are represented in Table 2.8.

Demand d	Candidate Path P_{dp}
d = 1	$P_{11} = \{1\} P_{12} = \{2, 3\}$
d=2	$P_{21} = \{2\} P_{22} = \{1, 3\}$
d = 3	$P_{31} = \{3\} P_{32} = \{2, 1\}$

Table 2.8. Candidate paths for each demand in Examples 5 and 6.

The objective function goal is the same as Example 5, to minimize the total routing cost. In Example 6 the unit link cost for every link is also one, $\xi_e = 1$. The unit path cost of each candidate path is represented in Table 2.9.

Candidate Paths P_{dp}	Unit Path Cost ζ_{dp}
$P_{11} = \{1\}$	$\zeta_{11} = 1$
$P_{12} = \{2, 3\}$	$\zeta_{12} = 2$
$P_{21} = \{2\}$	$\zeta_{21} = 1$
$P_{22} = \{1, 3\}$	$\zeta_{22} = 2$
$P_{31} = \{3\}$	$\zeta_{31} = 1$
$P_{32} = \{2, 1\}$	$\zeta_{32} = 2$

Table 2.9. Unit path cost of each candidate path in Example 6.

By considering the candidate paths shown in Table 2.8, the minimization problem can be written using the Link-Path formulation as:

minimize:
$$\mathbf{F} = x_{11} + 2x_{12} + x_{21} + 2x_{22} + x_{31} + 2x_{32}$$

 $x_{11} + x_{12} = 5$
 $x_{21} + x_{22} = 7$
subject to: $x_{31} + x_{32} = 8$
 $x_{11} + x_{22} + x_{32} \le 10$
 $x_{12} + x_{21} + x_{32} \le 10$
 $x_{12} + x_{22} + x_{31} \le 15$
 $x_{11}, x_{12}, x_{21}, x_{22}, x_{31}, x_{32} \ge 0.$

$$(2.25)$$

The optimal solution for Example 6 is $\mathbf{F}^{opt}=20$, and the flow allocation for each demand is:

$$\begin{aligned} x_{11}^{opt} &= 5 \, x_{12}^{opt} = 0 \\ x_{21}^{opt} &= 7, \, x_{22}^{opt} = 0 \\ x_{31}^{opt} &= 8, \, x_{32}^{opt} = 0 \end{aligned}$$

In conclusion, the same results are obtained with both formulations with this objective function goal and network topology.

As a final remark regarding the Link-Path and Node-Link formulations it should be noted that the Link-Path formulation requires pre-processing of the candidate paths, whereas the Node-Link formulation does not required this action, since all the possible paths are considered. In order to ensure the optimal solution the Node-Link formulation should always be used, however, in particular in large networks this formalism can be very time consuming. For networks where the best paths can be easily found the Link-Path formulation could be used as it requires less computing [7]. In this dissertation we are going to use the Link-Path formulation presented in subsection 2.2.1, since the choice of the candidate paths is easily done.

2.2.3. Restoration design problem

Having mechanisms of protection or restoration that re-establish resources in case of failure is very important to improve network resilience [7]. In a protection mechanism the restoration of connections happens before the failure, in contrast, restoration only addresses the failure after it happen [7]. With a dedicated protection mechanism link capacity is reserved for set failures and this capacity can not be used in the normal state, assuring the automatic switch over for the protection path. The backup path is a path disjoint from the normal path, meaning these two paths do not share any links. In terms of capacity design problems studied in this work, there is no difference between the formulations when protection or restoration is used.

In the following, we consider a restoration design problem, where link failures are taken into account for the optimization problem [7]. Concerning the network topology of Figure 2.1 and that only one link can be unavailable at a time, there are five possible failure states, denoted by $s=1, \ldots, 5$. Each failure state corresponds to a failure in a specific link, hence, $s\equiv e$. When all links are available, in the normal operation state, s=0.

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

The restoration design problem is explained through an example, Example 7. The goal for this example is to minimize the link capacity with the demand volume fully realized for all five failure states and normal operation state. The candidate paths considered for this example are the ones represented in Figure 2.3.

In this example, to introduce the failure states in the Link-Path formulation, the demand equations are changed introducing the dependence on the failure states s. The generalized demand equation for the restoration design problem is [7]:

$$\sum_{p} x_{dps} = h_d, \quad p = 1, 2, ..., P_d \quad s = 0, 1, ..., S \quad d = 1, 2, ..., D.$$
(2.26)

The capacity inequalities must also be modified to consider the state of the different links by introducing one more inequality representing the six states of the network (the normal state and the five failure states). A working link e is represented by $\alpha_{es}=1$ (when $s\neq e$), while $\alpha_{es}=0$ (when s=e) characterizes a link e in failure. The generalized capacity inequality for the restoration design problem is [7]:

Figure 2.7. Physical topology considered for the network Example 7, for the failure states s=1 and s=2 and the corresponding candidate paths that can be used for each demand and state.

The objective function goal is to minimize the link capacity ensuring that, for every state failure, the network has the capacity to fully transport all three demands. Figure 2.7 represents two possible failure states s=1 and s=2. When link e=1 fails, the candidate paths P_{12} and P_{31} cannot be used. So, the demands d=1 and d=3 have to be fully realized by the paths P_{11} and P_{32} . If the failure is in link e=2, the paths that cannot be used are P_{11} and P_{32} .

In this example, it is necessary to solve the problem for every failure state and normal state to minimize the cost function of the network, leading to a different flow distribution in each failure state. The solution for the six states is:

$$s = 0: \quad x_{110}^{opt} = 0 \quad x_{120}^{opt} = 15 \quad x_{210}^{opt} = 20 \quad x_{220}^{opt} = 0 \quad x_{310}^{opt} = 0 \quad x_{320}^{opt} = 10$$
(2.28a)

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

$$s = 1: \quad x_{111}^{opt} = 15 \quad x_{121}^{opt} = 0 \quad x_{211}^{opt} = 20 \quad x_{221}^{opt} = 0 \quad x_{311}^{opt} = 0 \quad x_{321}^{opt} = 10$$
(2.28b)

$$s = 2: \quad x_{112}^{opt} = 0 \quad x_{122}^{opt} = 15 \quad x_{212}^{opt} = 20 \quad x_{222}^{opt} = 0 \quad x_{312}^{opt} = 10 \quad x_{322}^{opt} = 0 \quad (2.28c)$$

$$s = 3: \quad x_{113}^{opt} = 0 \quad x_{123}^{opt} = 15 \quad x_{213}^{opt} = 20 \quad x_{223}^{opt} = 0 \quad x_{313}^{opt} = 10 \quad x_{323}^{opt} = 0 \tag{2.28d}$$

$$s = 4: \quad x_{114}^{opt} = 0 \quad x_{124}^{opt} = 15 \quad x_{214}^{opt} = 20 \quad x_{224}^{opt} = 0 \quad x_{314}^{opt} = 0 \quad x_{324}^{opt} = 10 \tag{2.28e}$$

$$s = 5: \quad x_{115}^{opt} = 15 \quad x_{125}^{opt} = 0 \quad x_{215}^{opt} = 0 \quad x_{225}^{opt} = 20 \quad x_{315}^{opt} = 0 \quad x_{325}^{opt} = 10$$
(2.28f)

From the solutions for every state given by equation (2.28), the link capacity changes depending on the state, resulting in the capacities presented in Table 2.10.

s=0	$y_1 = 15$	$y_2 = 10$	$y_3 = 10$	$y_4 = 0$	$y_5 = 35$	F = 85
s=1	$y_1 = 0$	$y_2 = 25$	$y_3 = 10$	$y_4 = 15$	$y_5 = 20$	F = 100
s=2	$y_1 = 25$	$y_2 = 0$	$y_3 = 0$	$y_4 = 0$	$y_5 = 35$	F = 85
s=3	$y_1 = 25$	$y_2 = 0$	$y_3 = 0$	$y_4 = 0$	$y_5 = 35$	F = 85
s=4	$y_1 = 15$	$y_2 = 10$	$y_3 = 10$	$y_4 = 0$	$y_5 = 35$	F = 85
s=5	$y_1 = 0$	$y_2 = 25$	$y_3 = 30$	$y_4 = 35$	$y_5 = 0$	F = 160

Table 2.10. Link capacity solution for each one of the six states of Example 7.

Analyzing the link capacity solution for each state given in Table 2.10, the maximized link capacity of each link is:

$$y_1^{opt} = 25 \ y_2^{opt} = 25 \ y_3^{opt} = 30 \ y_4^{opt} = 35 \ y_5^{opt} = 35$$
 (2.29)

The optimal cost for this example calculated with equation (2.6) is $\mathbf{F}^{opt}=245$ [7]. The result of this example shows that when restoration design is considered, assuming that the demand volumes are fully realized for all network states, the network cost becomes much higher when compared with Example 3, where there was no protection, giving $\mathbf{F}^{opt}=85$. The Matlab script used to solve this problem is presented in Appendix A.4

Another restoration design problem is the restoration design problem with single backup paths. In this restoration problem the path that has a failure link moves to the designated single backup path to solve the failure situation [7]. The difference between this method and the one presented earlier in this subsection is that the traffic, in a normal scenario, cannot be bifurcated between the normal and backup paths, meaning that the backup path is used only when the normal path is unavailable. Furthermore, the backup path cannot share any links with the normal path, i.e. is a disjoint path. To distinguish the normal path P_{dp} from the backup path, the backup paths are represented by Q_{dpq} , where d represents the demand, $p=1,\ldots, P_d$ labels the normal path, and $q=1,\ldots, Q_{dpq}$ is the label for the possible backup paths.

The following examples, Examples 8 and 9, consider path restoration with single backup paths using the network described in Figure 2.3. Figure 2.8 represents the normal and backup paths considered for these examples. The normal path corresponds to the lowest cost path, while the backup path is a disjoint path.

As observed in Figure 2.8 the normal paths P_{dp} are disjoined from the backup paths Q_{dpq} . The availability of the normal path P_{dp} for the state *s* is represented by the binary variable θ_{dps} and the corresponding representation for the backup path availability is ω_{dps} . These two binary variables are related by $\omega_{dps}=1-\theta_{dps}$. The binary variable θ_{dps} depends on the availability of the link α_{es} , meaning that when the normal path uses link *e* and this link has failed, $\alpha_{es}=0$, then $\theta_{dps}=0$ and $\omega_{dps}=1$.

Figure 2.8. Physical topology used for the network Examples 8 and 9 and the corresponding normal and backup paths for each demand.

The link path relation represented in Table 2.4 is identified by δ_{edp} for the normal path, with P_{11} , P_{21} and P_{31} denoting the normal paths, and β_{edpq} is the link path relation for the backup path and is represented in Table 2.11.

Backup Path Q_{dpq} Link e	$Q_{111} = \{2, 4\}$	$Q_{211} = \{3, 4\}$	$Q_{311} = \{2, 3\}$
e=1	0	0	0
e=2	1	0	1
e=3	0	1	1
e=4	1	1	0
e=5	0	0	0

Table 2.11. Link-path relations for the backup paths represented in Figure 2.8.

The normal flow for the pair (P_{dp}, Q_{dpq}) is represented by x_{dpq0} . The binary variable u_{dpq} corresponds to the normal flow when set to 1.

The path restoration with single backup paths modifies the capacity and demand constraints shown in Section 2.2.1 to [7]:

$$\sum_{p} \sum_{q} x_{dpq0} = h_d, \quad d = 1, 2, ..., D.$$
(2.30a)

$$\sum_{q} u_{dpq} \le 1, \quad d = 1, 2, ..., D \quad p = 1, 2, ..., P_d.$$
(2.30b)

$$x_{dpq0} \le h_d u_{dpq}, \quad d = 1, 2, ..., D \quad p = 1, 2, ..., P_d \quad q = 1, 2, ..., Q_{dp}$$
 (2.30c)

$$\sum_{d} \sum_{p} \sum_{q} (\delta_{edp} \theta_{dps} + \beta_{edpq} \omega_{dps}) x_{dpq0} \le \alpha_{es} y_{e}, \quad e = 1, 2, ..., E \quad s = 1, 2, ..., S.$$
(2.30d)

Equation (2.30b) imposes that only one path is going to be used as a backup, and equation (2.30c) imposes that only that pair normal-backup path can transport the demand volume h_d . The new capacity inequality is shown in (2.30d). This inequality considers that if the normal path or the backup path use link e (depending on the value of δ_{edp} and β_{edp}), with availability depending on the network state (θ_{dps} and ω_{dps}), then, the capacity of this link has to accommodate the demand volume of this path.

For Example 8, as shown in Figure 2.9, the link e=1 has failed, the normal paths P_{11} and P_{31} are not available and so, the backup paths Q_{111} and Q_{211} are used.

Figure 2.9. Physical topology used for the network Example 8, considering state s=1, and Example 9, considering state s=5, with the corresponding normal and backup paths for each demand.

The solution for minimizing the capacities in Example 8 has been obtained using Matlab and gives $\mathbf{F}^{opt} = 100$ and the following link capacities,

$$y_1^{opt} = 0 \quad y_2^{opt} = 25 \quad y_3^{opt} = 10 \quad y_4^{opt} = 15 \quad y_5^{opt} = 20.$$
 (2.31)

Example 9 has link e=5 down, affecting the normal paths for demands d=1 and d=2, P_{11} and P_{21} , which are replaced, respectively by, Q_{111} and Q_{211} , as shown in Figure 2.9. For this example, the solution is $\mathbf{F}^{opt} = 160$, obtained with Matlab and the link capacities are:

$$y_1^{opt} = 10 \ y_2^{opt} = 15 \ y_3^{opt} = 20 \ y_4^{opt} = 35 \ y_5^{opt} = 0.$$
 (2.32)

The Matlab script used to solve Examples 8 and 9 is presented in Appendix A.5.

The single path backup allows for the demands to be fully realized, if any of the links fail and the cost objective function is lower compared with the one obtained first in this subsection. In the restoration design problem, since there are no designated backup paths to ensure that the demand volume is fully realized for any of the failure states, it is necessary to have a much higher link capacity, and consequently, the optimum cost function is higher than when a designated disjoint backup path is calculated. However with this mechanism, the links always have the capacity to restore connections. In conclusion, when using single path backup protection, the cost function is lower and guarantees the full realization of every demand volume.

2.2.4. RWA problem

This subsection describes the ILP formulation for solving the RWA problem in wavelength division multiplexing (WDM) transparent optical networks [7]. The nodes used in transparent

WDM networks are called optical cross-connects (OXC) [7]. In this dissertation we assume that there is no wavelength conversion inside these nodes, so the wavelength has to be the same in all links belonging to a path.

In WDM networks, the DVUs and LCUs described in subsection 2.2.1 now correspond to wavelengths and optical fibers, respectively [7]. Each wavelength can, typically, carry 10 Gbps (1 DVU = 10 Gbps) and one optical fiber can transport 100 different wavelengths (1 LCU = 100 DVUs) [7]. The wavelengths can also be called by *colors*.

The variables represented in Table 2.5 have to be adapted to include the wavelengths represented by c=1,...,C (where C represents the total number of wavelengths). Table 2.12 summarizes the variables and constraints used in the ILP formulation for WDM networks. The total number of colors used in a optical fiber is represented by z_{ce} with c defining the color and e the link. The flow variable is now denoted by x_{dpc} for demand d, path p and color c since the flow picked includes the color used to satisfy the demand, which ensures the usage of the same color throughout the path, meaning no wavelength conversion is performed. The variable y_e is the capacity of link e expressed in number of fibers and the volume of demand d to be realized in situation s, expressed in number of light-paths is represent by h_{ds} .

Variable	Description
С	Total number of colors of the network
С	c=1,, C denotes a specific color in the network
z_{ce}	Number of times color c is used in link e
h_{ds}	Volume of demand d to be realized in situation s , expressed in number of light-paths
y_e	Capacity of link e expressed in the number of fibers
x_{dpc}	Flow for demand d through path p for color c

Table 2.12. Variables used in RWA problem based on the Link-Path formulation.

To calculate which flow realizes the demand volume for the situation s, the following constraint is used:

$$\sum_{p} \theta_{dps} \sum_{c} x_{dpc} \ge h_{ds} \quad d = 1, 2, ..., D \quad s = 1, 2, ..., S.$$
(2.33)

In this formulation the number of times color c is used in the link e is evaluated by another constraint, given by:

$$\sum_{d} \sum_{p} \delta_{edp} x_{dpc} = z_{ce} \quad c = 1, 2, ..., C \quad e = 1, 2, ..., E.$$
(2.34)

This constraint checks if the path uses link e and if that flow is using color c. The last constraint guarantees that the optical fibers assigned to each link e satisfy all demands for each color c, and is given by:

$$y_e \le z_{ce}$$
 $c = 1, 2, ..., C$ $e = 1, 2, ..., E.$ (2.35)

Next, we will present three examples using three small network topologies where we will solve the RWA problem using this ILP formulation. In the first example, Example 10, the physical network topology and the candidate paths are described in Figure 2.3. The demand volume for the three demands in the normal situation (s=0) is 1, $h_{d0}=1$ and two available colors (C=2) are considered. The objective is to minimize the capacity cost. This ILP problem can be written as: Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

minimize:
$$\mathbf{F} = \sum_{e} \xi_{e} y_{e}$$

subject to: $\sum_{p} \theta_{dps} \sum_{c} x_{dpc} \ge h_{ds} \quad d = 1, 2 \quad s = 0$
 $\sum_{d} \sum_{p} \delta_{edp} x_{dpc} = z_{ce} \quad c = 1, 2 \quad e = 1, 2, ..., 5$
 $y_{e} \le z_{ce} \quad c = 1, 2 \quad e = 1, 2, ..., 5.$

$$(2.36)$$

The number of variables and constraints used in (2.36) to solve this RWA problem is described in Table 2.13.

Variable/Constraints	Number
Demand d	3
Candidate paths P_{dp}	0
per demand d	2
Total P_{dp}	6
Flow x_{dpc}	$C \times P_{dp} = 12$
Links e	5
Total number of color c available	2
Number of times color c	1
is used in the link $e \ z_{ce}$	
z_{ce}	$e \times C \times z_{ce} = 10$
Capacity per link y_e	5
Function objective F	$x_{dpc} + z_{ce} + y_e = 27$

Table 2.13. Number of the variables and constraints needed to solve the RWA problemin Example 10.

The solution obtained for this RWA problem obtained with Matlab is described in Table 2.14 and Figure 2.10.

Demand	Path	Color	Flow
d=1	P_{12}	c=2	x_{122}
d=2	P_{21}	c=1	x_{211}
d=3	P_{31}	c=1	x_{311}

Table 2.14.Solution of Example 10.

The objective function reached in this problem is $\mathbf{F}=3$, meaning that are needed two optical fibers for the two links in use (e=1,5) ($\mathbf{F}=\delta_1e_1+\delta_5e_5=2\times 1+1\times 1$). This problem was solved with Matlab script presented in Appendix A.6.

In the next example, Example 11, the physical topology of the network used is described in Figure 2.11. The physical topology for this network consists of six nodes (V=6) and eight links (E=8). The figure also shows the distance between the nodes in km. The logical topology for this network is a full mesh consisting of fifteen demands (D=15).

The objective of this example is to minimize the capacity cost in the normal state (s=0). The demand volume considered for all demands in this example is one $(h_{ds}=1)$, there are five colors available (C=5), and the cost of each link is one $(\xi_e = 1)$. The candidate paths for each demand are represented in Table 2.15.

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

Figure 2.10. Physical topology used for the network Example 10, considering state s=0 with two available colors c=2.

Figure 2.11. Physical topology 6-node example network.

Demand d	Candidate paths P_{dp}
d=1	$P_{11} = \{1\} P_{12} = \{6, 7\}$
d=2	$P_{21} = \{1, 2\} P_{22} = \{6, 5, 8\}$
d=3	$P_{31} = \{1, 2, 3\} P_{32} = \{6, 5, 4\}$
d=4	$P_{41} = \{1, 2, 8\} P_{42} = \{6, 5\}$
d=5	$P_{51} = \{6\} P_{52} = \{1,7\}$
d=6	$P_{61} = \{2\} P_{62} = \{7, 5, 8\}$
d=7	$P_{71} = \{2,3\} P_{72} = \{7,5,4\}$
d=8	$P_{81} = \{2, 8\} P_{82} = \{7, 5\}$
d=9	$P_{91} = \{7\} P_{92} = \{1, 6\}$
d = 10	$P_{101} = \{3\} P_{102} = \{8, 4\}$
d = 11	$P_{111} = \{8\} P_{112} = \{3, 4\}$
d = 12	$P_{121} = \{2,7\} P_{122} = \{8,5\}$
d = 13	$P_{131} = \{3, 8\} P_{132} = \{4\}$
d = 14	$P_{141} = \{3, 2, 7\} P_{142} = \{4, 5\}$
d = 15	$P_{151} = \{5\} P_{152} = \{8, 2, 7\}$

Table 2.15. List of candidate paths for each demand.

The number of variables and constraints needed to solve this example using equations (2.33) to (2.35) is described in Table 2.16.

The solution of the paths used for each demand and the respective color obtained with Matlab is described in Table 2.20 and Figure 2.13.

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

Variable/Constraints	Number
Demand d	15
Candidate paths P_{dp}	2
per demand d	2
Total P_{dp}	30
Flow x_{dpc}	$C \times P_{dp} = 150$
Links e	8
Number of times color c	1
is used in the link $e \ z_{ce}$	1
z_{ce}	$e \times C \times z_{ce} = 40$
Capacity per link y_e	8
Function objective \mathbf{F}	$x_{dpc} + z_{ce} + y_e = 198$

Table 2.16. Number of the variables and constraints need to solve the RWA problemin Example 11.

Demand	Path	Color	Flow
d=1	P_{12}	c=2	x_{122}
d=2	P_{22}	c=5	x_{225}
d=3	P_{32}	c=3	x_{323}
d=4	P_{42}	c=1	x_{421}
d=5	P_{51}	c=4	x_{514}
d=6	P_{61}	c=4	<i>x</i> ₆₁₄
d=7	P_{72}	c=4	x ₇₂₄
d=8	P_{81}	c=2	x_{812}
d=9	P_{91}	c=5	x_{915}
d = 10	P_{102}	c=1	x_{1021}
d=11	P_{111}	c=4	x_{1114}
d = 12	P_{121}	c=1	x_{1211}
d=13	P_{132}	c=5	x_{1325}
d=14	P_{142}	c=2	x_{1422}
d = 15	P_{152}	c=3	x_{1523}

Table 2.17.Solution of Example 11.

Figure 2.12. Physical topology used for the network in Example 11, considering state s=0 with five available colors c=5.

The optimal solution found for this example is $\mathbf{F}=6$, so six optical fibers are needed on every link except for links e=1 and e=3. These links are not utilized by the paths used in the solution.

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

In the following example, the network considered is still the one shown in Figure 2.11, but instead of solving a RWA problem only the wavelength assignment problem (WA) is solved. The objective of this problem is also to minimize the capacity cost. The paths used were decided using the Link-Path formulation and are represented in Table 2.21.

Demand d	Candidate paths P_{dp}
d = 1	$P_{11} = \{1\}$
d=2	$P_{21} = \{1, 2\}$
d=3	$P_{31} = \{6, 5, 4\}$
d = 4	$P_{42} = \{6, 5\}$
d = 5	$P_{51} = \{6\}$
d = 6	$P_{61} = \{2\}$
d = 7	$P_{71} = \{2, 3\}$
d = 8	$P_{81} = \{7, 5\}$
d=9	$P_{91} = \{7\}$
d = 10	$P_{101} = \{3\}$
d = 11	$P_{111} = \{8\}$
d = 12	$P_{121} = \{8, 5\}$
d = 13	$P_{131} = \{4\}$
d = 14	$P_{141} = \{4, 5\}$
d = 15	$P_{151} = \{5\}$

Table 2.18. Candidate paths for each demand for Example 12.

In Example 12 six colors (C=6) are considered and the demand volume considered is one $(h_{ds}=1)$ in the normal state (s=0). The number of the constraints and variables for this problem used in equations 2.33 to 2.35 are represented in Table 2.23.

Variable/Constraints	Number
Demand d	15
Candidate paths P_{dp}	1
per demand d	T
Total P_{dp}	15
Flow x_{dpc}	$C \times P_{dp} = 90$
Links e	8
Number of times color c	1
is used in the link $e \ z_{ce}$	T
z_{ce}	$e \times C \times z_{ce} = 48$
Capacity per link y_e	8
Function objective \mathbf{F}	$x_{dpc} + z_{ce} + y_e = 146$

Table 2.19. Number of the variables and constraints need to solve the WA problem in Example 12.

The solution for the color used in each demand obtained with Matlab for this example is described in Table 2.20 and Figure 2.13.

The optimal solution for Example 12 is $\mathbf{F}=8$, this means that to solve this problem eight optical fibers are needed, one for each link.

Comparing Example 11, which solves a RWA problem, and Example 12, a WA problem, it can be concluded that to obtain the optimal solution in Example 12 one more color and one more optical fiber are needed to satisfy all demand requests. However, since it only has one path available for each demand fewer variables and constraints are needed to solve the problem. Example 11, even though it uses fewer colors, more constraints and variables are needed. For 26

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

Demand	Color	Flow
d=1	c=5	x_{115}
d=2	c=4	x_{214}
d=3	c=3	x_{313}
d=4	c=2	x_{412}
d=5	c=4	x_{514}
d=6	c=6	x_{616}
d=7	c=5	x_{715}
d=8	c=4	x ₈₁₄
d=9	c=6	x_{916}
d = 10	c=6	x_{1016}
d = 11	c=6	x_{1116}
d = 12	c=5	x_{1215}
d=13	c=2	x_{1312}
d = 14	c=6	x_{1416}
d = 15	c=1	x_{1511}

Table 2.20.Solution of Example 12.

Figure 2.13. Physical topology used for the network in Example 12, considering state s=0 with six available colors c=6.

networks with more nodes solving the RWA problem can increase the time to find the optimal solution with an ILP solver. The script used in Matlab to solve these problems is available in Appendix A.7.

To validate the RWA formulation presented in [7] we will use the physical network topology shown in Figure 2.14. A comparison between the RWA formulation and the one presented in [9] is done in Appendix A.8

The physical network represented in Figure 2.14, consists of five nodes (V=5) and seven undirected links (E=7). The logical network consists of eight demands D=8. The demands considered for this Example 13 are given in Table 2.21. Table 2.22 shows the candidate paths used for the eight demands, and Table 2.23 shows the variables used to solve the example represented in Figure 2.16.

Figure 2.14. Physical topology 5-node example network.

Demand d	Demand pair
d=1	[1-3]
d=2	[2-4]
d=3	[3-1]
d=4	[3-5]
d=5	[4-2]
d=6	[4-5]
d=7	[5-3]
d=8	[5-4]

Table 2.21. Demand pairs for Example 13.

Demand d	Candidate paths P_{dp}
d=1	$P_{11} = \{1, 2\} P_{12} = \{6, 3\}$
d=2	$P_{21} = \{7\} P_{22} = \{1,7\}$
d=3	$P_{31} = \{2, 1\} P_{32} = \{3, 6\}$
d=4	$P_{41} = \{3, 4\} P_{42} = \{2, 1, 5\}$
d=5	$P_{51} = \{7\} P_{52} = \{3, 2\}$
d=6	$P_{61} = \{4\} P_{62} = \{6, 5\}$
d = 7	$P_{71} = \{4,3\} P_{72} = \{5,1,2\}$
d=8	$P_{81} = \{4\} P_{82} = \{5, 6\}$

Table 2.22. Candidate paths list for each demand in Example 13.

Variable/Constraints	Count
Demand d	8
Candidate paths P_{dp}	ŋ
per demand d	Ζ.
Total P_{dp}	16
Flow x_{dpc}	$C \times P_{dp} = 32$
Links e	14 (undirected)
Number of times color c	1
is used in the link $e \ z_{ce}$	1
Total z_{ce}	$e \times C \times z_{ce} = 28$
Total capacity per link y_e	8
Function objective \mathbf{F}	$x_{dpc} + z_{ce} + y_e = 68$

Table 2.23. Number of the variables and constraints need to solve the WA problem inExample 13.

We have solved the RWA problem considering two colors (C=2) and one color (C=1) and the result is shown in Figures 2.15 (C=2) and Figure 2.16 (C=1). The value of the objective **F** is 12 and 14, respectively for C=2 and C=1. These results are in agreement with the ones

reported in [9] for the same network scenario and the Matlab code that implements this problem is in Appendix A.8.

Figure 2.15. Physical topology used for the network in Example 13, considering state s=0 with five available colors c=2.

Figure 2.16. Physical topology used for the network in Example 14, considering state s=0 with five available colors c=1.

2.3. Heuristic algorithms

Heuristic algorithms are powerful tools for solving network design problems in a reasonable amount of time, despite the optimal solution can not be obtained in several scenarios. In this section, we review some of the most common routing and wavelength assignment heuristics used in optical networks [8].

2.3.1. Routing algorithms

Each traffic demand between a source node and a destination node has many candidate paths suitable to satisfy the request. Routing is the process of selecting the most appropriate path for the demand [10]. For a network's physical topology and a given traffic matrix, the goal of the routing algorithm is to find a route for each traffic demand. The traffic matrix can be static or dynamic, dynamic traffic means that the traffic matrix changes over time [8].

With multiple paths available between a source and destination node, the routing algorithm chooses the most appropriate route for each traffic demand based on one or more metrics. The metrics chosen define various paths depending on the goals for the network such as delay-oriented, quality of service (QoS), or utilization-oriented [8]. Some of the most common metrics are: minimize the number of hops in a path, minimize the path distance, or maximize the OSNR of the path [6].

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

When the traffic matrix is static, the node pairs are always known and static routing algorithms are used. The path configuration can be done manually or using a management system [11]. When the traffic matrix is dynamic, the node pairs change over time, and demand requests between a pair of nodes arrive in different time instants. In this case, a dynamic routing algorithm is used. This algorithm is configured by the control plane [11].

Fixed-Path Routing (FR) is the simplest algorithm to route the demands [6]. In this strategy, all calculations are performed before any traffic is added to the network. A set of candidate paths is generated before the network starts to route demands. From the list of candidate paths, the more suitable is chosen for the source/destination pair, and this path is the only one used to route all demand requests for this pair [6]. Fixed-Path Routing is used with the shortest path algorithm to calculate the shortest path for all demand requests. Some shortest path algorithms used by FR are the Dijkstra algorithm and Yen's k-shortest path algorithm [10].

Another routing algorithm is Fixed Alternate Routing (FAR), which is an updated version of Fixed-Path Routing [10]. In FAR, a set of candidate paths is generated before any demand is added to the network. In this strategy, not just one candidate path is attributed to each source/destination pair. Some M paths are narrowed down from the set of candidate paths, and when there is a new demand request for the source/destination pair, one of the M paths is selected to route the demand request [6].

Using the FAR adds more computational complexity but allows some adaptation to the network state, solving some of the blocking and congestion of the network [10]. However, this algorithm may not find all possible routes between a source/destination pair, therefore, in terms of call blocking, this algorithm is not optimum [10].

2.3.2. Wavelength assignment algorithms

Wavelength Assignment (WA) is an integral part of the network planning process. After the routing algorithm selects the path, determining which links are going to be used, the WA algorithm selects a feasible wavelength for the path from the available wavelengths. Whenever two different paths use the same link, they cannot share the same wavelength [6]. The wavelengths can be assigned to the paths as they arrive, one at a time, after the routing process or in parallel with the routing selection [6].

There are wavelength assignment algorithms for both static and dynamic traffic. In static cases, the goal is to minimize the number of wavelengths in use, and in WA dynamic algorithms the goal is to minimize the network blocking [8].

Some common heuristics solutions used are First-Fit (FF), Most Used (MU), and Random algorithm (R) policies [6].

With the First-Fit policy, the wavelengths are indexed from 1 to W, where W is the maximum wavelength supported on the fiber [8]. The index for this scheme in static networks is fixed and can be ordered with the following strategies: shortest path first (SPF), longest path first (LPF), and random path (RP) ordering [11]. The search for wavelength starts with the lowest index, and the first free wavelength found is assigned to the light-path. Therefore, the higher indexes wavelengths are left unused for future demands. Using this scheme does not require global information of the network [10]. FF performs well in dynamic networks regarding blocking probability and fairness and has lower computational complexity and small overhead [8].

In the Most Used scheme, whenever a new wavelength is required, a new wavelength order is established from most used to least used. The search for an available wavelength proceeds like in the policy FF. This scheme permits wavelengths already in use to be the first ones considered. This policy at the cost of more information is more adaptive than FF [8]. MU requires global network information and centralized control. It also has longer overheads [8].

With the Random algorithm policy, each available wavelength is listed, and indexed like in the FF scheme [10]. Random algorithm will search all available wavelengths for the route request. From the available wavelengths, one is randomly selected to the light-path. The probability for an available wavelength to be chosen is uniform [8]. This policy does not require global information on the network. The Random algorithm has a higher computation time than the FF policy. This algorithm is also more computationally complex [8].

2.4. Heuristic algorithms and ILP formulations applied in a real network scenario

In this section, the link capacity of an example of a portuguese network topology is studied considering an ILP and a heuristic method for solving the routing problem. The routing algorithm used for the heuristic solution is the Dijkstra algorithm based on the shortest path in distance, and for the ILP solution is a formulation based on the Link-Path formulation considering two candidate paths for each demand.

Figure 2.17 describes the physical topology of an example of a portuguese backbone network [9]. The physical topology of this network consists of 12 nodes (V=12) and 18 links (E=18). The longest link is between nodes v=1 and v=12 with 1050 km and the shortest is 47 km between v=7 and v=8.

Figure 2.17. Physical topology of a 12-node portuguese backbone network.

The logical topology for the network is a full mesh, so there are demands between all nodes (D=132). The demand volume for each demand is represented in Table 2.24 considering the VC-3 as the traffic unit.

	1	2	3	4	5	6	7	8	9	$1\overline{0}$	11	$\overline{12}$
1	0	104	137	104	207	3322	21	104	91	104	203	75
2	104	0	21	104	21	21	104	21	75	21	21	21
3	137	21	0	104	21	21	125	21	21	63	42	21
4	104	104	104	0	89	21	53	21	21	21	21	21
5	207	21	21	89	0	42	63	21	83	21	42	87
6	3322	21	21	21	42	0	83	42	42	21	21	21
7	21	104	125	53	63	83	0	116	53	42	145	42
8	104	21	21	21	21	42	116	0	21	21	21	21
9	91	75	21	21	83	42	53	21	0	42	21	21
10	104	21	63	21	21	21	42	21	42	0	68	42
11	203	21	42	21	42	21	145	21	21	68	0	21
12	75	21	21	21	87	21	42	21	21	42	21	0

Table 2.24. Traffic Matrix in VC-3.

In the heuristic solution, the Dijkstra algorithm was used for calculate the shortest path for every demand, so only one path for each demand is used. This algorithm finds the path that minimizes the distance between nodes, represented in Figure 2.17 in km.

For the ILP solution, we have considered two paths for each demand. The first path, was also found with the Dijkstra algorithm to minimize the distance between the nodes. The second path considered is the one with fewer hops between nodes, different from the first path.

This problem is solved with equation (2.37). The uncapacitated demand equations, and capacity inequalities are the same described in subsection 2.2.1: Link-Path formulation equation (2.2), and inequality (2.4). The goal for the objective function \mathbf{F} in this problem is to minimize the link capacity with the highest capacity. So, to solve this problem the objective function changes while assigning the paths to each demand, so the link with the highest capacity is always the one being minimized.

minimize:
$$\mathbf{F} = max\{y_e\}$$

subject to: $\sum_p x_{pd} = h_d, \quad d = 1, 2, ..., D$
 $\sum_d \sum_p \delta_{edp} x_{pd} = y_e, \quad e = 1, 2, ..., E; \quad d = 1, 2, ..., D; \quad p = 1, 2, ..., P_d.$

$$x \ge 0, \ y \ge 0$$
(2.37)

The link capacity for each link obtained with the heuristic and the ILP solution is shown in Table 2.25 and Figure 2.18. Both these solutions were obtained using Matlab, the ILP script is in Appendix A.9.

As observed in Table 2.25 and Figure 2.18, the link capacity in the heuristic solution is not evenly spread. The capacity of the most used links, e=[1,3], e=[3,5], and e=[5,6] is higher than 4000 VC-3, whereas in any other links the average capacity is 339 VC-3. In Figure 2.18, it is shown that for the ILP solution the capacity of the links is better distributed among them. In the ILP solution the highest link capacity used is 2583 VC-3 in links e=[1,2], e=[2,4], and e=[4,6], which is about half of the capacity of the most used link in the heuristic solution (e=[3,5]). The capacity decreases around 56%.

Chapter	2 4	<i>A Literature</i>	Review	on .	ILP	and	Heuristic	Algo	orithms	for	Solving	the	RWA	Problem
										•/				

Link	Dijkstra	ILP
[1,2]	425	2583
[1,3]	4254	2227
[1,11]	641	730
[1,12]	330	372
[2,3]	188	408
[2,4]	479	2583
[3,5]	4597	2582
[4,5]	381	961
[4,6]	295	2583
[4,9]	659	748
[5,6]	4157	1848
[6,7]	731	752
[6,8]	314	314
[7,8]	116	116
[8,9]	0	0
[9,10]	252	341
[10,11]	214	125
[11,12]	63	21

Table 2.25. Link Capacity for Dijkstra algorithm and ILP.

Figure 2.18. Link capacity of the portuguese backbone network represented in Figure 2.17 obtained with a heuristic and an ILP solution.

2.5. Conclusion

In this chapter, we review two methods to solve the RWA problem. The first one is the heuristic solution which may not find the optimal solution but solves it in a reasonable amount of time. The second one is the ILP solution that uses a mathematical formulation to optimize the problem to find the optimal solution. For this method two formulations were considered to solve the routing part of the problem, the Link-Path and Node-Link and several examples were presented.

Chapter 2 A Literature Review on ILP and Heuristic Algorithms for Solving the RWA Problem

Considering the Link-Path formulation two restoration design problems were presented. The first restoration design problem is a protection problem, therefore the links have enough capacity to ensure that every demand is satisfied even if a link fails. With the restoration design problem with single backup paths the failure is solved only for the specific link after it has failed.

This chapter also presented an ILP formulation to solve the RWA in WDM networks based on the Link-Path formulation.

Considering the solution with heuristic algorithms the RWA problem is solved in two-steps, first the routing and after the wavelength assignment. The routing algorithm chooses the path with the most appropriate route based on the chosen metric. With the Fixed-Path Routing the path list only has one path per demand. In contrast, with the Fixed Alternate Routing the path list can have multiple paths per demand. For the wavelength assignment three heuristic algorithms were considered, First-Fit, Most Used, and Random algorithm.

To end this chapter, the heuristic and ILP solutions for the routing problem were compared in a real network. Our results show that with the ILP solution, the link capacity is distributed more evenly throughout the links than with the heuristic solution.

CHAPTER 3

Physical Layer Impairments in C+L Multiband Optical Networks

3.1. Introduction

The optical signal-to-noise ratio (OSNR) of a light-path can be used as routing metric in a C+L multiband optical network [6]. In this scenario, it is necessary to assess the performance degradation induced by the physical layer impairments (PLIs) along the optical path. The PLIs that most impair the performance of C+L multiband networks are the amplified spontaneous emission (ASE) noise originating in the optical amplifiers, the nonlinear interference (NLI) caused by the Kerr effect, the passband narrowing due to filtering effects, in-band crosstalk due to filtering imperfections and out-band crosstalk due to channels spectrum proximity. Also in these optical networks, the stimulated Raman scattering (SRS) becomes more pronounced due to the larger spectrum used in C+L multiband networks, so this impairment must be taken into account, when assessing the path OSNR, in such systems.

Section 3.2 presents the C+L multiband spectrum organization for both the fixed and flexible grid solutions. In Section 3.3, the impact of the accumulation of ASE noise in a C+L multiband optical network is evaluated. Section 3.4 assesses the impact of the NLI on the OSNR in a C+L multiband optical network, considering first a model based on a Gaussian modulation and, then, a model that takes into account the modulation format. Section 3.5 briefly describe the impact of other PLIs, like the filtering effect and crosstalk. Finally, Section 3.6 concludes the chapter highlighting the chapter main results.

3.2. C+L multiband spectrum

With the C+L multiband solution the spectrum range increases from the 35 nm of the C-band to 90 nm, as illustrated in Figure 3.1, where the nominal central frequencies of the optical channels are defined accordingly with the Telecommunication Standardization Sector of International Telecommunication Union (ITU-T) grid [12]. It is considered a 5 nm gap of unused spectrum between the C and L bands to avoid interferences between the bands [13]. The central frequency in the C band is 193.75 THz and in the L band is 187.75 THz. The first frequency attributed in the whole spectrum is 195.90 THz and the last available frequency is 184.50 THz.

Inside the C+L band, the optical channels can be spaced using a fixed or a flexible grid [1]. With the fixed grid, the same channel bandwidth is allocated to each demand, typically 50 GHz [5]. On the other hand, with a flexible grid, the optical spectrum is divided in smaller frequency slots (FSs) with a spacing of 12.5 GHz [1]. This solution allows to improve transmission capacity and save network resources when comparing to the fixed grid [1]. Accordingly with the ITU-T recommendation (G.694.1), the central frequencies of the FSs allowed for the flexible grid are given by [12]:

$$f_i = 193.1 + n_i \times 0.00625 \quad [\text{THz}] \tag{3.1}$$

35

Figure 3.1. C and L band spectrum and corresponding frequencies according with the ITU-T grid.

with the nominal central frequency granularity in THz given by 0.00625 and where n_i is an integer. The frequency slots width (B_{FS}) is given by [12]:

$$B_{FS} = 12.5 \times s_i \quad [\text{GHz}] \tag{3.2}$$

where the slot width granularity is 12.5 GHz and s_i is a positive integer.

In Table 3.1, it is shown the number of channels and the central channel, respectively, for the fixed (ITU-T 50 GHz) and flexible grid (ITU-T 12.5 GHz) scenarios, considering the Cband, L-band and C+L band cases. In the C-band using the fixed grid, there are 87 channels available, whereas with the flexible grid, there are 345 slots available. For the multiband solution considering a 5 nm gap between bands, the flexible grid has 862 frequency slots available, and the fixed grid has 217 channels.

Dand	Spectrum	Range	Number	Central	Number	Central
Dand	[nm]	[nm]	of channels	channel	of FSs	FSs
С	1530-1565	35	87	44	345	173
L	1565 - 1625	60	131	66	521	261
C+T	1530 - 1565	00	217	100	869	491
	1570 - 1625	90	211	109	802	401

Table 3.1. Fixed grid with Δ_{ch} =50 GHz and flexible grid with FS=12.5 GHz for C, L, and C+L bands.

3.3. ASE noise accumulation

Erbium-Doped Fiber Amplifiers (EDFA) are used to compensate the optical node and fiber losses, extending the transmission reach to hundreds or thousands of kms. Figure 3.2 represents an optical amplified link with N spans between two nodes, and it shows that EDFAs can be used as a post, in-line, and pre-amplifiers. The post-amplifier compensates for the node losses and boosts the signal that leaves the source node. In-line and pre-amplifiers are used to compensate the fiber attenuation along the optical path.

In this work, the gain of the pre-amplifier G_{pre} is set to compensate exactly the previous links losses,

Figure 3.2. Schematic of an optical amplified generic link *i* between two network nodes.

$$G_{pre} = L_{sec} \times \alpha \tag{3.3}$$

where the link's length is represented by L_{sec} and α is the fiber attenuation coefficient, which is assumed, to also include the losses of splices and connectors. The amplifier's gain for the preamplifier has to satisfy the maximum gain G_{max} of the EDFA. If the gain of the pre-amplifier calculated using equation (3.3) exceeds the maximum gain G_{max} , then in-line amplifiers have to be added to that specific fiber link, ensuring that the EDFAs can fully compensate the link losses. The number of in-line amplifiers used in generic link *i* is, then, calculated by:

$$N_{in,i} = \left\lceil \frac{G_{pre}}{G_{max}} \right\rceil - 1 \tag{3.4}$$

When using in-line amplification, the gain of the in-line amplifiers and pre-amplifier is assumed equal and is obtained with:

$$G_{in} = \left\lceil \frac{G_{pre}}{N_{in,i} + 1} \right\rceil - 1 \tag{3.5}$$

Furthermore, we assume that all the other characteristics of the in-line amplifiers are the same as the ones of the pre-amplifier, namely the noise figure, f_n , and optical bandwidth, B_0 . The post-amplifier gain is considered to be the same for every link, $G_{pos,i}=18$ dB [14], assuming that a route and select architecture is used for the ROADM nodes [14].

Knowing the amplifiers gain required to compensate for the overall losses, the power of the ASE noise per polarization generated by a pre, in-line, and post-amplifier must be calculated. The ASE noise power of the pre and post-amplifiers depends on the link i, and the ASE noise power of the in-line amplifier depends on the link i, and span j, and are given, respectively, by [15]:

$$p_{ASE,pre,i} = \frac{f_{n,pre,i}}{2} (g_{pre,i} - 1) h \nu_0 B_0 \tag{3.6}$$

$$p_{ASE,pos,i} = \frac{f_{n,pos,i}}{2} (g_{pos,i} - 1) h \nu_0 B_0$$
(3.7)

$$p_{ASE,in,i,j} = \frac{f_{n,in,i,j}}{2} (g_{in,i,j} - 1) h \nu_0 B_0$$
(3.8)

where the pre-amplifiers gain $g_{pre,i}$ is set to be the equal to the in-line amplifiers gain $g_{in,i,j}$, and $g_{pos,i}$ is the post-amplifiers gain. The Planck constant is $h = 6.626 \times 10^{-34}$ J/s, ν_0 represents the optical frequency of a WDM channel (which in the following studies is considered to be the WDM central channel frequency), and B_0 the optical bandwidth, which in coherent detection systems is equal to the symbol rate $R_{s,l}$. The noise figures represented by $f_{n,pre,i}$, $f_{n,in,i,j}$ and $f_{n,pos,i}$ depend on the type of amplifier and on the post, in-line and pre-amplifier gains. Considering that the noise figure is 5 dB for the maximum amplifier gain of 25 dB and 7 dB for a gain of 15 dB [14], the noise figure of each amplifier is calculated, in dB, with:

Chapter 3 Physical Layer Impairments in C+L Multiband Optical Networks

$$F_n = -0.2G_k + 10 \quad \text{where } k = pos \text{ or } in \text{ or } pre.$$
(3.9)

The total $\text{OSNR}_{tot,m}$ is used to quantify the impact of the ASE noise generated by all the amplifiers along an optical path composed of several links n_{links} , in channel m, as the one depicted in Figure 3.2, and is calculated using [14]:

$$\frac{1}{osnr_{tot,m}} = \sum_{i=1}^{n_{links}} \left(\frac{1}{osnr_{pos,i}} + \frac{1}{osnr_{pre,i}} + \sum_{j=1}^{N_{in,i}} \frac{1}{osnr_{in,i,j}}\right)$$
(3.10)

where $osnr_{pos,i}$, $osnr_{pre,i}$ and $osnr_{in,i,j}$ correspond, respectively, to the OSNRs originated at the output of each post, in-line and pre-amplifiers, which are obtained by:

$$osnr_k = \frac{p_m}{2 \times p_{ASE,k}} \quad \text{where } k = pre, i, \text{ or } pos, i, \text{ or } in, i, j.$$
(3.11)

where p_m is the power of the channel *m* and $p_{ASE,k}$ is the ASE noise power of each amplifier calculated with equations (3.6)-(3.8).

Figure 3.3. COST 239 optical network, with 11 nodes, 26 links represented by e_i (where $i=1 \dots 26$), and corresponding link distances.

In the following, an example of the OSNR_{tot,m} calculation in the C-band (the wavelength ranges from 1530 to 1565 nm, and the frequency span is 195.9-191.6 THz) with the channel spacing of 50 GHz for the optical network COST 239 [16], represented in Figure 3.3, is performed. The physical topology of the network represented in Figure 3.3 consists of eleven nodes (V=11) and twenty-six links (E=26). The longest link in this topology is e_1 with 953 km and the shortest link is e_9 between nodes v=3 and v=5 with 171 km. In this example, only four demands d=1,...,4 are considered as represented in Table 3.2, and the OSNR of each path is calculated at the receiver input using the system parameters shown in Table 3.3.

For each demand, five candidate paths are considered, as represented in Table 3.4. The shortest candidate path is the first one P_{d1} , and the longest in the list is the fifth path P_{d5} . Considering all demands, the shortest is path P_{31} with 361 km, and the longest is P_{35} with 1815 38

Chapter 3 Physical Layer Impairments in C+L Multiband Optical Networks

Demand pair
[1-2]
[1-3]
[1-4]
[1-5]

Table 3.2. Demand pairs for demands 1 to 4 in COST 239 network.

Parameters	Values
Channel Spacing Δ_{ch}	50 GHz
Total number of channels N_{ch}	87
Frequency of the central channel ν_0	193.70 THz
Fiber attenuation coefficient α	0.25 dB/km
Symbol rate $R_{s,l}$	32 Gbaud
Average launch signal power per channel P_m	0 dBm
Amplifier maximum gain G_{max}	25 dB

Table 3.3. WDM system parameters used to calculate the OSNR for demands 1 to 4 in COST 239 network.

Demand d	Candidate Paths P_{dp}
d = 1	$P_{11} = \{1\} \ P_{12} = \{2,5\} \ P_{13} = \{2,9,6\} \ P_{14} = \{3,8,5\} \ P_{15} = \{2,9,15,7\}$
d=2	$P_{21} = \{2\} P_{22} = \{3, 8\} P_{23} = \{1, 5\} P_{24} = \{1, 6, 9\} P_{25} = \{4, 11, 8\}$
d = 3	$P_{31} = \{3\} P_{32} = \{4, 11\} P_{33} = \{2, 8\} P_{34} = \{4, 21, 13\} P_{35} = \{2, 10, 17, 11\}$
d = 4	$P_{41} = \{2,9\} P_{42} = \{3,8,9\} P_{43} = \{2,10,14\} P_{44} = \{1,6\} P_{45} = \{2,5,6\}$

Table 3.4. Candidate paths for the four demands considered in the COST 239 network.

km. Consequently, the shortest and the longest paths are the ones that have a lower and higher number of amplifiers, respectively. Path P_{31} uses five amplifiers (one pre-amplifier, one post amplifier, and three in-line amplifiers), while path P_{35} has 24 amplifiers, (four pre-amplifiers, four post-amplifiers, and sixteen in-line amplifiers). The maximum number of nodes in the candidate path is five nodes, in paths P_{15} and P_{35} , and the lower number of nodes is two, in the direct paths P_{11} , P_{21} and P_{31} .

To calculate the ASE noise power at the output of each amplifier used in each path, first, it is necessary to find the number of in-line amplifiers in each link, using equations (3.3) and (3.4). The noise figure for the amplifiers depends on these gains and is calculated with equation (3.9). The number of in-line amplifiers, the respective gains of each in-line and pre-amplifier, and noise figures are shown in Table 3.5, for the optical links belonging to the candidate paths shown in Table 3.4. The post-amplifier gain and noise figure are the same in all links. For this example, we have considered $G_{pos}=18$ dB [14] and, so, $F_{n,pos}=6.4$ dB calculated with equation (3.9). Table 3.5 also presents the results of the total ASE noise power generated in two polarizations by the post, in-line, and pre-amplifiers. The total ASE noise power along a link is calculated with equation (3.8), the noise power of the pre-amplifiers calculated with equation (3.6) and the ASE noise power generated by the post-amplifiers calculated with equation (3.7).

From Table 3.5, the longest link, e_1 , is the one that needs more in-line amplifiers to compensate for the fiber losses, and consequently, leads to the higher total ASE noise power. The link that requires amplifiers with the highest gain is e_{14} with $G_{pre}=24.8$ dB. The shortest link of this network topology e_9 is also the one that introduces the lower ASE noise power. The total OSNR

Link	Number of	Gain [dB]	Noise Figure [dB]	ASE noise power $[\mu W]$
e	in-line amplifiers $N_{in,i}$	G_{pre}	$F_{n,pre}$	$2p_{ASE}$
$e_1 = [1, 2]$	9	23.8	5.2	34.06
$e_2 = [1, 3]$	6	22.2	5.6	18.22
$e_3 = [1, 4]$	3	22.6	5.5	18.22
$e_4 = [1, 7]$	6	22.9	5.4	20.52
$e_5 = [2, 3]$	3	22.3	5.6	10.96
$e_6 = [2, 5]$	3	20.1	6	7.666
$e_7 = [2, 8]$	3	21.4	5.7	9.578
$e_8 = [3, 4]$	5	24	5.2	21.53
$e_9 = [3, 5]$	1	21.4	5.7	5.297
$e_{10} = [3, 6]$	3	19.9	6	7.441
$e_{11} = [4,7]$	2	23.4	5.3	10.28
$e_{13} = [4, 10]$	5	21.9	5.6	14.89
$e_{14} = [5, 6]$	1	23.8	5.3	7.613
$e_{15} = [5, 8]$	2	22.2	5.6	8.382
$e_{17} = [6,7]$	5	24.8	5.1	24.57
$e_{21} = [7, 10]$	2	20.9	5.8	6.876

Chapter 3 Physical Layer Impairments in C+L Multiband Optical Networks

Table 3.5. Number of in-line amplifiers needed in link e_i , gain of each pre and in-line amplifier and corresponding noise figure for each optical link, and total ASE noise power of the links belonging to the candidate paths used in the four demands in COST 239 network.

for each candidate path is calculated using equations (3.10) and (3.11) and the corresponding results are presented in Table 3.6.

P_{dp}	$OSNR_{tot,m}$ [dB]	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$
<i>P</i> ₁₁	14.7	P_{12}	15.4	P_{13}	15.1	P_{14}	13.6	P_{15}	13.8
P_{21}	17.4	P_{22}	14.8	P_{23}	13.5	P_{24}	13.3	P_{25}	12.8
P ₃₁	19.4	P_{32}	15.1	P_{33}	14	P_{34}	13.7	P_{35}	12.2
P_{41}	16.3	P_{42}	14.2	P_{43}	14.8	P_{44}	13.8	P_{45}	14.3

Table 3.6. OSNRs for the candidate paths for the four demands considered in COST239 network.

From the results of the total OSNR in the candidate paths presented in Table 3.6, the path with the lowest OSNR is the longest and the one that passes through the higher number of amplifiers, P_{35} . As expected, paths that use longer links lead also to lower OSNRs. For example, in candidate path P_{23} that uses link e_1 and passes through sixteen amplifiers, the OSNR is lower than in path P_{15} that crosses twenty amplifiers, but has shorter links, leading to lower ASE noise power accumulation. The path with the highest OSNR is the direct path that uses the shortest link, P_{31} . Analyzing the OSNR results in Table 3.6, the candidate path that is chosen to serve each demand is the path with the best OSNR, i.e. the highest OSNR, as highlighted in Table 3.7.

Demand d	Path P_{dp}	$OSNR_{tot,m}$ [dB]
d = 1	$P_{12} = \{2, 5\}$	15.4
d=2	$P_{21} = \{2\}$	17.4
d = 3	$P_{31} = \{3\}$	19.4
d = 4	$P_{41} = \{2, 9\}$	16.3

 Table 3.7. Optical paths with highest OSNR for the four demands considered in COST 239 network.

Chapter 3 Physical Layer Impairments in C+L Multiband Optical Networks

If the EDFA considered had a lower maximum gain of 23 dB instead of 25 dB as considered in Table 3.3, the longer links would require more spans with shorter length. In particular, for a maximum gain of 23 dB links e_1 , e_8 , e_{11} and e_{17} need one more span than when the EDFA maximum gain is 25 dB, which results on spans 8.7 km shorter in e_1 and 23.4 km in e_{11} . This leads to a lower ASE noise power accumulation in those links that would result in higher OSNR. For example, in P_{11} that only uses e_1 , the OSNR with only ASE noise is 16 dB, 1.3 dB higher than the result shown in Table 3.6. The results in the other paths are presented in Table B.1 of Appendix B.

3.4. Nonlinear interference and stimulated Raman scattering

In this section, the impact of the NLI power on the calculation of the OSNR is assessed. In this case, equation (3.11) is rewritten as [17]:

$$osnr_k = \frac{p_m}{2p_{ASE,k} + p_{NLI}} \quad \text{where } k = pre, i, \text{ or } pos, i, \text{ or } in, i, j.$$
(3.12)

where the NLI power, p_{NLI} , is calculated by:

$$p_{NLI} = \eta_{GN} \cdot p_m^3 \tag{3.13}$$

where η_{GN} is the NLI coefficient after N_{spans} spans depending on the central frequency of the channel m, which is referred in this section as channel of interest (COI) [17]. To calculate the NLI coefficient, we use the theory described in [17] that relies on the cross-phase modulation (XPM) assumption. Hence, the NLI coefficient after N_{spans} at the center channel frequency f_m is calculated with:

$$\eta_{GN}(f_m) \approx \sum_{j=1}^{N_{spans}} \left[\frac{p_{m,j}}{p_m} \right]^2 \times \left[\eta_{SPM,j}(f_m) N_{spans}^{\varepsilon} + \eta_{XPM,j}(f_m) \right]$$
(3.14)

where the coherence factor ε is $\varepsilon=0$, for incoherent accumulation of NLI along multiple fiber spans, or $\varepsilon \neq 0$, if coherent accumulation is considered. In the latter case, the coherence factor must be calculated using closed-form formulas or numerically, for each optical path considered [18]. The launch power of the COI *m* in the *j* span is represented by $p_{m,j}$. The coefficient $\eta_{XPM,j}$ is the closed-form approximation of the XPM contribution in span *j* and $\eta_{SPM,j}$ is the closedform approximation of the self-phase modulation (SPM) contribution [17], given, respectively by:

$$\eta_{XPM}(f_m) \approx \frac{32}{27} \sum_{k=1, k \neq m}^{N_{ch}} \left(\frac{p_k}{p_m}\right)^2 \frac{\gamma^2}{B_k \phi_{m,k} \overline{\alpha} (2\alpha + \overline{\alpha})}$$

$$\left[\frac{T_k - \alpha^2}{\alpha} \arctan\left(\frac{\phi_{m,k} B_m}{\alpha}\right) + \frac{A^2 - T_k}{A} \arctan\left(\frac{\phi_{m,k} B_m}{A}\right)\right]$$

$$\eta_{SPM}(f_m) \approx \frac{4}{9} \frac{\gamma^2}{B_m^2} \frac{\pi}{\phi_m \overline{\alpha} (2\alpha + \overline{\alpha})}$$

$$\left[\frac{T_m - \alpha^2}{\alpha} \arcsin\left(\frac{\phi_m B_m^2}{\pi \alpha}\right) + \frac{A^2 - T_m}{A} \arcsin\left(\frac{\phi_m B_m^2}{\pi A}\right)\right]$$

$$(3.15)$$

with $\phi_m = \frac{3}{2}\pi^2 (\beta_2 + 2\pi\beta_3 f_m)$, $T_m = (\alpha + \overline{\alpha} - P_{tot}C_r f_m)^2$, $A = \alpha + \overline{\alpha}$, $\alpha = \overline{\alpha}$, $\phi_{m,k} = 2\pi^2 (f_k - f_m) [\beta_2 + \pi\beta_3 (f_k + f_m)]$, and $T_k = (\alpha + \overline{\alpha} - P_{tot}C_r f_k)^2$. The COI channel bandwidth is represented by B_m , B_k is the bandwidth of k-th interfering channel, and P_{tot} is the total

transmitted optical power at the input of the fiber link. The Raman gain slope is represented by C_r and the nonlinear coefficient γ is calculated with,

$$\gamma = \frac{2\pi \overline{n_2}}{A_{eff}\lambda_0} \tag{3.17}$$

with nonlinear refractive index represented by $\overline{n_2}$, A_{eff} is the fiber effective area and λ_0 is the reference wavelength. In equations (3.15) and (3.16), the attenuation coefficient should be substituted in linear units [Np/m], using,

$$\alpha[\text{Np/m}] = \frac{\alpha[\text{Np/m}]}{4.343} \times 10^{-3}$$
 (3.18)

The group velocity dispersion parameter β_2 and third order dispersion parameter β_3 are calculated, respectively, with

$$\beta_2 = -\frac{D_{\lambda 0}\lambda_0^2}{2\pi c_{light}} \tag{3.19}$$

$$\beta_3 = \frac{\lambda_0^2}{\left(2\pi c_{light}\right)^2} \times \left(\lambda_0^2 S_0 + 2\lambda_0 D_{\lambda 0}\right) \tag{3.20}$$

where $D_{\lambda 0}$ is the fiber dispersion parameter at the reference wavelength, λ_0 , S_0 the dispersion slope at the same wavelength and c_{light} is the speed of light. Notice that in equation (3.12), although only the NLI power is present in the OSNR formula, the SRS effect (power transfer from lower to higher channel wavelengths) is included in equations (3.14)-(3.16). The formulation developed in [17] is valid for optical bandwidths up to 15 THz, much larger than the C+L bandwidth.

