132 research outputs found

    Optimal Area Allocation for Yield Enhancement of DAC

    Get PDF
    Práce seznamuje s metodami návrhu pro zvýšení výtěžnosti a omezení chyb ve shodných strukturách. Systematické a náhodné chyby jsou shledány zdrojem neshod mezi strukturami. Je představen model náhodných chyb za využití log-normálové hustoty pravděpodobnosti. Pomocí nové metodologie založené na celočíselném pogramování (celočíselné optimalizaci) je navržena optimalizace parametrické výtěžnosti integrovaných obvodů. Je představen algoritmus generování optimální topologie. Topologie je demonstrována na R-2R D/A převodníku a výsledky jsou porovnány s jivým řešením.Recent research in yield enhancement techniques and mitigation of device mismatch is presented. Systematic and random mismatch is studied and identified as the cause of device mismatch. Model based on log-normal PDF is introduced. Optimization of IC parameter yield is suggested and conducted with help of a new methodology based on mathematical programming. An algorithm for the impact based area allocation of critical matched devices is shown as well as algorithms for common centroid layout of different sized devices. Newly developed algorithms are presented on binary weighted R-2R DAC as it is a common IC and comparison to other solutions is given

    DESIGN OF LOW-POWER LOW-VOLTAGE SUCCESSIVE-APPROXIMATION ANALOG-TO-DIGITAL CONVERTERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design of binary weighted DAC for asynchronous ADC with improved slew rate and with calibrated size of capacitors

    Get PDF
    This work proposed a binary-weighted Digital-to-Analog Converter (DAC), which is designed to be used in Asynchronous successive approximation register (SAR) based Analog-to-digital converters (ADCs) specifically and in other relevant operations .The design has yielded an improved slew rate, and it is less prone to noise as the size of capacitors is taken in accordance with KT/C noise calculation. For achieving all mentioned goals, and to restrict the size of DAC, within suitable dimensions charge scaling DACs are used. One more advantage of this design is its accuracy, further it does not require op-Amps for its operation. Results of statistical simulation and mathematical consideration are published which depicts the supremacy of the design. A high-resolution DAC designed for this specific purpose has to have special consideration for the effect of local mismatch, parasitic and matching of the capacitors, for that, the common-centroid approach has been followed. This design has displayed a high resolution with small unit capacitances and that too without expensive factory calibration

    Design of a Programmable Passive SoC for Biomedical Applications Using RFID ISO 15693/NFC5 Interface

    Get PDF
    Low power, low cost inductively powered passive biotelemetry system involving fully customized RFID/NFC interface base SoC has gained popularity in the last decades. However, most of the SoCs developed are application specific and lacks either on-chip computational or sensor readout capability. In this paper, we present design details of a programmable passive SoC in compliance with ISO 15693/NFC5 standard for biomedical applications. The integrated system consists of a 32-bit microcontroller, a sensor readout circuit, a 12-bit SAR type ADC, 16 kB RAM, 16 kB ROM and other digital peripherals. The design is implemented in a 0.18 μ m CMOS technology and used a die area of 1.52 mm × 3.24 mm. The simulated maximum power consumption of the analog block is 592 μ W. The number of external components required by the SoC is limited to an external memory device, sensors, antenna and some passive components. The external memory device contains the application specific firmware. Based on the application, the firmware can be modified accordingly. The SoC design is suitable for medical implants to measure physiological parameters like temperature, pressure or ECG. As an application example, the authors have proposed a bioimplant to measure arterial blood pressure for patients suffering from Peripheral Artery Disease (PAD)

    Placement techniques in automatic analog layout generation.

