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SUMMARY

The scientific community in its never-ending road of larger and more efficient computational resources is in
need of more efficient implementations that can adapt efficiently on the current parallel platforms. GPUs are
an appropriate platform that cover some of these demands. This architecture presents a high performance
with a reduced cost and an efficient power consumption. However, the memory capacity in these devices
is reduced and so expensive memory transfers are necessary to deal with big problems. Today, the Lattice-
Boltzmann Method has positioned as an efficient approach for Computational Fluid Dynamics simulations.
Despite this method is particularly amenable to be efficiently parallelized, it is in need of a considerable
memory capacity, which is the consequence of a dramatic fall in performance when dealing with large
simulations. In this work, we propose some initiatives to minimize such demand of memory, which allows
us to execute bigger simulations on the same platform without additional memory transfers, keeping a high
performance. In particular, we present two new implementations, LBM-Ghost and LBM-Swap, which are
deeply analyzed, presenting the pros and cons of each of them. Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Computational Fluid Dynamics, Lattice-Boltzmann Method, GPU, CUDA

1. INTRODUCTION

GPUs are today an efficient alternative to other architectures, in particular due to theirs
computational capacity and efficient power consumption. Many software packages have already
been ported to take advantage of GPU computing. Although there are some applications or solvers
that can be difficult to tune [29, 31] for GPUs. Fortunately, other solvers are particularly well
suited for GPU acceleration and are able to achieve significant performance improvements. Lattice
Boltzmann method (LBM) [22] is one of these examples due to its inherently data-parallel nature.
The parallelism is abundant in LBM which is also amenable to fine grain parallelization. This
is particularly interesting for GPU computing. The benefit of using LBM on parallel computers
is consistently confirmed in many works [2, 20], for a large number of different problems and
computing platforms. In [18], T. Pohl et al. improved the temporal locality for cache-based multicore
architectures. P. R. Rinaldi et al. [20] reduced the number of accesses to global memory by
using a different ordering for the LBM-steps causing a high impact on performance for GPU
computing. LBM has been tested in multiples parallel platforms, such as multicore [18], hardware
accelerators [20],[2],[26] and distributed-memory computers [6, 9, 15]. Also we can find many
tools [6],[9],[34],[17] based on LBM, which has consolidated LBM in academia and industry. In
this work, we use one of then, the LBM-HPC package [9].

The demand of computational resources from scientific community is constantly increasing
in order to simulate more and more complex scenarios. One of the most important challenges
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to deal with such scenarios is the large memory capacity that the scientific applications need.
Multiple works have explored new techniques to reduce the impact of some applications on memory
capacity [35, 10, 11, 36, 37]. Although LBM is amenable to be efficiently parallelized, it is in need
of a high memory capacity. Our main motivation is the developing of two new approaches, LBM-
Ghost and LBM-Swap, which minimize the demand of memory for LBM simulations over NVIDIA
GPUs. In LBM-Ghost, we propose the use of ghost-cells to minimize the memory requirements.
The implementation of this idea is in needs of non-trivial optimizations in comparison to the state-
of-the-art implementations, which make difficult its implementation. The present work extends
the previously published works [25],[4] with additional contributions. Ihis work includes a new
approach to minimize the memory demand for LBM simulations, LBM-swap. This approach is
based on the work developed by J. Latt [8], which is adapted to NVIDIA GPUs in the present
work. Unlike the LBM-Ghost, the LBM-Swap is much easier to implement. Both initiatives allow
us to execute bigger problems over the same platform, avoiding computationally expensive memory
transfers.

The remainder of this paper is organized as follows. In Sec. 2 we introduce the general numerical
and implementation framework for LBM. After that Sec. 3 and 4 describe the different optimizations
and parallel strategies envisaged to achieve high-performance when dealing with large simulation
domains. Finally, we discuss the performance results of the proposed techniques in Sec. 5. We
conclude in Sec. 6 with a summary of the main contributions of this work.

2. LATTICE-BOLTZMANN METHOD

Most of the current solvers simulate the transport equations (heat, mass, and momentum) at
macroscopic scale [33]. Otherwise, the medium can be also seen from a microscopic viewpoint
where tiny particles (molecules and atoms) collide with each other (molecular dynamic) [14].
In this scale, where there is no definition of viscosity, heat capacity, temperature, pressure, etc.,
the inter-particle forces as well as the location, velocity, and trajectory of each of the particles
must be computed, being extremely expensive computationally [14]. Other methods use statistical
mechanisms to connect the microscopic and macroscopic worlds. The use of these methods does not
require the management of every individual particle, obtaining the important macroscopic effects
with manageable computer resources. This is the main idea of the Boltzmann equation and the
mesoscopic scale [14].