To validate the Matlab implementation of the NLI formulation, Figure 6 of [17] has been obtained (see Figure 3.4). This figure represents the NLI coefficient as a function of the channel frequency without SRS ($C_r=0$) and with SRS ($C_r=0.028 \text{ 1/W/km/THz}$), considering both coherent ($\varepsilon \neq 0$) and incoherent ($\varepsilon=0$) scenarios. The parameters used to obtain Figure 3.4 are in Table 3.8.

Parameters	Values
Channel Spacing Δ_{ch}	$40~\mathrm{GHz}$
Total number of channels N_{ch}	251
Channel launch power p_m	0 dBm
Reference wavelength λ_0	1550 nm
Symbol Rate $R_{s,l}$	40 Gbaud
Dispersion $D_{\lambda 0}$	17 ps/nm/km
Dispersion slope S_0	$67 \text{ fs/nm}^2/\text{km}$
Fiber effective area A_{eff}	$80 \ \mu m^2$
NL coefficient	$1.2 \ 1/W/km$
Fiber attenuation coefficient α	0.2 dB/km
Number of spans $N_{spans,i}$	6

Table 3.8. Parameters used to obtain Figure 3.4.

From Figure 3.4 without SRS, the NLI coefficient increases with the channel frequency increase due to the third order dispersion β_3 , since the lower the frequency the higher is the dispersion, leading to lower NLI penalties [17]. With SRS, due to the power transfer, the power of the channels with lower frequency is enhanced, and as a result those channels experience

Figure 3.4. NLI coefficient as a function of the channel frequency without SRS and with SRS, considering both coherent and incoherent scenarios with the parameters of Table 3.8.

a higher non-linearity. With and without SRS, the estimated NLI coefficient is higher for the coherent scenario than for the incoherent one. The average gap between the coherent and incoherent accumulations without SRS is 0.1 dB and with SRS is 0.2 dB [17]. Using an incoherent accumulation simplifies the formalism, since the NLI noise can be calculated at the end of each link separately, and adds only a slight loss of accuracy. As the results shown in Figure 3.4 are very similar to the ones presented in Figure 6 of [17], the NLI formulation implementation can be considered validated.

Considering the example of the $\text{OSNR}_{tot,m}$ calculations in the C-band presented in Section 3.3, for the COST 239, the impact of NLI is going to be included next in that example. The parameters used to calculate the OSNR with NLI are presented in Tables 3.3 and 3.9.

Parameters	Values
Dispersion $D_{\lambda 0}$	17 ps/nm/km
Dispersion slope S_0	$67 \text{ fs/nm}^2/\text{km}$
Reference wavelength λ_0	1550 nm
Raman gain slope C_r	0.028 1/W/km/THz
Nonlinear refractive index $\overline{n_2}$	$2.6 \times 10^{-20} \text{ m}^2/\text{W}$
Fiber effective area A_{eff}	$80 \ \mu m^2$
Coherent factor ε	0
Fiber attenuation coefficient α	$5.756 \times 10^{-5} \text{ Np/m}$
Group velocity β_2	$-2.168 \times 10^{-26} \text{ s}^2/\text{m}$
Third order dispersion parameter β_3	$1.447 \times 10^{-40} \text{ s}^3/\text{m}$
Total transmitted optical power P_{tot}	87 mW

Table 3.9. WDM system parameters used to calculate the OSNR with NLI and SRS for the four demands considered in COST 239 network.

The COI channel considered to calculate the NLI power is the central channel, m=44, so the frequency of this channel (in lowpass equivalent form) is $f_m=0$. The WDM channel

frequencies range from $f_k = [-2.2; 2.2]$ THz. With the formulation proposed in [17], the length of each span does not influence the calculations of the XPM and SPM contributions, so for the COI m, $\eta_{XPM,j} = 442.84$ dB obtained with equation (3.15) and $\eta_{SPM,j} = 112.61$ dB reached using equation (3.16). The coherence factor considered for this example is zero, so incoherent accumulation of NLI is considered along the spans. Therefore, the NLI power can be calculated at the end of each optical link, independently of the optical path. Table 3.10 shows the links used by the 20 candidate paths, the number of spans in each link and the NLI power at each link end.

Link	Number of spans	NLI coefficient	NLI noise power
e	N_{spans}	$[10^3/W^2] \eta_{GN}$	$[\mu W] p_{NLI}$
$e_1 = [1, 2]$	10	5.515	5.515
$e_2 = [1, 3]$	7	3.860	3.860
$e_3 = [1, 4]$	4	2.206	2.206
$e_4 = [1, 7]$	7	3.860	3.860
$e_5 = [2, 3]$	4	2.206	2.206
$e_6 = [2, 5]$	4	2.206	2.206
$e_7 = [2, 8]$	4	2.206	2.206
$e_8 = [3, 4]$	6	3.309	3.309
$e_9 = [3, 5]$	2	1.103	1.103
$e_{10} = [3, 6]$	4	2.206	2.206
$e_{11} = [4,7]$	3	1.655	1.655
$e_{13} = [4, 10]$	6	3.309	3.309
$e_{14} = [5, 6]$	2	1.103	1.103
$e_{15} = [5, 8]$	3	1.655	1.655
$e_{17} = [6,7]$	6	3.309	3.309
$e_{21} = [7, 10]$	3	1.655	1.655

Table 3.10. Number of spans needed in each link, NLI coefficient and noise power at the end of each link used by the candidate path for the four demands considered in the COST 239 network.

By analyzing Table 3.10, the link with the higher NLI noise power is e_1 , since this link is also the one with the higher number of spans. The links e_9 and e_{14} with a smaller number of spans are the links with the lowest NLI noise power. For links with different distances but with the same number of spans, ($e_3=361$ km and $e_6=321$ km), the NLI noise powers and coefficients predicted by the formulation (3.14)-(3.16) are the same. With the results of Table 3.10, the OSNR considering only the NLI noise is calculated for each candidate path and the results are presented in Table 3.11.

P_{dp}	$OSNR_{tot,m}$ [dB]	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$
P_{11}	22.6	P_{12}	22.2	P_{13}	21.5	P_{14}	21.1	P_{15}	20.5
P_{21}	24.1	P_{22}	22.6	P_{23}	21.1	P_{24}	20.5	P_{25}	20.5
P_{31}	26.6	P_{32}	22.6	P_{33}	21.5	P_{34}	20.5	P_{35}	19.6
P_{41}	23	P_{42}	21.8	P_{43}	21.5	P_{44}	21.1	P_{45}	20.8

Table 3.11. OSNR considering only the NLI noise for the candidate paths of the four demands considered in COST 239 network.

Comparing the results obtained in Table 3.11, considering only the NLI power effect on the OSNR, with the OSNR obtained only with ASE noise presented in Table 3.6, it can be concluded that the ASE noise power degrades the paths performance much more significantly, for a channel 44

input power of 0 dBm. The OSNR calculated only with NLI noise is about 7 dB higher than the OSNR obtained with only ASE noise. The greatest difference between OSNRs is in P_{11} , where the OSNR obtained only with NLI is 7.9 dB higher, and the smaller difference is 6.4 dB in P_{13} . As shown in Appendix B, for the optimal channel power, 1.46 dBm, calculated in the longest path P_{35} , the difference between the two OSNRs (only with ASE noise and only with NLI) would be about 2.8 dB (Tables 3.6 and 3.11 comparing with Tables B.2 and B.3), where the highest decrease is observed in path P_{11} and the lowest decrease in path P_{45} . For this channel power, the PLI that would degrade more the signal quality is still the ASE noise. However, when comparing the total OSNRs obtained with the channel powers 0 dBm and 1.46 dBm, the OSNRs obtained only with considering the NLI decreases more with the latter, around 2.9 dB (compare with Table 3.11), while the OSNR obtained with only ASE noise decreases around 1.5 dB (comparing with Table 3.6).

The OSNRs with both NLI and ASE calculated with equation (3.12) with the parameters described in Tables 3.3 and 3.9 are presented in Table 3.12, where the ASE noise dominates the performance degradation, for a channel power of 0 dBm.

P_{dp}	$OSNR_{tot,m}$ [dB]	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$
P_{11}	14	P_{12}	14.5	P_{13}	14.1	P_{14}	12.9	P_{15}	13
P_{21}	16.6	P_{22}	14.1	P_{23}	12.8	P_{24}	12.5	P_{25}	12.1
P_{31}	18.6	P_{32}	14.4	P_{33}	13.3	P_{34}	12.9	P_{35}	11.5
P_{41}	15.5	P_{42}	13.5	P_{43}	13.9	P_{44}	13.1	P_{45}	13.5

Table 3.12. Total OSNR with ASE and NLI noises for the candidate paths for the four demands considered in COST 239 network.

From the results of the total OSNR of each candidate path obtained in Table 3.12, the path chosen to serve one demand is the path with the best OSNR, as shown in Table 3.13.

Demand d	Path P_{dp}	$OSNR_{tot,m}$ [dB]
d = 1	$P_{12} = \{2, 5\}$	14.5
d=2	$P_{21} = \{2\}$	16.6
d = 3	$P_{31} = \{3\}$	18.6
d = 4	$P_{41} = \{2, 9\}$	15.5

Table 3.13. Optical paths with highest OSNR for the four demands considered in COST239 network.

The paths obtained with the highest OSNR considering the OSNR with only the ASE noise power effect, as in Table 3.6, and with the ASE and NLI noises powers, as shown in Table 3.12, using the Gaussian noise model, are the same. However, the OSNR decreases with the NLI effect inclusion, with a maximum OSNR decrease of 0.9 dB in candidate path P_{13} and the lowest of 0.65 dB in P_{11} . Anyhow, as concluded from Table 3.11, for a channel power of 0 dBm, the PLI that mostly degrades the signal quality is the ASE noise.

Notice that the NLI closed-formulas derived in [17] are independent of the modulation format used. So, a modulation format correction for the estimation of the NLI in a more accurate way is presented in the following and its results are analyzed for several QAM modulations. The previous NLI formulation presented in equations (3.14)-(3.16) assumes that the transmitted signal has a Gaussian modulation, which means that the signal statistically behaves as stationary Gaussian noise at the transmitter, which makes it independent of the modulation format [19]. With the modulation correction, the NLI coefficient changes from equation (3.14) to [19]: Chapter 3 Physical Layer Impairments in C+L Multiband Optical Networks

$$\eta_{N_{spans}}(f_m) = \eta_{GN}(f_m) + \eta_{corr}(f_m)$$
(3.21)

where η_{corr} is the correction added to the NLI coefficient due to the modulation format. This correction is calculated with [19]:

$$\eta_{corr,N_{spans}}(f_m) \approx \frac{80}{81} \Phi \sum_{k=0,k\neq m}^{N_{ch}} \left(\frac{P_k}{P_m}\right)^2 \frac{\gamma^2}{B_k} \left\{ \frac{1}{\phi_{m,k}\overline{\alpha}(2\alpha+\overline{\alpha})} \times \left[\frac{T_k - \alpha^2}{\alpha} \arctan\left(\frac{\phi_{m,k}B_m}{\alpha}\right) + \frac{A^2 - T_k}{A} \arctan\left(\frac{\phi_{m,k}B_m}{A}\right) + \frac{2\pi\tilde{n}T_k}{|\phi|B_k^2\alpha^2A^2} \left[(2|\Delta f| - B_k) \log\left(\frac{2|\Delta f| - B_k}{2|\Delta f| + B_k}\right) + 2B_k \right] \right\}$$
(3.22)

with $\Delta f = f_k - f_i$, $\phi = -4\pi^2 \left[\beta_2 + \pi\beta_3(f_i + f_k)\right] L_{span}$ and $\tilde{n} = 0$ if n=1; otherwise $\tilde{n} = n$. The excess kurtosis represented by Φ , depends on the modulation format as shown in Table 3.14 and ϕ is the phase mismatch term, accounting for coherent NLI accumulation depending on the length of the span L_{span} [19].

Modulation form at ${\cal M}$	Excess kurtosis Φ
QPSK	-1
16-QAM	-0.6800
64-QAM	-0.6190
256-QAM	-0.6050
∞ -QAM	-0.6000
Gaussian modulation	0

Table 3.14. Modulation formats and corresponding excess kurtosis.

In order to ensure that our Matlab implementation of equation (3.22) is well implemented, we have obtained in Figures 3.5 and 3.6, the results of Figures 2 and 3 of [19]. These figures represent the NLI coefficient as a function of the number of spans with SRS and without SRS, considering several modulation formats and also the Gaussian modulation, for channel frequencies of f=-4 THz (Figure 3.5) and f=0 THz (Figure 3.6). The parameters used are presented in Table 3.8, with coherent accumulation ($\epsilon \neq 0$) for both channel frequencies. The coherent accumulation was calculated with the formula available in the Matlab script, given in [20].

In both Figures 3.5 and 3.6, the Gaussian modulation leads to the highest NLI coefficient, hence overestimating the NLI, and the QPSK modulation exhibits the lowest NLI coefficient, meaning that it is the less susceptible to the fiber nonlinearity. As the number of spans grows, the difference between the obtained NLI coefficients is reduced. In Figure 3.6 with SRS, a NLI coefficient difference of around 5 dB between the Gaussian and QPSK modulations is observed after one span, while, for ten spans, the difference is only around 2 dB. The 64-QAM and 16-QAM in both scenarios with and without SRS have a difference of around 0.4 dB when only one span is considered and around 0.1 dB for ten spans. Comparing these two modulations with QPSK, the difference between them for one span is around 2.4 dB and for ten spans is less than 1 dB. In Figure 3.6, there is no observable difference between the results obtained with and without SRS, for all four modulations because when $f_k=0$ THz, the third order dispersion parameter β_3 does not affect the calculations of the the NLI parameter. For f=-4 THz, there is a 1 dB difference of the NLI coefficient estimated after 10 spans with and without SRS. The

Figure 3.5. NLI coefficient as a function of the number of spans without SRS and with SRS, considering f=-4 THz and several modulation formats.

Figure 3.6. NLI coefficient as a function of the number of spans without SRS and with SRS, considering f=0 THz and several modulation formats.

results obtained in Figure 3.5 and 3.6 are in a very good agreement with the results presented in Figures 2 and 3 of [19], validating the modulation format correction implementation.

Next, we return to the example of the $\text{OSNR}_{tot,m}$ calculation and improve it by adding the modulation correction just presented, considering the QPSK modulation. In this case, the NLI coefficient with the modulation format given by equation (3.21), is obtained from the η_{GN} results presented in Table 3.10, and the modulation format correction η_{corr} obtained using equation (3.22) for each link corresponding to the candidate paths. The modulation format
correction coefficient is shown in Table 3.15 for all the links considered in the example. Table 3.15 also shows the NLI power calculated with equation (3.13) but using η_{corr} , and the length of each span.

Link	Span length	Correction factor	NLI noise power
e	$[\mathrm{km}] L_{span}$	$[10^3/W^2] \eta_{corr}$	$[\mu W] p_{NLI}$
$e_1 = [1, 2]$	95.3	3.856	3.856
$e_2 = [1, 3]$	88.86	2.523	2.523
$e_3 = [1, 4]$	90.25	1.294	1.294
$e_4 = [1, 7]$	91.57	2.552	2.552
$e_5 = [2, 3]$	89	1.286	1.286
$e_6 = [2, 5]$	80.25	1.226	1.226
$e_7 = [2, 8]$	85.75	1.265	1.265
$e_8 = [3, 4]$	96	2.173	2.173
$e_9 = [3, 5]$	85.50	0.449	0.449
$e_{10} = [3, 6]$	79.5	1.220	1.220
$e_{11} = [4,7]$	93.67	0.894	0.894
$e_{12} = [4, 8]$	97.44	3.459	3.459
$e_{13} = [4, 10]$	87.50	2.098	2.098
$e_{14} = [5, 6]$	95	0.478	0.478
$e_{15} = [5, 8]$	88.67	0.871	0.871
$e_{17} = [6,7]$	99	2.196	2.196
$e_{21} = [7, 10]$	83.67	0.847	0.847

Table 3.15. Link spans lengths, correction factor and NLI noise power.

As with the modulation format correction, the span length affects the calculation of the NLI coefficient, the estimated NLI noise power is no longer the same for links with an equal number of spans, and becomes lower for links with shorter spans. For example, links e_{11} and e_{21} both have three spans but link e_{11} has spans 10 km longer than e_{21} and consequently the correction factor and NLI noise power are higher on e_{11} . By comparing Tables 3.10 and 3.15, it can be seen that the NLI power is overestimated with the Gaussian modulation. This overestimation is observed in every links, e.g. in link e_1 the NLI power is 1.66 μ W lower when using the QPSK modulation. With the results from Tables 3.5 and 3.15, the total OSNR for each candidate path for the modulation QPSK is represented in Table 3.16.

P_{dp}	$OSNR_{tot,m}$ [dB]	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$
<i>P</i> ₁₁	14.2	P_{12}	14.8	P_{13}	14.5	P_{14}	13.1	P_{15}	13.3
P_{21}	16.8	P_{22}	14.4	P_{23}	13	P_{24}	12.8	P_{25}	12.4
P_{31}	18.9	P_{32}	14.7	P_{33}	13.5	P_{34}	13.2	P_{35}	11.7
P_{41}	15.8	P_{42}	13.7	P_{43}	14.3	P_{44}	13.3	P_{45}	13.8

Table 3.16. Total OSNR for the candidate paths for the four demands considered in COST 239 network for the QPSK modulation.

For each modulation format, a minimum OSNR is required (ROSNR) to ensure a minimal system margin [14]. Table 3.17 shows the theoretical ROSNR for *M*-QAM signals (which is equivalent to the OSNR for polarization-division multiplexing (PDM) systems) calculated with equation (3.23) [18], and the practical ROSNR for the different modulations considered in this work, QPSK, 16-QAM, and 64-QAM for a bit error rate (BER) of 10^{-3} , taken from [21].

$$BER = \frac{2}{\log_2(M)} \cdot \left(1 - \frac{1}{\sqrt{M}}\right) \cdot \operatorname{erfc}\left(\sqrt{\frac{3 \cdot snr}{2(M-1)}}\right)$$
(3.23)

where $\operatorname{erfc}(.)$ is the complementary error function.

Modulation format M	Theoretical ROSNR [dB]	Practical ROSNR [dB]
QPSK	9.8	12
16-QAM	16.5	18.6
64-QAM	22.6	24.6

Table 3.17. Modulation formats with corresponding theoretical ROSNRs and practical ROSNRs for $BER=10^{-3}$.

From Table 3.17, it can be observed that the theoretical ROSNR and the practical ROSNR have a maximum difference of around 2 dB. So, the OSNR calculated in Table 3.16 must be above the minimum OSNR of 12 dB as in Table 3.17, for the QPSK, to guarantee the optical path quality. Analyzing the results obtained for the four demands, all candidate paths, except path P_{35} , satisfy the minimum OSNR. Hence, the path chosen for each demand is the one with the best OSNR as represented in Table 3.18.

Demand d	Path P_{dp}	OSNR [dB]
d = 1	$P_{12} = \{2, 5\}$	14.8
d = 2	$P_{21} = \{2\}$	16.8
d = 3	$P_{31} = \{3\}$	18.9
d = 4	$P_{41} = \{2, 9\}$	15.8

Table 3.18. Optical paths with best OSNR for the four demands considered in COST239 network for QPSK modulation.

To see if higher modulations can be used in the considered links of the COST 239 network, in order to increase link capacity, the OSNRs of the candidate paths have been also obtained with the 16-QAM (Tables 3.19 and 3.20) modulation format.

P_{dp}	$OSNR_{tot,m}$								
P_{11}	14.2	P_{12}	14.7	P_{13}	14.4	P_{14}	13	P_{15}	13.2
P_{21}	16.7	P_{22}	14.3	P_{23}	12.9	P_{24}	12.7	P_{25}	12.3
P_{31}	18.8	P_{32}	14.5	P_{33}	13.4	P_{34}	13.	P_{35}	11.6
P_{41}	15.7	P_{42}	13.7	P_{43}	14.2	P_{44}	13.2	P_{45}	13.7

Table 3.19. Total OSNR for the candidate paths for the four demands considered in COST 239 network for 16-QAM modulation.

For the 16-QAM, the minimum OSNR is 18.6 dB as in Table 3.17. From Table 3.19, only demand d=3 has a candidate path that guarantees the OSNR threshold, P_{31} , with an OSNR that reaches the optical receiver of $OSNR_{tot,m}=18.8$ dB. For the 64-QAM, the OSNR minimum is not accomplished for any of the candidate paths, and the corresponding results are not shown. Table 3.20 represents the chosen path with the highest OSNR and highest modulation format (higher capacity).

Comparing the results reached considering the QAM format and the Gaussian noise model, the best path is the same in both cases.

3.5. Other physical layer impairments

Other physical layer impairments that can degrade the multiband network performance are the crosstalk, optical filtering and system aging [5]. These impairments can be accounted in the safety margin (SM_m) defined as [22], [23].

Demand d	Path P_{dp}	OSNR [dB]	Modulation
d = 1	$P_{12} = \{2, 5\}$	14.8	QPSK
d=2	$P_{21} = \{2\}$	16.8	QPSK
d = 3	$P_{31} = \{3\}$	18.8	16-QAM
d = 4	$P_{41} = \{2, 9\}$	15.8	QPSK

Chapter 3 Physical Layer Impairments in C+L Multiband Optical Networks

Table 3.20. Optical paths with best OSNR for the four demands considered in COST 239 network with the respective modulation format.

$$SM_m = 0.05 \times (N_a + N_v) + P_{filt} + P_{xtalk}$$

$$(3.24)$$

where N_v is the number of cascaded ROADMs in the optical path and N_a is the number of optical amplifiers in the path, P_{filt} is the filtering penalty and P_{xtalk} is the crosstalk penalty. The crosstalk impact is usually very small and is dependent on the channel spacing, so P_{xtalk} is set to be between 0 and 0.5 dB [22]. In this work, it is assumed $P_{xtalk}=0.5$ dB. The filtering penalty depends on the number of cascaded WSSs and the modulation format used. Considering ROADMs with a route and select architecture, two WSSs are traversed in the transit nodes and with a colorless add/drop structure, one WSS is traversed in the source and destination nodes [22]. Hence, the number of cascaded WSSs (C_{WSS}) along an optical path can be calculated by [22]:

$$C_{WSS} = 2 \times N_v - 2 \tag{3.25}$$

The feasibility of the path can be assessed with its residual margin (RM). The residual margin determines the full potential of the system, and the possibility of adding new amplified spans to the optical path without surpassing the margin limit [23], and is calculated with [22]:

$$RM = OSNR_{tot,m} - ROSNR - SM_m \tag{3.26}$$

where ROSNR is the minimal OSNR corresponding to a specific modulation format, as shown in Table 3.17.

Continuing with the example of the previous sections, we are now going to calculate the safety margins and verify the residual margin for the paths selected for each demand in Table 3.20. The filtering penalty considered in this work was calculated based on the results presented in [5], [22]. For the paths selected, in Table 3.20, the maximum number of cascaded nodes is three, and $C_{WSS}=4$. Hence, the filtering penalty in the four paths is practically null [5], [22]. With the results of the path OSNRs in Table 3.20, knowing the modulation format used and consequently the minimum ROSNR (Table 3.17), and the safety margin calculated from equation (3.24), the residual margin can be calculated with equation (3.26). Table 3.21 shows the number of cascaded nodes in each path, the number of amplifiers and the corresponding safety margin and residual margin.

Demand	Path	Number of Nodes	Number of amplifiers	Safety margin	Residual margin
d	P_{dp}	N_v	N_a	SM_m [dB]	RM [dB]
d = 1	$P_{12} = \{2, 5\}$	3	11	1.20	1.61
d=2	$P_{21} = \{2\}$	2	7	0.95	3.88
d = 3	$P_{31} = \{3\}$	2	4	0.80	-0.58
d = 4	$P_{41} = \{2, 9\}$	3	9	1.10	2.67

Table 3.21. Number of nodes and amplifiers, safety margin and residual margin of the optical paths for the four demands considered in the COST 239 network.

Chapter 3 Physical Layer Impairments in C+L Multiband Optical Networks

Analyzing Table 3.21, the paths with more cascaded ROADMs and amplifiers have a slightly higher safety margin than the paths that use the direct link. From this table, it can also be observed that demands 1, 2 and 4 satisfy a null residual margin, and so the QPSK modulation format can be used. For demand 3, the residual margin is not fulfilled and a lower modulation than 16-QAM needs to be considered.

The previous results have been obtained considering a hard-decision forward error-correction (HD-FEC) with a BER of 10^{-3} . Next, we will assume a soft-decision (SD)-FEC with a BER of 4×10^{-2} . A better FEC allows for the minimum ROSNR to decrease [18]. Table 3.22 shows the theoretical ROSNR calculated for BER= 4×10^{-2} using equation (3.23). The difference between the practical ROSNR and the theoretical ROSNR is of 2.2 dB, the same considered with HD-FEC, in Table 3.17.

Modulation format M	Theoretical ROSNR [dB]	Practical ROSNR [dB]
QPSK	4.9	7.1
16-QAM	11.1	13.3
64-QAM	16.7	18.9

Table 3.22. Modulation formats with corresponding theoretical ROSNRs and practical ROSNRs for BER= 4×10^{-2} .

From Table 3.22, it can be observed that the ROSNR has decreased more than 4.9 dB for all three modulation formats. So, the ROSNR can be fulfilled for the selected paths in Table 3.20 with a higher modulation, 16-QAM. Since the paths considered are the same, their safety margin is maintained (see Table 3.21), with the new ROSNR, the residual margin is improved, as shown in Table 3.23.

Demand	Path	OSNR	Modulation	Residual margin
d	P_{dp}	[dB]	Format M	RM [dB]
d = 1	$P_{12} = \{2, 5\}$	14.8	16-QAM	0.22
d=2	$P_{21} = \{2\}$	16.8	16-QAM	2.49
d = 3	$P_{31} = \{3\}$	18.8	16-QAM	4.72
d = 4	$P_{41} = \{2, 9\}$	15.8	16-QAM	1.67

Table 3.23. Optical paths with best OSNR for the four demands considered in COST 239 network with the respective modulation format for BER= 4×10^{-2} .

With the results from Table 3.23, it can be observed that for a higher BER= 4×10^{-2} , the residual margin is fulfilled for all the optical paths, being above 1.5 dB for the three shorter paths (P_{21} , P_{31} and P_{41}), and a higher capacity/lower symbol rate can be used in demands 1, 2 and 4 (i.e a 16-QAM modulation format can be used instead of a QPSK format).

3.6. Conclusion

In this chapter, we studied the performance degradation induced by the PLIs along several optical paths in the COST 239 network considering a C+L multiband solution, for both fixed and flexible grids.

The first PLI studied was the ASE noise caused by the amplifiers along an optical path. This impairment is more relevant for longer paths, where the number of amplifiers is higher and in links with longer spans, as expected. These conclusions can be taken by observing the candidate path P_{11} , which uses the longer link in the COST 239 network, and, therefore has a higher number of amplifiers and the accumulated ASE noise power is 34.06 μ W.

Chapter 3 Physical Layer Impairments in C+L Multiband Optical Networks

The second PLI studied was the NLI noise caused by the Kerr effect and the SRS due to the power transfer from lower to higher wavelengths. For this PLI, the performance has been assessed considering a Gaussian model with and without a modulation format correction. We have concluded that the ASE noise degrades more significantly the system performance than the NLI noise. In particular, a 7.2 dB OSNR difference was found in path P_{31} of the COST 239 network using Gaussian model without the modulation correction factor. We have also observed that when using an unoptimized channel launch power, the paths performance is more degraded, being the NLI the PLI most affected. When signal power is optimal, 1.46 dBm, the difference between the OSNR with only ASE noise and with only NLI in path P_{31} becomes only 2.8 dB.

When the influence of the modulation formats QPSK, 16-QAM and 64-QAM are included in the Gaussian model, it was concluded that without the modulation format correction (Gaussian modulation), the NLI predictions are worst-case. In particular, for the QPSK and path P_{31} , there is a 0.3 dB difference in the total OSNR between the two models (with and without the modulation correction factor). We have also studied the influence of the FEC code on the ROSNR and have concluded that stronger FECs (higher line BERs) allow an improved system capacity. In particular, with a BER of 4×10^{-2} (SD-FEC), path P_{11} can use a 16-QAM modulation format, whereas with a lower BER of 10^{-3} (HD-FEC), the QPSK modulation format must be used.

The impact of crosstalk, filtering and components aging was also studied in this chapter. We have concluded that, although their influence is generally low, in some cases, the residual margin is not fulfilled when these impairments are added to the performance analysis, as it has been demonstrated for path P_{31} with a BER= 10^{-3} .

CHAPTER 4

C+L Multiband Network Design Considering Physical Layer Impairments

4.1. Introduction

Planning optical networks in an efficient and cost less way is, nowadays, a crucial function for every service provider [1]. This chapter focus on two main goals regarding the design of optical networks. The first goal, presented in Section 4.2, is to analyze and compare the traditional heuristic planning tools used to solve the RWA problem in static networks working on a fixed grid with an ILP formulation, in terms of the number of wavelengths used and the computation time in real networks. The second goal of this chapter, presented in Section 4.3, is to develop a simulator for planning C+L multiband networks having in mind the PLIs impact to solve the RMSA problem. In Section 4.4 an analysis of the performance of several real networks, considering a C+L flexible grid multiband scenario, in terms of the number of frequency slots used as a function of the BER is also performed. Section 4.5 resumes the chapter with the main results and conclusions.

4.2. RWA problem with ILP and heuristic solutions

In this section, we are going to study the RWA problem in static optical networks operating on a fixed grid C-band, considering the traditional heuristic algorithms and also an ILP formulation. The networks considered are the COST 239 [16], NSFNET [24], UBN [25] and CONUS 30 [6], and the respective physical topologies are presented in Appendix C.1. The static traffic matrix for these networks is obtained assuming a full mesh logical topology, which means that there is a demand between every pair of nodes with one transport unit (e.g. OTU1). Table 4.1 presents some physical (number of nodes, number of links, average node degree [26] and the longest and shortest link in the topology) and logical (number of demand requests) parameters of the real network topologies considered.

Network	#Demands	#Nodes	#Links	Average node degree	Longest link [km]	Shortest link [km]
COST 239	55	11	26	4.73	953	171
NSFNET	91	14	21	3	2828	246
UBN	276	24	43	3.58	2600	250
CONUS 30	435	30	36	2.40	1463	69

Table 4.1. Physical and logical features for the network topologies considered.

As can be observed in Table 4.1, the network with more nodes is the CONUS 30, and therefore, this is the network with more demands (possible logical connections in a full mesh topology). The shortest link is also in the CONUS 30 network with only 69 km. The NSFNET network has the longest link of the networks considered with 2828 km. The COST 239 network has the highest average node degree, meaning that, in this network the nodes are more

interconnected, and the lowest average node degree is in the CONUS 30 network (lower node interconnection).

The RWA problem in a static optical network, with the aim of minimizing the number of wavelengths, can be solved with the traditional heuristic tools by first finding the paths for carrying the demands and then assigning the wavelengths for each demand. The path finding, in particular finding the shortest path in distance, is done with the well-known Dijkstra algorithm [10] (the Matlab function shortestpath is used). After that, the paths must be ordered so that the wavelengths can be assigned. Three ordering strategies are used: shortest path first (SPF), longest path first (LPF) and random path (RP) [8]. The results presented for the random path strategy result from the average of ten simulations. After the shortest paths for the requested demands have been found, the wavelengths are going to be assigned with the heuristic algorithms First-Fit (FF) and Most Used (MU) for the three ordering strategies. The Matlab scripts used to implement these algorithms are presented in Appendix C.2. The minimum number of wavelengths required in the four networks studied for the different ordering strategies is presented in Table 4.2.

Network	Ordering Strategy	First-Fit	Most Used
	Shortest path first	8	8
COST 239	Longest path first	8	8
	Random path	8.1	8.1
	Shortest path first	24	24
NSFNET	Longest path first	24	24
	Random path	23.3	23.3
	Shortest path first	70	70
UBN	Longest path first	64	64
	Random path	64.9	64.6
	Shortest path first	134	133
CONUS 30	Longest path first	123	123
	Random path	123.3	123.1

Table 4.2. Total number of wavelengths obtained for the different network topologies with the WA heuristic algorithms, FF and MU, for different ordering strategies.

From the results in Table 4.2, it can be observed that for the different topologies, the number of wavelengths computed by the FF and MU algorithms is the same, except for the CONUS 30 network. In this topology, with the shortest path first, the MU gives one less wavelength than the FF. The results obtained with the different strategies for the smaller topologies, COST 239 and NSFNET, are the same. In the NSFNET network, the RP average results are slightly better than the ones obtained with SPF and LPF. However, for the topologies with more nodes, CONUS 30 and UBN, the results achieved with the LPF and RP predict a smaller number of wavelengths that the one predicted with the SPF. These results mean that the random path strategy gives, in the majority of the cases, a very good solution, indicating that the ordering strategy does not have a significant impact on this calculation. The computation time to obtain each one of the solutions presented in Table 4.2 took less than 1 second, with a PC with CPU of 1.8 GHz and 12 GB of RAM. These heuristics tools used to solve the RWA problem have already been used by several other authors and it can be concluded that our results of Table 4.2 are in complete agreement with [27], for example.

Now we are going to consider an ILP formulation to solve the RWA for the same networks. The strategy implemented for solving the RWA problem is based on a single-step, which means 54

that the routing and wavelength assigning tasks are done at the same time, as opposed to the two-step strategy used previously in this section, where the routing task is performed first and the wavelength assignment is performed after, that led to the results presented in Table 4.2. Another difference between these two strategies is that in the two-step heuristic strategy, only one path is computed for each demand, whereas in the single-step ILP strategy, a set of candidate paths for delivering the request is computed. In the next analysis, we consider four cases; a single path is computed, which is the same scenario analyzed in the heuristic approach; and two, three, and four candidate paths are computed. The candidate paths are computed with the Yen's k shortest path algorithm [28]. After this path computation, the ILP formulation presented in Section 2.2.4, equation (2.36), is used, but the objective function **F** is different, since now the number of times color c is used in link e_i must be minimized instead of the capacity cost. The new ILP formulation can be written as,

minimize:
$$\mathbf{F} = \sum_{e} z_{ce}$$

subject to: $\sum_{p} \theta_{dps} \sum_{c} x_{dpc} \ge h_{ds} \quad d = 1, ..., D \quad s = 0$
 $\sum_{d} \sum_{p} \delta_{edp} x_{dpc} = z_{ce} \quad c = 1, ..., C \quad e = 1, ..., E$
 $y_{e} \le z_{ce} \quad c = 1, ..., C \quad e = 1, ..., E.$

$$(4.1)$$

The ILP formulation for solving this RWA problem, is implemented in Matlab with function intlinprog (Appendix C.3). The solution for this RWA problem, based on the ILP formulation is presented in Table 4.3, which shows the number of wavelengths needed when there is only one, two, three, and four candidate paths available for each demand considering various real network topologies.

Network	Number of candidate paths	ILP	Time [s]
	One candidate path	8	1.157
COST 230	Two candidate paths	5	1.392
0051 255	Three candidate paths	5	1.596
	Four candidate paths	4	1.387
	One candidate path	24	17.424
NSENET	Two candidate paths	15	23.158
INSPINET	Three candidate paths	13	12.189
	Four candidate paths	13	16.511
	One candidate path	64	787
UBN	Two candidate paths	47	2283
	Three candidate paths	37	1356
	Four candidate paths	35	9648

Table 4.3. Total number of wavelengths used in the different network topologies obtained with the ILP formulation, given in equation (4.1), as well as the respective computation time.

By comparing the results shown in Tables 4.2 and 4.3 with only one candidate path, the number of wavelengths obtained with the ILP formulation is the same than the best one obtained with the heuristic solution (the results obtained with the LPF). But when there is more than one candidate path for each demand, the ILP algorithm gives a smaller number of wavelengths, since it has several paths that can be chosen, instead of just one. As can be observed in Table 4.3, for the UBN network, for one candidate path, 64 wavelengths are required, which is the same value shown in Table 4.2 (heuristic approach with LPF strategy), whereas for two,

three, and four candidate paths, respectively, 47, 37, and 35 wavelengths are needed. If further candidate paths are added to the RWA problem, the number of wavelengths reduces further until a minimum value is reached, which corresponds to the optimum number of wavelengths. This minimum value was computed for the four networks studied: for the NSFNET, the minimum number is obtained with three candidate paths, and is 13 wavelengths, whereas for the COST 239 and UBN, the minimum number of wavelengths is respectively, 4 and 35 and is obtained with four candidate paths. Another conclusion that can be drawn from Table 4.3 is related with the computation time. As can be observed, as the number of candidate paths increases from one to two, but for the NSFNET and UBN networks, when the number of paths reaches three, the computation time decreases in comparison with the two paths scenario, and then increases again with four candidate paths. We were not able to obtain the results for the CONUS 30 network - the Matlab script stopped because it exceeded its allocated memory and temporary disk space after 5 days running.

Next, a comparison between the performance of the ILP and heuristic formulations just presented is performed in the COST 239 network. So, based on the heuristic solution presented in Table 4.2, and the optimal solution obtained with ILP formulation while having four candidate paths, as shown in Table 4.3, we are going to compare the number of wavelengths in each network link (i.e. capacity). The link capacities (number of wavelengths used) obtained for the COST 239 network are presented in Figure 4.1, assuming a full mesh logical topology. As can be observed in Figure 4.1, the link capacity is distributed more evenly with the ILP solution that uses four candidate paths (the optimal number of wavelengths) for each demand. For example, in the heuristic solution, based on the Dijkstra and FF algorithms, the links e=[5,6] and e=[6,7]are clearly more overloaded than the rest of the links in the network, whereas, with the ILP solution, the capacity in these links reduces 50%, leading to a more evenly distributed capacity in the links of the network. In particular, in the heuristic solution link e=[5,6] is used in the paths for the following eight demands, d=[2-6], d=[2-7], d=[2-9], d=[2-10], d=[5-6], d=[5-7], d=[5-7d=[5-9], and d=[5-10], whereas in the ILP formulation only the paths for the following four demands d=[2-6], d=[5-6], d=[5-7], and d=[5-10] used that link. The path lists used in both the heuristic and ILP solutions are presented in Appendix C.4.

Figure 4.1. Link capacity obtained with heuristic solution and ILP with four candidate paths per demand for COST 239 network.

4.3. Multiband optical network simulator

In this section, we present the simulator developed in Matlab to solve the routing, modulation format and spectrum assignment (RMSA) problem in a flexible grid C+L multiband optical network aware of the PLIs [1], [22].

The flowchart of the developed simulator is shown in Figure 4.2, and it has three main steps: network topology definition, routing and modulation format assignment and, lastly, spectrum assignment. The simulator inputs are the network topology, traffic matrix, the number of candidate paths, the available bands and the total number of FSs per band. In all networks analyzed, a full-mesh logical topology is considered and, hence, the total number of demands corresponds to the total number of possible logical paths. The first step is to compute the list of the k-th candidate paths for each demand. The candidate paths are computed with an algorithm based on the Yen's k-shortest path algorithm [28]. After computing the k_{paths} candidate paths for every demand, the OSNR of each candidate path is then calculated using equations (3.10) and (3.12), considering the ASE noise along the path (equation (3.11)) and the NLI (equation (3.21)). The ASE noise and NLI noise contributions for each link must be computed for the three modulation formats considered (QPSK, 16-QAM and 64-QAM).

Some simplifications are assumed in these calculations: 1) the NLI noise at the end of a link is calculated considering that all FSs are being used in the C+L band (worst case scenario); 2) the coherent factor is assumed zero, which means that the NLI noise is calculated at the end of each link independently of the NLI noises calculated for the other links of a given path; 3) the channel launch power is optimized for the longest candidate path in the network [13] (worst case scenario), so the optimal power obtained for each modulation format is used in all channels across the network that use that specific modulation format; and 4) the NLI noise and corresponding OSNR are calculated for the center channel, since there is no knowledge of how the spectrum will be assigned. As shown in Figure 3.4, with this last assumption, the NLI coefficient is underestimated in the WDM signal lower frequencies, overestimated for the higher frequencies, and the OSNR becomes equal for all optical channels in a particular link. Some other simulators have been developed that do not use these simplifications, such as [1] and [22]. With these simplifications, the OSNR is calculated for each path, from the highest modulation format to the lowest, and it is checked if the ROSNR is achieved for that particular modulation format. If none of the modulation formats meets the ROSNR, then, the corresponding candidate path is not used. Moreover, if no candidate paths for the demand satisfy the ROSNR, that demand is blocked, as can be seen in the flowchart of Figure 4.2. After calculating the OSNR for all demands and candidate paths and assigning the modulation format, the paths are sorted based on the OSNR in descending order, for each demand.

The path list just built is then used by the spectrum assignment algorithm to assign the FSs using the First-Fit algorithm, staring with the candidate path with the highest OSNR, and trying different candidate paths when this one does not work. Since we are considering a flexible grid scenario, the FSs assigned to each demand must be contiguous, and must be the same in every link of a specific optical path [1]. The number of FSs allocated for each demand depends on the symbol rate, which depends on the modulation format used in the candidate path [1]. Therefore, depending on the modulation format used in the path, the FF algorithm tries to assign a certain number of FSs. If it cannot assign those FSs in the whole C+L band, then another candidate path from the list is chosen. If the FSs can not be assigned in any of the candidate paths corresponding to a specific demand, then that demand is blocked.

58

Figure 4.2. Flowchart of the Matlab simulator used to solve the RMSA problem in a flexible grid C+L multiband network aware of the PLIs.

4.4. Results and discussion

In this section, we use the simulator presented in Section 4.3 with the parameters shown in Tables 4.4 and 4.5 to study the RMSA problem in real network scenarios (COST 239, NSFNET, UBN and CONUS 30 networks). Our goal is to assign the optical path, FSs and modulation format to every demand of the network, assuming a full mesh logical topology with 100 Gbps demands and considering a $BER=4\times10^{-2}$ (SD-FEC). In the following analysis, we have assumed that a QPSK signal needs 4 FSs to transmit a 100 Gbps signal, a 16-QAM signal needs 3 FSs and a 64-QAM signal 2 FSs. Hence, each modulation format has one FS that is used as a guard-band between channels.

Table 4.4 shows the system and network parameters considered, and Table 4.5 shows the transmitted signal features that depend on the chosen modulation format, in particular the average launch signal power per channel and the channel spacing. The average launch signal power is calculated for the longest path in the COST 239 network, $P=\{1,3,6,7,4\}$ (source node 1, destination node 4 and transit nodes 3, 6 and 7) with 1815 km, which is one of the candidate paths for demand d=[1-4].

Parameters	Values
Number of candidate paths k_{paths}	5
Total number of FSs	862
Frequency of the central channel ν_0	189.90 THz
Line bit rate $R_{b,l}$	128 Gbps
Information bit rate $R_{b,i}$	100 Gbps
Amplifier maximum gain G_{max}	25 dB
Fiber attenuation coefficient α	0.25 dB/km
Fiber effective area A_{eff}	$80 \ \mu m^2$
Dispersion $D_{\lambda 0}$	17 ps/nm/km
Dispersion slope S_0	$67 \text{ fs/nm}^2/\text{km}$
Reference wavelength λ_0	1550 nm
Raman gain slope C_r	$0.028 \ 1/W/km/THz$
Nonlinear refractive index \overline{n}_2	$2.6 \times 10^{-20} \text{ m}^2/\text{W}$
Coherent factor ε	0
Group velocity β_2	$-2.168 \times 10^{-26} \text{ s}^2/\text{m}$
Third order dispersion parameter β_3	$1.447 \times 10^{-40} \text{ s}^3/\text{m}$

Table 4.4. System parameters used to solve the RMSA problem.

Parameters	64-QAM	16-QAM	QPSK
Channel Spacing Δ_{ch}	$25~\mathrm{GHz}$	$37.5~\mathrm{GHz}$	$50~\mathrm{GHz}$
Number of FSs	432	289	217
Symbol rate $R_{s,l}$	10.67 Gbaud	16 Gbaud	32 Gbaud
Average launch signal power per channel \boldsymbol{P}_m	-2.39 dBm	-1.59 dBm	-0.69 dBm
Total transmitted optical power \boldsymbol{P}_{tot}	23.97 dBm	23.01 dBm	$22.68~\mathrm{dBm}$

Table 4.5. System parameters used to calculate the OSNR of each path.

We start our study by solving the RMSA problem for the COST 239 network, assuming a $BER=4\times10^{-2}$ and the parameters given in Tables 4.4 and 4.5. The NLI and ASE noises powers calculated at the end of each link in the COST 239 network are presented in Appendix C.6, and the ROSNRs for each one of the modulation formats with this BER are shown in Table 3.22.

The solution of the RMSA problem is described in Table 4.6 and Figure 4.3. Table 4.6 shows the path assigned to each demand, and the corresponding OSNR, modulation format, and FSs allocated. In Figure 4.3, it is represented the FSs used in each network link, alongside with their

corresponding central frequency. In this figure, the FSs used by a path on a particular link are depicted with the same color.

														Link	e											
FS [THz]	[1,2]	[1,3]	[1,4]	[1,7]	[2,3]	[2,5]	[2,8]	[3, 4]	[3,5]	[3,6]	[4,7]	[4,8]	[4,10]	[5,6]	[5,8]	[5,11]	[6,7]	[6,8]	[6,9]	[7,9]	[7, 10]	[8,9]	[8,11]	[9,10]	[9,11]	[10,11]
195.9		1	1	1	1	1	1	1	1	1	1	1	1	1	1			1	1	1	1		1		1	1
195.8875		2	2	2	2	2	2	2	2	2	2	2	2	2	2			2	2	2	2		2		2	2
195.875		3	3	3	3	3		3	3	3		_	3	3	3			_	3				- 3			3
195.8625		4	4		4	4			4	4			4	4	4				4				4			4
195.85		5	5		5	5			-	-			5	5	-				5	5			5			5
195 8375		6			6	6		6						6					6	6			6			6
195.825		7			7	7		7	7					7					7	7			Ū			
105 8125		8			8	8		8	8		8			8					8	8						
195.8		9			0	9		q	9		9		q	9					<u>q</u>	9						
105 7875		10				10		10		10	10		10	10					10	10						
105 775		11				11		10		10	10		10	11			11		11	10	11				11	
105 7625		10				10		11		10			11	10			10		10		10				10	
195.7025		12				12			19	12				12	1.9		12		12	19	12				12	
195.75		13				13			13	13				13	13		13		13	13	13					
195.7375		14							14	14	_				14				14	14						
195.725		15							15	15					15				15	15						
195.7125		16						16	16	16	16								16	16					16	
195.7		17						17	17	17	17								17	17					17	
195.6875		18						18	18	18	18								18	18	10				18	
195.675		19								19									19	19	19				19	
195.6625		20								20									20	20	20				20	
195.05		21				00		00		21				00					21	21	21				21	
195.6375						22		22		22	-			22					22						22	
195.625						23		23		23				23					23						23	
195.0125						24		24		24				24					24						24	
195.0										20									20						20	
195.5875										20									20						20	
195.5625										21				28					21	28					21	
105.55														20					20	20						
195.5375														30					30	30						
195 525														31					31	50						
195.5125														32					32							
195.5														33					33	33	-33					
195.4875														34					34	34	34					
195.475														35					35	35	35					
195,4625														36					36						36	
195.45														37					37						37	
195.4375														38					38						38	
195.425																			39	39					00	
195,4125																			40	40						
195.4																			41	41						
195.3875																			42	42	42					
195.375																			43	43	43					
195.3625																			44	44	44					
195.35																		45	45	45						
195.3375																		46	46	46						
195.325																		47	47	47						
195,3125																		48	48	48					48	
195.3																		49	49	49					49	
195.2875																		50	50	50					50	
100.2010	1	1	1	1	1	1	1	1	1	1	1	1		1	1	L	1	- 00	00	00		1		1	- 00	

Figure 4.3. FSs allocated in the different links for the different demands in the COST 239 network for BER= 4×10^{-2} .

Demand		OSNR	Modulation	Frequency
d	Path	[dB]	format M	slots
[1-2]	$\{1,3,2\}$	16	16-QAM	1,2,3
[1-3]	{1,3}	18	16-QAM	4,5,6
[1-4]	{1,4}	20.5	64-QAM	1.2
[1-5]	{1.3.5}	17	16-QAM	7.8.9
[1-6]	{1.3.6}	16.5	16-QAM	10.11.12
[1-7]	{1.7}	17.6	16-QAM	1.2.3
[1-8]	{1.3.5.8}	15.7	16-QAM	13.14.15
[1 - 9]	$\{1,3,6,9\}$	15.5	16-QAM	16.17.18
[1 - 10]	$\{1, 4, 10\}$	16.5	16-QAM	345
[1 - 10]	$\{136911\}$	14.6	16-QAM	19 20 21
[2-3]	$\{2,3\}$	20.7	64-QAM	4 5
[2 - 4]	$\{2,3,4\}$	15.7	16-QAM	678
[2 - 5]	{2.5}	21.8	64-QAM	1 2
$\begin{bmatrix} 2 & 6 \end{bmatrix}$	$\{2, 5\}$	19.2	64-0AM	3.4
$\begin{bmatrix} 2 & 0 \end{bmatrix}$	525697	17.2	16-0 AM	5.6.7
[2 - 8]	12,0,0,0,1 J	21.1	64-0AM	1.2
$\begin{bmatrix} 2 & 0 \end{bmatrix}$ [2 - 0]	{2560}	17 3	16-0AM	8910
$\begin{bmatrix} 2 - 9 \end{bmatrix}$ [2 - 10]	$\{2, 5, 6, 7, 10\}$	1/1	16-QAM	11 19 19
$\begin{bmatrix} 2 & -10 \end{bmatrix}$	$\{2, 0, 0, 1, 10\}$	15.0	16-QAM	11,12,10 99.92.94
$\begin{bmatrix} 2 & -11 \end{bmatrix}$ $\begin{bmatrix} 3 & -1 \end{bmatrix}$	<u>{2,3,0,3,11}</u> {2,4]	17.5	16-QAM	$\frac{22,20,24}{1.9.2}$
[3 - 4] [3 - 5]	<u></u> [9,4} ∫Չ Է]	- 11.0 - 9/	64-OAM	1.2,3
$\begin{bmatrix} 3 - 5 \end{bmatrix}$	$\{3,5\}$	24	64 OAM	1,2 1.2
$\begin{bmatrix} 3 - 0 \end{bmatrix}$	$\{3,0\}$	21.9 15.0	16 OAM	1,2 121415
[3-1]	$\{3,0,9,7\}$	10.9	64 OAM	13,14,13
[3-0]	$\{3,3,0\}$	19.0	64 OAM	3,4
[3-9]	$\{3,0,9\}$	19.2	16 OAM	3,4
$\begin{bmatrix} 3 - 10 \end{bmatrix}$	$\{3,4,10\}$	10.1	16 OAM	9,10,11
[3 - 11]	$\{3,0,9,11\}$	16.6	16 OAM	23,20,27 16 17 19
[4-5]	$\{4,3,3\}$	16.0	16 OAM	10,17,10
[4-0]	$\{4, 3, 0\}$	10.1	64 OAM	1.2
[4 - 1]	$\{4, 1\}$	21.2 15.6	16 OAM	1,2 1.2.2
[4-0]	$\{4,0\}$	16.7	16 OAM	1,2,3
[4-9]	$\{4,7,9\}$	10.7	fo-QAM	0,9,10
[4 - 10]	$\{4,10\}$	19.2	04-QAM	1,2
[4 - 11]	$\{4,7,9,11\}$	10.0	10-QAM	10,17,18
[3-0]	$\{0,0\}$	22.0	16 OAM	1,2
[3-1]	{0,0,9,7}	21.0	fo-QAM	28,29,30
[5-8]	$\{0,8\}$	21.9	64-QAM	1,2
[3-9]	$\{0,0,9\}$	19.7	16 OAM	31,32
[0 - 10]	$\{0,0,9,7,10\}$	17.1	10-QAM	33,34,35 26,27,20
$\begin{bmatrix} 0 - 11 \end{bmatrix}$	$\{0,0,9,11\}$	17.0	10-QAM	30,37,38
$\begin{bmatrix} 0 - l \end{bmatrix}$	$\{0,9,7\}$	20.6	10-QAM	39,40,41
$\frac{\left[0-\delta\right]}{\left[6-0\right]}$	$\{0,0\}$	20.0 22.6	64 OAM	1,2 1.2
$\begin{bmatrix} 0 - 9 \end{bmatrix}$	$\{0,9\}$	22.0 16	16 OAM	1,2
$\begin{bmatrix} 0 - 10 \end{bmatrix}$	$\{0,9,7,10\}$	10.9	64 OAM	42,43,44 11 19
[0 - 11]	$\{0,9,11\}$	15.0	16 OAM	11,12
$[1 - \delta]$	$\{7,9,0,8\}$	10.4	64 OAM	40,40,47
[1 - 9]	$\{7,9\}$	19.1	64 OAM	1,2
[1 - 10] [7 - 11]	$\{7,10\}$	22.0	16 O M	1,2
$\begin{bmatrix} l - 11 \end{bmatrix}$	$\{7,9,11\}$	10	$\frac{10 \text{-QAM}}{16 \text{-}\text{OAM}}$	40,49,30
[0 - 9]	$\{0,0,9\}$	14.0	10-QAM	40,49,50
$[\delta - 10]$	$\{0,11,10\}$	14.8	10-QAM	1,2,3
[0 - 11]	$\{8,11\}$	17.0	16 QAM	4,5,6
[9 - 10]	$\{9, 7, 10\}$	17.2	10-QAM	19,20,21
[9 - 11]	$\{9,11\}$	1.0	04-QAM	1,2
[10 - 11]	$\{10,11\}$	18	10-QAM	4,5,6

Chapter 4 C+L Multiband Network Design Considering Physical Layer Impairments

Table 4.6. RMSA solution for the COST 239 optical network with BER= 4×10^{-2} .

61

By analyzing the results shown in Table 4.6 and Figure 4.3, it is observed that none of the demands are blocked, and that the lowest modulation format used is the 16-QAM, which is also the most used (in a total of 55 paths, 35 paths use the 16-QAM, which corresponds to 63.6%). The 64-QAM has been attributed a few times for the paths with shorter links (higher OSNR) and usually occupying the first FSs in the C-band. The QPSK modulation format has not been necessary, because the minimum ROSNR was satisfied by the higher modulation formats. In particular, the lowest OSNR achieved in all paths is 14.1 dB, for demand d=[2-10], which is 0.8 dB above the ROSNR for the 16-QAM. This path distance is 1356 km, the second longest path used. The longest path with a demand assigned has a 1452 km distance corresponding to d=[1-1)11]. Notice that the longest path of 1815 km has not been attributed, since the direct link has been assigned to demand d=[1-4]. The demand with the highest OSNR, of 24 dB, is demand d=[3-5]. This demand uses the direct path with the shortest link (171 km) in the network. From Figure 4.3, it can be observed that links e=[1,2], e=[5,11], e=[8,9], and e=[9,10] are not used, since these links are some of the longest links in the network, and lead to an enhanced performance degradation due to PLIs in the network. The most used link is e=[6,9] and it is used by 18 paths for a total of 50 FSs assigned, which is the maximum number of FSs used in this solution. In this link 76.4% of the FSs allocated are assigned to paths with the 16-QAM modulation format, whereas 14.6% correspond to paths with 64-QAM format. The reasons for such usage are its short distance (251 km) and the fact that this link is located in the center of the network. The RMSA solution presented in Table 4.6 and Figure 4.3 for the COST 239 network considering a BER $=4 \times 10^{-2}$ allocates only 5.8% of the 862 FSs available, using only 50 FSs in the C-band, without requiring a multiband solution, due to the low demand volume.

For the solution presented in Table 4.6 and Figure 4.3, the impact caused by the crosstalk, filtering, and system aging is not taken into account. To assess the solution of the RMSA problem with these PLIs, the residual margin has been calculated with equation (3.26). From these calculations it results that in eight paths a positive residual margin was not achieved, and consequently, these paths must use a lower modulation format. The paths that do not fulfill the residual margin correspond to the demands: d=[1-11], d=[2-6], d=[2-10], d=[3-9], d=[4-10], d=[5-9], d=[6-11], and d=[7-9]. For demands d=[1-11] and d=[2-10], the new assigned modulation format is the QPSK, with four FSs allocated. For the other six demands, the new modulation format is 16-QAM, occupying three FSs. Since, now, these paths require more FSs, the total number of FSs allocated in this RMSA solution is 55, which corresponds to 6.4% of the FSs in the C+L multiband spectrum.

Next, we are going to solve the same RMSA problem using the COST239 network, but considering a $BER=10^{-3}$, typically used for HD-FEC. The ROSNRs for this BER are shown in Table 3.17. The parameters used for this study are the same presented in Tables 4.4 and 4.5. Table 4.7 and Figure 4.4 presents the solution for this RMSA problem.

