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ABSTRACT 

PERFECTLY MATCHED LAYER ABSORBING 

BOUNDARY CONDITIONS FOR THE DISCRETE 

VELOCITY BOLTZMANN-BGK EQUATION 

Elena Craig 

Old Dominion University, 2011 

Director: Dr. Fang Q. Hu 

Perfectly Matched Layer (PML) absorbing boundary conditions were first proposed 

by Berenger in 1994 for the Maxwell's equations of electromagnetics. Since Hu first 

applied the method to Euler's equations in 1996, progress made in the application 

of PML to Computational Aeroacoustics (CAA) includes linearized Euler equations 

with non-uniform mean flow, non-linear Euler equations, flows with an arbitrary 

mean flow direction, and non-linear Navier-Stokes equations. Although Boltzmann-

BGK methods have appeared in the literature and have been shown capable of sim­

ulating aeroacoustics phenomena, very little has been done to develop absorbing 

boundary conditions for these methods. The purpose of this work was to extend 

the PML methodology to the discrete velocity Boltzmann-BGK equation (DVBE) 

for the case of a horizontal mean flow in two and three dimensions. The proposed 

extension of the PML has been accomplished in this dissertation. Both split and un-

split PML absorbing boundary conditions are presented in two and three dimensions. 

A finite difference and a lattice model are considered for the solution of the PML 

equations. The linear stability of the PML equations is investigated for both models. 

The small relaxation time needed for the discrete velocity Boltzmann-BGK model 

to solve the Euler equations renders the explicit Runge-Kutta schemes impractical. 

Alternatively, implicit-explicit Runge-Kutta (IMEX) schemes are used in the finite 

difference model and are implemented explicitly by exploiting the special structure 

of the Boltzmann-BGK equation. This yields a numerically stable solution by the 

finite difference schemes. As the lattice model proves to be unstable, a coupled model 

consisting of a lattice Boltzmann (LB) method for the interior domain and an IMEX 



finite difference method for the PML domains is proposed and investigated. Numer­

ical examples of acoustic and vorticity waves are included to support the validity of 

the PML equations. In each example, accurate solutions are obtained, supporting 

the conclusion that PML is an effective absorbing boundary condition. 
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CHAPTER 1 

INTRODUCTION 

Whether used to make the best choice of graft for a heart bypass surgery, to determine 

the path of a hurricane, or to design airplanes, Computational Fluid Dynamics (CFD) 

simulations are helping us gain insight and make decisions and predictions for a wide 

variety of important real life applications. Traditionally, CFD simulations have been 

carried out by solving the macroscopic governing equations of fluid flow, i.e. the 

Navier-Stokes and Euler equations. However, in recent years, methods based on the 

Boltzmann-BGK equation of gas kinetic theory have gained in popularity and have 

shown to be a good alternative to the Navier-Stokes equations for investigating fluid 

behavior. Not only can the macroscopic governing equations be recovered from the 

Boltzmann-BGK equation, but because it describes fluids at the microscopic level, 

the Boltzmann-BGK equation retains more physics of fluids, in particular for non-

equilibrium flows. Furthermore, the Boltzmann-BGK equation can be solved for 

various flows where the macroscopic governing equations are extremely difficult or 

impossible to solve, as in the case of inhomogeneous multiphase and multicomponent 

flows. 

The continuous Boltzmann equation is based on the gas kinetic theory and gives 

a microscopic description of fluids [1, 2]. Instead of solving for the macroscopic 

flow properties, the Boltzmann equation computes a particle velocity distribution 

function / which describes the probability that a particle with microscopic velocity 

£ can be found in location x at time t. The macroscopic flow properties such as 

density, momentum, energy and the stress tensor are given by the moments of the 

distribution function / with respect to the particle velocity £. The Boltzmann-

BGK equation is obtained from the continuous Boltzmann equation by replacing 

the collision operator with the Bhatnagar-Gross-Krook (BGK) collision model which 

approximates the tendency of a system to approach equilibrium through a relaxation 

process with constant relaxation time A [2, 3]. If the infinite velocity space £ is 

also reduced to a finite number of discrete velocities {£.,•} such that the ability of the 

system to produce accurate fluid dynamics is maintained, then we obtain the discrete 

velocity Boltzmann-BGK equation (DVBE). The 2D 9-velocity (D2Q9) and the 3D 

This dissertation follows the style of the AIAA Journal 
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27-velocity (D3Q27) models are two examples of such discrete velocity sets [4]. 

Numerical solutions of the discrete velocity Boltzmann-BGK equation can be 

obtained by finite difference and finite volume methods [5-8] as well as lattice meth­

ods [9-14]. The lattice methods are based on the lattice Boltzmann (LB) equation 

which was initially developed as an extension of lattice gas automata [15]. However, 

the lattice Boltzmann equation can be derived as a space-time discretization of the 

DVBE which can be translated to a simple two-step evolution procedure for the prob­

ability distribution functions {f3} on a discrete lattice [3,4]. The evolution procedure 

consists of a local collision step with constant relaxation time and a streaming of the 

distribution functions from one lattice point to the next relative to the discrete ve­

locities. This process makes the LB method simple to implement, fast in execution, 

and well suited for parallel computing, which is why the LB method has become a 

widely used numerical tool for investigation and prediction in practical engineering 

applications. Substantial progress has been made in the past two decades in extend­

ing the capabilities of the LB method to a wide range of CFD problems, including 

flows with complex geometries, turbulent flows, multi-component and multi-phase 

flows, thermal flows and other complex physical systems ( [9] and references cited 

therein). 

In recent years, numerical methods based on the discrete velocity Boltzmann-

BGK equation have also been applied to problems of Computational Aeroacoustics 

(CAA) [7,8,11,12,14,16]. Wave propagation problems, such as those arising in CAA, 

often involve infinite or very large physical domains which would be either unfeasi­

ble or very expensive to solve numerically. To reduce the computational cost and 

time to a level that current resources can handle, the computational domain is often 

truncated. Artificially truncating the physical domain creates numerical boundaries 

which have to allow both the aerodynamic disturbances and the acoustic waves to 

pass through without reflection in order to maintain an accurate flow solution. The 

type of boundary conditions that control spurious wave reflections from the bound­

aries are referred to as non-reflective boundary conditions. 

The development of effective non-reflective boundary conditions is a very impor­

tant aspect of simulating flows in unbounded domains and is crucial to Aeroacoustic 

problems. Numerous non-reflective boundary conditions have been proposed for the 

governing equations used in traditional CFD and CAA. Among these are the asymp­

totic boundary conditions [17-22], the characteristic boundary conditions [23-27], 
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the absorbing layers [28-37], and the Perfectly Matched Layer [38-44], which is the 

subject of the present work. 

Asymptotic boundary conditions are derived from the far-field asymptotic ex­

pansion of the solution of the governing equation in physical space [45]. To use this 

type of boundary condition effectively, the computational domain must be sufficiently 

large so that the artificial boundaries are located far enough from the source for the 

truncated asymptotic solution to be considered valid. One immediate drawback of 

this method is the fact that the far-field asymptotic expansion of the solution must 

be known. Another drawback is the loss of computational efficiency as it may be 

necessary to simulate a larger computational domain than is physically relevant to 

satisfy the asymptotic assumptions. 

Characteristic boundary conditions are obtained from the characteristic wave 

analysis of the governing equations. More specifically, the Jacobian matrix of the 

governing equations is diagonalized and the sign of the eigenvalues is used to identify 

waves as either incoming or outgoing. The boundary conditions are then specified to 

take into account the type of wave under consideration. To make sure the problem 

is well defined, the boundary conditions for outgoing waves must be extrapolated 

from inside the domain and cannot be specified. This type of boundary condition 

is very effective when the waves exiting the domain are normal to the boundary, 

but produces reflections when the angle of incidence is not zero or when nonlinear 

disturbances cross the outflow boundary. 

The absorbing layers, also known as "sponge layers," "exit zones", or "buffer 

zones," are obtained by extending the computational domain with regions where 

modified equations reduce the amplitude of outgoing waves so reflections are min­

imized. The construction of these boundary conditions can be done in a number 

of ways. Some frequently used methods in CFD and CAA include adding artificial 

dissipation and damping terms to the governing equations, modifying the character­

istics of the governing equations, grid stretching, and numerical filtering [46]. These 

methods can be combined with one another or with other non-reflective boundary 

conditions for better performance. However, if the attenuation of the outgoing waves 

is not done in a gradual fashion, reflections can be created within the absorbing layers 

themselves. 

The Perfectly Matched Layer (PML) technique is similar to the absorbing layers 

as the computational domain is extended with artificial layers where the outgoing 
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waves are absorbed exponentially in time. The advantage of using PML over other 

types of absorbing zones, is that PML equations match the governing equations at 

the boundary of the computational domain. As a result, the PML layers do not need 

to be as wide as other absorbing layers to show improved accuracy. 

The Perfectly Matched Layer (PML) technique was first derived by Berenger in 

1994 by manually constructing the conditions for non-reflective incident waves for 

Maxwell's equations [47]. It was subsequently shown to be equivalent to a more 

general approach, referred to as stretched-coordinate PML [48-50]. Recently, the 

PML methodology has been applied to the governing equations of CFD and CAA. 

In particular, PML has been extended to linearized Euler equations with non-uniform 

mean flow [40], to non-linear Euler equations [41,51], to flows with an arbitrary mean 

flow direction [44], and to non-linear Navier-Stokes equations [51]. 

Compared to the extensive studies in the traditional CFD, research on the bound­

ary conditions for numerical methods based on the Boltzmann-BGK equation is 

relatively limited. Kam et al. investigated three types of nonreflecting boundary 

conditions for the DVBE: the extrapolation method which is obtained by requiring 

that either / or its first gradient be zero in every lattice direction, the C1 continuity 

method which extrapolates / on the boundary based on at least two known points 

inside the domain, and an absorbing boundary condition which is formed by adding 

a damping term to the Boltzmann equation [11]. Najafiyazdi and Mongeau applied 

the Perfectly Matched Layer (PML) technique to the lattice Boltzmann equation but 

their formulation has limited applicability to the field of CAA [52]. 

The objective of this thesis is to augment the existing research of the Per­

fectly Matched Layer as an absorbing boundary condition for the discrete velocity 

Boltzmann-BGK equation with specific application to the field of CAA. Thus far, 

the majority of work relating to the application of PML to CAA problems has been 

done for the Euler and Navier-Stokes governing equations. By comparison, very lit­

tle has been done to extend the capabilities of the PML to the Boltzmann-BGK 

equation [52]. As more models based on the Boltzmann-BGK equation are being de­

veloped for CFD and CAA, there is a need for robust absorbing boundary conditions 

so these models can be used in practical applications. 

Of specific importance in the present work is the derivation of PML equations for 

the discrete velocity Boltzmann-BGK equation in cartesian coordinates for the case 

of horizontal mean flow. For the aforementioned case, we derive new PML equations 
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in split and unsplit variables for two and three dimensions. An examination of the 

linear waves supported by a simple 9-velocity discrete Boltzmann-BGK equation 

shows that it supports the familiar acoustic and vorticity waves, in addition to other 

highly damped wave modes. The dispersion relations of the acoustic and vorticity 

waves of the 9-velocity discrete model are found to be similar to those of the Euler 

equations. Based on this fact, we are justified in expecting to be able to construct 

stable and effective PML equations following the same space-time transformation 

used by Hu to derive the PML for the Euler equations [39,40]. The specific steps 

taken to derive the PML equations are detailed in Chapter 3. 

To validate the PML equations, we use discrete velocity models with a small 

number of discrete velocities, i.e. the two dimensional 9-velocity model, referred to 

as D2Q9, and the three dimensional 19-velocity model known as D3Q19 [15]. We 

also consider solutions obtained by both a finite difference and a lattice method and 

we limit our study to inviscid flows. In order for the Boltzmann-BGK model to solve 

the Euler equations, the relaxation time A has to be very small, or, in other words, 

the collision operator is highly stiff. When we seek a finite difference solution to the 

PML equations, the stiffness of the collision term renders the traditional explicit time 

integration schemes impractical because the stability restriction on the time step size 

is quite severe. On the other hand, use of implicit integration schemes would require 

that a linear system be solved at each time step which would be computationally 

expensive. 

Alternatively, we consider implicit explicit (IMEX) Runge-Kutta schemes which 

have the benefit of an explicit implementation and a larger stability region than 

explicit schemes. The stability regions for the second, third, and fourth order IMEX 

Runge-Kutta schemes used for the finite difference solution of the PML equations 

are new to this work. The IMEX Runge-Kutta schemes are specifically designed and 

optimized for the integration of systems that contain both stiff and non-stiff terms. 

