271 research outputs found

    Hermite regularization of the Lattice Boltzmann Method for open source computational aeroacoustics

    Full text link
    The lattice Boltzmann method (LBM) is emerging as a powerful engineering tool for aeroacoustic computations. However, the LBM has been shown to present accuracy and stability issues in the medium-low Mach number range, that is of interest for aeroacoustic applications. Several solutions have been proposed but often are too computationally expensive, do not retain the simplicity and the advantages typical of the LBM, or are not described well enough to be usable by the community due to proprietary software policies. We propose to use an original regularized collision operator, based on the expansion in Hermite polynomials, that greatly improves the accuracy and stability of the LBM without altering significantly its algorithm. The regularized LBM can be easily coupled with both non-reflective boundary conditions and a multi-level grid strategy, essential ingredients for aeroacoustic simulations. Excellent agreement was found between our approach and both experimental and numerical data on two different benchmarks: the laminar, unsteady flow past a 2D cylinder and the 3D turbulent jet. Finally, most of the aeroacoustic computations with LBM have been done with commercial softwares, while here the entire theoretical framework is implemented on top of an open source library (Palabos).Comment: 34 pages, 12 figures, The Journal of the Acoustical Society of America (in press

    Sensitivity analysis and determination of free relaxation parameters for the weakly-compressible MRT-LBM schemes

    Full text link
    It is well-known that there exist several free relaxation parameters in the MRT-LBM. Although these parameters have been tuned via linear analysis, the sensitivity analysis of these parameters and other related parameters are still not sufficient for detecting the behaviors of the dispersion and dissipation relations of the MRT-LBM. Previous researches have shown that the bulk dissipation in the MRT-LBM induces a significant over-damping of acoustic disturbances. This indicates that MRT-LBM cannot be used to obtain the correct behavior of pressure fluctuations because of the fixed bulk relaxation parameter. In order to cure this problem, an effective algorithm has been proposed for recovering the linearized Navier-Stokes equations from the linearized MRT-LBM. The recovered L-NSE appear as in matrix form with arbitrary order of the truncation errors with respect to δt{\delta}t. Then, in wave-number space, the first/second-order sensitivity analyses of matrix eigenvalues are used to address the sensitivity of the wavenumber magnitudes to the dispersion-dissipation relations. By the first-order sensitivity analysis, the numerical behaviors of the group velocity of the MRT-LBM are first obtained. Afterwards, the distribution sensitivities of the matrix eigenvalues corresponding to the linearized form of the MRT-LBM are investigated in the complex plane. Based on the sensitivity analysis and the recovered L-NSE, we propose some simplified optimization strategies to determine the free relaxation parameters in the MRT-LBM. Meanwhile, the dispersion and dissipation relations of the optimal MRT-LBM are quantitatively compared with the exact dispersion and dissipation relations. At last, some numerical validations on classical acoustic benchmark problems are shown to assess the new optimal MRT-LBM

    Perfectly Matched Layer Absorbing Boundary Conditions for the Discrete Velocity Boltzmann-BGK Equation

    Get PDF
    Perfectly Matched Layer (PML) absorbing boundary conditions were first proposed by Berenger in 1994 for the Maxwell\u27s equations of electromagnetics. Since Hu first applied the method to Euler\u27s equations in 1996, progress made in the application of PML to Computational Aeroacoustics (CAA) includes linearized Euler equations with non-uniform mean flow, non-linear Euler equations, flows with an arbitrary mean flow direction, and non-linear clavier-Stokes equations. Although Boltzmann-BGK methods have appeared in the literature and have been shown capable of simulating aeroacoustics phenomena, very little has been done to develop absorbing boundary conditions for these methods. The purpose of this work was to extend the PML methodology to the discrete velocity Boltzmann-BGK equation (DVBE) for the case of a horizontal mean flow in two and three dimensions. The proposed extension of the PML has been accomplished in this dissertation. Both split and unsplit PML absorbing boundary conditions are presented in two and three dimensions. A finite difference and a lattice model are considered for the solution of the PML equations. The linear stability of the PML equations is investigated for both models. The small relaxation time needed for the discrete velocity Boltzmann-BC4K model to solve the Euler equations renders the explicit Runge-Kutta schemes impractical. Alternatively, implicit-explicit Runge-Kutta (IMEX) schemes are used in the finite difference model and are implemented explicitly by exploiting the special structure of the Boltzmann-BGK equation. This yields a numerically stable solution by the finite difference schemes. As the lattice model proves to be unstable, a coupled model consisting of a lattice Boltzmann (LB) method for the Ulterior domain and an IMEX finite difference method for the PML domains is proposed and investigated. Numerical examples of acoustic and vorticity waves are included to support the validity of the PML equations. In each example, accurate solutions are obtained, supporting the conclusion that PML is an effective absorbing boundary condition