From Table 4.7 and Figure 4.4, it is observed that with this BER, the OSNRs at the end of each path are lower than with BER= 4×10^{-2} (Table 4.6). Due to the reduced OSNRs and higher ROSNR, the 64-QAM format is no longer a possible solution and the QPSK becomes the most used modulation format in the network, used in 63.6% of the paths. Therefore, the highest and lowest OSNRs are obtained for the same demands as in the scenario with BER= 4×10^{-2} , but using lower modulation formats, due to the lower OSNRs. The highest OSNR achieved in this solution is 23.6 dB in demand d=[3-5]. The lowest OSNR of 12.4 dB is achieved for demand d=

Demand		OSNR	Modulation	Frequency
d	Path	[dB]	format M	slots
[1-2]	$\{1,3,2\}$	14.4	QPSK	1,2,3,4
[1-3]	{1,3}	16.4	QPSK	5,6,7,8
[1-4]	{1,4}	20.1	16-QAM	1.2.3
[1-5]	{1.3.5}	15.3	OPSK	9.10.11.12
[1-6]	$\{1,3,6\}$	14.9	OPSK	13.14.15.16
[1-7]	$\{1, 7\}$	15.9	OPSK	123,12,120,120
[1-8]	$\{1358\}$	14.0	OPSK	17 18 19 20
[1 - 9]	$\{1,3,6,9\}$	13.9	OPSK	21 22 23 24
[1 - 10]	$\{1, 4, 10\}$	14.8	OPSK	4567
[1 - 10]	$\{1, 1, 10\}$	12.0	OPSK	25 26 27 28
[2 - 3]	<u> </u>	20.3	16-0 M	567
$\begin{bmatrix} 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 - 4 \end{bmatrix}$	$\{2, 3, 4\}$	14.0	OPSK	891011
$\begin{bmatrix} 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 2 & 5 \end{bmatrix}$	(2, 0, 4)	21.6	16 OAM	1.2.3
[2-5]	12,0f	18.0	16 OAM	1,2,5
$\begin{bmatrix} 2 - 0 \end{bmatrix}$	$\{2, 5, 0\}$	10.9	OPSK	4,5,0
$\begin{bmatrix} 2 & -1 \end{bmatrix}$	<u>{</u> 2,3,0,3,7}	10.0 20.8	$\frac{QISK}{160M}$	1.0,9,10
$\begin{bmatrix} 2 - 0 \end{bmatrix}$	{2,0} {2,5,0}	20.0 15.6	ODGV	1,2,0 11 10 19 14
$\begin{bmatrix} 2 - 9 \end{bmatrix}$	$\{2, 5, 0, 9\}$	10.0	Qr SN ODGV	11,12,13,14 15 16 17 10
$\begin{bmatrix} 2 - 10 \end{bmatrix}$	$\{2, 5, 0, 7, 10\}$	14.4	Qr3N ODGV	10,10,17,18
[2-11]	$\{2,5,0,9,11\}$	14.3	QPSK	29,30,31,32
$\begin{bmatrix} 3-4 \end{bmatrix}$	$\{3,4\}$	10.8	UPSK 16 OAM	1,2,3,4
$\begin{bmatrix} [3-5] \\ [2-6] \end{bmatrix}$	$\{3,0\}$	23.0	$\frac{10 \text{-} \text{QAM}}{16 \text{-} \text{QAM}}$	1,2,3
[3-6]	$\{3,0\}$	21.7	16-QAM	1,2,3
[3-i]	$\{3, 6, 9, 7\}$	14.3	QPSK	17,18,19,20
[3-8]	$\{3,5,8\}$	19.5	16-QAM	4,5,6
[3-9]	$\{3,6,9\}$	19.0	16-QAM	4,5,6
[3-10]	$\{3,4,10\}$	13.4	QPSK	12,13,14,15
[3-11]	$\{3,6,9,11\}$	15.6	QPSK	33,34,35,36
[4-5]	$\{4,3,5\}$	14.8	QPSK	21,22,23,24
[4-6]	{4,3,6}	14.4	QPSK	29,30,31,32
[4 - 7]	{4,7}	20.8	16-QAM	1,2,3
[4-8]	{4,8}	13.8	QPSK	1,2,3,4
[4-9]	{4,7,9}	15.0	QPSK	11,12,13,14
[4 - 10]	$\{4,10\}$	18.9	16-QAM	1,2,3
[4 - 11]	$\{4,7,9,11\}$	13.8	QPSK	21,22,23,24
[5-6]	$\{5,6\}$	22.2	16-QAM	1,2,3
[5-7]	$\{5,6,9,7\}$	14.3	QPSK	37,38,39,40
[5-8]	${5,8}$	21.6	16-QAM	1,2,3
[5-9]	$\{5,6,9\}$	19.2	16-QAM	41,42,43
[5-10]	$\{5,6,9,7,10\}$	13.4	QPSK	44,45,46,47
[5-11]	$\{5,6,9,11\}$	15.6	QPSK	48,49,50,51
[6-7]	$\{6,9,7\}$	15.5	QPSK	52,53,54,55
[6-8]	$\{6,8\}$	20.1	16-QAM	1,2,3
[6-9]	$\{6,9\}$	22.3	16-QAM	1,2,3
[6-10]	$\{6,9,7,10\}$	14.4	QPSK	$56,\!57,\!58,\!59$
[6-11]	$\{6,9,11\}$	19.0	16-QAM	60,61,62
[7 - 8]	$\{7, 9, 6, 8\}$	13.7	QPSK	$63,\!64,\!65,\!66$
[7-9]	$\{7,9\}$	18.8	16-QAM	1,2,3
[7 - 10]	$\{7,10\}$	22.3	16-QAM	1,2,3
[7 - 11]	$\{7,9,11\}$	15.4	QPSK	67,68,69,70
[8-9]	$\{8,6,9\}$	16.3	QPSK	67,68,69,70
[8-10]	$\{8,11,10\}$	13.1	QPSK	1,2,3,4
[8-11]	{8,11}	15.9	QPSK	5,6,7,8
[9-10]	$\{9,7,10\}$	15.5	QPSK	25,26,27,28
[9-11]	$\{9,11\}$	21.8	16-QAM	1,2,3
[10 - 11]	$\{10,11\}$	16.3	QPSK	5,6,7,8

Chapter 4 C+L Multiband Network Design Considering Physical Layer Impairments

Table 4.7. RMSA solution for the COST 239 optical network with $BER=10^{-3}$.

63

	Link e																									
FS [THz]	[1,2]	[1,3]	[1,4]	[1,7]	[2,3]	[2,5]	[2,8]	[3,4]	[3,5]	[3,6]	[4,7]	[4,8]	[4,10]	[5,6]	[5,8]	[5, 11]	[6,7]	[6,8]	[6,9]	[7,9]	[7, 10]	[8,9]	[8,11]	[9,10]	[9,11]	[10, 11]
195.9		1	1	1	1	1	1	1	1	1	1	1	1	1	1	([,] ,	1 / 1	1	1	1	1	1 / 1	1	1 / 1	1	1
195.8875		2	2	2	2	2	2	2	2	2	2	2	2	2	2			2	2	2	2		2		2	2
195.875		3	3	3	3	3	3	3	3	3	3	3	3	3	3			3	3	3	3		3		3	3
195.8625		4	4	4	4	4		4	4	4		4	4		4				4				4			4
195.85		5	5		5	5			5	5			5		5				5				5			5
195.8375		6	6		6	6			6	-6			6		6				6				6			6
195.825		7	7		7	7							7	7					7	7			7			7
195.8125		8			8	8		8						8					8	8			8			8
195.8		9			9	9		9						9					9	9						
195.7875		10			10	10		10						10					10	10						
195.775		11			11	11		11			11		10	11					11	11						
195.7625		12				12		12		12	12		12	12					12	12						
195 7375		14				14		14		14	14		14	14					14	14						
195.725		15				15		15		15			15	15			15			11	15					
195.7125		16				16				16				16			16				16					
195.7		17				17			17	17				17	17		17		17	17	17					
195.6875		18				18			18	18				18	18		18		18	18	18					
195.675		19							19	19					19				19	19						
195.6625		20							20	20					20				20	20						
195.65		21						21	21	21	21								21	21					21	
195.6375		22						22	22	22	22								22	22					22	
195.625		23						23	23	23	23								23	23					23	
195.6125		24 25				-		24	24	24 95	24								24 25	24 25	- 25				24 25	
195.5875		26								26									26	26	26				26	
195.575		27								27									27	27	27				27	
195.5625		28								28									28	28	28				28	
195.55						29		29		29				29					29						29	
195.5375						30		30		30				30					30						30	
195.525						31		31		31				31					31						31	
195.5125						32		32		32				32					32						32	
195.5										33									33						33	
195.4875										34									34						34	
195.475										35									35						35	
195.4625										36				97					36	27					36	
195.45														31					31	31						
195.4575														- 30 - 30					- 30 - 30	- 30 - 30						
195.425														40					40	40						
195.4														41					41	10						
195.3875														42					42							
195.375														43					43							
195.3625														44					44	44	44					
195.35														45					45	45	45					
195.3375														46					46	46	46					
195.325														47					47	47	47					
195.3125														48					48						48	
195.3														49					49						49	
195.2875														50					50						50	
195.275									-			-		-51					52	52					- 01	
195.25																			53	53						
195.2375																			54	54						
195.225																			55	55						
195.2125																			56	56	56					
195.2																			57	57	57					
195.1875					<u> </u>														58	58	58					
195.175																			59	59	59				00	
195.1625					-	-					-								60 61						60 61	
195.1375																			62						62	
195.125					-													63	63	63					92	
195.1125																		64	64	64						
195.1																		65	65	65						
195.0875																		66	66	66						
195.075																		67	67	67					67	
195.0625																		68	68	68					68	
195.05																		69	69	69					69	
195.0375				1	1	1				l i	1		1	1			1	70	70	70		1	1	1	70	

64

Figure 4.4. FSs allocated in the different links for the different demands in the COST 239 network for BER= 10^{-3} .

[2-10], showing a 1.7 dB OSNR reduction in comparison to the BER= 4×10^{-2} case, that imposes the use of the QPSK, instead of the 16-QAM in this path. The paths list used in the two solutions are the same, so the four links e=[1,2], e=[5,11], e=[8,9], and e=[9,10] remain unused in the solution with BER= 10^{-3} , as shown in Figure 4.4. With this BER, the ROSNRs are higher (Table 3.17), and, hence, the modulation formats used require more FSs. In particular, this solution allocates 70 FSs, twenty more than in the results shown in Figure 4.3, allocating 8.12% of the total FSs available. From Figure 4.4, it can be observed that the most used link is again e=[6,9], with 68 FSs allocated, corresponding to 7.9% of the total FSs available in the C+L multiband solution.

Then, we have also solved the RMSA problem for other network topologies, NSFNET, UBN and CONUS 30, which have more nodes, and consequently, more demands than the COST 239 network. The detailed solutions for these RMSA problems, are presented in Appendix C.7. Table 4.8 indicates the number of FSs allocated in the different networks for the BERs= 4×10^{-2} , 10^{-2} , and 10^{-3} , the blocked demands, the demands served, and also shows the demands that achieved the highest and lowest OSNRs, as well as the longest path served.

Notrroul	DED	#Blocked	#Demands	#FSs	Demand with the	Demand with the	Demand with the	
network	DER	demands	served	allocated	highest OSNR	lowest OSNR	longest path p used	
	4×10^{-2}	0	55	50	[3-5]→24.0 dB	[2-10]→14.1 dB	[1 11] \1459 lm	
	4×10	0%	100%	5.8%	64-QAM	16-QAM	[1-11]→1452 KIII	
COST 220	1×10^{-2}	0	55	62	[3-5]→24.0 dB	[2-10]→12.4 dB	$[1, 11] \times 1459$ km	
0051 259	1×10	0%	100%	7.2%	64-QAM	QPSK	[1-11]→1452 KIII	
	1×10^{-3}	0	55	70	[3-5]→23.6 dB	[2-10]→12.4 dB	[1_11]→1452 km	
	1×10	0%	100%	8.1%	16-QAM	QPSK	[1-11]-71402 KIII	
	4×10^{-2}	2	89	114	[10-14]→22.8 dB	[10-11]→7.2 dB	$[10, 11] \rightarrow 4467 \text{ km}$	
	4×10	2.2%	97.8%	13.2%	64-QAM	QPSK	[10-11]→4407 KIII	
NSENET	1×10^{-2}	32	57	71	[10-14]→22.8 dB	[6-13]→9.6 dB	[6 14]_\2885 km	
INSPINE I	1×10	35.2%	64.8%	8.2%	64-QAM	QPSK	[0-14]-72000 KIII	
	1×10^{-3}	62	29	28	[10-14]→22.6 dB	[6-8]→12.3 dB	$[8, 13] \rightarrow 1545 \text{ km}$	
	1×10	68.1%	31.9%	3.2%	16-QAM	QPSK	[0-10] -> 1040 KIII	
	4×10^{-2}	66	210	133	$[3-4] \rightarrow 22.6 \text{ dB}$	$[2-14] \rightarrow 7.1 \text{ dB}$	[2-14], [5-17],	
	4×10	23.9%	76.1%	15.4%	64-QAM	QPSK	$[5-18] \rightarrow 4150 \text{ km}$	
	1×10^{-2}	168	108	44	[3-4]→22.6 dB	$[16-24] \rightarrow 9.5 \text{ dB}$	[2-9],	
UBN	1×10	60.9%	39.1%	5.1%	64-QAM	QPSK	[16-24]→2300 km	
		232	44	16	[3-4]→22.5 dB	[11-15],	[11-15]	
	1×10^{-3}	84.1%	15.9%	1.9%	16-OAM	[15-20]→12.0 dB	$[15-20] \rightarrow 1300 \text{ km}$	
		04.170	10.070	1.070	10 @1101	QPSK	[10 20] /1000 Mil	
	4×10^{-2}	91	344	350	[24-25]→27.9 dB	[13-28]→7.6 dB	[14-15]→4850 km	
	1/10	20.9%	79.1%	40.6%	64-QAM	QPSK	[14 10] /4000 MII	
CONUS 30	1×10^{-2}	249	186	156	[24-25]→27.9 dB	$[1-26] \rightarrow 9.5 \text{ dB}$	[8-13]→2835 km	
	1/10	57.2%	42.8%	18.1%	64-QAM	QPSK	[0 10] 72000 km	
	1×10^{-3}	350	85	73	[24-25]→27.9 dB	$[6-26] \rightarrow 12.0 \text{ dB}$	$[1-16] \rightarrow 1602 \text{ km}$	
	1/10	80.5%	19.5%	8.5%	64-QAM	QPSK	[1 10] / 1002 Kiii	

Table 4.8. RMSA solution for the real network topologies COST 239, NSFNET, UBN, and CONUS 30, for three different BERs - Part 1.

In Table 4.8, the highest OSNR is always obtained for the same demand in the networks considered, independently of the BER, whereas that the lowest OSNR is reached for different demands for the various BERs considered. The highest OSNR is obtained in all four networks in the direct path that uses the shortest link in the network. On the other hand, the lowest OSNR is obtained in one of the longest paths in the network, that has not been blocked due to not fulfilling the ROSNR. In the three larger networks, the path reach is similar for all BERs, the maximum distance with $BER=4\times10^{-2}$ is around 4000 km, for a $BER=10^{-2}$ is about 2500 km, and around 1500 km for $BER=10^{-3}$. From Table 4.8, it can also be observed that for the

three larger networks, the number of blocked demands increases with the decrease of the BER considered, and the total number of FSs used decreases with the increase of the BER.

Having in mind the number of blocked demands and FSs used presented in Table 4.8, the percentage of blocked demands as a function of the BER, for the four network topologies considered in this section (solid lines), as well as the percentage of allocated FSs as a function of the BER (dashed lines) are shown in Figure 4.5.

Figure 4.5. Blocked demands percentage and allocated FSs percentage for three BERs, 4×10^{-2} , 10^{-2} , and 10^{-3} .

From Figure 4.5, it can be observed that the UBN and CONUS 30 networks have more than 50% of the demands blocked when the BER is 10^{-2} or lower, and that when BER= 10^{-3} , the NSFNET network blocks 68.1% of the demands and the UBN and CONUS 30 reach an undesirable 80% blocking, due to their larger size and higher ROSNR. The number of blocked demands increases since the OSNRs of the candidate paths do not guarantee the ROSNR for lower BERs. For all three BERs, the network with the highest percentage of blocked demands is the UBN optical network. In the COST 239 network, all demands were satisfied.

Figure 4.5 also shows the FSs used percentage (dashed lines) for the BERs analyzed in this section. As observed in Figure 4.5, the COST 239 network uses more FSs as the BER decreases, because lower BERs require the utilization of a lower modulation format (see Table 4.9), which consequently requires more FSs. The opposite happens for the other three networks, since the number of blocked demands increases for lower BERs. As observed in Figure 4.5, none of the networks use more than 40% of the multiband spectrum. Thus, the reason for blocking the demands is the insufficient OSNR, and not the unavailability of FSs. The maximum number of FSs allocated is 350 in the CONUS 30 network, which corresponds to a 40.6% total spectrum allocation, leaving more than half of the multiband spectrum available, being this network, the only network that assigns FSs in the L-band spectrum using only 5 FSs in this band.

In Table 4.9, we present the unused links, the link with most paths assigned and the link with the most FSs allocated in the network, as well as the usage percentage of the three modulation formats for the different BERs considering $R_{b,i}=100$ Gbps, as in Table 4.8.

Network	BEB	Link e with the	Link e with the	Unused link e	#Paths using	#Paths using	#Paths using
1100000111	BBR	most paths assigned	most #FSs allocated	o nubou nini o	64-QAM format	16-QAM format	QPSK format
	4×10^{-2}	[6,9]=18 paths	[6,9]=50 FSs	[1,2], [5,11]	20 paths	35 paths	0 paths
	4×10	32.7%	5.8%	[8,9], [9,10]	36.4%	63.6%	0%
COST 220	1×10^{-2}	[6,9]=18 paths	[6,9]=62 FSs	[1,2], [5,11]	10 paths	32 paths	17 paths
0051 259	1×10	32.7%	7.2%	[8,9], [9,10]	10.9%	58.2%	30.9%
	1×10^{-3}	[6,9]=18 paths	[6,9]=68 FSs	[1,2], [5,11]	0 paths	20 paths	35 paths
	1×10	32.7%	7.9%	[8,9], [9,10]	0%	36.4%	63.6%
	4×10^{-2}	[8,9]=30 paths	[8,9]=113 FSs		4 paths	28 paths	57 paths
	4×10	33.0%	13.1%	-	4.4%	30.8%	62.6%
	1×10^{-2}	[8,9]=18 paths	[8,9]=71 FSs	[1 0]	1 paths	12 paths	46 paths
NSFNET	1×10	19.8%	8.2%	[1,0]	1.1%	13.2%	50.5%
		[8,9], [9,10],	[9.0] 15 FSa	[1.9] [1.11] [9.5]	0 paths	4 noths	25 paths
	1×10^{-3}	[10,14]=6 paths	[0,9] = 10 + 58 1 70%	[1,0], [1,11], [2,0], [6,10], [11,10], [10,14]	0 paths	4 paths 4 40%	25 paths 97 5%
		6.6%	1.170	[0,12], [11,12], [12,14]	070	4.470	21.070
	4×10^{-2}	[12,16]=33 paths	[12,16]=131 FSs	[2 5] [2 7] [15 10]	2 paths	46 paths	162 paths
	4×10	12.0%	15.2%	[3,3], [3,7], [13,19]	0.7%	16.6%	58.7%
		[3,4], [4,7],	[4,7],		1 noth	0 paths	08 paths
UBN	1×10^{-2}	[21,22]=10 paths	[21,22]=39 FSs	[3,5], [3,7], [15,19]	0.4%	3 patits	35 5%
OBN		3.6%	4.5%		0.470	0.070	55.570
		[3,4],	[3,4],	[3 5] [3 7] [6 11]	0 paths	2 naths	12 naths
	1×10^{-3}	[21,22]=4 paths	[21,22] = 15 FSs	[0,0], [0,1], [0,11], [0,11], [0,11]	0%	0.7%	15.9%
		1.4%	1.7%	[3,11], [10,13]	070	0.170	10.270
	4×10^{-2}	[5,30] = 75 paths	[5,30] = 289 FSs		19 paths	73 paths	252 paths
	4×10	17.2%	33.5%	-	4.4%	16.8%	57.9%
CONUS 30 1×10^{-2}	[2,30]=35 paths	[16,30]=132 FSs		7 paths	35 paths	144 paths	
	1 1 10	8.0%	15.3%	-	1.6%	8.0%	33.1%
	[2,30]=19 paths	[2,30]=71 FSs	[2 10] [21 27] [22 27]	2 paths	17 paths	66 paths	
1×10 °		4.4%	8.23%	[2,19], [21,27], [22,27]	0.5%	3.9%	15.2%

Chapter 4 C+L Multiband Network Design Considering Physical Layer Impairments

Table 4.9. RMSA solution for the real network topologies COST 239, NSFNET, UBN, and CONUS 30, for three different BERs - Part 2.

From Table 4.9, it can be observed that, in general, the number of paths utilized in the most used link is higher for higher BERs, since the other paths with lower OSNRs tend to be blocked (i.e. the ROSNR is not achieved) when the BER is lower. The link with the most paths assigned, in general, is also the one with the most FSs allocated, however, in some cases it is not. For example, in the CONUS 30 network, for BER= 10^{-2} , there are 35 paths assigned to link e=[2,30], but this link has allocated 130 FSs, and the maximum number of FSs allocated in this solution is 132 for link e = [16,30]. In all the solutions obtained, the maximum number of FSs assigned to a link is 289 (CONUS 30 network), which represents 33.5% of the spectrum available on that link. Generally, the number of unused links increases for lower BERs, since the unused links are some of the longest in the network, thus originating a higher OSNR degradation, and ultimately not satisfying the ROSNR for those BERs. In Table 4.9, it can be also observed that in the larger networks (NSFNET, UBN, and CONUS 30), the QPSK is the most preponderant modulation format for the three BERs, and as the BER decreases, less paths use higher modulation formats. Only in the CONUS 30 network, the 64-QAM format is assigned when the $BER=10^{-3}$, and the two paths assigned with this format use direct links that do not need in-line amplification. On the other hand, the COST 239 network is the only one that does not use the QPSK format when BER= 4×10^{-2} .

The number of FSs required for each modulation format increases for information bit rates higher than 100 Gbps, since more bandwidth is required to transmit the signal. With a 200 Gbps information bit rate and assuming a symbol rate of 64 Gbaud, for the QPSK, 7 FSs are required to accommodate the signal, 4 FSs for the 16-QAM with 32 Gbaud and 3 FSs for the 64-QAM with 21.3 Gbaud. As previously, a guard band FS is considered to avoid channel interference. With this information bit rate, we have also solved the RMSA problem for the CONUS 30 network with BER= 4×10^{-2} , and in this case, 53 more demands are blocked of a total of 144 demands, than in the solution presented in Table 4.8, due to the unaccomplishment of the ROSNR. Moreover, 513 FSs are required, which corresponds to 59.5% of the 862 FSs available. Hence, this solution uses 18.9% more spectrum than with $R_{b,i}=100$ Gbps, requiring 168 FSs in the L-band (32.2% of the available).

4.5. Conclusion

In this chapter, we developed and studied planning tools to solve the RWA and RMSA problems in optical multiband networks using fixed and flexible grids. First, we compared heuristic and ILP solutions of the RWA problem in real network topologies considering a static optical network scenario using the C+L multiband with a fixed grid. We have concluded that the number of available candidate paths influences the optimum number of wavelengths required. In particular, our one-step ILP solution reaches the optimum value of the number of wavelengths with a maximum of 4 candidates paths, whereas the two-step heuristic approach that only uses one candidate path does not reach the optimum number of wavelengths. However, the computation time of the heuristics approach is always faster (less than 1s) than the one obtained with the ILP approach, that can be more than 2 hours, and can not achieve the optimal solution, for networks with a high number of nodes, as the CONUS 30 network due to computational constraints.

To study the RMSA problem in a flexible grid C+L multiband network, we developed a simulator in Matlab and applied it to four network topologies (COST 239, NSFNET, UBN, and CONUS 30), considering three different BERs and a 100 Gbps information bit rate. In the COST 239 network, we observed that using low BERs leads to the utilization of lower modulation formats, which require the assignment of more FSs, e.g. for $BER=4\times10^{-2}$, 50 FSs are allocated, while for BER= 10^{-3} , 70 FSs are required. However, in larger networks, the decrease of the BER increases the number of blocked demands, and, consequently, the number of FSs allocated becomes lower. Since the paths are longer, the PLIs introduce more degradation to the paths OSNR, and the ROSNR is not satisfied for that specific BER. The maximum percentage of FSs assigned in the C+L multiband is 40.6% in the CONUS 30 network, which is the only network that assigns FSs in the L-band. It can be concluded, that in the four networks studied, the demand volume can grow since there are a lot of unused FSs. For higher information bit rates, (more than 100 Gbps) more FSs are required, even though the percentage of blocked demands becomes higher. Regarding the attributed modulation formats, only in the COST 239 network, for BER= 4×10^{-2} , the QPSK format is not used. However, this is the most used format in the networks with more nodes and longer links.

CHAPTER 5

Conclusions and Future Work

In this chapter, we present this dissertation final conclusions and some suggestions for future work are proposed.

5.1. Final conclusions

In this dissertation, we studied heuristic and ILP formulations to solve the network planning problem in static C+L multiband networks with fixed and flexible grids aware of PLIs. The goal in static network planning problems is to minimize the optical spectrum used to satisfy all traffic demands.

In Chapter 2, we reviewed the most common ILP formulations and the heuristic algorithms used to solve the network planning problems. In particular, we have started by reviewing two ILP formulations for routing, the Link-Path and the Node-Link formulations. The Node-Link formulation requires less pre-processing, since it always considers all possible paths guaranteeing the optimal solution. However, this formulation can be very time consuming for networks with a large number of nodes, since a lot of possible paths need to be checked. For this reason, we choose to use the Link-Path formulation in the remaining studies, since it considers only a predefined number of paths and typically the best paths are easily computed, ensuring also the optimum solution for the problem. Based on this formulation, we reviewed two restoration design problems. In both problems, the disjoint backup paths are selected before the failure happens. Also, based on the Link-Path formulation, we have reviewed an ILP formulation to solve the RWA problem in WDM optical networks in a single step, meaning that the routing and wavelength assignment problems are solved at the same time. Besides, the ILP formulations reviewed, this chapter also briefly reviews some of the most common heuristic algorithms used for routing, like the Fixed-Path and the Alternative-Path, and for spectrum assignment such as, First-Fit, Most Used and Random algorithms. Chapter 2 ends with a briefly planning study where both an heuristic and ILP formulations are used to find the capacity of each link in the network. It has been concluded that for the studied network scenario, the ILP solution presents a more evenly distributed link capacity.

Chapter 3 is focused on the PLIs study that degrade the path OSNR in a C+L multiband network. The PLIs considered are the ASE noise power induced by the path optical amplification and the NLI noise due to the Kerr effect calculated with closed-form formulas based on the Gaussian noise model with and without a modulation format correction and in the presence of the SRS effect. For the examples studied, among these PLIs, the ASE noise degrades the path OSNR more 7 dB than the NLI, when the channel launch power is not optimized. With optimized channel launch power, the difference between the OSNRs is 2 dB. The modulation format correction allows for a better estimation of the OSNR at the end of the paths, because the NLI coefficient is not as overestimated, especially for the QPSK format. To guarantee the feasibility of the path with the modulation format selected, the residual margin is also calculated. The residual margin of a particular path takes in consideration the ROSNR, the calculated OSNR, and a system margin that includes the impact of crosstalk, filtering, and the system components aging. When the residual margin is not fulfilled, a lower modulation format has to be considered for that particular path. So, in this chapter, we have also assessed the residual margin for various paths in the COST239 network. We have concluded that higher BERs (due to stronger FECs) have lower ROSNRs and allow to utilize higher modulation formats in the path.

Chapter 4 had two main goals. The first one was to compare, assuming a static network scenario and a fixed grid, the performance of a two step RWA heuristic formulation with a single step RWA ILP formulation (presented in Chapter 2, Section 2.2.4) in several network topologies (COST 239, NSFNET, UBN and CONUS 30). It has been concluded that the ILP formulation gives always the optimum number of wavelengths, as long the number of candidate paths considered is enough. The number of wavelengths obtained with the heuristic solution, which only uses one candidate path, never reaches the optimum value. However, the computation time is always less than a second with this solution, whereas with the ILP solution, the computation time can achieve more than 2 hours. The second goal of Chapter 4 was to develop a simulator in Matlab for studying the RMSA problem in C+L multiband networks, considering several real topologies. By analyzing the RMSA problem solutions, with 100 Gbps channels, we have observed that the allocation of FSs with different BERs leads to different behaviors in smaller networks with shorter links and a lower number of nodes and, in larger networks, with longer links and more nodes. In smaller networks (COST 239), the decrease of the BER increases the number of FSs allocated, since these solutions may use lower modulation formats. In contrast, in larger networks (UBN, CONUS 30), lower BERs led to less FSs allocated, due to higher blocking of demands. In these solutions only the CONUS 30 network assigned some FSs in the L-band, in the highest BER studied. With higher information bit rates, 200 Gbps, more spectrum is assigned, since more FSs are required to transmit the signal, especially for the QPSK format case, even though more demands are blocked due to the higher path OSNR degradation in networks with longer paths, i.e. lower OSNR. It is concluded that, in the larger networks, the most used modulation format is always the QPSK format. We also concluded, that the link that is used by most paths is not always the one with more FSs assigned.

5.2. Future work

Some suggestions for future work are the following:

- Improve the developed simulator in order to solve the simplifications used in this work. In particular, consider the real network utilization, instead of assuming that all FSs are being used when the NLI is calculated. Also, consider the NLI calculation in the corresponding FSs and not on the center channel [1], [22].
- Improve the simulator to operate in networks with dynamic traffic demands [13].
- Improve the simulator in order to deal with other bands, such as the S-band [29].
- Extend the ILP formulation used in Chapter 4, Section 2, to solve the RMSA problem aware of PLIs in a multiband network with flexible grid and compare its performance with the ones obtained in this work considering heuristic tools.
- Use a more rigorous approach than the one used in Chapter 3, for assessing the filtering and crosstalk penalties introduced by the ROADM nodes.

References

- M. Mehrabi, H. Beyranvand, and M. Emadi, "Multi-band elastic optical networks: Inter-channel stimulated Raman scattering-aware routing, modulation level and spectrum assignment," *Journal of Lightwave Technology*, vol. 39, pp. 3360–3370, 2021.
- [2] N. Sheikh, E. Paz, J. Pinto, and A. Beghelli, "Multi-band provisioning in dynamic elastic optical networks: A comparative study of a heuristic and a deep reinforcement learning approach," 25th International Conference on Optical Network Design and Modelling, ONDM 2021, 2021.
- [3] A. Ferrari, A. Napoli, J. Fischer, N. Costa, A. D'Amico, J. Pedro, W. Forysiak, E. Pincemin, A. Lord, A. Stavdas, J. Gimenez, G. Roelkens, N. Calabretta, S. Abrate, B. Sommerkorn-Krombholz, and V. Curri, "Assessment on the achievable throughput of multi-band ITU-T G.652.D fiber transmission systems," *Journal* of Lightwave Technology, vol. 38, pp. 4279–4291, 2020.
- [4] N. Sambo, A. Ferrari, A. Napoli, N. Costa, J. Pedro, B. Sommerkorn-Krombholz, P. Castoldi, and V. Curri, "Provisioning in multi-band optical networks," *Journal of Lightwave Technology*, vol. 38, pp. 2598–2605, 2020.
- [5] A. Morea, J. Renaudier, T. Zami, A. Ghazisaeidi, and O. Bertran-Pardo, "Throughput comparison between 50-GHz and 37.5-GHz grid transparent networks," *Journal of Optical Communications and Networking*, vol. 7, no. 2, pp. A293–A300, 2015.
- [6] J. Simmons, Optical Network Design and Planning. Optical Networks, Springer International Publishing, 2 ed., 2014.
- [7] M. Pioro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Networks. Elsevier Science, 2004.
- [8] D. Chadha, Optical WDM Networks: From Static to Elastic Networks. IEEE Press, Wiley, 2019.
- [9] P. Saengudomlert, "Optical networks handout 8." University Lecture, 2019.
- [10] B. Chatterjee, N. Sarma, P. Sahu, and E. Oki, Routing and Wavelength Assignment for WDM-based Optical Networks: Quality-of-Service and Fault Resilience. Lecture Notes in Electrical Engineering, Springer International Publishing, 2016.
- [11] L. Cancela, "Slides from the course in optical networks. In *Telecommunications and Computer Engineering MSc.*" Iscte-Instituto Universitário de Lisboa, 2020.
- [12] I.-T. R. G. Telecommunication Standardization Sector of ITU, G.694.1, "Spectral grids for WDM applications: DWDM frequency grid," 2020.
- [13] D. Uzunidis, E. Kosmatos, C. Matrakidis, A. Stavdas, and A. Lord, "Strategies for upgrading an operator's backbone network beyond the c-band: Towards multi-band optical networks," *IEEE Photonics Journal*, vol. 13, no. 2, pp. 1–18, 2021.
- [14] J. Pedro, "Designing transparent flexible-grid optical networks for maximum spectral efficiency," Journal of Optical Communications and Networking, vol. 9, pp. C35–C44, 2017.
- [15] J. Rebola and A. Cartaxo, "Slides from the course in advanced fiber optic communications systems. In *Telecommunications and Computer Engineering MSc.*" Iscte-Instituto universitário de Lisboa, 2020.
- [16] M. Niksirat, S. Hashemi, and M. Ghatee, "Branch-and-price algorithm for fuzzy integer programming problems with block angular structure," *Fuzzy Sets and Systems*, vol. 296, pp. 70–96, 2016.
- [17] D. Semrau, R. Killey, and P. Bayvel, "A closed-form approximation of the Gaussian noise model in the presence of inter-channel stimulated Raman scattering," *Journal of Lightwave Technology*, vol. 37, pp. 1924– 1936, 2019.
- [18] X. Zhou and C. Xie, Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks. Wiley Series in Microwave and Optical Engineering, Wiley, 2016.

- [19] D. Semrau, E. Sillekens, R. Killey, and P. Bayvel, "A modulation format correction formula for the Gaussian noise model in the presence of inter-channel stimulated Raman scattering," *Journal of Lightwave Technology*, vol. 37, pp. 5122–5131, 2019.
- [20] D. Semrau, E. Sillekens, R. Killey, and P. Bayvel, "ISRS GN model implementation." https://github.com/ dsemrau/ISRSGNmodel#readme, 2019.
- [21] A. Mitra, D. Semrau, N. Gahlawat, A. Srivastava, P. Bayvel, and A. Lord, "Effect of reduced link margins on C + L band elastic optical networks," *Journal of Optical Communications and Networking*, vol. 11, pp. C86–C93, 10 2019.
- [22] J. Pedro, "Designing transparent flexible-grid optical networks for maximum spectral efficiency," Journal of Optical Communications and Networking, vol. 9, no. 4, pp. C35–C44, 2017.
- [23] R. Hui and M. O'Sullivan, Fiber Optic Measurement Techniques. Elsevier Science, 2009.
- [24] T. LaQuey, The User's Directory of Computer Networks. Digital Press, 1990.
- [25] E. Biernacka, J. Domżał, and T. Wójcik, "Investigation of dynamic routing and spectrum allocation methods in elastic optical networks," *International Journal of Electronics and Telecommunications*, vol. 63, 2017.
- [26] X. Zhang, X. Lin, Z. Zheng, and Q. Yang, "Research on relation between average degree and convergence performance of distributed synchronization algorithm in WSNs," in 2017 12th International Conference on Computer Science and Education (ICCSE), pp. 392–396, 2017.
- [27] I. Duarte, "Exploring graph coloring heuristics for optical networks planning," Master's thesis, Iscte-Instituto Universitário de Lisboa, October 2020.
- [28] E. Amir, "K-shortest paths graph represented by in \mathbf{a} \mathbf{a} sparse maalgorithm)." trix (Yen's https://www.mathworks.com/matlabcentral/fileexchange/ 35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix-yen-s-algorithm, 2012.
- [29] B. Correia, R. Sadeghi, E. Virgillito, A. Napoli, N. Costa, J. Pedro, and V. Curri, "Power control strategies and network performance assessment for C+L+S multiband optical transport," *Journal of Optical Communications and Networking*, vol. 13, no. 7, pp. 147–157, 2021.

Appendices

APPENDIX A

Matlab scripts used in Chapter 2

A.1. Example 1

This appendix shows the solution for the problem presented in subsection 2.2.1, equation (2.8), using software Matlab. The code used is:

The matrix \mathbf{F} represents the objective function for the problem. In addition to the cost per link capacity, was added to the matrix the flow of each candidate path. The flow is zero for all the candidate paths since it is an unknown variable.

The matrix **c** represents the link loads of the capacity inequalities (2.3). To this matrix was added the link capacity of each inequality $(y_e=-1)$.

Capacity represents the right side of the same inequality (2.3) used to demonstrate matrix **c**. The capacity is zero for all inequalities since it is a variable for the problem.

Matrix **d** shows equations (2.1a), (2.1b), and (2.1c) to each was added the link capacities, which are zero. It is necessary since all matrices have to be the same size as the objective function (\mathbf{F}).

Demand is the right side of equations (2.1a), (2.1b), and (2.1c).

The matrix **aux** represents the low boundaries for the function linprog, this means that the flow or capacity can only be as low as zero.

So the optimal solution obtained using Matlab function linprog is $\mathbf{F}^{opt}=100$. The flows of each candidate path and the link capacity of each connection are illustrated in the Table A.1.

Appendix A Matlab scripts used in Chapter 2

Flow x_e	Link Capacity y_e
$x_{11} = 15$	$y_1 = 0$
$x_{21} = 20$	$y_2 = 25$
$x_{22} = 0$	$y_3 = 10$
$x_{31} = 0$	$y_{4} = 15$
$x_{32} = 10$	$y_5 = 20$

Table A.1. Matlab results for Example 2

A.2. Example 3

This appendix will demonstrate the solution obtained using software Matlab, for the problem presented in subsection 2.2.1, equation (2.11). This problem variates from the one shown in appendix A by adding one other candidate path for demand d=1. With that, the only variance in the code is the addition of that path to the tables, as shown in the code below:

This solution was the same as the one got in subsection 2.2.1 $\mathbf{F}^{opt}=85$, and the distribution of flow of each path and the link capacity is represented in Table A.2:

Flow x_e	Link Capacity y_e
$x_{11} = 0$	$y_1 = 15$
$x_{12} = 15$	$y_{2} = 10$
$x_{21} = 20$	$y_3 = 10$
$x_{22} = 0$	$y_4 = 0$
$x_{31} = 0$	$y_5 = 35$
$x_{32} = 10$	

Table A.2. Matlab results for Example 3

A.3. Example 4

This appendix demonstrates the solution for the capacitated problem presented in subsection 2.2.1, equation (2.14). To solve this problem was software Matlab, the code used is:

```
\begin{split} \mathrm{F}{=}[4; \ 3; \ 1; \ 4; \ 2; \ 2]; \\ \mathrm{c}{=}[0 \ 1 \ 0 \ 0 \ 1 \ 0 \ ; \\ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ ; \\ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ ; \\ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ ; \\ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ ]; \\ \end{split}
```

Appendix A Matlab scripts used in Chapter 2

```
Capacity = [10; 15; 5; 15; 30];
d=[1 1 0 0 0 0;
0 0 1 1 0 0;
0 0 0 0 1 1];
Demand=[15; 20; 10];
```

lb=zeros(7,1);

 $[X \ O] {=} \lim \text{prog}\left(F \,, \ c \,, \ Capacity \,, \ d \,, \ Demand \,, \ lb \,\right)$

The solution obtained using function linprog is $\mathbf{F}^{opt}=100$ and the flow is:

Flow x_e
$x_{11} = 10$
$x_{12} = 5$
$x_{21} = 20$
$x_{22} = 0$
$x_{31} = 5$
$x_{32} = 5$

Table A.3. Matlab results for Example 4

A.4. Example 7

```
%ORIGEM
o = \begin{bmatrix} 1 & 1 & 3 & 3 & 3 & 2 & 2 & 4 & 4 \end{bmatrix};
%DESTINO
d= \begin{bmatrix} 3 & 4 & 1 & 4 & 2 & 3 & 4 & 2 & 1 & 3 \end{bmatrix};
%DISTANCIA
%GRAFO
grafo= digraph(o,d,c);
%INTERFACE GRAFO
figure
p=plot(grafo, 'Edgelabel', grafo.Edges.Weight);
nos=4;
links = length(o)/2;
origem = [2 2 3 1 1]; %node source
destino = [3 \ 4 \ 4 \ 3];
trafego_rede = \begin{bmatrix} 0 & 15 & 20 & 0 \end{bmatrix};
                    15 \ 0 \ 10 \ 0;
                    20 \ 10 \ 0 \ 0;
                    0 \ 0 \ 0 \ 0];
[matriz_rede_caminhos] = caminhos_protecao(nos, grafo, trafego_rede);
cost = [2 \ 1 \ 1 \ 3 \ 1];
numero_caminho=size(matriz_rede_caminhos,1)*2;
numero_demand=size(matriz_rede_caminhos,1);
Caminhos = \{\};
aux_c=0;
aux_p=0;
for i=1:numero_caminho
      if(floor(i/2)==i/2)
           \texttt{aux_p} = \texttt{aux_p} + 1;
           Caminhos \{i, 1\} = cell2mat(matriz_rede_caminhos(aux_p, 3));
           \operatorname{Caminhos}\left\{ \operatorname{i},2\right\} \!=\! \operatorname{i};
      else
           aux_c=aux_c+1;
           Caminhos \{i, 1\} = cell2mat(matriz_rede_caminhos(aux_c, 1));
           Caminhos\left\{ i\;,2\right\} \!=\!i\;;
     end
\mathbf{end}
for l=1:numel(origem)
```

Appendix A Matlab scripts used in Chapter 2

```
matrix_aux{l,1}=origem(l);
     matrix_aux \{1,2\} = destino(1);
     matrix_aux\{1,3\}=1;
end
count=numero_caminho+links;
F=zeros(count,1);
for i=1:count
     if(i>numero_caminho)
          F(i,1) = cost(i - numero_caminho);
     end
end
D = [];
W=triu(trafego_rede,1);
m=0:
for i=1:nos
     for y=1:nos
          if(W(i, y) = 0)
              m = m + 1;
              D(m,1) \!=\! \! W\!(i,y);
              d_aux\{m,1\} = i;
              d_aux\{m,2\} = y;
               d_aux\{m,3\}=m;
          end
     end
\mathbf{end}
C=zeros(numel(origem),1);
d = z \operatorname{eros} (\operatorname{numel}(D), \operatorname{numel}(F));
for z=1:size(Caminhos,1)
     caminho = cell2mat(Caminhos(z, 1));
     p=size(caminho,2);
     for i=1:size(d_aux,1)
          if(cell2mat(d_aux(i,1)) = caminho(1) \&\&
          cell2mat(d_aux(i,2)) = = caminho(p))
              x = cell2mat(d_aux(i,3))
              y=cell2mat(Caminhos(z,2));
              d(x, y) = 1;
          \mathbf{end}
     end
end
resultados=zeros(links+1,links);
aux_Caminhos_escolhidos = [];
for t=0:size(C,1)
     c = z eros(numel(C), numel(F));
     for z=1:size(Caminhos,1)
          caminho=cell2mat(Caminhos(z,1));
          for j=1:(numel(caminho)-1)
               for i=1:size(matrix_aux,1)
                    if(cell2mat(matrix_aux(i,1))==caminho(j) &&
                   \texttt{cell2mat}(\texttt{matrix}\texttt{aux}(\texttt{i},2)) \!=\! \texttt{caminho}(\texttt{j}\!+\!\!1))
                        x=cell2mat(matrix_aux(i,3));
                        y = cell2mat(Caminhos(z, 2));
                        c(x, y) = 1;
                   elseif(cell2mat(matrix_aux(i,2)) = = caminho(j) \&\&
                   cell2mat(matrix_aux(i,1)) = = caminho(j+1))
                        x=cell2mat(matrix_aux(i,3));
                        y = cell2mat(Caminhos(z, 2));
                        c(x, y) = 1;
                   end
              \mathbf{end}
          end
     end
     count=numero_caminho;
     for j=1:size(C,1)
          if (j ~=t)
              count = count + 1;
```

```
c(j, count) = -1;
         e\,l\,s\,e
             count = count + 1;
         end
    end
    lb=zeros(count,1);
    ub=inf(count,1);
    for i=1:size(F)
         int(i)=i;
    end
    [X, O, G, K]=intlinprog(F, int, c, C, d, D, lb, ub)
    for y=numero_caminho+1:height(X)
         resultados(t+1, y-numero_caminho)=X(y);
    end
    Caminhos_escolhidos = [];
    c_{-}=0;
    for y=1:numero\_caminho
         disp(y)
         if(X(y) = 0)
             disp(Caminhos(y,1))
             c_{-}=c_{-}+1;
             aux_Caminhos_escolhidos(c_,t+1)=y;
         end
    end
\mathbf{end}
aux_resultados = [];
for i=1:size(aux_Caminhos_escolhidos, 1)
    int=aux_Caminhos_escolhidos(i,1);
    caminho=cell2mat(Caminhos(int,1));
    Caminhos_escolhidos {i,1}=caminho
end
R=zeros(links,1);
for i=1:size(resultados,2)
    aux_resultados=resultados(:,i);
    for j=1:size(aux_resultados,1)
         aux_R = (R(i));
         aux_R = [aux_R, (aux_resultados(j))];
         R(i) = (\max(aux_R));
    end
\mathbf{end}
F = sum(R);
```

A.5. Examples 8 and 9

```
%ORIGEM
o = \begin{bmatrix} 1 & 1 & 3 & 3 & 3 & 2 & 2 & 4 & 4 \end{bmatrix};
%DESTINO
d = \begin{bmatrix} 3 & 4 & 1 & 4 & 2 & 3 & 4 & 2 & 1 & 3 \end{bmatrix};
%DISTANCIA
c = \begin{bmatrix} 1 & 3 & 1 & 1 & 2 & 2 & 1 & 1 & 3 & 1 \end{bmatrix};
%GRAFO
\texttt{grafo= digraph(o,d,c);}
%INTERFACE GRAFO
figure
p=plot(grafo, 'Edgelabel', grafo.Edges.Weight);
nos=4;
{\rm links}\!=\!{\rm length(o)/2;}
origem = [2 2 3 1 1];
destino = [3 \ 4 \ 4 \ 3];
trafego_rede = [0 \ 15 \ 20 \ 0;
                      15 \ 0 \ 10 \ 0;
                      20\ 10\ 0\ 0;
                      0 \ 0 \ 0 \ 0];
[matriz_rede_caminhos] = caminhos_protecao(nos, grafo, trafego_rede);
numero_caminho=size(matriz_rede_caminhos,1)*2;
```

```
numero_demand=size(matriz_rede_caminhos,1);
Caminhos = \{\};
 for \quad i = 1: numero\_demand \\
    Caminhos{i,1} = cell2mat(matriz_rede_caminhos(i,1));
     Caminhos \{i, 2\} = cell2mat(matriz_rede_caminhos(i, 3));
     Caminhos \{i, 3\} = i;
\mathbf{end}
for l=1:numel(origem)
     matrix_aux \{l, 1\} = origem (l);
     matrix_aux\{1,2\} = destino(1);
     matrix_aux\{1,3\}=1;
\mathbf{end}
count=numero\_caminho+links;
F=zeros(count,1);
for i=1:count
     if(i>numero_caminho)
         F(i, 1) = 1;
    end
end
D = [];
W=triu(trafego_rede,1);
m=0;
for i=1:nos
    for y=1:nos
         if(W(i, y) = 0)
              m = m + 1;
              D(m,1) = \!\! W\!(i,y);
              d_aux\{m,1\} = i;
              d_{-a\,u\,x}\,\{m,2\,\}\!=\!y\,;
              d_aux\{m,3\}=m;
         \mathbf{end}
    end
end
C=zeros(numel(origem),1);
c=zeros(numel(C),numel(F));
R_{link} = 5; %failed link
for i=1:links
     if(R_link==i)
         Random_link(i, 1) = 0;
     else
         Random_link(i, 1) = -1;
    end
{\bf end}
for z=1:size(Caminhos,1)
    caminho=cell2mat(Caminhos(z,1));
    caminho_protecao=cell2mat(Caminhos(z,2));
     for j=1:(numel(caminho)-1)
         for i=1:size(matrix_aux,1)
              if(cell2mat(matrix_aux(i,1))==caminho(j) &&
              cell2mat(matrix_aux(i,2)) = = caminho(j+1))
                   aux_vetor{j,1}=cell2mat(matrix_aux(i,3));
              elseif(cell2mat(matrix_aux(i,2))==caminho(j) &&
              cell2mat(matrix_aux(i,1)) = caminho(j+1))
                   aux_vetor\{j,1\} = cell2mat(matrix_aux(i,3));
              end
         \mathbf{end}
    \mathbf{end}
     if (ismember(cell2mat(aux_vetor), R_link)==0)
         aux_caminhos \{z, 1\} = cell2mat(Caminhos(z, 1));
         aux_caminhos \{z, 2\} = cell2mat(Caminhos(z, 3));
     else
         aux_caminhos \{z, 1\} = cell2mat(Caminhos(z, 2));
         aux_caminhos \{z,2\} = cell2mat(Caminhos(z,3));
    end
end
```

Appendix A Matlab scripts used in Chapter 2

```
for z=1:size(aux_caminhos,1)
    caminho=cell2mat(aux_caminhos(z,1));
    for j=1:(numel(caminho)-1)
         for i=1:size(matrix_aux,1)
             if (cell2mat(matrix_aux(i,3))~=R_link)
                  if (cell2mat(matrix_aux(i,1))==caminho(j) &&
                 cell2mat(matrix_aux(i,2)) = = caminho(j+1))
                      x=cell2mat(matrix_aux(i,3));
                      y=cell2mat(aux_caminhos(z,2));
                      c(x, y) = 1;
                 elseif(cell2mat(matrix_aux(i,2))==caminho(j) &&
                 cell2mat(matrix_aux(i,1)) = = caminho(j+1))
                      x=cell2mat(matrix_aux(i,3));
                      y=cell2mat(aux_caminhos(z,2));
                      c(x, y) = 1;
                 end
             \mathbf{end}
         \mathbf{end}
    end
    for m=1:size(c,1)
         c(m, numero_caminho+m)=Random_link(m, 1);
    end
end
d=zeros(numel(D),numel(F));
for z=1:size(aux_caminhos,1)
    caminho=cell2mat(aux_caminhos(z,1));
    p=size(caminho, 2);
    for i=1:size(d_aux,1)
         if (cell2mat(d_aux(i,1))==caminho(1) && cell2mat(d_aux(i,2))==caminho(p))
             x = cell2mat(d_aux(i,3));
             y = cell2mat(aux_caminhos(z,2));
             d\,(\,x\,\,,\ y\,)\!=\!1\,;
         end
    end
\mathbf{end}
lb=zeros(count,1);
ub=inf(count,1);
for i=1:size(F)
    \operatorname{int}(i) = i;
end
[X, O, G, K]=intlinprog(F, int, c, C, d, D, lb, ub)
aux_resultados = [];
 for \quad i = 1: numero\_caminho \\
    aux_resultados { i ,1 }=X( i );
    aux_resultados \{i, 2\} = i;
end
for z=1:size(aux_caminhos,1)
    caminho=cell2mat(aux_caminhos(z,1));
    for j=1:(numel(caminho)-1)
         for i=1:size(matrix_aux,1)
             if (cell2mat(matrix_aux(i,3)) ~=R_link)
                  if (cell2mat(matrix_aux(i,1))==caminho(j) &&
                 cell2mat(matrix_aux(i,2)) = caminho(j+1))
                      x=cell2mat(matrix_aux(i,3));
                      y=cell2mat(aux_caminhos(z,2));
                      for t=1:size(aux_caminhos,1)
                           if(cell2mat(aux_resultados(t,2))==y)
                       resultados(x, y) = cell2mat(aux_resultados(t, 1));
                          end
                      end
                 elseif(cell2mat(matrix_aux(i,2))==caminho(j) &&
                 cell2mat(matrix_aux(i,1)) = = caminho(j+1))
                      x = cell2mat(matrix_aux(i,3));
                      y=cell2mat(aux_caminhos(z,2));
                      for t=1:size(aux_caminhos,1)
```

```
if (cell2mat(aux_resultados(t,2))==y)
                                 resultados(x, y) = cell2mat(aux_resultados(t, 1));
                               end
                          end
                     end
               \mathbf{end}
          \mathbf{end}
     \quad \text{end} \quad
end
R = z \operatorname{eros}(\operatorname{numel}(C), 3);
for i=1:size(resultados,1)
     R(i,1) = cell2mat(matrix_aux(i,1));
     R(i,2) = cell2mat(matrix_aux(i,2));
     for j=1:size(resultados,2)
          aux_count = (R(i, 3));
          count=resultados(i,j);
          R(i,3) = aux_count+count;
     end
end
```

A.6. Example 10

```
%ORIGEM
o = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \end{bmatrix};
%DESTINO
d = \begin{bmatrix} 3 & 4 & 3 & 4 & 1 & 2 & 4 & 1 & 2 & 3 \end{bmatrix};
%DISTANCIA
c = \begin{bmatrix} 1 & 3 & 2 & 1 & 1 & 2 & 1 & 3 & 1 & 1 \end{bmatrix};
%GRAFO
grafo= digraph(o,d,c);
%INTERFACE GRAFO
figure
p-principal=plot(grafo, 'Edgelabel', grafo.Edges.Weight);
nos=4; %total number of nodes
origem = [1 1 2 2 3]; % source node
destino = [3 \ 4 \ 3 \ 4 \ 4]; \% destination node
links=5; % total number of links
Cores = 2:
trafego= [0 1 1 0; % network traffic
           1 \ 0 \ 1 \ 0;
           1 \ 1 \ 0 \ 0;
           0 \ 0 \ 0 \ 0];
numero_caminho=6; %total number of paths
numero_demands=3; %total number of demands
[matriz_rede_caminhos]=caminhos_protecao(nos,grafo,trafego); % disjoint paths
Caminhos = \{\};
aux_c=0;
aux_p=0;
for i=1:numero_caminho % path list
     if(floor(i/2) == i/2)
          aux_p=aux_p+1;
          Caminhos \{i, 1\} = cell2mat(matriz_rede_caminhos(aux_p, 3));
          Caminhos \{i, 2\} = i;
     \mathbf{else}
          {\tt aux\_c=aux\_c+1};
          Caminhos \{i, 1\} = cell2mat(matriz_rede_caminhos(aux_c, 1));
          \operatorname{Caminhos}\left\{ \operatorname{i}\,,2\right\} \!=\!\operatorname{i}\,;
     end
end
for l=1:numel(origem) % links with source and destination node numbered
     matrix_aux\{l,1\} = origem(l);
     matrix_aux\{1,2\} = destino(1);
     matrix_aux\{1,3\}=1;
end
count=(numero_caminho*Cores)+(links*Cores)+links; %total number of variables used corresponding to flow
```
Appendix A Matlab scripts used in Chapter 2

```
%per demand per color, links per color and links
F=zeros(count,1);
for i\!=\!1\!:\!count~\% Objective Function
     if(i>count-links)
         F(i, 1) = 1;
     end
\mathbf{end}
D=zeros((numero_demands+links*Cores),1); % right side of the demand equation
W=triu(trafego,1);
m=0:
for i=1:nos
     for y=1:nos
         if(W(i, y) = 0)
              m=m+1:
              d_aux\{m,1\} = i;
              d_aux\{m,2\}=y;
              d_aux\{m,3\}=m;
         end
     end
end
\mathbf{for}
    i=1:numero_demands
    D(i, 1) = 1;
end
Z=zeros(numel(origem)*Cores,1);
d=zeros(numel(D),numel(F));
for t=1:Cores
     for z=1:size(Caminhos,1)
         caminho=cell2mat(Caminhos(z,1));
         p=size(caminho, 2);
         for i=1:size(d_aux,1)
              if (cell2mat(d_aux(i,1))==caminho(1) &&
              cell2mat(d_aux(i,2)) = = caminho(p))
                   x = cell2mat(d_aux(i,3));
                   y=cell2mat(Caminhos(z,2))+(numero_caminho*(t-1));
                   d(x, y) = 1;
              \mathbf{end}
         {\bf end}
     \mathbf{end}
end
count_aux=numero_caminho*Cores+1;
for z=numero_demands+1:size(d,1)
     d(z, count_aux) = -1;
     count_aux = count_aux + 1;
end
g = (size(F, 1) - links) + 1;
for z=numero_demands+1:(size(d,1))
     if g < (size(F,1))+1
         d(z,g) = 1;
         g=g+1;
     else
         g = (size(F, 1) - links) + 1;
         d(z,g) = 1;
         \mathbf{g}{=}\mathbf{g}{+}1;
     end
end
c = z \operatorname{eros}(\operatorname{numel}(Z), \operatorname{numel}(F));
for r=1:Cores
     for z=1:size(Caminhos,1)
         caminho=cell2mat(Caminhos(z,1));
         for j=1:(numel(caminho)-1)
              for i=1:size(matrix_aux,1)
                   if(cell2mat(matrix_aux(i,1))==caminho(j) &&
                   cell2mat(matrix_aux(i,2)) = = caminho(j+1))
                       x = cell2mat(matrix_aux(i,3)) + (links*(r-1));
                       y = cell2mat(Caminhos(z,2)) + (numero_caminho*(r-1));
```

```
c(x, y) = 1;
                     elseif(cell2mat(matrix_aux(i,2))==caminho(j) &&
                     cell2mat(matrix_aux(i,1)) = = caminho(j+1))
                          x = cell2mat(matrix_aux(i,3)) + (links*(r-1));
                          y = cell2mat(Caminhos(z,2)) + (numero_caminho*(r-1));
                          c(x, y) = 1;
                     \operatorname{end}
               {\bf end}
          end
     end
end
k = numero\_caminho*Cores+1;
for j=1:size(c,1)
     if k < size(c, 2) - links + 1
          c(j,k) = -1;
          k=k+1;
     \mathbf{end}
end
lb=zeros(count,1);
for i=1:size(F,1)
     if i>(numero_caminho*Cores) && i<=(size(F,1)-links)
          ub(i, 1) = 1;
     else
          ub(i,1) = inf;
     end
{\bf end}
int = 1:1:size(F,1);
[X \ O \ G \ K] = \texttt{intlinprog} (F, \texttt{int}, \ -\texttt{d}, \ -\texttt{D}, \ \texttt{c}, \ Z, \ \texttt{lb}, \ \texttt{ub})
Caminhos\_usados = [];
t = 0;
for color=1:Cores
     for x=1:numero_caminho
          if(X(x+(color -1)*numero\_caminho) = 0)
                t = t + 1:
                Caminhos_usados \{t, 1\} = cell2mat(Caminhos(x, 1));
                Caminhos\_usados \{t, 2\} = color;
          \mathbf{end}
     \mathbf{end}
end
```

A.7. Examples 11 and 12

```
%% Anel Trabalho
%ORIGEM
o = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 1 & 6 & 5 & 4 & 3 & 2 & 2 & 6 & 3 & 5 \end{bmatrix};
%DESTINO
d= \begin{bmatrix} 2 & 3 & 4 & 5 & 6 & 1 & 6 & 5 & 4 & 3 & 2 & 1 & 6 & 2 & 5 & 3 \end{bmatrix};
%DISTANCIA
%GRAFO
grafo= digraph(o,d,c);
%INTERFACE GRAFO
figure
p_principal=plot(grafo, 'Edgelabel', grafo.Edges.Weight);
nos=6;
origem = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 2 \ 3];
destino = [2 3 4 5 6 1 6 5];
distancia=[500 500 500 800 500 800 300 300];
links=8;
Cores = 5;
\texttt{tot\_o} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 4 & 4 & 5 \end{bmatrix};
tot_{-}d = \begin{bmatrix} 2 & 3 & 4 & 5 & 6 & 3 & 4 & 5 & 6 & 4 & 5 & 6 & 5 & 6 & 6 \end{bmatrix};
tot_l = [0 \ 1 \ 0 \ 0 \ 1;
     1 \ 0 \ 1 \ 0 \ 0 \ 1;
     0 \ 1 \ 0 \ 1 \ 1 \ 0;
```

Appendix A Matlab scripts used in Chapter 2

```
0 \ 0 \ 1 \ 0 \ 1 \ 0;
     0 \ 0 \ 1 \ 1 \ 0 \ 1;
     1 \ 1 \ 0 \ 0 \ 1 \ 0];
[trafego_rede] = trafego(nos);
N=2;
for m=1:numel(tot_o)
     [DIST_T, PATH_T] = graphkshortestpaths(tot_l, tot_o(m), tot_d(m), N);
     n = 3;
     for i=1:N
          j=i -2;
          matriz_caminhos {m, i}=cell2mat(PATH_T(i));%candidate path list per demand
          matriz_caminhos_dist\{m, i\} = (DIST_T(i));
     end
end
numero_caminho=size(matriz_caminhos,1)*N;
numero_demands=length(tot_d);
Caminhos = \{\};
aux_c=0;
aux_p=0;
for i=1:numero_caminho
     if(floor(i/2) == i/2)
          aux_p=aux_p+1;
          Caminhos{i,1}=cell2mat(matriz_caminhos(aux_p,2));
          Caminhos\left\{i\;,2\right\}\!=\!i\;;
     else
          aux_c=aux_c+1;
          Caminhos{i,1} = cell2mat(matriz_caminhos(aux_c,1));
          \operatorname{Caminhos}\left\{ i\;,2\right\} \!=\!i\;;
     end
end
for l=1:numel(origem)
     matrix_aux\{l,1\} = origem(l);
     matrix_aux\{1,2\} = destino(1);
     matrix_aux\{1,3\}=1;
\mathbf{end}
count=(numero_caminho*Cores)+(links*Cores)+size(matrix_aux,1);
F=zeros(count,1);
for i=1:count
     if (i>count - links)
          F(i, 1) = 1;
     \mathbf{end}
end
D=zeros((numero_demands+links*Cores),1);
W=triu(Trafego,1);
m=0;
for i=1:nos
     for y=1:nos
          \begin{array}{c} \mathbf{i} \, \mathbf{f} \, \left( W ( \, \mathbf{i} \ , \ \mathbf{y} \, )_{\, \sim} \! = \! 0 \right) \end{array}
               m=m+1:
               D(m, 1) = 1;
               d_aux\{m,1\} = i;
               d_aux\{m,2\} = y;
               d_aux\{m,3\}=m;
          end
     end
\mathbf{end}
Z=zeros(numel(origem)*Cores,1);
d=zeros(numel(D),numel(F));
for t=1:Cores
     for z=1:size(Caminhos,1)
          caminho = cell2mat(Caminhos(z,1));
          p=size(caminho, 2);
          for i=1:size(d_aux,1)
               if (cell2mat(d_aux(i,1))==caminho(1) && cell2mat(d_aux(i,2))==caminho(p))
```

```
x = cell2mat(d_aux(i,3));
                   y = cell2mat(Caminhos(z,2)) + (numero_caminho*(t-1));
                   d(x, y) = 1;
              end
         end
    end
\mathbf{end}
count_aux=numero_caminho*Cores+1;
for z=numero_demands+1:size(d,1)
    d(z, count_aux) = -1;
    count_aux=count_aux+1;
\mathbf{end}
g = (size(F, 1) - links) + 1;
for z=numero_demands+1:(size(d,1))
     if g < (size(F,1)) + 1
         d(z,g) = 1;
         g=g+1;
     else
         g = (size(F, 1) - links) + 1;
         d(z,g) = 1;
         g = g + 1;
    \mathbf{end}
end
c = z \operatorname{eros}(\operatorname{numel}(Z), \operatorname{numel}(F));
for r=1:Cores
     for z=1:size(Caminhos,1)
         caminho = cell2mat(Caminhos(z,1));
         for j=1:(numel(caminho)-1)
              for i=1:size(matrix_aux,1)
                   if(cell2mat(matrix_aux(i,1))==caminho(j) &&
                   cell2mat(matrix_aux(i,2)) = = caminho(j+1))
                        x = cell2mat(matrix_aux(i,3)) + (links*(r-1));
                       y = cell2mat(Caminhos(z,2)) + (numero_caminho*(r-1));
                       c(x, y) = 1;
                   elseif(cell2mat(matrix_aux(i,2))==caminho(j) &&
                   cell2mat(matrix_aux(i,1)) = = caminho(j+1))
                       x = cell2mat(matrix_aux(i,3)) + (links*(r-1));
                       y = cell2mat(Caminhos(z,2)) + (numero_caminho*(r-1));
                        c\,(\,x\,,\ y\,)\!=\!1\,;
                   end
              \mathbf{end}
         \operatorname{end}
    {\tt end}
end
k=numero_caminho*Cores+1;
for j=1:size(c,1)
     if k < size(c,2) - links+1
         c(j,k) = -1;
         k=k+1;
    end
end
lb=zeros(count,1);
if i>(numero_caminho*Cores) && i<=(size(F,1)-links)
         ub(i, 1) = 1;
     else
         ub(i,1) = inf;
    {\bf end}
end
int = 1:1:size(F, 1);
[X, O, G, K] = intlin prog(F, int, -d, -D, c, Z, lb, ub)
Caminhos\_usados = [];
t = 0;
for color=1:Cores
     for x=1:numero_caminho
```

Appendix A Matlab scripts used in Chapter 2

A.8. Example 13

The equivalent parameter used in the Alternative ILP Formulation and RWA formulation are shown in Table A.4.