Previous works have compared the numerical accuracy of the LBM with respect to other methods
based on Navier-Stokes (see [1, 7]). They showed that LBM presents an equivalent precision
over a large number of applications. There are multiple applications where LBM has been used;
high Reynolds turbulent flows [12], aeroacoustics problems [13], bio-engineering applications [2],
among others. Also, LBM can be integrated with other methods, such as the Immersed Boundary
Method for Fluid-Solid Interaction problems [26],[30].

LBM combines some features of the Boltzmann equation over a finite number of microscopic
speeds. LBM presents lattice-symmetry characteristics which allow to respect the conservation of
the macroscopic moments [5]. The standard LBM [19] is an explicit solver for incompressible flows.
It divides each temporal iteration into two steps, one for propagation-advection (streaming) and one
for collision (inter-particle interactions), achieving a first order in time and second order in space
scheme.

LBM describes the fluid behavior at mesoscopic scale. At this level, the fluid is modeled by a
distribution function of the microscopic particle (f ). LBM solves the particles speed distribution
by discretizing the speed space over a discrete finite number of possible speeds. The distribution
function evolves according to the following equation:

∂f

∂t
+ e∇f = Ω (1)

where f is the particle distribution function, e is the discrete space of speeds and Ω is the collision
operator. By discretizing the distribution function f in space, in time, and in speed (e = ei) we obtain
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REDUCING MEMORY REQUIREMENTS FOR LARGE SIZE LBM SIMULATIONS ON GPUS 3

fi(x, t), which describes the probability of finding a particle located at x at time t with speed ei.
e∇f can be discretized as:

e∇f = ei∇fi =
fi(x+ ei∆t, t+ ∆t)− fi(x, t+ ∆t)

∆t
(2)

In this way the particles can move only along the links of a regular lattice (Fig. 1) defined
by the next discrete speeds (e0 = c(0, 0);ei = c(±1, 0), c(0,±1), i = 1, · · · , 4; ei = c(±1,±1),
i = 5, · · · , 8 with c = ∆x/∆t) so that the synchronous particle displacements ∆xi = ei∆t never
takes the fluid particles away from the lattice. In this study we use the standard two-dimensional
9-speed lattice D2Q9 [5].

c2 c1

c8c7

c4

c3

c6 c5

ω0
c0

ω2

ω4 ω8ω7

ω6 ω3 ω5

ω1

Figure 1. The standard two-dimensional 9-speed lattice (D2Q9) [16].

The operator Ω computes the changes caused by the collision between particles at microscopic
scale, which is defined by the function (f ). To calculate this operator we consider the BGK
(Bhatnagar-Gross-Krook) formulation [16] which relies upon a unique relaxation time, τ , toward
the equilibrium distribution feqi :

Ω = −1

τ
(fi (x, t)− feqi (x, t)) (3)

The equilibrium function feq (x, t) can be obtained by Taylor series expansion of the Maxwell-
Boltzmann equilibrium distribution [19]:

feqi = ρωi

[
1 +

ei · u
c2s

+
(ei · u)

2

2c4s
− u2

2c2s

]
(4)

where cs is the speed of sound (cs = 1/
√

3), u is the vertical or horizontal component (see
Algorithm 1) of the macroscopic velocity in the given position, and the weight coefficients ωi are
ω0 = 4/9, ωi = 1/9, i = 1, . . . , 4 and ωi = 1/36, i = 5, . . . , 8 based on the current normalization.
Through the use of the collision operator and substituting the term ∂fi

∂t with a first order temporal
discretization, the discrete Boltzmann equation can be written as:

fi(x, t+ ∆t)− fi(x, t)
∆t

+
fi(x+ ei∆t, t+ ∆t)− fi(x, t+ ∆t)

∆t
(5)

= −1

τ
(fi (x, t)− feqi (x, t))

which can be compactly written as:

fi (x+ ei∆t, t+ ∆t)− fi (x, t) = −∆t

τ
(f (x, t)− feqi (x, t)) (6)
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Algorithm 1 LBM pull.
1: for ind = 1→ Nx ·Ny do
2: Streaming
3: for i = 0→ 8 do
4: xstream = x− cx[i]
5: ystream = y − cy[i]
6: indstream = ystream ·Nx+ xstream
7: f [i] = f1[i][indstream]
8: end for
9: for i = 0→ 8 do