    Optimal low-dispersion low-dissipation LBM schemes for computational aeroacoustics

    Full text link
    Lattice Boltmzmann Methods (LBM) have been proved to be very effective methods for computational aeroacoustics (CAA), which have been used to capture the dynamics of weak acoustic fluctuations. In this paper, we propose a strategy to reduce the dispersive and disspative errors of the two-dimensional (2D) multi-relaxation-time lattice Boltzmann method (MRT-LBM). By presenting an effective algorithm, we obtain a uniform form of the linearized Navier-Stokes equations corresponding to the MRT-LBM in wave-number space. Using the matrix perturbation theory and the equivalent modified equation approach for finite difference methods, we propose a class of minimization problems to optimize the free-parameters in the MRT-LBM. We obtain this way a dispersion-relation-preserving LBM (DRP-LBM) to circumvent the minimized dispersion error of the MRT-LBM. The dissipation relation precision is also improved.And the stability of the MRT-LBM with the small bulk viscosity is guaranteed. Von Neuman analysis of the linearized MRT-LBM is performed to validate the optimized dispersion/dissipation relations considering monochromatic wave solutions. Meanwhile, dispersion and dissipation errors of the optimized MRT-LBM are quantitatively compared with the original MRT-LBM . Finally, some numerical simulations are carried out to assess the new optimized MRT-LBM schemes.Comment: 33 page

    Reducing memory requirements for large size LBM simulations on GPUs

    Get PDF
    The scientific community in its never-ending road of larger and more efficient computational resources is in need of more efficient implementations that can adapt efficiently on the current parallel platforms. Graphics processing units are an appropriate platform that cover some of these demands. This architecture presents a high performance with a reduced cost and an efficient power consumption. However, the memory capacity in these devices is reduced and so expensive memory transfers are necessary to deal with big problems. Today, the lattice-Boltzmann method (LBM) has positioned as an efficient approach for Computational Fluid Dynamics simulations. Despite this method is particularly amenable to be efficiently parallelized, it is in need of a considerable memory capacity, which is the consequence of a dramatic fall in performance when dealing with large simulations. In this work, we propose some initiatives to minimize such demand of memory, which allows us to execute bigger simulations on the same platform without additional memory transfers, keeping a high performance. In particular, we present 2 new implementations, LBM-Ghost and LBM-Swap, which are deeply analyzed, presenting the pros and cons of each of them.This project was funded by the Spanish Ministry of Economy and Competitiveness (MINECO): BCAM Severo Ochoa accreditation SEV-2013-0323, MTM2013-40824, Computación de Altas Prestaciones VII TIN2015-65316-P, by the Basque Excellence Research Center (BERC 2014-2017) pro- gram by the Basque Government, and by the Departament d' Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programació i Entorns d' Execució Paral·lels (2014-SGR-1051). We also thank the support of the computing facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT) and NVIDIA GPU Research Center program for the provided resources, as well as the support of NVIDIA through the BSC/UPC NVIDIA GPU Center of Excellence.Peer ReviewedPostprint (author's final draft

    Lattice Boltzmann method for computational aeroacoustics on non-uniform meshes: a direct grid coupling approach