Variable	RWA ILP	Alternative RWA	
variable	formulation	formulation	
Total number of nodes	V	\mathcal{N}	
Specific node	v	n	
Total number of links	E	L	
Specific link	e	l	
Total number of demands	D	S	
Specific demand	d	\$	
Total number of colors	С	\mathcal{W}	
Specific color	С	w	
Number of times the color is used	z_{ce}	F_l	
Demand volume	h_{ds}	t^s	
Link capacity	y_e	—	
Total number of candidate paths per demand	P_d	\mathcal{P}^{s}	
Specific path	p	p	
Specific candidate path for demand	P_{dp}	p^s	
Flow	x_{dpc}	f^p_w	
Link-path relation	δ_{edp}	F_l	

Table A.4. Comparison between RWA ILP formulation parameters and alternativeRWA formulation parameters.

```
%ORIGEM
%DESTINO
d = \begin{bmatrix} 2 & 3 & 4 & 5 & 1 & 5 & 4 & 3 & 2 & 1 & 4 & 4 & 1 & 2 \end{bmatrix};
%DISTANCIA
%GRAFO
grafo= digraph(o,d,c);
%INTERFACE GRAFO
figure
p_principal=plot(grafo, 'Edgelabel', grafo.Edges.Weight);
nos = 5;
origem = [1 \ 2 \ 3 \ 4 \ 5 \ 1 \ 5 \ 4 \ 3 \ 2 \ 1 \ 2 \ 4 \ 4];
destino=[2 3 4 5 1 5 4 3 2 1 4 4 1 2];
links = 14;
Cores = 2;
tot_{-}o = [1 \ 2 \ 3 \ 3 \ 4 \ 4 \ 5 \ 5];
tot_d = [3 \ 4 \ 1 \ 5 \ 2 \ 5 \ 3 \ 4];
tot_l = [0 \ 0 \ 1 \ 0 \ 0;
    0 \ 0 \ 0 \ 1 \ 0;
    1 \ 0 \ 0 \ 0 \ 1;
    0 \ 1 \ 0 \ 0 \ 1;
    0 \ 0 \ 1 \ 1 \ 0];
[trafego_rede]=trafego(nos);
matriz_caminhos \{1, 1\} = [1, 2, 3];
```

```
matriz_caminhos \{1,2\}=1;
matriz_caminhos \{2, 1\} = [1, 4, 3];
matriz_caminhos \{2,2\}=2;
matriz_caminhos \{3, 1\} = [2, 4];
matriz_caminhos \{3,2\}=3;
matriz_caminhos \{4, 1\} = [2, 1, 4];
matriz_caminhos \{4, 2\} = 4;
matriz_caminhos \{5, 1\} = [3, 2, 1];
matriz_caminhos \{5,2\}=5;
matriz_caminhos \{6, 1\} = [3, 4, 1];
matriz_caminhos \{6,2\}=6;
matriz_caminhos \{7, 1\} = [3, 4, 5];
matriz_caminhos \{7,2\}=7;
matriz_caminhos \{8, 1\} = [3, 2, 1, 5];
matriz_caminhos \{8,2\}=8;
matriz_caminhos \{9, 1\} = [4, 2];
matriz_caminhos \{9,2\}=9;
matriz_caminhos \{10, 1\} = [4, 3, 2];
matriz_caminhos \{10, 2\} = 10;
matriz_caminhos \{11, 1\} = [4, 5];
matriz_caminhos \{11,2\}=11;
matriz_caminhos \{12, 1\} = [4, 1, 5];
matriz_caminhos \{12, 2\} = 12;
matriz_caminhos \{13, 1\} = [5, 4, 3];
matriz_caminhos \{13, 2\} = 13;
matriz_caminhos \{14, 1\} = [5, 1, 2, 3];
matriz_caminhos \{14, 2\} = 14;
matriz_caminhos \{15, 1\} = [5, 4];
matriz_caminhos \{15, 2\} = 15;
matriz_caminhos \{16, 1\} = [5, 1, 4];
matriz_caminhos \{16, 2\} = 16;
numero_caminho=size(matriz_caminhos,1);
numero\_demands=length(tot\_o);
Caminhos={};
aux_c=0;
aux_p=0;
for i=1:size(matriz_caminhos,1)
     Caminhos{i,1} = cell2mat(matriz_caminhos(i,1));
     Caminhos \{i, 2\} = i;
end
for l=1:numel(origem)
     matrix_aux \{l, 1\} = origem (l);
     matrix_aux \{1,2\} = destino(1);
     matrix_aux\{1,3\}=1;
\mathbf{end}
count=(numero_caminho*Cores)+(links*Cores)+size(matrix_aux,1);
F = zeros(count, 1);
for i=1:count
    %if(i>count-links) %minimizar capacidade
     if (i>numero_caminho && i <= count - links) % minimizar cores
         F(i, 1) = 1;
     end
end
aux D=links*Cores+numero demands
D=zeros((aux_D),1);
for i=1:numero_demands
    D(i, 1) = 1;
end
W=tot_l;
m=0;
for i=1:nos
     for y=1:nos
         if(W(i, y) = 0)
              m=m+1:
              d_aux\{m,1\} = i;
```

```
d_aux\{m,2\}=y;
               d_aux\{m,3\}=m;
          end
     end
\mathbf{end}
Z=zeros(links*Cores,1);
d=z eros(numel(D), numel(F));
for t=1:Cores
     for z=1:size(Caminhos,1)
          caminho=cell2mat(Caminhos(z,1));
          p=size(caminho, 2);
          for i=1:size(d_aux,1)
               if (cell2mat(d_aux(i,1))==caminho(1) && cell2mat(d_aux(i,2))==caminho(p))
                    x = cell2mat(d_aux(i,3));
                    y = cell2mat(Caminhos(z,2)) + (numero_caminho*(t-1));
                    d(x, y) = 1;
               \operatorname{end}
          \quad \text{end} \quad
     end
end
count_aux=numero_caminho*Cores+1;
for z=numero_demands+1:size(d,1)
     d(z, count_aux) = -1;
     count_aux=count_aux+1;
end
g = (size(F, 1) - links) + 1;
for z=numero\_demands+1:(size(d,1))
     if g < (size(F,1))+1
          d\,(\,z\,\,,g\,)\!=\!1\,;
          g=g+1;
     else
          g = (size(F, 1) - links) + 1;
          d\,(\,z\,\,,g\,)\!=\!1\,;
          g=g+1;
     end
\mathbf{end}
c = z eros(numel(Z), numel(F));
for r=1:Cores
     for z=1:size(Caminhos,1)
          caminho=cell2mat(Caminhos(z,1));
          for j=1:(numel(caminho)-1)
               for i=1:size(matrix_aux,1)
                    if(cell2mat(matrix_aux(i,1)) = caminho(j) \&\&
                    \texttt{cell2mat}(\texttt{matrix\_aux}(\texttt{i},2)) \!=\! = \! \texttt{caminho}(\texttt{j}+\!1))
                         x = cell2mat(matrix_aux(i,3)) + (links*(r-1));
                         y = cell2mat(Caminhos(z,2)) + (numero_caminho*(r-1));
                         c\,(\,x\,,\ y\,)\!=\!1\,;
                    end
               \mathbf{end}
          end
     end
\mathbf{end}
k = numero\_caminho*Cores+1;
for j=1:size(c,1)
     if k < size(c, 2) - links + 1
          c(j,k) = -1;
          k=k+1;
     {\bf end}
end
lb=zeros(count,1);
for i=1:size(F,1)
     if i > (numero\_caminho * Cores) \&\& i <= (size(F,1) - links)
          ub(i, 1) = 1;
     else
          ub(i,1) = inf;
```

Appendix A Matlab scripts used in Chapter 2

```
end
end
int = 1:1:size(F,1);
[X, O, G, K]=intlinprog(F, int, -d, -D, c, Z, lb, ub)
toc
Caminhos_usados = [];
t = 0:
for color=1:Cores
    for x=1:numero_caminho
         if (X(x+(color -1) * numero_caminho)~=0)
             t = t + 1:
             Caminhos\_usados{t,1}=cell2mat(Caminhos(x,1));
             Caminhos\_usados{t,2}=color;
        end
    end
end
```

A.9. ILP formulations applied in the portuguese backbone networked

```
\mathbf{M} = \{ [1,3,2]; [1,2,3]; [1,3,5,4]; [1,2,3,5]; [1,2,4,6]; [1,2,4,6,8,7]; [1,2,4,6,8]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,9]; [1,3,5,4,2]; [1,3,5,4,2]; [1,3,5,4,2]; [1,3,5,4,2]; [1,3,2,2]; [1,3,2,2]; [1,3,2,2]; [1,3,2,2]; [
 [1,2,4,9,10]; [1,2,4,9,10,11]; [1,11,12]; \ [2,1,3]; [2,3,5,4]; [2,4,5]; [2,4,6]; [2,4,6]; [2,4,6,8,7]; [2,1,2]; [2,1,3]; [2,1,3]; [2,3,5,4]; [2,4,5]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,4,6]; [2,
 [2,4,6,8]; [2,3,5,4,9]; [2,1,11,10]; [2,4,9,10,11]; [2,1,11,12]; \quad [3,2,4]; [3,2,4,5]; [3,2,4,6]; \\ [3,2,4,6]; [3,2,4,6]; [3,2,4,6]; \\ [3,2,4,6]; [3,2,4,6]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4,6]; \\ [3,2,4]; [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4]; \\ [3,2,4
 [3\ ,2\ ,4\ ,6\ ,7];[3\ ,2\ ,4\ ,6\ ,8];[3\ ,2\ ,4\ ,9];[3\ ,2\ ,4\ ,9\ ,10];[3\ ,2\ ,1\ ,11];[3\ ,2\ ,1\ ,12];\ \ [4\ ,2\ ,3\ ,5];[4\ ,5\ ,6];
  [4\ ,5\ ,6\ ,7];[4\ ,5\ ,6\ ,8];[4\ ,6\ ,8\ ,9];[4\ ,2\ ,1\ ,11\ ,10];[4\ ,5\ ,3\ ,1\ ,11];[4\ ,5\ ,3\ ,1\ ,12]; \\ \ [5\ ,4\ ,6];[5\ ,4\ ,6\ ,7];
  [5,4,6,8]; [5,6,4,9]; [5,6,4,9,10]; [5,3,2,1,11]; [5,3,2,1,12]; [6,8,7]; [6,7,8]; [6,5,4,9];
  [6,5,4,9,10]; [6,5,3,2,1,11]; [6,5,3,2,1,12]; \ [7,6,8]; [7,8,6,4,9]; [7,8,6,4,9,10]; \\ [7,8,6,4,9,10]; [7,8,6,4,9,10]; [7,8,6,4,9,10]; \\ [7,8,6,4,9,10]; [7,8,6,4,9,10]; [7,8,6,4,9,10]; \\ [7,8,8,10]; [7,8,10]; [7,8,10]; [7,8,10]; [7,8,10]; \\ [7,8,10]; [7,8,10]; [7,8,10]; [7,8,10]; \\ [7,8,10]; [7,8,10]; [7,8,10]; \\ [7,8,10]; [7,8,10]; [7,8,10]; \\ [7,8,10]; [7,8,10]; [7,8,10]; \\ [7,8,10]; [7,8,10]; \\ [7,8,10]; [7,8,10]; \\ [7,8,10]; [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7,8,10]; \\ [7
 [7,6,5,3,2,1,11]; [7,6,5,3,2,1,12]; [8,6,7,4,9]; [8,7,6,4,9,10]; [8,6,5,3,2,1,11]; \\
 [8,6,5,3,2,1,12]; \ [9,4,2,1,11,10]; [9,4,5,3,1,11]; [9,4,5,3,1,12]; \ [10,9,4,2,1,11]; [9,4,5,3,1,12]; \ [10,9,4,2,1,11]; [9,1,12]; \ [10,9,1,2,1,11]; [9,1,12]; \ [10,9,1,2,1,11]; [9,1,12]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1,11]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2,1]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1,2]; \ [10,9,1
 [10, 9, 4, 2, 1, 12] [11, 1, 12];
%% Topologia
 Origem = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 5 & 5 & 4 & 6 & 7 & 6 & 4 & 8 & 9 & 10 & 1 & 11 & 12 & 2 & 3 & 3 & 4 & 5 & 4 & 6 & 6 & 7 & 8 & 8 & 9 & 9 & 10 & 11 & 11 & 12 & 1 \end{bmatrix};
 Destino=[2 3 3 4 5 4 6 6 7 8 8 9 9 10 11 11 12 1 1 1 2 2 3 5 5 4 6 7 6 4 8 9 10 1 11 12];
  Distancia=[76 142 70 136 113 58 67 116 70 47 53 84 424 386 278 298 1010 1050 76 142 70 136
  113 58 67 116 70 47 53 84 424 386 278 298 1010 1050];
  grafo= digraph (Origem, Destino, Distancia);
 p=plot(grafo, 'EdgeLabel', grafo.Edges.Weight);
Nos = 12
 max_{fibra} = 87:
 d_caminho= [0 76 142 0 0 0 0 0 0 0 298 1050;
                         76 0 70 136 0 0 0 0 0 0 0 0;
                        142 \ 70 \ 0 \ 0 \ 113 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0;
                         0 136 0 0 58 116 0 0 84 0 0 0;
                         0 \ 0 \ 113 \ 58 \ 0 \ 67 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0;
                         0 \ 0 \ 0 \ 116 \ 67 \ 0 \ 70 \ 53 \ 0 \ 0 \ 0;
                         0 \ 0 \ 0 \ 0 \ 0 \ 70 \ 0 \ 47 \ 0 \ 0 \ 0 \ 0;
                        0 \ 0 \ 0 \ 0 \ 0 \ 53 \ 47 \ 0 \ 424 \ 0 \ 0 \ 0;
                         0 \ 0 \ 0 \ 84 \ 0 \ 0 \ 424 \ 0 \ 386 \ 0 \ 0;
                         0 0 0 0 0 0 0 0 386 0 1010 0;
                         298 0 0 0 0 0 0 0 0 278 0 1010;
                        Trafego=[0 104 137 104 207 3322 21 104 91 104 203 75;
                         104 0 21 104 21 21 104 21 75 21 21 21;
                          137 21 0 104 21 21 125 21 21 63 42 21;
                          104 104 104 0 89 21 53 21 21 21 21 21;
                         207 21 21 89 0 42 63 21 83 21 42 87;
                         3322 \ 21 \ 21 \ 21 \ 42 \ 0 \ 83 \ 42 \ 42 \ 21 \ 21 \ 21 \ 21;
                         21 104 125 53 63 83 0 116 53 42 145 42;
                         104 21 21 21 21 42 116 0 21 21 21 21;
                         91 75 21 21 83 42 53 21 0 42 21 21;
                          104 \ 21 \ 63 \ 21 \ 21 \ 21 \ 42 \ 21 \ 42 \ 0 \ 68 \ 42;
                         203 \ 21 \ 42 \ 21 \ 42 \ 21 \ 145 \ 21 \ 21 \ 68 \ 0 \ 21;
                         75 \hspace{.1in} 21 \hspace{.1in} 21 \hspace{.1in} 21 \hspace{.1in} 87 \hspace{.1in} 21 \hspace{.1in} 42 \hspace{.1in} 21 \hspace{.1in} 21 \hspace{.1in} 42 \hspace{.1in} 21 \hspace{.1in} 0 \hspace{.1in}] \,;
 [caminhos]=caminhos_R(Nos,grafo);
%existem 18 links
 Orig=[1 1 2 2 3 5 5 4 6 7 6 4 8 9 10 1 11 1];
```

```
Dest = \begin{bmatrix} 2 & 3 & 3 & 4 & 5 & 4 & 6 & 6 & 7 & 8 & 8 & 9 & 9 & 10 & 11 & 11 & 12 & 12 \end{bmatrix};
Dist = [76; \ 142; \ 70; \ 136; \ 113; \ 58; \ 67; \ 116; \ 70; \ 47; \ 53; \ 84; \ 424; \ 386; \ 278; \ 298; \ 1010; \ 1050];
5 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 9 9 9 10 10 11];
6 7 8 9 10 11 12 7 8 9 10 11 12 8 9 10 11 12 9 10 11 12 10 11 12 11 12 12];
x=numel(caminhos);
p=x/2;
aux=zeros(p,1);
for m=1:numel(O)
    [ DIST_T, PATH_T ] = graphkshortestpaths(d_caminho, O(m), D(m), 2);
    matriz_caminhos\{m,1\} = cell2mat(PATH_T(1));
    matriz_caminhos\{m,2\}=DIST_T(1);
    matriz_caminhos\{m,3\} = cell2mat(M(m));
    matriz_caminhos\{m,4\} = DIST_T(2);
end
for l=1:numel(Orig)
    matrix_aux\{l,1\} = Orig(l);
    matrix_aux\{1,2\} = Dest(1);
    matrix_aux\{1,3\}=1;
end
count=numel(aux)+1;
F=zeros(count,1);
for i=1:count
    if(i>numel(aux))
        F(i, 1) = 1;
    end
end
aux\_caminhos = [];
for i=1:size(aux)
    if bitget(i,1)
        c=i/2+0.5;
        aux\_caminhos{i,1}=cell2mat(matriz\_caminhos(c,1));
        aux_caminhos{i,2}=i;
    else
        c=i/2;
        aux_caminhos { i,1 } = cell2 mat (matriz_caminhos (c,3));
        aux_caminhos{i,2}=i;
    end
end
D = [];
W=triu(Trafego,1);
m = 0;
for i=1:Nos
    for y=1:Nos
        if(W(i, y) = 0)
            m = m + 1;
            D(m,1) = W(i, y);
             d_aux\{m,1\} = i;
             d_aux\{m,2\} = y;
             d_aux\{m,3\}=m;
        \mathbf{end}
    end
end
C=zeros(numel(Orig),1);
c = z \operatorname{eros}(\operatorname{numel}(C), \operatorname{numel}(F));
for z=1:size(aux_caminhos,1)
    caminho=cell2mat(aux_caminhos(z,1));
    for j=1:(numel(caminho)-1)
        for i=1:size(matrix_aux,1)
             if (cell2mat(matrix_aux(i,1)) == caminho(j) &&
             cell2mat(matrix_aux(i,2)) = = caminho(j+1))
                 x = cell2mat(matrix_aux(i,3));
                 y = cell2mat(aux_caminhos(z, 2));
                 c(x, y) = 1;
```

```
elseif(cell2mat(matrix_aux(i,2))==caminho(j) &&
             cell2mat(matrix_aux(i,1)) = = caminho(j+1))
                  x=cell2mat(matrix_aux(i,3));
                  y=cell2mat(aux_caminhos(z,2));
                  c(x, y) = 1;
             end
         \mathbf{end}
    end
    for m=1:size(c,1)
         c(m, numel(aux)+1) = -1;
    end
\mathbf{end}
d=zeros(numel(D),numel(F));
for z=1:size(aux_caminhos,1)
    caminho=cell2mat(aux_caminhos(z,1));
    p=size(caminho, 2);
    for i=1:size(d_aux,1)
         if(cell2mat(d_aux(i,1)) = caminho(1) \&\&
         cell2mat(d_aux(i,2)) = caminho(p))
             x = cell2mat(d_aux(i,3));
             y=cell2mat(aux_caminhos(z,2));
             d(x, y) = 1;
         end
    end
end
lb=zeros(count,1);
ub=inf(count,1);
\operatorname{int}(i) = i;
end
[X, O, G, K]=intlinprog(F, int, c, C, d, D, lb, ub)
aux_resultados = [];
for i=1:size(aux,1)
    aux_resultados { i ,1 }=X( i );
    aux_resultados \{i, 2\} = i;
\mathbf{end}
for z=1:size(aux_caminhos,1)
    \verb|caminho=cell2mat(aux\_caminhos(z,1));||
    for j=1:(numel(caminho)-1)
         for i=1:size(matrix_aux,1)
             if (cell2mat(matrix_aux(i,1))==caminho(j)
             && cell2mat(matrix_aux(i,2)) = = caminho(j+1))
                  x=cell2mat(matrix_aux(i,3));
                  y = cell2mat(aux_caminhos(z, 2));
                  for t=1:size(aux_caminhos,1)
                      if(cell2mat(aux_resultados(t,2)) = = y)
                           resultados(x, y)=cell2mat(aux_resultados(t,1));
                      end
                  end
             elseif(cell2mat(matrix_aux(i,2))==caminho(j)
             && cell2mat(matrix_aux(i,1))==caminho(j+1))
                  x=cell2mat(matrix_aux(i,3));
                  y = cell2mat(aux_caminhos(z,2));
                   for t=1:size(aux_caminhos,1)
                      if (cell2mat(aux_resultados(t,2))==y)
                           resultados(x, y)=cell2mat(aux_resultados(t,1));
                      end
                  {\bf end}
             end
         end
    \mathbf{end}
\mathbf{end}
R=zeros(numel(C),3);
for i=1:size(resultados,1)
    R(i,1) = cell2mat(matrix_aux(i,1));
```

Appendix A Matlab scripts used in Chapter 2

APPENDIX B

OSNR path calculation details in Chapter 3

In this appendix, some additional results concerning the paths example used throughout Chapter 3 are presented.

Firstly, the total OSNRs calculated only with the ASE noise for each one of the candidate paths are presented in Table B.1, for an amplifier maximum gain of 23 dB. In Tables B.2 and B.3, for the optical channel power of 1.46 dBm obtained for the longest candidate path in the COST 239 network, P_{35} , the total OSNRs are shown, respectively calculated considering only the ASE noise (Table B.2) and considering only the NLI (Table B.3).

P_{dp}	$OSNR_{tot,m}$ [dB]	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$
P_{11}	16	P_{12}	15.4	P_{13}	15.1	P_{14}	14.4	P_{15}	13.8
P_{21}	17.4	P_{22}	16	P_{23}	14.4	P_{24}	14.2	P_{25}	14
P_{31}	19.4	P_{32}	15.9	P_{33}	15	P_{34}	13.7	P_{35}	13.4
P_{41}	16.3	P_{42}	15.2	P_{43}	15.4	P_{44}	14.8	P_{45}	14.3

Table B.1. Total OSNR with ASE noise for the candidate paths for demands 1 to 4 with $G_{max}=23$ dB for network COST 239.

P_{dp}	$OSNR_{tot,m}$ [dB]	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$
<i>P</i> ₁₁	16.1	P_{12}	16.8	P_{13}	16.5	P_{14}	15	P_{15}	15.3
P_{21}	18.9	P_{22}	16.3	P_{23}	14.9	P_{24}	14.7	P_{25}	14.3
P_{31}	20.8	P_{32}	16.6	P_{33}	15.5	P_{34}	15.2	P_{35}	13.6
P_{41}	17.7	P_{42}	15.6	P_{43}	16.2	P_{44}	15.3	P_{45}	15.8

Table B.2. Total OSNR with ASE noise for the candidate paths for demands 1 to 4 with P_m =1.46 dBm for network COST 239.

P_{dp}	$OSNR_{tot,m}$ [dB]	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$	P_{dp}	$OSNR_{tot,m}$
P_{11}	19.7	P_{12}	19.2	P_{13}	18.5	P_{14}	18.2	P_{15}	17.6
P_{21}	21.2	P_{22}	19.7	P_{23}	18.2	P_{24}	17.6	P_{25}	17.6
P_{31}	23.6	P_{32}	19.7	P_{33}	18.5	P_{34}	17.6	P_{35}	16.6
P_{41}	20.1	P_{42}	18.9	P_{43}	18.5	P_{44}	18.2	P_{45}	17.9

Table B.3. Total OSNR with NLI noise for the candidate paths for demands 1 to 4 with P_m =1.46 dBm for network COST 239.

APPENDIX C

Complementary material used in Chapter 4

C.1. Real network topologies

The real network topologies that are presented are used in Chapter 4 the solve the RWA problem. In the four network topologies the nodes are numbered sequentially with no particular order.

Figure C1 shows the physical topology of the network Cost 239 [16]. The physical topology has eleven nodes and twenty-six links. The longest connection has 953 km between nodes one and two, the shortest link is between nodes three and five with 171 km. The average node degree is 4.73.

Figure C1. Optical network COST 239 physical topology.

Figure C2 shows the physical topology of the network NSFNET [24]. The physical topology has fourteen nodes and twenty-one links. The longest connection has 2828 km between nodes one and eight, the shortest link is between nodes ten and fourteen with 246 km. The average node degree is 3.

Figure C3 shows the physical topology of the network UBN [25]. The physical topology has twenty-four nodes and forty-three links. The longest connection has 2600 km between nodes fifteen and nineteen, the shortest link is between nodes three and four with 250 km. The average node degree is 3.58.

Appendix C Complementary material used in Chapter 4

Figure C2. Optical network NSFNET physical topology.

Figure C3. Optical network UBN physical topology.

Figure C4 shows the physical topology of the network CONUS 30 [6]. The physical topology has thirty nodes and thirty-six links. The longest connection has 1463 km between nodes twenty-two and twenty-seven, the shortest link is between nodes twenty-four and twenty-five with 69 km. The average node degree is 2.40.

C.2. First Fit and Most Used algorithms

First Fit algorithm

Figure C4. Optical network CONUS 30 physical topology.

```
function[comp_onda]=First_Fit(origem, destino, trafego_rede, caminhos, max_fibra)
matrix_aux = \{\};
comp_onda=cell(height(caminhos),3);
for l=1:numel(origem) %links source and destination numbered
    matrix_aux\{l,1\} = origem(l);
    matrix_aux \{1,2\} = destino(1);
    matrix_aux\{1,3\}=1;
\mathbf{end}
\operatorname{count} = 0;
while true %wavelengths available
    if count<max_fibra
        count = count + 1;
        Wavelengths(count,1) = count;
    else
        break;
    end
end
   i=1:size(max_fibra,1) %wavelengths available per links
for
    for x=2:(size(matrix_aux,1)+1)
        Wavelengths(i, x)=0;
    end
end
for l=1:size(caminhos,1) %path and traffic
    p=cell2mat(caminhos(l,1));
    trafego_aux=trafego_rede(p(1), p(numel(p)));
    comp_onda(1,1) = caminhos(1,1);
    for i=1:trafego_aux
        \operatorname{comp\_onda}\{1,2\} = i;
    end
end
for i=1:size(comp_onda,1)
    p=cell2mat(comp_onda(i,1));
    aux\_caminho={};
    for j=1:numel(p)-1
        for x=1:size(matrix_aux,1) \% list with links used in the path numbered
             if(cell2mat(matrix_aux(x,1)) == p(j) \&\& cell2mat(matrix_aux(x,2)) == p(j+1))
                 m=height(aux_caminho);
                 m=m+1;
```

```
aux_caminho\{m,1\} = matrix_aux\{x,1\};
               aux_caminho\{m,2\} = matrix_aux\{x,2\};
               aux-caminho{m,3}=matrix_aux{x,3}+1; %numbered link corresponds to Wavelengths
           \texttt{elseif}(\texttt{cell2mat}(\texttt{matrix}_\texttt{aux}(x,2)) \texttt{==} \texttt{p(j)} \And \texttt{cell2mat}(\texttt{matrix}_\texttt{aux}(x,1)) \texttt{==} \texttt{p(j+1)})
               m=height(aux_caminho);
               m=m+1:
               aux_caminho\{m,1\} = matrix_aux\{x,1\};
               aux_caminho\{m,2\} = matrix_aux\{x,2\};
               aux_caminho\{m,3\} = matrix_aux\{x,3\} + 1;
          end
     end
\mathbf{end}
total_links_used_path=size(aux_caminho,1);
flag=1;
blocked_path = 0;
link = \{\};
t = 0;
for y=1:cell2mat(comp_onda(i,2)) %Traffic
     for w=1:size(aux_caminho,1)
          link \{1,w\} = (aux_caminho\{w,3\});
     end
     link_1 = link\{1,1\};
     while true
          t = t + 1;
          if Wavelengths(t,link_1)==0 %verifies if the wavelengths is not being
               aux_count=t; %used in the 1st link
               FS\_selected = \{\};
               FS\_selected \{1,1\} = aux\_count;
               f \, l \, a \, g = 0;
          else
               flag = 1;
          \mathbf{end}
          if total_links_used_path_{\sim}=1
               for w=2:total_links\_used\_path %verifies the wavelength in the other links
                     link_dif_1 = link\{1,w\};
                     for kj=1:length(FS_selected)
                          fs\_using=FS\_selected \{1, kj\};
                          if Wavelengths(fs_using, link_dif_1) == 1
                               flag = 1;
                               break;
                          \mathbf{end}
                     \operatorname{end}
               \mathbf{end}
          end
          if flag == 0
               break;
          \operatorname{end}
          if t==max_fibra
               b \log k e d \_p a t h = 1;
               break:
          end
     \mathbf{end}
     for w=1:total_links_used_path \% {\rm saves} the paths wavelength
          x = link \{1, w\};
          if blocked_path_{\sim}=1
               for u=1:size(FS_selected,2)
                     r = FS\_selected \{1, u\};
                     Wavelengths(r, x) = 1;
                     comp_onda \{i, 2+y\} = Wavelengths(r, 1);
               end
          else
               comp_onda{i,4} = 'blocked';
          end
     end
end
```

end

Most Used algorithm

```
function [comp_onda]=Most_Used(origem, destino, trafego_rede, caminhos, max_fibra)
matrix_aux = \{\}:
comp_onda=cell(height(caminhos),3);
for l=1:numel(origem) %links source and destination numbered
    matrix_aux\{l,1\} = origem(l);
    matrix_aux\{1,2\} = destino(1);
    matrix_aux\{1,3\}=1;
end
links=size(matrix_aux,1);%number of links
count = 0:
while true %wavelengths available
    if count<max_fibra
         count = count + 1;
         Wavelengths(count,1) = count;
    else
         break;
    end
\mathbf{end}
for i=1:size(max_fibra,1)% wavelengths available per links
    for x=2:(links+2)
         Wavelengths(i, x)=0;
    end
end
for l=1:size(caminhos,1) %path and traffic
    p=cell2mat(caminhos(l,1));
    trafego_aux=trafego_rede(p(1), p(numel(p)));
    \operatorname{comp\_onda}(l,1) = \operatorname{caminhos}(l,1);
    for i=1:trafego_aux
         \operatorname{comp\_onda}\{1,2\} = i;
    end
end
for i=1:size(comp_onda,1)
    p=cell2mat(comp_onda(i,1));
    aux_caminho={};
    for j=1:numel(p)-1
         for x=1:size(matrix_aux,1) %list with links used in the path numbered
              if (cell2mat(matrix_aux(x,1)) == p(j) \&\& cell2mat(matrix_aux(x,2)) == p(j+1))
                 m=height(aux_caminho);
                 m = m + 1;
                  aux_caminho\{m,1\} = matrix_aux\{x,1\};
                  aux-caminho\{m,2\} = matrix_aux\{x,2\};
                  aux-caminho{m,3}=matrix_aux{x,3}+1; %numbered link corresponds to Wavelengths
              elseif(cell2mat(matrix_aux(x,2)) == p(j) \&\& cell2mat(matrix_aux(x,1)) == p(j+1))
                 m=height(aux_caminho);
                 m=m+1;
                 aux_caminho\{m,1\} = matrix_aux\{x,1\};
                  aux_caminho\{m,2\} = matrix_aux\{x,2\};
                  aux_caminho\{m,3\} = matrix_aux\{x,3\} + 1;
             end
         end
    end
    total_links_used_path=size(aux_caminho,1);
    flag = 1;
    blocked_path=0;
    l\,i\,n\,k\,\!=\!\{\,\}\,;
    t = 0;
    for y=1:cell2mat(comp_onda(i,2)) %Traffic
         for w=1:size(aux_caminho,1) list of links
             link \{1,w\} = (aux\_caminho\{w,3\});
         end
         link_{-}1 = link \{1, 1\};
         while true
```

```
t = t + 1;
         if Wavelengths(t, link_1) == 0 %verifies if the wavelengths is not being
              aux\_count=t; %used in the 1st link
              FS\_selected = \{\};
              FS\_selected \{1,1\} = aux\_count;
              flag=0;
         else
              flag = 1;
         end
         if total_links_used_path~=1
              for w=2:total_links\_used\_path %verifies the wavelength in the other links
                   link_{-}dif_{-}1 = link\{1,w\};
                   for kj=1:length(FS_selected)
                       fs_using=FS_selected {1, kj };
                        if Wavelengths(fs_using, link_dif_1)==1
                            flag = 1;
                            break;
                       {\bf end}
                  \mathbf{end}
              end
         \operatorname{end}
         if flag == 0
              break;
         end
         if t==max_fibra
              blocked_path=1;
              break;
         end
    end
    for w=1:total_links_used_path \% {\rm saves} the paths wavelength
         x = link \{1, w\};
         if blocked_path_=1
              for u=1:size(FS\_selected,2)
                   r = FS\_selected \{1, u\};
                   Wavelengths(r, x) = 1;
                   comp_onda{i, 2+y}=Wavelengths(r, 1);
              \mathbf{end}
         else
              comp_onda{i,1} = 'blocked';
         \mathbf{end}
    \mathbf{end}
{\bf end}
e=size(Wavelengths, 2);
for r=1:size(Wavelengths, 1) %organizes the wavelengths from the most used to the least
    Sum_aux=sum(Wavelengths(r, 2:(links+1)), 2);
    Wavelengths(r,e)=Sum_aux;
end
Wavelengths = sortrows(Wavelengths, -(links+2));
```

C.3. ILP solution for RWA

```
function [Caminhos_usados, R, resultados, Tempo]=
ILP.RWA(Cores, N, nos, links, tot_o, tot_d, tot_l, origem, destino)
tic
[trafego_rede]=trafego(nos);
for m=1:numel(tot_o)
[DIST_T, PATH_T] = graphkshortestpaths(tot_l, tot_o(m), tot_d(m), N);
matriz_caminhos{m,1}= tot_o(m);
matriz_caminhos_dist{m,2}=tot_d(m);
matriz_caminhos_dist{m,2}=tot_o(m);
for i=3:(N+2)
        j=i-2;
        matriz_caminhos{m, i}=cell2mat(PATH_T(j));
```

end

Appendix C Complementary material used in Chapter 4

```
matriz_caminhos_dist {m, i}=(DIST_T(j));
     {\bf end}
{\bf end}
numero_caminho=size(matriz_caminhos,1)*N;
numero_demands=length(tot_o);
Caminhos = \{\};
aux_c=0;
for i=1:size(matriz_caminhos,1)
     for j=3:N+2
          aux_c=aux_c+1:
          Caminhos{aux_c,1}=cell2mat(matriz_caminhos(i,j));
          Caminhos \{aux_c, 2\} = aux_c;
         %Caminhos{aux_c,3}=cell2mat(matriz_caminhos_dist(i,j));
     end
end
for l=1:numel(origem)
     matrix_aux \{l, 1\} = origem(l);
     matrix_aux \{1,2\} = destino(1);
     matrix_aux\{1,3\}=1;
end
N_variables = (numero_caminho*Cores) + (links*Cores) + links;
F=zeros(N_variables,1);
for i=1:N_variables
    %if(i>N_variables-links) %minimizar capacidade
     if (i>numero_caminho*Cores && i<=N_variables-links) %minimizar cores
          F(i, 1) = 1;
     \mathbf{end}
end
aux_D=links*Cores+numero_demands
D = z eros((aux_D), 1);
for i=1:numero_demands
    D(i, 1) = 1;
end
W=triu(trafego_rede,1);
m=0;
for i=1:nos
     for y=1:nos
          \substack{i\,f\,\left(W\!\left(\,i\ ,\ y\,\right)_{\,\sim}=0\right)}
              m=m+1;
              d_{-a\,u\,x}\,\{m,1\,\}\,{=}\,i\,\,;
              d_aux\{m,2\}=y;
               d_aux\{m,3\}=m;
          {\tt end}
     end
{\bf end}
Z=zeros(links*Cores,1);
d=zeros(numel(D),numel(F));
for t=1:Cores
     for z=1:size(Caminhos,1)
          caminho=cell2mat(Caminhos(z,1));
          p=size(caminho, 2);
          for i=1:size(d_aux,1)
               if (cell2mat(d_aux(i,1))==caminho(1) && cell2mat(d_aux(i,2))==caminho(p))
                   x = cell2mat(d_aux(i,3));
                   y = cell2mat(Caminhos(z,2)) + (numero_caminho*(t-1));
                   d(x, y) = 1;
              \operatorname{end}
         \mathbf{end}
     end
end
count_aux=numero_caminho*Cores+1;
for z=numero_demands+1:size(d,1)
     d\left(\,z\,\,,\,\operatorname{count\_aux}\,\right)\,{=}\,{-}\,1\,;
     count_aux=count_aux+1;
end
```

Appendix C Complementary material used in Chapter 4

```
g = (size(F, 1) - links) + 1;
for z=numero\_demands+1:(size(d,1))
     if g < (size(F,1)) + 1
         d(z,g) = 1;
         g=g+1;
     else
         g = (size(F, 1) - links) + 1;
         d(z,g) = 1;
         g=g+1;
    end
end
c = z \operatorname{eros}(\operatorname{numel}(Z), \operatorname{numel}(F));
for r=1:Cores
     for z=1:size(Caminhos,1)
         caminho=cell2mat(Caminhos(z,1));
         for j=1:(numel(caminho)-1)
              for i=1:size(matrix_aux,1)
                   if(cell2mat(matrix_aux(i,1))==caminho(j) &&
                   cell2mat(matrix_aux(i,2)) = = caminho(j+1))
                        x = cell2mat(matrix_aux(i,3)) + (links*(r-1));
                        y = cell2mat(Caminhos(z,2)) + (numero_caminho*(r-1));
                        c(x, y) = 1;
                   elseif(cell2mat(matrix_aux(i,2))==caminho(j) &&
                   cell2mat(matrix_aux(i,1)) == caminho(j+1))
                        x = cell2mat(matrix_aux(i,3)) + (links*(r-1));
                        y = cell2mat(Caminhos(z,2)) + (numero_caminho*(r-1));
                        c\,(\,x\,,\ y\,)\!=\!1\,;
                   end
              end
         end
    end
end
k = numero\_caminho*Cores+1;
for j=1:size(c,1)
     if k < size(c,2) - links+1
         c(j,k) = -1;
         k=k+1;
    end
end
lb=zeros(N_variables,1);
for i=1:size(F,1)
     if i > (numero\_caminho * Cores) \&\& i <= (size(F, 1) - links)
         ub(i, 1) = 1;
     else
         ub(i,1) = inf;
    end
\mathbf{end}
int = 1:1:size(F,1);
options = optimoptions(@intlinprog,'Maxtime', inf);
[X, \ O, \ G, \ K] = \texttt{intlinprog}(F, \texttt{int}, \ -d, \ -D, \ c, \ Z, \ lb \ , \ ub \ , \ options \ )
Tempo=toc;
Caminhos_usados = [];
t = 0:
for color=1:Cores
     for x=1:numero_caminho
         if (X(x+(color -1)*numero_caminho)~=0)
              t = t + 1;
              Caminhos\_usados{t,1}=cell2mat(Caminhos(x,1));
              Caminhos_usados {t,2} = color;
              Caminhos\_usados{t,3}=t;
         end
    \mathbf{end}
end
for z=1:size(Caminhos_usados,1)
    caminho=cell2mat(Caminhos_usados(z,1));
```

```
for j=1:(numel(caminho)-1)
         for i=1:size(matrix_aux,1)
             if (cell2mat(matrix_aux(i,1))==caminho(j) &&
             cell2mat(matrix_aux(i,2)) = caminho(j+1))
                 x=cell2mat(matrix_aux(i,3));
                 y=cell2mat(Caminhos_usados(z,3));
                 for t=1:size(Caminhos_usados,1)
                      if (cell2mat(Caminhos_usados(t,3))==y)
                          resultados(x, y)=1;
                     end
                 end
             elseif(cell2mat(matrix_aux(i,2))==caminho(j) &&
             cell2mat(matrix_aux(i,1)) = caminho(j+1))
                 x=cell2mat(matrix_aux(i,3));
                 y=cell2mat(Caminhos_usados(z,3));
                  for t=1:size(Caminhos_usados,1)
                      if (cell2mat(Caminhos_usados(t,3))==y)
                          resultados(x, y)=1;
                     end
                 end
             \mathbf{end}
         \mathbf{end}
    end
end
R=zeros(links,3);
for i=1:size(resultados,1) % gives the link capacity
    R(i,1) = cell2mat(matrix_aux(i,1));
    R(i,2) = cell2mat(matrix_aux(i,2));
    for j=1:size(resultados,2)
         aux_count = (R(i, 3));
         count=resultados(i,j);
        R(i,3) = aux_count+count;
    end
end
```

C.4. Paths used to solve the RWA problem

In this appendix section, the paths used to obtain Figure 4.1 are presented. In Table C.1 the shortest path in distance of each demand used in the heuristic solution are represented. The path list used in the ILP solution consisted of 4 candidate paths, in Table C.1 the path picked by the ILP formalism, as well as, the number of the candidate path in the list are shown. The different paths chosen are signaled in blue.

C.5. Multiband optical network simulator

OSNR calculation

function[comp_onda, Freq_slots,OSNR_TOT, Time, bloqueados]=
OSNR_FS(BER, origens, destinos, distancia, O, D, d, N, Amp_ganho, nos_rede)

```
%% start clock
tic
%% Constantes
h_planck=6.62607015e - 34;
c_luz = 299792458;
%% values
alfa_fibra_dB=0.25;
alfa_fibra_linear=(alfa_fibra_dB/4.343)*10^-3;
area_efetiva_fibra=80*10^-6*10^-6;
indice_refracao_nlinear=2.56688e - 20;
D_fibra=17 *le-12/le-9/le3; % ps/(mm*km)
S_fibra=0.067 *le-12/le-9/le3/le-9; % ps/(mm^2*km)
Comp_onda_ref_fibra=1550e-9;
FS=12.5e9;
```

Demand	Paths	Paths	# of the	Demand	Paths	Paths	# of the
d	Heuristic	ILP	candidate path	d	Heuristic	ILP	candidate path
[1-2]	$\{1,2\}$	$\{1,2\}$	1	[4-6]	$\{4,7,6\}$	$\{4,7,6\}$	1
[1-3]	$\{1,3\}$	$\{1,3\}$	1	[4-7]	$\{4,7\}$	$\{4,7\}$	1
[1-4]	$\{1,4\}$	$\{1,4\}$	1	[4-8]	$\{4,8\}$	$\{4,8\}$	1
[1-5]	$\{1,3,5\}$	$\{1,2,5\}$	4	[4-9]	$\{4,7,9\}$	$\{4,7,9\}$	1
[1-6]	$\{1,3,6\}$	$\{1,3,6\}$	1	[4 - 10]	$\{4,10\}$	$\{4,10\}$	1
[1-7]	$\{1,7\}$	$\{1,7\}$	1	[4 - 11]	$\{4,7,9,11\}$	$\{4,10,11\}$	2
[1-8]	$\{1,3,5,8\}$	$\{1,4,8\}$	3	[5-6]	$\{5,6\}$	$\{5,6\}$	1
[1-9]	$\{1,7,9\}$	$\{1,7,9\}$	1	[5-7]	$\{5,6,7\}$	$\{5,6,7\}$	1
[1 - 10]	$\{1,4,10\}$	$\{1,7,10\}$	2	[5-8]	$\{5,8\}$	$\{5,8\}$	1
[1 - 11]	$\{1,7,9,11\}$	$\{1,3,5,11\}$	4	[5-9]	$\{5,6,9\}$	$\{5,8,9\}$	3
[2-3]	$\{2,3\}$	$\{2,3\}$	1	[5 - 10]	$\{5,6,7,10\}$	$\{5,6,9,10\}$	2
[2-4]	$\{2,3,4\}$	$\{2,1,4\}$	4	[5 - 11]	$\{5,11\}$	$\{5,11\}$	1
[2-5]	$\{2,5\}$	$\{2,5\}$	1	[6-7]	$\{6,7\}$	$\{6,7\}$	1
[2-6]	$\{2,5,6\}$	$\{2,5,6\}$	1	[6-8]	$\{6,8\}$	$\{6,8\}$	1
[2-7]	$\{2,5,6,7\}$	$\{2,8,6,7\}$	3	[6-9]	$\{6,9\}$	$\{6,9\}$	1
[2-8]	$\{2,8\}$	${2,8}$	1	[6 - 10]	$\{6,7,10\}$	$\{6,9,10\}$	2
[2-9]	$\{2,5,6,9\}$	$\{2,8,9\}$	2	[6-11]	$\{6,9,11\}$	$\{6,8,11\}$	3
[2 - 10]	$\{2,5,6,7,10\}$	$\{2,3,4,10\}$	4	[7-8]	$\{7,6,8\}$	$\{7,9,8\}$	2
[2-11]	$\{2,8,11\}$	$\{2,8,11\}$	1	[7 - 9]	$\{7,9\}$	$\{7,9\}$	1
[3-4]	$\{3,4\}$	${3,4}$	1	[7 - 10]	$\{7,10\}$	$\{7,10\}$	1
[3-5]	$\{3,5\}$	$\{3,5\}$	1	[7 - 11]	$\{7,9,11\}$	$\{7,10,11\}$	2
[3-6]	$\{3,6\}$	$\{3,6\}$	1	[8 - 9]	$\{8,9\}$	$\{8,9\}$	1
[3-7]	$\{3,4,7\}$	$\{3,4,7\}$	1	[8 - 10]	$\{8,9,10\}$	$\{8,11,10\}$	4
[3-8]	$\{3,5,8\}$	$\{3,5,8\}$	1	[8 - 11]	$\{8,11\}$	$\{8,11\}$	1
[3-9]	$\{3,6,9\}$	$\{3,6,9\}$	1	[9 - 10]	$\{9,10\}$	$\{9,10\}$	1
[3 - 10]	$\{3,4,10\}$	$\{3,4,10\}$	1	[9-11]	$\{9,11\}$	$\{9,11\}$	1
[3 - 11]	$\{3,6,9,11\}$	$\{3,5,11\}$	2	[10 - 11]	$\{10,11\}$	$\{10,11\}$	1
[4-5]	$\{4,3,5\}$	$\{4,8,5\}$	4				

Appendix C Complementary material used in Chapter 4

Table C.1. Path list used to obtain Figure 4.1

```
Prx_dBm=0;
prx\_linear = 10^{-3} * 10^{(Prx\_dBm/10)};
\% Modulation values
if BER==1e-3
     Modulacao\{1,2\}=24.8;
     Modulacao\{2,2\}=18.6;
     Modulacao \{3, 2\} = 12;
    pFEC=0.07;
elseif BER==4e-2
     Modulacao\{1,2\} = 18.9;
     Modulacao \{2,2\} = 13.3;
     Modulacao \{3,2\} = 7.1;
    pFEC=0.28;
elseif BER==1e-2
     Modulacao\{1,2\}=21.9;
     Modulacao{2,2}=16.1;
     Modulacao \{3,2\} = 9.5;
     \mathrm{pFEC}{=}0.28 ;
end
Modulacao_QPSK=4;
Rb_l_QPSK = 128; \% [Gb/s]
Rs_l_QPSK=Rb_l_QPSK/(2*log2(Modulacao_QPSK)); %[Gbaud]
Rb\_i\_QPSK=Rb\_l\_QPSK/(1\!+\!pFEC);
\mathrm{PHI}_{-}\mathrm{QPSK} = -1\,;
Modulacao\_QAM\!=\!16;
Rb_l_QAM = 128;
\label{eq:Rs_l_QAM} Rb\_l\_QAM/(2*\log 2 \left( Modulacao\_QAM \right) \right);
```

```
Rb_i_QAM=Rb_l_QAM/(1+pFEC);
PHI_QAM=-0.68;
Modulacao\_QAM\_64\!=\!64;
Rb_l_QAM_64=128;
Rs_l_QAM_64 = Rb_l_QAM_64 / (2*log2(Modulacao_QAM_64));
Rb_iQAM_64=Rb_lQAM_64/(1+pFEC);
PHI_QAM_64 = -0.619;
Modulacao\{1,1\} = PHI_QAM_64;
Modulacao \{2,1\} = PHLQAM;
Modulacao \{3,1\} = PHLQPSK;
Modulacao \{1,3\} = '64QAM';
Modulacao \{2,3\} = '16QAM';
Modulacao \{3,3\} = 'QPSK';
Modulacao\{1,4\}=25e9;
Modulacao\{2,4\}=37.5e9;
Modulacao \{3, 4\} = 50 e9;
Modulacao \{1, 8\} = Rs_l_QAM_64;
Modulacao \{2, 8\} = Rs_l_QAM;
Modulacao \{3,8\} = Rs_l_QPSK;
%% full mesh trafic
[trafego_rede] = trafego(nos_rede);
%% Candidate paths
for m=1:numel(O)
    [DIST_T, PATH_T] = graphkshortestpaths(d, O(m), D(m), N);
    matriz_caminhos\{m,1\} = O(m);
    matriz_caminhos\{m,2\}=D(m);
    \texttt{matriz\_caminhos\_dist}\left\{m,1\right\} = \ O(m) \ ;
    matriz_caminhos_dist\{m,2\}=D(m);
    n=3:
     for i = 3:(N+2)
         j=i-2;
         matriz_caminhos\{m, i\} = cell2mat(PATH_T(j));%candidate path list per demand
         matriz_caminhos_dist\{m, i\} = (DIST_T(j));
    end
\mathbf{end}
Caminhos={}; % candidate paths list with distance
aux_c=0;
for i=1:size(matriz_caminhos,1)
    aux_c=aux_c+1;
         Caminhos{aux_c,1}=cell2mat(matriz_caminhos(i,j));
         Caminhos \{aux_c, 2\} = cell2mat(matriz_caminhos_dist(i,j));
     \operatorname{end}
end
%% Frequency and wavelengths
for z=1:size(Modulacao,1)
    delta_VC=Modulacao{z,4};
    freq = 195.9e12;
    gap = 190.95 e 12;
    count = 0;
     new_count=0:
     while true
         if freq >191.6e12
             count = count + 1:
             aux=((count-1)*delta_VC);
             aux_Freq=195.9e12 - aux;
              freq=aux_Freq;
              Matriz_freq_comp(count, 1) = aux_Freq;
             aux_Comp_onda=c_luz/aux_Freq;
              Matriz_freq_comp(count,2)=aux_Comp_onda;
         elseif freq >184.5e12
              new\_count=new\_count+1;
             count = count + 1;
             aux_Freq=gap - ((new_count - 1) * delta_VC);
              freq=aux_Freq;
```

```
Matriz_freq_comp(count,1) = aux_Freq;
             aux_Comp_onda=c_luz/aux_Freq;
             Matriz_freq_comp(count, 2) = aux_Comp_onda;
         else
             break;
         end
    end
    Canais=count;
    Canal_central=round(Canais/2);
    Modulacao \{z, 5\} = Matriz_freq_comp(Canal_central, 1);
    Modulacao \{z, 6\} = Canais;
    Modulacao \{z, 7\} = Canal_central;
end
count = 0:
new_count=0;
freq = 195.9e12;
gap = 190.95 e12;
while true
    if freq >191.6e12 %184.5e12
         count = count + 1;
         aux_Freq=195.9e12 - ((count - 1)*FS);
         freq=aux_Freq;
         Frequency_Slots(count,1)=count;
         aux_Comp_onda=c_luz/aux_Freq;
         Frequency_Slots(count,2) = aux_Freq;
         Frequency_Slots(count,3)=0;
     else
         break;
    end
end
while true
     if freq >184.5e12
         \verb"new_count=\verb"new_count+1";"
         count=count+1:
         aux_Freq=gap - ((new_count - 1) * FS);
         freq=aux_Freq;
         Frequency_Slots(count, 1) = count;
         aux_Comp_onda=c_luz/aux_Freq;
         Frequency_Slots(count, 2) = aux_Freq;
         Frequency_Slots (count, 3) = 0;
    else
         break;
    end
end
Canais_FS=count;
Canal_FS_central=round(Canais_FS/2);
\% Links distance and source and destination nodes numbered
for i=1:length(origens)
    Distancia(i,1) = origens(1,i);
    Distancia(i,2) = destinos(1,i);
     Distancia(i,3) = distancia(1,i);
    Distancia(i,4) = i;
end
%% N spans per link
for i=1:size(Distancia)
    Ganho_aux=Distancia(i,3)*alfa_fibra_dB;
    if(Ganho_aux>Amp_ganho)
         amps_aux=ceil (Ganho_aux/Amp_ganho);
         Ganho_aux=Ganho_aux/amps_aux;
    else
       amps_aux = 1;
    \mathbf{end}
    %Amplifier gain and number of in-line and pre-amplifiers in the link
    Ganho_ligacao_pre_dB(i,1) = Distancia(i,1);
    Ganho_ligacao_pre_dB(i,2) = Distancia(i,2);
```

```
Ganho_ligacao_pre_dB(i,3)=Ganho_aux;
     Ganho_{ligacao_{pre_d}B(i,4) = amps_{aux};
    %span length
     Distancia_amp(i,1) = Distancia(i,1);
     Distancia_amp(i,2) = Distancia(i,2);
     Distancia\_amp(i,3) = Distancia(i,3)*10^3/amps\_aux;
     Distancia_amp(i,4) = Distancia(i,4);
end
for i=1:size(Ganho_ligacao_pre_dB)
     Ganho_aux=10^(Ganho_ligacao_pre_dB(i,3)/10);
     ganho_ligacao_pre_linear(i,1) = Distancia(i,1);
     ganho_ligacao_pre_linear(i,2) = Distancia(i,2);
     ganho_ligacao_pre_linear(i,3)=Ganho_aux;
     ganho_ligacao_pre_linear(i,4) = Ganho_ligacao_pre_dB(i,4);
end
%% post-amplifier gain
Ganho_pos_dB=18; %dB
ganho_pos_linear = 10^{(Ganho_pos_dB/10)};
%% pASE values
for i=1:size(Ganho_ligacao_pre_dB,1)
     Fn_{pre_{d}B(i,1)} = Distancia(i,1);
     Fn_pre_dB(i,2) = Distancia(i,2);
     \operatorname{Fn}_{\operatorname{pre}} \operatorname{dB}(i,3) = -0.2 * \operatorname{Ganho}_{\operatorname{ligacao}} \operatorname{pre}_{\operatorname{dB}}(i,3) + 10;
     fn_pre_linear(i,1) = Distancia(i,1);
     fn_pre_linear(i,2) = Distancia(i,2);
     fn_pre_linear(i,3) = 10^{(Fn_pre_dB(i,3)/10)};
end
Fn_{pos_{d}B} = -0.2 * Ganho_{pos_{d}B} + 10;
fn_pos_linear = 10^{(Fn_pos_dB/10)};
%% pASE pre
for i=1:size(ganho_ligacao_pre_linear)
    aux_ASE=(ganho_ligacao_pre_linear(i,4));
    p_ASE_pre(i, 1) = Distancia(i, 1);
    p_ASE_pre(i,2) = Distancia(i,2);
    p_ASE_pre(i,3) = Distancia(i,4);
     for t=1:size(Modulacao)
         B0=cell2mat(Modulacao(t,8));
         v0=cell2mat(Modulacao(t,5));
         aux_p_ASE_preK=(fn_pre_linear(i,3))*(ganho_ligacao_pre_linear(i,3)-1)*h_planck*v0*
         (B0 * 10^{9});
         p_ASE_pre(i,3+t)=aux_p_ASE_preK*aux_ASE;
    \mathbf{end}
end
%% pASE pos
for t=1:size(Modulacao)
    B0=cell2mat(Modulacao(t,8));
     v0_pos=cell2mat(Modulacao(t,5));
     p_ASE_pos(t, 1) = (fn_pos_linear) * (ganho_pos_linear - 1) * h_planck * v0_pos * (B0*10^9);
end
%% pASE
for i=1:size(p_ASE_pre,1)
     for t=1:size(Modulacao)
         p_ASE(i,1) = Distancia(i,1);
         p_ASE(i,2) = Distancia(i,2);
         p_ASE(i,3) = Distancia(i,4);
         p_ASE(i,3+t)=p_ASE_pos(t,1)+p_ASE_pre(i,3+t);
     end
end
%% NLI Values
for w=1:size(Distancia_amp,1)
     p_{NLI}(w,1) = (Distancia_amp(w,1));
     p_NLI(w,2) = (Distancia_amp(w,2));
    eta_NLI(w,1) = (Distancia_amp(w,1));
    eta_NLI(w,2) = (Distancia_amp(w,2));
     p_NLI_corr(w,1) = (Distancia_amp(w,1));
```

