2,259 research outputs found

    Identifying nonlinear wave interactions in plasmas using two-point measurements: a case study of Short Large Amplitude Magnetic Structures (SLAMS)

    Get PDF
    A framework is described for estimating Linear growth rates and spectral energy transfers in turbulent wave-fields using two-point measurements. This approach, which is based on Volterra series, is applied to dual satellite data gathered in the vicinity of the Earth's bow shock, where Short Large Amplitude Magnetic Structures (SLAMS) supposedly play a leading role. The analysis attests the dynamic evolution of the SLAMS and reveals an energy cascade toward high-frequency waves.Comment: 26 pages, 13 figure

    The two-sample problem for Poisson processes: adaptive tests with a non-asymptotic wild bootstrap approach

    Get PDF
    Considering two independent Poisson processes, we address the question of testing equality of their respective intensities. We first propose single tests whose test statistics are U-statistics based on general kernel functions. The corresponding critical values are constructed from a non-asymptotic wild bootstrap approach, leading to level \alpha tests. Various choices for the kernel functions are possible, including projection, approximation or reproducing kernels. In this last case, we obtain a parametric rate of testing for a weak metric defined in the RKHS associated with the considered reproducing kernel. Then we introduce, in the other cases, an aggregation procedure, which allows us to import ideas coming from model selection, thresholding and/or approximation kernels adaptive estimation. The resulting multiple tests are proved to be of level \alpha, and to satisfy non-asymptotic oracle type conditions for the classical L2-norm. From these conditions, we deduce that they are adaptive in the minimax sense over a large variety of classes of alternatives based on classical and weak Besov bodies in the univariate case, but also Sobolev and anisotropic Nikol'skii-Besov balls in the multivariate case

    SAR Amplitude Probability Density Function Estimation Based on a Generalized Gaussian Model

    Get PDF
    International audienceIn the context of remotely sensed data analysis, an important problem is the development of accurate models for the statistics of the pixel intensities. Focusing on synthetic aperture radar (SAR) data, this modeling process turns out to be a crucial task, for instance, for classification or for denoising purposes. In this paper, an innovative parametric estimation methodology for SAR amplitude data is proposed that adopts a generalized Gaussian (GG) model for the complex SAR backscattered signal. A closed-form expression for the corresponding amplitude probability density function (PDF) is derived and a specific parameter estimation algorithm is developed in order to deal with the proposed model. Specifically, the recently proposed “method-of-log-cumulants” (MoLC) is applied, which stems from the adoption of the Mellin transform (instead of the usual Fourier transform) in the computation of characteristic functions and from the corresponding generalization of the concepts of moment and cumulant. For the developed GG-based amplitude model, the resulting MoLC estimates turn out to be numerically feasible and are also analytically proved to be consistent. The proposed parametric approach was validated by using several real ERS-1, XSAR, E-SAR, and NASA/JPL airborne SAR images, and the experimental results prove that the method models the amplitude PDF better than several previously proposed parametric models for backscattering phenomena

    Bayesian methods in single and multiple curve fitting

    Get PDF
    This dissertation, composed of three papers to be submitted for publication in scholarly journals, focuses on Bayesian methods in function estimation. Chapter 2 specifically discusses spectral density estimation. The semiparametric estimator derived in this chapter combines a smoothed version of the periodogram with a parametric estimator of the spectral density. This semiparametric estimator, which shrinks towards the parametric form provided it is correct, is derived from a hierarchical model. This estimator is consistent, it is competitive with other estimators (as seen through simulation studies), and ultimately does not require the specification of a parametric form.;The third and fourth chapters begin by modeling longitudinal data with linear mixed regression splines. The knots associated with the fixed and random effect curves (in the mixed model) are identified using Bayesian methods. In Chapter 3, reversible jump MCMC methods are used to sample from the marginal posterior of the knots associated with these two curves. Sampling from such a posterior, however, requires evaluation of the marginal likelihood of the knots. This marginal likelihood can not be calculated. Two sampling methods are thus considered in this chapter; these two methods correspond to two different approximations of this likelihood and are compared on how effectively they penalize models with unnecessarily large values of random effect knots.;In the fourth chapter, a similar posterior is considered. This posterior, however, relies on the decomposition of the random effect curve into orthogonal principal component curves, and restricts the random effect curves to have the same knots as the fixed effect curve. The knots associated with the fixed and random effect curves and the number of significant principal component curves is identified by sampling from their joint posterior distribution of knots