The implicit scheme is optimized for the integration of stiff terms while the explicit 

scheme is optimized for non-stiff terms so the combination of the two gives a larger 

stability region than if either scheme was used to integrate the whole system. Due 

to the special properties of the collision term in the Boltzmann-BGK equation, the 

implicit stages can be treated explicitly [10,53,54]. A description of IMEX schemes 

and how they are implemented explicitly in this work is given in Chapter 4. 

Also of importance in this work is the coupled method we propose for the use 
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of the PML absorbing boundary conditions with the lattice Boltzmann equation. In 

this coupled model, described in detail in Chapter 5, the PML equations are solved 

with the third order IMEX Runge-Kutta finite difference scheme while the interior 

domain solution is obtained by the lattice Boltzmann method. In Chapter 6, we 

discuss some of the advantages and disadvantages of the two numerical methods we 

used in this work to solve the DVBE and the PML equations. 
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CHAPTER 2 

THE DISCRETE VELOCITY BOLTZMANN-BGK EQUATION 

2.1 T H E B O L T Z M A N N E Q U A T I O N : R E L A T I N G T H E M I C R O ­

S C O P I C A N D M A C R O S C O P I C D E S C R I P T I O N S 

One of the basic hypothesis of statistical mechanics states that all macroscopic prop­

erties of a system that are independent of mass, such as density, pressure, viscosity 

and temperature, can be described in terms of the microscopic state of that system. 

Given in terms of the spatial coordinate and momentum of each constituent molecule, 

the microscopic description requires the use of 3N spatial coordinates {q}, and 3N 

conjugate momenta, {p}, where N ~ 1023 is the number of molecules in the sys­

tem. The 6N dimensional space, also known as phase space, contains all the possible 

states of the system under consideration. If the intermolecular forces are known at a 

given time, then theoretically the state of the system can be determined for any later 

or earlier time from the Hamilton equations [55]. From a practical point of view, 

solving the equations of motion at the microscopic level is impossible to achieve, first 

of all, because of the large number of variables involved and, secondly, because the 

microscopic state of a system at any given time is impossible to determine. 

If a probabilistic approach is taken instead, then the microscopic state of the 

system does not need to be specified. This is done by considering a large collection 

of i] systems which are equivalent at the microscopic level to the system of interest. 

Each system in this collection, also known as a Gibbs ensemble, can be represented 

by a point in the phase space. As the number of systems in the ensemble tends to 

infinity, the points that represent them become dense in the phase space and their 

distribution in the phase space can be described by a continuous probability density 

function. 

The probability density function F^ is defined so that F]y({q}, {p}, t) rL=i dqidpi 

represents the fraction of phase points found in the incremental volume Yli=i dqidpi 

about the point q, p at time t [56]. If we know how FN depends on the phase at 

one particular point in time, then from the Hamilton equations we can find FN at 

any past or future time. The time evolution of F^ due to the natural motion of 

each ensemble member in the phase space is governed by Liouville's equation [56]. 

It is assumed that in determining the macroscopic properties of a system from its 
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microscopic state, averages taken over time and averages taken over the statistical 

ensemble are the same. Clearly, in attempting to solve Liouville's equation, we are 

still confronted with a large number of degrees of freedom and the issue of specifying 

the dependence of F/v on the phase point for a particular time. 

The problem can be reformulated by integrating FN over part of the variables 

to obtain the so called reduced particle density distribution functions [57]. The 

contraction of the N-particle system governed by Liouville's equation in terms of 

the reduced particle distribution functions leads to the Bogoliubov-Born-Green-

Kirkwood-Yvon (BBGKY) hierarchy of equations for the R-particle system [58]. If 

we denote a phase point by y, the R-particle distribution function is defined as: 

FR(yi,V2,-,yR,t) = JFN(y1,...,yR,...,yN,t)dyR+1,...,dyN. Then Fi(j/i,t) rep­

resents the probability of finding molecule 1 in the incremental volume dyx about 

the phase point y\ at time t. The i?-th equation in the BBGKY hierarchy of equa­

tions ties the time evolution of the i?-particle probability density function F# to the 

evolution of the (R + l)-particle probability density function F R + 1 . 

In trying to relate the macroscopic and microscopic descriptions through the 

BBGKY hierarchy, the problem of specifying initial conditions for the system and 

the large number of degrees of freedom still remain. In addition, we are confronted 

with the fact that the equations in the BBGKY hierarchy are not self contained. 

However, the most relevant macroscopic properties can be obtained from averages 

taken with respect with the first few distribution functions and the BBGKY hierarchy 

of equations can be truncated in certain limiting cases to obtain more tractable 

problems. 

The BBGKY chain can be truncated at Fi if we make the assumptions consis­

tent with the Boltzmann gas limit, i.e. the density is low enough to consider only 

two-particle collisions, the velocities of colliding particles are not correlated before 

collision and are independent of position, and external forces do not influence the 

local collision dynamics. The self contained equation for Fi is the well-known Boltz­

mann equation. When he derived his equation in 1872, Boltzmann used a heuristic 

approach. The connection of the Boltzmann equation to Liouville's equation and the 

elementary laws of mechanics was only made in 1946 [58-60]. 

If we define the phase points in terms of spatial coordinate x and velocity £ 

and let f(x,£,t) denote the single-particle density distribution function, then the 

Boltzmann equation can be written as: 
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^ + ^-v x / + o-v € / = n(/) (i) 

where £l(f) represents the collision integral and a is the external force on the particle. 

At this point we can make the connection to the macroscopic hydrodynamical 

description because the macroscopic fluid mass density p, the macroscopic velocity 

u, the specific internal energy e, the pressure tensor P and the heat flux Q can be 

obtained from the moments of the single-particle distribution / with respect to its 

velocity argument [56,61]. The first three are given by the following: 

p(x,t) = Jf(x,S,t)d£ (2) 

p(x,t)u(x,t) = J f{x,S,t)£d£ (3) 

p(x,t)e(x,t) = Jf(x,Z,t)£^-dt (4) 

The collision operator is an integral that quantifies the effect that particle collisions 

have on the evolution of the single particle distribution function over time. Even 

when only binary collisions are considered, the form of 0 ( / ) is rather complex [56]. 

However, we do not need to know the specific expression for the collision integral in 

order to understand some of its properties, which will be used in Chapter 4 for the 

application of IMEX Runge-Kutta schemes to the Boltzmann-BGK equation. Owing 

to the fact that binary collisions conserve mass, momentum, and energy, we can see 

that if we multiply the collision operator by 1, £, and £2 and integrate over £, we 

obtain: 

Q(f)d£ = 0 (5) 

n(/)*d£ = 0 (6) 

n(/)£2<*e = o (7) 

The quantities 1, £, and £2 are known as collisional invariants. 

Another important aspect of the Boltzmann equation which can be derived with­

out knowing the specific form of the collisional operator is the H-theorem which 

describes how the system approaches equilibrium and specifies the equilibrium state. 
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The global equilibrium state as given by the H-theorem and verified independently 

by equilibrium statistical mechanics is the Maxwellian distribution function [56]: 

fM£) = i° e-(Z-^/iRT ( g ) 
y J (2TTRT)I V J 

where R is the Boltzmann gas constant and T is the temperature. 

The macroscopic hydrodynamical equations for the conservation of mass, momen­

tum and energy can be obtained by multiplying the Boltzmann equation successively 

by the collisional invariants and integrating over £. Due to the presence of higher 

order moments, the conservation equations are not closed. Various assumptions can 

be made to close these equations and obtain macroscopic governing equations. In the 

Chapman-Enskog approximation, this is accomplished by expanding the equations 

for the moments of / in a power series in small Knudsen number with the conjecture 

that the time dependence of / is determined only through p, u, and T [62]. The first 

and second order Chapman-Enskog approximations yield the Euler and Navier-Stokes 

equations. Alternatively, Grad obtained a closed system of equations, referred to as 

Grad's 13 moment method, by expanding the single particle distribution function on 

the basis of the Hermite orthogonal polynomials in velocity space [63]. However, we 

do not need to solve the macroscopic governing equations to obtain the macroscopic 

variables of interest because these result directly from / which is obtained by solving 

the Boltzmann equation. 

2.2 THE BGK MODEL 

Due to the complex nature of the collision operator, obtaining solutions to the Boltz­

mann equation proves to be a daunting task. More solvable versions, referred to as 

model equations, have been proposed in the literature [2,64-67]. These equations 

are obtained by replacing the collisional integral in the Boltzmann equation with a 

simplified collision model. 

In order for the model equations to be good approximations to the Boltzmann 

equation, they should exhibit some of the same properties. As we mentioned before, 

collisional invariants are used to derive the macroscopic hydrodynamical equations 

for conservation of mass, momentum and energy from the Boltzmann equation. Since 

they have a direct effect on the macroscopic behavior of the system, the collisional 

invariants must be preserved by the model equation. At the same time, the model 
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equation should have an H-theorem to ensure that the system evolves towards the 

Maxwellian equilibrium distribution function both globally and locally. 

A simple model equation which preserves the collisional invariants and has an 

H-theorem is the BGK model which was derived by Bhatnagar, Gross and Krook , 

and independently by Welander in 1954 [2,64]. The rationale behind the BGK model 

is that many of the gritty details of the binary collisions will not have a significant 

impact on the macroscopic variables. The effect of collisions on the distribution 

function / in the BGK model is proportional to the difference of / from its local 

Maxwellian feq. Absent of any external force, the Boltzmann-BGK equation can be 

written as 

%+^^f = -\(f-n (9) 
where A is the relaxation time constant. 

Because collisions only depend on local information, the BGK model equation 

is no longer a nonlinear integral-differential equation. However, despite its simple 

appearance, the BGK model equation is a highly nonlinear equation because the 

Maxwellian equilibrium distribution function feq depends locally on density, velocity, 

and internal energy which are all obtained from the moments of / . 

In practice, the Boltzmann-BGK model can be used to obtain qualitatively good 

results for a wide variety of flow regimes. This is done by selecting the relaxation 

time to match the macroscopic transport coefficients of the flow. One of the greatest 

failures of this model is an incorrect prediction for the Prandl number which is defined 

as the ratio of kinematic viscosity to thermal diffusivity. 

2.3 THE DISCRETE VELOCITY BOLTZMANN-BGK MODELS 

The discrete velocity Boltzmann-BGK models are obtained by discretizing Eq. (9) 

in velocity space using a finite set of velocity vectors {£2}. The discrete velocities 

£i are chosen so that the resulting discrete model satisfies the conservation laws 

and is therefore able to produce accurate macroscopic fluid dynamics [68]. Some 

of the most commonly used discrete velocity models can be derived by expanding 

the Maxwellian distribution function in a Taylor series in the fluid velocity u. In 

the Chapman-Enskog calculation, the functional form of the equilibrium distribution 
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Fig. 1: Schematic of D2Q9 discrete velocity set. 

function is only used to obtain the low order moments in velocity space. For the Tay­

lor expanded Maxwellian, these moments can be calculated exactly through Hermite-

Gauss quadrature. Moreover, in order to recover the Navier-Stokes equations though 

the Chapman-Enskog procedure, only terms up to u2 need to be retained [3]. The 

coefficients of the discrete velocity equilibrium distribution function are obtained 

by replacing the quadrature computed moments into the Taylor expansion of the 

Maxwellian. For example, a widely used two dimensional velocity discretization of 

Eq. (9), referred to as the 2D 9-velocity (D2Q9) model can be obtained in this way. 