Appendix C Complementary material used in Chapter 4

```
p_NLI_corr(w,2) = (Distancia_amp(w,2));
    eta_NLI_corr(w,1) = (Distancia_amp(w,1));
    eta_NLI_corr(w,2) = (Distancia_amp(w,2));
end
for r=1:size(Modulacao,1)
    NLI = []; eta = []; NLI_corr = []; eta_corr = [];
    for h=1:size(Distancia_amp,1)
         delta_canal=Modulacao\{r, 4\};
         canal=Modulacao{r,6};
         canal_central=Modulacao{r,7};
         Dados.n=Ganho_ligacao_pre_dB(h,4);
         Dados.Bch= delta_canal * ones(canal, Dados.n);
         Dados.fi = -canal + delta_canal/2 + 0.5 + delta_canal + (0:(canal-1)) + delta_canal;
         Dados.fi = repmat(Dados.fi, 1, Dados.n);
         Dados.D=D_fibra * ones(1, Dados.n);
         Dados.S=S_fibra * ones(1, Dados.n);
         Dados.RefLambda=Comp_onda_ref_fibra;
         {\tt Dados.Att=alfa_fibra\_linear \ \ast \ ones(canal , \ {\tt Dados.n}); \ \%}
         Dados.Att_bar = Dados.Att;
         Dados.Cr= 0.028 /1e3/1e12 * ones(canal, Dados.n);
         Coeficiente_nlinearidade = (2*pi*indice_refracao_nlinear)/
         (area_efetiva_fibra*Comp_onda_ref_fibra);
         Dados.Gamma=Coeficiente_nlinearidade * ones(1, Dados.n);
         Dados.Length=Distancia_amp(h,3);
         Dados.coherent = 0;
         Dados.Pch= prx_linear * ones(canal, Dados.n);
         Dados.PHI=cell2mat(Modulacao(r,1));
         [NLI(:,h),eta(:,h)] = ISRSGNmodel(Dados);
    end
    %% NLI coefficient
    for w=1:size(Distancia_amp,1)
         p_NLI(w, r+2)=NLI(canal_central, w);
         eta_NLI(w, r+2) = eta(canal_central, w);
    end
end
\%\% prx for the longest path
Caminhos_aux=sortrows (Caminhos, -2);
p=cell2mat(Caminhos_aux(1,1));
aux_caminho={};
for y=1:numel(p)-1
    for x=1:length(p_ASE)
         if ((p_ASE(x,1)) = = p(y) \& (p_ASE(x,2)) = = p(y+1))
             m=height(aux_caminho);
             m=m+1:
             aux_caminho\{m,1\} = p_ASE(x,1);
             aux\_caminho\{m,2\}=p\_ASE(x,2);
             aux_caminho\{m,3\}=p_ASE(x,3);
             aux\_caminho\{m,4\}=p\_ASE(x,4);
             aux_caminho\{m,5\}=p_ASE(x,5);
             aux_caminho\{m, 6\} = p_ASE(x, 6);
         elseif((p_ASE(x,2)) == p(y) \&\& (p_ASE(x,1)) == p(y+1))
             m=height(aux_caminho);
             m=m+1:
             aux_caminho\{m,1\} = p_ASE(x,1);
             aux_caminho\{m,2\} = p_ASE(x,2);
             aux_caminho\{m,3\}=p_ASE(x,3);
             aux\_caminho\{m,4\}=p\_ASE(x,4);
             aux_caminho\{m,5\}=p_ASE(x,5);
             aux_caminho\{m, 6\} = p_ASE(x, 6);
        \mathbf{end}
    end
{\bf end}
aux_p_NLI=0;
aux_pASE = 0;
for i=1:size(Modulacao)
```

```
for t=1:height(aux_caminho)
         c=aux\_caminho{t,3};
         aux_ASE=cell2mat(aux_caminho(t,3+i));
         aux_p_ASE=aux_p_ASE+aux_ASE;
         aux_NLI = (eta_NLI(c, 2+i));
         aux_p_NLI=aux_p_NLI+aux_NLI;
    end
    pm(i, 1) = (aux_pASE / (2*aux_pNLI))^{(1/3)};
    pm_dBm(i,1) = 10 * log10(pm(i,1)/10^{-3});
end
%% NLI for each link for the 3 modulations
for r=1:size(Modulacao,1)
    NLI = []; eta = []; NLI_corr = []; eta_corr = [];
    for h=1:size(Distancia_amp,1)
         delta_canal=Modulacao{r,4};
         canal=Modulacao{r,6};
         canal_central=Modulacao{r,7};
         Dados.n=Ganho_ligacao_pre_dB(h,4);
         Dados.Bch= delta_canal * ones(canal, Dados.n);
         Dados.fi = -canal*delta_canal/2+0.5*delta_canal+(0:(canal-1))'*delta_canal;
         Dados.fi = repmat(Dados.fi, 1, Dados.n);
         Dados.D=D_fibra * ones(1, Dados.n);
         Dados.S=S_fibra * ones(1, Dados.n);
         Dados.RefLambda=Comp_onda_ref_fibra;
         Dados.Att=alfa_fibra_linear * ones(canal, Dados.n); %
         Dados.Att_bar = Dados.Att;
         Dados.Cr= \ 0.028 \ /1e3/1e12 \ * \ ones (\, canal \, , \ Dados.n \, ) \, ; \ \% \text{valor} \ ??
         Coeficiente_nlinearidade = (2*pi*indice_refracao_nlinear)/
         (area_efetiva_fibra * Comp_onda_ref_fibra);
         Dados.Gamma=Coeficiente_nlinearidade * ones(1, Dados.n);
         Dados.Length=Distancia_amp(h,3);
         Dados.coherent = 0;
         Dados.Pch = pm(r,1) * ones(canal, Dados.n);
         Dados.PHI=cell2mat(Modulacao(r,1));
         [NLI(:,h), eta(:,h), eta_corr(:,h), NLI_corr(:,h)] = ISRSGNmodel(Dados);
    {\bf end}
    %% NLI
    for w=1:size(Distancia_amp,1)
         p_NLI_corr(w, r+2)=NLI_corr(canal_central,w);
         eta_NLI_corr(w,r+2)=eta_corr(canal_central,w);
    \mathbf{end}
end
% OSNR
for i=1:size(matriz_caminhos)
    aux_matriz_caminhos=matriz_caminhos(i,:);
    aux_matriz_caminhos=aux_matriz_caminhos. ';
    \operatorname{osnr}(i, 1) = \operatorname{aux\_matriz\_caminhos}(1);
    \operatorname{osnr}(i,2) = \operatorname{aux\_matriz\_caminhos}(2);
    OSNR(i, 1) = aux_matriz_caminhos(1);
    OSNR(i, 2) = aux_matriz_caminhos(2);
    \operatorname{count} = 3;
    for j=3:length(aux_matriz_caminhos)
         aux p ASE=0:
         p=cell2mat(aux_matriz_caminhos(j,1));
         aux_caminho={};
         for y=1:numel(p)-1
             for x=1:length(p_ASE)
                  if((p_ASE(x,1)) = = p(y) \&\& (p_ASE(x,2)) = = p(y+1))
                      m=height(aux_caminho);
                      m=m+1;
                      aux_caminho\{m,1\}=p_ASE(x,1);
                      aux_caminho\{m,2\}=p_ASE(x,2);
                      aux_caminho\{m,3\}=p_ASE(x,3);
                      aux_caminho\{m,4\} = p_ASE(x,4);
```

```
aux_caminho\{m,5\}=p_ASE(x,5);
                       aux\_caminho\{m,6\}=p\_ASE(x,6);
                   elseif((p_ASE(x,2)) == p(y) \&\& (p_ASE(x,1)) == p(y+1))
                       m=height(aux_caminho);
                       m=m+1;
                       aux_caminho\{m,1\}=p_ASE(x,1);
                       aux_caminho\{m,2\}=p_ASE(x,2);
                       aux\_caminho\{m,3\}=p\_ASE(x,3);
                       aux_caminho\{m,4\} = p_ASE(x,4);
                       aux_caminho\{m,5\} = p_ASE(x,5);
                       aux_caminho\{m, 6\} = p_ASE(x, 6);
                   \mathbf{end}
              end
         end
         while true
              for r=1:size(Modulacao,1)
                   aux_pNLI=0;
                   aux_pASE=0;
                   for t=1:height(aux_caminho)
                       c=aux_caminho\{t,3\};
                       aux_p=2+r;
                       aux_ASE=cell2mat(aux_caminho(t,3+r));
                       aux_p_ASE=aux_p_ASE+aux_ASE;
                       aux_NLI=(p_NLI_corr(c,aux_p));
                       aux_p_NLI=aux_p_NLI+aux_NLI;
                   end
                   osnr_aux=pm(r,1)/(aux_pASE+aux_pNLI);
                   OSNR_aux=10*log10(osnr_aux);
                   if OSNR_aux >= cell2mat(Modulacao(r,2))
                       osnr(i,count)=matriz_caminhos(i,j);
                       OSNR(i,count)=matriz_caminhos(i,j);
                       count = count + 1;
                       osnr(i, count) = matriz_caminhos_dist(i, j);
                       OSNR(i,count)=matriz_caminhos_dist(i,j);
                       count = count + 1;
                       osnr(i,count)=num2cell(osnr_aux);
                       OSNR(i, count)=num2cell(OSNR_aux);
                       count = count + 1;
                       osnr(i,count)=Modulacao(r,3);
                       OSNR(i, count)=Modulacao(r, 3);
                       count = count + 1;
                       break;
                   elseif r==3
                       osnr(i, count) = matriz_caminhos(i, j);
                       OSNR(i,count)=matriz_caminhos(i,j);
                       count = count + 1;
                       osnr(i, count) = matriz_caminhos_dist(i, j);
                       OSNR(i,count)=matriz_caminhos_dist(i,j);
                       count = count + 1;
                       \operatorname{osnr}\{i, \operatorname{count}\} = '\operatorname{null}';
                       OSNR{i,count}='null';
                       count = count + 1;
                       \operatorname{osnr}\{i, \operatorname{count}\} = '\operatorname{null}';
                       OSNR\{i, count\} = 'null';
                       count = count + 1;
                       break;
                   end
              end
              break
         end
     \mathbf{end}
%% OSNR max
osnr_tot_count=0:
for i=1:size(OSNR,1)
```

 \mathbf{end}

```
\operatorname{count} = 0;
    aux_OSNR=OSNR(i,:);
    aux_OSNR=aux_OSNR. ';
    aux_OSNR_TOT = \{\};
    null = 'null';
     for c=3:4:size(aux_OSNR)
         is_null=cell2mat(aux_OSNR(c+2,1));
         if strcmp(null, is_null)==1
              break:
         else
              count = count + 1;
             aux_OSNR_TOT(count, 1) = aux_OSNR(c, 1);
             aux_OSNR_TOT(count, 2) = aux_OSNR(c+1, 1);
             aux_OSNR_TOT(count,3) = aux_OSNR(c+2,1);
             aux_OSNR_TOT(count, 4) = aux_OSNR(c+3, 1);
         end
    \mathbf{end}
     if isempty(aux_OSNR_TOT)==0
         osnr_tot_count = osnr_tot_count + 1;
         OSNR_TOT(osnr_tot_count,1)=OSNR(i,1);
         OSNR_TOT(osnr_tot_count,2)=OSNR(i,2);
         aux_OSNR_TOT=sortrows(aux_OSNR_TOT,-3);
         new_count=2;
         for c=1:size(aux_OSNR_TOT,1)
              for t=1:size(aux_OSNR_TOT,2)
                  new\_count=new\_count+1;
                  OSNR\_TOT(\ o \ snr\_tot\_count \ , \ new\_count) = aux\_OSNR\_TOT(\ c \ , \ t \ ) \ ;
             end
         end
     else
         osnr_tot_count = osnr_tot_count + 1;
         OSNR_TOT(osnr_tot_count, 1) = OSNR(i, 1);
         OSNR_TOT(osnr_tot_count, 2) = OSNR(i, 2);
         OSNR_TOT{osnr_tot_count,3} = 'Blocked';
    end
\mathbf{end}
%% First Fit
[comp_onda, Freq_slots, bloqueados]=first_fit_FS (origens, destinos, trafego_rede, OSNR_TOT, FS);
%% End clock
Time=toc;
```

First Fit algorithm for the flexible grid

```
function [comp_onda_escolhido, Freq_slots, bloqueados]=
first_fit_FS(origem, destino, trafego_rede, caminhos, FS)
%% Constants
c_{luz} = 299792458;
\%\% Number of FS needed per modulation
FS_Mod\{1,1\} = '64QAM';
FS_Mod\{2,1\} = '16QAM';
FS_Mod\{3,1\} = 'QPSK';
FS_Mod\{1,2\}=2;
FS_Mod\{2,2\}=3;
FS_Mod\{3,2\} = 4;
%%Links numbered
for l=1:numel(origem)
     matrix_aux\{l,1\} = origem(l);
     matrix_aux \{1,2\} = destino(1);
     matrix_aux\{1,3\}=1;
{\bf end}
\% FS for the C+L band
\operatorname{count}=0;
\verb"new_-count=0";
freq = 195.9e12;
gap=190.95e12;
while true
```

```
if freq >191.6e12
         count = count + 1;
         aux_Freq = 195.9e12 - ((count - 1) * FS);
         freq=aux_Freq;
         Freq_slots (count,1) = count;
         aux_Comp_onda=c_luz/aux_Freq;
         Freq_slots (count,2) = aux_Freq;
         Freq_slots(count,3)=0;
    else
         break;
    end
\mathbf{end}
while true
    if freq >184.5e12
         new_count=new_count+1;
         count = count + 1;
         aux_Freq=gap - ((new_count - 1) * FS);
         freq=aux_Freq;
         Freq_slots (count,1) = count;
         aux_Comp_onda=c_luz/aux_Freq;
         Freq_slots (count,2) = aux_Freq;
         Freq_slots(count,3)=0;
     else
         break:
    end
\mathbf{end}
for i=1:size(Freq_slots,1)
     for x=3:(size(matrix_aux,1)+2)
         Freq_slots(i,x)=0;
    end
end
max_fibra=size(Freq_slots,1);
%matrix with candidate paths
for l=1:size(caminhos,1)
    count=0;
    for c=3:4:size(caminhos,2)
         bloqueado='Blocked';
         if isempty(cell2mat(caminhos(l,c))) = = 1
             break:
         elseif strcmp(bloqueado, cell2mat(caminhos(l,c)))==1
              comp_onda_escolhido \{l, 1\} = caminhos \{l, 1\};
              comp_onda_escolhido \{1,2\} = caminhos \{1,2\};
              comp_onda_escolhido{1,3}=bloqueado;
              bloqueados=bloqueados+1;
             break;
         else
             count = count + 1;
             p=cell2mat(caminhos(1,3)); %caminho
              trafego\_aux=trafego\_rede(p(1), p(numel(p)));
             comp_onda(l,count)=caminhos(l,c);
              count = count + 1;
              for i=1:trafego_aux
                  comp_onda \{l, count\} = i;
             end
             count = count + 1;
              mod\_selected=cell2mat(caminhos(l, c+3));
              for t=1:size(FS_Mod,1)
                  mod=cell2mat(FS_Mod(t,1));
                  if strcmp(mod,mod_selected)==1
                      comp_onda \{l, count\} = cell2mat(FS_Mod(t, 2));
                  end
             \mathbf{end}
         end
    end
end
```

Appendix C Complementary material used in Chapter 4

```
for i=1:size(comp_onda,1)
    aux_n_caminhos=comp_onda(i,:);
    aux_n_caminhos=aux_n_caminhos. ';
    aux_size = 0:
    for t=1:size(aux_n_caminhos,1)
         if isempty(cell2mat(aux_n_caminhos(t,1)))==0
              aux_size = aux_size+1;
         end
    end
    numero_caminhos(i, 1) = aux_size/3;
end
for i=1:size(comp_onda,1) %percorre a matriz com os caminhos
    for z=1:numero_caminhos(i,1)
         aux_caminho = \{\};
        p = cell2mat(comp_onda(i, 1+(z-1)*3));
        m = 0;
         for j=1:numel(p)-1
              for x=1:size(matrix_aux,1) %percorre a lista com as origens e destino
                  if (cell2mat(matrix_aux(x,1)) == p(j) \&\& cell2mat(matrix_aux(x,2)) == p(j+1))
                      m=m+1;
                       aux_caminho\{m,1\} = matrix_aux\{x,1\};
                       aux_caminho\{m,2\} = matrix_aux\{x,2\};
                       aux-caminho\{m,3\} = matrix_aux\{x,3\}+2;
                       aux_caminho\{m, 4\} = comp_onda\{i, 3+(z-1)*3\};
                  elseif(cell2mat(matrix_aux(x,2)) = = p(j) \& cell2mat(matrix_aux(x,1)) = = p(j+1))
                      m=m+1;
                       aux_caminho\{m,1\} = matrix_aux\{x,1\};
                       aux_caminho\{m,2\} = matrix_aux\{x,2\};
                       \texttt{aux\_caminho}\{\texttt{m},3\} = \texttt{matrix\_aux}\{\texttt{x},3\} + 2;
                       aux_caminho\{m, 4\} = comp_onda\{i, 3+(z-1)*3\};
                  end
             end
         end
         FS_needed=aux_caminho {1,4};
         total_links_used_path=size(aux_caminho,1);
         flag=1;
         done=0;
         blocked_path=0;
         link = \{\};
         t = 0;
         for y=1:cell2mat(comp_onda(i,2)) %vai buscar o valor do trafego
              for w=1:size(aux_caminho,1)
                  link \{1,w\} = (aux\_caminho\{w,3\});
             end
             link_1 = link\{1,1\};
              while true
                  t = t + 1;
                  if Freq_slots(t, link_1) == 0
                       aux_count=t;
                       FS\_selected = \{\};
                       FS\_selected \{1,1\} = aux\_count;
                       flag = 1;
                       for y=1:FS\_needed-1
                           check=v+aux count:
                            link_picked = link \{1,1\};
                            if Freq_slots(check, link_picked)==0
                                FS\_selected \{1, y+1\}=aux\_count+y;
                                flag = 0;
                            else
                                flag = 1;
                                break;
                           \mathbf{end}
                       end
                  else
                       f lag = 1;
```

```
end
             if total_links_used_path~=1
                  for w=2:total_links_used_path
                       link_dif_1 = link\{1,w\};
                       for kj=1:length(FS_selected)
                           fs\_using=FS\_selected \{1, kj\};
                           if Freq_slots (fs_using , link_dif_1)==1
                                flag = 1;
                                break:
                           end
                      end
                  end
             end
             if flag == 0
                  break:
             end
             if t>max_fibra-FS_needed
                  blocked_path = 1;
                  break:
             end
         end
         for w=1:total_links_used_path
             x = link \{1, w\};
             if blocked_path_{\sim}=1
                  for u=1:size(FS_selected,2)
                       r = FS\_selected \{1, u\};
                       Freq_slots(r,x)=1;
                       comp_onda_escolhido{i,1}=comp_onda{i,1};
                       comp_onda_escolhido{i,2}=comp_onda{i,2};
                       comp_onda_escolhido{i,3}=comp_onda{i,3};
                       comp_onda_escolhido{i,3+u} = Freq_slots(r,1);
                       done=1;
                  end
             else
                  comp_onda_escolhido{i,1} = 'blocked';
             end
         \mathbf{end}
    end
    if done==1
         break:
    end
\mathbf{end}
```

C.6. ASE and NLI noise power in the COST 239 network

In Table C.2, we present the ASE and NLI noises estimated at the end of each link of the COST 239 network for the three modulation formats.

From Table C.2, we can observed that the NLI noise power decreases with lower modulation formats, and the opposite happens for the ASE noise power, where the highest modulation format studied, induces the least noise. It can also be analyzed that the difference between modulation formats is higher in the ASE noise power, i.e. for link e=[1,2] the difference between the QPSK and 64-QAM format for NLI noise power is of 1.05 μ W and in the ASE noise power is of 22.26 μ W.

C.7. RMSA solution

end

In this appendix, we present the detailed results of the RMSA solution for the COST 239 optical network with $BER=10^{-2}$, as well as the results for the NSFNET, UBN, and CONUS 116

	NLI noise	power p_{NI}	$L_I \ [\mu W]$	ASE noise power $2p_{ASE} \ [\mu W]$				
Link e	64-QAM	16-QAM	QPSK	64-QAM	16-QAM	QPSK		
[1,2]	3.810	2.940	2.760	11.130	16.690	33.390		
[1,3]	2.550	1.970	1.800	5.950	8.930	17.860		
[1,4]	1.360	1.050	0.920	3.770	5.660	11.310		
[1,7]	2.570	1.980	1.820	6.700	10.060	20.110		
[2,3]	1.360	1.040	0.910	3.580	5.370	10.740		
[2,5]	1.320	1.010	0.860	2.500	3.760	7.510		
[2,8]	1.350	1.030	0.890	3.130	4.690	9.390		
[3,4]	2.200	1.690	1.550	7.040	10.550	21.110		
[3,5]	0.560	0.420	0.310	1.730	2.600	5.190		
[3,6]	1.320	1.010	0.860	2.430	3.650	7.290		
[4,7]	0.970	0.750	0.630	3.360	5.040	10.070		
[4,8]	3.420	2.640	2.480	11.060	16.590	33.190		
[4,10]	2.150	1.650	1.490	4.860	7.290	14.590		
[5,6]	0.570	0.440	0.330	2.490	3.730	7.460		
[5,8]	0.960	0.740	0.610	2.740	4.110	8.220		
[5,11]	2.620	2.020	1.880	9.550	14.320	28.640		
[6,7]	2.210	1.700	1.570	8.030	12.040	24.090		
[6,8]	0.990	0.760	0.640	4.020	6.030	12.070		
[6,9]	0.940	0.720	0.590	2.250	3.370	6.740		
[7,9]	2.150	1.660	1.500	5.000	7.510	15.010		
[7,10]	0.940	0.720	0.590	2.250	3.370	6.740		
[8,9]	1.800	1.390	1.260	6.460	9.690	19.390		
[8,11]	2.570	1.980	1.820	6.700	10.060	20.110		
[9,10]	2.210	1.700	1.570	8.030	12.040	24.090		
[9,11]	0.950	0.730	0.610	2.560	3.840	7.690		
[10,11]	2.560	1.970	1.800	6.070	9.100	18.200		

Appendix C Complementary material used in Chapter 4

Table C.2. NLI and ASE noise powers at the end of each link in the COST 239 optical network for the modulation formats 64-QAM, 16-QAM and QPSK.

30 networks for the BER= 4×10^{-2} , BER= 10^{-2} , and BER= 10^{-3} with the respective blocked demands. It is also shown the theoretical and practical ROSNR for BER= 10^{-2} .

Modulation format M	Theoretical ROSNR [dB]	Practical ROSNR [dB]
QPSK	7.3	9.5
16-QAM	13.9	16.1
64-QAM	19.7	21.9

Table C.3. Modulation formats with corresponding theoretical ROSNRs and practical ROSNRs for BER= 10^{-3} .

Demand	D. (1	OSNR	Modulation	Frequency	Demand	D. (1	OSNR	Modulation	Frequency
d	Path	[dB]	format M	slots	d	Path	[dB]	format M	slots
[1-2]	$\{1,3,2\}$	14.4	QPSK	1,2,3,4	[4-6]	$\{4,3,6\}$	16.1	16-QAM	26,27,28
[1-3]	$\{1,3\}$	18.0	16-QAM	5,6,7	[4-7]	$\{4,7\}$	20.8	16-QAM	1,2,3
[1-4]	{1,4}	20.1	16-QAM	1,2,3	[4-8]	$\{4,8\}$	13.8	QPSK	1,2,3,4
[1-5]	$\{1,3,5\}$	17.0	16-QAM	8,9,10	[4-9]	$\{4,7,9\}$	16.7	16-QAM	4,5,6
[1-6]	$\{1,3,6\}$	16.5	16-QAM	11,12,13	[4-10]	$\{4,10\}$	18.9	16-QAM	1,2,3
[1-7]	$\{1,7\}$	17.6	16-QAM	1,2,3	[4-11]	$\{4,7,9,11\}$	13.8	QPSK	18,19,20,21
[1-8]	$\{1,3,5,8\}$	14.0	QPSK	$14,\!15,\!16,\!17$	[5-6]	$\{5,6\}$	22.8	64-QAM	1,2
[1-9]	$\{1,3,6,9\}$	13.9	QPSK	18,19,20,21	[5-7]	$\{5,6,9,7\}$	14.3	QPSK	33,34,35,36
[1-10]	$\{1,4,10\}$	16.5	16-QAM	4,5,6	[5-8]	$\{5,8\}$	21.9	64-QAM	1,2
[1-11]	$\{1,3,6,9,11\}$	12.9	QPSK	22,23,24,25	[5-9]	$\{5,6,9\}$	19.2	16-QAM	37,38,39
[2-3]	$\{2,3\}$	20.3	16-QAM	$5,\!6,\!7$	[5-10]	$\{5,6,9,7,10\}$	13.4	QPSK	40,41,42,43
[2-4]	$\{2,3,4\}$	14.0	QPSK	8,9,10,11	[5-11]	$\{5,6,9,11\}$	17.3	16-QAM	44,45,46
[2-5]	$\{2,5\}$	21.6	16-QAM	1,2,3	[6-7]	$\{6,9,7\}$	17.2	16-QAM	1,2,3
[2-6]	$\{2,5,6\}$	18.9	16-QAM	4,5,6	[6-8]	$\{6,8\}$	20.1	16-QAM	1,2,3
[2-7]	$\{2,5,6,9,7\}$	13.3	QPSK	7,8,9,10	[6-9]	$\{6,9\}$	22.6	64-QAM	47,48
[2-8]	$\{2,8\}$	20.8	16-QAM	1,2,3	[6-10]	$\{6,9,7,10\}$	14.4	QPSK	49,50,51,52
[2-9]	$\{2,5,6,9\}$	17.5	16-QAM	11,12,13	[6-11]	$\{6,9,11\}$	19.0	16-QAM	$53,\!54,\!55$
[2-10]	$\{2,5,6,7,10\}$	12.4	QPSK	$14,\!15,\!16,\!17$	[7-8]	$\{7,9,6,8\}$	13.7	QPSK	56, 57, 58, 59
[2-11]	$\{2,5,6,9,11\}$	14.3	QPSK	26,27,28,29	[7-9]	$\{7,9\}$	18.8	16-QAM	11,12,13
[3-4]	$\{3,4\}$	17.5	16-QAM	1,2,3	[7-10]	$\{7,10\}$	22.6	64-QAM	1,2
[3-5]	$\{3,5\}$	24.0	64-QAM	1,2	[7-11]	$\{7,9,11\}$	17.0	16-QAM	$37,\!38,\!39$
[3-6]	$\{3,6\}$	21.7	16-QAM	1,2,3	[8-9]	$\{8,6,9\}$	18.0	16-QAM	60,61,62
[3-7]	$\{3,6,9,7\}$	14.7	QPSK	$14,\!15,\!16,\!17$	[8-10]	$\{8,11,10\}$	13.1	QPSK	1,2,3,4
[3-8]	$\{3,5,8\}$	19.5	16-QAM	3,4,5	[8-11]	{8,11}	17.6	16-QAM	$5,\!6,\!7$
[3-9]	$\{3,6,9\}$	19.0	16-QAM	4,5,6	[9-10]	$\{9,7,10\}$	17.2	16-QAM	22,23,24
[3-10]	{3,4,10}	13.4	QPSK	12,13,14,15	[9-11]	{9,11}	22.2	64-QAM	1,2
[3-11]	$\{3,6,9,11\}$	17.2	16-QAM	30,31,32	[10-11]	{10,11}	18.0	16-QAM	$5,\!6,\!7$
[4-5]	$\{4,3,5\}$	16.6	16-QAM	18,19,20					

Appendix C Complementary material used in Chapter 4

Table C.4. RMSA solution for the COST 239 optical network with $BER=10^{-2}$.
Demand	D (1	OSNR	Modulation	Frequency	Demand	D (1	OSNR	Modulation	Frequency
d	Path	[dB]	format M	slots	d	Path	[dB]	format M	slots
[1-3]	$\{1,8,9,3\}$	7.8	QPSK	1,2,3,4	[5-7]	$\{5,6,7\}$	14.4	16-QAM	16,17,18
[1-4]	{1,4}	14.9	16-QAM	1,2,3	[5-8]	$\{5,6,7,8\}$	10.8	QPSK	19,20,21,22
[1-5]	$\{1,4,5\}$	10.5	QPSK	4,5,6,7	[5-9]	$\{5,6,7,8,9\}$	9.7	QPSK	60,61,62,63
[1-6]	$\{1,4,5,6\}$	9.4	QPSK	8,9,10,11	[5-10]	$\{5,6,7,8,9,10\}$	9.0	QPSK	64,65,66,67
[1-7]	$\{1,4,5,6,7\}$	8.5	QPSK	12,13,14,15	[5-11]	$\{5,4,11\}$	11.4	QPSK	36,37,38,39
[1-8]	$\{1,8\}$	8.9	QPSK	5,6,7,8	[5-12]	$\{5,6,12\}$	10.5	QPSK	4,5,6,7
[1-9]	$\{1,8,9\}$	8.2	QPSK	9,10,11,12	[5-13]	$\{5,6,12,13\}$	8.7	QPSK	40,41,42,43
[1-10]	$\{1,8,9,10\}$	7.7	QPSK	$13,\!14,\!15,\!16$	[5-14]	$\{5,6,7,8,9,10,14\}$	8.8	QPSK	68,69,70,71
[1-11]	$\{1,11\}$	11.5	QPSK	1,2,3,4	[6-7]	$\{6,7\}$	17.2	16-QAM	1,2,3
[1-12]	$\{1,11,12\}$	7.9	QPSK	5,6,7,8	[6-8]	$\{6,7,8\}$	14.0	16-QAM	9,10,11
[1-13]	$\{1,8,9,13\}$	7.3	QPSK	17,18,19,20	[6-9]	$\{6,7,8,9\}$	10.8	QPSK	72,73,74,75
[1-14]	$\{1,8,9,10,14\}$	7.5	QPSK	21,22,23,24	[6-10]	$\{6,7,8,9,10\}$	10.0	QPSK	76,77,78,79
[2-3]	$\{2,3\}$	17.1	16-QAM	1,2,3	[6-11]	$\{6,5,4,11\}$	10.1	QPSK	44,45,46,47
[2-4]	$\{2,5,4\}$	8.3	QPSK	16,17,18,19	[6-12]	$\{6,12\}$	13.6	16-QAM	1,2,3
[2-5]	$\{2,5\}$	9.7	QPSK	1,2,3,4	[6-13]	$\{6,12,13\}$	9.6	QPSK	8,9,10,11
[2-6]	$\{2,3,9,8,7,6\}$	9.0	QPSK	5,6,7,8	[6-14]	$\{6,7,8,9,10,14\}$	9.7	QPSK	80,81,82,83
[2-7]	$\{2,3,9,8,7\}$	10.1	QPSK	25,26,27,28	[7-8]	$\{7,8\}$	16.8	16-QAM	1,2,3
[2-8]	$\{2,3,9,8\}$	13.3	16-QAM	29,30,31	[7-9]	$\{7,8,9\}$	14.2	16-QAM	84,85,86
[2-9]	$\{2,3,9\}$	15.3	16-QAM	9,10,11	[7-10]	$\{7,8,9,10\}$	11.4	QPSK	87,88,89,90
[2-10]	$\{2,10\}$	16.0	16-QAM	1,2,3	[7-11]	$\{7,6,5,4,11\}$	9.0	QPSK	84,85,86,87
[2-11]	$\{2,5,4,11\}$	7.4	QPSK	20,21,22,23	[7-12]	$\{7,6,12\}$	10.4	QPSK	23,24,25,26
[2-12]	$\{2,3,9,13,12\}$	9.1	QPSK	12,13,14,15	[7-13]	$\{7, 8, 9, 13\}$	10.5	QPSK	91,92,93,94
[2-13]	$\{2,3,9,13\}$	11.1	QPSK	21,22,23,24	[7-14]	$\{7,8,9,10,14\}$	11.0	QPSK	95, 96, 97, 98
[2-14]	$\{2,10,14\}$	15.1	16-QAM	4,5,6	[8-9]	$\{8,9\}$	17.7	16-QAM	99,100,101
[3-4]	$\{3,9,8,7,6,5,4\}$	7.8	QPSK	32,33,34,35	[8-10]	$\{8,9,10\}$	15.4	16-QAM	102,103,104
[3-5]	$\{3,9,8,7,6,5\}$	9.1	QPSK	36,37,38,39	[8-11]	$\{8,7,6,5,4,11\}$	8.1	QPSK	99,100,101,102
[3-6]	$\{3,9,8,7,6\}$	10.1	QPSK	40,41,42,43	[8-12]	$\{8,9,13,12\}$	9.8	QPSK	105,106,107,108
[3-7]	$\{3,9,8,7\}$	11.6	QPSK	44,45,46,47	[8-13]	$\{8,9,13\}$	14.0	16-QAM	109,110,111
[3-8]	$\{3,9,8\}$	15.7	16-QAM	48,49,50	[8-14]	$\{8,9,10,14\}$	14.7	16-QAM	112,113,114
[3-9]	$\{3,9\}$	20.4	64-QAM	16,17	[9-10]	$\{9,10\}$	19.6	64-QAM	1,2
[3-10]	$\{3,14,10\}$	17.7	16-QAM	1,2,3	[9-11]	$\{9,13,12,11\}$	7.6	QPSK	1,2,3,4
[3-11]	$\{3,9,13,12,11\}$	7.3	QPSK	51,52,53,54	[9-12]	$\{9,13,12\}$	11.0	QPSK	$25,\!26,\!27,\!28$
[3-12]	$\{3,9,13,12\}$	10.3	QPSK	55,56,57,58	[9-13]	$\{9,13\}$	16.4	16-QAM	$5,\!6,\!7$
[3-13]	$\{3,9,13\}$	14.8	16-QAM	59,60,61	[9-14]	$\{9,10,14\}$	17.7	16-QAM	7,8,9
[3-14]	$\{3,14\}$	19.7	64-QAM	4,5	[10-11]	$\{10,9,13,12,11\}$	7.2	QPSK	29,30,31,32
[4-5]	$\{4,5\}$	15.5	16-QAM	1,2,3	[10-12]	$\{10,9,13,12\}$	10.2	QPSK	$33,\!34,\!35,\!36$
[4-6]	$\{4,5,6\}$	13.5	16-QAM	24,25,26	[10-13]	$\{10,9,13\}$	14.6	16-QAM	$37,\!38,\!39$
[4-7]	$\{4,5,6,7\}$	10.2	QPSK	27,28,29,30	[10-14]	$\{10,14\}$	22.8	64-QAM	10,11
[4-8]	$\{4,5,6,7,8\}$	9.0	QPSK	48,49,50,51	[11-12]	$\{11, 12\}$	10.3	QPSK	20,21,22,23
[4-9]	$\{4,5,6,7,8,9\}$	8.2	QPSK	$52,\!53,\!54,\!55$	[11-13]	$\{11, 12, 13\}$	8.6	QPSK	$44,\!45,\!46,\!47$
[4-10]	$\{4, 5, 6, 7, 8, 9, 10\}$	7.8	QPSK	$56,\!57,\!58,\!59$	[11-14]	$\{11, 12, 14\}$	7.3	QPSK	24,25,26,27
[4-11]	{4,11}	16.7	16-QAM	1,2,3	[12-13]	$\{12,13\}$	15.0	16-QAM	$5,\!6,\!7$
[4-12]	$\{4,11,12\}$	9.1	QPSK	9,10,11,12	[12-14]	$\{12,14\}$	10.3	QPSK	1,2,3,4
[4-13]	$\{4,11,12,13\}$	7.7	QPSK	$16,\!17,\!18,\!19$	[13-14]	$\{\overline{13,9,10,14}\}$	14.0	16-QAM	40,41,42
[5-6]	$\{5,6\}$	17.7	16-QAM	1,2,3					

Appendix C Complementary material used in Chapter 4

Table C.5. RMSA solution for the NSFNET optical network with BER= 4×10^{-2} .

Blocked	[1-2], [1-4].
Demands	

Table C.6. Blocked demands in the RMSA solution for the NSFNET optical network with BER= 4×10^{-2} .

Demand	D-+h	OSNR	Modulation	Frequency	Demand	D-4h	OSNR	Modulation	Frequency
d	Faun	[dB]	Format M	slots	d	raun	[dB]	Format M	slots
[1-4]	$\{1,4\}$	13,3	QPSK	1,2,3,4	[6-8]	$\{6,7,8\}$	12,3	QPSK	8,9,10,11
[1-5]	$\{1,4,5\}$	10,5	QPSK	5, 6, 7, 8	[6-9]	$\{6,7,8,9\}$	10,7979	QPSK	36,37,38,39
[1-11]	$\{1,11\}$	11,5	QPSK	1,2,3,4	[6-10]	$\{6,7,8,9,10\}$	10,0	QPSK	40,41,42,43
[2-3]	$\{2,3\}$	17,1	16-QAM	1,2,3	[6-11]	$\{6,5,4,11\}$	10,1	QPSK	21,22,23,24
[2-5]	$\{2,5\}$	9,7	QPSK	1,2,3,4	[6-12]	$\{6,12\}$	11,9	QPSK	1,2,3,4
[2-7]	$\{2,3,9,8,7\}$	10,1	QPSK	4,5,6,7	[6-13]	$\{6,12,13\}$	$9,\!6$	QPSK	5, 6, 7, 8
[2-8]	$\{2,3,9,8\}$	11,7	QPSK	8,9,10,11	[6-14]	$\{6,7,8,9,10,14\}$	$_{9,7}$	QPSK	44,45,46,47
[2-9]	$\{2,3,9\}$	$13,\!6$	QPSK	$12,\!13,\!14,\!15$	[7-8]	$\{7,8\}$	16,8	16-QAM	1,7,8
[2-10]	$\{2,10\}$	14,3	QPSK	1,2,3,4	[7-9]	$\{7,8,9\}$	12,6	QPSK	12,13,14,15
[2-13]	$\{2,3,9,13\}$	11,1	QPSK	$16,\!17,\!18,\!19$	[7-10]	$\{7,8,9,10\}$	11,4	QPSK	16,17,18,19
[2-14]	{2,10,14}	13,5	QPSK	$5,\!6,\!7,\!8$	[7-12]	$\{7,6,12\}$	10,4	QPSK	24,25,26,27
[3-6]	$\{3,9,8,7,6\}$	10,1	QPSK	20,21,22,23	[7-13]	$\{7, 8, 9, 13\}$	10,5	QPSK	48,49,50,51
[3-7]	$\{3,9,8,7\}$	11,6	QPSK	24,25,26,27	[7-14]	$\{7, 8, 9, 10, 14\}$	11,0	QPSK	52,53,54,55
[3-8]	$\{3,9,8\}$	14,1	QPSK	28,29,30,31	[8-9]	{8,9}	17,7	16-QAM	1,8,9
[3-9]	$\{3,9\}$	20,1	16-QAM	1,3,9	[8-10]	$\{8,9,10\}$	13,8	QPSK	56, 57, 58, 59
[3-10]	$\{3,14,10\}$	17,7	16-QAM	1,3,10	[8-12]	$\{8,9,13,12\}$	$_{9,8}$	QPSK	60,61,62,63
[3-12]	$\{3,9,13,12\}$	10,3	QPSK	32,33,34,35	[8-13]	$\{8,9,13\}$	12,4	QPSK	64,65,66,67
[3-13]	$\{3,9,13\}$	13,2	QPSK	36,37,38,39	[8-14]	$\{8,9,10,14\}$	13,1	QPSK	68,69,70,71
[3-14]	$\{3,14\}$	19,3	16-QAM	4,3,14	[9-10]	$\{9,10\}$	19,3	16-QAM	1,9,10
[4-5]	$\{4,5\}$	13,8	QPSK	1,2,3,4	[9-12]	$\{9,13,12\}$	11,0	QPSK	1,2,3,4
[4-6]	$\{4,5,6\}$	11,8	QPSK	9,10,11,12	[9-13]	$\{9,13\}$	16,4	16-QAM	5,9,13
[4-7]	$\{4,5,6,7\}$	10,2	QPSK	$13,\!14,\!15,\!16$	[9-14]	$\{9,10,14\}$	17,7	16-QAM	9,9,14
[4-11]	{4,11}	16,8	16-QAM	1,4,11	[10-12]	$\{10,9,13,12\}$	10,2	QPSK	12,13,14,15
[5-6]	$\{5,6\}$	17,7	16-QAM	$1,\!5,\!6$	[10-13]	{10,9,13}	13,0	QPSK	20,21,22,23
[5-7]	$\{5,6,7\}$	12,8	QPSK	4,5,6,7	[10-14]	$\{10,14\}$	22,8	64-QAM	12,10,14
[5-8]	$\{5,6,7,8\}$	10,8	QPSK	28,29,30,31	[11-12]	$\{11, 12\}$	10,3	QPSK	1,2,3,4
[5-9]	$\{5,6,7,8,9\}$	9,7	QPSK	32,33,34,35	[12-13]	{12,13}	13,4	QPSK	$16,\!17,\!18,\!19$
[5-11]	$\{5,4,11\}$	11,4	QPSK	17,18,19,20	[12-14]	$\{12,14\}$	10,3	QPSK	1,2,3,4
[5-12]	$\{5,6,12\}$	10,5	QPSK	17,18,19,20	[13-14]	$\{13,9,10,14\}$	12,3	QPSK	24,25,26,27
[6-7]	$\{6,7\}$	17,2	16-QAM	$1,\!6,\!7$					

Appendix C Complementary material used in Chapter 4

Table C.7. RMSA solution for the NSFNET optical network with $BER=10^{-2}$.

Table C.8. Blocked demands in the RMSA solution for the NSFNET optical network with $BER=10^{-2}$.

Demand	Dath	OSNR	Modulation	Frequency	Demand	Dath	OSNR	Modulation	Frequency
d	Path	[dB]	format M	slots	d	Path	[dB]	form at M	slots
[1-4]	$\{1,4\}$	13.3	QPSK	1,2,3,4	[6-8]	$\{6,7,8\}$	12.3	QPSK	9,10,11,12
[2-3]	$\{2,3\}$	15.4	QPSK	1,2,3,4	[7-8]	$\{7,8\}$	15.1	QPSK	1,2,3,4
[2-9]	$\{2,3,9\}$	13.6	QPSK	$5,\!6,\!7,\!8$	[7-9]	$\{7,8,9\}$	12.6	QPSK	5, 6, 7, 8
[2-10]	$\{2,10\}$	14.3	QPSK	1,2,3,4	[8-9]	$\{8,9\}$	16.1	QPSK	9,10,11,12
[2-14]	$\{2,10,14\}$	13.4	QPSK	$5,\!6,\!7,\!8$	[8-10]	$\{8,9,10\}$	13.8	QPSK	$13,\!14,\!15,\!16$
[3-8]	$\{3,9,8\}$	14.1	QPSK	1,2,3,4	[8-13]	$\{8,9,13\}$	12.3	QPSK	$17,\!18,\!19,\!20$
[3-9]	${3,9}$	20.1	16-QAM	9,10,11	[8-14]	$\{8,9,10,14\}$	13.1	QPSK	21,22,23,24
[3-10]	$\{3,14,10\}$	16.0	QPSK	1,2,3,4	[9-10]	$\{9,10\}$	19.3	16-QAM	1,2,3
[3-13]	$\{3,9,13\}$	13.2	QPSK	$12,\!13,\!14,\!15$	[9-13]	$\{9,13\}$	14.7	QPSK	1,2,3,4
[3-14]	$\{3,14\}$	19.3	16-QAM	$5,\!6,\!7$	[9-14]	$\{9,10,14\}$	16.1	QPSK	9,10,11,12
[4-5]	$\{4,5\}$	13.8	QPSK	1,2,3,4	[10-13]	$\{10,9,13\}$	13.0	QPSK	5, 6, 7, 8
[4-11]	$\{4,11\}$	15.0	QPSK	1,2,3,4	[10-14]	$\{10, 14\}$	22.6	16-QAM	$13,\!14,\!15$
[5-6]	$\{5,6\}$	16.0	QPSK	1,2,3,4	[12-13]	$\{12,13\}$	13.4	QPSK	1,2,3,4
[5-7]	$\{5,6,7\}$	12.8	QPSK	$5,\!6,\!7,\!8$	[13-14]	$\{13,9,10,14\}$	12.3	QPSK	$25,\!26,\!27,\!28$
[6-7]	$\{6,7\}$	15.5	QPSK	1,2,3,4					

Table C.9. RMSA solution for the NSFNET optical network with $BER=10^{-3}$.

Appendix C Complementary material used in Chapter 4

Table C.10. Blocked demands in the RMSA solution for the NSFNET optical network with BER= 10^{-3} .

Appendix C	Complementary	material	used in	Chapter 4
* *				· ·

Demand	Deth	OSNR	Modulation	Frequency	Demand	D-th	OSNR	Modulation	Frequency
d	Path	[dB]	format M	slots	d	Path	[dB]	format M	slots
[1-2]	$\{1,2\}$	15.8	16-QAM	1,2,3	[9-22]	$\{9,12,16,22\}$	8.7	QPSK	70,71,72,73
[1-3]	$\{1,2,3\}$	11.1	QPSK	4,5,6,7	[9-23]	$\{9,12,16,22,23\}$	7.8	QPSK	78,79,80,81
[1-4]	$\{1,2,3,4\}$	10.7	QPSK	8,9,10,11	[9-24]	{9,10,14,18,24}	7.3	QPSK	70,71,72,73
[1-5]	$\{1,2,3,4,5\}$	9.2	QPSK	12,13,14,15	[10-11]	{10,9,11}	9.4	QPSK	24,25,26,27
[1-6]	{1,6}	14.9	16-QAM	1,2,3	[10-12]	{10,13,12}	10.8	QPSK	$16,\!17,\!18,\!19$
[1-7]	$\{1,6,7\}$	10.2	QPSK	4,5,6,7	[10-13]	$\{10,13\}$	15.7	16-QAM	1,2,3
[1-8]	$\{1,6,7,8\}$	8.4	QPSK	8,9,10,11	[10-14]	{10,14}	16.2	16-QAM	1,2,3
[1-9]	$\{1,6,9\}$	9.7	QPSK	12,13,14,15	[10-15]	$\{10, 13, 12, 16, 15\}$	8.0	QPSK	24,25,26,27
[1-10]	$\{1,6,9,10\}$	8.1	QPSK	16,17,18,19	[10-16]	{10,13,12,16}	8.8	QPSK	40,41,42,43
[1-11]	{1,6,11}	8.6	QPSK	20,21,22,23	[10-17]	{10,13,17}	10.4	QPSK	28,29,30,31
[1-12]	$\{1,6,9,12\}$	8.1	QPSK	24,25,26,27	[10-18]	{10,14,18}	10.3	QPSK	4,5,6,7
[1-14]	{1,6,9,10,14}	7.2	QPSK	28,29,30,31	[10-20]	{10,13,17,22,21,20}	7.5	QPSK	62,63,64,65
[2-3]	{2,3}	15.7	16-QAM	1,2,3	[10-21]	{10,13,17,22,21}	8.5	QPSK	66,67,68,69
[2-4]	{2,3,4}	14.9	16-QAM	16,17,18	[10-22]	{10,13,17,22}	9.0	QPSK	74,75,76,77
[2-5]	{2,3,4,5}	10.9	QPSK	19,20,21,22	[10-23]	{10,13,17,23}	8.5	QPSK	82,83,84,85
[2-6]	{2,6}	14.5	16-QAM	1,2,3	[10-24]	{10,14,18,24}	8.7	QPSK	8,9,10,11
[2-7]	{2,3,4,7}	10.9	QPSK	23,24,25,26	[11-12]	{11,12}	15.3	16-QAM	1,2,3
[2-8]	{2,3,4,7,8}	8.8	QPSK	27,28,29,30	[11-13]	{11,12,13}	10.6	QPSK	4,5,6,7
[2-9]	{2,6,9}	9.6	QPSK	4,5,6,7	[11-14]	{11,12,13,14}	9.5	QPSK	8,9,10,11
[2-10]	{2,6,9,10}	8.0	QPSK	8,9,10,11	[11-15]	{11,15}	13.8	16-QAM	1,2,3
[2-11]	{2.6.11}	8.4	OPSK	12.13.14.15	[11-16]	{11.12.16}	10.4	OPSK	12.13.14.15
[2-12]	{2.6.9.12}	8.0	OPSK	20.21.22.23	[11-17]	{11.12.13.17}	8.5	OPSK	44.45.46.47
[2-14]	{2.6.9.10.14}	7.1	OPSK	32.33.34.35	[11-18]	{11.12.13.14.18}	7.7	OPSK	20.21.22.23
[3-4]	{3.4}	22.6	64-QAM	1.2	[11-19]	{11,15,20,19}	7.8	OPSK	9 10 11 12
[3-5]	{3 4 5}	15.3	16-QAM	3.4.5	[11-20]	{11,15,20}	9.0	OPSK	13 14 15 16
[3-6]	$\{3476\}$	10.4	OPSK	31 32 33 34	[11-21]	{11,12,16,21}	8.5	OPSK	52 53 54 55
[3-7]	{3 4 7}	15.3	16-0AM	35 36 37	[11-22]	$\{11, 12, 16, 22\}$	8.8	OPSK	74 75 76 77
[3-8]	$\{3478\}$	10.0	OPSK	38 39 40 41	[11-22]	$\{11, 12, 16, 22, 23\}$	8.0	OPSK	82 83 84 85
[3-9]	$\{34,7,9\}$	10.4	OPSK	42 43 44 45	[12-13]	{12,13}	15.3	16-QAM	1.2.3
[3-10]	$\{347810\}$	87	OPSK	46 47 48 49	[12-10]	{12,13]	13.3	16-QAM	12 13 14
[3_11]	$\{3, 1, 7, 0, 10\}$	8.0	OPSK	50 51 52 53	[12_11]	{12,16,15}	11.1	OPSK	20 21 22 23
[3-12]	$\{3,4,7,9,11\}$	8.6	OPSK	54 55 56 57	[12-16]	12,10,10j	1/ 0	16-0AM	1 2 3
[3 12]	$\begin{bmatrix} 13, 4, 7, 3, 12 \end{bmatrix}$	7.5	OPSK	58 50 60 61	[12-10]	12,10	14.9	OPSK	1,2,5
[3-13]	3,4,7,9,10,13	7.7	OPSK	62 63 64 65	[12-17]	12,10,17	0.0	OPSK	28 20 30 31
[3-14]	$\{3,4,7,8,10,14\}$	7.2	OPSK	66 67 68 60	[12-10]	12,13,14,10	9.0	OPSK	26,29,30,31
[3-10]	[15,4,7,9,12,10]	16.9	16 OAM	678	[12-19]	$\{12,10,21,20,19\}$	1.1	OPSK	94,95,90,97
[4-0]	[4,5]	10.2	OPSK	12 12 14 15	[12-20]		0.0	OPSK	98,99,100,101
[4-0]	[4,7,0]	16.0		12,13,14,13	[12-21]		10.2	ODSK	102,103,104,103
[4-7]	{4,1}	10.2	10-QAM	1,2,3	[12-22]	{12,10,22}	10.0	QF5K	100,107,108,109
[4-8]	$\{4, 7, 8\}$	10.8	QPSK	4,5,0,7	[12-23]	$\{12,10,22,23\}$	9.3	QPSK	110,111,112,113
[4-9]	$\{4, 7, 9\}$	10.8	QPSK	8,9,10,11	[12-24]	$\{12,10,22,23,24\}$	8.0	QP5K 16.0AM	114,115,110,117
[4-10]	$\{4,7,8,10\}$	9.0	QPSK	16,17,18,19	[13-14]	$\{13,14\}$	17.0	16-QAM	1,2,3
[4-11]	$\{4,7,9,11\}$	8.2	QPSK	70,71,72,73	[13-15]	$\{13, 12, 10, 15\}$	9.2	QPSK	118,119,120,121
[4-12]	$\{4,7,9,12\}$	8.8	QPSK	74,75,70,77	[13-10]	$\{13, 12, 10\}$	10.4	QPSK	122,123,124,125
[4-13]	$\{4,7,8,10,13\}$	7.8	QPSK	78,79,80,81	[13-17]	$\{13,17\}$	14.5	16-QAM	1,2,3
[4-14]	$\{4,7,8,10,14\}$	7.9	QPSK	82,83,84,85	[13-18]	{13,14,18}	10.8	QPSK	15,16,17,18
[4-10]	{4,7,9,12,16}	7.5	QPSK	86,87,88,89	[13-19]	$\{13,17,22,21,20,19\}$	7.5	QPSK	4,5,6,7
[5-6]	{5,4,7,6}	9.3	QPSK	90,91,92,93	[13-20]	{13,17,22,21,20}	8.6	QPSK	8,9,10,11
[5-7]	{5,4,7}	11.6	QPSK	94,95,96,97	[13-21]	{13,17,22,21}	9.9	QPSK	16,17,18,19
[5-8]	{5,8}	14.1	16-QAM	1,2,3	[13-22]	{13,17,22}	10.6	QPSK	24,25,26,27
[5-9]	{5,4,7,9}	9.3	QPSK	98,99,100,101	[13-23]	{13,17,23}	9.9	QPSK	32,33,34,35
[5-10]	{5,8,10}	9.9	QPSK	4,5,6,7	[13-24]	{13,14,18,24}	9.0	QPSK	32,33,34,35
[5-11]	$\{5,4,7,9,11\}$	7.3	QPSK	102,103,104,105	[14-15]	$\{14, 13, 12, 16, 15\}$	8.3	QPSK	126,127,128,129
[5-12]	$\{5,4,7,9,12\}$	7.8	QPSK	106,107,108,109	[14-16]	$\{14,13,12,16\}$	9.3	QPSK	130,131,132,133
[5-13]	{5,8,10,13}	8.5	QPSK	8,9,10,11	[14-17]	{14,13,17}	11.1	QPSK	36,37,38,39
[5-14]	{5,8,10,14}	8.7	QPSK	12,13,14,15	[14-18]	{14,18}	14.1	16-QAM	1,2,3
[5-17]	$\{5,8,10,13,17\}$	7.1	QPSK	20,21,22,23	[14-20]	${14,13,17,22,21,20}$	7.9	QPSK	40,41,42,43
[5-18]	$\{5,8,10,14,18\}$	7.1	QPSK	$24,\!25,\!26,\!27$	[14-21]	$\{14, 13, 17, 22, 21\}$	8.9	QPSK	$58,\!59,\!60,\!61$
[6-7]	$\{6,7\}$	14.9	16-QAM	1,2,3	[14-22]	$\{14, 13, 17, 22\}$	9.5	QPSK	70,71,72,73
[6-8]	$\{6,7,8\}$	10.1	QPSK	20,21,22,23	[14-23]	$\{14,13,17,23\}$	9.0	QPSK	78,79,80,81
[6-9]	$\{6,9\}$	14.1	16-QAM	1,2,3	[14-24]	$\{14, 18, 24\}$	9.9	QPSK	$36,\!37,\!38,\!39$
[6-10]	$\{6,9,10\}$	9.7	QPSK	$36,\!37,\!38,\!39$	[15-16]	$\{15, 16\}$	17.1	16-QAM	1,2,3
[6-11]	$\{6,11\}$	10.4	QPSK	1,2,3,4	[15-17]	$\{15, 16, 17\}$	11.1	QPSK	8,9,10,11
[6-12]	$\{6,9,12\}$	9.7	QPSK	40,41,42,43	[15-18]	{15,16,17,18}	9.3	QPSK	12,13,14,15
[6-13]	$\{6,9,10,13\}$	8.4	QPSK	44,45,46,47	[15-19]	{15,20,19}	9.9	QPSK	17,18,19,20
[6-14]	$\{6,9,10,14\}$	8.5	QPSK	48,49,50,51	[15-20]	{15,20}	13.8	16-QAM	1,2,3
[6-15]	{6,11,15}	8.1	QPSK	5,6,7,8	[15-21]	{15,16,21}	11.1	QPSK	28,29,30,31
[6-16]	{6,9,12,16}	8.1	QPSK	58,59,60,61	[15-22]	{15,16,22}	13.4	16-QAM	32,33,34
[6-22]	{6,9,12,16,22}	7.1	QPSK	62,63,64,65	[15-23]	{15,16,22,23}	10.1	QPSK	40,41,42,43
[7-8]	{7,8}	14.8	16-QAM	1,2,3	[15-24]	{15,16,22,23,24}	8.5	QPSK	44,45,46,47
[7-9]	{7,9}	14.9	16-QAM	1,2,3	[16-17]	{16,17}	14.9	16-QAM	1.2.3
[7-10]	{7,8.10}	10.4	QPSK	31,32.33.34	[16-18]	{16,17,18}	10.6	QPSK	4,5.6.7
[7-11]	{7.9.11}	9.4	OPSK	4,5,6,7	[16-19]	{16,21,20,19}	9.1	QPSK	13,14,15.16
[7-12]	{7,9,12}	10.2	OPSK	12,13,14.15	[16-20]	{16,21,20}	10.8	QPSK	17,18,19.20
[7-13]	{7,8,10.13}	8.8	OPSK	50,51.52.53	[16-21]	{16.21}	14.9	16-OAM	1,2.3
[7-14]	{7,8,10,14}	9.0	QPSK	42,43,44,45	[16-22]	{16,22}	15.8	16-QAM	1,2,3

Appendix C Complementary material used in Chapter 4

[7-15]	$\{7,9,12,16,15\}$	7.6	QPSK	$16,\!17,\!18,\!19$	[16-23]	$\{16, 22, 23\}$	13.4	16-QAM	4,5,6
[7-16]	{7,9,12,16}	8.4	QPSK	28,29,30,31	[16-24]	$\{16, 22, 23, 24\}$	9.5	QPSK	7,8,9,10
[7-17]	{7,8,10,13,17}	7.3	QPSK	54,55,56,57	[17-18]	{17,18}	15.8	16-QAM	1,2,3
[7-18]	{7,8,10,14,18}	7.3	QPSK	58,59,60,61	[17-19]	$\{17, 22, 21, 20, 19\}$	9.1	QPSK	28,29,30,31
[7-21]	$\{7,9,12,16,21\}$	7.1	QPSK	32,33,34,35	[17-20]	$\{17, 22, 21, 20\}$	10.8	QPSK	32,33,34,35
[7-22]	$\{7,9,12,16,22\}$	7.4	QPSK	$36,\!37,\!38,\!39$	[17-21]	$\{17, 22, 21\}$	14.7	16-QAM	1,2,3
[8-9]	$\{8,10,9\}$	10.4	QPSK	$66,\!67,\!68,\!69$	[17-22]	$\{17,22\}$	16.2	16-QAM	12,13,14
[8-10]	$\{8,10\}$	15.3	16-QAM	1,2,3	[17-23]	$\{17,23\}$	14.9	16-QAM	1,2,3
[8-11]	$\{8,10,9,11\}$	8.0	QPSK	74,75,76,77	[17-24]	$\{17, 18, 24\}$	10.8	QPSK	$16,\!17,\!18,\!19$
[8-12]	$\{8,10,13,12\}$	9.0	QPSK	$35,\!36,\!37,\!38$	[18-19]	$\{18, 17, 22, 21, 20, 19\}$	7.9	QPSK	$36,\!37,\!38,\!39$
[8-13]	$\{8,10,13\}$	10.8	QPSK	70,71,72,73	[18-20]	$\{18,17,22,21,20\}$	9.1	QPSK	$48,\!49,\!50,\!51$
[8-14]	$\{8,10,14\}$	11.1	QPSK	$86,\!87,\!88,\!89$	[18-21]	$\{18, 17, 22, 21\}$	10.5	QPSK	20,21,22,23
[8-16]	$\{8,10,13,12,16\}$	7.6	QPSK	$90,\!91,\!92,\!93$	[18-22]	$\{18,17,22\}$	11.3	QPSK	$44,\!45,\!46,\!47$
[8-17]	$\{8,10,13,17\}$	8.7	QPSK	$94,\!95,\!96,\!97$	[18-23]	$\{18,17,23\}$	10.6	QPSK	8,9,10,11
[8-18]	$\{8,10,14,18\}$	8.7	QPSK	98, 99, 100, 101	[18-24]	$\{18,24\}$	15.3	16-QAM	1,2,3
[8-21]	$\{8,10,13,17,22,21\}$	7.3	QPSK	$102,\!103,\!104,\!105$	[19-20]	$\{19,20\}$	15.6	16-QAM	1,2,3
[8-22]	$\{8,10,13,17,22\}$	7.7	QPSK	$106,\!107,\!108,\!109$	[19-21]	$\{19,20,21\}$	11.3	QPSK	21,22,23,24
[8-23]	$\{8,10,13,17,23\}$	7.4	QPSK	$110,\!111,\!112,\!113$	[19-22]	$\{19, 20, 21, 22\}$	10.5	QPSK	$52,\!53,\!54,\!55$
[8-24]	$\{8,10,14,18,24\}$	7.5	QPSK	$114,\!115,\!116,\!117$	[19-23]	$\{19,20,21,22,23\}$	9.2	QPSK	70,71,72,73
[9-10]	$\{9,10\}$	14.9	16-QAM	1,2,3	[19-24]	$\{19, 20, 21, 22, 23, 24\}$	7.9	QPSK	74,75,76,77
[9-11]	$\{9,11\}$	13.4	16-QAM	1,2,3	[20-21]	$\{20,21\}$	16.4	16-QAM	1,2,3
[9-12]	$\{9,12\}$	14.9	16-QAM	1,2,3	[20-22]	$\{20,21,22\}$	14.8	16-QAM	$25,\!26,\!27$
[9-13]	$\{9,10,13\}$	10.6	QPSK	4,5,6,7	[20-23]	$\{20,21,22,23\}$	11.1	QPSK	86,87,88,89
[9-14]	$\{9,10,14\}$	10.8	QPSK	$20,\!21,\!22,\!23$	[20-24]	$\{20,21,22,23,24\}$	9.1	QPSK	$90,\!91,\!92,\!93$
[9-15]	$\{9,12,16,15\}$	9.0	QPSK	4,5,6,7	[21-22]	$\{21, 22\}$	20.5	64-QAM	12,13
[9-16]	$\{9,12,16\}$	10.2	QPSK	$8,\!9,\!10,\!11$	[21-23]	$\{21, 22, 23\}$	15.3	16-QAM	$94,\!95,\!96$
[9-17]	$\{9,10,13,17\}$	8.5	QPSK	$12,\!13,\!14,\!15$	[21-24]	$\{21, 22, 23, 24\}$	10.6	QPSK	$97,\!98,\!99,\!100$
[9-18]	$\{9,10,14,18\}$	8.5	QPSK	$52,\!53,\!54,\!55$	[22-23]	$\{22,23\}$	17.1	16-QAM	1,2,3
[9-20]	$\{9,12,16,21,20\}$	7.5	QPSK	$44,\!45,\!46,\!47$	[22-24]	$\{22,23,24\}$	11.4	QPSK	$11,\!12,\!13,\!14$
[9-21]	$\{9,12,16,21\}$	8.4	QPSK	48,49,50,51	[23-24]	$\{23,24\}$	15.3	16-QAM	1,2,3

Table C.11. RMSA solution for the UBN optical network with BER= 4×10^{-2} .