    Get PDF
    模擬電路版圖設計是一個非常複雜和耗時的過程。通常情況下,設計一個高質量的模擬電路版圖需要電子工程師花費幾週甚至更長的時間。模擬電路的電子特性對於電路的細節設計非常敏感,因此,減小電路中的失配現象成為模擬電路版圖設計中一個非常重要的課題。在本論文中,我們提出了一系列實際的佈局技術,來降低電路的失配並提高繞線的成功率。我們可以非常容易的將這些技術整合至一個完整的模擬佈局和佈線的工具中,此工具可以在幾分鐘內生成一個完整的、高質量的模擬電路版圖。同時,該版圖能夠通過設計規則驗證(DRC)和佈局與電路設計一致性檢測(LVS)。模擬結果顯示,它的電路性能能夠與達到甚至超出手工設計的電路版圖。我們的論文主要作出了以下兩方面貢獻。1. 平衡佈局:對於模擬電路中的電子元器件,如電容、電阻、晶體管等進行一維和二維的平衡佈局。電子工程師可以根據不同的設計需求,通過選擇不同的佈局參數來改變電路的佈局排列方式。同時,在模擬退火算法中,我們著重考慮了器件間的匹配以生成高質量的模擬電路佈局。2. 消除阻塞的電路佈局:在模擬電路設計中,我們期望盡量避免在電子元器件密度較高的區域進行繞線。因此,我們需要在電路佈局設計過程中在電子元器件間留有足夠的佈線空間。為達到這個目標,我們提出了更精確的阻塞估計方法和版圖拓展方法,使其能夠生成一個高質量、高繞線成功率的電路佈局結果。為了驗證生成的電路版圖的質量和匹配特性,我們利用蒙地卡羅方法來模擬電路中的製程偏差和失配特性。實驗結果顯示,我們的工具可以在幾分鐘內自動生成高質量的電路版圖,與人工設計通常需要花費數日至數週相比,設計時間大幅縮短,同時電路的匹配特性得以提升。Analog layout design is a complicated and time-consuming process. It often takes couples of weeks for the layout designers to generate a qualied layout. The elec-trical properties of analog circuit are very sensitive to the layout details, and mis-match reduction becomes a very important issue in analog layout design.In this thesis, we will present some practical placement techniques to reduce mismatch and improve routability. These techniques can be easily integrated into a complete analog placement and routing ow, which can produce in just a few min-utes a complete and high quality layout for analog circuits that passes the design rule check, layout-schematic check and with performance veried by simulations. The contents of this thesis will focus on the following two issues:(1) Symmetry Placement: We consider symmetric placement of transistors, re-sistors and capacitors, which includes 1-D symmetry and 2-D symmetry (or called common centroid). Different symmetric placement congurations, derived accord-ing to the practical needs in analog design, are considered for the matching devices in the simulated annealing engine of the placer in order to generate a placement with high quality.(2) Congestion-driven Placement: In analog design, wires are preferred not be routed over active devices, so we need to leave enough spaces properly for routing between the devices during the placement process. To achieve this, we explore congestion estimation and layout expansion during the placement step in order to produce a good and routable solution.In order to verify the quality of the generated layouts in terms of mismatch, we will run Monte Carlo simulations on them with variations in process and mismatch. Experiments show that our methodology can generate high quality layout automatically in just a few minutes while manual design may take couples of days.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Cui, Guxin.Thesis (M.Phil.)--Chinese University of Hong Kong, 2012.Abstracts also in Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Background --- p.1Chapter 1.2 --- Physical Design --- p.2Chapter 1.3 --- Analog Placement --- p.4Chapter 1.3.1 --- Methodologies of Analog Placement --- p.4Chapter 1.3.2 --- Symmetry Constraints of Analog Placement --- p.5Chapter 1.4 --- Process Variation and Layout Mismatch --- p.6Chapter 1.4.1 --- Process Variation --- p.6Chapter 1.4.2 --- Random Mismatch and Systematic Mismatch --- p.7Chapter 1.5 --- Monte Carlo Simulation Procedure --- p.9Chapter 1.6 --- Problem Formulation of Placement --- p.9Chapter 1.7 --- Motivations --- p.10Chapter 1.8 --- Contributions --- p.11Chapter 1.9 --- Thesis Organization --- p.12Chapter 2 --- Literature Review on Analog Placement --- p.13Chapter 2.1 --- Topological Representations Handling Symmetry Constraints --- p.14Chapter 2.1.1 --- Symmetry within the Sequence-Pair (SP) Representation . --- p.14Chapter 2.1.2 --- Block Placement with Symmetry Constraints Based on the O-Tree Non-Slicing Representation --- p.16Chapter 2.1.3 --- Placement with Symmetry Constraints for Analog Layout Design Using TCG-S --- p.17Chapter 2.1.4 --- Modeling Non-Slicing Floorplans with Binary Trees --- p.19Chapter 2.1.5 --- Segment Trees Handle Symmetry Constraints --- p.20Chapter 2.1.6 --- Center-based Corner Block List --- p.22Chapter 2.2 --- Other Works on Analog Placement Constraints --- p.25Chapter 2.2.1 --- Deterministic Analog Placement with Hierarchically Bounded Enumeration and Enhanced Shape Functions --- p.25Chapter 2.2.2 --- Analog Placement Based on Symmetry-Island Formulation --- p.27Chapter 2.2.3 --- Heterogeneous B*-Trees for Analog Placement with Symmetry and Regularity Considerations --- p.28Chapter 2.3 --- Summary --- p.31Chapter 3 --- Common-Centroid Analog Placement --- p.32Chapter 3.1 --- Problem Formulation --- p.33Chapter 3.2 --- Overview of Our Work --- p.35Chapter 3.3 --- Handling Common Centroid Constraints in Different Devices --- p.37Chapter 3.3.1 --- Common Centroid Placement of Resistors --- p.38Chapter 3.3.2 --- Common Centroid Placement of Transistors --- p.44Chapter 3.3.3 --- Common Centroid Placement of Capacitors --- p.47Chapter 3.4 --- Congestion Estimation and Layout Expansion --- p.50Chapter 3.4.1 --- Blockage-Aware Congestion Estimation --- p.51Chapter 3.4.2 --- Layout Expansion --- p.56Chapter 3.5 --- Simulated Annealing --- p.59Chapter 3.5.1 --- Types of Moves --- p.59Chapter 3.5.2 --- Handling Devices in Symmetry Group --- p.59Chapter 3.5.3 --- Cost Function of Simulated Annealing --- p.61Chapter 3.6 --- Summary --- p.62Chapter 4 --- Experimental Results and Monte-Carlo Simulations --- p.64Chapter 4.1 --- Study of Congestion-driven Layout Expansion --- p.64Chapter 4.2 --- Monte Carlo Simulations --- p.70Chapter 4.2.1 --- Devices Modeling --- p.70Chapter 4.2.2 --- Study of Layouts with and without Symmetry Groups --- p.71Chapter 4.2.3 --- Study of Layouts with and without Self-Symmetry Devices --- p.73Chapter 4.2.4 --- Study of Layouts with Different Number of Symmetry Groups --- p.74Chapter 4.2.5 --- Study of Large and Small Size Capacitors Array --- p.76Chapter 4.3 --- Comparison of Automatic and Manual Layouts using Monte Carlo Simulations --- p.79Chapter 5 --- Conclusion --- p.86Bibliography --- p.8