This model uses the following discrete velocity set [15]: 

^ = c(l,0)T; £2 = c(0 , l ) r ; ^ = c ( _ i ; 0 ) T ; £4 = c(0, - l ) r 

£5 = c ( l , l ) T ; £6 = c ( - l , l ) T ; £7 = c ( - l , - l ) T ; ^ = C(1,-1)T 

*8 = c(0,0) r (10) 

where c is a reference speed. The equilibrium distribution function for this model is 

given by 
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f? = wtP 
1 | 3 & - n ) | 9(^-uf 3(u-u) 

' i r 
c2 2c4 2c2 

where p and u are macroscopic density and velocity respectively and w% is the weight 

for velocity £z with 

wx = ii)2 = W3 = W4 = 1/9) w5 = w6 = W7 = w% = 1/36; iu9 = 4/9 (12) 

and speed of sound 

cs = v ^ / 3 (13) 

Shan and He showed that using a set of velocities that correspond to the nodes of a 

Gauss-Hermite quadrature to discretize the Boltzmann-BGK equation is equivalent 

to truncating the Hermite expansion of the distribution function to the corresponding 

order [68]. Because the truncated part of the distribution function does not affect the 

lower order moments that appear explicitly in the conservation equations, higher or­

der approximations to the Boltzmann-BGK can be achieved by using more velocities 

in the quadrature. In general, a two dimensional discrete velocity Boltzmann-BGK 

equation (DVBE) can be written in component form as 

dt + ldx + ldy XUl h ) [ > 

where ft is the distribution function for velocity £z = (ul,vl). In discretized velocity 

space, the macroscopic density and momentum are given by 

N 

P = 5 > (15) 

N 

pu = Ylf& (16) 

where N is the number of discrete velocities. If we define / = (/1 ; f 2 , . . . , /AT), we can 

write Eq. (14) in matrix form as 

where A and B are diagonal matrices such that An = u% and Bn = v%. 
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2.4 LINEAR ANALYSIS OF T H E D I S C R E T E V E L O C I T Y 

BOLTZMANN-BGK EQUATION 

We first investigate the linear waves supported by the discrete velocity Boltzmann-

BGK equation. Marie et al. carried out a similar study for a three dimensional 

discrete velocity Boltzmann-BGK equation [12]. To perform a linear analysis of 

Eq. (14) or Eq. (17), we first separate the distribution function into a uniform mean 

flow component and a perturbation component as 

h = if + /,' (is) 
where the overbar and the prime sign denote the mean and the perturbation values, 

respectively. Redefining the right side of Eq. (14) as gt(f3) and linearizing it yields 

</.(/,) = g+f?) + !£(/?) / ;+w;2) (19) 
df: j 

Noting that 

d9i(ieq«, _ 1 (s df? 
af^—A6" -TT^J * (20) 

and that gi(fj9) = 0 and plugging back into Eq. (14) gives 

^^.•v/ ; = -i(^-g(/;«))/; PD 
The two dimensional form of the above can be written in matrix form as 

where i" is the identity matrix, J is defined by J%] = "^(fjq), a n d matrices A and B 

are the same as given in (17). We look for plane wave solutions f'(x, t) = fe
lkx-l0Jt 

and we obtain an eigenvalue problem for ui with given values of kx and ky, as follows: 

or equivalently 

-zuf + ikxAf + ikyBf = -j(I~ J)f (23) 

uf = Mf; M:=kxA + kyB-~{I-J) (24) 
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Fig. 2: Dispersion relations of all linear waves supported by Eqs. (24), 
(25), (26), and D2Q9. 
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Fig. 3: Dispersion relations of all linear waves suppor ted by Eqs. (24), 
(25), (26), and D2Q13. 
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The eigenvalue problem in Eq. (24) will be solved numerically with MATLAB. 

Using the D2Q9 model as an example, Figure 2 shows the dispersion relations of 

UJ v.s. kx for all the nine wave modes, with ky = 10, A = 0.005 and the mean flow 

velocity C/0 = 0.5cs. The nine eigenvalues shown can be divided into two groups. One 

group of modes, shown in the left side of Figure 2, consist of three hydrodynamic 

waves, namely the two acoustic modes and one vortical mode. The imaginary parts 

of the three modes are negative, showing a damping effect of the viscosity in the 

BGK model. The other group of modes, shown on the right side of Figure 2, have 

significantly higher damping rates. 

The dispersion relations of the D2Q13 [69,70] model illustrated in Figure 3 have a 

similar behavior, with the ten wave modes shown on the right side of the figure having 

much higher damping rates than the three hydrodynamic waves shown on the left of 

the figure. It has been verified that dispersion relations of the three hydrodynamic 

waves, for the real part of u, follow closely the curves given by 

Da(u, kx, ky) = (u- U0kx)
2 - c2

s{k2
x + k2

y) = 0 (25) 

for the acoustic waves and 

DV(UJ, kx, ky) =UJ - U0kx = 0 (26) 

for the vortical wave. These are the dispersion relations for the linearized Euler 

equations. These findings are similar to those reported in Ref. [12]. 

As in the case of Euler equations [39,40,71,72], the acoustic wave modes of 

the DVBE as those shown in Figures 2 and 3 exhibit inconsistent phase and group 

velocities when the mean velocity UQ is not zero. The phase velocity, defined as 

the ratio of frequency to wavenumber (vp = jjr), is positive in quadrants I and III 

and negative in quadrants II and IV. The group velocity, defined as the change in 

frequency with respect to the change in wavenumber {vg = Jp-), is positive when the 

slope of the acoustic curve is positive and negative when the slope is negative. The 

symbols in Figure 2 denote the location where the group velocity is zero indicating 

that parts of the dispersion curves have inconsistent phase and group velocities, 

namely, a negative phase velocity but a positive group velocity for the waves that lie 

between the location of the symbol and the vertical axis. 



18 

Because a complex change of variables is involved in deriving the PML equa­

tions [39,47], the numerical stability of the absorbing layers requires that the incon­

sistencies in phase and group velocity be corrected. Otherwise, when the complex 

change of variables is applied, the resulting PML equations will produce exponen­

tially growing solutions. 

However, it has been demonstrated in previous studies that these inconsistencies 

in the phase and group velocities can be corrected by a proper linear space-time 

transformation of the form [39,40,71,72] 

x = x, y = y, i=t + /3x (27) 

where (5 is defined by 

P=-^ (28) 
co* 

in which k* and co* are the roots of 

3D 
Da(u*, k*x, ky) = 0, and ^ V , K, ky) = 0 (29) 

By Eqs. (25) and (29), we find that, for any ky, co* = \{U% - c2)]/U0]k* which leads 

to 

P = ^ W (30) 

The corresponding transformed wavenumbers and frequency are 

kx = kx + ———2 co, ky = ky, LO = co (31) 
cs — uo 

The updated acoustic and vortical dispersion relations given by 

Da(Q, kx, ky) = - T - ^ - 2 to2 - (c2 - U2) kx
2 - c2 ky2 = 0 (32) 

cs ~ U0 

C2 

-11 

r2 - n2 

cs u0 

indicate that the phase and group velocities are now consistent and that the PML 

change of variables will not cause instability. 

For the second group of waves, shown on the right side of Figures 2 and 3, the 

inconsistencies of phase and group velocities are also found but cannot be corrected 

Dv(u, kx,ky) = ^ s
 2co-U0kx = 0 (33) 
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easily. However, with intrinsic high damping rates associated with these modes, the 

application of PML change of variables may not cause instability when the PML 

absorption coefficients are not exceedingly large. This is confirmed in the stability 

analysis done in the next chapter. 
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CHAPTER 3 

THE PERFECTLY MATCHED LAYER (PML) METHOD 

3.1 I N T R O D U C T I O N TO P E R F E C T L Y M A T C H E D L A Y E R S 

Numerous problems that arise in the physical sciences and have significant techno­

logical implications involve the propagation of waves. Many of these problems, as 

those arising in CAA, also involve the propagation of waves in unbounded or very 

large domains. Truncation of the physical domain is then necessary for numerical 

simulation because the size of the problem must be reduced to a level that our current 

computational resources can manage [17,73]. 

The numerical boundaries resulting from the truncation of the physical domain 

pose a problem if proper boundary conditions are not specified because waves will 

reflect off of them back into the computational domain to invalidate the solution. An 

effective nonreflecting boundary condition will ideally have the same effect on the 

interior solution as if no boundaries were present. From a practical point of view, we 

would like to reduce reflections on the boundary to within a margin of error. The 

Perfeclty Matched Layer (PML) method has already been shown to be an effective 

tool for constructing nonreflecting boundary conditions for the Euler and Navier-

Stokes equations [40,41,51,74]. In view of this, the purpose of the present work 

will be to extend the PML methodology to the discrete velocity Boltzmann-BGK 

equation for use in the field of CAA. 

In essence, the PML method is an analytic continuation of the wave equation 

into complex coordinates followed by a coordinate transformation back to real coor­

dinates. This process changes propagating waves into exponentially decaying ones 

inside the PML layers. As seen in Figure 3.1, artificial regions, called "perfectly 

matched layers" are added on the boundaries of the computational domain. In these 

regions, new equations are derived to damp outgoing waves so they will not reach 

the boundaries and thus will not be able to reflect back. The equations for the PML 

regions are specifically designed to match the interior governing equations so that 

waves incident on the PML do not reflect at the interface. 

As we saw from the analysis of the dispersion relations supported by the dis­

crete velocity Boltzmann-BGK equation, in the case of flows with non-zero mean 

convective velocity, there is an inconsistency between the phase and group velocity 
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Fig. 4: Diagram of PML domains for a rectangular domain. Dashed lines 
indicate the interface between the PML domains and interior. 

which can result in unstable PML equations if left uncorrected. This is the same 

inconsistency that is found in the dispersion relations of the Euler equations. A 

well chosen space-time transformation has been shown to correct the inconsistency 

for the Euler equations. Since the dispersion relations for the three hydrodynamic 

waves supported by the discrete velocity Boltzmann-BGK equations considered for 

the present study are the same as those supported by the Euler equations, we have 

reason to expect that the same space-time transformation will work here as well. 

The derivation of the PML equations for the discrete velocity Boltzmann-BGK 

equation is a four fold process. The first step in the derivation is to apply the space-

time transformation to the discrete velocity Boltzmann equation. To see why this is 

necessary, consider the change of variables required in deriving the PML equations 

for an absorbing layer in the x-direction: 

x 
LO 

x -\— / axdx (34) 

where ax is the absorption coefficient defined as a positive function of x in the PML 
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domain and zero in the interior domain. When this change of variable is applied to 

a linear solution of the form 

u{x, t) = e*(**x-wt) (35) 

we obtain 

u (x, t) = e " ^ J * > dV(***-<"*) (36) 

In the equation above, the term — is the reciprocal of phase velocity so its sign will 

be the sign of the phase velocity. Because ax is a positive function of x, the sign of 

the integral fx ax dx is determined by the increase or decrease in x and is related 

to the group velocity. A positive group velocity represents a right-going wave and 

an increase in x, whereas a negative group velocity represents a left-going wave and 

a decrease in x. When the phase and group velocities have the same sign, the sign 

of the term — Jx axdx is positive and the exponential term e~~ ^o^ T will have a 

negative power resulting in exponentially decaying solutions. On the other hand, if 

the phase and group velocities have opposite signs, the exponential term will have 

a positive power resulting in exponentially growing solutions and thus an unstable 

PML. 

The transformed discrete velocity Boltzmann-BGK equation is then written in 

the frequency domain where we apply the PML complex change of variables: 

i fx , i rv 
x -> x + - / axdx; y ^y+ - aydy (37) 

U -Ixo u Jyo 

where ax and ay are the absorption coefficients in the x and ^/-directions respectively. 

Upon converting the resulting equations back to the original time and space, the 

equations for the PML regions emerge. 

Perfectly Matched Layer (PML) absorbing boundary conditions for the lattice 

Boltzmann equation have been studied previously by Najafiyazdi and Mongeau [52]. 

However, this derivation has limited applicability because the absorption coefficients 

are assumed to be equal for the PML equations to be stable. 

The approach we take in deriving the PML equations in the next section is ap­

plicable to any discrete velocity Boltzmann-BGK model, provided that the model 

supports accurate hydrodynamics. More specifically, we will derive the PML equa­

tions in both split and unsplit variables for the discrete velocity Boltzmann-BGK 



23 

equation in two and three dimensions for the case of horizontal mean flow. 

3.2 PROPOSED TWO-DIMENSIONAL PML EQUATIONS 

3.2.1 Derivation of Unsplit PML Equations 

To obtain the PML equations, we first assume a mean flow with velocity U0 and 

we decompose the distribution functions into a uniform mean flow component and a 

perturbation component 

/ = / + / ' (38) 

where the overbar and the prime sign denote the steady mean and the perturbation 

values, respectively, and the function / satisfies the discrete velocity Boltzmann-

BGK equation (17). We also assume that / = feq and the mean flow equilibrium 

distribution function, / , satisfies the following time-indepedent equation 

A^f + B^f = 0 (39) 
ox ay 

We will now derive the absorbing equation for the perturbation distribution function 

at ox oy X 

The first step in our derivation will be to correct the inconsistency in phase and 

group velocity so that we do not obtain unstable PML equations. To accomplish 

this, we follow the work of Hu and we apply the space-time transformation [41] 

i=t + @x (41) 

where [3 is given in Eq. (30). Equation (40) becomes 

df oAd(f-f) d(f-f) d(f-f) _ 1 
-oT + PA^dt— + A—^x~ + B^dy—--X{f-f ] ( 4 2 ) 

Writing the above in the frequency domain gives 

'-iw)f' + (-iu)pA{f^7) + A ^ ^ + B9{f
dy
 f) = -\(f^t«) (43) 
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Fig. 5: Illustration of absorption coefficients for PML domains. 