Blocked Demands	$ \begin{bmatrix} [1-13], [1-15], [1-16], [1-17], [1-18], [1-19], [1-20], [1-21], [1-22], [1-23], [1-24], [2-13], [2-15], [2-16], [2-17], \\ [2-18], [2-19], [2-20], [2-21], [2-22], [2-23], [2-24], [3-15], [3-17], [3-18], [3-19], [3-20], [3-21], [3-22], [3-23], \\ [3-24], [4-15], [4-17], [4-18], [4-19], [4-20], [4-21], [4-22], [4-23], [4-24], [5-15], [5-16], [5-19], [5-20], [5-21], \\ [5-22], [5-23], [5-24], [6-17], [6-18], [6-19], [6-20], [6-21], [6-23], [6-24], [7-19], [7-20], [7-23], [7-24], [8-15], \\ [8-19], [8-20], [9-19], [10-19], [11-24], [14-19]. \end{bmatrix} $
--------------------	--

Table C.12. Blocked demands in the RMSA solution for the UBN optical network with $BER=4\times10^{-2}$.

Demand		OSNR	Modulation	Frequency	Demand		OSNR	Modulation	Frequency
d	Path	[dB]	format M	slots	d	Path	[dB]	format M	slots
[1-2]	{1,2}	14.1	QPSK	1,2,3,4	[11-16]	$\{11, 12, 16\}$	10.4	QPSK	13,14,15,16
[1-3]	{1.2.3}	11.1	OPSK	5.6.7.8	[12-13]	{12.13}	13.6	OPSK	9.10.11.12
[1-4]	$\{1.2.3.4\}$	10.7	OPSK	9.10.11.12	[12-14]	{12.13.14}	11.6	OPSK	13.14.15.16
[1-6]	{1.6}	13.2	OPSK	1.2.3.4	[12-15]	$\{12.16.15\}$	11.1	OPSK	1.2.3.4
[1-7]	$\{1.6.7\}$	10.2	OPSK	5.6.7.8	[12-16]	{12.16}	13.2	OPSK	5.6.7.8
[1-9]	$\{1,6,9\}$	9.7	OPSK	9.10.11.12	[12-17]	$\{12,13,17\}$	10.2	OPSK	21.22.23.24
[2-3]	{2.3}	14.1	OPSK	1 2 3 4	[12-21]	$\{12,16,21\}$	10.2	OPSK	17 18 19 20
[2-4]	$\{2,3,4\}$	13.3	OPSK	13 14 15 16	[12-22]	$\{12, 16, 22\}$	10.6	OPSK	21 22 23 24
[2-5]	$\{2,3,4,5\}$	10.9	OPSK	17 18 19 20	[13-14]	{13.14}	17.6	16-0AM	123
[2-6]	12,0,1,0J	12.8	OPSK	1234	[13_16]	$\int 13 12 16$	10.4	OPSK	25 26 27 28
[2-0]	[2,0]	10.0	OPSK	1,2,3,4 21 22 23 24	[13-10]	13,12,10	10.4	OPSK	1 2 3 4
[2-1]	12,9,4,75	0.5	OPSK	5678	[13 18]	13,17 13,17 13,17 18	10.8	OPSK	8 0 10 11
[2-9]	{2,0,9}	9.0	64 OAM	1.2	[13-10]	$\{13, 14, 10\}$	10.8	OPSK	5.6.7.8
[3-4]	10,4j	12.0	OPSK	1,2	[13-21]	$\{13,17,22,21\}$	9.9	OPSK	3,0,7,0
[3-5]	$\{3,4,5\}$	10.7	ODSK	25 26 27 28	[10-22]	$\{13,17,22\}$	10.0	ODSK	9,10,11,12 12 14 15 16
[3-0]	$\{3,4,7,0\}$	10.4	ODSK	20,20,21,20	[13-23]	$\{13,17,23\}$	9.9	ODSK	15,14,15,10 25,26,27,28
[3-7]	$\{3,4,1\}$	10.7	QF 5K	29,30,31,32	[14-17]	$\{14,13,17\}$	11.1	ODSK	20,20,21,20
[0-0]	$\{3,4,7,8\}$	10.4	QPSK	33,34,33,30	[14-18]	$\{14,10\}$	12.4	QPSK	12,13,14,13 10,17,18,10
[3-9]	$\{3,4,7,9\}$	10.4	QPSK	37,38,39,40	[14-24]	$\{14, 18, 24\}$	9.9	QPSK	10,17,18,19
[4-5]	$\{4,5\}$	16.2	16-QAM	7,8,9	[15-16]	$\{15,10\}$	17.1	16-QAM	5,6,7
[4-6]	$\{4,7,6\}$	10.8	QPSK	1,2,3,4	[15-17]	$\{15, 16, 17\}$	11.1	QPSK	8,9,10,11
[4-7]	$\{4,7\}$	16.2	16-QAM	5,6,7	[15-19]	$\{15, 20, 19\}$	9.9	QPSK	1,2,3,4
[4-8]	$\{4,7,8\}$	10.8	QPSK	8,9,10,11	[15-20]	{15,20}	12.0	QPSK	5,6,7,8
[4-9]	$\{4,7,9\}$	10.8	QPSK	12,13,14,15	[15-21]	$\{15, 16, 21\}$	11.1	QPSK	12,13,14,15
[5-7]	{5,4,7}	11.6	QPSK	41,42,43,44	[15-22]	$\{15, 16, 22\}$	11.7	QPSK	16,17,18,19
[5-8]	$\{5,8\}$	12.4	QPSK	1,2,3,4	[15-23]	{15,16,22,23}	10.1	QPSK	25,26,27,28
[5-10]	$\{5,8,10\}$	9.9	QPSK	5,6,7,8	[16-17]	$\{16,17\}$	13.2	QPSK	1,2,3,4
[6-7]	{6,7}	13.2	QPSK	9,10,11,12	[16-18]	$\{16,17,18\}$	10.6	QPSK	12,13,14,15
[6-8]	$\{6,7,8\}$	10.1	QPSK	13,14,15,16	[10-20]	$\{16,21,20\}$	10.8	QPSK	1,2,3,4
[0-9]	{6,9}	12.4	QPSK	1,2,3,4	[10-21]	{16,21}	13.2	QPSK	5,6,7,8
[0-10]	$\{0,9,10\}$	9.7	QPSK	13,14,15,10	[10-22]	$\{10,22\}$	14.1	QPSK	1,2,3,4
[0-11] [C_10]	$\{0,11\}$	10.4	QPSK	1,2,3,4	[10-23]	$\{10, 22, 23\}$	11.7	QPSK	3,0,7,8
[0-12]	$\{0,9,12\}$	9.7	QPSK	17,18,19,20	[10-24]	$\{10, 22, 23, 24\}$	9.5	QPSK	9,10,11,12
[7-8]	{7,8}	13.1	QPSK	1,2,3,4	[17-18]	$\{17,18\}$	14.1	QPSK	1,2,3,4
[7-9]	$\{7,9\}$	13.2	QPSK	1,2,3,4	[17-20]	$\{17,22,21,20\}$	10.8	QPSK	13,14,15,16
[7-10]	$\{7,8,10\}$	10.4	QPSK	17,18,19,20	[17-21]	$\{17,22,21\}$	13.0	QPSK	1,2,3,4
[7-12]	$\{7,9,12\}$	10.2	QPSK	5,6,7,8	[17-22]	{17,22}	16.2	16-QAM	17,18,19
[8-9]	$\{8,10,9\}$	10.4	QPSK	1,2,3,4	[17-23]	$\{17,23\}$	13.2	QPSK	1,2,3,4
[8-10]	$\{8,10\}$	13.6	QPSK	9,10,11,12	[17-24]	$\{17,18,24\}$	10.8	QPSK	5,6,7,8
[8-13]	$\{8,10,13\}$	10.8	QPSK	13,14,15,16	[18-21]	$\{18,17,22,21\}$	10.5	QPSK	20,21,22,23
[8-14]	{8,10,14}	11.1	QPSK	21,22,23,24	[18-22]	$\{18,17,22\}$	11.3	QPSK	24,25,26,27
[9-10]	{9,10}	13.2	QPSK	5,6,7,8	[18-23]	{18,17,23}	10.6	QPSK	28,29,30,31
[9-11]	{9,11}	11.7	QPSK	1,2,3,4	[18-24]	{18,24}	13.6	QPSK	1,2,3,4
[9-12]	$\{9,12\}$	13.2	QPSK	1,2,3,4	[19-20]	{19,20}	13.9	QPSK	5,6,7,8
[9-13]	$\{9,10,13\}$	10.6	QPSK	9,10,11,12	[19-21]	$\{19,20,21\}$	11.3	QPSK	9,10,11,12
[9-14]	$\{9,10,14\}$	10.8	QPSK	17,18,19,20	[19-22]	{19,20,21,22}	10.5	QPSK	24,25,26,27
[9-16]	$\{9,12,16\}$	10.2	QPSK	9,10,11,12	[20-21]	{20,21}	16.4	16-QAM	5,6,7
[10-12]	$\{10, 13, 12\}$	10.8	QPSK	1,2,3,4	[20-22]	$\{20,21,22\}$	13.1	QPSK	28,29,30,31
[10-13]	$\{10,13\}$	14.1	QPSK	5,6,7,8	[20-23]	{20,21,22,23}	11.1	QPSK	32,33,34,35
[10-14]	$\{10,14\}$	16.2	16-QAM	1,2,3	[21-22]	{21,22}	20.0	16-QAM	9,10,11
[10-17]	$\{10, 13, 17\}$	10.4	QPSK	17,18,19,20	[21-23]	$\{21, 22, 23\}$	13.5	QPSK	36,37,38,39
[10-18]	{10,14,18}	10.3	QPSK	4,5,6,7	[21-24]	$\{21, 22, 23, 24\}$	10.6	QPSK	40,41,42,43
[11-12]	$\{11, 12\}$	13.6	QPSK	1,2,3,4	[22-23]	{22,23}	17.1	16-QAM	1,2,3
[11-13]	$\{11, 12, 13\}$	10.6	QPSK	5,6,7,8	[22-24]	{22,23,24}	11.4	QPSK	13,14,15,16
11-15	$\{11,15\}$	12.0	QPSK	1,2,3,4	23-24	{23,24}	13.6	QPSK	1,2,3,4

Appendix C Complementary material used in Chapter 4

Table C.13. RMSA solution for the UBN optical network with $BER=10^{-2}$.

Appendix C Complementary material used in Chapter 4

	[1-5], [1-8], [1-10], [1-11], [1-12], [1-13], [1-14], [1-15], [1-16], [1-17], [1-18], [1-19], [1-20], [1-21], [1-22], [1-10]
	[1-23], [1-24], [2-8], [2-10], [2-11], [2-12], [2-13], [2-14], [2-15], [2-16], [2-17], [2-18], [2-19], [2-20], [2-21], [2-17], [2-18], [2-19], [2-19], [2-20], [2-21], [2-19
	[2-22], [2-23], [2-24], [3-10], [3-11], [3-12], [3-13], [3-14], [3-15], [3-16], [3-17], [3-18], [3-19], [3-20], [3-21], [3-21], [3-12], [3-14], [3-14], [3-16], [3-16], [3-17], [3-18], [3-19], [3-20], [3-21], [3-12], [3-13], [3-14], [3-14], [3-16], [3-16], [3-17], [3-18], [3-19], [3-20], [3-21], [3-12], [3-13], [3-14], [3-14], [3-16], [3-16], [3-17], [3-18], [3-19], [3-20], [3-21], [3-12], [3-13], [3-14], [3-16], [3-16], [3-17], [3-18], [3-19], [3-20], [3-21], [3-12], [3-13], [3-14], [3-16], [3-16], [3-17], [3-18], [3-19], [3-20], [3-21], [3-12], [3-12], [3-13], [3-14], [3-16], [3-16], [3-17], [3-18], [3-19], [3-20], [3-21], [3-12], [3-13], [3-14], [3-16], [3-16], [3-17], [3-18], [3-19], [3-20], [3-21], [3-12], [3-1
	[3-22], [3-23], [3-24], [4-10], [4-11], [4-12], [4-13], [4-14], [4-15], [4-16], [4-17], [4-18], [4-19], [4-20], [4-21], [4-2
	[4-22], [4-23], [4-24], [5-6], [5-9], [5-11], [5-12], [5-13], [5-14], [5-15], [5-16], [5-17], [5-18], [5-19], [5-20]
Blocked	[5-21], [5-22], [5-23], [5-24], [6-13], [6-14], [6-15], [6-16], [6-17], [6-18], [6-19], [6-20], [6-21], [6-22], [6-23], [6-2
Demands	$\begin{bmatrix} 6-24 \\ 1, \\ 7-11 \\ 1, \\ 7-12 \\ 1, \\ 7-12 \\ 1, \\ 7-14 \\ 1, \\ 7-15 \\ 1, \\ 7-16 \\ 1, \\ 7-17 \\ 1, \\ 7-18 \\ 1, \\ 7-19 \\ 1, \\ 7-20 \\ 1, \\ 7-21 \\ 1, \\ 7-22 \\ 1, \\ 7-23 \\ 1, \\ 7-24 \\ 1, \\ 8-11 \\ 1, \\ 7-24 \\ 1, \\ 8-11 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-18 \\ 1, \\ 7-19 \\ 1, \\ 7-20 \\ 1, \\ 7-20 \\ 1, \\ 7-22 \\ 1, \\ 7-22 \\ 1, \\ 7-24 \\ 1, \\ 8-11 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-18 \\ 1, \\ 7-19 \\ 1, \\ 7-20 \\ 1, \\ 7-20 \\ 1, \\ 7-22 \\ 1, \\ 7-22 \\ 1, \\ 7-24 \\ 1, \\ 8-11 \\ 1, \\ 7-24 \\ 1, \\ 8-11 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-18 \\ 1, \\ 7-19 \\ 1, \\ 7-20 \\ 1, \\ 7-20 \\ 1, \\ 7-22 \\ 1, \\ 7-22 \\ 1, \\ 7-24 \\ 1, \\ 7-24 \\ 1, \\ 8-11 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-18 \\ 1, \\ 7-19 \\ 1, \\ 7-20 \\ 1, \\ 7-20 \\ 1, \\ 7-22 \\ 1, \\ 7-22 \\ 1, \\ 7-24 \\ 1, \\ 8-11 \\ 1, \\ 7-24 \\ 1, \\ 8-11 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-16 \\ 1, \\ 7-18 \\ 1, \\ 7-10 \\ 1, \\ 7-20 \\ 1, \\ 7-20 \\ 1, \\ 7-22 \\ 1, \\ 7-22 \\ 1, \\ 7-24 \\ 1, \\ 8-11 \\ 1, \\ 7-16 \\ 1, \\ 7-$
	[8-12], [8-15], [8-16], [8-17], [8-18], [8-19], [8-20], [8-21], [8-22], [8-23], [8-24], [9-15], [9-17], [9-18], [9-19],
	[9-20], [9-21], [9-22], [9-23], [9-24], [10-11], [10-15], [10-16], [10-19], [10-20], [10-21], [10-22], [10-23], [10-24
	[11-14], [11-17], [11-18], [11-19], [11-20], [11-21], [11-22], [11-23], [11-24], [12-18], [12-19], [12-20], [12-23], [
	[12-24], [13-15], [13-19], [13-20], [13-24], [14-15], [14-16], [14-19], [14-20], [14-21], [14-22], [14-23], [15-18], [14-19], [
	[15-24], [16-19], [17-19], [18-19], [18-20], [19-23], [19-24], [20-24].

Table C.14. Blocked demands in the RMSA solution for the UBN optical network with BER= 10^{-2} .

Demand		OSNR	Modulation	Frequency	Demand	D (1	OSNR	Modulation	Frequency
d	Path	[dB]	format M	slots	d	Path	[dB]	format M	slots
[1-2]	$\{1,2\}$	14.1	QPSK	1,2,3,4	[12-13]	$\{12,13\}$	13.6	QPSK	1,2,3,4
[1-6]	$\{1,6\}$	13.2	QPSK	1,2,3,4	[12-16]	$\{12, 16\}$	13.2	QPSK	1,2,3,4
[2-3]	$\{2,3\}$	14.1	QPSK	1,2,3,4	[13-14]	$\{13,14\}$	15.9	QPSK	1,2,3,4
[2-4]	$\{2,3,4\}$	13.3	QPSK	5,6,7,8	[13-17]	$\{13,17\}$	12.8	QPSK	1,2,3,4
[2-6]	$\{2,6\}$	12.8	QPSK	1,2,3,4	[14-18]	$\{14, 18\}$	12.4	QPSK	1,2,3,4
[3-4]	$\{3,4\}$	22.5	16-QAM	1,2,3	[15-16]	$\{15, 16\}$	15.3	QPSK	1,2,3,4
[3-5]	$\{3,4,5\}$	13.7	QPSK	9,10,11,12	[15-20]	$\{15,20\}$	12.0	QPSK	1,2,3,4
[3-7]	$\{3,4,7\}$	13.7	QPSK	13,14,15,16	[16-17]	$\{16, 17\}$	13.2	QPSK	1,2,3,4
[4-5]	$\{4,5\}$	14.6	QPSK	1,2,3,4	[16-21]	$\{16,21\}$	13.2	QPSK	1,2,3,4
[4-7]	$\{4,7\}$	14.6	QPSK	1,2,3,4	[16-22]	$\{16, 22\}$	14.1	QPSK	1,2,3,4
[5-8]	$\{5,8\}$	12.4	QPSK	1,2,3,4	[17-18]	$\{17,18\}$	14.1	QPSK	1,2,3,4
[6-7]	$\{6,7\}$	13.2	QPSK	1,2,3,4	[17-21]	$\{17, 22, 21\}$	13.0	QPSK	1,2,3,4
[6-9]	$\{6,9\}$	12.4	QPSK	1,2,3,4	[17-22]	$\{17, 22\}$	14.6	QPSK	5,6,7,8
[7-8]	$\{7,8\}$	13.1	QPSK	1,2,3,4	[17-23]	$\{17,23\}$	13.2	QPSK	1,2,3,4
[7-9]	$\{7,9\}$	13.2	QPSK	1,2,3,4	[18-24]	$\{18,24\}$	13.6	QPSK	1,2,3,4
[8-10]	$\{8,10\}$	13.6	QPSK	1,2,3,4	[19-20]	$\{19,20\}$	13.9	QPSK	1,2,3,4
[9-10]	$\{9,10\}$	13.2	QPSK	1,2,3,4	[20-21]	$\{20,21\}$	14.7	QPSK	1,2,3,4
[9-12]	$\{9,12\}$	13.2	QPSK	1,2,3,4	[20-22]	$\{20,21,22\}$	13.1	QPSK	$5,\!6,\!7,\!8$
[10-13]	$\{10,13\}$	14.1	QPSK	1,2,3,4	[21-22]	$\{21,22\}$	20.0	16-QAM	9,10,11
[10-14]	{10,14}	14.6	QPSK	1,2,3,4	[21-23]	$\{21, 22, 23\}$	13.5	QPSK	12,13,14,15
[11-12]	$\{11, 12\}$	13.6	QPSK	1,2,3,4	[22-23]	$\{22,23\}$	15.3	QPSK	1,2,3,4
[11-15]	$\{11, 15\}$	12.0	QPSK	1,2,3,4	[23-24]	$\{23,24\}$	13.6	QPSK	1,2,3,4

Table C.15. RMSA solution for the UBN optical network with $BER=10^{-3}$.

	[1-3], [1-4], [1-5], [1-7], [1-8], [1-9], [1-10], [1-11], [1-12], [1-13], [1-14], [1-15], [1-16], [1-17], [1-18], [1
	[1-19], [1-20], [1-21], [1-22], [1-23], [1-24], [2-5], [2-7], [2-8], [2-9], [2-10], [2-11], [2-12], [2-13], [2-14], [2-12], [2-14], [2-12], [2-14], [2-12], [2-14], [2-12], [2-14], [2-12], [2-14], [2-12], [2-14],
	[2-15], [2-16], [2-17], [2-18], [2-19], [2-20], [2-21], [2-22], [2-23], [2-24], [3-6], [3-8], [3-9], [3-10], [3-11], [3-11], [3-10], [3-11], [3-10], [3-11], [3-10], [3-11], [3-10], [3-11], [3-10], [3-11], [3-10], [3-11], [3-10],
	[3-12], [3-13], [3-14], [3-15], [3-16], [3-17], [3-18], [3-19], [3-20], [3-21], [3-22], [3-23], [3-24], [4-6], [4-8], [
	[4-9], [4-10], [4-11], [4-12], [4-13], [4-14], [4-15], [4-16], [4-17], [4-18], [4-19], [4-20], [4-21], [4-22], [4-23
	[4-24], [5-6], [5-7], [5-9], [5-10], [5-11], [5-12], [5-13], [5-14], [5-15], [5-16], [5-17], [5-18], [5-19], [5-20], [5-10],
	[5-21], [5-22], [5-23], [5-24], [6-8], [6-10], [6-11], [6-12], [6-13], [6-14], [6-15], [6-16], [6-17], [6-18], [6-19
	[6-20], [6-21], [6-22], [6-23], [6-24], [7-10], 7-11], [7-12], [7-13], [7-14], [7-15], [7-16], [7-17], [7-18], [7-19
Blocked	[7-20], [7-21], [7-22], [7-23], [7-24], [8-9], [8-11], [8-12], [8-13], [8-14], [8-15], [8-16], [8-17], [8-18], [8-19
Demands	[8-20], [8-21], [8-22], [8-23], [8-24], [9-11], [9-13], [9-14], [9-15], [9-16], [9-17], [9-18], [9-19], [9-20], [9-21], [9-21], [9-18], [9-19], [9-20], [9-21], [9-20], [9-21], [9-20], [9-21], [9-20], [9-21], [9-20], [9-2
	[9-22], [9-23], [9-24], [10-11], [10-12], [10-15], [10-16], [10-17], [10-18], [10-19], [10-20], [10-21], [10-22], [10-
	[10-23], [10-24], [11-13], [11-14], [11-16], [11-17], [11-18], [11-19], [11-20], [11-21], [11-22], [11-23], [11-24], [
	[12-14], [12-15], [12-17], [12-18], [12-19], [12-20], [12-21], [12-22], [12-23], [12-24], [13-15], [13-16], [13-18], [
	[13-19], [13-20], [13-21], [13-22], [13-23], [13-24], [14-15], [14-16], [14-17], [14-19], [14-20], [14-21], [14-22], [14-22], [14-22], [14-21], [14-22], [14-21], [14-22], [14-21], [14-22], [14-21], [14-21], [14-22], [14-21], [
	[14-23], [14-24], [15-17], [15-18], [15-19], [15-21], [15-22], [15-23], [15-24], [16-18], [16-19], [16-20], [16-23], [
	[16-24], [17-19], [17-20], [17-24], [18-19], [18-20], [18-21], [18-22], [18-23], [19-21], [19-22], [19-23], [19-24], [
	[20-23], [20-24], [21-24], [22-24].

Table C.16. Blocked demands in the RMSA solution for the UBN optical network with BER= 10^{-3} .

Demand	Path	OSNR	Modulation	Frequency	Demand	Path	OSNR	Modulation	Frequency
d	(1,5,00,0)	[dB]	Format M	slots	<i>d</i>	1 atri	[dB]	Format M	slots
[1-2]	$\{1,5,30,2\}$	14.8	16-QAM OPSK	1,2,3	[9-20]	{9,20}	17.4	16-QAM OPSK	13,14,15
[1-3]	$\{1, 5, 30, 2, 13, 13, 5\}$	9.9	OPSK	8 9 10 11	[9-21]	$\{9,20,13,25,24,21\}$	11.0	OPSK	16 17 18 19
[1-5]	{1.5}	19.4	64-QAM	12.13	[9-23]	{9.23}	15.2	16-OAM	13.14.15
[1-6]	{1,5,30,16,11,4,6}	8.9	QPSK	14,15,16,17	[9-24]	{9,20,13,25,24}	10.7	QPSK	36,37,38,39
[1-7]	{1,10,7}	10.6	QPSK	1,2,3,4	[9-25]	{9,20,13,25}	10.8	QPSK	40,41,42,43
[1-8]	$\{1,10,23,9,8\}$	7.4	QPSK	5,6,7,8	[9-26]	$\{9,8,12,26\}$	9.0	QPSK	85,86,87,88
[1-9]	{1,10,23,9}	8.9	QPSK	9,10,11,12	[9-27]	{9,20,13,25,24,21,27}	8.4	QPSK	54,55,56,57
[1-10]	$\{1,10\}$	13.4	16-QAM	13,14,15	[9-28]	$\{9,23,10,17,29,28\}$	8.8	QPSK	135,136,137,138
[1-11]	$\{1,5,30,16,11\}$	10.5	QPSK	18,19,20,21	[9-29]	$\{9,23,10,17,29\}$	9.3	QPSK OPSK	139,140,141,142
[1-12]	$\{1,10,7,12\}$ $\{1,10,23,9,20,13\}$	0.0	OPSK	20 21 22 23	[9-30]	$\{9,23,10,1,3,30\}$ $\{10,7,12,26,11\}$	9.5	OPSK	147 148 149 150
[1-14]	$\{1,10,23,9,20,10\}$	7.6	OPSK	24 25 26 27	[10-12]	{10,7,12}	13.5	16-0AM	37 38 39
[1-15]	{1,5,15}	11.0	QPSK	22,23,24,25	[10-13]	{10,23,9,20,13}	9.1	QPSK	147,148,149,150
[1-16]	$\{1,5,30,16\}$	13.9	16-QAM	26,27,28	[10-14]	{10,23,9,20,14}	9.7	QPSK	151,152,153,154
[1-17]	{1,10,17}	10.0	QPSK	28,29,30,31	[10-15]	$\{10,17,29,28,15\}$	10.7	QPSK	16,17,18,19
[1-18]	$\{1,5,30,2,19,18\}$	13.9	16-QAM	29,30,31	[10-16]	$\{10,1,5,30,16\}$	9.0	QPSK	227,228,229,230
[1-19]	{1,5,30,2,19}	14.3	16-QAM	32,33,34	[10-17]	{10,17}	16.7	16-QAM	1,2,3
[1-20]	$\{1,10,23,9,20\}$	8.1	QPSK	32,33,34,35	[10-18]	$\{10,1,5,30,2,19,18\}$	9.0	QPSK	231,232,233,234
[1-23]	$\{1,10,23\}$	10.8	QPSK	36,37,38,39	[10-19]	{10,1,5,30,2,19}	9.2	QPSK	235,236,237,238
[1-20]	{1,5,30,10,11,20}	9.5	OPSK	30,40,41,42	[10-20]	$\{10,23,9,20\}$	10.5	OPSK	163 164 165 166
[1-20]	$\{1, 5, 15, 28, 29\}$	97	OPSK	43 44 45 46	[10-21]	$\{10,23,9,20,13,25,24,21\}$	8.5	OPSK	167 168 169 170
[1-30]	{1,5,30}	15.0	16-OAM	47.48.49	[10-23]	{10.23}	19.9	64-QAM	28.29
[1-24]	{2,19,18,3}	16.8	16-QAM	1,2,3	[10-24]	{10,23,9,20,13,25,24}	8.3	QPSK	171,172,173,174
[2-4]	{2,30,16,11,4}	13.9	16-QAM	22,23,24	[10-25]	{10,23,9,20,13,25}	8.4	QPSK	175,176,177,178
[2-5]	{2,30,5}	16.8	16-QAM	39,40,41	[10-26]	{10,7,12,26}	10.5	QPSK	151,152,153,154
[2-6]	$\{2,30,16,11,4,6\}$	10.6	QPSK	42,43,44,45	[10-28]	$\{10,17,29,28\}$	11.5	QPSK	37,38,39,40
[2-7]	$\{2,30,5,1,10,7\}$	8.7	QPSK	50,51,52,53	[10-29]	{10,17,29}	14.1	16-QAM	10,11,12
[2-8]	{2,30,16,11,26,12,8}	8.4	QPSK	46,47,48,49	[10-30]	{10,1,5,30}	9.5	QPSK	104,105,106,107
[2-9]	$\{2,30,5,1,10,23,9\}$	7.5	QPSK	54,55,56,57	[11-12]	$\{11,26,12\}$	15.1	16-QAM	5,6,7
[2-10]	$\{2,30,5,1,10\}$	9.4	QPSK 16 OAM	58,59,60,61 62,63,64	[11-14]	$\{11,20,12,8,22,14\}$	1.8	QPSK OPSK	155,150,157,158
[2-11]	$\{2,30,10,11\}$	10.3	OPSK 0	65 66 67 68	[11-15]	{11,10,30,3,13}	16.8	16-OAM	1 2 3
[2-15]	{2,30,5,15}	10.3	OPSK	69.70.71.72	[11-17]	$\{11, 10\}$	8.4	OPSK	159,160,161,162
[2-16]	{2,30,16}	19.7	64-QAM	12,13	[11-18]	{11,16,30,2,19,18}	14.0	16-QAM	243,244,245
[2-17]	{2,30,5,15,28,29,17}	8.4	QPSK	73,74,75,76	[11-19]	{11,16,30,2,19}	14.5	16-QAM	246,247,248
[2-18]	{2,19,18}	21.4	64-QAM	8,9	[11-20]	{11,26,12,8,9,20}	7.6	QPSK	186,187,188,189
[2-19]	$\{2,19\}$	24.4	64-QAM	10,11	[11-21]	$\{11,26,12,8,22,21\}$	7.5	QPSK	163, 164, 165, 166
[2-22]	$\{2,30,16,11,26,12,8,22\}$	7.5	QPSK	77,78,79,80	[11-22]	{11,26,12,8,22}	8.8	QPSK	167,168,169,170
[2-23]	$\{2,30,5,1,10,23\}$	8.8	QPSK	81,82,83,84	[11-23]	$\{11,26,12,7,10,23\}$	8.9	QPSK	190,191,192,193
[2-20]	{2,30,10,11,20}	11.0	QPSK	85,80,87,88	[11-24]	$\{11,20,12,8,22,21,24\}$	7.2	QPSK	178,179,180,181
[2-20]	[2,30,3,13,26] J2 30 5 15 28 20]	9.7	OPSK	03 04 05 06	[11-25]	{11,20,12,0,22,21,24,23}	18.2	16-OAM	22 23 24
[2-30]	{2,30}	27.7	64-QAM	8.9	[11-20]	$\{11, 20\}$ $\{11, 16, 30, 5, 15, 28\}$	8.3	OPSK	249 250 251 252
[3-4]	{3.6,4}	10.8	QPSK	1,2,3,4	[11-29]	$\{11,16,30,5,15,28,29\}$	7.9	QPSK	253,254,255,256
[3-5]	{3,18,19,2,30,5}	13.8	16-QAM	97,98,99	[11-30]	{11,16,30}	15.2	16-QAM	4,5,6
[3-6]	{3,6}	14.2	16-QAM	5,6,7	[12-13]	{12,8,22,21,24,25,13}	7.9	QPSK	54,55,56,57
[3-7]	$\{3,18,19,2,30,5,1,10,7\}$	7.8	QPSK	100,101,102,103	[12-14]	$\{12, 8, 22, 14\}$	9.2	QPSK	37,38,39,40
[3-8]	$\{3,18,19,2,30,16,11,26,12,8\}$	7.6	QPSK	104,105,106,107	[12-15]	$\{12,7,10,17,29,28,15\}$	8.2	QPSK	66,67,68,69
[3-10]	$\{3,18,19,2,30,5,1,10\}$	8.3	QPSK	108,109,110,111	[12-16]	$\{12,26,11,16\}$	11.1	QPSK	227,228,229,230
[3-11]	$\{3,18,19,2,30,16,11\}$	11.1	QPSK	112,113,114,115	[12-17]	$\{12,7,10,17\}$	10.1	QPSK	74,75,76,77
[3-12]	$\{3,18,19,2,30,10,11,20,12\}$	9.1	OPSK	110,117,118,119 120,121,122,123	[12-18]	$\{12,20,11,10,30,2,19,18\}$	9.8	OPSK	261,258,259,260
[3-16]	$\{3, 18, 19, 2, 30, 5, 19\}$	15.0	16-0AM	120,121,122,125	[12-13]	{12,20,11,10,50,2,15}	8.9	OPSK	65 66 67 68
[3-17]	$\{3,18,19,2,30,5,15,28,29,17\}$	7.5	OPSK	127,128,129,130	[12-20]	{12.8.22.21}	8.9	OPSK	41.42.43.44
[3-18]	{3,18}	19.2	64-QAM	8,9	[12-22]	{12,8,22}	10.6	QPSK	89,90,91,92
[3-19]	{3,18,19}	17.7	16-QAM	10,11,12	[12-23]	{12,7,10,23}	10.8	QPSK	179,180,181,182
[3-23]	$\{3,18,19,2,30,5,1,10,23\}$	7.9	QPSK	131, 132, 133, 134	[12-24]	{12,8,22,21,24}	8.6	QPSK	93,94,95,96
[3-26]	$\{3,18,19,2,30,16,11,26\}$	10.0	QPSK	135,136,137,138	[12-25]	$\{12,8,22,21,24,25\}$	8.5	QPSK	112,113,114,115
[3-28]	{3,18,19,2,30,5,15,28}	8.6	QPSK	139,140,141,142	[12-26]	{12,26}	18.1	16-QAM	22,23,24
[3-29]	{3,18,19,2,30,5,15,28,29}	8.2	QPSK 16 OAM	143,144,145,146	[12-27]	$\{12,8,22,27\}$	8.1	QPSK	78 70 90 91
[3-30]	{3,18,19,2,30}	16.4	10-QAM	14,15,16	[12-28]	$\{12, 7, 10, 17, 29, 28\}$	8.7	QPSK OPSV	18,19,80,81
[4-0] [4_6]	{4,11,10,30,3}	10.7	16-OAM	5.6.7	[12-29]	{12,1,10,11,29} {12.26.11.16.20}	9.1	QPSK OPSV	02,00,84,80
[4-7]	{4,11,26,12,7}	9.8	OPSK	1.2.3.4	[13-14]	{13.20.14}	14.5	16-0AM	7.8 9
[4-8]	{4,11,26,12.8}	9.6	QPSK	18,19,20.21	[13-17]	{13,20,9,23,10.17}	8.1	QPSK	194,195,196.197
[4-9]	{4,11,26,12,8,9}	7.9	QPSK	25,26,27,28	[13-20]	{13,20}	16.4	16-QAM	4,5,6
[4-10]	{4,11,26,12,7,10}	9.0	QPSK	29,30,31,32	[13-21]	{13,25,24,21}	16.5	16-QAM	5,6,7
[4-11]	{4,11}	20.7	64-QAM	5,6	[13-22]	$\{13,25,24,21,22\}$	11.2	QPSK	24,25,26,27
[4-12]	{4,11,26,12}	14.0	16-QAM	39,40,41	[13-23]	$\{13,20,9,23\}$	9.8	QPSK	78,79,80,81
[4-14]	$\{4,11,26,12,8,22,14\}$	7.4	QPSK	50,51,52,53	[13-24]	$\{13,25,24\}$	17.6	16-QAM	8,9,10
[4-15]	{4,11,16,30,5,15}	8.3	QPSK	151,152,153,154	[13-25]	{13,25}	18.0	16-QAM	11,12,13
[4-16]	{4,11,16}	15.2	16-QAM	54,55,56	[13-26]	{13,25,24,21,22,8,12,26}	7.3	QPSK	132,133,134,135
[4-17]	$\{4,11,26,12,7,10,17\}$	8.0	QPSK OPSV	57,58,59,60	[13-27]	$\{13,25,24,21,27\}$	10.2	QPSK OPSV	32,33,34,35
[4-18]	{4,11,10,30,2,19,18}	11.5 12 ¤	QPSK 16 OAM	150 160 161	[13-28]	$\{13,20,9,23,10,17,29,28\}$	(.2 7 ¤	QPSK ODSV	198,199,200,201
[4-20]	$\{4, 11, 26, 12, 8, 9, 20\}$	73	OPSK	61.62 63 64	[14-15]	$\{14, 20, 9, 23, 10, 17, 29, 28, 15\}$	7.5	OPSK	202,203,204,205
[4-21]	{4,11,26,12.8,22.21}	7.2	OPSK	69,70.71.72	[14-17]	{14,20.9.23,10.17}	8.6	QPSK	210,211.212.213
[4-22]	{4,11,26,12,8,22}	8.4	QPSK	73,74,75,76	[14-20]	{14,20}	19.1	64-QAM	1,2
[4-23]	{4,11,26,12,7,10,23}	8.5	QPSK	89,90,91,92	[14-21]	{14,20,13,25,24,21}	11.1	QPSK	28,29,30,31
[4-26]	{4,11,26}	16.1	16-QAM	81,82,83	[14-22]	{14,22}	16.3	16-QAM	1,2,3
[4-28]	$\{4,11,16,30,5,15,28\}$	7.9	QPSK	162, 163, 164, 165	[14-23]	{14,20,9,23}	10.5	QPSK	89,90,91,92
[4-29]	$\{4,11,16,30,5,15,28,29\}$	7.6	QPSK	166,167,168,169	[14-24]	{14,20,13,25,24}	11.1	QPSK	48,49,50,51
[4-30]	$\{4,11,16,30\}$	14.1	16-QAM	93,94,95	[14-25]	$\{14, 22, 21, 24, 25\}$	11.3	QPSK	58,59,60,61