10: ρ+ = f [i]
11: ux+ = cx[i] · f [i]
12: uy+ = cy[i] · f [i]
13: end for
14: ux = ux/ρ
15: uy = uy/ρ
16: Synchronization point (only) for our approach based on Ghost Cell
17: syncthreads()
18: Collision
19: for i = 0→ 8 do
20: cu = cx[i] · ux + cy[i] · uy
21: feq = ω[i] · ρ · (1 + 3 · cu+ cu2 − 1.5 · (ux)2 + uy)

2

22: f2[i][ind] = f [i] · (1− 1
τ ) + feq · 1

τ
23: end for
24: end for

The macroscopic velocity u in equation 4 must satisfy a Mach number requirement | u | /cs ≈
M << 1, which can be seen as the Courant Friedrichs Lewy (CFL) number for classical Navier
Stokes solvers.

As mentioned above, the equation 6 is typically advanced in time in two stages, the collision and
the streaming stages.
Given fi(x, t) compute:

ρ =
∑
fi(x, t) and

ρu =
∑
eifi(x, t)

Collision stage:
f∗i (x, t+ ∆t) = fi (x, t)− ∆t

τ (f (x, t)− feqi (x, t))

Streaming stage:
fi (x+ ei∆t, t+ ∆t) = f∗i (x, t+ ∆t)

LBM exhibits a high degree of parallelism, which is amenable to fine granularity (one thread per
lattice node), as the computing of each of the lattice points is completely independent. To carry out
LBM-streaming in parallel, we need two different distribution functions (f1 and f2 in Algorithm 1).

We decided to work with the pull approach (introduced by [32]). This approach has been widely
analyzed in many studies in [20],[26],[30]. This is implemented via a single-loop where each
lattice node can be independently computed by performing one complete time step of LBM.
This implementation is given in Algorithm 1. Basically, the pull approach fuses in a single
loop (that iterates over the entire domain), the computation of both LBM-operations, LBM-
collision and LBM-streaming, to improve temporal locality. Furthermore it is not in need of any
synchronization among these operations. Also, it minimizes the pressure on memory with respect
to other approaches, as the macroscopic level can be completely computed on the highest levels of
memory hierarchy (registers/L1 cache).

Memory management plays a crucial role in LBM implementations. The information of the fluid
domain should be stored in memory in such way that reduces the number of memory accesses
and keeps the implementation highly efficient by taking advantages of vector units. We exploit

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



REDUCING MEMORY REQUIREMENTS FOR LARGE SIZE LBM SIMULATIONS ON GPUS 5

coalescence by using a Structure of Array (SoA) approach. This idea (pull-coalescing) has proven
to be a fast implementation in multicore and GPUs architectures [20],[26],[3],[30]. The discrete
distribution function fi is stored sequentially in the same array (see Fig. 2, where Nx and Ny are the
number of horizontal and vertical fluid nodes respectively). In this way, consecutive threads access
to contiguous memory locations.

Nx*Ny Nx*Ny Nx*Ny

Figure 2. SoA data layout to store the discrete distribution function fi in memory.

Parallelism is abundant in the LBM update and can be exploited in different ways. The
recommendable parallelization of LBM over GPUs consists of using a single kernel by using a 1D
Grid of 1D CUDA block, in which each CUDA-thread performs a complete LBM update on a single
lattice node [26]. Lattice nodes are distributed across GPU cores using a fine-grained distribution
(Fig. 3).

Cuda Block 0 Cuda Block 1

Cuda Block 2 Cuda Block 3

Cuda Block N

Thread 0 Thread 1 Thread 3 Thread 4 Thread 5

Fine Grained (CUDA) Partitioning

Figure 3. Fine-grained distributions of the lattice nodes.

In order to exploit the parallelism found in the LBM, previous studies make use of two different
data set [20],[6],[9],[17],[30]. Basically, it consists of using an AB scheme [26] which holds the data
of two successive time steps (A and B) and the simulation alternates between reading from A and
writing to B, and vice-versa. In this work we propose two alternatives that follow an AA scheme to
reduce such high memory requirements, one by adapting the use of ghost cell to LBM, and one by
adapting the LBM-swap approach to our platform (NVIDIA GPUs).

3. LBM-GHOST CELLS

This section explains how we have adapted the use of ghost cells to LBM to reduce the memory
requirements for GPU-based implementations.