At this point, we apply the PML complex change of variables given in Eq. (37) with 

absorption coefficients ax and oy as illustrated in Figure 5. After the PML change 

of variables, we have 

l-iu,)f> + (-lu>)pA(f-f) + A 
1 d(f - f) 

1 + Hx Qx 

+B l d(/-/) = _I(/r>) (44) 

To write the above in the time-domain, we multiply Eq. (44) by (l + ̂ ) (1 + ^ f ) 

to obtain 

Mf + (^ + vy) r + oxay-f + {-icu)/3A(f - / ) + (ax + av) (3A(f - / ) 

+ ̂ >i,A + . ( l + i)»0>+B(l+t) 
dy 
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1 / iox iav cr~a,,\ ( r-—-^„\ . . 

—x{1 + l? +!?-??)('-*") («) 
We can write the above back in the time domain by introducing auxiliary variables 

q, r i , and r 2 such that 

— = / - / — = / - / " ' — = r, (46) 

In the original physical space and time, the PML absorbing equation can finally be 

written as 

+ax/3A [(/ - /) + ayq] = ~\(f ~ feq) ~{^ + °v) ri ~ \^yr2 (47) 

Equations (46) and (47) are the time domain PML equations to be used in the 

PML domains. They are given in terms of the distribution functions and auxiliary 

variables. 

3.2.2 Formulation of Split PML Equations 

To derive the split PML equations, we split Eq. (44) and we introduce auxiliary 

variables qx, q2, and q3 which satisfy the following equations in the frequency domain 

(-ioOfc + (-tu)PA(f^J) + — y - ^ A d { f ~ f) = 0 (48) 

-ioo)q2 + B^—^- = 0 (49) 
,H2 1 + 12*. dy K ' LO 

-tu)q3 x 
-{(/Tr) (50) 

We can recover Eq. (44) for / ' since / ' = qi + q2 + q3- Multiplying Eqs. (48) and (49) 

by (l + ^L ) and (1 + ^7 ) respectively, we obtain 

-ico)Ql + axq, + axj3A(f^J) + (-icu)pA(f^}) + A^f / ) = 0 (51) 
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(-iu)q2 + ayq2 + B^f
Q

 f) = 0 (52) 

(-ica)q3 = - I (f^f*) (53) 

Upon reverting the equations above back to the original time domain, we have 

?jL + axQl + axf3A(f - f) + Ad{f ~ / } = 0 (54) 

— + a,<z2 + 1 * ^ ^ = 0 (55) 

^ = -\if-r) (56) 
By adding Eqs. (54), (55), and(56) we obtain the equation for / and a second, split, 

PML set of equations 

| £ + A9-£ + B9^ + axQl + ayq2 + axpA(f - f) = - i ( / - /«*) (57) 

^ 1 + ^ + a ^ A ( / - / ) + A 9 ( /
g ~ / } = 0 (58) 

— - K x ^ + B — 5 ^ = 0 (59) 

In component form we have 

dfi df, df% 1 
"Qr + u«-a_L + Vt-g1 + a ^ i < + ^vSa. + 0x0Ux(fi ~ fi) = -T (/» - A69) (60) 

-r£- + VxQu + <rxPui(fi ~ ft) + ui h = 0 (61) 

-TjjT + ^yfe + i>, — = 0 (62) 

We note that the split formulation does not require additional spatial derivatives. 

On the other hand, the unsplit formulation ensures that / = / when -^ = 0. 
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3.2.3 Linear Stability of Two-Dimensional PML Equations 

To assess the stability of the absorbing boundary conditions we proposed in the 

previous section, we investigate the linear stability of the PML equations. We only 

need to consider the stability of the split formulation since the eigen solutions of the 

unsplit formulation are equivalent to those of the split formulation. We begin our 

analysis by linearizing the split PML Eqs. (57)-(59) to obtain 

df df df 1 
-£• + A-£- + B ^ + axQl + ayq2 + cx(3Af = - - (I - J) f (63) 

^ + axQl + axPAf + A^£ = 0 (64) 

dq2 df n (65) 

where A, B , i" and J are as previously defined. Now we substitute into the equations 

above a solution of the form 

w 
(f\ 

W 
0l{k X—LOt) 

which can be written in the more compact form 

(66) 

jp _ fiel{k X-OJt) 

where F is assumed constant. This gives the following system 

(67) 

dF 
~dt + 

(A o o\ 
A 0 0 

\0 0 o) 

dF 
dx 

'' B 0 0̂  
0 0 0 

\B 0 Oj 

( 
dF 
dy 

\ 

(axpA + \{I-J) axI ayl\ 

ax(3A vxI 0 

Oylj 

F = 0 

(68) 

Noting that 
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dy 

we can see that the system reduces to 

dF 
— = -tuF (69) 
dF 
& = • * • * • < 7 0 > 

dF 
ikyF (71) 

({kx -

V 
or simply, 

-iox(3)A + kyB-{{I-

(kx - ioxfi)A 

kyB 

-J) -l<7xl 

—iaxI 

0 

— MJyl^ 

0 

-lOyl) 

F = coF (72) 

MXF = coF (73) 

if we let Mi be the matrix in Eq. (72). For a given discrete velocity set, we can 

define the matrices A and B , and for given mean flow Uo, we can compute matrix 

J. Then it is not hard to see that for constant ox and ay, Eq. (73) is an eigenvalue 

problem for to, for given values of kx and ky. The occurrence of any eigenvalue co with 

a positive imaginary part co% will indicate instability because the wave amplitude will 

grow exponentially in time. On the other hand, if all the eigenvalues have nonpositive 

imaginary parts, then the system is dynamically stable. 

Using the D2Q9 model as an example, we examine the eigenvalues generated for 

relaxation time A = 0.00011 by the x, y, and corner layers. Although we would need 

to consider the range of wavenumbers \kx\, \kx\ < oo for the continuous equations, the 

Nyquist limit for finite difference schemes prescribes only wavenumbers \kx\ < -£- so 

that truncating the range of wavenumbers to \kx\, \kx\ < 20 should be valid for most 

practical choices of Ax. To examine the stability of the a>layer, we consider the range 

of Mach numbers 0 < M = U0/cs < 0.7 and absorption coefficients 0 < ax < 10. 

The upper bound for the Mach number is due to the fact that our applications 

are for low Mach number flows. In Figure 6 we show the highest contour levels of 

of maximum imaginary parts, uu of eigenvalues for the x-layer over varying Mach 

number M and absorption coefficient ax. All ut are in the order of 10~n or smaller 

and thus practically zero which suggests that the x-layer equations are stable. The 

highest level contours of the resulting maximum u% for the y-layer equations are 
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Fig. 6: Highest contour levels of maximum imaginary parts, coi, of eigenval­
ues for the cc-layer over varying Mach numbers and absorption coefficient 
&x-

displayed in Figure 7 for varying Mach number 0 < M < 0.7, absorption coefficient 

0 < cry < 10, and three different ranges of wavenumbers. We can see that as the range 

of wavenumbers is increased, the maximum value of u>i also increases but slowly. This 

suggests that the large values of coi are caused by the larger wavenumbers. Although 

the coi are not small enough to be considered zero, they are small enough to be easily 

overcome by the intrinsic damping of the numerical schemes used to solve the PML 

equations or by numerical filtering. Figure 8 shows the contours for the maximum 

coi for the corner layer for fixed Mach numbers M = 0.2 and M = 0.7, over varying 

absorption coefficients ax and ay, and varying ranges of wavenumbers. As in the 

case of the y—layer, the maximum coi are small enough that they should be easily 

overcome by the damping of the finite difference schemes or by numerical filtering as 

will be demonstrated in numerical examples. 
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05 06 07 

(c) \kx,ky\ < 20 

Fig. 7: Contours of maximum imaginary par ts , u>i, of eigenvalues for the 
2/-layer over varying Mach numbers and absorption coefficient ery. 
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(c) \kx,ky\ < 20; M = 0.7 (d) \kx,ky\ < 20; M = 0.2 

F ig . 8: H i g h e s t c o n t o u r levels of m a x i m u m i m a g i n a r y p a r t s , uji, of e igen­
va lues for t h e c o r n e r layer for fixed M over va ry ing a b s o r p t i o n coefficients 
<TT a n d <r,,. 
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DVBE 

Fig. 9: Diagram of PML domains in three dimensions. 

3.3 PROPOSED THREE-DIMENSIONAL PML EQUATIONS 

3.3.1 Unsplit PML Formulation 

To derive the PML equations in three dimensions, again we assume a mean flow with 

velocity UQ and we decompose the distribution functions into a uniform mean flow 

component and a perturbation component 

/ = / + /' (74) 

where the overbar and the prime sign denote the steady mean and the perturbation 

values, respectively. We also assume that / = feq and the mean flow equilibrium 

distribution function, / , satisfies the time-indepedent equation 

dx dy dz 
(75) 

We will derive the absorbing equation for the perturbation distribution function / ' : 
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To derive the PML equation for / ' , a space-time transformation is applied first to 

correct the inconsistency in phase and group velocity 

t = t + /3x (77) 

where (3 is given in Eq. (30). Equation (76) becomes 

°r+pAaSl^+A^+B^+c^ = A(f_r) (78) 
dt dt dx dy dz X 

Writing the above in the frequency domain gives 

'-iu)f' + (-iw)PA(f^f) + A 9 ^ ^ + B9-^J± 

+Cd{f^ ^ =-jif^f*) (79) 

Now we introduce the PML complex change of variables x' = (l + %-^f) x, y' = 

(1 + ^ j y, z' = (l + ^f) z, where ax, ay, and az are the PML absorption coefficients 

as illustrated in Figure 9. 

'-«,)/' + (-iu,)/3A(f^7) + A l d{f~f) + B 1 d{f~f) 

/ J l ,H yJ J ' I + l£x Qx 1 , lOy_ Qy 

+ Cl + ̂ d(fdzf) = -\{f::ieq) (80) 

To write the above in the time-domain, we multiply Eq. (80) by 

(1 + ^ ) ( l + ^ ) (1 + *?) to obtain 
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% 1 
{~ico)f + {ax + ay + az) f + - {axay + axaz + ayaz) f ^axayazf 

CO • - - u!2 

+ {-ico)pA{f - / ) + {ax + ay + az) pA{f - / ) 

+ - {axay + axaz + ayaz) pA{f - f) -axayazpA{f — f) 
CO CO 

, Mf-f) i d(f-f) l d{f - f) 

9{f - f) i , . nd(f - f) 1 „d(f - f) 
B u JJ +-{ax + az) B U J ' - —axazB

 U J) 

dy co dy co1 oy 

+ C ^ Q 7 - + ^ + ̂  C^dz~- ~ ^a^C—^z— = ~ X ( 1 

i \ i \ / _——— \ 
H— (cr-r + ay + az) {axay + axaz + ayaz) ^axayaz j If - feq) (81) 

We can write the above back in the time domain by introducing auxiliary variables 

qx, q2, r i , r2 , and r 3 such that 

In the original physical space and time, the unsplit PML absorbing equations in three 

dimensions can finally be written as 

df 
-ZTT + {ax + ay + az) ( / — / ) + {axay + axaz + ayaz) qY + axayazq2 

axpA [ ( / - / ) + {ay + az)qx + ayazq2] + A-^ + {ay + az) A-^ + ayazA-^ 
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+ B — + {ax + az) B-— + axazB— + C — + {ax + ay) C-— + axayC— 

= -T- ( / - feq) - -r{ax + ay + az) ri - - {axay + axaz + ayaz) r2 - -axayazr3 

(83) 

3.3.2 Derivation of Split PML Equations 

To derive the split PML equations in three dimensions, we start with Eq. (80) and we 

introduce auxiliary variables qx, q2, q3, and g4 which satisfy the following equations 

(-zuOfc + Hu,) /M(/w) + Y^^-^dx^1 = ° (84) 

U! 