Appendix C Complementary material used in Chapter 4

	$\{5, 30, 16, 11, 4, 6\}$	9.5	OPSK	170 171 172 173	[14-26]	$\{14\ 22\ 8\ 12\ 26\}$	84	OPSK	194 195 196 197
[5-7]	<u>∫5 1 10 7</u>	9.8	OPSK	62 63 64 65	[14-27]	$\{14, 22, 0, 12, 20\}$	0.1	OPSK	9 10 11 12
[0-1]	[5,1,10,7]	77	ODEK	174 175 176 177	[14-27]	(14.20, 0.22, 10, 17.20, 28)	7 5	ODEK	214 215 216 217
[0-0]	{5,50,10,11,20,12,8}	1.1	QLSK	114,115,110,111	[14-20]	$\{14,20,9,23,10,17,29,28\}$	7.5	QLOK	214,210,210,217
[5-9]	{5,1,10,23,9}	8.3	QPSK	66,67,68,69	[14-29]	{14,20,9,23,10,17,29}	7.9	QPSK	227,228,229,230
[5-10]	$\{5,1,10\}$	10.7	QPSK	70,71,72,73	[15-16]	$\{15,5,30,16\}$	9.9	QPSK	265,266,267,268
[5-11]	$\{5, 30, 16, 11\}$	11.4	QPSK	178,179,180,181	[15-17]	$\{15, 28, 29, 17\}$	14.3	16-QAM	1,2,3
[5-12]	{5,30,16,11,26,12}	9.3	QPSK	182,183,184,185	[15-18]	{15,5,30,2,19,18}	9.8	QPSK	269,270,271,272
[5-14]	$\{5 \ 1 \ 10 \ 23 \ 9 \ 20 \ 14\}$	72	OPSK	74 75 76 77	[15-19]	$\{15, 5, 30, 2, 19\}$	10.1	OPSK	273 274 275 276
[5 15]	(5,15)	12.0	16 OAM	1.9.9	[15 20]	(15, 0, 00, 2, 10)	7.6	ODSK	210,211,210,210
[0-10]	{0,10}	15.0	10-QAM	1,2,3	[15-20]	{15,26,29,17,10,25,9,20}	7.0	QLOK	201,202,200,204
[5-16]	{5,30,16}	15.5	16-QAM	186,187,188	[15-23]	{15,28,29,17,10,23}	9.9	QPSK	183,184,185,186
[5-17]	$\{5,15,28,29,17\}$	9.4	QPSK	4,5,6,7	[15-26]	$\{15,5,30,16,11,26\}$	8.1	QPSK	277,278,279,280
[5-18]	$\{5,30,2,19,18\}$	15.4	16-QAM	189,190,191	[15-28]	$\{15,28\}$	20.1	64-QAM	24,25
[5-19]	{5.30,2,19}	16.0	16-QAM	192,193,194	[15-29]	$\{15,28,29\}$	17.0	16-QAM	28,29,30
[5-20]	{5 1 10 23 9 20}	7.6	OPSK	85 86 87 88	[15-30]	{15.5.30}	10.5	OPSK	62 63 64 65
[5 20]	[5,1,10,22]	0.0	OPSK	02.04.05.06	[16 17]	[10,0,00]	Q 1	ODSK	2,00,01,00
[0-20]	{5,1,10,25}	9.9	QF5K	95,94,95,90	[10-17]	{10,50,5,15,26,29,17}	0.1	QFSK	201,202,203,204
[5-26]	{5,30,16,11,26}	10.3	QPSK	195,196,197,198	[16-18]	{16,30,2,19,18}	17.3	16-QAM	285,286,287
[5-28]	$\{5,15,28\}$	11.2	QPSK	8,9,10,11	[16-19]	$\{16, 30, 2, 19\}$	18.3	16-QAM	288,289,290
[5-29]	$\{5,15,28,29\}$	10.4	QPSK	12,13,14,15	[16-22]	$\{16, 11, 26, 12, 8, 22\}$	7.9	QPSK	235,236,237,238
[5-30]	{5,30}	17.2	16-QAM	22.23.24	[16-23]	{16.30.5.1.10.23}	8.5	OPSK	291.292.293.294
[6-7]	$\int 641126127$	8.8	OPSK	96 97 98 99	[16-26]	<u>ر</u>	14.4	16-0AM	265 266 267
[0-1]	[6,4,11,26,12,8]	0.0	ODEK	100 101 102 102	[16 99]	[16,20,5,15,20]	0.2	ODEK	200,200,201
[0-0]	{0,4,11,20,12,8}	0.0	QF5K	100,101,102,103	[10-20]	{10,30,3,15,28}	9.5	QFSK	295,290,297,298
[6-9]	$\{6,4,11,26,12,8,9\}$	7.3	QPSK	108,109,110,111	[16-29]	$\{16, 30, 5, 15, 28, 29\}$	8.8	QPSK	299,300,301,302
[6-10]	$\{6,4,11,26,12,7,10\}$	8.2	QPSK	112,113,114,115	[16-30]	$\{16,30\}$	20.5	64-QAM	1,2
[6-11]	{6,4,11}	15.6	16-QAM	33,34,35	[17-18]	$\{17,29,28,15,5,30,2,19,18\}$	8.1	QPSK	303,304,305,306
[6-12]	{6,4,11,26,12}	10.7	OPSK	120,121,122,123	[17-19]	$\{17, 29, 28, 15, 5, 30, 2, 19\}$	8.2	OPSK	307,308,309,310
[6-15]	{64111630515}	76	OPSK	199 200 201 202	[17_20]	$\{17 \ 10 \ 93 \ 0 \ 90\}$	0.2	OPSK	235 226 227 220
[0-10] [6 10]		11.0	ODOL	104 105 106 105	[17-20]	17,10,20,3,20	7.4	ODGIA	200,200,201,200
0-16	{0,4,11,16}	11.5	QPSK	124,125,126,127	[17-21]	$\{17,10,23,9,20,13,25,24,21\}$	7.3	QPSK	239,240,241,242
[6-17]	$\{6,4,11,26,12,7,10,17\}$	7.4	QPSK	128,129,130,131	[17-22]	$\{17,10,23,9,20,14,22\}$	7.6	QPSK	243,244,245,246
[6-18]	$\{6,3,18\}$	11.1	QPSK	17,18,19,20	[17-23]	$\{\overline{17,10,23}\}$	14.8	16-QAM	101,102,103
[6-19]	{6,3,18,19}	10.8	QPSK	21,22,23.24	[17-24]	{17,10,23,9,20,13,25,24}	7.5	QPSK	247,248,249.250
[6-22]	$\{64112612822\}$	7.6	OPSK	139 140 141 142	[17-25]	$\{17\ 10\ 23\ 9\ 20\ 13\ 25\}$	7.5	OPSK	251 252 253 254
[6 92]	[6, 1, 11, 20, 12, 0, 12]	77	ODEK	142 144 145 146	[17 96]	(17.10.7.19.96)	0.9	ODEK	201,202,200,201
[0-23]	{0,4,11,20,12,7,10,23}	1.1	QPSK	143,144,145,140	[17-20]	$\{17,10,7,12,20\}$	9.2	QPSK	200,200,207,208
[6-26]	{6,4,11,26}	13.7	16-QAM	132,133,134	[17-28]	{17,29,28}	15.7	16-QAM	47,48,49
[6-30]	$\{6,4,11,16,30\}$	10.8	QPSK	189,190,191,192	[17-29]	$\{17,29\}$	17.7	16-QAM	13,14,15
[7-8]	$\{7,12,8\}$	10.1	QPSK	5,6,7,8	[17-30]	$\{17, 29, 28, 15, 5, 30\}$	8.5	QPSK	116,117,118,119
[7-9]	{7.10.23.9}	10.9	OPSK	40,41,42,43	[18-19]	{18,19}	24.4	64-QAM	17.18
[7, 10]	[(,,=0,=0,0]] [7 10]	10.2	64 OAM	5.6	[18 22]	$\int 18 10 2 30 16 11 26 12 8 22$	7.2	OPSK	211 212 212 214
[7-10]	(7.10 f)	19.2	04-QAM	0.10.11.10	[10-22]		1.4	ODGV	215 216 217 210
[7-11]	{7,12,20,11}	10.5	QF5K	9,10,11,12	[10-20]	{10,19,2,30,3,1,10,23}	0.4	QFSK	313,310,317,318
[7-12]	{7,12}	15.0	16-QAM	13,14,15	[18-26]	{18,19,2,30,16,11,26}	10.9	QPSK	319,320,321,322
[7-13]	$\{7,10,23,9,20,13\}$	8.5	QPSK	44,45,46,47	[18-28]	$\{18,19,2,30,5,15,28\}$	9.3	QPSK	323,324,325,326
[7-14]	{7,10,23,9,20,14}	9.0	QPSK	70,71,72,73	[18-29]	$\{18,19,2,30,5,15,28,29\}$	8.8	QPSK	327,328,329,330
[7-15]	{7.10.17.29.28.15}	9.8	OPSK	20.21.22.23	[18-30]	{18,19,2,30}	20.5	64-QAM	19.2
[7-16]	$\{7, 12, 26, 11, 16\}$	91	OPSK	203 204 205 206	[19-22]	$\{1923016112612822\}$	7.3	OPSK	331 332 333 334
[7 17]	(7.10.17)	14.6	16 OAM	7 8 0	[10.22]	(10, 2, 30, 10, 11, 20, 12, 0, 22)	9.6	ODEK	225 226 227 228
[7-17]	$\{7,10,17\}$	14.0	10-QAM	1,0,9	[19-23]	{19,2,30,3,1,10,23}	0.0	QFSK	333,330,337,338
[7-18]	{7,10,1,5,30,2,19,18}	8.4	QPSK	203,204,205,206	[19-26]	$\{19,2,30,16,11,26\}$	11.3	QPSK	339,340,341,342
[7-19]	$\{7,10,1,5,30,2,19\}$	8.5	QPSK	207,208,209,210	[19-28]	$\{19,2,30,5,15,28\}$	9.5	QPSK	343,344,345,346
[7-20]	{7,10,23,9,20}	9.7	QPSK	104,105,106,107	[19-29]	$\{19,2,30,5,15,28,29\}$	9.0	QPSK	347,348,349,350
[7-21]	{7.10.23.9.20.13.25.24.21}	7.6	OPSK	108.109.110.111	[19-30]	{19.2.30}	22.7	CLOAN	
[7-22]	{7 12 8 22}	88	ODOL	99 94 95 96	[00.01]	(- / /)	44.1	04-QAM	17.18
[7 22]	[7,10,22]		L OPSK	<u> </u>		$\{20\ 13\ 25\ 24\ 21\}$	13.5	64-QAM 16-OAM	17,18
[7-23]	11,10,201	16.9	QPSK 16 OAM	33,34,35,30	[20-21]	$\{20,13,25,24,21\}$	13.5	16-QAM	17,18 62,63,64
[7-24]	(= 10.00,0.00,10.05,0.4)	16.2	QPSK 16-QAM	33,34,35,36 13,14,15	[20-21] [20-22]	$\begin{array}{c} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \hline (20,0,22) \\ \hline \end{array}$	13.5 14.4	16-QAM 16-QAM	$ \begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ \hline 02,04,05,02\\ \hline \end{array} $
1 7 9 1	{7,10,23,9,20,13,25,24}	16.2 7.8	QPSK 16-QAM QPSK	$\frac{33,34,35,36}{13,14,15}$ $\frac{116,117,118,119}{100,150,100}$	[20-21] [20-22] [20-23]	$\begin{array}{c} \{20,13,25,24,21\} \\ \\ \{20,14,22\} \\ \\ \\ \{20,9,23\} \end{array}$	13.5 14.4 11.4	16-QAM 16-QAM 16-QAM QPSK	$\begin{array}{r} 17,18\\ \hline 62,63,64\\ \hline 13,14,15\\ \hline 93,94,95,96\\ \hline \end{array}$
[1-20]	$\begin{array}{c} \{7,10,23,9,20,13,25,24\}\\ \{7,10,23,9,20,13,25\} \end{array}$	16.2 7.8 7.9	QPSK 16-QAM QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ \hline 13,14,15\\ \hline 116,117,118,119\\ \hline 120,121,122,123\\ \end{array}$	$ \begin{array}{c} [20-21] \\ [20-22] \\ [20-23] \\ [20-24] \end{array} $	$ \begin{array}{c} \{20,13,25,24,21\} \\ \\ \{20,14,22\} \\ \\ \\ \{20,9,23\} \\ \\ \\ \{20,13,25,24\} \end{array} $	$ \begin{array}{r} 22.7 \\ \overline{)} \\ 13.5 \\ \overline{)} \\ 14.4 \\ \overline{)} \\ 11.4 \\ \overline{)} \\ 14.0 \\ \end{array} $	16-QAM 16-QAM QPSK 16-QAM	$\begin{array}{r} 17,18\\ \hline 62,63,64\\ \hline 13,14,15\\ \hline 93,94,95,96\\ \hline 14,15,16\\ \end{array}$
[7-26]	$\begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,12,26\} \end{array}$	16.2 7.8 7.9 11.6	QPSK 16-QAM QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ \hline 13,14,15\\ \hline 116,117,118,119\\ \hline 120,121,122,123\\ \hline 42,43,44,45\\ \end{array}$	$ \begin{array}{c} [20-21] \\ [20-22] \\ [20-23] \\ [20-24] \\ [20-25] \\ \end{array} $	$\begin{array}{c} \{20,13,25,24,21\} \\ \\ \{20,14,22\} \\ \\ \\ \{20,9,23\} \\ \\ \\ \{20,13,25,24\} \\ \\ \\ \{20,13,25\} \end{array}$	$ \begin{array}{r} 22.7 \\ 13.5 \\ 14.4 \\ 11.4 \\ 14.0 \\ 14.2 \\ \end{array} $	64-QAM 16-QAM QPSK 16-QAM 16-QAM	$\begin{array}{r} 17,18\\ \hline 62,63,64\\ \hline 13,14,15\\ \hline 93,94,95,96\\ \hline 14,15,16\\ \hline 17,18,19\\ \end{array}$
[7-26] [7-28]	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \\ \{7,12,26\} \\ \\ \{7,10,17,29,28\} \end{array} $	$ \begin{array}{r} 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \end{array} $	QPSK 16-QAM QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ \hline 13,14,15\\ \hline 116,117,118,119\\ \hline 120,121,122,123\\ \hline 42,43,44,45\\ \hline 24,25,26,27\\ \end{array}$	$ \begin{array}{c} [20-21] \\ [20-22] \\ [20-23] \\ [20-24] \\ [20-25] \\ [20-26] \\ \end{array} $	$\begin{array}{c} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,0,23\} \\ \{20,13,25,24\} \\ \{20,13,25\} \\ \{20,13,25\} \\ \{20,9,8,12,26\} \end{array}$	$\begin{array}{r} 22.7 \\ 13.5 \\ 14.4 \\ 11.4 \\ 14.0 \\ 14.2 \\ 8.2 \end{array}$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\end{array}$
[7-26] [7-28] [7-29]	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,12,26\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \end{array} $	16.2 7.8 7.9 11.6 10.5 11.2	QPSK 16-QAM QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ \hline 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\end{array}$	$ \begin{array}{c} [20-21]\\ [20-22]\\ [20-23]\\ [20-24]\\ [20-25]\\ [20-26]\\ [20-27]\\ \end{array} $	$\begin{array}{c} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25,24\} \\ \{20,13,25\} \\ \{20,9,8,12,26\} \\ \{20,13,25,24,21,27\} \end{array}$	$\begin{array}{c} 22.1 \\ 13.5 \\ 14.4 \\ 11.4 \\ 14.0 \\ 14.2 \\ 8.2 \\ 9.2 \end{array}$	04-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK QPSK	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\end{array}$
$ \begin{array}{c} [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \end{array} $	$\begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,15,20\} \\ \{7,10,15,20\} \\ \end{array}$	16.2 7.8 7.9 11.6 10.5 11.2 8.8	QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ \hline 13,14,15\\ \hline 116,117,118,119\\ \hline 120,121,122,123\\ \hline 42,43,44,45\\ \hline 24,25,26,27\\ \hline 33,34,35,36\\ \hline 135,136,137,132\\ \end{array}$	$\begin{array}{c} 20-21\\ \hline 20-22\\ \hline 20-23\\ \hline 20-24\\ \hline 20-25\\ \hline 20-25\\ \hline 20-26\\ \hline 20-27\\ \hline 20-28\\ \hline 20-28\\ \hline \end{array}$	$\begin{array}{c} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25\} \\ \{20,9,8,12,26\} \\ \{20,13,25,24,21,27\} \\ \{20,9,23,10,12,20,28\} \\ \end{tabular}$	$\begin{array}{c} 22.1 \\ 13.5 \\ 14.4 \\ 11.4 \\ 14.0 \\ 14.2 \\ 8.2 \\ 9.2 \\ 8.0 \\ \end{array}$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 267,258,250,260\\ \end{array}$
$ \begin{array}{c} [7-26] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8 0] \end{array} $	$\begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,26\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,1,5,30\} \\ \hline \\ \{8,0\} \\ \hline \\ \\ \\ \{8,0\} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	16.2 7.8 7.9 11.6 10.5 11.2 8.8	QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK 16 QAV	$\begin{array}{r} 33,34,30,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,92\\ \end{array}$	$\begin{array}{c} 20-21\\ \hline 20-22\\ \hline 20-23\\ \hline 20-24\\ \hline 20-25\\ \hline 20-26\\ \hline 20-26\\ \hline 20-27\\ \hline 20-28\\ \hline 20-28\\ \hline 20-20\\ \hline \end{array}$	$\begin{array}{c} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25\} \\ \{20,9,8,12,26\} \\ \{20,13,25,24,21,27\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,22,10,17,29,20\} \\ \end{tabular}$	13.5 14.4 11.4 14.0 14.2 8.2 9.2 8.0 8.4	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,962,962,962\\ 364,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962\\ 364,962,962,962,962\\ 364,962,962,962,962,962,962\\ 364,962,962,962,962,962,962\\ 364,962,962,962,962,962,9$
$ \begin{array}{c} [7-26] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [9,16] \\ \end{array} $	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{7,10,1,5,30\} \\ \{8,9\} \\ (6,22,2,5) \\ (6,22,2,5) \\ (6,22,2,5) \\ (7,10,2,3) \\ (8,1,2,3) \\ (8,$	$ \begin{array}{c} 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 6 \\ \end{array} $	QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM QPSW	$\begin{array}{r} 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 1,2,3\\ 1,2,15,156\\ \end{array}$	$\begin{array}{c} 20-21\\ \hline 20-22\\ \hline 20-23\\ \hline 20-23\\ \hline 20-24\\ \hline 20-25\\ \hline 20-26\\ \hline 20-26\\ \hline 20-27\\ \hline 20-28\\ \hline 20-29\\ \hline 20-29\\ \hline 20-29\\ \hline 20-29\\ \hline 20-22\\ \hline 20-29\\ \hline 20-22\\ \hline 20-22$	$\begin{array}{c} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,0,23\} \\ \{20,13,25,24\} \\ \{20,13,25\} \\ \{20,13,25\} \\ \{20,9,8,12,26\} \\ \{20,13,25,24,21,27\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29\} \\ \{20,9,23,23,20,22,22,23,20,22,22,22,22,22,22,22,22,22,22,22,22,$	$\begin{array}{c} 22.1 \\ 13.5 \\ 14.4 \\ 11.4 \\ 14.0 \\ 14.2 \\ 8.2 \\ 9.2 \\ 8.0 \\ 8.4 \\ 15.2 \end{array}$	64-QAM 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QX 16-QAM	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ \end{array}$
$ \begin{array}{c} [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ \hline \end{array} $	$\begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \hline \{7,10,23,9,20,13,25\} \\ \hline \{7,10,17,29\} \\ \hline \{7,10,17,29,28\} \\ \hline \{7,10,17,29\} \\ \hline \{7,10,1,5,30\} \\ \hline \{8,9\} \\ \hline \{8,9,23,10\} \\ \end{array}$	$\begin{array}{c} 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 9.4 \\ \end{array}$	QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM QPSK	$\begin{array}{r} 33,34,35,36\\ \hline 13,14,15\\ \hline 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ \hline 33,34,35,36\\ \hline 135,136,137,138\\ \hline 1,2,3\\ \hline 16,17,18,19\\ \end{array}$	20-21 [20-22] [20-23] [20-24] [20-25] [20-26] [20-27] [20-28] [20-29] [21-22]	$\begin{array}{c} \{20,13,25,24,21\} \\ \hline \{20,14,22\} \\ \hline \{20,9,23\} \\ \hline \{20,13,25,24\} \\ \hline \{20,13,25\} \\ \hline \{20,9,8,12,26\} \\ \hline \{20,13,25,24,21,27\} \\ \hline \{20,9,23,10,17,29,28\} \\ \hline \{20,9,23,10,17,29\} \\ \hline \{21,22\} \\ \end{array}$	$\begin{array}{c} 22.1 \\ 13.5 \\ 14.4 \\ 11.4 \\ 14.0 \\ 14.2 \\ 8.2 \\ 9.2 \\ 8.0 \\ 8.4 \\ 15.3 \\ \end{array}$	64-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK 16-QAM 16-QAM	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ \end{array}$
$ \begin{array}{c} [7-20] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-11] \\ \end{array} $	$\begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{7,10,1,5,30\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \end{array}$	$\begin{array}{c} 16.2 \\ \hline 16.2 \\ \hline 7.8 \\ \hline 7.9 \\ \hline 11.6 \\ \hline 10.5 \\ \hline 11.2 \\ \hline 8.8 \\ \hline 14.6 \\ \hline 9.4 \\ \hline 10.1 \\ \end{array}$	QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM QPSK QPSK	$\begin{array}{r} 33,34,30,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ \end{array}$	$\begin{array}{c} 20-21\\ \hline 20-22\\ \hline 20-23\\ \hline 20-23\\ \hline 20-24\\ \hline 20-25\\ \hline 20-26\\ \hline 20-27\\ \hline 20-28\\ \hline 20-29\\ \hline 20-29\\ \hline 21-22\\ \hline 21-23\\ \hline \end{array}$	$\begin{array}{r} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25,24\} \\ \{20,9,8,12,26\} \\ \{20,9,8,12,26\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29\} \\ \{21,22\} \\ \{21,22,23\} \\ \{21,24,25,13,20,9,23\} \\ \end{array}$	$\begin{array}{c} 22.1 \\ 13.5 \\ 14.4 \\ 11.4 \\ 14.0 \\ 14.2 \\ 8.2 \\ 9.2 \\ 8.0 \\ 8.4 \\ 15.3 \\ 8.6 \end{array}$	64-QAM 16-QAM 16-QAM QPSK 16-QAM QPSK QPSK QPSK QPSK 16-QAM QPSK	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ \end{array}$
$ \begin{array}{c} [7-26] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-11] \\ [8-12] \\ \end{array} $	$\begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{7,10,1,5,30\} \\ \{8,9\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,12\} \\ \end{array}$	$\begin{array}{c} 16.2 \\ 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 9.4 \\ 10.1 \\ 14.6 \end{array}$	QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM QPSK 16-QAM	$\begin{array}{r} 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ \end{array}$	20-21] 20-22] 20-23] 20-24] 20-25] 20-26] 20-27] 20-28] 20-29] 21-22] 21-23] 21-24	$\begin{array}{r} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25\} \\ \{20,9,8,12,26\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{21,22\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24\} \end{array}$	$\begin{array}{c} 22.1\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ \end{array}$	64-QAM 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK QPSK QPSK 16-QAM QPSK 64-QAM	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ \end{array}$
$\begin{array}{c} [7-20] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-11] \\ [8-12] \\ [8-13] \end{array}$	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,9,9\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,12,21,24,25,13\} \\ \end{array}$	$\begin{array}{c} 16.2 \\ 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 9.4 \\ 10.1 \\ 14.6 \\ 9.5 \end{array}$	QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 0PSK	$\begin{array}{r} 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3\\ 1,2,3,4\\ \end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-23 21-24	$\begin{array}{r} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25\} \\ \{20,13,25\} \\ \{20,9,8,12,26\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29\} \\ \{21,22\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24\} \\ \{21,24,25\} \\ \end{array}$	$\begin{array}{c} 22.1\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\end{array}$	64-QAM 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM QPSK 64-QAM 64-QAM	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ \end{array}$
$\begin{array}{c} [7-20] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-11] \\ [8-12] \\ [8-13] \\ [8-14] \end{array}$	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,12,26,11\} \\ \{8,12,22,1,24,25,13\} \\ \{8,22,1,24,25,13\} \\ \{8,22,1,24\} \\ \{8,23,14\} \\ \{8,24,14\} \\ \{8,24,14\} \\ \{8,$	$\begin{array}{c} 16.2 \\ 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 9.4 \\ 10.1 \\ 14.6 \\ 9.5 \\ 11.5 \end{array}$	QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM QPSK 16-QAM QPSK	$\begin{array}{r} 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-25 21-26	$\begin{array}{c} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25,24\} \\ \{20,13,25,24,21,27\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29\} \\ \{21,22\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24\} \\ \{21,24,25\} \\ \{21,22,81,2,96\} \\ \{21,22,81,22,96\} \\ \{21,22,81,22,96\} \\ \{21,22,81,22,96\} \\ \{21,22,81,22,96\} \\ \{21,22,81,2$	$\begin{array}{c} 22.1\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\end{array}$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM QPSK 64-QAM 64-QAM 64-QAM	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,249\\ \end{array}$
$\begin{array}{c} 1^{-23} \\ \hline [7-26] \\ \hline [7-28] \\ \hline [7-29] \\ \hline [7-30] \\ \hline [8-9] \\ \hline [8-10] \\ \hline [8-11] \\ \hline [8-12] \\ \hline [8-13] \\ \hline [8-13] \\ \hline [8-14] \\ \hline \\ \hline [8-14] \\ \hline \hline [8-14] \\ \hline \hline \\ \hline $	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,4\} \\ \{8,22,21$	$\begin{array}{c} 16.2 \\ 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 9.4 \\ 10.1 \\ 14.6 \\ 9.5 \\ 11.5 \\ 8.0 \\ \end{array}$	QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,30,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 907,208,209,110\\ \end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-25	$\begin{array}{c} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25,24\} \\ \{20,13,25,24,21,27\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29\} \\ \{21,22\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24,25\} \\ \{21,22,8,12,26\} \\ \{21,22,8,12,26\} \\ \end{tabular}$	$\begin{array}{c} 22.1\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 12.7\end{array}$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM QPSK 64-QAM 64-QAM 64-QAM	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,22\\ 1,$
$\begin{array}{c} (-25) \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-10] \\ [8-11] \\ [8-13] \\ [8-13] \\ [8-14] \\ [8-14] \\ [8-15] $	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,9\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,4\} \\ \{8,12,26,11,16\} \\ (9,22,12,12) \\ \{8,12,26,11,16\} \\ (9,22,12,12) \\ \{8,12,26,11,16\} \\ (9,22,12,12) \\ \{8,22,21,24,25,12\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,14\} \\ \{8,22,21,24,25,12\} \\ \{8,22,21,24,25,12\} \\ \{8,22,21,24,25,12\} \\ \{8,22,21,24,25,12\} \\ \{8,22,21,24,25,12\} \\ \{8,22,21,24,25,12\} \\ \{8,22,21,24,25,12\} \\ \{8,22,24,25,12,25,12,25\} \\ \{8,22,24,25,12,25\} \\ \{8,22,24,25,12,25\} \\ \{8,22,24,25,12,25\} \\ \{8,22,24,25,12,25\} \\ \{8,22,24,25,12,25\} \\ \{8,22,24,25,12,25\} \\ \{8,22,24,25,12,25\} \\ \{8,22,24,25,12,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,24,25\} \\ \{8,22,25\} \\ \{8,22,25\} \\ \{8,22,25\} \\ \{8,22,25\} \\ \{8,22,25\} \\ \{8,22,25\} \\ \{8,22,25\} \\ $	$\begin{array}{c} 16.2 \\ 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 9.4 \\ 10.1 \\ 14.6 \\ 9.5 \\ 11.5 \\ 8.9 \\ 8.5 \\ \end{array}$	QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM QPSK 16-QAM QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 49,45,27\end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-25 21-26 21-27 21-28	$\begin{array}{r} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,0,23\} \\ \{20,13,25,24\} \\ \{20,13,25,24\} \\ \{20,13,25\} \\ \{20,9,8,12,26\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{21,22,23,10,17,29,28\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24,25\} \\ \{21,22,8,12,26\} \\ \{21,27,26\} \\ \{21,27\} \\ \{20,122,23,222\} \\ \{21,22,23,222\} \\$	$\begin{array}{c} 22.1\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 0.6\\ \end{array}$	64-QAM 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK QPSK QPSK 16-QAM QPSK 64-QAM 64-QAM QPSK 16-QAM 64-QAM	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 149,14(5,5,5)\\ \end{array}$
$\begin{array}{c} (1-25) \\ \hline [7-26] \\ \hline [7-28] \\ \hline [7-29] \\ \hline [7-30] \\ \hline [8-9] \\ \hline [8-10] \\ \hline [8-10] \\ \hline [8-11] \\ \hline [8-12] \\ \hline [8-13] \\ \hline [8-13] \\ \hline [8-14] \\ \hline [8-16] \\ \hline [8-17] \\ \hline \hline \end{array}$	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,4\} \\ \{8,12,26,11,16\} \\ \{8,9,23,10,17\} \\ \hline \end{array} $	$\begin{array}{c} 16.2 \\ 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 9.4 \\ 10.1 \\ 14.6 \\ 9.5 \\ 11.5 \\ 8.9 \\ 8.4 \\ \end{array}$	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 344,95,50,51\\ 344,95,50,51\\ 354,356\\ 365,36\\ 3$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-24 21-25 21-26 21-27 21-26 21-27 21-28 21-27 21-28 21-27 21-28 21-27 21-28 21-27 22-23	$ \begin{array}{l} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25,24\} \\ \{20,13,25,24,21,27\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{21,22,23,10,17,29\} \\ \{21,22,23,10,17,29\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24,25\} \\ \{21,22,8,12,26\} \\ \{21,22,8,12,26\} \\ \{21,27\} \\ \{22,14,20,9,23\} \\ \{21,24,20,9,23\} \\ \{21,22,14,20,9,21\} \\ \{21,22,14,20,9,21\} \\ \{21,22,14,20,14,20,20,20\} \\ \{21,22,14,20,14,20,20,20,20\} \\ \{21,22,14,20,20,20,20,20,20\} \\ \{21,22,14,20,20,20,20,20,20,20,20,20,20,20,20,20,$	$\begin{array}{c} 22.1\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 1.5\\ 13.7\\ 9.0\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$	64-QAM 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK QPSK QPSK 16-QAM QPSK 64-QAM 64-QAM 64-QAM QPSK 16-QAM QPSK	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ \end{array}$
$\begin{array}{c} (i^{-}2^{3})\\ \hline [7-26]\\ \hline [7-28]\\ \hline [7-29]\\ \hline [7-30]\\ \hline [8-10]\\ \hline [8-10]\\ \hline [8-11]\\ \hline [8-12]\\ \hline [8-13]\\ \hline [8-13]\\ \hline [8-14]\\ \hline [8-16]\\ \hline [8-17]\\ \hline \hline [8-18]\\ \hline \end{array}$	$\begin{array}{r} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,12,10,17,20\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,22,21,24,25,13\} \\ \{8,22,24,25,13\} \\ \{8,22,24,25,24,25,25,25,25,25,25,25,25,25,25,25,25,25,$	$\begin{array}{c} 16.2 \\ 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 9.4 \\ 10.1 \\ 14.6 \\ 9.5 \\ 11.5 \\ 8.9 \\ 8.4 \\ 8.1 \\ \end{array}$	QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,30,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-25 21-26 21-27 21-28 21-27 22-23 22-24	$\begin{array}{r} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25,24\} \\ \{20,13,25,24,21,27\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29\} \\ \{21,22\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24,25\} \\ \{21,22,8,12,26\} \\ \{21,22,8,12,26\} \\ \{22,21,24\} \\ \{22,21,2$	$\begin{array}{c} 22.1\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\end{array}$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM 16-Q	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ \end{array}$
$\begin{array}{c} (i^{-}2^{3})\\ \hline [7-26]\\ \hline [7-28]\\ \hline [7-29]\\ \hline [7-29]\\ \hline [8-10]\\ \hline [8-10]\\ \hline [8-10]\\ \hline [8-11]\\ \hline [8-12]\\ \hline [8-13]\\ \hline [8-14]\\ \hline [8-16]\\ \hline [8-17]\\ \hline [8-18]\\ \hline [8-19]\\ \hline \end{array}$	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,1,5,30\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,22,21,24,25,13\} \\ \{8,22,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19\} \\ \{8,12,26,11,16,12,12,12,12,12,12,12,12,12,12,12,12,12,$	$\begin{array}{c} 16.2 \\ 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 9.4 \\ 10.1 \\ 14.6 \\ 9.5 \\ 11.5 \\ 8.9 \\ 8.4 \\ 8.1 \\ 8.3 \end{array}$	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,30,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-25 21-26 21-27 22-24 22-24 22-24 22-25	$\begin{array}{r} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25\} \\ \{20,9,8,12,26\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24,25\} \\ \{21,22,8,12,26\} \\ \{21,27\} \\ \{22,21,24,25\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24,25\} \\ \{22,21,24,$	$\begin{array}{c} 22.1\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 14.4\\ \end{array}$	64-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK 16-QAM 64-QAM 64-QAM 64-QAM 16-QAM 16-QAM 16-QAM 16-QAM	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ \end{array}$
$\begin{array}{c} (1-25) \\ \hline [7-26] \\ \hline [7-28] \\ \hline [7-29] \\ \hline [7-29] \\ \hline [7-30] \\ \hline [8-10] \\ \hline [8-10] \\ \hline [8-10] \\ \hline [8-11] \\ \hline [8-12] \\ \hline [8-13] \\ \hline [8-13] \\ \hline [8-14] \\ \hline [8-16] \\ \hline [8-17] \\ \hline [8-18] \\ \hline [8-19] \\ \hline [8-20] \end{array}$	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,12,25\} \\ \{8,22,21,24,25,12,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,22,24\} \\ \{8,22,24\} \\ \{8,22,24\} \\ \{8,22,24\} \\ \{8,22,24\} \\ \{8,22,24\} \\ \{$	$\begin{array}{c} 16.2 \\ 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 9.4 \\ 10.1 \\ 14.6 \\ 9.5 \\ 11.5 \\ 8.9 \\ 8.4 \\ 8.1 \\ 8.3 \\ 11.1 \end{array}$	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ \end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-23 21-24 21-25 22-26 22-25 22-26	$ \begin{array}{l} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,0,23\} \\ \{20,13,25,24\} \\ \{20,13,25,24\} \\ \{20,13,25\} \\ \{20,9,8,12,26\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{21,22,21,22\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24,25\} \\ \{21,22,8,12,26\} \\ \{22,21,24\} \\ \{22,21,24,25\} \\ \{22,24,25\} \\ \{22,24,25\} \\ \{22,24,25\} \\ \{22,24,25\} \\ \{22,24,25\} \\ \{22,24,25\} \\ \{2$	$\begin{array}{c} 22.1\\ 13.5\\ 14.4\\ 11.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 14.4\\ 9.6\\ \end{array}$	64-QAM 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK QPSK QPSK 16-QAM 64-QAM QPSK 16-QAM QPSK 16-QAM 16	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\end{array}$
$\begin{array}{c} (-25) \\ \hline [7-26] \\ \hline [7-28] \\ \hline [7-28] \\ \hline [7-29] \\ \hline [7-29] \\ \hline [8-10] \\ \hline [8-11] \\ \hline [8-12] \\ \hline [8-13] \\ \hline [8-13] \\ \hline [8-14] \\ \hline [8-16] \\ \hline [8-17] \\ \hline [8-18] \\ \hline [8-18] \\ \hline [8-19] \\ \hline [8-20] \\ \hline [8-21] \\ \hline \end{array}$	$ \begin{array}{r} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,12,26,11,26\} \\ \{8,22,124,25,13\} \\ \{8,22,124,25,13\} \\ \{8,22,124,25,13\} \\ \{8,12,26,11,16\} \\ \{8,9,23,10,17\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19\} \\ \{8,22,21\} $	$\begin{array}{c} 16.2 \\ 7.8 \\ 7.9 \\ 11.6 \\ 10.5 \\ 11.2 \\ 8.8 \\ 14.6 \\ 9.4 \\ 10.1 \\ 14.6 \\ 9.5 \\ 11.5 \\ 8.9 \\ 8.4 \\ 8.1 \\ 8.3 \\ 11.1 \\ 11.0 \\ \end{array}$	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 9,10,11,12\\ 9,10,11,12\\ \end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-24 21-25 21-24 21-25 22-23 22-24 22-25 22-27	$\begin{array}{r} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25,24\} \\ \{20,13,25,24,21,27\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{21,22,3,10,17,29,28\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24,25\} \\ \{21,24,25\} \\ \{21,22,8,12,26\} \\ \{21,22,8,12,26\} \\ \{22,21,24,25\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,$	$\begin{array}{c} 22.1\\ 13.5\\ 14.4\\ 11.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 14.4\\ 9.6\\ 14.4\\ 9.6\\ \end{array}$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK 16-QAM QPSK 16-QAM 64-QAM QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ \end{array}$
$\begin{array}{c} [-25] \\ [7-26] \\ [7-26] \\ [7-28] \\ [7-29] \\ [8-10] \\ [8-10] \\ [8-11] \\ [8-12] \\ [8-13] \\ [8-13] \\ [8-14] \\ [8-16] \\ [8-17] \\ [8-16] \\ [8-17] \\ [8-18] \\ [8-20]$	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,12,20,11\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,12,26,11\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,12,26,11,16\} \\ \{8,9,23,10,17\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19\} \\ \{8,9,20\} \\ \{8,22,21\} \\ \{8,22$	16.2 7.8 7.8 7.9 11.6 10.5 11.2 8.8 14.6 9.4 10.1 14.6 9.5 11.5 8.8 14.6 9.4 8.1 8.3 11.1 11.0 11.0	QPSK QPSK	$\begin{array}{r} 33,34,30,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 1,2,3\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 9,10,11,12\\ 9,10,11,12\\ 12,14,15\end{array}$	20-21 20-23 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-25 21-26 21-27 22-23 22-24 22-25 22-26 22-27 29	$ \begin{array}{c} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,9,23\} \\ \{20,13,25,24\} \\ \{20,13,25,24\} \\ \{20,13,25,24,21,27\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29\} \\ \{21,22\} \\ \{21,24,25,13,20,9,23\} \\ \{21,24,25\} \\ \{21,24,25\} \\ \{21,22,8,12,26\} \\ \{21,27\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24,25\} \\ \{22,21,24\} \\ \{22,21,24,25\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,21,24\} \\ \{22,2$	$\begin{array}{c} 22.1\\ 13.5\\ 14.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 13.5\\ 7.5\\ \end{array}$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK 16-QAM QPSK 16-QAM 64-QAM 64-QAM 16-QAM	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 237,274,275,272\\ 0,75\\ 0$
$\begin{array}{c} [1-25] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-11] \\ [8-12] \\ [8-13] \\ [8-13] \\ [8-13] \\ [8-14] \\ [8-16] \\ [8-17] \\ [8-18] \\ [8-19] \\ [8-20] \\ [8-21] \\ [8-22]$	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11,16\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,1,16,30,2,19,18\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22\}$	$\begin{array}{c} 16.2\\ 7.8\\ 7.9\\ 11.6\\ 10.5\\ 11.2\\ 8.8\\ 14.6\\ 9.4\\ 10.1\\ 14.6\\ 9.5\\ 8.9\\ 8.4\\ 8.1\\ 11.5\\ 8.9\\ 8.4\\ 8.1\\ 11.0\\ 16.2$	QPSK QPSK	$\begin{array}{r} 33,34,30,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 9,10,11,12\\ 13,14,15\\ 14,15$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-25 21-26 21-27 22-24 22-25 22-26 22-27 22-20 22-27 22-20 22-27 22-20	$ \begin{array}{l} \{20,13,25,24,21\} \\ \{20,14,22\} \\ \{20,0,23\} \\ \{20,13,25,24\} \\ \{20,13,25,24\} \\ \{20,13,25\} \\ \{20,9,21,26\} \\ \{20,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{20,9,23,10,17,29,28\} \\ \{21,22,21,22\} \\ \{21,22,2,1,22\} \\ \{21,22,2,1,24\} \\ \{21,22,8,12,26\} \\ \{22,21,24,25\} \\ \{22,22,7\} \\ \{22,$	$\begin{array}{c} 22.\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 13.5\\ 7.5\\ 7.5\\ 0.0\\ 0\\ 14.5\\ 13.5\\ 7.5\\ 0.0\\ 0\\ 0\\ 13.5\\ 7.5\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	64-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,144,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 273,274,275,276\\ 275,275\\ 275,276\\ 275,275\\ 275,275\\ 275,276\\ 275,275\\ 275,275\\ 275$
$\begin{array}{c} [1-25] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-11] \\ [8-13] \\ [8-13] \\ [8-13] \\ [8-13] \\ [8-14] \\ [8-16] \\ [8-17] \\ [8-18] \\ [8-19] \\ [8-21] \\ [8-22] \\ [8-23]$	$ \begin{array}{c} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21$	$\begin{array}{c} 16.2\\ 7.8\\ 7.9\\ 11.6\\ 10.5\\ 11.2\\ 8.8\\ 14.6\\ 9.4\\ 10.1\\ 14.6\\ 9.5\\ 11.5\\ 8.9\\ 8.4\\ 8.1\\ 8.3\\ 11.1\\ 11.0\\ 16.2\\ 10.1\\ \end{array}$	QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 9,10,11,12\\ 13,14,15\\ 36,37,38,39\\ \end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-23 21-23 21-24 21-25 22-23 21-24 21-25 22-25 22-26 22-27 22-30 23-24	$ \begin{array}{l} \left\{ 20,13,25,24,21 \right\} \\ \left\{ 20,14,22 \right\} \\ \left\{ 20,0,23 \right\} \\ \left\{ 20,13,25,24 \right\} \\ \left\{ 20,13,25 \right\} \\ \left\{ 20,9,8,12,26 \right\} \\ \left\{ 20,9,23,10,17,29,28 \right\} \\ \left\{ 20,9,23,10,17,29,28 \right\} \\ \left\{ 20,9,23,10,17,29 \right\} \\ \left\{ 21,22,23,10,17,29 \right\} \\ \left\{ 21,22,23,10,17,29 \right\} \\ \left\{ 21,24,25,13,20,9,23 \right\} \\ \left\{ 21,24,25 \right\} \\ \left\{ 21,24,25 \right\} \\ \left\{ 21,22,8,12,26 \right\} \\ \left\{ 22,21,24 \right\} \\ \left\{ 22,21,24,25 \right\} \\ \left\{ 22,21,24,26 \right\} \\ \left\{ 22,27 \right\} \\ \left\{ 22,8,12,26,11,16,30 \right\} \\ \left\{ 23,9,20,13,25,24 \right\} \end{array} $	$\begin{array}{c} 222.\\ 13.5\\ 14.4\\ 14.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 13.5\\ 7.5\\ 8.8 \end{array}$	64-QAM 16-QAM 16-QAM QPSK 16-QAM QPSK QPSK QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK 16-QAM 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK 16-QAM	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 273,274,275,276\\ 179,180,181,182\\ \end{array}$
$\begin{array}{c} [-25] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-11] \\ [8-12] \\ [8-13] \\ [8-14] \\ [8-14] \\ [8-16] \\ [8-17] \\ [8-18] \\ [8-17] \\ [8-18] \\ [8-19] \\ [8-20] \\ [8-21] \\ [8-22] \\ [8-23] \\ [8-24] \\ [8-24] \end{array}$	$ \begin{array}{r} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,12,26,11,29\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,12,26,11,29\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21,24\} \\ \{$	$\begin{array}{c} 16.2\\ 7.8\\ 7.9\\ 11.6\\ 10.5\\ 11.2\\ 8.8\\ 14.6\\ 9.4\\ 10.1\\ 14.6\\ 9.5\\ 11.5\\ 8.9\\ 8.4\\ 8.1\\ 11.1\\ 11.0\\ 10.2\\ 10.1\\ 10.6\\ \end{array}$	QPSK QPSK	$\begin{array}{r} 33,34,30,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 207,208,209,210\\ 207,208,209,210\\ 207,208,209,210\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 13,14,15\\ 13,14,15\\ 36,37,38,39\\ 16,17,18,19\\ \end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-25 21-26 21-27 22-23 22-24 22-25 22-26 22-270 23-24 23-24 23-25	$\begin{array}{r} \{20,13,25,24,21\}\\ \{20,14,22\}\\ \{20,9,23\}\\ \{20,13,25,24\}\\ \{20,13,25,24\}\\ \{20,13,25,24,21,27\}\\ \{20,9,23,10,17,29,28\}\\ \{20,9,23,10,17,29,28\}\\ \{20,9,23,10,17,29,28\}\\ \{20,9,23,10,17,29,28\}\\ \{21,22,3,10,17,29,28\}\\ \{21,24,25,13,20,9,23\}\\ \{21,24,25\}\\ \{21,24,25\}\\ \{21,24,25\}\\ \{21,24,25\}\\ \{21,24,25\}\\ \{21,24,25\}\\ \{21,24,25\}\\ \{21,24,25\}\\ \{21,24,25\}\\ \{22,24,25\}\\ \{22,24,25\}\\ \{22,24,25\}\\ $	$\begin{array}{c} 22.\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 9.2\\ 9.2\\ 8.0\\ 8.0\\ 8.8\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 15.3\\ 8.6\\ 23.5\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 13.5\\ 7.5\\ 8.8\\ 8.9\\ \end{array}$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM 16-QAM 16-QAM 16-QAM QPSK 16-QAM QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 273,274,275,276\\ 273,274,275,276\\ 179,180,181,182\\ 190,191,192,193\\ \end{array}$
$\begin{array}{c} [-25] \\ [7-26] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-11] \\ [8-12] \\ [8-13] \\ [8-13] \\ [8-14] \\ [8-16] \\ [8-17] \\ [8-18] \\ [8-20] \\ [8-21] \\ [8-22] \\ [8-22] \\ [8-24] \\ [8-25] \\ [8-24] \\ [8-25] $	$ \begin{array}{l} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,12,26,11\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,4\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19\} \\ \{8,9,23\} \\ \{8,9,23\} \\ \{8,9,23\} \\ \{8,9,23\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24,25\} \\ \end{array}$	$\begin{array}{c} 16.2\\ 7.8\\ 7.9\\ 11.6\\ 10.5\\ 11.2\\ 8.8\\ 8.8\\ 14.6\\ 9.4\\ 10.1\\ 14.6\\ 9.5\\ 8.9\\ 8.4\\ 8.1\\ 11.1\\ 11.0\\ 16.2\\ 10.1\\ 10.6\\ 10.5\\ \end{array}$	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,30,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 16,2,3\\ 16,2,3\\ 16,2,3\\ 12,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 13,14,15\\ 36,37,38,39\\ 16,17,18,19\\ 20,21,22,23\\ \end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-25 21-26 21-27 22-28 22-24 22-25 22-26 22-27 22-28 22-27 22-28 22-27 22-28 22-27 22-28 22-27 22-28 22-27 22-28 22-29 22-20 22-21 23-26 23-26 23-26	$ \begin{array}{l} & \{20,13,25,24,21\} \\ & \{20,14,22\} \\ & \{20,9,23\} \\ & \{20,13,25,24\} \\ & \{20,13,25\} \\ & \{20,9,8,12,26\} \\ & \{20,9,23,10,17,29,28\} \\ & \{20,9,23,10,17,29,28\} \\ & \{20,9,23,10,17,29,28\} \\ & \{21,24,25,13,20,9,23\} \\ & \{21,24,25,13,20,9,23\} \\ & \{21,24,25\} \\ & \{21,24,25\} \\ & \{21,22,8,12,26\} \\ & \{22,21,24\} \\ & \{22,21,24\} \\ & \{22,21,24\} \\ & \{22,21,24\} \\ & \{22,21,24\} \\ & \{22,21,24\} \\ & \{22,21,24\} \\ & \{22,21,24\} \\ & \{22,21,24\} \\ & \{22,21,24\} \\ & \{22,21,24\} \\ & \{22,21,24\} \\ & \{22,21,24,25\} \\ & \{22,8,12,26\} \\ & \{23,9,20,13,25\} \\ & \{23,10,7,12,26\} \\ \end{array} $	$\begin{array}{c} 22.\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 13.5\\ 7.5\\ 8.8\\ 8.8\\ 8.9\\ 9.8\\ \end{array}$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK 16-QAM	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 273,274,275,276\\ 179,180,181,182\\ 190,191,192,193\\ 277,278,279,280\\ \end{array}$
$\begin{array}{c} (r-25) \\ \hline [7-26] \\ \hline [7-28] \\ \hline [7-29] \\ \hline [7-30] \\ \hline [8-10] \\ \hline [8-10] \\ \hline [8-11] \\ \hline [8-13] \\ \hline [8-13] \\ \hline [8-13] \\ \hline [8-13] \\ \hline [8-14] \\ \hline [8-13] \\ \hline [8-14] \\ \hline [8-16] \\ \hline [8-17] \\ \hline [8-16] \\ \hline [8-17] \\ \hline [8-20] \\ \hline [8-21] \\ \hline [8-22] \\ \hline [8-23] \\ \hline [8-23] \\ \hline [8-24] \\ \hline [8-25] \\ \hline [8-26] \\ \hline \end{array}$	$ \begin{array}{l} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11,16\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24,25\} \\ \{8,12,26\} \\ \{1,16\} \\ \{$	$\begin{array}{c} 16.2\\ 7.8\\ 7.9\\ 11.6\\ 10.5\\ 11.2\\ 8.8\\ 8.8\\ 14.6\\ 9.4\\ 10.1\\ 14.6\\ 9.5\\ 11.5\\ 8.9\\ 8.4\\ 8.1\\ 11.0\\ 16.2\\ 10.1\\ 10.6\\ 10.5\\ 10.5\\ 11.3\\ \end{array}$	QPSK QPSK	$\begin{array}{r} 33,34,30,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 9,10,11,12\\ 13,14,15\\ 36,37,38,39\\ 16,17,18,19\\ 20,21,22,23\\ 81,82,83,84\\ \end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-23 21-24 21-25 21-26 21-27 22-23 22-24 22-25 22-26 22-27 22-30 23-24 23-26 23-28	$ \begin{array}{l} \left\{ 20,13,25,24,21 \right\} \\ \left\{ 20,14,22 \right\} \\ \left\{ 20,0,23 \right\} \\ \left\{ 20,13,25,24 \right\} \\ \left\{ 20,13,25 \right\} \\ \left\{ 20,9,8,12,26 \right\} \\ \left\{ 20,9,23,10,17,29,28 \right\} \\ \left\{ 20,9,23,10,17,29,28 \right\} \\ \left\{ 20,9,23,10,17,29,28 \right\} \\ \left\{ 21,22,1,24 \right\} \\ \left\{ 21,24,25,13,20,9,23 \right\} \\ \left\{ 21,24,25 \right\} \\ \left\{ 21,22,8,12,26 \right\} \\ \left\{ 22,21,24 \right\} \\ \left\{ 22,8,12,26 \right\} \\ \left\{ 23,9,20,13,25 \right\} \\ \left\{ 23,90,13,25 \right\} \\ \left\{ 23,10,7,22,26 \right\} \\ \left\{ 23,10,7,29,28 \right\} \\ \end{array} $	$\begin{array}{c} 22.\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 13.5\\ 7.5\\ 8.8\\ 9.9\\ 8.9\\ 9.8\\ 10.6\\ \end{array}$	04-QAM 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK QPSK QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM 16-QAM 16-QAM QPSK 16-QAM QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 273,274,275,276\\ 179,180,181,182\\ 190,191,192,193\\ 277,278,279,280\\ 269,270,271,272\\ \end{array}$
$\begin{array}{c} (r-25) \\ \overline{[7-26]} \\ \overline{[7-28]} \\ \overline{[7-29]} \\ \overline{[7-29]} \\ \overline{[7-30]} \\ \overline{[8-10]} \\ \overline{[8-10]} \\ \overline{[8-11]} \\ \overline{[8-13]} \\ \overline{[8-13]} \\ \overline{[8-13]} \\ \overline{[8-14]} \\ \overline{[8-16]} \\ \overline{[8-16]} \\ \overline{[8-16]} \\ \overline{[8-16]} \\ \overline{[8-16]} \\ \overline{[8-16]} \\ \overline{[8-26]} \\ \overline{[8-22]} \\ \overline{[8-23]} \\ \overline{[8-24]} \\ \overline{[8-25]} \\ \overline{[8-26]} \\ \overline{[8-27]} \\ \overline{[8-27]} \end{array}$	$ \begin{array}{r} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,12,26,11\} \\ \{8,9,23,10\} \\ \{8,12,26,11\} \\ \{8,12,26,11,16\} \\ \{8,22,124,25,13\} \\ \{8,22,14\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24,25\} \\ \{8,12,26\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21,24,25\} \\ \{8,22,21\} \\ \{8,22,22\} \\ \{8,22,21\} \\ $	$\begin{array}{c} 16.2\\ 7.8\\ 7.9\\ 11.6\\ 10.5\\ 11.2\\ 8.8\\ 14.6\\ 9.4\\ 10.1\\ 14.6\\ 9.5\\ 8.9\\ 8.4\\ 8.1\\ 11.1\\ 11.5\\ 8.9\\ 8.4\\ 8.1\\ 11.1\\ 10.6\\ 10.5\\ 10.5\\ 11.3\\ 9.9\\ \end{array}$	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 13,14,15\\ 36,37,38,39\\ 16,17,18,19\\ 20,21,22,33\\ 81,82,83,84\\ 24,25,26,27\\ \end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-23 21-24 21-25 21-26 21-27 22-28 21-24 21-25 21-26 22-26 22-27 22-26 22-27 23-24 23-24 23-26 23-28 23-29	$ \begin{array}{l} \left\{ 20,13,25,24,21 \right\} \\ \left\{ 20,14,22 \right\} \\ \left\{ 20,0,23 \right\} \\ \left\{ 20,13,25,24 \right\} \\ \left\{ 20,13,25 \right\} \\ \left\{ 20,9,8,12,26 \right\} \\ \left\{ 20,9,23,10,17,29,28 \right\} \\ \left\{ 20,9,23,10,17,29,28 \right\} \\ \left\{ 20,9,23,10,17,29,28 \right\} \\ \left\{ 21,22,21,22 \right\} \\ \left\{ 21,24,25,13,20,9,23 \right\} \\ \left\{ 21,24,25 \right\} \\ \left\{ 21,24,25 \right\} \\ \left\{ 21,22,8,12,26 \right\} \\ \left\{ 22,21,24 \right\} \\ \left\{ 22,21,24,25 \right\} \\ \left\{ 22,8,12,26 \right\} \\ \left\{ 22,27 \right\} \\ \left\{ 22,8,12,26,11,16,30 \right\} \\ \left\{ 23,9,20,13,25 \right\} \\ \left\{ 23,9,0,13,25 \right\} \\ \left\{ 23,10,17,29,28 \right\} \\ \left\{ 23,10,17,29 \right\} \\ \left\{ 23,10,17,29 \right\} \\ \left\{ 23,$	$\begin{array}{c} 22.\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 9.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 13.5\\ 8.8\\ 8.9\\ 9.8\\ 8.9\\ 9.8\\ 8.9\\ 9.8\\ 8.9\\ 9.8\\ 10.6\\ 11.4\\ \end{array}$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM 64-QAM 64-QAM QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK 16-QAM QPSK 16-QAM 16-Q	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 273,274,275,276\\ 179,180,181,182\\ 190,191,192,193\\ 277,278,279,280\\ 269,270,271,272\\ 273,274,275,276\\ 273,274,275,276\\ 269,270,271,272\\ 273,274,275,276\\ 273,274,275,276\\ 269,270,271,272\\ 273,274,275,276\\ 273,274,275,276\\ 273,274,275,276\\ 269,270,271,272\\ 273,274,275,276\\ 275,276\\ 275,275$
$\begin{array}{c} [1-25] \\ [7-26] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-10] \\ [8-10] \\ [8-11] \\ [8-12] \\ [8-13] \\ [8-11] \\ [8-12] \\ [8-11] \\ [8-12] \\ [8-11] \\ [8-13] \\ [8-14] \\ [8-14] \\ [8-16] \\ [8-17] \\ [8-16] \\ [8-17] \\ [8-28] \\ [8-26] \\ [8-26] \\ [8-26] \\ [8-26] \\ [8-29] \\ [8-29] \\ [8-29] \\ [8-20$	$ \begin{array}{l} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21\} \\ \{8,22,21,24,25\} \\ \{8,22,21\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24\} \\ \{8,22,21,24,25\} \\ \{8,22,21\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21,24\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,22\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,22\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,22\} \\ \{$	$\begin{array}{c} 16.2\\ 7.8\\ 7.9\\ 11.6\\ 10.5\\ 11.2\\ 8.8\\ 14.6\\ 9.4\\ 10.1\\ 14.6\\ 9.5\\ 11.5\\ 8.9\\ 8.4\\ 8.1\\ 11.1\\ 10.6\\ 10.5\\ 11.3\\ 9.9\\ 9.4\\ 9.7\\ 4\end{array}$	QPSK QPSK	$\begin{array}{r} 33,34,39,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 1,2,3$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-25 21-24 21-25 22-23 22-24 22-25 22-26 22-27 23-24 23-24 23-24 23-28 23-29	$ \begin{array}{l} \left\{ 20,13,25,24,21 \right\} \\ \left\{ 20,14,22 \right\} \\ \left\{ 20,0,23 \right\} \\ \left\{ 20,13,25,24 \right\} \\ \left\{ 20,13,25,24,21,27 \right\} \\ \left\{ 20,9,23,10,17,29,28 \right\} \\ \left\{ 20,9,23,10,17,29,28 \right\} \\ \left\{ 20,9,23,10,17,29,28 \right\} \\ \left\{ 21,24,25,13,20,9,23 \right\} \\ \left\{ 21,24,25 \right\} \\ \left\{ 21,24,25 \right\} \\ \left\{ 21,24,25 \right\} \\ \left\{ 21,24,25 \right\} \\ \left\{ 21,22,8,12,26 \right\} \\ \left\{ 22,21,24 \right\} \\ $	$\begin{array}{c} 22.\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 9.2\\ 9.2\\ 8.0\\ 8.0\\ 8.8\\ 8.0\\ 8.8\\ 8.8\\ 8.8\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 13.5\\ 7.5\\ 8.8\\ 8.9\\ 9.8\\ 10.6\\ 11.4\\ 8.9\end{array}$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM 64-QAM 64-QAM 64-QAM 16-QAM	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 273,274,275,276\\ 179,180,181,182\\ 190,191,192,193\\ 277,278,279,280\\ 269,270,271,272\\ 273,274,275,276\\ 269,270,275,276\\ 273,274,275,276\\ 285,986\\ 987,298\\ 285,986\\ 285,9$
$\begin{array}{c} [1-25] \\ [7-26] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-11] \\ [8-12] \\ [8-13] \\ [8-13] \\ [8-13] \\ [8-14] \\ [8-16] \\ [8-17] \\ [8-16] \\ [8-17] \\ [8-18] \\ [8-21] \\ [8-20] \\ [8-22] \\ [8-23] \\ [8-24] \\ [8-25] \\ [8-26] \\ [8-27] \\ [8-26] \\ [8-27] \\ [8-28] \\ [8-26] \\ [8-27] \\ [8-28] \\ [8-26] \\ [8-27] \\ [8-28]$	$ \begin{array}{l} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,12,20,11,20,20,20,20,20,20,20,20,20,20,20,20,20,$	$\begin{array}{c} 16.2\\ 7.8\\ 7.9\\ 11.6\\ 10.5\\ 11.2\\ 8.8\\ 14.6\\ 9.4\\ 10.1\\ 14.6\\ 9.5\\ 11.5\\ 8.9\\ 8.4\\ 8.1\\ 11.0\\ 16.2\\ 10.1\\ 11.0\\ 16.2\\ 10.1\\ 10.6\\ 10.5\\ 11.3\\ 9.9\\ 7.4\\ 5.5\\ 5.5\\ 11.3\\ 9.9\\ 7.4\\ 15.5\\ 1$	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 13,14,15\\ 36,37,38,39\\ 16,17,18,19\\ 20,21,22,23\\ 81,82,83,84\\ 24,25,26,27\\ 97,98,99,1000\\ 143,149,151\\ 112,112\\ 13,14,15\\ 36,37,38,39\\ 10,17,18,19\\ 20,21,22,23\\ 21,22,22\\ 21,22,23\\ 21,22,23\\ 21,22,22\\ 21,22,22\\ 21,22,22\\ 21,22,22$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-25 21-26 21-27 22-24 22-24 22-25 22-26 22-27 23-26 23-25 23-26 23-28 23-29 23-29 23-29 23-30	$ \begin{array}{l} & \{20,13,25,24,21\} \\ & \{20,13,25,24,20,3,25,24\} \\ & \{20,13,25,24\} \\ & \{20,13,25,24\} \\ & \{20,13,25,24,21,27\} \\ & \{20,9,23,10,17,29,28\} \\ & \{20,9,23,10,17,29,28\} \\ & \{20,9,23,10,17,29,28\} \\ & \{21,24,25,13,20,9,23\} \\ & \{21,24,25,13,20,9,23\} \\ & \{21,24,25,13,20,9,23\} \\ & \{21,24,25\} \\ & \{21,22,8,12,26\} \\ & \{21,27\} \\ & \{22,21,24,25\} \\ & \{22,21,24,25\} \\ & \{22,21,24,25\} \\ & \{22,21,24,25\} \\ & \{22,21,24,25\} \\ & \{22,21,24,25\} \\ & \{22,21,24,25\} \\ & \{22,8,12,26,11,16,30\} \\ & \{23,9,20,13,25,24\} \\ & \{23,10,17,29,28\} \\ & \{23,10,17,29\} \\ & \{23,10,1,5,30\} \\ \end{array}$	$\begin{array}{c} 22.\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 13.5\\ 7.5\\ 8.8\\ 8.9\\ 9.8\\ 10.6\\ 11.4\\ 8.9\\ 9.8\\ 10.6\\ 11.4\\ 8.9\\ 9.8\\ 10.6\\ 11.4\\ 8.9\\ 9.8\\ 10.6\\ 11.4\\ 8.9\\ 9.8\\ 10.6\\ 11.4\\ 8.9\\ 9.8\\ 10.6\\ 11.4\\ 8.9\\ 10.6\\ 11.4\\ 8.9\\ 10.6\\ 11.4\\ 8.9\\ 10.6\\ 11.4\\ 8.9\\ 10.6\\ 11.4\\ 8.9\\ 10.6\\ 11.4\\ 8.9\\ 10.6\\ 11.4\\ 8.9\\ 10.6\\ 11.4\\ 10.6\\$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM 16-QAM QPSK 16-QAM QPSK 16-QAM QPSK	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 273,274,275,276\\ 179,180,181,182\\ 190,191,192,193\\ 277,278,279,280\\ 269,270,271,272\\ 273,274,275,276\\ 285,286,287,288\\ \end{array}$
$\begin{array}{c} [1-25] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-10] \\ [8-10] \\ [8-11] \\ [8-13] \\ [8-13] \\ [8-13] \\ [8-13] \\ [8-13] \\ [8-14] \\ [8-13] \\ [8-14] \\ [8-16] \\ [8-17] \\ [8-28] \\ [8-20] \\ [8-22] \\ [8-23] \\ [8-24] \\ [8-25] \\ [8-26] \\ [8-27] \\ [8-28] \\ [8-29$	$ \begin{array}{l} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,12,20,11\} \\ \{8,9,23,10\} \\ \{8,9,23,10\} \\ \{8,12,26,11,16\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21,24\} \\ \{8,22,21,24,25\} \\ \{8,22,21\} \\ \{8,22,27\} \\ \{8,9,23,10,17,29,28\} \\ \{8,9,23,10,17,29\} \\ \end{array}$	$\begin{array}{c} 16.2\\ 7.8\\ 7.9\\ 11.6\\ 10.5\\ 11.2\\ 8.8\\ 14.6\\ 9.4\\ 10.1\\ 14.6\\ 9.5\\ 8.9\\ 8.4\\ 8.1\\ 11.1\\ 11.5\\ 8.9\\ 8.4\\ 8.1\\ 11.1\\ 10.6\\ 10.5\\ 11.3\\ 9.9\\ 7.4\\ 7.7\end{array}$	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,35,36\\ 33,34,35,36\\ 13,14,15\\ 116,117,118,119\\ 1120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 9,10,11,12\\ 13,14,15\\ 36,37,38,39\\ 16,17,18,19\\ 20,21,22,23\\ 81,82,83,84\\ 24,25,26,27\\ 97,98,99,100\\ 112,113,114,115\\ \end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-23 21-24 21-25 22-24 21-25 22-25 22-26 22-27 22-30 23-24 23-25 23-26 23-28 23-29 23-30 23-30 23-30 23-30 23-30 23-30 23-30 23-30 23-30 23-30 23-30 23-30 23-30 23-30 23-30 23-30	$ \begin{array}{l} & \{20,13,25,24,21\} \\ & \{20,14,22\} \\ & \{20,0,23\} \\ & \{20,13,25,24\} \\ & \{20,13,25\} \\ & \{20,9,8,12,26\} \\ & \{20,9,23,10,17,29,28\} \\ & \{20,9,23,10,17,29,28\} \\ & \{20,9,23,10,17,29,28\} \\ & \{20,9,23,10,17,29,28\} \\ & \{21,22\} \\ & \{21,22,3,10,17,29,28\} \\ & \{21,24,25\} \\ & \{21,22,8,12,26\} \\ & \{21,27\} \\ & \{22,21,24\} \\ & \{22,21,24,25\} \\ & \{22,21,24\} \\ & \{22,21,24,25\} \\ & \{22,21,24\} \\ & \{22,21,24,25\} \\ & \{22,21,24\} \\ & \{22,21,24,25\} \\ & \{22,21,24,25\} \\ & \{22,21,24,25\} \\ & \{22,21,24,25\} \\ & \{22,21,24,25\} \\ & \{22,31,2,26\} \\ & \{23,9,20,13,25,24\} \\ & \{23,10,17,29,28\} \\ & \{23,10,17,29\} \\ & \{23,10,17,29\} \\ & \{23,10,17,29\} \\ & \{24,25\} \\ \end{array} $	$\begin{array}{c} 22.\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 13.5\\ 7.5\\ 8.8\\ 8.9\\ 9.8\\ 8.9\\ 8.9$	64-QAM 16-QAM 16-QAM QPSK 16-QAM 16-QAM QPSK QPSK QPSK 16-QAM QPSK 16-QAM 64-QAM 64-QAM 16-QAM	$\begin{array}{c} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 273,274,275,276\\ 179,180,181,182\\ 190,191,192,193\\ 277,278,279,280\\ 269,270,271,272\\ 273,274,275,276\\ 285,286,287,288\\ 17,18\\ \end{array}$
$\begin{array}{c} [1-25] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-11] \\ [8-13] \\ [8-13] \\ [8-13] \\ [8-13] \\ [8-14] \\ [8-13] \\ [8-14] \\ [8-14] \\ [8-13] \\ [8-14] \\ [8-13] \\ [8-14] \\ [8-13] \\ [8-24] \\ [8-23] \\ [8-24] \\ [8-25] \\ [8-24] \\ [8-25] \\ [8-26] \\ [8-26] \\ [8-27] \\ [8-28] \\ [8-29] \\ [8-30]$	$ \begin{array}{l} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,12,26,11,29\} \\ \{8,22,124,25,13\} \\ \{8,22,124,25,13\} \\ \{8,22,124,25,13\} \\ \{8,22,124,25,13\} \\ \{8,22,124,25,13\} \\ \{8,22,124,25,13\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,12,26,11,16,30,2,19,18\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24,25\} \\ \{8,9,23,10,17,29,28\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\ \{8,12,26,11,16,30\} \\$	$\begin{array}{c} 16.2\\ 7.8\\ 7.9\\ 11.6\\ 10.5\\ 11.2\\ 8.8\\ 14.6\\ 9.4\\ 10.1\\ 14.6\\ 9.5\\ 11.5\\ 8.9\\ 8.4\\ 8.1\\ 11.1\\ 10.6\\ 10.5\\ 11.3\\ 10.1\\ 10.6\\ 10.5\\ 11.3\\ 9.9\\ 9.3\\ 9.9\\ 7.4\\ 7.7\\ 8.5\\ \end{array}$	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM QPSK	$\begin{array}{r} 3,3,4,30,30\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 16,17,18,19\\ 13,14,15,16\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 9,10,11,12\\ 13,14,15\\ 36,37,38,39\\ 16,17,18,19\\ 20,21,22,23\\ 81,82,83,84\\ 24,25,26,27\\ 97,98,99,100\\ 112,113,114,115\\ 219,220,221,222\end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 21-22 21-23 21-24 21-25 21-26 22-23 22-24 22-25 22-26 22-27 22-28 23-24 23-25 23-26 23-29 23-30 24-25 23-30 24-25	$\begin{array}{r} \{20,13,25,24,21\}\\ \{20,14,22\}\\ \{20,9,23\}\\ \{20,13,25,24\}\\ \{20,13,25,24\}\\ \{20,13,25,24,21,27\}\\ \{20,9,23,10,17,29,28\}\\ \{20,9,23,10,17,29,28\}\\ \{20,9,23,10,17,29,28\}\\ \{20,9,23,10,17,29,28\}\\ \{21,24,25,13,20,9,23\}\\ \{21,24,25,13,20,9,23\}\\ \{21,24,25\}\\ \{21,22,8,12,26\}\\ \{21,22,8,12,26\}\\ \{22,21,24,25\}\\ \{22,8,12,26,11,16,30\}\\ \{22,9,20,13,25,24\}\\ \{23,9,20,13,25,24\}\\ \{23,9,20,13,25,24\}\\ \{23,10,7,12,9,28\}\\ \{23,10,1,7,29,28\}\\ \{23,10,1,5,30\}\\ \{24,21,22,8,12,26\\ \{24,21,22,8,12,26\\ \{24,21,22,8,12,26\\ \{24,21,22,8,12,26\\ \{24,21,22,8,12,26\\ \{24,21,22,8,12,26\\ \{24,21,22,26\\ \{24,21,22,26\\ \{24,21,22$	$\begin{array}{c} 22.\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 22.2\\ 22.2\\ 8.0\\ 8.4\\ 15.3\\ 8.6\\ 23.5\\ 8.8\\ 8.4\\ 15.3\\ 8.6\\ 13.5\\ 8.8\\ 8.1\\ 13.7\\ 9.0\\ 14.6\\ 13.5\\ 8.8\\ 8.9\\ 9.8\\ 8.9\\ 8.9$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM 64-QAM 64-QAM QPSK 16-QAM 16-QAM 16-QAM 16-QAM QPSK 16-QAM QPSK 16-QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK 64-QAM QPSK A QPSK A QPSK A QPSK A QPSK A A A A A A A A A A A A A	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 273,274,275,276\\ 179,180,181,182\\ 190,191,192,193\\ 277,278,279,280\\ 269,270,271,272\\ 273,274,275,276\\ 285,286,287,288\\ 17,18\\ 247,248,249,250\\ \end{array}$
$\begin{array}{c} [-25] \\ [7-26] \\ [7-26] \\ [7-28] \\ [7-29] \\ [7-30] \\ [8-9] \\ [8-10] \\ [8-11] \\ [8-12] \\ [8-11] \\ [8-12] \\ [8-11] \\ [8-11] \\ [8-11] \\ [8-11] \\ [8-12] \\ [8-21] \\ [8-21] \\ [8-22] \\ [8-23] \\ [8-24] \\ [8-25] \\ [8-26] \\ [8-27] \\ [8-28] \\ [8-29] \\ [8-20] \\ [8-20] \\ [8-21] \\ [8-22] \\ [8-23] \\ [8-24] \\ [8-25] \\ [8-26] \\ [8-26] \\ [8-27] \\ [8-28] \\ [8-29] \\ [8-30] \\ [9-10] \\ [9-10] \end{array}$	$ \begin{array}{l} \{7,10,23,9,20,13,25,24\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,23,9,20,13,25\} \\ \{7,10,12,26\} \\ \{7,10,17,29,28\} \\ \{7,10,17,29\} \\ \{7,10,17,29\} \\ \{8,12,26,11,29\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25,13\} \\ \{8,22,21,24,25\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21\} \\ \{8,22,21,24,25\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21,24\} \\ \{8,22,21\} \\ \{8,22,21,24\} \\ \{8,22,21\} \\ \{8,2$	$\begin{array}{c} 16.2\\ 7.8\\ 7.9\\ 11.6\\ 10.5\\ 11.2\\ 8.8\\ 14.6\\ 9.4\\ 10.1\\ 14.6\\ 9.5\\ 11.5\\ 8.8\\ 8.8\\ 11.1\\ 14.6\\ 9.5\\ 11.5\\ 8.9\\ 8.4\\ 8.1\\ 13.8\\ 11.1\\ 10.6\\ 10.5\\ 11.3\\ 9.9\\ 7.4\\ 7.7\\ 7.8\\ 5\\ 13.8\\ \end{array}$	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	$\begin{array}{r} 33,34,36,36\\ 33,34,36,36\\ 13,14,15\\ 116,117,118,119\\ 120,121,122,123\\ 42,43,44,45\\ 24,25,26,27\\ 33,34,35,36\\ 135,136,137,138\\ 1,2,3\\ 1,2,3\\ 1,2,3\\ 1,2,3,4\\ 5,6,7,8\\ 207,208,209,210\\ 48,49,50,51\\ 211,212,213,214\\ 215,216,217,218\\ 9,10,11,12\\ 9,10,11,12\\ 13,14,15\\ 36,37,38,39\\ 16,17,18,19\\ 20,21,22,23\\ 81,82,83,84\\ 24,25,26,27\\ 97,98,99,100\\ 112,113,114,115\\ 219,220,221,222\\ 1,2,3\\ \end{array}$	20-21 20-22 20-23 20-24 20-25 20-26 20-27 20-28 20-29 20-29 20-29 20-29 21-22 21-23 21-24 21-25 22-23 22-24 22-25 22-26 23-24 23-25 23-26 23-28 23-29 23-29 24-25 24-26 24-27 24-26 24-27	$\begin{array}{r} \{20,13,25,24,21\}\\ \{20,13,25,24,20,3,25,24\}\\ \{20,13,25,24\}\\ \{20,13,25,24\}\\ \{20,13,25,24,21,27\}\\ \{20,9,8,12,26\}\\ \{20,9,23,10,17,29,28\}\\ \{20,9,23,10,17,29,28\}\\ \{20,9,23,10,17,29,28\}\\ \{21,24,25,13,20,9,23\}\\ \{21,24,25,13,20,9,23\}\\ \{21,24,25,13,20,9,23\}\\ \{21,24,25,13,20,9,23\}\\ \{21,24,25,12,26,12,26\}\\ \{21,22,21,24,25\}\\ \{22,21,24,25\}\\ \{22,21,24,25\}\\ \{22,21,24,25\}\\ \{22,21,24,25\}\\ \{22,8,12,26\}\\ \{22,21,24,25\}\\ \{22,8,12,26,11,16,30\}\\ \{23,9,20,13,25,24\}\\ \{23,9,20,13,25,24\}\\ \{23,9,20,13,25,24\}\\ \{23,10,17,29,28\}\\ \{23,10,17,29,28\}\\ \{23,10,17,29,28\}\\ \{24,21,22,8,12,26\}\\ \{24,21,22,8,12,26\}\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27,27\\ \{24,21,27\\ \{24,$	$\begin{array}{c} 22.\\ 13.5\\ 14.4\\ 11.4\\ 14.0\\ 14.2\\ 8.2\\ 9.2\\ 9.2\\ 8.0\\ 8.0\\ 8.8\\ 8.0\\ 8.8\\ 8.8\\ 8.8\\ 8.8$	04-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM QPSK 16-QAM 64-QAM QPSK 16-QAM 16-QAM 16-QAM QPSK 16-QAM QPSK	$\begin{array}{r} 17,18\\ 62,63,64\\ 13,14,15\\ 93,94,95,96\\ 14,15,16\\ 17,18,19\\ 269,270,271,272\\ 20,21,22,23\\ 257,258,259,260\\ 261,262,263,264\\ 5,6,7\\ 128,129,130,131\\ 8,9\\ 11,12\\ 239,240,241,242\\ 1,2,3\\ 143,144,145,146\\ 13,14,15\\ 45,46,47\\ 243,244,245,246\\ 1,2,3\\ 273,274,275,276\\ 179,180,181,182\\ 190,191,192,193\\ 277,278,279,280\\ 269,270,271,272\\ 273,274,275,276\\ 285,286,287,288\\ 17,18\\ 247,248,249,250\\ 36,37,38,39\\ \end{array}$

Appendix C Complementary material used in Chapter 4

[9-12]	${9,8,12}$	9.9	QPSK	29,30,31,32	[25-27]	$\{25,24,21,27\}$	11.3	QPSK	40,41,42,43
[9-13]	$\{9,20,13\}$	13.9	16-QAM	1,2,3	[26-27]	$\{26, 12, 8, 22, 27\}$	7.5	QPSK	281,282,283,284
[9-14]	${9,20,14}$	15.1	16-QAM	4,5,6	[26-28]	$\{26, 12, 7, 10, 17, 29, 28\}$	8.0	QPSK	285,286,287,288
[9-15]	$\{9,23,10,17,29,28,15\}$	8.3	QPSK	61,62,63,64	[26-29]	$\{26, 12, 7, 10, 17, 29\}$	8.4	QPSK	289,290,291,292
[9-16]	$\{9,8,12,26,11,16\}$	7.5	QPSK	223,224,225,226	[26-30]	$\{26, 11, 16, 30\}$	13.5	16-QAM	269,270,271
[9-17]	${9,23,10,17}$	10.3	QPSK	124,125,126,127	[28-29]	$\{28, 29\}$	20.2	64-QAM	8,9
[9-18]	$\{9,23,10,1,5,30,2,19,18\}$	7.2	QPSK	219,220,221,222	[28-30]	$\{28, 15, 5, 30\}$	9.8	QPSK	77,78,79,80
[9-19]	$\{9,23,10,1,5,30,2,19\}$	7.4	QPSK	223,224,225,226	[29-30]	$\{29, 28, 15, 5, 30\}$	9.3	QPSK	85,86,87,88

Table C.17. RMSA solution for the CONUS 30 optical network with BER= 4×10^{-2} .