    Signal processing techniques for the enhancement of marine seismic data

    Get PDF
    This thesis presents several signal processing techniques applied to the enhancement of marine seismic data. Marine seismic exploration provides an image of the Earth's subsurface from reflected seismic waves. Because the recorded signals are contaminated by various sources of noise, minimizing their effects with new attenuation techniques is necessary. A statistical analysis of background noise is conducted using Thomson’s multitaper spectral estimator and Parzen's amplitude density estimator. The results provide a statistical characterization of the noise which we use for the derivation of signal enhancement algorithms. Firstly, we focus on single-azimuth stacking methodologies and propose novel stacking schemes using either enhanced weighted sums or a Kalman filter. It is demonstrated that the enhanced methods yield superior results by their ability to exhibit cleaner and better defined reflected events as well as a larger number of reflections in deep waters. A comparison of the proposed stacking methods with existing ones is also discussed. We then address the problem of random noise attenuation and present an innovative application of sparse code shrinkage and independent component analysis. Sparse code shrinkage is a valuable method when a noise-free realization of the data is generated to provide data-driven shrinkages. Several models of distribution are investigated, but the normal inverse Gaussian density yields the best results. Other acceptable choices of density are discussed as well. Finally, we consider the attenuation of flow-generated nonstationary coherent noise and seismic interference noise. We suggest a multiple-input adaptive noise canceller that utilizes a normalized least mean squares alg orithm with a variable normalized step size derived as a function of instantaneous frequency. This filter attenuates the coherent noise successfully when used either by itself or in combination with a time-frequency median filter, depending on the noise spectrum and repartition along the data. Its application to seismic interference attenuation is also discussed

    Models and Methods for Random Fields in Spatial Statistics with Computational Efficiency from Markov Properties

    Get PDF
    The focus of this work is on the development of new random field models and methods suitable for the analysis of large environmental data sets. A large part is devoted to a number of extensions to the newly proposed Stochastic Partial Differential Equation (SPDE) approach for representing Gaussian fields using Gaussian Markov Random Fields (GMRFs). The method is based on that Gaussian Matérn field can be viewed as solutions to a certain SPDE, and is useful for large spatial problems where traditional methods are too computationally intensive to use. A variation of the method using wavelet basis functions is proposed and using a simulation-based study, the wavelet approximations are compared with two of the most popular methods for efficient approximations of Gaussian fields. A new class of spatial models, including the Gaussian Matérn fields and a wide family of fields with oscillating covariance functions, is also constructed using nested SPDEs. The SPDE method is extended to this model class and it is shown that all desirable properties are preserved, such as computational efficiency, applicability to data on general smooth manifolds, and simple non-stationary extensions. Finally, the SPDE method is extended to a larger class of non-Gaussian random fields with Matérn covariance functions, including certain Laplace Moving Average (LMA) models. In particular it is shown how the SPDE formulation can be used to obtain an efficient simulation method and an accurate parameter estimation technique for a LMA model. A method for estimating spatially dependent temporal trends is also developed. The method is based on using a space-varying regression model, accounting for spatial dependency in the data, and it is used to analyze temporal trends in vegetation data from the African Sahel in order to find regions that have experienced significant changes in the vegetation cover over the studied time period. The problem of estimating such regions is investigated further in the final part of the thesis where a method for estimating excursion sets, and the related problem of finding uncertainty regions for contour curves, for latent Gaussian fields is proposed. The method is based on using a parametric family for the excursion sets in combination with Integrated Nested Laplace Approximations (INLA) and an importance sampling-based algorithm for estimating joint probabilities
    • …
    corecore