Although, the ghost cells are usually used for communication in distributed memory systems [27],
we use this strategy to reduce memory requirements and avoid race conditions among the set of
CUDA blocks (fluid blocks). To minimize the number of ghost cells we use the biggest size of CUDA
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6 PEDRO VALERO-LARA

Figure 4. A simple scheme for our LBM approach composed by four fluid blocks (CUDA blocks) composed
by ghost-cells (dark-gray background), boundary (light-gray background), and fluid (white-background)

units.

block possible. The use of ghost cells consists of replicating the borders of all immediate neighbors
blocks, in our case fluid blocks. These ghost cells are not updated locally, but provide stencil values
when updating the borders of local blocks. Every ghost cell is a duplicate of a piece of memory
located in neighbors nodes. To clarify, Fig. 4 illustrates a simple scheme for our interpretation of the
ghost cell strategy applied to LBM (LBM-Ghost).

Streaming Operation (pull scheme)

Figure 5. Streaming operation from ghost cells to fluid units.

In LBM-streaming operation (Fig. 5), some of the lattice-speed in each ghost cell are used by
adjacent fluid (lattice) elements located in neighbors fluid blocks. Depending on the position of the
fluid units, a different pattern needs to be computed for the LBM-streaming operation. For instance,
if one fluid element is located in one of the corners of the fluid block, this requires to take 5 lattice-
speed from 3 different ghost cells. However, if it is in other position of the boundary, it have to take
3 lattice-speed from one ghost cell (Fig. 5).

The information of the ghost cells have to be updated once per time step. The updating is
computing via a second kernel before computing LBM. This kernel moves some lattice-speed from
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REDUCING MEMORY REQUIREMENTS FOR LARGE SIZE LBM SIMULATIONS ON GPUS 7

lattice units to ghost cells. This CUDA kernel is computed by as many threads as ghost cells. To
optimize memory management and minimize divergence, continuous CUDA blocks compute each
of the updating cases. To clarify Fig. 6 shows the differences between each of the cases regarding the
location. Similarly to the LBM-streaming, a different number of memory movements are necessary
depending on the position of the ghost cells. In particular, if one ghost cell is located in one of the
ghost cell rows or columns (Vertical and Horizontal cases in Fig. 6), this needs to take 6 lattice-speed
from 2 different fluid units (3 lattice-speed per fluid unit). However, if one ghost cell is positioned
in one of the corners (Corner case in Fig. 6), then this ghost cell requires 4 lattice-speed from 4 fluid
units.

Corner

Updates Operation (pull scheme)

Vertical

Horizontal

Figure 6. Update operation from fluid units (white background) to ghost cells (gray background), depending
on ghost cells position.

Unlike the LBM-Standard implementation (pull approach) on GPU, the CUDA blocks need to be
synchronized before computing collision. This is possible using syncthreads() (see Algorithm 1).
The synchronizations and ghost cells make possible the absence of race conditions.

It is well known that the memory management has an impressive impact on performance, in
particular on those parallel computers that suffer from a high latency such as, NVIDIA GPUs or
Intel Xeon Phi [26]. Furthermore, LBM is a memory-bound algorithm, so that, another important
optimization problem is to maximize data locality.

The previous thread-data distribution shown in Fig. 3 does not exploit coalescence (contiguous
threads access to continuous memory locations), when dealing with ghost cells, so we proposed
a new memory mapping which fits better our particular data structure. We follow the same
aforementioned strategy (SoA), adapting it to our approach based on ghost cells. Instead of mapping
every lattice-speed in consecutive memory locations for the whole simulation domain (Fig. 2), we
map the set of lattice-speed of every bi-dimensional CUDA (fluid) block in consecutive memory
locations, as graphically illustrated by Fig. 7.
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100 101 102 103 104 105 106 107

116 117 118 119 120 121 122 123

124 125 126 127 128 129 130 131

.  .  .

108 109 110 111 112 113 114 115

192 193 194 195 196 197 198 199

CUDA (Fluid) Block 1 (Memory Locations)

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

92 93 94 95 96 97 98 99
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CUDA (Fluid) Block & Memory Mapping (wise−row order)

Figure 7. Memory and CUDA block mapping for the 1 lattice + ghost approach.