{-ioo)q2 + — V g 9 ( / , ^ = 0 (85) 
LO 

H-)<?3 + T T ^ ^ J ^ = ° (86) 

{-ico)qA = -1 ( / ^ r ) (87) 

Eq. (80) is recovered where / ' = qx + q2 + q3 + q4. Multiplying Eqs. (84), (85), 

and (86) by (l + *ff), ( l + ̂ ) and (l + ̂ ) respectively, we obtain 

{-iu)qx + axQl + axpA{f^f) + {-iu)PA{f^}) + A^ ( /^ / } = 0 

{-icu)q2 + ayq2 + B^f / } = 0 (89) 

{-ico)q3 + azq3 + C^f ~ f) = 0 (90) 

(-iu)qA = - \ (/Tf*) (91) 

Changing the above back to the original time domain gives 
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?!L + axqi + axpA{f _ f) + A 9 ( / ^ / } = 0 (92) 

_ + atf92 + B — ^ — = 0 (93) 

^T + ^ 3 + c ^ 9 ^ = 0 (94) 

^i = -\(f-feq) (95) 
If we add Eqs. (92), (93), (94), and (95) we obtain the equation for / and the set of 

split PML equations 

^+A^+B^-+C^-+axql+ayq2+azq3+axpA{f - f) = - ± ( / - fq) (96) 

^ 1 + ffxQi + a ^ A ( / _ /) + A 9 ( / ^ ~ ^ = 0 (97) 

— - K r ^ + B — ^ — = 0 (98) 

^ + ^ « 3 + C - ^ J — - ° (99) 

Given ^ = {ul,vl,wl), we can write the split PML equations in component form 

— + ut-— + vl— +wl-— + axqu + ayq2l + azq3l + axpul{fl - / J = - - (/, - / , y) 

dgi* , , a l{ ^ , d(ft-ft) 
dt + crxqu + axPul{Jl Jl)+ul 

dq2l , , d{fi-fi) n 

dt + ^ + V * ^ " ° 

= 0 

(100) 

(101) 

(102) 

(103) 

The variations for the absorption coefficients ax, ay, and az are shown in Figure 9. 
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CHAPTER 4 

FINITE DIFFERENCES SOLUTION OF PML EQUATIONS 

4.1 INTRODUCTION TO IMPLICIT EXPLICIT (IMEX) RUNGE-

KUTTA SCHEMES 

For the applications considered in this work, the relaxation parameter in the BGK 

operator is very small and the system is considered stiff. When we seek a finite 

difference solution to the DVBE coupled with the PML equations derived in the 

previous chapter, the stiffness of the collision operator becomes problematic for the 

time discretization. This is not an issue for the lattice solution of the DVBE because 

the time step is set by the lattice size, whereas in the case of finite differences, the 

time step is an independent numerical parameter. 

Explicit time integration schemes restrict the time step to be in the order of the 

relaxation time A for the computation to be stable [13]. Since the relaxation time 

is very small, explicit integration schemes are not a practical option for aeroacoustic 

problems. 

With stability being the dominant consideration, implicit methods are more ap­

propriate because they have larger stability regions. However, implicit integration 

schemes require the solution of linear systems with added approximations for the 

evaluation of Jacobian matrices due to the non-linearity of the collision term [53]. In 

addition, the stiffness of the system may also restrict the time step for iterations to 

converge. Recently developed implicit explicit (IMEX) Runge-Kutta methods pro­

vide a more efficient alternative to both fully explicit and implicit methods and they 

have the added benefit of a fully explicit implementation due to the properties of the 

BGK operator. 

In designing time integration methods for evolution equations such as the 

Boltzmann-BGK or the Navier-Stokes equations, it is useful to consider separately 

the different driving forces that make up the governing equations, such as convec­

tion, diffusion or reaction [75]. This can be done by employing partitioned methods 

which combine several integration schemes into one so that the resulting combina­

tion is more efficient for the overall system than any of its component schemes alone. 

Terms, equations, or even gridpoints can be the basis for the partitioning of the gov­

erning equations and various techniques can be employed for the construction of the 
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composite scheme [76]. 

When the partitioning of the governing equations is done on a term by term basis 

the resulting methods are referred to as additive methods [77]. Due to their simple 

design and strong theoretical background, the Runge-Kutta schemes are well suited 

for the construction of additive schemes. Runge-Kutta schemes are particularly use­

ful because they permit direct control of partitioning errors and thus allow for the 

construction of stable high-order partitioned methods [75]. 

The IMEX Runge-Kutta schemes are a class of additive Runge-Kutta methods 

that combine implicit and explicit Runge-Kutta schemes and are specifically designed 

to integrate systems that contain stiff terms [10,53,54]. More specifically, the stiff 

terms are integrated using an implicit method and the remaining non-stiff terms are 

integrated by an explicit method. To ensure an explicit evaluation of the non-stiff 

terms in the composite IMEX scheme, only diagonally implicit L-stable Runge-Kutta 

schemes are considered for the implicit integration of the stiff term. Strong Stability 

Preserving (SSP) schemes are preferred for the explicit integration to prevent oscilla­

tions in the limit toward the conservation equations. General conditions are imposed 

so that the scheme is both consistent with the equilibrium system and accurate in 

the stiff limit [54]. 

To apply the IMEX Runge-Kutta scheme to the DVBE we first rewrite the equa­

tion as the sum of its non-stiff and stiff terms as follows: 

f = M/) + i9(/) 
where h(f) denotes symbolically all the non-collision terms and g{f) denotes the 

part in the collision term. The IMEX numerical scheme for solution fn at time tn 

to advance to fn+1 at time tn + At is 

v At u 

r + i = r + A t j- ^ ( /«) + ~Y1 wM{l)) (104) 
1 = 1 1=1 

where the stage values f^> are given by 

f{1) = r + ~aug{f^), (105) 

/W = r + At £ ~avh{f{3)) + y E a ^ ( / 0 ) ) , * = 2, 3,..., v. (106) 
3 = 1 3=1 
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The coefficients ay , wt, aZJ, and w, are selected to maximize accuracy and are listed 

in a double Butcher's tableau as follows: 

c A 

w 

c A 

W 

In the finite difference numerical examples, we will compare the solutions obtained 

with three IMEX schemes of different orders of accuracy. For the second order 

scheme, we will use the stiffly accurate IMEX-SSP2(3,2,2) advanced by Pareschi 

and Russo [54]. The explicit component of this IMEX scheme maintains strong 

stability at the discrete level and is referred to as Strong Stability Preserving (SSP), 

while the implicit component is an L-stable scheme. IMEX-SSP2(3,2,2) requires the 

computation of three stages before the solution can be advanced to the next time 

step, as evident from the coefficient tableau below: 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 
1 
2 

0 

0 

0 
1 
2 

1 
2 

0 

1 

1 
2 

1 
2 

0 

0 

0 
1 
2 
1 
2 
1 
2 

0 

0 
1 
2 
1 
2 

For the third order IMEX scheme, we will use IMEX-SSP3(4,3,3), also proposed by 

Pareschi and Russo, and composed of an SSP explicit scheme and an L-stable implicit 

scheme. The third order scheme requires four stages before advancing the solution 

to the next time step. If we let ax = 0.24169426078821, a2 = 0.06042356519705, and 

a3 = 0.1291528696059, we can write the coefficients for the third order scheme as: 

0 

0 

1 
1 
2 

0 

0 

0 

0 

o 

0 

0 

1 
1 
4 
1 
6 

0 

0 

0 
1 
4 
1 
6 

0 

0 

0 

0 
2 
3 

OL\ 

0 

1 
1 
2 

OL\ 

— OL\ 

0 

a2 

0 

0 

« i 

1 — ax 

a3 

l 
6 

l 
2 — ct2 

0 

0 

« i 

- « 3 

1 
6 

— OL\ 

0 

0 

0 

Ct\ 

2 
3 

We also use the fourth order IMEX scheme ARK4(3)6L[2]SA proposed by Kennedy 

and Carpenter [75]. In this scheme, the stiff terms are integrated by an L-stable, stiffly 

accurate explicit, singly diagonal implicit Runge-Kutta method (ESDIRK) while the 

nonstiff terms are integrated using a traditional explicit Runge-Kutta method (ERK). 

The coefficients for the explicit scheme ARK4(3)6L[2]SA-ERK are given as 
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0 
1 
2 
83 
250 
31 
50 
17 
20 

1 

0 
1 
2 

13861 
62500 

-116923316275 
2393684061468 
-451086348788 
2902428689909 
647845179188 
3216320057751 

82889 
524892 

0 

0 
6889 
62500 

-2731218467317 
15368042101831 
-2682348792572 
7519795681897 
73281519250 
8382639484533 

0 

0 

0 

0 
9408046702089 
11113171139209 
12662868775082 
11960479115383 
552539513391 
3454668386233 

15625 
83664 

0 

0 

0 

0 
3355817975965 
11060851509271 
3354512671639 
8306763924573 

69875 
102672 

0 

0 

0 

0 

0 
4040 
17871 

-2260 
8211 

0 

0 

0 

0 

0 

0 
1 
4 

and the coefficients for the implicit scheme ARK4(3)6L[2]SA-ESDIRK are 

0 
1 
2 
83 
250 
31 
50 
17 
20 

1 

0 
1 
4 

8611 
62500 
5012029 
34652500 

15267082809 
155376265600 

82889 
524892 

82889 
524892 

0 
1 
4 

-1743 
31250 

-654441 
2922500 

-71443401 
120774400 

0 

0 

0 

0 
1 
4 

174375 
388108 

730878875 
902184768 
15625 
83664 

15625 
83664 

0 

0 

0 
1 
4 

2285395 
8070912 
69875 
102672 
69875 
102672 

0 

0 

0 

0 
1 
4 

-2260 
8211 
-2260 
8211 

0 

0 

0 

0 

0 
1 
4 
1 
4 

4.2 IMEX IMPLEMENTATION 

For the benefits mentioned in the previous section, we will use IMEX Runge-Kutta 

schemes for the finite difference solution of the discrete velocity Boltzmann-BGK 

Eq. (17) and the PML absorbing Eqs. (57)-(59). Although the IMEX Runge-Kutta 

schemes have implicit steps, the special structure of the BGK collision operator 

permits a fully explicit numerical implementation. 

Since the local equilibrium state in the BGK collision model minimizes the entropy 

of all the states that produce the same macroscopic properties, at any point in space 

and time, the distribution function / and the Maxwellian distribution function feq 

produce the same macroscopic density, momentum and internal energy. 

P{x,t) = Jf(x,t,t)dt= J r{x,z,t)dz 

P{x,t)u{x,t) = j ' f{x,aMdt= Jr{x,$,,t)ddd 

(107) 

(108) 
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p{x,t)e{x,t) = f f{x^t)^-^-dt= j' rq{x^,t){^^-di (109) 

This property follows from an assumption in the Chapman-Enskog approximation 

which states that integrating the product of a linear combination of collisional invari­

ants with either the distribution function / or the Maxwellian distribution function 

feq over the velocity space produces the same results [56]. The equilibrium distribu­

tion function feq used in the discrete velocity models we consider in this paper also 

satisfies this property with respect to the discrete velocities and quadrature weights 

prescribed by the model [3]. 

3=1 3=1 

N N 

^ = E ^ = E a cm) 
3=1 3=1 

N , N 

Pe = \Y.f^-u)2 = \Y.f3q^3-^)2 (112) 
2 ^ ' J V , J ' 2 

3=1 3=1 

where 

f]=fJ{x,t) = W3f{x,ivt) (113) 

r3^r3\x,t)^wJr{x,ivt) (in) 
and Wj represent the weight coefficients in the quadrature. For the purpose of 

validating the PML equations, discrete velocity models with a small velocity set 

are sufficient. However, higher order discrete velocity models can be obtained by 

expanding the equilibrium distribution function in Hermite polynomials to higher 

orders and by using higher precision Gauss-Hermite quadratures [68]. 

These properties of the collision operator allow us to solve the implicit step for the 

stage distribution function f^1' in the IMEX scheme explicitly. To demonstrate how 

this is accomplished, let us consider the D2Q9 discrete velocity model as an example. 