    Full text link
    The present study proposes a highly accurate lattice Boltzmann direct coupling cell-vertex algorithm, well suited for industrial purposes, making it highly valuable for aeroacoustic applications. It is indeed known that the convection of vortical structures across a grid refinement interface, where cell size is abruptly doubled, is likely to generate spurious noise that may corrupt the solution over the whole computational domain. This issue becomes critical in the case of aeroacoustic simulations, where accurate pressure estimations are of paramount importance. Consequently, any interfering noise that may pollute the acoustic predictions must be reduced. The proposed grid refinement algorithm differs from conventionally used ones, in which an overlapping mesh layer is considered. Instead, it provides a direct connection allowing a tighter link between fine and coarse grids, especially with the use of a coherent equilibrium function shared by both grids. Moreover, the direct coupling makes the algorithm more local and prevents the duplication of points, which might be detrimental for massive parallelization. This work follows our first study (Astoul~\textit{et al. 2020}) on the deleterious effect of non-hydrodynamic modes crossing mesh transitions, which can be addressed using an appropriate collision model. The Hybrid Recursive Regularized model is then used for this study. The grid coupling algorithm is assessed and compared to a widely-used cell-vertex algorithm on an acoustic pulse test case, a convected vortex and a turbulent circular cylinder wake flow at high Reynolds number.Comment: also submitted to Journal of Computational Physic

    Hydrodynamic/acoustic splitting approach with flow-acoustic feedback for universal subsonic noise computation

    Get PDF
    A generalized approach to decompose the compressible Navier-Stokes equations into an equivalent set of coupled equations for flow and acoustics is introduced. As a significant extension to standard hydrodynamic/acoustic splitting methods, the approach provides the essential coupling terms, which account for the feedback from the acoustics to the flow. A unique simplified version of the split equation system with feedback is derived that conforms to the compressible Navier-Stokes equations in the subsonic flow regime, where the feedback reduces to one additional term in the flow momentum equation. Subsonic simulations are conducted for flow-acoustic feedback cases using a scale-resolving run-time coupled hierarchical Cartesian mesh solver, which operates with different explicit time step sizes for incompressible flow and acoustics. The first simulation case focuses on the tone of a generic flute. With the major flow-acoustic feedback term included, the simulation yields the tone characteristics in agreement with reference results from K\"uhnelt based on Lattice-Boltzmann simulation. On the contrary, the standard hybrid hydrodynamic/acoustic method with the feedback-term switched off lacks the proper tone. As the second simulation case, a thick plate in a duct is studied at various low Mach numbers around the Parker-beta-mode resonance. The simulations reveal the flow-acoustic feedback mechanism in very good agreement with experimental data of Welsh et al. Simulations and theoretical considerations reveal that the feedback term does not reduce the stable convective flow based time step size of the flow equations.Comment: Submitted to Journal of Computational Physic

    A linear stability analysis of compressible hybrid lattice Boltzmann methods

    Full text link
    An original spectral study of the compressible hybrid lattice Boltzmann method (HLBM) on standard lattice is proposed. In this framework, the mass and momentum equations are addressed using the lattice Boltzmann method (LBM), while finite difference (FD) schemes solve an energy equation. Both systems are coupled with each other thanks to an ideal gas equation of state. This work aims at answering some questions regarding the numerical stability of such models, which strongly depends on the choice of numerical parameters. To this extent, several one- and two-dimensional HLBM classes based on different energy variables, formulation (primitive or conservative), collision terms and numerical schemes are scrutinized. Once appropriate corrective terms introduced, it is shown that all continuous HLBM classes recover the Navier-Stokes Fourier behavior in the linear approximation. However, striking differences arise between HLBM classes when their discrete counterparts are analysed. Multiple instability mechanisms arising at relatively high Mach number are pointed out and two exhaustive stabilization strategies are introduced: (1) decreasing the time step by changing the reference temperature TrefT_{ref} and (2) introducing a controllable numerical dissipation σ\sigma via the collision operator. A complete parametric study reveals that only HLBM classes based on the primitive and conservative entropy equations are found usable for compressible applications. Finally, an innovative study of the macroscopic modal composition of the entropy classes is conducted. Through this study, two original phenomena, referred to as shear-to-entropy and entropy-to-shear transfers, are highlighted and confirmed on standard two-dimensional test cases.Comment: 49 pages, 23 figure
    • …
    corecore