4. LBM-SWAP

In this section, we explore other strategy to minimize the memory requirements for LBM
simulations on NVIDIA GPUs. Unlike the previous strategy, this approach (LBM-swap) does
not need more memory (ghost cells) or change the data layout. This makes much easier the
implementation and the integration with the CPU for heterogeneous implementations [26, 23, 30,
24, 28]. The LBM-swap algorithm only needs one lattice-speed data space. For sake of clarity and
make easier the understanding in the rest of this section, let’s define the opposite relation as follow:

copposite(i) = −ci (7)

The LBM-swap consists of swapping the lattice-speed after computing the two-main LBM steps,
collide and streaming. In this way we avoid race conditions among neighbor lattice. The swap
function can be implemented as Pseudocode 8 describes.

Algorithm 2 Swap implementation.
1: void swap(double ∗ a, double ∗ b){
2: double tmp = a;
3: a = b;
4: b = tmp;
5: }

Basically, this approach is based in the next property:
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Prepared using cpeauth.cls DOI: 10.1002/cpe



REDUCING MEMORY REQUIREMENTS FOR LARGE SIZE LBM SIMULATIONS ON GPUS 9

fi (x+ ei∆t, t+ ∆t)← fopposite(i)(x, t) (8)

which is symmetric and then it can be reverted by using the property i = opposite(opposite(i))
and Eq. 7 obtaining:

fopposite(i)(x, t+ ∆t)← fi (x+ ei∆t, t) (9)

As the LBM-Ghost, here we need two kernels, one LBM-collision and one for LBM-streaming.
Due to GPU programming and architecture, it is necessary a strong point of synchronism among
both steps to guarantee the absence of race conditions among them. This is because of the use of
one lattice (AA scheme) instead of 2-lattice (AB scheme). In each kernel we have as many threads as
number of lattice (fluid) nodes. We use the same CUDA thread and memory mapping used for the
LBM-Standard approach (Figures 2 and 3).

Pseudocode 3 describes the first kernel of the LBM-Swap. As shown, apart of using one lattice-
space (f in pseudocode 3), the only difference with respect to the LBM-Standad consists of
computing a swap operation after LBM-collision on all lattice nodes.

Algorithm 3 LBM-swap, kernel collision.
1: ind = threaIdx
2: for i = 0→ 8 do
3: ρ+ = f [i][ind]
4: ux+ = cx[i] · f [i][ind]
5: uy+ = cy[i] · f [i][ind]
6: end for
7: ux = ux/ρ
8: uy = uy/ρ
9: for i = 0→ 8 do

10: cu = cx[i] · ux + cy[i] · uy
11: feq = ω[i] · ρ · (1 + 3 · cu+ cu2 − 1.5 · (ux)2 + uy)

2

12: f [i][ind] = f [i][ind] · (1− 1
τ ) + feq · 1

τ
13: end for
14: Swapping
15: for i = 0→ 4 do
16: swap(f [i][ind], f [i+ 4][ind])
17: end for

The second kernel is implemented as Pseudocode 4 describes. Basically it consists of computing
streaming and swap, as described in Eq. 9.

Algorithm 4 LBM-swap, kernel streaming.
1: ind = threaIdx
2: for i = 0→ 4 do
3: xstream = x+ cx[i]
4: ystream = y + cy[i]
5: indstream = ystream ·Nx+ xstream
6: Streaming and Swapping
7: swap(f [i+ 4][ind], f [i][indstream])
8: end for

For sake of clarity, Figure 8 graphically illustrates the swapping carried out in both LBM steps,
collision (top) and streaming (bottom):

5. PERFORMANCE EVALUATION

To carry out the experiments we have used one NVIDIA Kepler (K20c) GPU with 2496 CUDA
cores at 706 Mhz and 5GB GDDR5 of memory. More details about the specific architecture that
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Swap Operation

Swapping in streaming

Swapping after computing collision

Figure 8. Swap operation in LBM-collision (top) and in the LBM-streaming (bottom).

have been used for performance evaluation are given in Table I. The memory hierarchy of the GPU
has been configured as 16KB shared memory and 48KB L1, since our codes can not take advantages
form a bigger shared memory. We have considered the most appropriate size of fluid block for each
of the tests.

Platform NVIDIA GPU Kepler K20c
Model Kepler K20c

Frequency 0.706
Cores 2496

On-chip Mem. SM 16/48KB (per MP)
L1 48/16KB (per MP)
L2 768KB (unified)

Memory 5GB GDDR5
Bandwidth 208 GB/s
Compiler nvcc 6.0.67

Compiler Flag -O3 -arch = sm 35
Table I. Summary of the main features of the platforms used.