We will begin by taking the moments of the IMEX stage Eqs. (105) and (106) to 

obtain the macroscopic density pW and macroscopic velocity u^ as in [53]. The first 

stage density value is given by 
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At 
^ ^ E / P ' E ^ + T E ^ 1 1 ) 

r(l) Remembering that g{ft ) represents the collision term and is given by 

s(f(,iy) = flm-fi" 
and making use of Eq. (110), we can see that 

;ii5) 

(116) 

9 9 9 

£<W/i1}) = an £(/f(1) - /<*>) = an £/f(1) - au ^ / ^ = 0 ("7) 
fc=i fe=i fe=i fc=i 

so the first stage macroscopic density is obtained from the previous function values 

as 

P(1) = E A " (118) 
fc=i 

Since p' ^ is now known, if we make use of Eq. ( I l l ) to show that 

£ aitfC/f)** = «" E(A"(1) - / ^ = «n £ ^ - «u £ / ^ = 0 
fc=i fc=i fe=i fc=i 

(119) 

we can also obtain the macroscopic velocity u1^1 from 

p^-EfPtK-Ens* (120) 
fc=i fc=i 

Having obtained both p ^ and n ^ , we can now replace them in Eq. (11) to get the 

equilibrium distribution functions fl . Finally, the first stage distribution functions 

fj, can be obtained explicitly from Eq. (105) as 

ft 
(i) _ 

1 + ¥an 

f™ 4_ A t n f69(1) 

ft + -yall/fe (121) 

The distribution functions for the remaining stages in the IMEX scheme can be 

computed subsequently by following the same procedure as for the first stage. More 

specifically, the macroscopic density pW and velocity u^ can be recovered from 

9 i - l 
At 

9 i 

(0 = £ fil) = £ ft+^ £ £ ~aljh{f{
k
J)) + y E E ^(A0)) (122) 

fc=i fc=l fc=l . 7 = 1 fc=l 3 = l 
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and 

9 N N z - l . N i 

,<.)„« = ̂  fi% = £ mk+^ £ £ a^/*0^ + x £ £ ^u?5)** 
fc=i fc=i ^ = 1 j = i fc=i j = i 

(123) 

which, due to the identities in Eqs. (110) and (111), reduce to 

p W = £ /," + At £ £ a ^ ( / i J ) ) (124) 
fc=i fc=i j = i 

and 

pWuW = £ / ^ + At £ £ avhifPfa (125) 
fc=i fc=i j = i 

By substituting the macroscopic variables p ^ and u^ obtained above into Eq. (11) 

we can find the equilibrium distribution functions ft, so that the distribution 

functions /v can be explicitly obtained from Eq. (106) as 

h 1 + fau 
rk + A t £ (O.A/W) + ̂ (/1J))) + x a ^" ( 1 ) 

3 = 1 

(126) 

Once the procedure described above is completed for all the stages of the IMEX 

scheme under consideration, the stage distribution functions can be replaced into 

Eq. (104) to advance the solution to the next time step. 

4.3 IMEX STABILITY 

The qualitative behavior of dynamical systems can be determined by examining the 

local solution in the neighborhood of equilibrium points. As such, we can obtain in­

formation about the stability of a system by studying the stability of its equilibrium 

points, more specifically the origin since equilibrium points can always be translated 

there. One frequently used way of doing this, outlined by the Poincare-Lyapunov 

theorem, is to determine the stability of equilibrium points by examining the eigen­

values of the linear part of the dynamical system. This analysis stipulates that the 

origin is an asymptotically stable equilibrium point if all the eigenvalues of the linear 

system have negative real parts. 
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Correspondingly, we can determine the stability of numerical methods for ordi­

nary differential equations, such as the IMEX Runge-Kutta schemes used in this 

paper, by considering the eigenvalues of the linearized system. Specifically, this is 

done by applying one step of the numerical scheme to the test problem: 

^ = Xy; y{0) = 1 (127) 

where A is an eigenvalue of the linear system. The application of Runge-Kutta 

numerical schemes to the above test problem leads to the following general form: 

yn+1 = R{AtX)yn (128) 

The function R{ At X) is called the stability function of the Runge-Kutta method and 

it is a polynomial of At A in the case of explicit schemes and a rational function of 

At A in the case of implicit schemes. The numerical scheme is stable if and only if 

R{AtX) = \R{AtX)\ < 1 (129) 

for all eigenvalues A. The region where this condition is satisfied is called the stability 

region of the numerical method and it is considered to be one of the most important 

factors in determining the performance of numerical methods for the solution of or­

dinary differential equations. Given a set of eigenvalues, the stability region specifies 

the restriction on the maximum time step At that can be used so the numerical 

method is stable. 

To obtain the stability region for the IMEX Runge-Kutta schemes as applied 

to the Boltzmann-BGK equation, we assume that the stiff collision operator has 

predominantly real eigenvalues, A9, while the convective terms have eigenvalues, A/, 

that are predominantly purely imaginary. We obtain the following model problem: 

% = ̂ y + Kv (iso) 

When we apply the numerical scheme to the above model equation,we use the implicit 

part of the scheme for the term Xgy and the explicit part for the term Xfy. The 

stability function for the three IMEX Runge-Kutta schemes used in this paper can 

be written in terms of the scaled eigenvalues pf = At A/ and pg — At Xg as follows: 
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**/,/*) = i + (/./+*) {""(/-".^(^i) 

+ 
w3 

1 - a 3 3 p 3 

( a 3 2 p / + a 3 2 ^ g ) ( l ~ QnMg + a 2 iP g ) 

(1 - a n P g ) ( l - a22pg) 
(131) 

R 
(1 - a n p f f + a 2 iPg) 

:3w,^) = i + (W +^)|^ ( 1_ a i i j ( 1_ 0 2 2 ; s ) 

w3 

1 — a33p9 
1 + 

(a32P/ + a32Pg)(l ~ QllMg + a2lAtg) 

(1 - a n p s ) ( l - a22pg) 

W4 

1 — 0,44 Pg 

a41pg {ti42pf + a 4 2 p 9 ) ( l - anpg + a21pg) 

anPg [1 -anpg){l -a22pg) 

C43P/ + a43Pg A (a32M/ + a32Pg)(l - a i l P g + a 2 l P g ) \ 1 ^ ^ 

l - a 3 3 p g V (1 - a n p 9 ) ( l - a22pg) ) \ j 

i?4(p/, pg) = 1 + {pf + pg) \ wx + -
I i — 03; a33/^g 

1 + Q3iP/ + a 3 i p 9 + 
( a 3 2 p / + a 3 2 ^ g ) ( l + a2iM/ + a2i^g) 

1 - a22pg 

W4 

1 — 044 Pg 

' , - , , (a42^/ + a 42Pg)( l + a 2 i p / + a 2 1 p 3 ) ( a 4 3p / + a 4 3 p 9 ) 
1 + Ct4lP/ + d4iPg -\ h 1 - a22pg 1 - a33Pg 

1 + d31pf + a3ipg + 
(a32P/ + a32Pg)(l + Q21P/ + a2lPg) 

1 - a22pg 

w5 

1 - a55t4g 
1 + a 5 i p / + a51pg + 

{d52pf + a 52t tg)( l + a2i/ff + Q21^g) 

1 - a22pg 
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a53pf + a53pg( {a32pf + a32pg){l + d21pf + a21pg) 
t + a 3 i p / + a 3 ip 5 H 

1 - a33^g 1 — a 2 2 p 3 

, a 5 4 p/ + a54pg ( {d42Pf + oJ42pg){l + a21pf + a21pg) 
H z. I J- + a 4 i p / + a 4 ip 9 H 

1 — 044 pg 1 - a22pg 

a 4 3 p/ + ai3pg ( (a 3 2p/ + a32pg){l + a2ipf + a21pg] 
1 + a 3 i p / + a3xpg H 

1 — a33p9 

+ 
w6 

1 — Cb66pg 
1 + a 6 i p / + a6ipg + 

1 - a22^g 

(a 6 2p/ + 062^) (1 + d2\Pf + a2iPg) 
1 - a22pg 

a63pf + a63pg( {h2^f + a32pg)(l + d21pf + a21pg) _l . | x _|_ a3ip/ + a 3 ip 9 H 
1 ~~ a33p s 1 — a22pg 

a&4Pf + a64pgf ( a 4 2 p / + a 4 2 p 3 ) ( l + a 2 i p / + a2 ipg) 
H :; I 1 + a 4 i p j + a,4ipg H 

1 — a4 4pg 1 - a2 2pg 

a 4 3 p/ + a43pg ( {a32pf+ a32pg){l + d2iPf+ a2ipg) i + a3Xpf + a3ipg-\ 
1 — a33pg 1 — a22pg 

a65pf + a65pgf (a 5 2 p/ + a 5 2p g ) ( l + a2ipf + a21pg) 
H ; I 1 + a 5 i p / + a5ipg -\ 

1 ~~ a>ttpg 1 — a 2 2 p 3 

, a53tV + a53Pg (n , . , . (a32^/ + a32Mg)(l + a 2 i p / + a2ipff; H : I -1- + a3ip/ + a3ipg -\ 
1 - a33pg 1 - a22P9 

o 5 4p/ + a54pg I _ (a42P/ + a42A4g)(l + a 2 i p / + a2ip5^ 
H ; I -1- + a±iPf -r a 4 ip g H 

1 — a4 4pg 1 - a 2 2p 9 

, 043^/ + a43/"g / -, , ~ , , (^32^/ + a32Aig)(l + «2lM/ + ^21^) 
H : I J- + o-ziPf + a3ip3 H 1 — a33P9 1 - a22pg 

(133) 

In deriving the expressions for the stability function, we only considered the 

nonzero coefficients of the schemes. Clearly, as the order of the scheme increases and 
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Fig. 10: Stability regions for the second, third, and fourth order IMEX schemes. 

more stages have to be computed, the analytic expression for the stability function 

becomes more and more cumbersome. Rather than simplifying the analytical expres­

sions of the stability functions, an easier way to obtain the stability regions is to plot 

the level curves of the function R viewed as a function of b and A", the moduli of As 

and A/. For example, this can be done in MATLAB using the contourplot command. 

In fact, only the level curve R = 1 is needed because this level curve outlines exactly 

the boundary of the stability region. In Figure 10 we plot the stability regions for 

the three IMEX schemes and, as expected, with each increase in the order of the 

scheme, we obtain a larger stability region at the cost of having more intermediary 

stages to compute. 

4.4 NUMERICAL EXAMPLES 

4.4.1 Two-Dimensional PML - Acoustic Wave 

We will first test the effectiveness of the two-dimensional unsplit PML Eq. (47) and 

split PML Eqs. (57)-(59) by simulating an acoustic wave traveling at the speed of 

sound relative to the mean flow {UQ,0). For this, we consider the physical domain 
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[—5, 5] x [—5, 5] with PML layers of width D surrounding the boundaries. The domain 

is discretized with a uniform grid Ax = Ay = 0.1. The initial conditions for density 

p and velocity components u and v are: 

p = p0 + e e - l n 2 4 # (134) 

u = Mcs; v = 0 (135) 

where po = 1 is the mean flow density and M = 0.25 is the Mach number defined by 

M = — (136) 

Compared to the mean flow, acoustic waves generally have considerably smaller am­

plitudes and the error generated by the numerical scheme from the computation of 

the mean flow can sometimes be orders of magnitude larger than the sound inten­

sity [78]. Therefore, the choice of numerical schemes for the propagation of acoustic 

waves cannot be based on the order of accuracy predicted by the Taylor series trun­

cation alone, but also on a consideration of whether the number of wave modes and 

their characteristics supported by the computation scheme are the same as those of 

the original partial differential equations [78]. Since dispersion-relation-preserving 

(DRP) finite difference schemes are both numerically accurate and preserve the wave 

modes of the original system, they are able to predict the radiation of the acoustic 

waves accurately despite the large gap between the error generated by the mean flow 

computation and the amplitude of the sound waves. For this reason, the spatial 

discretization in this example will be done using the seven-point fourth-order DRP 

finite difference scheme of Tarn and Webb [22]. Because the wave amplitude will 

have decreased to zero by the time it reached the end of the PML layers, we can use 

periodic boundary conditions for the x and y derivatives. The absorption coefficients 

ax and ay are used in the PML layers as illustrated in Figure 5 and are of the form 

ax = an 
x — XQ 

D ay = ari 
y-yo 

D 
(137) 

where XQ and y0 are the locations of the DVBE-PML interfaces, the parameter a = 2, 

D represents the width of the PML layer, and am, generally satisfying 1 < am Ax < 2, 

is chosen so that am Ax = 1 for all the examples presented here. The distribution 

functions f are initialized using the equilibrium values obtained from the initial 
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Fig. 11: Scaled norm of acoustic density p versus time for e = 0.1 showing 
the stability value for the ratio At/Acc for the IMEX schemes. 

macroscopic variables p and u given in Eqs. (134)-(143) while the PML variables are 

initialized at zero. 

The choice of value for the relaxation time A is based on the ability of a discrete 

velocity Boltzmann-BGK model to capture the behavior of sound waves accurately. 

Marie and Ricot have shown that the error of the D3Q19 discrete velocity model for 

acoustic dissipation and dispersion is small if the relaxation time is small [14]. They 

conclude that in the limit of small A, the discretization of velocity space produces 

no error in the behavior of sound waves. In order to minimize the error that the 

discrete velocity model could introduce in the simulation of sound waves, we choose 

the small relaxation time A = 0.00011 for all the numerical examples in this paper. 