    Practical Techniques for Improving Performance and Evaluating Security on Circuit Designs

    Get PDF
    As the modern semiconductor technology approaches to nanometer era, integrated circuits (ICs) are facing more and more challenges in meeting performance demand and security. With the expansion of markets in mobile and consumer electronics, the increasing demands require much faster delivery of reliable and secure IC products. In order to improve the performance and evaluate the security of emerging circuits, we present three practical techniques on approximate computing, split manufacturing and analog layout automation. Approximate computing is a promising approach for low-power IC design. Although a few accuracy-configurable adder (ACA) designs have been developed in the past, these designs tend to incur large area overheads as they rely on either redundant computing or complicated carry prediction. We investigate a simple ACA design that contains no redundancy or error detection/correction circuitry and uses very simple carry prediction. The simulation results show that our design dominates the latest previous work on accuracy-delay-power tradeoff while using 39% less area. One variant of this design provides finer-grained and larger tunability than that of the previous works. Moreover, we propose a delay-adaptive self-configuration technique to further improve the accuracy-delay-power tradeoff. Split manufacturing prevents attacks from an untrusted foundry. The untrusted foundry has front-end-of-line (FEOL) layout and the original circuit netlist and attempts to identify critical components on the layout for Trojan insertion. Although defense methods for this scenario have been developed, the corresponding attack technique is not well explored. Hence, the defense methods are mostly evaluated with the k-security metric without actual attacks. We develop a new attack technique based on structural pattern matching. Experimental comparison with existing attack shows that the new attack technique achieves about the same success rate with much faster speed for cases without the k-security defense, and has a much better success rate at the same runtime for cases with the k-security defense. The results offer an alternative and practical interpretation for k-security in split manufacturing. Analog layout automation is still far behind its digital counterpart. We develop the layout automation framework for analog/mixed-signal ICs. A hierarchical layout synthesis flow which works in bottom-up manner is presented. To ensure the qualified layouts for better circuit performance, we use the constraint-driven placement and routing methodology which employs the expert knowledge via design constraints. The constraint-driven placement uses simulated annealing process to find the optimal solution. The packing represented by sequence pairs and constraint graphs can simultaneously handle different kinds of placement constraints. The constraint-driven routing consists of two stages, integer linear programming (ILP) based global routing and sequential detailed routing. The experiment results demonstrate that our flow can handle complicated hierarchical designs with multiple design constraints. Furthermore, the placement performance can be further improved by using mixed-size block placement which works on large blocks in priority

    Investigation and design of key circuit blocks in a 10 bit SAR ADC at 100 MS/s

    Get PDF
    The work in this thesis is based on the investigation and design of key circuit blocks in a high speed, high resolution SAR ADC in TSMC’s 28nm technology. The research carried out analyses the circuit limitations of the switched capacitor DAC and the settling problems of the reference voltage associated with a switched capacitor scheme. The switched capacitor DAC is a critical block for overall ADC performance and various trade-offs are weighed up before discussing the layout of the split capacitor DAC implemented in the project, from unit capacitor up to top level routing. It also investigates the main sources of error using this topology and implements effective ways of mitigating these errors. The schematic design of DAC switches is also carried out and the results section discusses the top level linearity performance of the DAC. This work also focuses on detailed analysis and implementation of a reference buffer circuit solution that is capable of supplying a reference voltage that is highly accurate and can settle in enough time for the high speed and high resolution specifications required by the SAR ADC. Various solutions were comprehensively investigated for this problem and the design of the chosen flipped voltage follower topology was implemented in schematic and layout. It was subsequently simulated at schematic and extracted parasitics level to verify its functionality and determine its overall performance. Finally, the work done in each block is verified in the context of the whole ADC by top level schematic and extracted layout simulation

    A SigmaDelta modulator for digital hearing instruments using 0.18 mum CMOS technology.

