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A Survey of theRouting and Wavelength Assignment ProblemM. GamstAbstractIn an all-optical network, optical �bers are used to transmit data. An optical �bercarries light along its length at high rates and with little loss. Several wavelengths on asingle �ber can be used to transfer data, when using wavelength-division multiplexing. Inthis way, several data transmissions at very high speed can take place on a single �ber.When transmitting data in an all-optical network, data connections must be estab-lished in such a way, that two or more connections never share a wavelength on the same�ber. The routing and wavelength assignment (RWA) problem consists of �nding a pathand a wavelength for a set of data connections. The objective is typically to maximizethe pro�t of established data connections or to minimize the cost of establishing all dataconnections. The RWA is NP-hard, thus much research has been conducted to �nding agood way of approaching the RWA.This paper introduces the RWA and lists a number of restrictions from the literatureon the RWA and on the underlying network topology. An overview of heuristic, meta-heuristic and exact solution methods is given. Running times for the heuristic methodsare presented and computational results from the literature are discussed.1 IntroductionThe use of optical �bers in telecommunication infrastructure is ever increasing. An optical�ber carries light along its length at very high rates and with little loss. When data is sentvia an optical �ber, it is transmitted on a certain wavelength of light. A �ber can carryseveral independent transmissions, each by a di�erent wavelength. The wavelength-divisionmultiplexing (WDM) technology allows multiple optical carrier signals on a single optical�ber. WDM works on a circuit switched network, i.e., in a network where the connectionbetween nodes and terminals is established before use, and where the wavelength is not sharedwith other tra�c. For a technical overview of optical �bers, see Halsall [29], and for moreinformation on the WDM, see Thiele and Nebeling [38] or the thesis of Jue [39].The problem of �nding a good way of establishing data connections and of assigningwavelengths to the di�erent connections, is denoted the routing and wavelength assignment(RWA) problem. Two or more data connections are not allowed to share the same wavelengthon the same edge. Constraints can be set on whether or not wavelengths can be converted.If wavelength conversion is possible, then further constraints can be set on where conversionmay take place, and on the range of wavelengths, into which a wavelength can be converted.The RWA problem can be considered as a static problem, where wavelengths of every futureconnection are reserved all at once. Another viewpoint is the dynamic version of RWA, wherea wavelength is not reserved before it is needed, and where the wavelength is released when1



the corresponding data connection is no longer needed. The objective is typically to maximizethe number of established connections or to minimize the number of used wavelengths.The static RWA is applicable when customers have several data connection requests, andwhen the data connections are to be established permanently. The static RWA does notnecessarily try to leave room for future connections, so it is mainly applicable when thecurrent amount of data connection requests are also the only data connection requests.The RWA is NP-hard, thus several solution approaches are presented in the literature.A common approach is to decompose the RWA into two subproblems: the routing problem,and the wavelength assignment problem. The complexity of the routing problem depends onthe chosen objective, while the wavelength assignment problem always is NP-hard. Anotherapproach is to solve the RWA problem as one problem. Methods for this include metaheuris-tics, and integer linear programming formulations. An overview of the proposed methods ispresented in Table 1. The table shows what problem, each method works on, the complexityof each method, and �nally gives references to the literature. Theoretical running times areonly given for the constructive heuristics.Some surveys on the RWA problem exist in the literature: Zang et al. [71] present asurvey containing few routing approaches and many heuristics for the wavelength assignmentproblem. The latter are compared experimentally. Choi et al. [17] present a classi�cation ofexisting methods for the RWA, where approaches are argued to be either search methods orselection methods. Furthermore, Choi et al. compare the performance of methods, but apartfrom a few theoretical running times, it is not clear what the comparisons are based on.The contribution of this survey is the presentation of a much larger variety of solutionmethods than included in the surveys of Zang et al. and Choi et al. The presented methodsinclude recently presented approaches from the literature. This paper does not only considerthe decomposed RWA, but also presents metaheuristics and exact formulations of the overallRWA. Furthermore, experiments from the literature is gathered and discussed. No generalbenchmark instances are used in the literature, and the objective of solution methods di�ers.For these reasons, it is not trivial to decide which methods perform better, thus this surveyalso presents theoretical running times, and uses these along with test results in a performanceanalysis of the proposed solution methods. Finally, we give recommendations on future workin the RWA research area.This survey is structured as follows. First, in Section 2, the RWA problem, and variantshereof are de�ned. The network topology is presented, i.e., constraints on whether or notwavelength conversion is allowed, etc. In Section 3, methods for solving the RWA problemheuristically are presented. These methods are all based on the decomposition of RWA into thetwo subproblems: the routing problem and the wavelength assignment problem. The sectionincludes an overview of experimental results from the literature along with theoretical runningtimes for the constructive heuristics. In Section 4 methods for the overall RWA is presented.These methods include metaheuristics, and integer linear programming formulations. Thesection contains experimental results from the literature. Concluding remarks are given inSection 5. This section includes conclusions on the performance analysis of the presentedsolution methods, and our recommendations on further work on the RWA.
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Approach Problem Sta./Dyn. Complexity Ref.Fixed Routing Routing Both O(E + V log V ) [13, 17]Fixed-Alternate Routing Routing Both O(E + V log V + k) [6, 13, 23]Adaptive Routing Routing Dyn. O(E + V log V ) [71]Least Congested Path Routing Routing Both O(E(E + V log V )) [14, 52]Shortest Path Adaptive Routing Routing Both O(E(E + V log V )) [52]Routing with Reduction ofWavelength Continuity Conflicts Routing Both Polynomial [43, 42]Ant Colony Routing Routing Sta. Metaheuristic [69]Genetic Algorithm Routing Sta. Metaheuristic [6]Linear Programming Routing Sta. NP-hard [71]Graph Coloring WA Both NP-hard [71]Random Assignment WA Both O(WE) [67]First Fit Assignment WA Both O(WE) [47]Least Used Assignment WA Both O(W log W + WE) [54, 71]Most Used Assignment WA Both O(W log W + WE) [54, 71]Exhaustive Search Assignment WA Both O(WE) [54]Minimum Product Assignment WA Both O(WE) [37]Least Loaded Assignment WA Both O(WE) [40, 71]Maximum Sum Assignment WA Both O(kWE) [11, 67]Relative Capacity Loss Assignment WA Both O(kWE) [72]Distributed RelativeCapacity Loss Heuristic WA Both O(kWE) [71]Wavelength Reservation Assignment WA Dyn. O(1) [13]Protecting Threshold Assignment WA Dyn. O(1) [13]Genetic Algorithm WA Sta. Metaheuristic [30]Simulated Annealing WA Sta. Metaheuristic [30]Tabu Search WA Sta. Metaheuristic [30]Bin Packing Heuristic WA Sta. Metaheuristic [65]Ant Colony Optimization RWA Sta. Metaheuristic [4]Genetic Algorithm RWA Sta. Metaheuristic [3, 64]Linear Programming RWA Sta. NP-hard [63]Linear Programming RWA Sta. NP-hard [71]Linear Programming RWA Sta. NP-hard [56]Linear Programming RWA Sta. NP-hard [34]Integer Multicommodity Flow Problem RWA Sta. NP-hard [12]Integer Programming RWA Sta. NP-hard [51]Integer Programming RWA Sta. NP-hard [35]Table 1: An overview of all the methods, which are presented in this survey. The �rstcolumn contains the name of the methods. Then follows problem types: the routing problem,the wavelength assignment problem (WA), or the RWA problem. The third column denoteswhether or not, the method works on the static problem (Sta.) or the dynamic problem(Dyn.). The next column contains complexity: theoretic running times are only given for theheuristics. Finally, the right most column gives references to the literature for each method.
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2 Problem De�nitionIn this section, details on the RWA and on the all-optical network are presented. First, wediscuss common assumptions on the network in which to establish data connections. Next,the two main variants of the RWA, the static and the dynamic RWA, are further introduced.2.1 Network TopologyThe optical network is considered in an abstract manner. Technical details are omitted, insteadwe consider a network consisting of nodes and edges. Edges represent �ber links. An edgecan hold several �bers, each potentially holding several wavelengths. Single-�ber is when eachedge consists of only one �ber and multi-�ber is when each edge consists of several �bers. Inthis paper, we work on single-�ber networks unless else is mentioned. A node corresponds toany active equipment with an ingoing and/or outgoing edge. This could be a switch, a hub,an ampli�er etc. A data connection request consists of a source and a target. A path withan assigned wavelength is to be found between the source and the target nodes. In the RWA,paths of di�erent data connections are to be generated such that no two paths share the sameedge and the same wavelength. That is, two paths using the same wavelength, must be edgedisjoint. An example of the network representation is seen in Figure 1.Figure 1: An example of a network representation of an optical network. Two data connectionsare routed through the network using the same wavelength. Thus, the two paths are edgedisjoint.When working on the RWA, some assumptions on wavelength conversion are made. A dataconnection may change wavelength when wavelength converters are available at intermediatenodes of the data connection path. In the literature, RWA works on di�erent networks:
• There are no wavelength converters. In this case, a wavelength continuity constraint isimposed, see Zang et al. [71].
• Only a subset of nodes includes wavelength converters. This is denoted sparse wavelengthconversion, see Iness and Mukherjee [32].
• All nodes include wavelength converters. The network is said to be wavelength convert-ible, see Ramamurthy and Mukherjee [62].In the network representation, a switch with a wavelength converter attached is simply con-sidered as one node. Comparisons of the di�erent types of networks have been performed byBarry and Humblet [10], among others.Furthermore, constraints on the usage of wavelength converters may be imposed. Theseconstraints include sharing of converters, and limiting the range of possible conversions. Shar-ing converters may be bene�cial. If converters are not shared, then the number of converters ata node increases. Lee and Li [50] have shown that when the number of wavelength convertersat a node exceeds some threshold, then the performance of the network decreases.Some converters only support changes of wavelengths within a certain range. E.g., thewavelength λi can be converted to wavelengths in the range λ(i−k), . . . , λi, . . . , λ(i+k), where k4