Big fluid domains (from 45 millions of nodes) can not be fully stored in global memory, which
forces us to execute our problem in two-steps, when using LBM-Standard, requiring additional
memory transfers. In this case, several sub-domains must be transfered from GPU to CPU and
vice-versa every temporal iteration, causing a big fall in performance. Otherwise, the LBM-Ghost is
able to achieve a better performance when dealing with big problems.Although this approach is in
need of 2 kernels, instead of 1 as in the LBM-Standard, the time required by the new kernel (Ghost
in Fig. 9), which is in charge of updating the information in the ghost elements, does not cause a
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significant overhead. Indeed the time consumed is less than 2% with respect to the total consumed
time.
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Figure 9. Execution time for the LBM-Ghost approach.

The main motivation of this work consists of reducing the memory requirements for LBM
simulations on GPUs. The reduction achieved by LBM-Ghost represents about the 55% of the
memory consumed by the LBM-Standard. On the other hand, the LBM-Swap is in need of the
lowest memory requirements with respect to the other two implementations, needing the half of
the memory required by the LBM-Standard and about a 5% less than the LBM-Ghost. Using both
approaches, bigger simulations can be computed without additional and computationally expensive
memory transfers.

Most of the LBM studies include the MFLUPS (Millions of Fluid Lattice Updates Per Second
ratio) as a metric. As a reference, we also estimate the ideal MFLUPS [21] regarding our platform
(K20c):

MFLUPSideal =
B × 109

106 × n× 6× 8
(10)

where B × 109 is the memory bandwidth (GB/s), n depends on LBM model (DxQn), for our
framework n = 9, D2Q9. The factor 6 is for the memory accesses, three read and write operations
in the streaming step and three read and write operations in the collision step, and the factor 8 is for
double precision (8 bytes).

Fig. 10 illustrates the MFLUPS achieved by all the implementations tested and an estimation for
the ideal MFLUPS for our platform. The LBM-Standard approach is close to ideal performance
for “small” problems (until 36 millions of fluid units), being the LBM-Ghost almost a 10% slower,
due to a more complex implementation The LBM-swap is positioned as the slowest implementation
tested. This implementation is about a 30% and 40% slower than the LBM-Ghost and LBM-Standard
respectively. This is mainly because of the swap operation carried out at the end of the collision-
kernel (Pseudocode 3).

However, when bigger domains are considered (from 45 to 72 millions of fluid units), the LBM-
Standard turns out to be very inefficient, causing an important fall in performance. In contract, the
performance achieved by the other two approaches, LBM-Ghost and LBM-Swap, keeps constant
for the rest of tests. Also, as reference, we included the performance achieved by the GPU based
implementation provided in the sailfish package [6], which is slower than LBM-Standard and LBM-
Ghost and faster than LBM-Swap for small simulations.

Fig. 11 illustrates the speedup, in terms of MFLUPS, achieved by the LBM-Ghost and LBM-Swap
implementations over the LBM-Standard. Both approaches (LBM-Ghost and LBM-Swap) are slower
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Figure 10. MFLUPS reached by each of the approaches.
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Figure 11. Speedup achieved by the LBM-Ghost and LBM-Swap on the LBM-Standard.

than the LBM-Standard counterpart when executing simulations equal or smaller than 36 millions
of fluid units, however the LBM-Standard turns to be the slowest when dealing with bigger domains.
The LBM-Ghost is able to achieve a peak speedup equal to 25, while the peak speedup achieved by
the LBM-Swap is about 16.

6. CONCLUSIONS

The limitation found in the memory capacity of GPUs and the amount of memory demanded by
LBM supposes an important drawback when dealing with large problems. This work presents two
new alternatives, LBM-Ghost and LBM-Swap, which reduce the memory used and keep a high
performance for large simulations. It was carried out a detailed performance analysis in terms
of time, memory requirements, speedup and MFLUPS ratio. The implementation proposed are
thoroughly detailed.
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Although the LBM-Ghost achieves a high performance when dealing with big simulations, it
makes use of non-trivial optimizations, which makes difficult its implementation. Otherwise, the
LBM-Swap is straight-forward. It basically consists of swapping the lattice-units of each fluid node
after computing LBM-collision and LBM-streaming.

Also, it is important to note the LBM-Ghost is in need of a different data-layout which may
suppose additional overheads (not considered in this work) regarding pre/post-processing to adapt
the standard data-layout to/from the particular data-layout used by this approach. On the other hand,
the LBM-Swap is not in need of a different data layout with respect to the LBM-Standard, so that no
pre/post-processing is needed.
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