    Get PDF
    This thesis develops the design methodology for a low-voltage low-power SigmaDelta Modulator, realized using a switched op-amp technique that can be used in a hearing instrument. Switched op-amp implementation allows scaling down the design to the latest CMOS technology. A single-loop second-order SigmaDelta Modulator topology is chosen. The modulator circuit features reduced complexity, area reduction and low conversion energy. The modulator has a sampling rate of 8.2 MHz with an over-sampling ratio (OSR) of 256 to provide an audio bandwidth of 16 kHz. The modulator is implemented in a 0.18 mum digital CMOS technology with metal-to-metal sandwich structure capacitors. The modulator operates with a supply voltage of 1.8 V. The active area is 0.403 mm2. The modulator achieves a 98 dB signal-to-noise-and-distortion ratio (SNDR) and a 100 dB dynamic range (DR) at a Nyquist conversion rate of 32 kHz and consumes 1321 muW with a joule/conversion figure of merit equal to 161 x 10-12 J/s. The design methodology is developed through the extensive use of simulation tools. The behaviour simulation is carried out using Matlab/SIMULINK while circuits are simulated with Hspice using the Cadence design tools. Full-custom layout for the analog and the digital circuits is performed using the Cadence design tool. Post-processing simulation of the extracted modulator with parasitic verifies that results meet the requirements. The design has been sent to CMC for fabrication. Source: Masters Abstracts International, Volume: 43-03, page: 0947. Adviser: W. C. Miller. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    8-bit 1 Gs/s Adc Architecture And 4-bit Flash Adc For +10 Gs/s Time Interleaved Adc In 65nm Cmos Technology