is the range limitation factor. For more information on the limited-range wavelength convert-ers, see the work of Iness and Mukherjee [32] or of Yates et al. [70].When wavelength converters are only placed on certain nodes, much research has beenconducted on network design, i.e., where to place the converters. Dutta and Rouskas [22]present a survey and a number of heuristics for the problem of designing the network. Kosterand Zymolka [44, 45, 46] give lower bounds and then solve the problem of minimizing thenumber of required wavelength converters to optimality. A thorough analysis on the overalldesign of a WDM network is performed by Jue [39], and an analysis on how to place thecomponents of an optical network is done by Iness [31].2.2 Variants of the RWAIn the following, we consider both the static and the dynamic RWA. Recall that in the staticRWA, all data connection requests are known in advance, they are to be established at thesame time, and they are assumed to exist forever. An instance may hold more data connectionrequests than can be established; if a connection cannot be established, it is said to be blocked.Hence, the objective of the static RWA is typically to maximize either the number of estab-lished data connections or the pro�t of established data connections. The static RWA is provedto be NP-hard by Chlamtac et al. [16]. The problem may be formulated mathematically as amixed integer problem, see Ranaswami and Sivarajan [63].In the dynamic RWA, data connection requests arrive with time; they are to be establishedat arrival time, and they are to be shut down at a given time. This means that wavelengthscan be reused; when a data connection is shut down, its wavelength is released. As for thestatic case, blocking may occur. The objective of the dynamic RWA is typically to maximizethe number of established data connections. Because no knowledge exists on future data con-nection requests, solutions to the dynamic RWA are local optimums.The far majority of methods for solving the RWA apply to both the static and the dynamicRWA. In the following sections, solution methods from the literature are presented.3 Decomposition of the RWABoth the dynamic and the static RWA are di�cult to solve. A reason for this is that theproblems consist of two parts: routing data connections and assigning wavelength to dataconnections.Both the static and the dynamic RWA are often solved by splitting the problem into twosubproblems: the routing problem and the wavelength assignment problem, see e.g. Artetaet al. [4], Zang et al. [71] and Zheng and Mouftah [73]. First, routes for all connections arefound. Next, wavelengths are assigned. The division of the problem makes it easier to solve,but solving the subproblems instead of the whole problem does not guarantee an optimalsolution. Instead, dividing the RWA into two parts is a heuristic method.Much research has been put into decomposing the RWA into these two parts. In thissection, we present some of the routing algorithms and methods for wavelengths assignmentfrom the literature. 5



3.1 RoutingThe routing problem consists of �nding a path between the source and the target of each dataconnection. The complexity of the routing problem depends on the objective. If we simplywish to connect a set of node pairs, then the problem can be solved polynomially using ashortest path algorithm. If the objective is to minimize the maximal number of paths on anedge, then the problem is NP-hard, see e.g. Zang et al. [71].Fixed RoutingThe routing problem can be solved in polynomial time as an all pairs shortest path problem,see Ahuja et al. [2] for more information. This method is denoted Fixed Routing. Thede�nition of shortest path varies; the length of a path may be measured in the number of usededges, or in the number of available bandwidths etc., see Birman and Kershenbaum [13] andChoi et al. [17]. In Fixed Routing, exactly one path is found per data connection.Fixed-Alternate RoutingAnother routing method is to �nd several paths between the pair of terminals for all data con-nections. If the paths for a data connection are edge disjoint, then the approach can be con-sidered somewhat fault tolerant, i.e., if a connection fail on one path, then the correspondingdata connection can be routed on the other path. This method is denoted Fixed-AlternateRouting, see e.g. Birman and Kershenbaum [13]. When the number of shortest paths foreach data connection is limited to k, k > 0, then the Fixed-Alternate Routing may be re-ferred to as the k-shortest path method, see Banerjee et al. [6] or for a general k-shortestpath algorithm, see Eppstein [23]. As there are more paths to choose from, the risk of beingunable to assign wavelengths to certain data connection is generally lowered. The wavelengthassignment may, though, become harder to solve because of the potential many combinationsof paths to choose from.Adaptive RoutingAdaptive Routing is yet another routing method. It consists of �nding paths with respect topreviously chosen paths. Given is a network with an edge for each pair of �ber and wavelengthin the network. An edge has weight 1 when unused, and ∞ when used. The path of a dataconnection request is found as the shortest path with respect to edge weights. The weightsof edges used by this path are set to ∞, and the next data connection request can now beconsidered. If some nodes have wavelength converters, then an appropriate cost for convertingwavelengths can be introduced. See Zang et al. for more details [71].Least Congested Path RoutingAnother Adaptive Routing method is the Least Congested Path Routing, see Chan andYum [14]. A sequence of paths is preselected, and once a data connection request arrives, theLeast Congested Path Routing is chosen. Least congestion is measured on the number ofavailable wavelengths on each edge; the congestion of a path is determined by the used edgewith fewest available bandwidths. 6



