633 research outputs found

    A realistic evaluation of indoor positioning systems based on Wi-Fi fingerprinting: The 2015 EvAAL–ETRI competition

    Get PDF
    Pre-print versionThis paper presents results from comparing different Wi-Fi fingerprinting algorithms on the same private dataset. The algorithms where realized by independent teams in the frame of the off-site track of the EvAAL-ETRI Indoor Localization Competition which was part of the Sixth International Conference on Indoor Positioning and Indoor Navigation (IPIN 2015). Competitors designed and validated their algorithms against the publicly available UJIIndoorLoc database which contains a huge reference- and validation data set. All competing systems were evaluated using the mean error in positioning, with penalties, using a private test dataset. The authors believe that this is the first work in which Wi-Fi fingerprinting algorithm results delivered by several independent and competing teams are fairly compared under the same evaluation conditions. The analysis also comprises a combined approach: Results indicate that the competing systems where complementary, since an ensemble that combines three competing methods reported the overall best results.We would like to thank Francesco Potortì, Paolo Barsocchi, Michele Girolami and Kyle O’Keefe for their valuable help in organizing and spread the EVAALETRI competition and the off-site track. We would also like to thank the TPC members Machaj Juraj, Christos Laoudias, Antoni Pérez-Navarro and Robert Piché for their valuable comments, suggestions and reviews. Parts of this work were funded in the frame of the Spanish Ministry of Economy and Competitiveness through the “Metodologiías avanzadas para el diseño, desarrollo, evaluación e integración de algoritmos de localización en interiores” project (Proyectos I+D Excelencia, código TIN2015-70202-P) and the “Red de Posicionamiento y Navegación en Interiores” network (Redes de Excelencia, código TEC2015-71426- REDT). Parts of this work were funded in the frame of the German federal Ministry of Education and Research programme "FHprofUnt2013" under contract 03FH035PB3 (Project SPIRIT).info:eu-repo/semantics/acceptedVersio

    Multimodal Sensor Data Integration for Indoor Positioning in Ambient-Assisted Living Environments

    Get PDF
    A reliable Indoor Positioning System (IPS) is a crucial part of the Ambient-Assisted Living (AAL) concept. The use of Wi-Fi fingerprinting techniques to determine the location of the user, based on the Received Signal Strength Indication (RSSI) mapping, avoids the need to deploy a dedicated positioning infrastructure but comes with its own issues. Heterogeneity of devices and RSSI variability in space and time due to environment changing conditions pose a challenge to positioning systems based on this technique. The primary purpose of this research is to examine the viability of leveraging other sensors in aiding the positioning system to provide more accurate predictions. In particular, the experiments presented in this work show that Inertial Motion Units (IMU), which are present by default in smart devices such as smartphones or smartwatches, can increase the performance of Indoor Positioning Systems in AAL environments. Furthermore, this paper assesses a set of techniques to predict the future performance of the positioning system based on the training data, as well as complementary strategies such as data scaling and the use of consecutive Wi-Fi scanning to further improve the reliability of the IPS predictions. This research shows that a robust positioning estimation can be derived from such strategies

    An IoT-aware AAL System to Capture Behavioral Changes of Elderly People

    Get PDF
    The ageing of population is a phenomenon that is affecting the majority of developed countries around the world and will soon affect developing economies too. In recent years, both industry and academia are focused on the development of several solutions aimed to guarantee a healthy and safe lifestyle to the elderly. In this context, the behavioral analysis of elderly people can help to prevent the occurrence of Mild Cognitive Impairment (MCI) and frailty problems. The innovative technologies enabling the Internet of Things (IoT) can be used in order to capture personal data for automatically recognizing changes in elderly people behavior in an unobtrusive, low-cost and low-power modality. This work aims to describe the ongoing activities within the City4Age project, funded by the Horizon 2020 Programme of the European Commission, mainly focused on the use of IoT technologies to develop an innovative AAL system able to capture personal data of elderly people in their home and city environments. The proposed architecture has been validated through a proof-of-concept focused mainly on localization issues, collection of ambient parameters, and user-environment interaction aspects

    Localization System Supporting People with Cognitive Impairment and Their Caregivers