Unless we are specifically comparing the effect of PML width on the reflection 

error, we will be using a PML width of D = 10 Ax, which in this case represents ten 

percent of the physical domain. However, it should be noted that the PML width 

is not contingent on the size of the interior domain. In fact, for a larger interior 

domain, the PML width would represent a smaller percentage of it. 

Our first effort will be to compare the stability of the three IMEX schemes for 
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t=12 t=16 

Fig. 12: Contours of IMEX 3 density at times t = 0, 10, 12, and 16 for 
e = 0.01 showing the acoustic pulse exiting the boundaries with little re­
flection. 
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Fig. 13: Comparison of IMEX 3 numerical acoustic density solution with 
exact solution at t imes t = 6 and 12 for e = 0.01. 
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different values of time step At. For this, we plot the time evolution of the density 

norm given by 

\P\ 

1/2 

(138) 
- * 3 

and normalized by the mean flow density norm ||po||- The results given in Figure 11 

show that stable solutions are obtained for At = 0.1 Ax for the second order IMEX 

scheme, At = 1 Ax for the third order IMEX scheme, and At = 0.9 Ax for the 

fourth order IMEX scheme. Although the stability region of the fourth order scheme 

is the largest of the three, it has a lower stability limit for the time step than the 

third order scheme. One possible justification for this inconsistency may be the fact 

that the third order scheme was designed to maintain strong stability at the discrete 

level, i.e. it is strong stability preserving (SSP) whereas the fourth order scheme is 

not. Also included in the graph is the solution obtained with the third order IMEX 

scheme for the unsplit PML formulation, and we can see that the same stability limit 

is obtained as for the split PML formulation. 

In Figure 12 we show the contour plots of density at times t = 0, 10, 12 and 16 

computed using the third order IMEX scheme. There is no apparent difference in the 

contours if the other two IMEX schemes are used to compute the solution instead. 

Furthermore, we obtain the same results for both the unsplit and split formulations 

of the PML equations. As it is shown, the acoustic pulse exits the boundaries with 

little visible reflection in the interior domain. 

We further test the accuracy of the numerical solution by comparing it with the 

exact solution. In Figure 13 we plot the density along the line segment y = 0 at 

times t = 6 and 12. We can see that the solutions obtained with the three IMEX 

schemes are in good agreement with the exact solution on the scale of the graph. 

To evaluate the reflection error quantitatively, we will compare the numerical 

solution to a reference solution obtained by using a larger computational domain. In 

Figure 14 we plot the maximum difference between the numerical density solution and 

the reference density solution along the line segment defined by the points (4.5,-4.5) 

and (4.5,4.5). This difference is normalized by A0 which is the difference between the 

peak amplitude of density as it exits the right DVBE-PML interface and the mean 

flow density. The normalized maximum density difference is plotted as a function of 

time for different values of PML width D. As it is shown in the figure, when the 

width of the PML layer increases from D = 10 Ax to D = 20 Ax, the reflection error 
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Fig. 14: Maximum difference between IMEX 3 and reference solution of 
acoustic density p versus time along the line segment denned by the points 
(4.5, - 4 . 5 ) and (4.5, 4.5) for e = 0.01 and varying PML widths D. 

is reduced. We can see that a reflection error of less than 0.1 percent is obtained 

with a PML width of 10 grid points with D = 10 Ax. 

4.4.2 Two-Dimensional PML - Vorticity Wave 

We also test the two-dimensional unsplit PML Eq. (47) and split PML Eqs. (57)-(59) 

by simulating a vorticity wave in a mean flow {UQ, 0) with Mach number M = 0.25. 

Again, we consider the physical domain [—5, 5] x [—5, 5] with PML width D = 10 Ax 

surrounding the boundaries and a relaxation time A = 0.00011. The domain is 

discretized with a uniform grid Ax = Ay = 0.1. The initial conditions for density p 

and velocity components u and v are: 

P = l ; U0 = Mcs] V0 = 0 

2 , 2 

u = UQ + eye~ln2iEi~96~ 

(139) 

(140) 

v = Vn - exe i 
% +y 

:ui) 
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In Figure 15 we plot the contours of the v—velocity at times t = 5, 30 and 50 for 

e = 0.001. We can see from the contour plots that the vorticity wave is effectively 

absorbed by the PML layer. To confirm the results, in Figure 16 we also compare the 

numerical solution along the line segment y = 0 to the exact solution at times t = 5 

and 50. The numerical solution for all three IMEX schemes is in good agreement 

with the exact solution at both times. To evaluate the reflection error quantitatively, 

again we compare the numerical solution to a reference solution obtained by using a 

larger computational domain. In Figure 17 we plot the maximum difference between 

the numerical v—velocity solution and the reference v—velocity solution along the line 

segment defined by the points (4.5,-4.5) and (4.5,4.5). This difference is normalized 

by B0 which is the peak amplitude of the v—velocity as it exits the right DVBE-PML 

interface. As the width of the PML layer increases from D = 10 Ax to D = 20 Ax, 

the reflection error is reduced. For all three IMEX solutions, a reflection error of 

less than 0.2 percent is obtained with a PML width D = 10 Ax. In this example, 

unlike the acoustic example before, where the reflection error for split and unsplit 

PML formulations was indistinguishable from each other on the scale of the graph, 

the unsplit PML equations produce better results. 

4.4.3 Three-Dimensional PML - Acoustic Wave 

In this example, we test the unsplit PML equations (83) by simulating an acoustic 

wave in a mean flow {Uo, 0) with Mach number M = 0.25. The physical domain under 

consideration is [—2, 2] x [—2, 2] x [—2, 2] with PML width D = 10 Ax and a relaxation 

time A = 0.00011. The domain is discretized with a uniform grid Ax = Ay = 0.1. 

The initial conditions for density p and velocity components u, v and w are: 

p = po + ee-^2^±^ ( 1 4 2 ) 

u = Mcs; v = 0; w = 0 (143) 

where po = 1. 

We first consider the effect of the factor P on the stability of the PML equations. 

For this, we plot the time evolution of the density norm given by 

\P\ ££X>w.oi! 
1/3 

(144) 
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t=30 t=50 

Fig. 15: Contours of IMEX 3 v—velocity at t imes t = 0, 5, 30, and 50 
for e = 0.001 showing the vorticity wave exiting the boundary without 
noticeable reflection. 
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Fig. 16: Comparison of IMEX 3 numerical v—velocity vorticity solution 
with exact solution at times t = 5 and 50 for e = 0.001. 
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Fig. 17: Maximum difference between IMEX 3 and reference solution of 
vorticity v—velocity versus time along the line segment defined by the 
points (4.5, —4.5) and (4.5, 4.5) for e = 0.001 and varying PML widths D. 

and normalized by the mean flow density norm ||p0|| for various values of P and time 

step At = 0.9 Ax, which is the limiting time step for stability. The results displayed 

in Figure 18 prove that the solution obtained with the value of P prescribed by 

Eq. (30) is more stable than the solutions obtained with other values of p. 

In Figure 19 we show the contours of density at times t = 0, 4, 6 and 8 obtained 

with a time step At = Ax. The visible reflection is very small although the time 

step is larger than the time step required for stability. 
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t=o 

Fig. 19: Contours of unsplit PML IMEX 3 density at times t = 0, 4, 6, 
and 8 for e = 0.1 showing the acoustic wave exiting the boundaries with 
small reflection. 
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CHAPTER 5 

LATTICE SOLUTION OF PML EQUATIONS 

5.1 THE LATTICE BOLTZMANN EQUATION 

The lattice Boltzmann (LB) equation was originally derived from its boolean coun­

terpart, the lattice-gas automata (LGA). The first LGA model to simulate the 

Navier-Stokes equations was independently proposed by Frisch et al. and Wolfram 

in 1986 [79,80]. This model, commonly referred to as the FHP model, is comprised 

of a two dimensional triangular lattice and Boolean particles possessing momenta 

which allow them to move from one lattice site to another in discrete time steps. At 

each lattice site there is either no particle or at most six particles simultaneously, one 

for each of its six neighboring sites. The evolution of the Boolean particle numbers 

is described by a collision followed by the advection of particles to the next site ac­

cording to their velocities. The collision process describes the possible incoming and 

outgoing configurations at each site based on a set of collision rules that ensure the 

conservation of particle number, momentum, and energy. 

Since the hydrodynamics described by LGA methods are intrinsically noisy due to 

large fluctuations in Boolean particle number, they show a lack Galilean invariance, 

and conserve spurious quantities due to their simple symmetry, better alternatives 

were sought [81]. One such alternative was proposed by McNamara and Zanetti 

in 1988 in the form of the lattice Boltzmann equation [82]. This LB equation was 

obtained by replacing the Boolean number fields in the corresponding LGA with 

ensemble averages. It is worth pointing out that the collision operator was initially 

based on its LGA predecessor and only later models used the BGK collision model. 

Also, the equilibrium distribution functions were Fermi-Dirac functions and not the 

Maxwell-Boltzmann functions of current LB models. More recently, He and Luo were 

able to show that the LB equation can be derived as a special discretization of the 

continuous Boltzmann equation [3,4]. 

An important distinction between the lattice Boltzmann (LB) equation and the 

discrete velocity Boltzmann equation (DVBE) can be found in the procedure used 

for the space and time discretizations. In LB models, the velocity set used to dis-

cretize momentum space is chosen in such a way that a lattice structure is obtained 

simultaneously for space and time [81]. The space and time discretizations of the 
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DVBE, on the other hand, are independent of each other. To see this more clearly, 

let us consider one procedure by which the LB equation can be derived. The proce­

dure outlined below involves a space and time discretization of the discrete velocity 

Boltzmann equation followed by a change of variables [83]. We begin by writing the 

discrete velocity Boltzmann-BGK equation in component form 

d-^ + ^-^h = -\{fl-ft
q) (145) 

If we integrate Eq. (145) for a time interval At along a characteristic of the form 

r{s) = {x + ^s,t + s) (146) 

we obtain 

1 fAt 

ft(x + £At, t + At) - ft{x, t) = -jl (Mx + O . * + s) 

-f:q{x + ^s,t + s))ds (147) 

An approximation of the above integral by the trapezoid rule with second order 

accuracy will results in 

ft(x + £ At, t + At) - f(x, t) = ~ ^ (/.(* + £At , t + At) - f:\x + ^ At, t + At)) 

-^{Mx,t)~f:q{x,t)) + 0{At3) (148) 

Since ftq{x + ^ At, t + At) depends on the set f(x + £zAt, t + At), we have a system 

of coupled nonlinear algebraic equations for ft at time t + At. If we recast Eq. (148) 

in the following form 

ft{x + £,At, t + At) + ^ (ft(x + £At , t + At) - ftq{x + £,At, t + At)) 

-Mx,t) - ^ (/,(*,*) - ftq{x,t)) = - ^ (/,(*,*) - /,«*(*,*)) (149) 

and then apply the change of variables 

ft(x,t) = ft(x,t) + ^ (ft(x,t) - ftq{x,t)) (150) 

we obtain 

/,(*,*) - ftq{x,t) = ft(x,t) + ^(Mx,t) - ftq{x,t)) - f:\x,t) (151) 
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or equivalent ly 

A + — 
~fl{x,t)-f:%x,t) = -^{fl{x,t)-ftq{x,t)) (152) 

Finally, we obtain the explicit system for ft, i.e. the lattice Boltzmann equation as 

ft{x + ^At,t + At)-ft{x,t) = --^{ft{x,t)~f:q{x,t)) (153) 
A + ~2~ 

As in the case of its LGA predecessors, the lattice Boltzmann equation can be im­

plemented in two steps, a local collision process given by 

At 
f:{x,t) = ft{x,t) - -—^{ft{x,t) - ftq{x,t)) (154) 

A + ~2~ 

and a streaming from node to node described by 

ft{x + ^At,t + At) = f:{x,t) (155) 

The fact that only previous neighboring node information is required to advance 

the solution to the next time step accounts for some of the attractive properties of 

the LBE method, namely the straightforward implementation, fast evolution, and 

adaptability to parallel architectures. Since the time integration used in the above 

derivation of the lattice Boltzmann equation is done along a characteristic line de­

fined in terms of the velocity £, the discretizations of space and time are no longer 

independent of each other. As we will see in the next section, this affects the stability 

of the PML equations when the LB method is used to solve them. 