Shortest Path Adaptive RoutingYet another method is to use the Shortest Path Adaptive Routing, which is an extensionof the methods described above. If several paths with same cost exist, then the least congestedof those paths is chosen. To determine the least congested path, all edges on all paths for adata connection must be investigated. This can be time consuming, thus Li and Somani [52]have suggested to only check the �rst k edges.Routing with Reduction of Wavelength Continuity Con�ictsRecall, that when a node does not have a wavelength converter attached, then we say, thata path must have wavelength continuity in this node, i.e., a path cannot change wavelength.When several paths compete for the same wavelength on an edge and the start node of thatedge does not have a wavelength converter, then we have a wavelength continuity con�ict.When �nding paths for data connection requests, we obviously wish to reduce the numberof wavelength continuity con�icts. For this, Koster and Sche�el [43] present a mathematicalformulation for �nding a lower bound on the number of connections which cannot be routedwithout wavelength conversion. The bound is based on the number of incident �bers and thenumber of wavelength per �ber as shown by Koster in [42]. The mathematical formulation isa variant of the linear Multicommodity Flow Problem (MCFP), which is polynomial solvable.Koster and Sche�el solve the formulation using column generation. If the routing problem issolvable, then Koster and Sche�el show that it is possible to assign a wavelength to all selectedpaths.Ant Colony RoutingThe Ant Colony Routing approach is a metaheuristic. Ants are capable of �nding shortestpaths when working together: assume that two ants have encountered some food, and thattwo di�erent paths back to the nest exist. Each ant takes its own path; on its way it layspheromone for signaling. The path of the �rst ant to arrive at the nest is the shorter of thetwo paths, and it is the only path with pheromone all the way to the nest at this moment.Once the �rst ant has returned to the nest, a number of ants are sent out towards the food,all leaving pheromone on their way. The strength of the pheromone determines which paththe ants choose. Thus all ants will eventually choose the (shortest) path, used by the �rstarriving ant. The behaviour of ants has inspired the Ant Colony Optimization (ACO). Whenestablishing several paths, a colony of ants is assigned to each path. Ants are only attractedto the pheromone from their own colony. Varela and Sinclair [69] have proposed several ACOs,where ants not only are attracted to pheromone of their own colony; they are also repelled bythe pheromone of other colonies.Genetic Algorithm for RoutingBanerjee et al. [6] use a Genetic Algorithm (GA) for solving the routing problem of RWA.The GA is a metaheuristic. Banerjee et al. seek to minimize the number of used wavelengthsand the average delay on a network satisfying the wavelength continuity constraint. In GA anumber of chromosomes are given; each chromosome consists of a number of genes.The Genetic Algorithm of Banerjee et al. works as follows: k-shortest path is used asrouting heuristic. Each gene in a chromosome represents a path. The cost of each chromosome7



equals the total cost of the used edges. The cost of an edge depends on the number of pathsin the chromosome using that edge. If the edge is only used once, then the cost is relativelylow. If the edge is used by several (di�erent) data connection requests, then the cost is verylarge. Banerjee et al. seek to minimize the cost of selected chromosomes. They thus seek tolimit blocking occurring from several paths using the same edge.Linear programmingThe routing problem is formulated mathematically by Zang et al. [71]. The objective isto minimize the maximal number of paths on an edge. Zang et al. argue that this is anInteger Multicommodity Flow Problem (IMCFP), where a data connection is represented bya commodity with one amount of �ow. The IMCFP isNP-hard, see e.g. Barnhart et al. [9], thusZang et al. suggest reducing the search space by only considering a subset of possible paths.Furthermore, they suggest using random rounding when solving an LP-relaxed formulation.3.1.1 Performance of routing methodsSo far the performance of the presented methods has not been discussed. In the literature, thetest instances and the objective function vary. An often used objective is blocking probability,which gives the probability of a data connection request to be blocked, because there is noavailable wavelength on its path. In this section, we attempt to give an overview of probleminstances and results. Despite the di�erence of used test instances and of objectives, we seekto provide an insight into the overall performance of the proposed methods.Birman and Kershenbaum [13] compare Fixed Routing and Fixed-Alternate Routingon a single-hop mesh network with 6 nodes, 9 edges, a data connection request for each pairof nodes, and 24 wavelengths per edge. The objective is blocking probability, and their resultsshow, that Fixed-Alternate Routing performs better than Fixed Routing. No runningtimes are reported.Chan and Yum [14] test the Least Congested Path Routing heuristic on a fully-connectednetwork with seven nodes, and with thirty wavelengths per edge. The computational evalu-ation is based on changing parameters in the algorithm and in the network. The objectiveis blocking probability, and they test the e�ect of having di�erent network topologies anddi�erent settings for wavelength converters rather than comparing with an existing routingheuristic. Running times are not mentioned.Furthermore, Li and Somani [52] have compared the Least Congested Path Routingheuristic with the shortest path algorithm on a 4 × 4 mesh-torus network and on the NFSnetwork with 14 nodes and 21 edges. Their objective is blocking probability, and the leastcongest path routing heuristic has best performance. Running times are not reported.Koster and Sche�el [43] test the Routing with Reduction of Wavelength ContinuityConflicts on a German, European and US network, where the number of eligible pathsbetween two nodes is limited to 100. The number of wavelengths per �ber is set to 40 and 80in di�erent test runs. In their test, they incorporate the routing scheme in a mathematicalformulation for the RWA. They solve the formulation by using CPLEX, version 9.1 and comparedi�erent settings of the algorithm instead of comparing with other heuristics. A �xed timelimit is set to 10000 seconds; apart from that, time usage is not mentioned.Varela and Sinclair [69] test their variants of the Ant Colony Routing approach on threenetworks. The �rst has 4 nodes and 20 wavelengths. The second has 9 nodes and 98 wave-8



lengths. The last network has 15 nodes and 269 wavelengths. The objective is to minimizethe number of required wavelengths and running times are not considered. The Ant ColonyRouting approach is compared to a heuristic with Fixed-Alternate Routing like methodand with First Fit Assignment, and the latter has slightly better performance than themetaheuristic.Banerjee et al. [6] test the Genetic Algorithm for routing on a number of networks. Theconsidered simulation networks are real life networks: the 20 node ARPA network, 18 nodeEuropean optical network, 22 node UK network and 14 node NSF network. Several sets ofdata connections are tested: 20, 40, 60, 80, and 100 data connections. The objective is tominimize the number of required wavelengths. For less than 80 data connections, the FirstFit Assignment heuristic and the Genetic Algorithm perform equally well. For 80 or moredata connections, the Genetic Algorithm �nds better solutions, i.e., solutions requiring fewerwavelengths. Running times are not reported.3.1.2 Theoretical running timesWe now report theoretical running times for the presented constructive heuristics for therouting problem. To calculate the times, some notation must be introduced. Given a network,
G, let N be the number of nodes, and E the number of edges. The number of wavelengthsis denoted W , and let k be taken from the k-shortest path algorithm. Running times for theheuristics for the routing problem are calculated as the time it takes to �nd path(s) for eachdata connection.The Fixed Routing and the Adaptive Routing heuristics are shortest path problems,which can be solved in O(E + V log V ) time using Dijkstra's algorithm, see e.g. Cormen etal. [18].The Fixed-Alternate Routing problem �nds the k shortest paths, which can be foundin O(E + V log v + k) time, see e.g. the work of Eppstein [23].In the literature, only very large running times are given for the Least Congested PathRouting and the Shortest Path Adaptive Routing problems, see [52]. Here, we thus presenta somewhat naïve algorithm for the Least Congested Path Routing with lower running time.The problem consists of �nding a path, where the smallest number of available wavelengthson any used edge is maximized. Now, given a network and a data connection, delete theedge with fewest available wavelengths and set all other edge weights to 0. Solve the shortestpath problem using Dijkstra's algorithm. If the problem is solvable, then delete the edgewith second fewest available wavelengths. Resolve the problem. Continue until the problemis no longer solvable. Then we know that we have to use the just deleted edge, which hasfewer available wavelengths than the remaining edges. This very straight-forward methodhas running time O(E(E + V log V )), which can surely be improved. The running time ofthe Shortest Path Adaptive Routing problem is the same, as the problem is a mix of theFixed-Alternate Routing and the Least Congested Path Routing.The Routing with Reduction of Wavelength Continuity Conflictsmethod presentedby Koster [42], is a variant of the polynomially solvable linear MCFP. Koster solves the prob-lem using column generation. To the best of our knowledge, no constructive solution methodfor the linear MCFP exists. In the literature, large instances of the linear MCFP are typicallysolved using Lagrangian methods, partition methods, decomposition techniques, dual ascentalgorithms, bundle methods, interior point methods, etc., see Awerbuch and Leighton [5] and9