    Get PDF
    Localization systems are an important componentof Ambient and Assisted Living platforms supporting personswith cognitive impairments. The paper presents a positioningsystem being a part of the platform developed within the IONISEuropean project. The system’s main function is providing theplatform with data on user mobility and localization, whichwould be used to analyze his/her behavior and detect dementiawandering symptoms. An additional function of the system islocalization of items, which are frequently misplaced by dementiasufferers.The paper includes a brief description of system’s architecture,design of anchor nodes and tags and exchange of data betweendevices. both localization algorithms for user and item positioningare also presented. Exemplary results illustrating the system’scapabilities are also included

    The smartphone-based offline indoor location competition at IPIN 2016: analysis and future work

    Get PDF
    This paper presents the analysis and discussion of the off-site localization competition track, which took place during the Seventh International Conference on Indoor Positioning and Indoor Navigation (IPIN 2016). Five international teams proposed different strategies for smartphone-based indoor positioning using the same reference data. The competitors were provided with several smartphone-collected signal datasets, some of which were used for training (known trajectories), and others for evaluating (unknown trajectories). The competition permits a coherent evaluation method of the competitors' estimations, where inside information to fine-tune their systems is not offered, and thus provides, in our opinion, a good starting point to introduce a fair comparison between the smartphone-based systems found in the literature. The methodology, experience, feedback from competitors and future working lines are described.We would like to thank Tecnalia Research & Innovation Foundation for sponsoring the competition track with an award for the winning team. We are also grateful to Francesco Potortì, Sangjoon Park, Jesús Ureña and Kyle O’Keefe for their invaluable help in promoting the IPIN competition and conference. Parts of this work was carried out with the financial support received from projects and grants: LORIS (TIN2012-38080-C04-04), TARSIUS (TIN2015-71564-C4-2-R (MINECO/FEDER)), SmartLoc (CSIC-PIE Ref.201450E011), “Metodologías avanzadas para el diseño, desarrollo, evaluación e integración de algoritmos de localización en interiores” (TIN2015-70202-P), REPNIN network (TEC2015-71426-REDT) and the José Castillejo mobility grant (CAS16/00072). The HFTS team has been supported in the frame of the German Federal Ministry of Education and Research programme “FHprofUnt2013” under contract 03FH035PB3 (Project SPIRIT). The UMinho team has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT — Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Off-line evaluation of mobile-centric indoor positioning systems: the experiences from the 2017 IPIN competition

    Get PDF
    The development of indoor positioning solutions using smartphones is a growing activity with an enormous potential for everyday life and professional applications. The research activities on this topic concentrate on the development of new positioning solutions that are tested in specific environments under their own evaluation metrics. To explore the real positioning quality of smartphone-based solutions and their capabilities for seamlessly adapting to different scenarios, it is needed to find fair evaluation frameworks. The design of competitions using extensive pre-recorded datasets is a valid way to generate open data for comparing the different solutions created by research teams. In this paper, we discuss the details of the 2017 IPIN indoor localization competition, the different datasets created, the teams participating in the event, and the results they obtained. We compare these results with other competition-based approaches (Microsoft and Perf-loc) and on-line evaluation web sites. The lessons learned by organising these competitions and the benefits for the community are addressed along the paper. Our analysis paves the way for future developments on the standardization of evaluations and for creating a widely-adopted benchmark strategy for researchers and companies in the field.We would like to thank Topcon Corporation for sponsoring the competition track with an award for the winning team. We are also grateful to Francesco Potorti, Sangjoon Park, Hideo Makino, Nobuo Kawaguchi, Takeshi Kurata and Jesus Urena for their invaluable help in organizing and promoting the IPIN competition and conference. Many thanks to Raul Montoliu, Emilio Sansano, Marina Granel and Luis Alisandra for collecting the databases in the UJITI building. Parts of this work were carried out with the financial support received from projects and grants: REPNIN network (TEC2015-71426-REDT), LORIS (TIN2012-38080-C04-04), TARSIUS (TIN2015-71564-C4-2-R (MINECO/FEDER)), SmartLoc (CSIC-PIE Ref. 201450E011), "Metodologias avanzadas para el diseno, desarrollo, evaluacion e integracion de algoritmos de localizacion en interiores" (TIN2015-70202-P), GEO-C (Project ID: 642332, H2020-MSCA-ITN-2014-Marie Sklodowska-Curie Action: Innovative Training Networks), and financial support from the Ministry of Science and Technology, Taiwan (106-3114-E-007-005 and 105-2221-E-155-013-MY3). The HFTS team has been supported in the frame of the German Federal Ministry of Education and Research programme "FHprofUnt2013" under contract 03FH035PB3 (Project SPIRIT). The UMinho team has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT-Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2013. G.M. Mendoza-Silva gratefully acknowledges funding from grant PREDOC/2016/55 by Universitat Jaume I.info:eu-repo/semantics/publishedVersio

    Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound

    Get PDF
    The average life expectancy has been increasing in the last decades, creating the need for new technologies to improve the quality of life of the elderly. In the Ambient Assisted Living scope, indoor location systems emerged as a promising technology capable of sup porting the elderly, providing them a safer environment to live in, and promoting their autonomy. Current indoor location technologies are divided into two categories, depend ing on their need for additional infrastructure. Infrastructure-based solutions require expensive deployment and maintenance. On the other hand, most infrastructure-free systems rely on a single source of information, being highly dependent on its availability. Such systems will hardly be deployed in real-life scenarios, as they cannot handle the absence of their source of information. An efficient solution must, thus, guarantee the continuous indoor positioning of the elderly. This work proposes a new room-level low-cost indoor location algorithm. It relies on three information sources: inertial sensors, to reconstruct users’ trajectories; environ mental sound, to exploit the unique characteristics of each home division; and Wi-Fi, to estimate the distance to the Access Point in the neighbourhood. Two data collection protocols were designed to resemble a real living scenario, and a data processing stage was applied to the collected data. Then, each source was used to train individual Ma chine Learning (including Deep Learning) algorithms to identify room-level positions. As each source provides different information to the classification, the data were merged to produce a more robust localization. Three data fusion approaches (input-level, early, and late fusion) were implemented for this goal, providing a final output containing complementary contributions from all data sources. Experimental results show that the performance improved when more than one source was used, attaining a weighted F1-score of 81.8% in the localization between seven home divisions. In conclusion, the evaluation of the developed algorithm shows that it can achieve accurate room-level indoor localization, being, thus, suitable to be applied in Ambient Assisted Living scenarios.O aumento da esperança média de vida nas últimas décadas, criou a necessidade de desenvolvimento de tecnologias que permitam melhorar a qualidade de vida dos idosos. No âmbito da Assistência à Autonomia no Domicílio, sistemas de localização indoor têm emergido como uma tecnologia promissora capaz de acompanhar os idosos e as suas atividades, proporcionando-lhes um ambiente seguro e promovendo a sua autonomia. As tecnologias de localização indoor atuais podem ser divididas em duas categorias, aquelas que necessitam de infrastruturas adicionais e aquelas que não. Sistemas dependentes de infrastrutura necessitam de implementação e manutenção que são muitas vezes dispendiosas. Por outro lado, a maioria das soluções que não requerem infrastrutura, dependem de apenas uma fonte de informação, sendo crucial a sua disponibilidade. Um sistema que não consegue lidar com a falta de informação de um sensor dificilmente será implementado em cenários reais. Uma solução eficiente deverá assim garantir o acompanhamento contínuo dos idosos. A solução proposta consiste no desenvolvimento de um algoritmo de localização indoor de baixo custo, baseando-se nas seguintes fontes de informação: sensores inerciais, capazes de reconstruir a trajetória do utilizador; som, explorando as características dis tintas de cada divisão da casa; e Wi-Fi, responsável pela estimativa da distância entre o ponto de acesso e o smartphone. Cada fonte sensorial, extraída dos sensores incorpora dos no dispositivo, foi, numa primeira abordagem, individualmente otimizada através de algoritmos de Machine Learning (incluindo Deep Learning). Como os dados das diversas fontes contêm informação diferente acerca das mesmas características do sistema, a sua fusão torna a classificação mais informada e robusta. Com este objetivo, foram implementadas três abordagens de fusão de dados (input data, early and late fusion), fornecendo um resultado final derivado de contribuições complementares de todas as fontes de dados. Os resultados experimentais mostram que o desempenho do algoritmo desenvolvido melhorou com a inclusão de informação multi-sensor, alcançando um valor para F1- score de 81.8% na distinção entre sete divisões domésticas. Concluindo, o algoritmo de localização indoor, combinando informações de três fontes diferentes através de métodos de fusão de dados, alcançou uma localização room-level e está apto para ser aplicado num cenário de Assistência à Autonomia no Domicílio