5.2 LINEAR ANALYSIS OF LATTICE PML 

The interdependence of the velocity, space, and time discretizations in the LB equa­

tion poses difficulties when we want to solve the PML equations by this method. The 

equations for the PML variables cannot be solved using the collision and streaming 

steps as with the LB method, but have to be computed by a finite difference scheme 

instead. We propose the following lattice formulation for the PML Eqs. (57), (58), 

and (59) 
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ft{x + £lAt,t + At)-fi(x,t) = 
At 

A + f 
{ft{x,t) - ftq{x,t)) - Ataxqu{x,t) 

Atayq2l{x,t) - Ataxpul{ft{x,t) - ftq{x,t)) (156) 

qu{x, t + At) - qlt{x, t) = -AtaxqXl{x, t) - Atu. 
d{ft{x,t)-ftq{x,t)) 

dx 

AtaxpUl{ft{x,t)-ftq{x,t)) (157) 

d(f(x t) - feq(x i)) 
q2l{x,t + At) - q2l{x,t) = -Atayq2,{x,t) - Atvt

 KJtK ' )
Q

 Jl K ' ; ; (158) 

To investigate the stability of the lattice formulation, again we study the linear 

stability of the PML equations. For the lattice formulation, the linear analysis gives 

the following eigenvalue problem 

(C 

\ 

I 

[—ikxAt — Atax 

-ikyAtB 

- AtaxpA 

0\A 

-AtaxC -AtayC \ 

[1 - Atax] 0 

0 [1 - Ata„]/ 

Fe -tujAt (159) 

where C is the diagonal matrix defined as CJ3 = e~lk^At and the matrices i", A, B 

and J are as previously defined. 

The eigenvalue analysis proves the existence of eigenvalues with positive imag­

inary parts that cannot be overcome even by filtering, showing that the proposed 

lattice formulation will yield unstable PML layers. This fact has also been confirmed 

in simulations. We used various finite difference schemes, including the DRP, but 

in all examples, the solution was highly unstable. A combination of a second order 

centered low pass filter for the PML domains and a tenth order low pass filter for 

the LB domain stabilized the solution somewhat so the acoustic and vorticity waves 

could be observed exiting the boundaries. However, compared to the finite differ­

ence solutions presented in the previous chapter, the results are poor as evident from 

Figures 20, 21, 22, and 23. 



64 

t=0 t=10 

t=16 

Fig. 20: Contours of LB density at t imes t = 0, 10, 12, and 16 for e = 0.01 
showing the reflections generated by the acoustic wave exiting the bound­
ary. 
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Fig. 21: Comparison of LB numerical acoustic density solution with exact 
solution at t imes t = 6 and 12 for e = 0.01. 



66 

t=50 

Fig. 22: Contours of LB v—velocity at t imes t = 0, 5, 30, and 50 for 
e = 0.001 showing the reflections generated by the vorticity wave exiting 
the boundary. 
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Fig. 23: Comparison of LB numerical v—velocity vorticity solution with 
exact solution at t imes t = 5 and 50 for e = 0.001. 
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Fig. 24: Diagram of LB-IMEX 3 coupling for a 5-point finite difference stencil. 

5.3 COUPLED SOLUTION 

As the lattice discretization of the PML equations produces highly unstable results, 

in order to use the PML equations in conjunction with the lattice Boltzmann method, 

we formulate a mixed LB and finite difference method to which we will henceforth 

refer to as the coupled method. In the coupled method, the unsplit PML equations 

are solved by finite differences using the third order IMEX scheme for the time 

integration while the interior domain solution is obtained by solving the LB equation. 

Since the finite difference solution obtained with the third order IMEX scheme is 

stable for a ratio At/Ax = 1, the coupling of the two methods at the PML interface 

is fairly straightforward. 

To advance the solution to next time step, the finite difference solution in the PML 

domains is obtained first. Periodic boundary conditions are used for the outer PML 

boundaries while the interior interface solution is obtained using previous interior 

LB function values. In order to minimize the grid to grid oscillations at the interior 

domain and PML interface, we require that the interface solution be updated from 

previous finite difference function values only. This requirement makes it necessary 

to obtain the finite difference solution for additional interior grid points beside the 
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PML. The implementation will vary depending on the finite difference scheme used. 

To illustrate how the coupling is implemented, we will consider a five point cen­

tered finite difference scheme. In order to advance the PML solution, represented in 

Figure 24 by S5, we need to compute the derivatives of the fourth stage PML solu­

tion in the IMEX scheme. Since only finite difference function values are permitted, 

the interface solution will require that the stage four solution be obtained for two 

additional interior grid points. This is due to the fact that the five point stencil at 

the interface grid point will use the solution of two interior grid points and two PML 

grid points. The stage four PML solution and the solution for the two additional 

grid points is represented by S4 in Figure 24. Similarly, to obtain the stage four 

solution, S4, we will need the derivatives of stage three values for the PML and an 

additional four interior grid points, as represented by S3. Finally, since the stage 

three solution will make use of the derivatives of the stage two solution and stage 

one is necessary to obtain the stage two solution, it follows that stages one and two 

will have to be computed for the PML domains and an additional six interior grid 

points as symbolized by SI,2 in the diagram. 

Once the finite difference solution is obtained for the PML domains as outlined 

above, the LBM solution is calculated for the interior domain. It should be noted that 

the interface finite difference solution becomes the boundary condition for the LB 

streaming step. In the numerical examples that follow, again we used the DRP finite 

difference scheme which requires nine additional interior grid points for the coupling 

of the two solutions. Even so, there will still be oscillations at the grid point near the 

interface which may cause instability. Figure 25 shows that this coupling is stable 

when a tenth order centered low pass filter is applied to the entire solution. 

5.4 NUMERICAL EXAMPLES 

5.4.1 ACOUSTIC WAVE 

To test the LB-IMEX 3 coupled method, we will use the same examples and the 

same parameters as in Chapter 4 so that we can compare its performance with the 

performance of the finite difference model. We plot the density contours for the 

acoustic wave at t = 0, 10, 12, and 16 for Ax = Ay = At = 0.1 in Figure 26 

and we compare the numerical solution with the exact solution at t = 6 and 16 in 

Figure 27. As can be observed in these figures, the absorption of the acoustic wave 
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Fig. 25: Scaled norm of filtered LB-IMEX 3 acoustic density p versus time 
for e = 0.1 and Ax = Ay = At = 0.1. 

is not as good as in the finite difference case but the reflection generated by the 

coupling is still very small. For a quantitative evaluation of accuracy, we plot the 

maximum difference between the numerical density solution and a reference solution 

along the line segment defined by the points (4.5,-4.5) and (4.5,4.5) for different 

values of PML width D. The plotted maximum difference of density is relative to 

the amplitude, A0, of the outgoing wave as it exits the right boundary. As the PML 

width is increased from D = 10 Ax to D = 20 Ax the maximum reflection error is 

constant. This indicates that the error generated by the coupling of the LB method 

with the IMEX 3 PML is dominating the reflection error. Still, a reflection error of 

less than 2 percent is obtained for the range of PML widths considered. 

5.4.2 VORTICITY WAVE 

In Figure 29, we plot the contours of the ^—velocity at t = 0, 5, 30, and 50 for 

e = 0.001. We can see from the contour plots that the vorticity wave is effectively 

absorbed by the PML layer. The coupled solution compares very well with the exact 

solution at t = 5 and 50, as illustrated in Figure 30. The fact that the vorticity results 

are in better agreement with the exact solution than the acoustic results is consistent 

with the reflection coefficient results obtained in Chapter 4 where the unsplit IMEX 
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t=10 

t=16 

Fig. 26: Contours of LB-IMEX 3 density at t imes t = 0, 10, 12, and 16 
for e = 0.01 showing the acoustic wave exiting the boundary with small 
reflection. 
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3 PML formulation gave the same results as the split IMEX 3 PML formulation in 

the acoustic example, but produced better results in the vorticity example. These 

similarities are due to the fact that we used the unsplit PML equations for the coupled 

method. The maximum difference between the numerical and reference v—velocity 

along the line segment defined by the points (4.5,-4.5) and (4.5,4.5) as a function 

of time is plotted in Figure 31 for different values of PML width D. Again, the 

difference is normalized by the peak amplitude, B0 of the v—velocity as it exits the 

right LB-PML interface. A refiection error of less than one percent is obtained for 

all of the PML widths considered, showing that the coupled method can be used 

effectively in conjunction with the LB method. 
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Fig. 29: Contours of LB-IMEX 3 u -ve loc i ty at t imes t = 0, 5, 30, and 50 
for e = 0.001 showing the vorticity wave exiting the boundary with small 
reflection. 
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CHAPTER 6 

CONCLUDING REMARKS 

In recent years, methods based on the Boltzmann-BGK equation have been intensely 

studied not only as an alternative to the Navier-Stokes equations, but also for their 

applicability in cases where the macroscopic governing equations are difficult or im­

possible to solve. Instead of having to solve multiple transport equations as in the 

case of Navier-Stokes or Euler equations, only one transport equation for the distribu­

tion function needs to be solved for the Boltzmann-BGK models. The flow properties 

are then obtained by integrating the distribution function over the particle velocity 

space. Furthermore, qualitatively good results can be obtained even when the veloc­

ity space is reduced to a very small number of discrete velocities. As more effective 

discrete velocity Boltzmann-BGK models are being developed and their capability 

is extended to simulate aeroacoustics phenomena with increasingly better accuracy, 

the research and development of accurate numerical boundary conditions becomes 

more imperative. For the Euler and Navier-Stokes equations, the Perfectly Matched 

Layer method has been shown to produce highly accurate non-reflective boundary 

conditions that preserve well the accuracy of the solution in the interior domain. In 

this work, Perfectly Matched Layer absorbing boundary conditions have been derived 

for the discrete velocity Boltzmann-BGK equation in two and three dimensions for 

the case of horizontal mean flow. Both split and unsplit formulations of the PML 

equations have been shown to produce satisfactory numerical results. 

There are several benefits to using Perfectly Matched Layers over other non-

reflective boundary conditions, the most important of which is its improved accu­

racy. Since the PML equations are perfectly matched to the governing equations at 

the boundary of the numerical domain, the boundary reflection errors are greatly 

reduced, and, as a result, the overall error of the numerical solution is decreased. 

A reduction in computational cost is another advantage of the Perfectly Matched 

Layer especially when we compare it to asymptotic boundary conditions which re­

quire a large computational domain to maintain the validity of the far field solution. 

Because the solution in other buffer zones must be changed in a gradual fashion to 

prevent reflections being generated inside the zone itself and because these methods 

are prone to reflections at the interface of the buffer layer and the computational do­

main, they tend to be larger and less efficient than the PML domains. The accuracy 
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of characteristic boundary conditions depends on the angle of incidence with which 

waves exit the computational domain. When the waves are normal to the boundaries, 

characteristics boundary conditions are very accurate, but as the angle of incidence 

is increased, their accuracy declines. As a result, characteristic boundary conditions 

would not be good candidates for further extension to the case of oblique mean flows. 

The PML equations presented in this work for the discrete velocity Boltzmann-

BGK equation are more general than those previously proposed by Najafiyazdi and 

Mongeau [52] in the sense that we made no restrictive assumptions in regards to the 

absorption coefficients or the numerical schemes used for the spatial derivatives. As 

long as the desired level of accuracy is obtained, any finite difference scheme can be 

used to solve the PML equations. The choice of finite difference scheme m this work 

has been motivated by the fact that DRP schemes preserve the wavemodes of the 

original governing equations, and, as a result, they are better than other schemes for 

aeroacoustics applications. 

As demonstrated in the numerical examples, both the finite difference and the 

coupled method for solving the PML equations can produce accurate results. How­

ever, there are some considerations to be made before choosing between the two. If 

accuracy and stability are the main concern, then the finite difference method is by 

far the better choice. Since finite differences are used to obtain both the interior do­

main and the PML solutions, the two solutions are better matched at the interface so 

they are stable and produce more accurate results. If, on the other hand, the compu­

tational domain contains complicated geometrical constructs or if the goal is a faster 

and computationally inexpensive method, then the coupled scheme is more suitable 

because the LB method is faster, more efficient, and more adaptable to complicated 

geometry. 

It is important to note that although the stated objectives for this dissertation 

have been accomplished, the applications we studied so far are limited to inviscid 

flows. At present, we have not considered problems that involve viscosity, or mass 

and heat transfer as would be supported by the Navier-Stokes equations. Conse­

quently, our investigation of discrete velocity Boltzmann-BGK models is limited to 

isothermal models. In addition, only the linear stability of the PML equations has 

been provided. However, these limitations can be the starting point for future work, 

which could include the more general case of an oblique nonuniform mean flow and a 

more comprehensive analysis of stability that takes into consideration the nonlinear 
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effects. Our present efforts have shown that effective nonreflective boundary con­

ditions based on the Perfectly Matched Layer can be derived for discrete velocity 

Boltzmann-BGK models. This work has also provided a foundation on which future 

efforts can be built. 
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