Kennington [41] for surveys of the problem, and Larsson and Yuan [49] for a review of solutiontechniques. Small instances are typically solved using the Simplex algorithm. An exact run-ning time for the Routing with Reduction of Wavelength Continuity Conflicts is thusdi�cult to calculate; instead, we simply state that the problem is polynomial.3.2 Wavelength AssignmentWhen paths are found for all data connections, then wavelengths must be assigned to eachpath. Wavelength assignment is an NP-hard problem.In this section, three di�erent types of approaches are described: theoretical results onthe number of needed wavelengths, an exact graph coloring approach, and �nally a numberof heuristics and metaheuristics for the wavelength assignment problem.The theoretical results on the number of wavelengths needed often depend on the networktopology. The research area is quite vast, so we only give a short overview here.Solving the wavelength assignment problem to optimality is typically done through a graphcoloring problem. Much research has been conducted on the graph coloring problem; here weonly show the transformation from the wavelength assignment problem to the graph coloringproblem, and then give references for further information on solution methods.For the heuristics, we assume that the number of available wavelengths is �xed. Thewavelength assignment problem thus consists of �nding a feasible solution, rather than �ndinga feasible solution which minimizes the number of used wavelength. The heuristics may beused for both the static and the dynamic wavelength assignment problem. Each path is treatedseparately without paying attention to the wavelength assignments of other paths. Some ofthe heuristics work on both the single-�ber and the multi-�ber network.Theoretical Results on the Number of Needed WavelengthsOnce routing is done, wavelengths are to be assigned to the data connections. Much researchis done on theoretical bounds on the number of required wavelengths. Especially, lower boundson the number of wavelengths are given, i.e., given a set of paths then at least a certain numberof wavelengths are needed for assignment of those paths. The bounds can be used to quicklydetermine whether or not all data connections can be assigned wavelengths. The bounds,however, often depend on the chosen routing algorithm. Work has also been performed onupper bounds; these bounds can be used to ensure feasibility, i.e., given a routing and givena number of available wavelengths larger than the upper bound, then a feasible wavelengthassignment is guaranteed.The research area of bounds on wavelengths is vast, as much work is done on speci�cnetwork topologies. In the following, a selection of results from the research area is presented.First, Aggarwal et al. [1] present previous work on lower and upper bounds in wavelengthassignment, and then Aggarwal et al. improve the upper bounds. Their bounds apply forspeci�c instances of the RWA. Two variants of the dynamic RWA is considered: (1) all dataconnections can always be rerouted, and (2) no data connection can ever be rerouted. Fur-thermore, they make the assumption that Fixed Routing is used. The network topologiesinclude star networks, having no converters or having converters at all nodes. Aggarwal et al.�nd upper bounds close to previously found lower bounds. For more details on their boundsand on earlier found bounds, see the overview of previous work presented by Aggarwal et al.10



Raghavan et al. [61] present heuristic algorithms for the static RWA on certain networktopologies. The algorithms have bounds on the number of wavelengths needed. The networktopologies include sparse, bounded degree rings, trees, and meshes, all with constraints onhow to forward data in a node. Furthermore, Raghavan et al. discuss using their algorithmsfor the dynamic RWA.When calculating bounds, Barry and Humblet [10] allow blocking, that is, some dataconnections may be blocked instead of the telecommunication provider upgrading the network.The same applies for Ramaswami and Sivarajan [63], and Yates et al. [70].Gersel et al. [26] present algorithms with known worst upper bounds on the number ofwavelengths needed for the RWAwith no blocking. Their work is on certain undirected networktopologies: line, ring networks and trees, all with no wavelength converters. Furthermore,they extend their results when wavelength conversion is allowed. Their algorithms are greedyheuristics, where they have added lower and upper bounds on the number of wavelengths toavoid blocking.Koster [42] solves the wavelength assignment problem by transforming it into an edgecoloring problem. This transformation is only possible, when no path uses more than twoedges, which is the case in a star network. Koster gives lower bounds on the number ofwavelengths to assign. In the case that all paths must be assigned wavelengths, Koster givesa lower bound on the number of needed wavelength converters.The results in this section su�er from only working on speci�c instances of the RWA and ofthe underlying network. Furthermore, some results do not take blocking into account. Muchmore work has been conducted to �nding bounds for the number of wavelengths, but to thebest of out knowledge, all this work su�ers from constraints set on the network topology, onthe paths to assign wavelengths, etc.Graph ColoringThe wavelength assignment problem can be solved using graph coloring methods, see e.g.Zang et al. [71]. Garey et al. [25] prove that the graph coloring problem is NP-hard.For more general information on the graph coloring problem, see Jensen and Toft [36]. Anauxiliary graph G′ is constructed such that each path in the routing solution is representedby a node in G′, and such that two nodes are connected in G′ if the corresponding pathstravel on the same �ber in the routing solution. Now, the graph coloring problem is to assigncolors to all nodes in G′ such that two adjacent nodes do not share the same color. Thiscorresponds to assigning wavelength to paths such that two paths using the same �ber do notshare wavelength. In graph coloring, the chromatic number denotes the minimum number ofneeded colors. Minimizing the chromatic number thus corresponds to minimizing the numberof needed wavelengths. The graph coloring problem solves the wavelength assignment problemto optimality.For information on exact, heuristical and approximate graph coloring algorithms, we referto Pardalos et al. [58] and to the bibliography maintained by Chiarandini [15].Random Assignment HeuristicThe Random Assignment algorithm consists of assigning a random available wavelength toeach path. If Fixed Routing is used, then the Random Assignment algorithm is straight-forward. If Fixed-Alternate Routing or another routing protocol is used, where each data11