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2015Thesis (M.Sc.) -- İstanbul Technical University, Instıtute of Science and Technology, 2015Haberleşme sistemlerinin veri aktarım sıklıkları ve bant genişlikleri sürekli olarak artmaktadır. Sayısal yarıiletken teknolojilerindeki gelişmeler, haberleşme sistemlerindeki işaret işleme kısımlarını sayısal domenine almıştır. Sayısal işaret işlemenin avantajları, ideal olmayan durumlara yüksek tolerans, gerçekleme kolaylığı, bir fonksiyonu gerçeklemek için gereken alanın dolayısıyla maliyetin düşük olması ve yeni teknolojilere taşınabilme olarak sayılabilir. Bu avantajlardan faydalanmak için analog işaretleri sayısal domene almada köprü görevi görecek yüksek hızlı analog-sayısal dönüştürücülere(ADC) ihtiyaç vardır. Kablolu ve kablosuz haberleşme teknolojilerinde 10 GHz'yi de aşan bant genişlikleri tek kanallı ADCleri bu iş için elverişsiz kılmaktadır. Zaman aralıklı ADCler gerek ulaşabilecekleri dönüştürme hızı gerek güç verimliliği açısından iyi bir aday olarak karşımıza çıkar. Zaman aralıklama, tek kanallı eş ADClerin sıra ile kullanılması esasına dayanmaktadır. Sıradaki örneği alan ADC, sıra tekrar kendisine gelene kadar bu örneği dönüştürür. Dolayısıyla toplam dönüştürme hızı, tek bir dönüştürücünün hızı ile kanal sayısının çarpımı kadar olmaktadır. Bu şekilde yüksek dönüştürme hızları elde edilebilir. Ayrıca bu şekilde tek kanal ADCler daha fazla hız elde etmek için güç bakımından verimsiz oldukları noktalara itilmez ve daha verimli yapılar ortaya çıkar. Zaman aralıklı ADClerdeki kanal uyumsuzlukları performansı düşürmektedir. Bu hatalar temel olarak dengesizlik, kazanç ve zamanlama uyumsuzluklarından ileri gelmektedir. Zamanlama hataları kestirilmeleri ve düzeltilmeleri noktasında diğerlerinden daha zorludur ve bu durum yüksek frekanslarda daha da zorlaşmaktadır. Zaman aralıklı ADClerdeki zamanlama hatalarının kestirilmeleri ve düzeltilmeleri güncel bir araştırma konusu teşkil etmektedir. Hataların kalibrasyonu ön planda veya arka planda yapılabilir. Arka planda yapılan kalibrasyon sistemin işlerliği ile ilgili herhangi bir sıkıntı yaratmaması ve değişen çevre şartlarına uyum sağlayabilme esnekliği açısından daha avantajlıdır. Zaman aralıklama hataları frekans spektrumunda çıkıntılar(spur) oluşturmaktadır. Bu çıkıntılar, güçlü olmaları durumunda alıcı kısmındaki devreleri sıkıştırma noktasına iterek modülasyonlu işaretlerin sezilmesini zorlaştırabilir veya giriş işaretini tamamen engelleyebilirler. Dolayısıyla kanal uyumsuzluk hataları özellikle kablosuz haberleşme sistemleri için sorun teşkil etmektedir. Bu sorunlardan kurtulmak için kanalları rastgele kullanmaya dayanan bir teknik önerilmiştir. Bu teknik ile kanallardan kaynaklanan hatalar çıkışa rastgele bir sırayla etki yaptıklarından gürültü gibi bir karaktere geçerler. Dolayısıyla frekans spektrumundaki çıkıntılar söndürülmüş olur. Tekniğin bir diğer avantajı arka planda çalışmasıdır. Ancak dikkat edilmelidir ki bu teknik bir hata düzeltme tekniği değildir, dolayısıyla sistemin işaretgürültü oranını iyileştirmemektedir. Kanal uyumsuzluk hatalarının kestirilmesi gibi, saat işaretlerinin dağıtılması da artan kanal sayısı ile zorlaşmaktadır. Ayrıca yüksek kanal sayısına sahip olan zaman aralıklı ADClerde saat işareti dağıtımının tükettiği güç yüksek seviyelere ulaşabilir. Belli bir dönüştürme hızı için kanal sayısını düşük tutmak ise kanal ADClerinin dönüştürme hızlarını arttırmak ile mümkündür. ADClerin hızları yüksek tutulurken aynı zamanda güç verimliliği de yüksek tutulmalıdır. Bu hedefler doğrultusunda 8-bit 1 