	$ \begin{bmatrix} [1-21], [1-22], [1-24], [1-25], [1-27], [2-13], [2-14], [2-20], [2-21], [2-24], [2-25], [2-27], [3-9], [3-13], \\ [3-14], [3-20], [3-21], [3-22], [3-24], [3-25], [3-27], [4-13], [4-24], [4-25], [4-27], [5-13], [5-21], [5-22], \\ \end{bmatrix} $
	[5-24], [5-25], [5-27], [6-13], [6-14], [6-20], [6-21], [6-24], [6-25], [6-27], [6-28], [6-29], [7-27], [8-15], [6-16], [6-1
Blocked	[10-27], [11-13], [11-27], [13-15], [13-16], [13-18], [13-19], [13-30], [14-16], [14-18], [14-19], [14-30], [
Demands	[15-21], [15-22], [15-24], [15-25], [15-27], [16-20], [16-21], [16-24], [16-25], [16-27], [17-27], [18-20], [
	[18-21], [18-24], [18-25], [18-27], [19-20], [19-21], [19-24], [19-25], [19-27], [20-30], [21-28], [21-29], [
	[21-30], [22-28], [22-29], [23-27], [24-28], [24-29], [24-30], [25-28], [25-29], [25-30], [27-28], [27-29], [
	[27-30]

Table C.18. Blocked demands in the RMSA solution for the CONUS 30 optical network with BER= 4×10^{-2} .

Demand	Path	OSNR	Modulation	Frequency	Demand	Path	OSNR	Modulation	Frequency
d [1-2]	<u>∫15309</u>]	[dB]	Format M OPSK	slots	d [8-27]	<u>∫</u> 8 99 97]		Format M OPSK	slots 24 25 26 27
[1-2]	$\{1,5,30,2,19,18,3\}$	11.0	OPSK	5,6,7,8	[9-10]	{9.23.10}	12.1	OPSK	1.2.3.4
[1-4]	{1,5,30,16,11,4}	9.9	QPSK	9,10,11,12	[9-12]	{9,8,12}	9.9	QPSK	13,14,15,16
[1-5]	{1,5}	19.1	16-QAM	13,14,15	[9-13]	{9,20,13}	12.2	QPSK	1,2,3,4
[1-7]	$\{1,10,7\}$	10.6	QPSK OPSK	1,2,3,4	[9-14]	$\{9,20,14\}$	13.5	QPSK OPSK	9,10,11,12
[1-10]	$\{1,10\}$ $\{1,5,30,16,11\}$	10.5	OPSK	16.17.18.19	[9-17]	{9,20}	10.3	16-OAM	13.14.15
[1-15]	{1,5,15}	11.0	QPSK	20,21,22,23	[9-21]	{9,20,13,25,24,21}	10.3	QPSK	25,26,27,28
[1-16]	$\{1,5,30,16\}$	12.3	QPSK	24,25,26,27	[9-22]	{9,20,14,22}	11.0	QPSK	16,17,18,19
[1-17]	$\{1,10,17\}$	10.0	QPSK OPSK	9,10,11,12	[9-23]	{9,23}	13.4	QPSK OPSK	13,14,15,16
[1-18]	$\{1,5,50,2,19,18\}$ $\{1,5,30,2,19\}$	12.5	OPSK	32.33.34.35	[9-24]	$\{9,20,13,23,24\}$ $\{9,20,13,25\}$	10.7	OPSK	29,30,31,32
[1-23]	{1,10,23}	10.8	QPSK	13,14,15,16	[10-11]	{10,7,12,26,11}	9.5	QPSK	40,41,42,43
[1-26]	$\{1,5,30,16,11,26\}$	9.5	QPSK	36,37,38,39	[10-12]	{10,7,12}	11.8	QPSK	36,37,38,39
[1-28]	{1,5,15,28}	10.3	QPSK	40,41,42,43	[10-14]	$\{10,23,9,20,14\}$	9.7	QPSK	40,41,42,43
[1-29]	$\{1,5,15,28,29\}$ $\{1,5,30\}$	9.7	QPSK OPSK	44,45,46,47	[10-15]	{10,17,29,28,15}	10.7	16-QAM	1,2,3,4
[1-24]	{2,19,18,3}	16.8	16-QAM	1,2,3	[10-20]	{10,23,9,20}	10.5	QPSK	44,45,46,47
[2-4]	$\{2, 30, 16, 11, 4\}$	12.2	QPSK	20,21,22,23	[10-23]	{10,23}	19.5	16-QAM	9,10,11
[2-5]	$\{2,30,5\}$	16.8	16-QAM	13,14,15	[10-26]	$\{10,7,12,26\}$	10.5	QPSK	56,57,58,59
[2-6]	$\{2,30,16,11,4,6\}$	10.6	QPSK OPSK	40,41,42,43	[10-28]	$\{10,17,29,28\}$ $\{10,17,29\}$	11.5 12.5	QPSK OPSK	21,22,23,24
[2-11]	{2,30,16,11,26,12}	10.3	QPSK	48,49,50,51	[11-12]	{11,26,12}	13.4	QPSK QPSK	9,10,11,12
[2-15]	{2,30,5,15}	10.3	QPSK	52,53,54,55	[11-16]	{11,16}	16.8	16-QAM	1,2,3
[2-16]	{2,30,16}	19.6	16-QAM	56,57,58	[11-18]	{11,16,30,2,19,18}	12.4	QPSK	115,116,117,118
[2-18]	{2,19,18}	21.1	16-QAM 64 OAM	9,10,11	[11-19]	$\{11,16,30,2,19\}$	12.8	QPSK 16.0AM	119,120,121,122
[2-15]	$\{2,30,16,11,26\}$	11.6	QPSK	59,60,61,62	[11-20]	{11,20}	13.6	QPSK	4,5,6,7
[2-28]	{2,30,5,15,28}	9.7	QPSK	63,64,65,66	[12-16]	{12,26,11,16}	11.1	QPSK	75,76,77,78
[2-30]	{2,30}	27.7	64-QAM	9,1	[12-17]	{12,7,10,17}	10.1	QPSK	44,45,46,47
[3-4]	$\{3,6,4\}$	10.8	QPSK	1,2,3,4	[12-18]	$\{12,26,11,16,30,2,19,18\}$	9.8	QPSK	123,124,125,126
[3-6]	{3,10,19,2,50,5}	12.1	OPSK	5678	[12-19]	$\{12,20,11,10,30,2,19\}$	10.1	OPSK	39 40 41 42
[3-11]	{3,18,19,2,30,16,11}	11.1	QPSK	71,72,73,74	[12-23]	{12,7,10,23}	10.8	QPSK	48,49,50,51
[3-16]	{3,18,19,2,30,16}	13.3	QPSK	75,76,77,78	[12-26]	{12,26}	18.1	16-QAM	13,14,15
[3-18]	{3,18}	18.8	16-QAM	9,10,11	[12-30]	$\{12,26,11,16,30\}$	10.5	QPSK	103,104,105,106
[3-19]	{3,18,19}	10.0	16-QAM OPSK	12,13,14	[13-14]	{13,20,14}	12.9	QPSK 16-OAM	5,6,7,8 9 10 11
[3-30]	$\{3,18,19,2,30\}$	16.4	16-QAM	16,17,18	[13-20]	{13,25,24,21}	16.5	16-QAM	5,6,7
[4-5]	$\{4,11,16,30,5\}$	10.7	QPSK	83,84,85,86	[13-22]	{13,25,24,21,22}	11.2	QPSK	37,38,39,40
[4-6]	{4,6}	17.4	16-QAM	5,6,7	[13-23]	{13,20,9,23}	9.8	QPSK	48,49,50,51
[4-7]	$\{4,11,20,12,7\}$	9.8	QPSK OPSK	1,2,3,4	[13-24]	{13,25,24}	17.6	16-QAM 16-QAM	8,9,10
[4-11]	{4,11}	20.4	16-QAM	13,14,15	[13-25]	$\{13,25,24,21,27\}$	10.0	QPSK	41,42,43,44
[4-12]	{4,11,26,12}	12.3	QPSK	16,17,18,19	[14-20]	{14,20}	19.0	16-QAM	1,2,3
[4-16]	{4,11,16}	13.5	QPSK	24,25,26,27	[14-21]	{14,20,13,25,24,21}	11.1	QPSK	24,25,26,27
[4-18]	$\{4,11,16,30,2,19,18\}$	11.5	QPSK OPSK	87,88,89,90	[14-22]	$\{14,22\}$	16.3	16-QAM OPSK	1,2,3
[4-15]	{4,11,26}	16.1	16-QAM	28,29,30	[14-24]	{14,20,13,25,24}	11.1	QPSK	56,57,58,59
[4-30]	{4,11,16,30}	12.4	QPSK	31,32,33,34	[14-25]	{14,22,21,24,25}	11.3	QPSK	20,21,22,23
[5-7]	{5,1,10,7}	9.8	QPSK	52,53,54,55	[14-27]	{14,22,27}	9.9	QPSK	9,10,11,12
[5-10]	$\{5,1,10\}$	10.7	QPSK OPSK	56,57,58,59 05.06.07.08	[15-16]	$\{15,5,30,16\}$	9.9	QPSK OPSK	131,132,133,134
[5-11]	{5,15}	12.1	QPSK QPSK	1,2,3,4	[15-17]	{15,5,30,2,19,18}	9.8	QPSK QPSK	135,136,137,138
[5-16]	{5,30,16}	13.9	QPSK	99,100,101,102	[15-19]	{15,5,30,2,19}	10.1	QPSK	139,140,141,142
[5-18]	{5,30,2,19,18}	13.8	QPSK	103,104,105,106	[15-23]	{15,28,29,17,10,23}	9.9	QPSK	52,53,54,55
[5-19]	$\{5,30,2,19\}$	14.4	QPSK OPS ^k	107,108,109,110	[15-28]	{15,28} {15,28,20]	20.0	16-QAM 16-QAM	21,22,23
[5-26]	{5,30,16,11,26}	10.3	QPSK	111,112,113,114	[15-30]	{15,5,30}	10.5	QPSK	56,57,58,59
[5-28]	{5,15,28}	11.2	QPSK	5,6,7,8	[16-18]	{16,30,2,19,18}	17.3	16-QAM	143,144,145
[5-29]	{5,15,28,29}	10.4	QPSK	9,10,11,12	[16-19]	{16,30,2,19}	18.3	16-QAM	146,147,148
[5-30]	$\{5,30\}$	17.2	16-QAM	20,21,22	[1-26]	$\{16,11,26\}$	12.7	QPSK 16.0AM	99,100,101,102
[6-11]	$\{0,4,11\}$ $\{6,4,11,26,12\}$	14.0	OPSK	44.45.46.47	[17-23]	{10,30}	13.1	OPSK	56.57.58.59
[6-16]	{6,4,11,16}	11.5	QPSK	52,53,54,55	[17-28]	{17,29,28}	14.2	QPSK	5,6,7,8
[6-18]	{6,3,18}	11.1	QPSK	19,20,21,22	[17-29]	{17,29}	17.7	16-QAM	9,10,11
[6-19]	$\{6,3,18,19\}$	10.8	QPSK	23,24,25,26	[18-19]	$\{18,19\}$	24.4	64-QAM	19,2
[0-20]	$\{0,4,11,20\}$ $\{6,4,11,16,30\}$	12.0	OPSK	67,68,69,70	[18-30]	$\{10,19,2,30,10,11,20\}$ $\{18,19,2,30\}$	20.2	16-QAM	36,37.38
[7-8]	{7,12,8}	10.1	QPSK	9,10,11,12	[19-26]	{19,2,30,16,11,26}	11.3	QPSK	153,154,155,156
[7-9]	$\{7,10,23,9\}$	10.9	QPSK	5,6,7,8	[19-30]	{19,2,30}	22.7	64-QAM	24,25
[7-10]	{7,10}	18.9	16-QAM	9,10,11	[20-21]	{20,13,25,24,21}	11.8	QPSK	52,53,54,55
[7-12]	$\{i, 12, 20, 11\}$	10.3	QPSK OPSK	20,21,22,23	[20-22]	{20,14,22} {20.9.23}	12.8	QPSK OPSK	28,29,30,31
[7-15]	{7,10,17,29,28,15}	9.8	QPSK	13,14,15,16	[20-24]	{20,13,25,24}	12.3	QPSK	14,15,16,17
[7-17]	{7,10,17}	12.9	QPSK	17,18,19,20	[20-25]	{20,13,25}	12.5	QPSK	60,61,62,63
[7-20]	{7,10,23,9,20}	9.7	QPSK	21,22,23,24	[21-22]	{21,22}	13.6	QPSK	5,6,7,8
[7-23]	$\{7,10,23\}$	16.2	10-QAM OPSV	25,26,27	[21-24]	{21,24}	23.5 22.5	64-QAM	8,9
[7-28]	{7,10,17,29,28}	10.5	QPSK	28,29,30,31	[21-27]	{21,27}	11.9	QPSK	1,2,3,4

Appendix C Complementary material used in Chapter 4 $\,$

[7-29]	{7,10,17,29}	11.2	QPSK	32,33,34,35	[22-24]	{22,21,24}	13.0	QPSK	29,30,31,32
[8-9]	{8,9}	12.9	QPSK	1,2,3,4	[22-25]	{22,21,24,25}	12.7	QPSK	33,34,35,36
[8-11]	$\{8,12,26,11\}$	10.1	QPSK	31,32,33,34	[22-26]	$\{22, 8, 12, 26\}$	9.6	QPSK	$52,\!53,\!54,\!55$
[8-12]	$\{8,12\}$	12.9	QPSK	1,2,3,4	[22-27]	$\{22,27\}$	11.8	QPSK	1,2,3,4
[8-13]	$\{8,22,21,24,25,13\}$	9.5	QPSK	1,2,3,4	[23-26]	$\{23,10,7,12,26\}$	9.8	QPSK	$64,\!65,\!66,\!67$
[8-14]	$\{8,22,14\}$	11.5	QPSK	5,6,7,8	[23-28]	$\{23,10,17,29,28\}$	10.6	QPSK	68,69,70,71
[8-20]	$\{8,9,20\}$	11.1	QPSK	5, 6, 7, 8	[23-29]	$\{23, 10, 17, 29\}$	11.4	QPSK	72,73,74,75
[8-21]	$\{8,22,21\}$	11.0	QPSK	9,10,11,12	[24-25]	$\{24, 25\}$	27.9	64-QAM	18,19
[8-22]	$\{8,22\}$	16.2	16-QAM	13,14,15	[24-27]	$\{24,21,27\}$	11.5	QPSK	$45,\!46,\!47,\!48$
[8-23]	$\{8,9,23\}$	10.1	QPSK	9,10,11,12	[25-27]	$\{25, 24, 21, 27\}$	11.3	QPSK	$60,\!61,\!62,\!63$
[8-24]	$\{8,22,21,24\}$	10.6	QPSK	$16,\!17,\!18,\!19$	[26-30]	$\{26, 11, 16, 30\}$	11.8	QPSK	107,108,109,110
[8-25]	$\{8,22,21,24,25\}$	10.5	QPSK	20,21,22,23	[28-29]	$\{28, 29\}$	20.1	16-QAM	32,33,34
[8-26]	$\{8,12,26\}$	11.3	QPSK	35,36,37,38	[28-30]	$\{28, 15, 5, 30\}$	9.8	QPSK	71,72,73,74

Table C.19. RMSA solution for the CONUS 30 optical network with $BER=10^{-2}$.

	[1-6], [1-8], [1-9], [1-12], [1-13], [1-14], [1-20], [1-21], [1-22], [1-24], [1-25], [1-27], [2-7], [2-8], [2-9], [2-10], [1-12], [1
	[2-13], [2-14], [2-17], [2-20], [2-21], [2-22], [2-23], [2-24], [2-25], [2-27], [2-29], [3-7], [3-8], [3-9], [3-10],
	[3-12], [3-13], [3-14], [3-15], [3-17], [3-20], [3-21], [3-22], [3-23], [3-24], [3-25], [3-27], [3-28], [3-29], [4-9],
	[4-10], [4-13], [4-14], [4-15], [4-17], [4-20], [4-21], [4-22], [4-23], [4-24], [4-25], [4-27], [4-28], [4-29], [5-6],
	[5-8], [5-9], [5-12], [5-13], [5-14], [5-17], [5-20], [5-21], [5-22], [5-24], [5-25], [5-27], [6-7], [6-8], [6-9], [6-10], [
	[6-13], [6-14], [6-15], [6-17], [6-20], [6-21], [6-22], [6-23], [6-24], [6-25], [6-27], [6-28], [6-29], [7-13], [7-14], [7-1
	[7-16], [7-18], [7-19], [7-21], [7-22], [7-24], [7-25], [7-27], [7-30], [8-10], [8-15], [8-16], [8-17], [8-18], [8-19],
	[8-28], [8-29], [8-30], [9-11], [9-15], [9-16], [9-18], [9-19], [9-26], [9-27], [9-28], [9-29], [9-30], [10-13], [10-16],
Blocked	[10-18], [10-19], [10-21], [10-22], [10-24], [10-25], [10-27], [10-30], [11-13], [11-14], [11-15], [11-17], [11-20], [11-17], [11-20], [11-17], [
Demands	11-21 [11-22] [11-23] [11-24] [11-25] [11-27] [11-28] [11-20] [12-13] [12-14] [12-15] [12-20] [12-21]
Demands	[1122], [1122], [1122], [1122], [1122], [1120], [1120], [1120], [1212], [1211], [1212], [1220], [1221], [1212], [121
	[12-24], [12-25], [12-27], [12-28], [12-29], [13-15], [13-16], [13-17], [13-18], [13-19], [13-26], [13-28], [13-29], [13-29], [13-28], [
	[13-30], [14-15], [14-16], [14-17], [14-18], [14-19], [14-26], [14-28], [14-29], [14-30], [15-20], [15-21], [15-22], [15-21], [15-22], [15-21], [15-22], [15-21], [15-22], [15-21], [15-22], [15-21], [15-22], [15-21], [15-22], [15-21], [15-22], [
	15-24 [15-25] [15-26] [15-27] [16-17] [16-20] [16-21] [16-23] [16-23] [16-24] [16-25] [16-27] [16-28]
	[10, 20], [10, 20], [10, 20], [10, 21], [10, 20], [10, 20], [10, 21], [10, 20], [10,
	[10-29], [11-18], [11-19], [11-20], [11-21], [11-22], [11-24], [11-25], [11-20], [11-20], [11-30], [18-20], [18-21], [11-20], [
	[18-22], [18-23], [18-24], [18-25], [18-27], [18-28], [18-29], [19-20], [19-21], [19-22], [19-23], [19-24], [19-25], [19-25], [19-26], [
	[19-27], [19-28], [19-29], [20-26], [20-27], [20-28], [20-29], [20-30], [21-23], [21-26], [21-28], [21-29], [21-30], [
	22-23. [22-28]. [22-29]. [22-30]. [23-24]. [23-25]. [23-27]. [23-30]. [24-26]. [24-28]. [24-29]. [24-30]. [25-26].
	[20-20], [20-20], [20-30], [20-21], [20-20], [20-29], [21-28], [21-29], [21-30], [29-30].

Table C.20. Blocked demands in the RMSA solution for the CONUS 30 optical network with BER= 10^{-2} .

Demand	D.J	OSNR	Modulation	Frequency	Demand	D 1	OSNR	Modulation	Frequency
d	Path	[dB]	Format M	slots	d	Path	[dB]	Format M	slots
[1-2]	{1,5,30,2}	13.2	QPSK	1,2,3,4	[9-20]	{9,20}	15.8	QPSK	9,10,11,12
[1-5]	{1,5}	19.1	16-QAM	5,6,7	[9-23]	{9,23}	13.4	QPSK	5,6,7,8
[1-16]	$\{1,5,30,16\}$	12.3	QPSK	8,9,10,11	[10-17]	{10,17}	14.9	QPSK	8,9,10,11
[1-18]	{1,5,30,2,19,18}	12.3	QPSK	12,13,14,15	[10-23]	{10,23}	19.5	16-QAM	5,6,7
[1-19]	{1,5,30,2,19}	12.7	QPSK	16,17,18,19	[10-29]	{10,17,29}	12.5	QPSK	12,13,14,15
[1-30]	{1.5.30}	13.4	QPSK	20,21,22,23	[11-12]	{11,26,12}	13.4	QPSK	8.9.10.11
[1-24]	{2,19,18,3}	15.1	QPSK	1,2,3,4	[11-16]	{11,16}	15.1	QPSK	1,2,3,4
[2-4]	{2,30,16,11,4}	12.2	QPSK	20,21,22,23	[11-18]	{11,16,30,2,19,18}	12.4	QPSK	52,53,54,55
[2-5]	{2,30,5}	15.2	QPSK	24,25,26,27	[11-19]	{11,16,30,2,19}	12.8	QPSK	56,57,58,59
[2-11]	{2,30,16,11}	13.3	QPSK	28,29,30,31	[11-26]	{11,26}	16.4	QPSK	16,17,18,19
[2-16]	{2,30,16}	19.6	16-QAM	5,6,7	[11-30]	{11,16,30}	13.6	QPSK	12,13,14,15
[2-18]	{2,19,18}	21.1	16-QAM	5,6,7	[12-26]	{12,26}	16.3	QPSK	12,13,14,15
[2-19]	{2,19}	24.1	16-QAM	8,9,10	[13-14]	{13,20,14}	12.9	QPSK	9,10,11,12
[2-30]	{2,30}	27.7	64-QAM	8,9	[13-20]	{13,20}	14.7	QPSK	5,6,7,8
[3-5]	{3,18,19,2,30,5}	13.3	QPSK	32,33,34,35	[13-21]	{13,25,24,21}	14.9	QPSK	1,2,3,4
[3-6]	{3,6}	12.1	QPSK	1,2,3,4	[13-24]	{13,25,24}	16.0	QPSK	5,6,7,8
[3-16]	{3,18,19,2,30,16}	12.4	QPSK	36,37,38,39	[13-25]	{13,25}	16.4	QPSK	9,10,11,12
[3-18]	{3,18}	18.8	16-QAM	5,6,7	[14-20]	{14,20}	19.0	16-QAM	1,2,3
[3-19]	{3,18,19}	15.9	QPSK	8,9,10,11	[14-22]	{14,22}	14.6	QPSK	1,2,3,4
[3-30]	{3,18,19,2,30}	14.7	QPSK	40,41,42,43	[15-17]	{15,28,29,17}	12.8	QPSK	1,2,3,4
[4-6]	{4,6}	15.8	QPSK	1,2,3,4	[15-28]	{15,28}	20.0	16-QAM	5,6,7
[4-11]	{4,11}	20.4	16-QAM	1,2,3	[15-29]	$\{15, 28, 29\}$	15.5	QPSK	8,9,10,11
[4-12]	{4,11,26,12}	12.3	QPSK	4,5,6,7	[16-18]	{16,30,2,19,18}	15.7	QPSK	60,61,62,63
[4-16]	{4,11,16}	13.5	QPSK	8,9,10,11	[16-19]	{16,30,2,19}	16.7	QPSK	64,65,66,67
[4-26]	{4,11,26}	14.4	QPSK	12,13,14,15	[16-26]	{16,11,26}	12.7	QPSK	24,25,26,27
[4-30]	{4,11,16,30}	12.4	QPSK	16,17,18,19	[16-30]	{16,30}	20.4	16-QAM	1,2,3
[5-15]	{5,15}	12.1	QPSK	1,2,3,4	[17-23]	{17,10,23}	13.1	QPSK	16,17,18,19
[5-16]	{5,30,16}	13.9	QPSK	40,41,42,43	[17-28]	{17,29,28}	14.2	QPSK	16,17,18,19
[5-18]	{5,30,2,19,18}	13.8	QPSK	44,45,46,47	[17-29]	{17,29}	16.1	QPSK	5,6,7,8
[5-19]	{5,30,2,19}	14.4	QPSK	48,49,50,51	[18-19]	{18,19}	24.1	16-QAM	16,17,18
[5-30]	{5,30}	15.6	QPSK	28,29,30,31	[18-30]	$\{18, 19, 2, 30\}$	20.2	16-QAM	68,69,70
[6-11]	$\{6,4,11\}$	14.0	QPSK	24,25,26,27	[19-30]	$\{19,2,30\}$	22.4	16-QAM	71,72,73
[6-26]	$\{6,4,11,26\}$	12.0	QPSK	28,29,30,31	[20-22]	{20,14,22}	12.8	QPSK	13,14,15,16
[7-10]	{7,10}	18.9	16-QAM	1,2,3	[20-24]	$\{20, 13, 25, 24\}$	12.3	QPSK	13,14,15,16
[7-12]	{7,12}	13.3	QPSK	1,2,3,4	[20-25]	$\{20,13,25\}$	12.5	QPSK	17,18,19,20
[7-17]	{7,10,17}	12.9	QPSK	4,5,6,7	[21-22]	$\{21, 22\}$	13.6	QPSK	1,2,3,4
[7-23]	$\{7,10,23\}$	14.5	QPSK	8,9,10,11	[21-24]	$\{21, 24\}$	23.1	16-QAM	5,6,7
[8-9]	{8,9}	12.9	QPSK	1,2,3,4	[21-25]	$\{21, 24, 25\}$	21.8	16-QAM	9,10,11
[8-12]	{8,12}	12.9	QPSK	1,2,3,4	[22-24]	$\{22,21,24\}$	13.0	QPSK	12,13,14,15
[8-22]	{8,22}	14.5	QPSK	1,2,3,4	[22-25]	$\{22,21,24,25\}$	12.7	QPSK	17,18,19,20
[9-10]	$\{9,23,10\}$	12.1	QPSK	1,2,3,4	[24-25]	{24,25}	27.9	64-QAM	21,22
[9-13]	$\{9,20,13\}$	12.2	QPSK	1,2,3,4	[28-29]	$\{28, 29\}$	20.1	16-QAM	5,6,7
[9-14]	{9,20,14}	13.5	QPSK	5,6,7,8					

Appendix C Complementary material used in Chapter 4

Table C.21. RMSA solution for the CONUS 30 optical network with BER= 10^{-3} .

Appendix C Complementary material used in Chapter 4

	[1-3], [1-4], [1-0], [1-7], [1-8], [1-9], [1-10], [1-11], [1-12], [1-13], [1-14], [1-15], [1-17], [1-20], [1-21], [1-22], [1-23], [1-24], [1
	[1-25], [1-26], [1-27], [1-28], [1-29], [2-6], [2-7], [2-8], [2-9], [2-10], [2-12], [2-13], [2-14], [2-15], [2-17], [2-20], [2-21], [2-12], [2-12], [2-13], [2-14], [2-15], [2-17], [2-20], [2-21], [2-12], [2-12], [2-12], [2-13], [2-14], [2-15], [2-17], [2-20], [2-21], [2-12], [2-12], [2-12], [2-13], [2-14], [2-15], [2-17], [2-20], [2-21], [2-12], [2-12], [2-13], [2-14], [2-15], [2-17], [2-20], [2-21], [2-12], [2-12], [2-13], [2-14], [2-15], [2-12], [2-12], [2-12], [2-12], [2-13], [2-15], [2-15], [2-12],
	[2-22], [2-23], [2-24], [2-25], [2-26], [2-27], [2-28], [2-29], [3-4], [3-7], [3-8], [3-9], [3-10], [3-11], [3-12], [3-13], [3-14], [3-12], [3-13], [3-14], [3-12], [3-13], [3-14], [3-13], [3-14], [3-13], [3-14],
	[3-15], [3-17], [3-20], [3-21], [3-22], [3-23], [3-24], [3-25], [3-26], [3-27], [3-28], [3-29], [4-5], [4-7], [4-8], [4-9], [4-10],
	4-13], [4-14], [4-15], [4-17], [4-18], [4-19], [4-20], [4-21], [4-22], [4-23], [4-24], [4-25], [4-27], [4-28], [4-29], [5-6], [5-7],
	[5-8], [5-9], [5-10], [5-11], [5-12], [5-13], [5-14], [5-17], [5-20], [5-21], [5-22], [5-23], [5-24], [5-25], [5-26], [5-27], [5-28], [5-27], [5-28]
	[5-29], [6-7], [6-8], [6-9], [6-10], [6-12], [6-13], [6-14], [6-15], [6-16], [6-17], [6-18], [6-19], [6-20], [6-21], [6-22], [6-23],
	[6-24], [6-25], [6-27], [6-28], [6-29], [6-30], [7-8], [7-9], [7-11], [7-13], [7-14], [7-15], [7-16], [7-16], [7-19], [7-20], [7-21],
	7-22, 7-24, 7-25, 7-26, 7-27, 7-28, 7-29, 7-30, 8-10, 8-11, 8-13, 8-14, 8-15, 8-16, 8-17, 8-18,
	$\begin{bmatrix} (z-1), (z-1)$
	[0,10], [0,10], [0,21], [0,22], [0,22], [0,20], [0,20], [0,20], [0,20], [0,20], [0,10], [0,12], [0,10], [0,10], [0,11], [0,12], [0,10], [0,11], [0,12], [0,10], [0,11], [0,12], [0,11], [0,12], [0,1
Blocked	[9-10], [9-21], [9-21], [9-22], [9-24], [9-20], [9-20], [9-20], [9-23], [9-30], [10-11], [10-12], [10-13], [10-14], [1
Demands	10-15], [10-16], [10-18], [10-19], [10-20], [10-21], [10-22], [10-24], [10-25], [10-26], [10-27], [10-28], [10-30], [11-13], [10-16], [1
Domando	[11-14], [11-15], [11-17], [11-20], [11-21], [11-22], [11-23], [11-24], [11-25], [11-27], [11-28], [11-29], [12-13], [12-14], [11-14], [11-14], [11-15], [11-16], [
	[12-15], [12-16], [12-17], [12-18], [12-19], [12-20], [12-21], [12-22], [12-23], [12-24], [12-25], [12-27], [12-28], [12-29], [12-29], [12-10], [
	12-30], [13-15], [13-16], [13-17], [13-18], [13-19], [13-22], [13-23], [13-26], [13-27], [13-28], [13-29], [13-30], [14-15],
	14-16 14-17 14-18 14-19 14-21 14-23 14-24 14-25 14-26 14-27 14-28 14-29 14-30 15-16
	[15 10], [11 1], [11 10], [11 10], [11 21], [11 20], [11 21], [11 20], [11 21], [11 20], [11 20], [11 20], [11 20], [11 00], [11 00], [11 01], [11 10], [11 01], [1
	$[10^{-10}], [10^{-19}], [10^{-20}], [10^{-21}], [10^{-22}], [10^{-20}], [10^{-20}], [10^{-20}], [10^{-21}], [10^{-01}], [10^{-11}], [10^{-20}], [10^{-21}], [10^$
	[16-22], [16-23], [16-24], [16-25], [16-27], [16-28], [16-29], [17-18], [17-19], [17-20], [17-21], [17-22], [17-24], [17-25], [17-26], [
	[17-26], [17-27], [17-30], [18-20], [18-21], [18-22], [18-23], [18-24], [18-25], [18-26], [18-27], [18-28], [18-29], [19-20], [18-28], [18-28], [18-29], [19-20], [18-28], [
	[19-21], [19-22], [19-23], [19-24], [19-25], [19-26], [19-27], [19-28], [19-29], [20-21], [20-23], [20-26], [20-27], [20-28], [
	[20-29], [20-30], [21-23], [21-26], [21-27], [21-28], [21-29], [21-30], [22-23], [22-26], [22-27], [22-28], [22-29], [22-30], [
	23-241 [23-25] [23-26] [23-27] [23-28] [23-29] [23-30] [24-26] [24-27] [24-28] [24-29] [24-29] [25-26] [25-26]
	[25,28] $[25,29]$ $[25,29]$ $[26,29]$ $[26,28]$ $[26,29]$ $[26,28]$ $[27,28]$ $[27,29]$ $[27,29]$ $[27,30]$ $[20,30]$
	[20 20], [20 20], [20 30], [20 21], [20 20], [20 20], [21 20], [21 20], [21 20], [21 30], [20 30], [25 30]

Table C.22. Blocked demands in the RMSA solution for the CONUS 30 optical network with BER= 10^{-3} .

APPENDIX D

Scientific contributions

Impact of Network Physical Topology on Planning Multiband Optical Networks Aware of Physical Layer Impairments

Margarida Vaz[†], Luís Cancela*[†], João Rebola*[†]

*Optical Communications and Photonics Group, Instituto de Telecomunicações, Lisboa, Portugal [†]Department of Science and Information Technology, Iscte-Instituto Universitário de Lisboa, Lisboa, Portugal E-mail: micvz@iscte-iul.pt, luis.cancela@iscte-iul.pt, joao.rebola@iscte-iul.pt.

Abstract—Nowadays, with the increase in traffic demands due to, the growth of cloud-based and 5G applications, emerging solutions are arising to improve optical networks spectrum efficiency and transmission capacity. The promising multiband solution improves the fiber capacity by expanding the optical spectrum beyond the C-band. So, efficient multiband planning tools are paramount to explore network resources efficiently. The planning tool developed in this work solves the routing, modulation format and spectrum assignment (RMSA) in a static network scenario. Using this tool, we discuss the influence of the network physical topology on several parameters, such as, on the number of paths utilized in the most used link or on the number of requency slots assigned, considering four optical networks, different target bit error rates (BERs) and transmission capacities. We conclude that, using lower BERs and higher information bit rates, lead to greater percentage of blocked demands, due to decrease of the maximum reach, which, limits the maximum hops between nodes, specially, in networks with longer links. It is also concluded that for higher request scenarios, networks with more demands require more spectrum capacity, and the flexible grid utilizes the network resources more efficiently than the fixed prid.

network resources more efficiently than the fixed grid. Index Terms—Flexible grid, multiband transmission, optical networks, physical layer impairments, RMSA.

I. INTRODUCTION

The need for more capacity in the optical transport network, due to, for example, the growth of cloud-based and 5G applications demands, nowadays, new solutions [1]. The implementation of spatial division multiplexing (SDM) techniques in optical domain [2] is seen as a long term solution, whereas the exploitation of the unused bands on the widely deployed G.652.D fibers, called multiband solution, is seen as a near term solution [2].

Several authors have already studied the signal transmission on these multiband systems, and it is well known that some physical layer impairments (PLIs) are more pronounced than in C-band only systems. For example, the effect of the stimulated Raman scattering (SRS), that causes a power transfer from higher to lower frequency signals, can be neglected on C-band only systems, but must be considered in multiband systems [1].

The capacity increase given by the multiband solution in comparison with C-band only systems needs to be used in the most efficient way, so that a cost effective solution could be attained. In this way, well designed multiband planning

tools are of paramount importance in optimizing the transport capacity. This optimization is typically performed in a two-step procedure, first the routes for the demands having in mind the PLIs are found and the signal modulation format is chosen, and then the spectrum assignment is performed, i.e., a given number of frequency slots (FSs) is assigned to a particular demand. This two-step procedure is called a routing, modulation format and spectrum assignment (RMSA) problem. Some authors, [2], [3] have already developed, both heuristic and integer linear programming (ILP) tools for solving this RMSA problem.

In this work, a C+L multiband heuristic planning tool is designed for solving RMSA problems. This tool is used in four network topologies (COST 239, NSFNET, UBN and CONUS 30) considering three different request scenarios. The first scenario uses the common 100 Gbps bit rate and a detailed analysis is performed, in particular the percentage of blocked demands, the number of FSs used, as well as parameters like the path with the highest and lowest optical signal-to-noise ratio (OSNR), and the usage of the different types of modulation formats are discussed. Moreover, we discuss the influence of the network physical topology on the various parameters analyzed, like the number of paths that utilize the most used link, an analysis that has not been done in [2] and [3], that consider only a single network topology, the German network in [2] and the British network in [3].

This work is organized in four sections. Section II presents the multiband planning tool used to solve the RMSA problem aware of PLIs. Section III shows the results of the RMSA problem for several network topologies, and discusses them, considering requests for different bit rates (100, 200 and 400 Gbps), in terms, for example, of the number of FSs used and blocked demands percentage. A comparison between the flexible and fixed grid scenarios is also presented. Finally, in section IV, the conclusions of this work are drawn.

II. MULTIBAND NETWORK PLANNING TOOL

In this section, we present and explain our C+L multiband network planning tool aware of the PLIs. We start by highlighting the lightpath OSNR evaluation procedure and then explain the flowchart of the developed multiband network simulator used to solve the RMSA problem.

A. Lightpath OSNR evaluation

The total OSNR in the lightpath p in a C+L multiband scenario can be given by [4],

$$\frac{1}{osnr_{tot,p}} = \sum_{i=1}^{n_{tinks}} \left(\frac{1}{osnr_{NLI,i}} + \frac{1}{osnr_{pos,i}} + \frac{1}{\frac{1}{osnr_{pre,i}}} + \sum_{j=1}^{N_{in,i}} \frac{1}{osnr_{in,i,j}}\right)$$
(1)

where n_{links} is the number of links in path p, $N_{in,i}$, is the number of in-line amplifiers in link i, osnr_k with k=pre,i or pos,i or in,i,j is the OSNR at the output of, respectively, the pre-amplifier, pos-amplifier and in-line amplifiers in link i, and $\operatorname{osnr}_{NLI,i}$ is the OSNR due to the nonlinear interference noise (NLI) in link i. The osnr_k can be given by,

$$osnr_k = \frac{p_m}{2p_{ASE,k}} \quad k = pre, i, \text{ or } pos, i, \text{ or } in, i, j. \tag{2}$$

where $p_{ase,k}$ is the amplified spontaneous emission (ASE) noise introduced by each type of amplifier (pre, in-line or post amplifier) and p_m is optical power of channel *m*. The Erbium-Doped Fiber Amplifiers (EDFAs) used, have a maximum gain (G_{max}) of 25 dB and the noise figure (F_n) depends on the span loss and is estimated with a linear interpolation considering F_n =5 dB with the EDFA maximum gain and 7 dB for the 15 dB gain [4]. Likewise, the osnr_{NLI,i} is given by,

$$osnr_{NLI,i} = \frac{p_m}{p_{NLI,i}} \tag{3}$$

where the $p_{NLI,i}$ is the NLI noise power introduced in link *i*. This NLI noise that includes the SRS effect is calculated with a closed-form formula based on the Gaussian noise (GN) model, that considers the impact of the modulation format, so that p_{NLI} can be given by [5],

$$p_{NLI} = (\eta_{GN} + \eta_{corr}) \cdot p_m^3 \tag{4}$$

where η_{GN} is the GN model contribution and η_{corr} is the modulation format correction.

B. Simulator flowchart

The C+L multiband network simulator was developed in Matlab and has two main steps in order to solve the RMSA problem, first routing and modulation format assignment and, then, spectrum assignment. The simulator inputs are the network physical topology, the traffic matrix, the number of candidate paths, the available bands, the total number of FSs per band, the bit error rate (BER) and the information bit rate.

The first step consists in computing the list of the k-th candidate paths for each demand (or request), as described in the flowchart shown in Fig. 1 a). These paths are computed with the Yen's k-shortest path algorithm [6]. After, the OSNR of each candidate path is calculated considering the ASE noise along the path and the NLI noise. The following simplifications are assumed in the OSNR calculation:

- the NLI noise at the end of a link is calculated considering that all FSs are being used in the C+L band;
- the NLI noise accumulates incoherently [5], which means that the NLI noise is calculated at the end of each link independently of the NLI noises calculated for the other links of a given path;
- 3) the channel launch power is optimized for the longest candidate path in the network [3] for each modulation format and is used in all channels across the network that use that specific modulation format;
- the NLI noise and corresponding OSNR are calculated for the center channel, since there is no knowledge of how the spectrum will be assigned.

Then, it is checked, starting from the highest to the lowest modulation format (64-Quadrature-amplitude modulation (QAM), 16-QAM and Quaternary phase-shift keying (QPSK)), if the required OSNR (ROSNR) is achieved. If none of the modulation formats meets the ROSNR, the corresponding candidate path is not used. Moreover, if no candidate paths for the demand satisfy the ROSNR, that demand is blocked. After calculating the OSNR for all demands and candidate paths and assigning the modulation format, the paths are sorted based on the OSNR in descending order, for each demand.

Fig. 1 a). Flowchart of the Matlab simulator for the routing and modulation format assignment.

In the second step, the path list just built is used by the spectrum assignment algorithm to assign the FSs using the First-Fit (FF) algorithm, as shown in Fig. 1 b). It starts with the candidate path with the highest OSNR, and tries different candidate paths in descending order of OSNRs. Since we are considering a flexible grid scenario, the FSs assigned to each demand must be contiguous, and must be the same in every link of a specific optical path [2]. The number of FSs allocated for each demand depends on the symbol rate, which depends on the modulation format used in the candidate path [2]. Therefore, depending on the modulation format, the FF algorithm tries to assign the corresponding FSs. If those FSs cannot be assigned in the whole C+L band, then another candidate path from the list is chosen. If the FSs are not assigned to any of the candidate paths corresponding to a specific demand, then that demand is blocked, as represented in Fig. 1 b).

Fig. 1 b). Flowchart of the Matlab simulator for the spectrum assignment.

III. RESULTS AND DISCUSSION

In this section, we are going to use the multiband planning tool presented in section II in several network topologies scenarios - COST 239, NSFNET, UBN and CONUS 30 [7] - considering a static traffic matrix and a full mesh logical topology. In particular, we solve the RMSA problem for each one of the network topologies studied considering three BER values $(4 \times 10^{-2}, 1 \times 10^{-2} \text{ and } 1 \times 10^{-3})$ for 100, 200, and 400 Gbps requests. A detailed analysis for the 100 Gbps requests case is given in subsection A, whereas in subsection B the

200 and 400 Gbps scenarios are considered. In subsection C, a comparison between the fixed and flexible grids scenario is performed. Table I presents some physical (number of nodes, number of links, average node degree, average link length) and logical (number of demand requests for full mesh topology) parameters of the network topologies considered.

 TABLE I

 Physical and logical features of the network topologies.

Network	#Demands	#Nodes	#Links	Average node degree	Average link length [km]
COST 239	55	11	26	4.73	463
NSFNET	91	14	21	3	1081
UBN	276	24	43	3.58	996
CONUS 30	435	30	36	2 40	696

As can be observed in Table I, the network with more nodes is the CONUS 30, and therefore, this is the network that has more traffic demands, while the network with the longest links in average is the NSFNET network. The network that presents nodes with an higher degree is the COST 239, which is the smallest size network. Table II presents the ROSNR for the three BER values and for the three modulation formats considered in this study - QPSK, 16-QAM and 64-QAM, as in [2]. Table III shows the system and network parameters considered in this section.

TABLE II						
ROSNR	FOR	THE	DIFFERENT	BERS		

RED	ROSNR [dB]						
DEK	64-QAM	16-QAM	QPSK				
4×10^{-2}	18.9	13.3	7.1				
1×10^{-2}	21.9	16.1	9.5				
1×10^{-3}	24.8	18.6	12				

TABLE III

SYSTEM PARAMETERS USED TO SOLVE THE RMSA PROBLEM.

Parameters	Values
Number of candidate paths k	5
Total number of FSs in the C+L band	862
Frequency slot width	12.5 GHz
Amplifier maximum gain Gmax	25 dB
Fiber attenuation coefficient α	0.25 dB/km
Fiber effective area A _{eff}	80 µm ²
Dispersion $D_{\lambda 0}$	17 ps/nm/km
Dispersion slope S_0	67 fs/nm ² /km
Reference wavelength λ_0	1550 nm
Raman gain slope C_r	0.028 1/W/km/THz
Nonlinear refractive index $\overline{n_2}$	$2.6 \times 10^{-20} \text{ m}^2/\text{W}$
Coherent factor s	0

A. 100 Gbps requests scenario

In this subsection, the 100 Gbps requests scenario is analyzed. Table IV shows the transmitted signal features that depend on the chosen modulation format and the required FSs to transmit 100 Gbps requests including one FS used as a guard-band between channels.

The solution for the RMSA problem considering 100 Gbps requests is given in Table V for the four network topologies

TABLE IV

System parameters used to calculate the OSNR for 100 GBPs.

Parameters	64-QAM	16-QAM	QPSK
Channel Spacing	25 GHz	37.5 GHz	50 GHz
Symbol rate	10.67 Gbaud	16 Gbaud	32 Gbaud
#FSs allocated	2	3	4

and three BER values. In particular, Table V shows the number of blocked demands, the number of allocated FSs, the highest and lowest OSNR values, the path with the longest distance served, the number of unused links and the usage of the different modulation formats in the whole network.

As observed in Table V, the COST 239 network is the only network that successfully serves all demands, i.e. the blocked demands percentage is zero. In this network, as the BER decreases, slightly more FSs are allocated, since lower BERs demand higher ROSNRs (see Table II), resulting on the assignment of lower modulation formats that require more FSs. For the other three networks, the number of FSs allocated decreases for lower BERs, since the number of blocked demands increases, being the QPSK format predominant in the successful demands. In the CONUS 30 and UBN networks, more than half of the demands are blocked for BER=10⁻² or lower. The UBN network has the higher number of blocked demands, with a maximum of demands blocked of 84% for the lowest BER. Also observed in Table V, none of the networks use more than 40% of the multiband spectrum, despite the existence of blocked demands for NSFNET, UBN and CONUS 30 topologies. The reason for blocking the demands is the insufficient OSNR, and not the unavailability of FSs. The maximum spectrum allocated is in the CONUS 30 network with 40.6%, which corresponds to 350 FSs of the 862 available in the C+L multiband. This network is the only one that assigns FSs in the L-band using only 5 FSs in this band.

We have checked that the highest OSNR estimated presented in Table V is always obtained for the same demand in the networks considered, independently of the BER, whereas the lowest OSNR can be reached with different demands. Moreover, the highest OSNR is obtained in all four networks in the direct path that uses the shortest link in the network. On the other hand, the lowest OSNR is obtained in one of the longest paths in the network, that has not been blocked due to not fulfilling the ROSNR. In the three larger networks, the path reach is similar for all BERs, the maximum distance with BER= 4×10^{-2} is around 4000 km, for BER= 10^{-2} is about 2500 km, and around 1500 km for BER=10-3. This maximum reach limits the number of hops in networks with longer links, like in the UBN network where the average link length is 996 km (see Table I). This means that, in this network, for BER= 4×10^{-2} , where the maximum range is 4000 km in average, the source and destination nodes can have at most four links between them for a demand to be served, without resorting to the more expensive regeneration solution [4].

From Table V, it can also be observed that, in general, the number of paths utilized in the most used link is higher for higher BERs, since other paths with lower OSNRs tend to be blocked (i.e. the ROSNR is not achieved) when the BER is lower. The link with the most paths assigned, in general, is also the one with the most FSs allocated. Generally, the number of unused links increases for lower BERs, since the unused links are some of the longest in the network, experience higher OSNR degradation and do not meet the ROSNR. In networks with higher average node degree, like the COST 239 and UBN network, (see Table I) some links are never used, since these links lead to an enhanced performance degradation due to PLIs in the network, but as these nodes are more interconnected the demands can be routed using a different link.

Finally, in Table V, it can be observed that the QPSK format is the most used format, except for the COST 239 network for BER= 4×10^{-2} and 10^{-2} , where the 16-QAM format is the most used modulation format. The only scenario where the QPSK format is not used in the COST 239 network occurs when BER= 4×10^{-2} , which is also the scenario where the 64-QAM modulation format is assigned more times, corresponding to 36.4% of the assigned optical paths. The CONUS 30 network is the only network where the 64-QAM format is assigned when the BER= 10^{-3} . In this case, the two paths with 64-QAM are direct links that do not require in-line amplification.

B. Higher than 100 Gbps requests scenario

In this subsection, the RMSA planning tool is used for studying higher than 100 Gbps requests, in particular, 200 and 400 Gbps requests are considered. In Table VI, the channel spacing, symbol rate and number of FSs allocated are shown, for the three modulation formats.

Fig. 2. Blocked demands percentage for three BERs, 4×10^{-2} , 10^{-2} , and 10^{-3} considering three bit rate request scenarios (100, 200 and 400 Gbps) and four network topologies.

In Fig. 2, the blocked demands percentage for three BER values, considering three bit rate request scenarios (100, 200 and 400 Gbps) and four network topologies (COST 239, NSFNET, UBN and CONUS 30) is represented. As it can be observed in Fig. 2, the percentage of blocked demands

		(ID) 1 1					TT: 1 // //	TT: 1 #170		1110 - 1 ·	"D -1 -:	1170 vl
Network	BER	#Blocked	#PSs	Highest	Lowest	Longest	Higner #paths	Higher #FSs	#Unused	#Paths using	#Paths using	#Paths using
		demands	allocated	OSNR	OSNR	path served	assigned to link	allocated to link	links	64-QAM format	16-QAM format	QPSK format
	410-2	0	62	24.0 dB	14.1 dB	1452 1	18 paths	50 FSs	4	20 paths	35 paths	0 paths
	4×10	(0%)	(7.2%)	(64-QAM)	(16-QAM)	1452 Km	(32.7%)	(5.8%)		(36.4%)	(63.6%)	(0%)
COST 220	1 10-2	0	62	24.0 dB	12.4 dB	1452 1	18 paths	62 FSs	4	10 paths	32 paths	17 paths
0051 259	1 × 10	(0%)	(7.2%)	(64-QAM)	(QPSK)	1452 Km	(32.7%)	(7.2%)	4	(10.9%)	(58.2%)	(30.9%)
	1 10-3	0	70	23.6 dB	14.1 dB		18 paths	68 FSs		0 paths	20 paths	35 paths
	1×10 °	(0%)	(8.1%)	(16-QAM)	(QPSK)	1452 Km	(32.7%)	(7.9%)	4	(0%)	(36.4%)	(63.6%)
	4 10-2	2	114	22.8 dB	7.2 dB	11/21	30 paths	113 FSs		4 paths	28 paths	57 paths
	4×10 -	(2.2%)	(13.2%)	(64-QAM)	(QPSK)	4467 Km	(33.0%)	(13.1%)	-	(4.5 %)	(31.5 %)	(64 %)
NEDNET	110-2	32	71	22.8 dB	9.6 dB	2005 1	18 paths	71 FSs	1	l path	12 paths	46 paths
INSPINET	1×10 -	(35.2%)	(8.2%)	(64-QAM)	(QPSK)	2885 Km	(19.8%)	(8.2%)	1	(1.7 %)	(20.3 %)	(78 %)
	110=3	62	28	22.6 dB	12.3 dB	1545 1	6 paths	15 FSs	(0 paths	4 paths	25 paths
	1×10 °	(68.1%)	(3.2%)	(16-QAM)	(QPSK)	1545 Km	(6.6%)	(1.7%)	0	(0%)	(13.8 %)	(86.2 %)
	4 10-2	66	133	22.6 dB	7.1 dB	4150.1	33 paths	131 FSs	2	2 paths	46 paths	162 paths
	4×10 -	(23.9%)	(15.4%)	(64-QAM)	(QPSK)	4150 km	(12.0%)	(15.2%)	3	(1%)	(21.9 %)	(77.1 %)
UDN	110-2	168	44	22.8 dB	9.5 dB	2200 1	10 paths	39 FSs	2	l path	9 paths	98 paths
UBIN	1×10 -	(60.9%)	(5.1%)	(64-QAM)	(QPSK)	2300 km	(3.6%)	(4.5%)	3	(0.9 %)	(8.3 %)	(90.7 %)
	110-3	232	16	22.5 dB	12.0 dB	1200 1	4 paths	15 FSs	E	0 paths	2 paths	42 paths
	1×10 °	(84.1%)	(1.9%)	(16-QAM)	(QPSK)	1500 km	(1.4%)	(1.7%)	3	(0%)	(4.5 %)	(95.5 %)
	4 10-2	91	350	27.9 dB	7.6 dB		75 paths	289 FSs		19 paths	73 paths	252 paths
	4×10 -	(20.9%)	(40.6%)	(64-QAM)	(QPSK)	4850 km	(17.2%)	(33.5%)	-	(5.5 %)	(21.2 %)	(73.3 %)
00000000000	1 10-2	249	156	27.9 dB	9.5 dB	00051	35 paths	132 FSs		7 paths	35 paths	144 paths
CONUS 30	1×10 ⁻²	(57.2%)	(18.1%)	(64-QAM)	(QPSK)	2835 km	(8.0%)	(15.3%)	-	(3.8 %)	(18.8 %)	(77.4 %)
	110-3	350	73	27.9 dB	12.0 dB	1602 1	19 paths	71 FSs	2	2 paths	17 paths	66 paths
	1 × 10 0	(80.5%)	(8.5%)	(64-QAM)	(QPSK)	1002 km	(4.4%)	(8.23%)	3	(2.4 %)	(20 %)	(77.6 %)

TABLE V RMSA SOLUTION FOR THE COST 239, NSFNET, UBN, AND CONUS 30 TOPOLOGIES CONSIDERING THREE DIFFERENT BERS FOR 100 GBPS REQUEST.

TABLE VI System parameters used to calculate the OSNR for 200 and 400 GBPs requests.

Information bit	Channel Spacing [GHz]					
rate	64-QAM	16-QAM	QPSK			
200 Gbps	37.5	50	87.5			
400 Gbps	62.4	87.5	150			
	Symbol Rate [Gbaud]					
200 Gbps	21.3	32	64			
400 Gbps	42.7	64	128			
	#FSs allocated					
200 Gbps	3	4	7			
400 Gbps	5	7	12			

increases with the increase of the information bit rate and as

the BER lowers. The highest percentage increase (14.3%) of blocked demands is observed in the NSFNET network, when BER= 4×10^{-2} , and we replace the 100 Gbps requests by 200 Gbps requests. This can be explained, since the maximum reach is around 3000 km for the 200 Gbps requests (1000 km less than with 100 Gbps requests), limiting the distance between nodes so paths with longer distances are blocked. From the four topologies analyzed, the UBN network has the highest percentage of blocked demands - 92% for BER= 10^{-3} and 400 Gbps requests- since the maximum reach served in this network is 959 km, which is shorter than the average

link (996 km, see Table I). This is also the scenario where the COST 239 network exhibits a non zero blocked demand percentage - 9.1% of blocked demands -, due to shorter path reach. In Fig. 3, the allocated FSs percentage for three BER values, considering three bit rate request scenarios (100, 200 and 400 Ghns) and four network topologies (COST 239, NSENET

considering three bit rate request scenarios (100, 200 and 400 Gbps) and four network topologies (COST 239, NSFNET, UBN and CONUS 30) is represented. From Fig. 3, it can be observed that the higher the information bit rate, more percentage of FSs is allocated, as the BER increases, even though

Fig. 3. Allocated FSs percentage for three BERs, 4×10^{-2} , 10^{-2} , and 10^{-3} considering three bit rate request scenarios (100, 200 and 400 Gbps) and four network topologies.

more demands are blocked than in the 100 Gbps requests (see Fig. 2), since these information bit rates, need higher symbol rates, resulting in more allocated FSs. Only for the COST 239 network, the percentage of FSs allocated increases from BER= 4×10^{-2} to BER= 10^{-3} and then decreases from BER= 10^{-2} to BER= 10^{-3} , since, for this last scenario, the percentage of demands served is no longer 100%, as observed in Fig. 2. Likewise in 100 Gbps scenario request, the CONUS 30 topology continues to be the only topology that assigns spectrum in the L-band. For BER= 4×10^{-2} and 400 Gbps requests, 85% of the available multiband spectrum is assigned, which corresponds to 735 FSs of the 862 available.

C. Comparison between the fixed and flexible grid scenarios

In this subsection, the spectrum allocation in the flexible and fixed grids scenarios, for BER= 4×10^{-2} , is compared considering the three information bit rates used previously (100, 200 and 400 Gbps). Table VII shows some transmitted signal features that depend on the modulation format.

TABLE VII SYSTEM PARAMETERS USED TO CALCULATE THE OSNR WITH FIXED GRID FOR 100, 200 AND 400 GBPS REQUESTS.

Information bit	Channel Spacing [GHz]						
rate	64-QAM	16-QAM	QPSK				
100 Gbps	50	50	50				
200 Gbps	50	50	100				
400 Gbps	100	100	200				
	#FSs allocated						
100 Gbps	4	4	4				
200 Gbps	4	4	8				
400 Gbps	8	8	16				

Fig. 4. Allocated FSs percentage in the fixed and flexible grids when $BER=4\times10^{-2}$ for three information bit rates, 100 Gbps, 200 Gbps, and 400 Gbps

In Fig. 4, the percentage of FSs allocated as a function of the information bit rate, for the four network topologies considering the fixed and flexible grid scenarios is shown. As observed in Fig. 4, in general, the percentage of allocated FSs grows with the increase of the information bit rate. Also, from Fig. 4 it can be observed that in the fixed grid scenario the percentage of allocated FSs is higher than in the flexible grid scenario. This can be explained since with the fixed grid the estimated OSNR is higher, due to a larger channel spacing and, consequently, less interfering from other channels. This results in less blocked demands due to the paths not satisfying the ROSNR and also because more FSs are require to transmit requests with this grid. However, in the COST 239 network case less FSs are allocated with the fixed grid than with the flexible grid for the 400 Gbps request scenario, since higher modulation formats, that require less FSs, are assigned in fixed grid, due to higher estimated OSNR.

We have also checked that in the fixed grid scenario NSFNET, UBN and CONUS 30 topologies fill all the Cband spectrum and also assign spectrum in the L-band for the 400 Gbps requests case. In particular, for 400 Gbps requests, in the CONUS 30 topology only 6 FSs are not allocated,

which corresponds to a FSs allocated percentage of 99.3%, nevertheless there are 32 blocked demands due to spectrum unavailability

IV. CONCLUSIONS

In this work, we studied the influence of the network physical topology on the planning of multiband C+L optical networks. For that, we have developed a RMSA tool to explore several network parameters: number of blocked demands, FSs allocated and unused links, dominant modulation format and longest paths served, as a function of the network considered. The RMSA tool has been applied to four optical networks, considering different target BERs and bit rates

For 100 Gbps transmission, with full mesh logical topologies networks with more nodes and longer links, as the BER decreases, the number of blocked demands grows, and, consequently, less FSs are allocated and lower order modulation formats are predominant. The COST 239 network, which has shorter links in average and less nodes, serves all demands for the BERs considered, and the QPSK format reaches a spectral occupation of 63.6% of the available FSs, for the BER=4×10⁻²

For higher bit rates, that require more FSs to transmit the signal, we have also shown that the number of blocked demands increases, reaching a maximum of 14.3%, for networks with longer links due to lower maximum reach for higher request scenarios.

The flexible grid, for networks with more demands, allocate the network resources more efficiently than the fixed grid. With this grid, for 400 Gbps request, 7.4% of the demands in the CONUS 30 network are blocked, due to spectrum unavailability.

ACKNOWLEDGMENT

This work was supported under the project of Instituto de Telecomunicações UIDB/50008/2020.

REFERENCES

- R. Sadeghi, B. Correia, A. Souza, N. Costa, J. Pedro, A. Napoli, and V. Curri, "Transparent vs translucent multi-band optical networking: Capacity and energy analyses," *Journal of Lightwave Technology*, vol. 40, no. 11, pp. 3486–3498, 2022.
 M. Mehrabi, H. Beyranvand, and M. Emadi, "Multi-band elastic optical
- networks: Inter-channel stimulated Raman scattering-aware routing, mod-
- networks: Inter-channel stimulated Raman scattering-aware routing, modulation level and spectrum assignment," *Journal of Lightwave Technology*, vol. 39, pp. 3360–3370, 2021.
 D. Uzunidis, E. Kosmatos, C. Matrakidis, A. Stavdas, and A. Lord, "Strategies for upgrading an operator's backbone network beyond the e-band: Towards multi-band optical networks," *IEEE Photonics Journal*, Journal, 2020. [3] vol. 13, no. 2, pp. 1–18, 2021. J. Pedro, "Designing transparent flexible-grid optical networks for max-
- imum spectral efficiency," *Journal of Optical Communications and Networking*, vol. 9, pp. C35–C44, 2017.
 [5] D. Semrau, E. Sillekens, R. I. Killey, and P. Bayvel, "A modulation format
- correction formula for the gaussian noise model in the presence of inter-channel stimulated raman scattering," *Journal of Lightwave Technology*, vol. 37, no. 19, pp. 5122–5131, 2019.
- E. Amir, "K-shortest paths in a graph represented by a sparse matrix (Yen's algorithm)." https://www.mathworks.com/matlabcentral/fileexcha [6] neg/35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matri x-yen-s-algorithm, 2012. J. Simmons, *Optical Network Design and Planning*. Optical Networks,
- [7] Springer International Publishing, 2nd ed., 2014.