connection request can choose from several paths, then Random Assignment chooses a path,which can be assigned a wavelength. If more than one path can be assigned a wavelength,then the algorithm randomly selects one of these.The Random Assignment is used by e.g. Subramaniam and Barry [67].First Fit HeuristicThis First Fit Assignment method consists of assigning the �rst available wavelength tothe current path. How the �rst available wavelength is de�ned is not that relevant, as long asthe order of wavelengths is prede�ned. The First Fit Assignment heuristic is widely used,see e.g. the work of Kovacevic and Acampora [47].Least Used HeuristicThe Least Used Assignment heuristic selects the wavelength that is least used so far. Theidea is to balance the load among all wavelengths. This approach, however, causes troublefor longer paths, as di�erent wavelengths are all used throughout the network. Hence, theapproach eventually only assigns wavelengths to short paths. For more details, see Mokhtarand Azizoglu [54] or Zang et al. [71].Most Used HeuristicThe Most Used Assignment approach is the opposite of the Least Used Assignment heuris-tic. Instead of selecting the least used wavelength, this heuristic chooses the wavelength whichis most used in the network. The Most Used Assignment heuristic is described in details byMokhtar and Azizoglu [54] and Zang et al. [71].Exhaustive Search HeuristicThe Exhaustive Search Assignment algorithm works on top of Fixed-Alternate Routingor another routing scheme generating several paths per data connection request. The wave-length assignment heuristic checks all available wavelengths and chooses the one, which givesthe shortest path. Mokhtar and Azizoglu [54] argue that the method has quite high complexityas it needs to check all wavelengths on all paths.Minimum Product HeuristicThe Minimum Product Assignment approach consists of minimizing the number of �bers usedin a multi-�ber network and is introduced by Jeong and Ayanoglu [37]. Let Dij denote thenumber of assigned �bers on edge i and for wavelength j. Then this heuristic calculates ΠiDijfor all wavelengths j.Least Loaded HeuristicThe Least Loaded Assignment approach is also designed for a multi-�ber network. Givena path, the heuristic �nds the wavelength, whose smallest availability is larger than that forall other wavelengths. Let Mi be the number of �bers on edge i, and let Dij be the numberof assigned �bers on edge i for wavelength j. Then the Least Loaded Assignment approach12



selects the wavelength j with maxj mini(Mi −Dij). For more details, see Zang et al. [71] andKarasan and Ayanoglu [40].Maximum Sum HeuristicSubramaniam and Barry [11, 67] present a Maximum Sum Assignment algorithm for assigningwavelengths. Given is a network, where paths are preselected. Now, when a new data con-nection request arrives and a path is found, the heuristic of Subramaniam and Barry seeksto �nd a wavelength, where after assignment the remaining capacity is as large as possible.Subramaniam and Barry designed the algorithm for multi-�ber network, but it also appliesfor single-�ber networks.Relative Capacity Loss HeuristicThe Relative Capacity Loss Assignment heuristic is introduced by Zhang and Qiao [72],and it is a variant of the Maximum Sum Assignment approach. The latter selects the wave-length, which minimizes the capacity loss (or maximizes the remaining capacity) on all edges.The Relative Capacity Loss Assignment chooses the wavelength which minimizes the rel-ative capacity loss, i.e., the capacity loss divided with the available capacity.Distributed relative capacity loss heuristicZang et al. [71] propose the Distributed Relative Capacity Loss Assignment heuristicfor assigning wavelength. The algorithm is a variant of the Relative Capacity Loss As-signment heuristic. It reduces complexity of the former heuristic by generating a look-uptable, such that the relative loss capacity of wavelengths is readily available. The look-uptable is build by investigating the network and by exchanging information between nodes ina manner similar to that of the Bellman-Ford shortest path algorithm, see Cormen et al. [18]for the Bellman-Ford algorithm.Wavelength Reservation HeuristicAs the name of the Wavelength Reservation Assignment heuristic indicates, this method re-serves wavelengths for certain data connections. An example is, that a wavelength λ is reservedfor all data going from a node a to node c. If several paths have a and c as intermediate nodes,then they compete for the reserved wavelength, λ. Note, that another wavelength assignmentmethod must be used to determine which path to select for the current data connection,and which wavelength to reserve. Birman and Kershenbaum [13] introduce the wavelengthheuristic approach for multi-hop connections, and they show that it reduces the blocking formulti-hop connections, but it also increases the blocking for single-hop connections.Protecting Threshold HeuristicBirman and Kershenbaum [13] introduce the Protecting Threshold Assignment approach,which consists of only selecting a wavelength when the number of idle wavelengths on theedge is above a certain threshold. Note, that another wavelength assignment must be usedto determine which path to select for the current data connection and which wavelength toassign to the path. Birman and Kershenbaum have developed the heuristic for single-hop dataconnections. 13



Genetic algorithmGenetic Algorithms (GA) try to simulate evolution of genotypes and natural selection, seee.g. Goldberg [28]. Hyytiä and Virtamo [30] suggest a GA for solving the wavelength assign-ment problem as a graph coloring problem. Two chromosomes are given, each representing asolution to the graph coloring problem. A new chromosome is generated from the two previouschromosomes; the reuse of a chromosome depends on the quality of the corresponding solution(which is the number of used wavelengths). The new chromosome represents a solution to thewavelength assignment problem.Simulated annealingSimulated Annealing (SA) is based on resolving the problem and accepting a new and bet-ter solution with some probability. This probability depends on a temperature parameter,which decreases with time. Hence, the name simulated annealing. For more details, see vanLaarhoven and Aarts [68]. Hyytiä and Virtamo [30] present a SA approach used on the wave-length assignment problem. The problem is considered as a graph coloring problem, andthe SA consists of assigning di�erent colors to nodes, calculating the objective cost, i.e., thenumber of used wavelength, and then accepting the new solution with some probability.Tabu searchFinally, Tabu Search (TS) is based on a random search approach where certain moves areforbidden or tabu, see e.g. Glover and Laguna [27]. Hyytiä and Virtamo [30] suggest solvingthe wavelength assignment problem represented by a graph coloring problem, by using TabuSearch. The objective is to maximize the number of established connections rather than tominimize the number of used wavelengths.Bin Packing HeuristicThe RWA on a network with no wavelength converters can be solved by applying the binpacking problem. For more information on the bin packing problem, see Pisinger and Sigurd[60]. Skorin-Kapov [65] represents the RWA as a bin packing problem by letting paths beitems, and by letting copies of the network be bins. Each bin represents a wavelength, andeach bin has capacity equal to the number of edges in the network. Two items cannot bepacked in the same bin if the corresponding paths use the same edge. Now, the bin packingproblem is to pack items into as few bins as possible. This corresponds to minimizing thenumber of assigned wavelengths.3.2.1 Performance of wavelength assignment methodsAgain, the performance of the presented methods has not been discussed, because in theliterature the test instances and the objective function vary. In this section, we give anoverview of the performance of the wavelength assignment methods, including a descriptionof the evaluated problem instances and the corresponding evaluation results.Kovacevic and Acampora [47] compare the First Fit Assignment heuristic for wave-length assignment with the Random Assignment approach. The test instance is a 11 × 11mesh network with 5 wavelengths per edge, and with varying network load. The objective is14