GS/s bir çevrimde birden fazla bit dönüştüren bir SAR ADC yapısı önerilmiştir. Bir çevrimde birden fazla bit dönüştüren SAR ADCler, tek kanalda yüksek hızlara çıkmak konusunda sıkça kullanılan bir yöntem olarak karşımıza çıkmaktadır. Bunun yanında ilk üç en anlamlı bit bir flash ADC ile dönüştürüldüğünden önemli hız kazanımları elde edilir. Flash ADC çıkışında bir kod çözücü yapısı kullanılmaması da zaman kazanımında etkilidir. Önerilen ADC yapısında özgün bir dönüştürme algoritması kullanılmaktadır. Algoritma temel olarak, dönüştürme fazlarına fazladan seviyeler eklemek ve fazların aralıklarını kesiştirmek sureti ile devre bloklarının hata toleranslarını arttırmasına dayanmaktadır. Bu nedenle herhangi bir kalibrasyon sistemine ihtiyaç duyulmaz dolayısıyla güç tüketimi azaltılabilir. Bu yapının gerçeklenebilmesi için çoklu seviye üreten bir ön kuvvetlendirici önerilmiştir. Önerilen ön kuvvetlendirici yapısı nedeniyle, algoritmadaki farklı fazlar için tek bir ön kuvvetlendirici kullanılabilmektedir. Bu sayede farklı ön kuvvetlendiricilerden kaynaklanacak dengesizlik uyumsuzluklarının da önüne geçilmiş olur. Yüksek hızlı veri dönüştürücülerin gerçeklenmesindeki en etkili devre bloğu, kendisi de 1 bitlik bir ADC olarak sayılabilecek karşılaştırıcı devreleridir. Karşılaştırıcı devresinin hızı, doğruluğu ve güç tüketimi bir ADCnin ilgili performans parametrelerini doğrudan etkilemektedir. Yüksek karşılaştırma hızlı özgün bir gömülü ön kuvvetlendiricili karşılaştırıcı devre önerilmiştir. Yapı geleneksel dinamik sezme kuvvetlendiricisi devresi temel alınarak tasarlanmıştır. Ek olarak giriş farksal kuvvetlendirici bölümüne bir statik akım kaynağı bağlanmıştır. Bu şekilde dinamik karşılaştırıcı yapısına ön kuvvetlendirici gömülmüş olur. Yapı geleneksel yapılara nazaran, hız, dengesizlik, güç tüketimi ve geri tepme gürültüsü açısından iyileştirmeler içermektedir. 8-bit 1 GS/s bir çevrimde birden fazla bit dönüştüren SAR ADC yapısı, ilk 3 biti olabildiğince hızlı dönüştürmek için bir flash ADC yapısı kullanmaktadır. Flash ADC yapılarının önemli hız avantajlarına rağmen, karşılaştırıcı devrelerin dengesizlik ve geri tepme gürültüsü performansı düşürmektedir. Önerilen gömülü ön kuvvetlendiricili karşılaştırıcı devresi dengesizlik performansını ve geri tepme gürültüsünü iyileştirmektedir. Ancak geri tepme gürültüsünden kaynaklanan hataları tam olarak çözmek adına, referans gerilimleri de giriş işaretleri gibi örneklenebilir. Bu teknik ile karşılaştırıcı geri tepme gürültüsünün giriş ve referans gerilimi üzerindeki etkisi eşitlenmekte ve geri tepme gürültüsünün etkisi bertaraf edilmektedir. ADC girişleri örneklenerek geldiğinden ve örnekleme devrelerindeki bir hata doğrudan ADCye iletileceğinden bu devrelerin performansı çok önemlidir. Çapraz bağlamalı anahtar tekniği kullanılarak anahtarların doğrusallığı iyileştirilmiştir. Aynı zamanda çapraz bağlama tekniği anahtar yük enjeksiyonu hatasını giriş işaretinden bağımsız hale getirmektedir. Bu durum, yukarıda bahsedilen referans örnekleme tekniği ile birleştirildiğinde flash ADC için önemli bir doğruluk iyileştirmesi sağlamaktadır. ADC blokları ST Microelectronics 65 nm CMOS teknolojisinde tasarlanmış ve serimleri yapılmıştır. Serim sonrası benzetim sonuçları tasarımların ve kullanılan tekniklerin doğruluğunu göstermektedir. Tasarlanan ADC Haziran 2015'de üretime yollanmıştır. Kasım 2015'de ölçümlere başlanması planlanmaktadır.Data rate of communication systems constantly increasing . Rapid scaling of digital semiconductor technologies has moved the signal processing of these systems to