    Monitoring elderly behavior via indoor position-based stigmergy

    Get PDF
    In this paper we present a novel approach for monitoring elderly people living alone and independently in their own homes. The proposed system is able to detect behavioral deviations of the routine indoor activities on the basis of a generic indoor localization system and a swarm intelligence method. For this reason, an in-depth study on the error modeling of state-of-the-art indoor localization systems is presented in order to test the proposed system under different conditions in terms of localization error. More specifically, spatiotemporal tracks provided by the indoor localization system are augmented, via marker-based stigmergy, in order to enable their self-organization. This allows a marking structure appearing and staying spontaneously at runtime, when some local dynamism occurs. At a second level of processing, similarity evaluation is performed between stigmergic marks over different time periods in order to assess deviations. The purpose of this approach is to overcome an explicit modeling of user's activities and behaviors that is very inefficient to be managed, as it works only if the user does not stray too far from the conditions under which these explicit representations were formulated. The effectiveness of the proposed system has been experimented on real-world scenarios. The paper includes the problem statement and its characterization in the literature, as well as the proposed solving approach and experimental settings

    An IoT based Virtual Coaching System (VSC) for Assisting Activities of Daily Life

    Get PDF
    Nowadays aging of the population is becoming one of the main concerns of theworld. It is estimated that the number of people aged over 65 will increase from 461million to 2 billion in 2050. This substantial increment in the elderly population willhave significant consequences in the social and health care system. Therefore, in thecontext of Ambient Intelligence (AmI), the Ambient Assisted Living (AAL) has beenemerging as a new research area to address problems related to the aging of the population. AAL technologies based on embedded devices have demonstrated to be effectivein alleviating the social- and health-care issues related to the continuous growing of theaverage age of the population. Many smart applications, devices and systems have beendeveloped to monitor the health status of elderly, substitute them in the accomplishment of activities of the daily life (especially in presence of some impairment or disability),alert their caregivers in case of necessity and help them in recognizing risky situations.Such assistive technologies basically rely on the communication and interaction be-tween body sensors, smart environments and smart devices. However, in such contextless effort has been spent in designing smart solutions for empowering and supportingthe self-efficacy of people with neurodegenerative diseases and elderly in general. Thisthesis fills in the gap by presenting a low-cost, non intrusive, and ubiquitous VirtualCoaching System (VCS) to support people in the acquisition of new behaviors (e.g.,taking pills, drinking water, finding the right key, avoiding motor blocks) necessary tocope with needs derived from a change in their health status and a degradation of theircognitive capabilities as they age. VCS is based on the concept of extended mind intro-duced by Clark and Chalmers in 1998. They proposed the idea that objects within theenvironment function as a part of the mind. In my revisiting of the concept of extendedmind, the VCS is composed of a set of smart objects that exploit the Internet of Things(IoT) technology and machine learning-based algorithms, in order to identify the needsof the users and react accordingly. In particular, the system exploits smart tags to trans-form objects commonly used by people (e.g., pillbox, bottle of water, keys) into smartobjects, it monitors their usage according to their needs, and it incrementally guidesthem in the acquisition of new behaviors related to their needs. To implement VCS, thisthesis explores different research directions and challenges. First of all, it addresses thedefinition of a ubiquitous, non-invasive and low-cost indoor monitoring architecture byexploiting the IoT paradigm. Secondly, it deals with the necessity of developing solu-tions for implementing coaching actions and consequently monitoring human activitiesby analyzing the interaction between people and smart objects. Finally, it focuses on the design of low-cost localization systems for indoor environment, since knowing theposition of a person provides VCS with essential information to acquire information onperformed activities and to prevent risky situations. In the end, the outcomes of theseresearch directions have been integrated into a healthcare application scenario to imple-ment a wearable system that prevents freezing of gait in people affected by Parkinson\u2019sDisease
    corecore