blocking probability and the results show that the First Fit Assignment heuristic generallygives better results than the Random Assignment. Running times are not mentioned.Mokhtar and Azizoglu [54] compare the Exhaustive Search Assignment with the MostUsed Assignment algorithm, the First Fit Assignment, and Random Assignment. The testinstances are two networks: the ARPA-2 network with 21 nodes, 26 edges and 4 or 8 wave-lengths, and a randomly generated topology with 15 nodes and 32 edges. Tra�c arrivesaccording to the Poisson process. The objective is blocking probability. The Most Used As-signment, Random Assignment and Least Used Assignment heuristics are tested on bothnetworks. The Most Used Assignment heuristic performs best, followed by Random Assign-ment. Then the Exhaustive Search Assignment algorithm is compared to the Most UsedAssignment, and the Exhaustive Search Assignment algorithm gives slightly better results,but Mokhtar and Azizoglu note, that the increased complexity of the Exhaustive SearchAssignment overshadows the better results. First Fit Assignment is compared with theMost Used Assignment heuristic, and First Fit Assignment performs almost equally wellto the Most Used Assignment method. Time usage is not given, but theoretical complexitiesare computed for the heuristics.Karasan and Ayanoglu [40] implement the Least Loaded Assignment heuristic. Theytest it on a 30-node mesh network where tra�c is distributed uniformly. The network re�ectsthe geographical location of major cities in the US. Connection requests arrive according tothe Poisson process. The network is either single-�ber or multi-�ber, each �ber having 8wavelengths. The objective is blocking probability. Results show, that the Least LoadedAssignment heuristic performs better than the Most Used Assignment approach.Subramaniam and Barry [67] test the Random Assignment, First Fit Assignment, LeastLoaded Assignment, Most Used Assignment, Minimum Product Assignment and the Maxi-mum Sum Assignment heuristics. The instances have uniform Poisson tra�c, and are either a20 node ring network with 1 or 10 �bers per edge, or a 5×5 bidirectional mesh-network with 1or 3 �bers per edge. Subramaniam and Barry use blocking probability as objective. Runningtimes are not mentioned. According to Subramaniam and Barry the Minimum Product As-signment heuristic performs slightly better than the Most Used Assignment heuristic withrespect to blocking probability. Then follows the First Fit Assignment, Least Loaded As-signment, Maximum Sum Assignment and �nally the Random Assignment heuristics.Zhang and Qiao [72] test the First Fit Assignment, the Maximum Sum Assignment ap-proach and the Relative Capacity Loss Assignment heuristic on a simulation of the NFSnetwork and on a 4 × 4 torus network. They use blocking probabilities to calculate theirobjective function value. The Relative Capacity Loss Assignment method has best per-formance.Zang et al. [71] compare a number of heuristics for wavelength assignment: Random As-signment, First Fit Assignment, Least Used Assignment, Most Used Assignment, Min-imum Product Assignment, Least Loaded Assignment, Maximum Sum Assignment, and Re-lative Capacity Loss Assignment. A network consisting of six nodes is used for test-ing, where the number of wavelengths and �bers vary. The objective is blocking probabil-ities, and practical running times are not mentioned. In a single �ber network, the MostUsed Assignment heuristic performs well, along with the Maximum Sum Assignment and Re-lative Capacity Loss Assignment approaches when the load is low. When the load is high,then all heuristics have similar performance. In a multi-�ber network, the Most Used As-signment, Minimum Product Assignment and Relative Capacity Loss Assignment meth-ods have best performance, while the Least Loaded Assignment and Maximum Sum Assign-15



ment heuristics work best with high load. Zang et al. conclude, however, that the di�erencebetween the performances of all heuristics is quite insigni�cant.Birman and Kershenbaum [13] compare the Wavelength Reservation Assignment andthe Protecting Threshold Assignment heuristics on a single-hop mesh networks with 6nodes, 9 edges, a data connection request for each pair of nodes, and 24 wavelengths peredge. The objective is blocking probability, and the results show, that the Protecting Thres-hold Assignment algorithm tends to give better results than the Wavelength ReservationAssignment approach. No running times are given.The metaheuristics suggested by Hyytiä and Virtamo [30] include a Genetic Algorithm,Simulated Annealing and Tabu Search. The methods are compared with each other andwith a First Fit Assignment heuristic, on randomly generated instances not described anyfurther. The results show, that the greedy heuristic has signi�cantly better running time.The Genetic Algorithm has better running time than the Simulated Annealing, which isfaster than the Tabu Search. The methods are also compared with respect to the number ofgenerated wavelengths. Here, the Tabu Search has best performance, followed by the GeneticAlgorithm, the First Fit Assignment, and �nally the Simulated Annealing.Skorin-Kapov [65] tests the Bin Packing Heuristic on a series of random 100-node net-works with average degrees of 3, 4, and 5. Random sets of data connections requests werecreated for each test network with a �xed probability of there being a data connection requestbetween two nodes. The number of requests varies from 2054 to 9900. The objective is tominimize the number of required wavelengths along with the length, in hops, of data connec-tions. The results show that the heuristics �nd optimal or near-optimal solutions. Runningtimes are mentioned to be low in general: solving an instance with 100 nodes and 9900 dataconnection requests takes less than 8 minutes on a P4 2.8 GHz processor.Zang et al. [71] argue that the routing algorithm has larger in�uence on the amount ofblocking probability, than the wavelength assignment algorithm. They base this on the per-formed tests, where algorithms using Adaptive Routing generally gives signi�cantly betterresults than algorithms using Fixed Routing - no matter which wavelength assignment algo-rithm is used. Zang et al., however, do not take running times into account so even if morecomplicated routing algorithms give better solutions, one could fear that the algorithms mayalso have larger time usage.3.2.2 Theoretical running timesWe now report theoretical running times for the presented constructive heuristics for thewavelength assignment. Recall the notation: given a network, G, let N be the number ofnodes, and E the number of edges. The number of wavelengths is denoted W , and let kbe taken from the k-shortest path algorithm. Running times for the wavelength assignmentheuristics are calculated as the time it takes to assign a wavelength to a single path.The Random Assignment selects a random wavelength. In the case of no wavelength con-verters, the heuristic investigates all edges on the path to see if the wavelength is available;if not, it repeats the process with another randomly picked wavelength. In the case of wave-length converters, the heuristic investigates if the wavelength is available on each edge, and ifnot, it selects another wavelength and check again. The running time is O(WE). The FirstFit Assignment only di�ers in how to pick the wavelength, and it thus has the same runningtime. 16



The Least Used Assignment and Most Used Assignment heuristics run through all usededges and calculate how much each wavelength is used. The wavelengths are sorted accordingto usage, and paths are assigned wavelengths from the sorted list in a First Fit Assignmentmanner. The running time is O(W log W + WE).The Exhaustive Search Assignment needs to check all available wavelengths on all kpaths for the current data connection. This takes O(kWE) time.The Minimum Product Assignment heuristic calculates the product ΠiDij for all �bers iand for all wavelengths j. This takes O(WE) time. The Least Loaded Assignment heuristicis very similar to the Minimum Product Assignment method and thus has the same runningtime, O(WE).The Maximum Sum Assignment heuristic investigates how much each wavelength is avail-able on each edge of all the paths, the current data connection can choose from. Let the num-ber of paths be bounded by k; the running time is O(kWE). The Relative Capacity LossAssignment heuristic and the Distributed Relative Capacity Loss Assignment heuristicwork in a similar manner and thus have the same running time, O(kWE).Finally, the Wavelength Reservation Assignment heuristic and the Protecting Thres-hold Assignment heuristic are used on top of other wavelength assignment algorithms. Thus,their running times depend on the other heuristic: the Wavelength Reservation Assign-ment and Protecting Threshold Assignment methods themselves have constant runningtime, O(1).4 Overall Methods for Solving the RWA ProblemIn this section, important results for solving the RWA as one problem are presented. Insteadof splitting the RWA into two subproblems, the following methods approach the entire RWA.Methods include both metaheuristics and exact formulations.4.1 MetaheuristicsIn this section, metaheuristics for solving the RWA are presented. The metaheuristics pro-posed in the literature are Genetic Algorithm (GA) and Ant Colony Optimization algo-rithms (ACO).Ant Colony Optimization AlgorithmArteta et al. [4] use a multi-objective (MO) ACO metaheuristic for solving the RWA. ACOde�nes a method of investigating the neighbourhood of a current solution. The MO consists ofoptimizing the hop count and the number of wavelength conversions. In the ACO this means,that the pheromone matrix, i.e., the probabilities de�ning which pheromone track an antchooses, depends on the path's hop count and on the number of wavelength conversions in thepath.Arteta et al. have implemented several MOACOs: for more details on each MOACO, seethe corresponding reference. The multiple objective ant Q algorithm (MOAQ) of Mar-iano and Morales [53] maintains a colony per objective. The bicriterion ant (BIANT)of Iredi et al. [33] uses a probability matrix per objective, and hence also a colony perobjective. Pareto ant colony optimization (PACO) of Doerner et al. [20] has severalpheromone matrices for each objective. The Multi-objective ant colony system (MOACS)17