digital domain. Therefore high-speed ADCs are required to form the bridge to take the analog signals in digital domain. Data rates exceeding 10 Gbps makes the use of single channel ADCs unfeasible on this purpose. A power efficient solution is time-interleaving. Time-interleaving relaxes the speed requirements on single channel ADCs and lets designers to focus on power efficiency of the ADC. Channel mismatches in time-interleaved ADCs causes performance degradation. Errors arise mainly due to offset, gain and timing mismatch of channels. Among them, timing error is the most problematic since estimation of timing errors becomes more cumbersome in high-frequencies. Estimation and correction of timing errors in time-interleaved ADCs are hot topics of research. Calibration of errors can be on background or on foreground. Background calibration is more desirable since it allows system to adapt to changing conditions while not hindering the operation of the ADC. Time interleaving errors generate spurs on the spectrum. Spurs are problematic for the wireless communication systems, since they may block the input signal. In order to extinguish the spurs a channel randomization technique is proposed. Technique is based on randomly taking one of the ADC channels to make the errors of the channels noise-like term. It is advantageous since it works on background. Technique maintains a spur-free spectrum however does not improve the SNR of the system. Estimation of channel mismatch errors and clock distribution in a time-interleaved ADC becomes tedious as the number of channels increase. In order to keep the channel number low, channels should be fast while being power efficient. To satisfy this task, an 8-bit 1 GS/s multi-bit per cycle ADC is proposed. ADC employs a novel search algorithm based on redundancy. No calibration scheme required thanks to the algorithm therefore the power efficiency of the system can be increased. In order to realize the multi-bit per cycle structure, a multiple-threshold generation preamp is proposed. Comparators are the most important part of an ADC. Comparator specifications such as speed, accuracy and power consumption directly affect the relative specifications of the whole ADC. A novel latch with embedded preamp is proposed. Novel structure has latch regeneration time, offset, power consumption and kickback noise improvements over the conventional structures. 8-bit 1 GS/s multi-bit per cycle SAR ADC employs a flash ADC to perform the coarse conversion benefit from its speed. Although flash ADCs are fast, offset and kickback noise of comparators can penalize their accuracy. Proposed latch with embedded preamp improves the offset performance. To solve the kickback issue, reference voltages of the flash ADC are sampled. This technique is based on equalizing the kickback for both input and reference voltages therefore eliminating the effect. Sampling network of the ADC is critically important since any error made in the sampling phase directly passes to the ADC. Bootstrapped switches are used to improve the linearity of the switches. By using bootstrap switches, charge injection can be made signal independent. If it is combined with the reference sampling technique used in flash ADC, effects of charge injection can be diminished significantly. ADC blocks are designed and laid out in ST Microlectronics 65 nm process. Postlayout simulations have proven the efectiveness of the proposed techniques and blocks. Tape-out was done in July 2015. Measurements is expected to take place in November 2015.Yüksek LisansM.Sc

    Practical Techniques for Improving Performance and Evaluating Security on Circuit Designs

    Get PDF
    As the modern semiconductor technology approaches to nanometer era, integrated circuits (ICs) are facing more and more challenges in meeting performance demand and security. With the expansion of markets in mobile and consumer electronics, the increasing demands require much faster delivery of reliable and secure IC products. In order to improve the performance and evaluate the security of emerging circuits, we present three practical techniques on approximate computing, split manufacturing and analog layout automation. Approximate computing is a promising approach for low-power IC design. Although a few accuracy-configurable adder (ACA) designs have been developed in the past, these designs tend to incur large area overheads as they rely on either redundant computing or complicated carry prediction. We investigate a simple ACA design that contains no redundancy or error detection/correction circuitry and uses very simple carry prediction. The simulation results show that our design dominates the latest previous work on accuracy-delay-power tradeoff while using 39% less area. One variant of this design provides finer-grained and larger tunability than that of the previous works. Moreover, we propose a delay-adaptive self-configuration technique to further improve the accuracy-delay-power tradeoff. Split manufacturing prevents attacks from an untrusted foundry. The untrusted foundry has front-end-of-line (FEOL) layout and the original circuit netlist and attempts to identify critical components on the layout for Trojan insertion. Although defense methods for this scenario have been developed, the corresponding attack technique is not well explored. Hence, the defense methods are mostly evaluated with the k-security metric without actual attacks. We develop a new attack technique based on structural pattern matching. Experimental comparison with existing attack shows that the new attack technique achieves about the same success rate with much faster speed for cases without the k-security defense, and has a much better success rate at the same runtime for cases with the k-security defense. The results offer an alternative and practical interpretation for k-security in split manufacturing. Analog layout automation is still far behind its digital counterpart. We develop the layout automation framework for analog/mixed-signal ICs. A hierarchical layout synthesis flow which works in bottom-up manner is presented. To ensure the qualified layouts for better circuit performance, we use the constraint-driven placement and routing methodology which employs the expert knowledge via design constraints. The constraint-driven placement uses simulated annealing process to find the optimal solution. The packing represented by sequence pairs and constraint graphs can simultaneously handle different kinds of placement constraints. The constraint-driven routing consists of two stages, integer linear programming (ILP) based global routing and sequential detailed routing. The experiment results demonstrate that our flow can handle complicated hierarchical designs with multiple design constraints. Furthermore, the placement performance can be further improved by using mixed-size block placement which works on large blocks in priority
    corecore