by Schaerer and Barán [8] uses several heuristics when calculating entries in the probabilymatrix. The multi-objective max-min ant system (M3AS) by Pinto and Barán [59] hasa global pheromone matrix. COMPETants (COMP) by Doerner et al. [21] uses several heuris-tics, pheromone matrices and the colony sizes vary. Multi-objective omicron ACO (MOA)by Gardel el al. [24] uses a speci�c updating rule for the pheromone matrices, and �nallymulti-objective ant system (MAS) by Paciello et al. [57] has a slightly di�erent order ofupdating the pheromone matrices.Genetic AlgorithmsSinclair [64] solves the RWA through a Genetic Algorithm (GA). Instead of using the classicalmutation and crossover operations in GA, Sinclair uses heuristics to generate new solutions.The heuristics are: k-shortest path routing with First Fit Assignment, rerouting and reas-signment of wavelength of a subset of connections, rerouting a path with high wavelength inorder to reach the lowest possible wavelength, and shifting the path with the highest wave-length to having a lower wavelength such that all paths blocking the new low wavelength mustbe rerouted.Ali et al. [3] solve a variant of the RWA problem using a Genetic Algorithm. The variantconsists of taking power into account, i.e., they wish to preserve proper power levels on allpaths. They use a k-shortest path method to generate routes, where power loss is taken intoaccount when measuring the length of a path.4.2 Linear ProgrammingThis section presents methods from the literature for �nding LP bounds for the RWA. Severalof the methods presented in the following may be integer or mixed integer programs, but thesuggested solution methods all work on LP relaxed formulations.Ramaswami and Sivarajan [63] present an Integer Programming (ILP) formulation forthe static RWA with no wavelength conversion, and where the objective is to maximize thenumber of established data connections. They note that their model is a variant of the MCFP.Given the data connections and corresponding paths, Ramawami and Sivarajan solve theproblem using rounding algorithms. Data connections and paths are generated randomly.An ILP formulation of the static RWA is presented by Zang et al. [71]. Wavelengthconversion is not allowed, and the objective is to minimize the maximal edge �ow. It is noted,that the model is a variant of the MCFP. Zang et al. also present an overview of a model forthe static RWA with wavelength conversion, which again is a variant of the MCFP.Banerjee and Mukherjee [7] present an ILP for the RWA, where the objective is to mini-mize the hop distance. The network allows wavelength conversion. They, however, solve theproblem heuristically. Banerjee and Mukherjee argue that their model can be used to designa balanced network with high utilization of transceivers and wavelengths. Furthermore, itis noted, that the model of Banerhee and Mukherjee is a variant of the MCFP, where eachcommodity represent a data connection.Ozdaglar and Bertsekas [56] work on an ILP formulation of the quasi-static RWA. Theyde�ne quasi-static RWA to be the problem, where several data connection requests �rst areto be handled, and then later more data connection requests may arrive. The formulationis a variant of the MCFP. Ozdaglar and Bertsekas relax the ILP and show that the relaxed18



formulation yields integer solutions for several network topologies including line and ringnetworks, with wavelength converters at either all or no nodes.Jaumard et al. [34] present a number of di�erent ILP formulations for the RWA in WDMoptical networks, using a uni�ed notation. The variants of the RWA include instances withsymmetric and with asymmetric tra�c. Jaumard et al. show edge- and path-based formula-tions as well as models from the literature. Formulations for the RWA with asymmetric tra�care shown to have the same objective, though the number of constraints and variables di�er.4.3 Integer ProgrammingThis section presents exact solution methods for the RWA. The methods are all based onDantzig-Wolfe decomposing the RWA, see [19]. The resulting formulations are solved tooptimality using branch-and-price, where the master and subproblems vary according to theused Dantzig-Wolfe decomposition.If wavelengths may be changed in every node, the RWA problem can be reduced to theInteger Multicommodity Flow Problem (IMCFP), see Beauquier et al. [12]. The IMCFP con-sists of sending an amount of �ow between several sources and targets with respect to edgecapacities, see Ahuja at el. [2] for more details. When wavelengths can be converted at allnodes, then the wavelength limitation can be described as edge capacities: each edge can carryat most k di�erent wavelengths, for some integer k > 0. Now, we need to send 1 amount of �owbetween all data connection terminals without violating edge capacities. This corresponds tothe integer MCFP. The integer MCFP is a well-studied problem with many solution approaches.An example is the branch-and-bound algorithm by Barnhart et al. [9].Another ILP formulation for the RWA is of Lee et al. [51] which is based on �nding a set ofpaths with the same wavelength for a subset of data connection. The formulation maximizesthe number of established data connections subject to the RWA constraints. Lee et al. proposea column generation for the formulation, where the subproblem is to �nd a set of paths withthe same wavelength for some data connections. To �nd an optimal solution Lee et al. presenta branch-and-price algorithm.Jaumard et al. [35] analyze column generation formulations for the RWA from the liter-ature and present a new formulation. First a straight forward path formulation of the RWAis presented, where a path consists of both the visited edges and the used wavelengths. It isargued that the formulation yields symmetry problems with respect to the used wavelengths.Then Jaumard et al. review the formulation of Ramaswami and Sivarajan [63] where wave-length assignment and path variables are kept separately. Jaumard et al. propose a columngeneration method for generating paths for the formulation, however, the method has somedrawbacks: the size of the subproblem depends on the number of paths for a data connec-tion which may be exponential and the column generation technique solves the LP relaxedformulation and does thus not return an optimal solution to the original problem. Jaumardet al. present the formulation of Lee et al. based on �nding a set of paths with the samewavelength for a subset of data connections. Jaumard et al. suggest solving the subproblemas a multicommodity linear �ow problem. Based on the formulations of Ramaswami andSivarajan [63] and Lee et al. [51], Jaumard et al. propose a new mathematical model whereeach column consists of a set of paths for a subset of data connections and where wavelengthsare assigned in the master problem. A branch-and-price algorithm is presented where thesubproblem corresponds to that of the formulation of Lee et al. and the branching strategy19



cuts on the number of used wavelengths are added to the master problem. Jaumard et al.have implemented and tested the column generation formulation of Lee et al. and of theirown model.4.4 Comparison of overall solution methodsOnce again, the test instances and the objective function vary in the literature. An overviewof tested instances and corresponding results for the overall solution methods is presented inthis section.Arteta et al. [4] test their MOACO metaheuristics for solving the RWA on the JapaneseNTT network topology. The network has 55 nodes and 144 edges. The algorithms were run10 times, each time of at most 100 iterations. The objective is to minimize the amount ofwavelength conversion and the hop length, along with pareto front and error. Running timesare not considered. Using this objective, the MOACOs outperform simpler, greedy heuristics.Sinclair [64] solves the RWA through a Genetic Algorithm. Five test networks are gen-erated, each with 15 nodes, and with 34 to 39 edges. The objective is to minimize the cost ofused edges, and running times are not taken into account. Sinclair shows that the proposedGenetic Algorithm can compete with greedy heuristics.Ali et al. [3] solve a variant of the RWA problem using a Genetic Algorithm. They testtheir algorithm on a network with 13 nodes, and the objective is to maximize the number ofestablished data connections and in time usage. The proposed Genetic Algorithm outper-forms a First Fit Assignment like heuristic with respect to the number of data connections,but it spends signi�cantly more time.Ramaswami and Sivarajan [63] present an ILP. They solve the problem using a roundingmethod, and they compare their bounds with a First Fit Assignment like heuristic. Thetest instances are two networks with data connection requests arriving according to a Poissonprocess and lasting for a duration that is exponentially distributed. The networks are a 5node pentagon and a 20 node network representing a skeleton of ARPA, respectively. Firsto�, Ramaswami and Sivarajan show that they reach their theoretically calculated boundson carried tra�c. They compare their rounding method for the ILP with the heuristic withrespect to blocking probability, and their rounding method gives best results. Running timesare not taken into account.Banerjee and Mukherjee [7] present an ILP to derive a minimal hop distance solution ina network with wavelength converters. Two heuristics are proposed: One which attemptsto �nd paths between the node pairs, which have more data connection requests, and whichare only separated by a single hop. The other heuristic attempts to maximize the numberof established data connections with respect to the number of hops between the sources andtargets. Banerjee and Mukherjee test the heuristics and the ILP on the NFS network witha randomly generated tra�c matrix. They show that the average packet hop distance forthe heuristical solutions is not far from that obtained by the ILP. Running times are notmentioned.Jaumard et al. [34] test the models on NSF and EON networks with asymmetrical tra�cmatrices of Krishnaswamy, which corresponds to 268 connections for the NSF instance and374 for the EON. For symmetrical tra�c, the former are modi�ed such that for a pair ofnodes s, d, then the selected connections are the connections from s to d, unless the numberof connections from d to s is larger. This gives 191 connections for the NSF, and 270 for20



the EON. Formulations are compared through computational evaluation, and they show thatbenchmark problems from Krishnaswamy and Sivarajan [48] can be solved to optimality orwith a small gap. Only bounds are compared in the computational study, hence running timesare not mentioned.Lee et al. [51] test their branch-and-price algorithm using test instances based on theSONET ring topology with 10, 15 and 20 nodes and where each node pair requires one tothree data connections. Their test results show that the bounds found in the root node of thebranch-and-bound tree are of good quality and optimal solutions are found for the majorityof instances. An upper bound on 20000 branch-and-bound nodes is applied. Small instancesare solved to optimality in seconds, while larger instances take up to 15 minutes to solve.In the later work of Jaumard et al. [35], the column generation algorithm from Lee et al.[51] and the branch-and-price algorithm for the new formulation proposed by Jaumard et al.are implemented. They are tested and compared with solving an edge-based formulation tooptimality using CPLEX. The test instances are modi�ed NSF and EON benchmarks takenfrom Krishnaswamy and Sivarajan [48]. Some edges are removed from the NSF instancesand extra data connections are added to the EON instances. Finally some test instancesresembling a Brazilian network topology proposed by Noronha and Ribeiro [55] are used. Thecomputational results show that the branch-and-price algorithm �nds better bounds than thecolumn generation method by Lee et al. and in less time. Furthermore, the branch-and-price algorithm is capable of �nding an optimal solution for the far majority of instances andthus �nds more optimal solutions than when using CPLEX on the edge-based formulation.Running times for the branch-and-price and column generation algorithms span from less thana minute for smaller instances up to days for the larger instances.5 ConclusionA wide variety of solution methods for the RWA have been presented. Most work in theliterature is based on heuristics, more speci�cally on dividing the RWA into two parts: therouting problem and the wavelength assignment problem. For the main part, the heuristicsapply on both the static and on the dynamic RWA.Some work has also been concentrated on metaheuristics, both for the routing problem,the wavelength assignment problem, but also for the entire RWA. The metaheuristics work onthe static RWA, as they generally seek to improve the last solution.Less work is based on �nding optimal solutions to the static RWA. In the literature it isargued, that since the RWA is NP-hard, then �nding an optimal solution is too hard. Theexact solution approaches presented and tested in the literature, however, perform fairly well.In this survey, experimental results from the literature and theoretical running times arepresented. A general issue for comparing solution methods is the inconsistency in test instancesand objective functions.Running times seem to be of little interest in most experiments performed on the proposedmethods. In this case, we believe that future work should focus on the MCFP representationof the problem. The RWA is a variant of the well-studied MCFP, thus algorithms for the MCFPneed to be modi�ed, when solving the RWA.If running times are of interest, then the heuristics for the decomposed RWA seem to givegood results fast. All greedy heuristics run in polynomial time, and their theoretical runningtimes are generally small. 21



When focusing on solution qualities, then the most used objective is blocking probability.This is relevant given instances, where not all data connections can be established, and giventhat no general benchmark instances are used. Blocking probability tries to give a measure forthe probability of the establishment of a data connection. We, however, fear that this objectiveis di�cult to compare across the many di�erent types and sizes of problem instances. We thusrecommend the use of general instances, e.g., like the Solomon benchmark instances are usedfor the Vehicle Routing Problem with Time Windows [66]. General benchmark instancesfor the RWA could be generated randomly, or be based on known problems from generalgraph theory, or from some of the widely used test instance libraries available. E.g., severalbenchmark instances for mixed integer problems are found in the MIPlib (http://miplib.zib.de/), and a data library for �xed telecommunication network design is found in SNDlib(http://sndlib.zib.de).As is the case in most situations dealing with NP-hard problems, the trade-o� lies betweensolution quality and time usage. Optimal solutions are generally only reached quickly, whenthe problem instances are very small. A large part of the networks, which are used for testingin the literature, are not too large.For the static RWA problem, it may thus be bene�cial to focus more on MCFP formulationsof the RWA problem. The MCFP and many variants hereof are well-studied and many exactalgorithms with good performance are presented in the literature. For example, the branch-and-price-and-cut algorithm for the NP-hard IMCFP by Barnhart et al. [9] solves instanceswith up to nearly 93 commodities, 29 nodes, and 61 edges to optimality. As another example,instances for the linear MCFP with up to 80000 commodities, 3600 nodes and 14000 edges aresolved to near-optimality by a Lagrangian algorithm presented by Larsson and Di Yuan [49].For the dynamic RWA, the heuristics for the decomposed RWA have good performance,and we believe that any further work should concentrate on either these heuristics or onheuristics for the entire RWA.In this survey, network design has been left out. From the perspective of a telecommunica-tions provider, however, network design may be important, as optical networks are constantlybeing extended in order to reach new customers. The research area for network design is vast,thus a separate survey for this area should be consulted for further details, see e.g. Dutta andRouskas [22], Iness [31], Jue [39] or Zymolka [74].Solving the RWA can be used in several contexts. A solution can decide which data connec-tions to establish. The objective may be to maximize the number of established connections,to minimize the cost of setting up connections, to minimize delays on established connections,to minimize blocking, etc. Furthermore, solution methods can be used as an analytic tool tomeasure performance, to measure which parts of the network is subject to most usage etc. Thepresented solution methods have a trade-o� between solution quality and time usage. Whensolving the RWA, it is thus important to decide which is more important; solution quality ortime usage.AcknowledgementsWe would like to thank GlobalConnect A/S for supporting this work.
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When transmitting data in an all-optical network,  data connections must be established in such 
a way that two or more connections never share a wavelength on the same fi ber. The NP-hard 
Routing and Wavelength Assignment (RWA) problem consists of fi nding paths and wavelengths 
for a set of data connections.

This survey introduces the RWA and gives an overview of heuristic, metaheuristic and exact  
solution methods from the literature.  Running times for the heuristic methods are presented 
and computational results are discussed.
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