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Abstract

This thesis develops the design methodology for a low-voltage low-power XA 

Modulator, realized using a switched op-amp technique that can be used in a hearing 

instrument. Switched op-amp implementation allows scaling down the design to the 

latest CMOS technology. A single-loop second-order XA Modulator topology is chosen. 

The modulator circuit features reduced complexity, area reduction and low conversion 

energy. The modulator has a sampling rate of 8.2 MHz with an over-sampling ratio 

(OSR) of 256 to provide an audio bandwidth of 16 kHz. The modulator is implemented 

in a 0.18 pm digital CMOS technology with metal-to-metal sandwich structure 

capacitors. The modulator operates with a supply voltage of 1.8 V. The active area is

0.403 mm . The modulator achieves a 98 dB signal-to-noise-and-distortion ratio (SNDR) 

and a 100 dB dynamic range (DR) at a Nyquist conversion rate of 32 kHz and consumes 

1321 pW with a joule/conversion figure of merit equal to 161xl0’12 J/s.

The design methodology is developed through the extensive use of simulation 

tools. The behaviour simulation is carried out using Matlab/ SIMULINK while circuits 

are simulated with Hspice using the Cadence design tools. Full-custom layout for the 

analog and the digital circuits is performed using the Cadence design tool. Post­

processing simulation of the extracted modulator with parasitic verifies that results meet 

the requirements. The design has been sent to CMC for fabrication.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

i ii



Acknowledgments

First and foremost, I would like to express my sincere gratitude first to my 

supervisor, Professor William Miller, for giving me the opportunity to research in the 

field of mixed-signal design and for his patience, guidance, constant encouragement, 

technical and financial support throughout the course of the research.

I would like to express my deepest gratitude to Dr. Majid Ahmadi for his 

continuous encouragement and support in facing all the obstacles that affect my career.

I would like to express my best regards to Dr. Edwin Tam, of the Civil and 

Environmental Engineering Department, for his valuable comments.

I would like to thank Till Kuendiger for his assistant in helping me to solve the 

problems in using the Cadence design tool.

Finally, I would like to thank all the graduate students in the VLSI lab for the 

technical discussion and interaction.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

iv



Contents

Abstract.................................................................................................................... iii

Acknowledgement.............................................................................................iv

List of Tables......................................................................................................... ix

List of Figures...................................................................................................... x

Abbreviations............................................................    xiii

1. Introduction

1.1. Motivation..........................................................................................................1

1.2. Objective............................................................................................................2

1.3. Thesis Organization........................................................................................  3

2. ZA Modulator Basic Concepts

2.1. Oversampling ADC.......................................................................................... 4

2.2. First Order EA Modulator.................................................................................7

2.2.1 Time Domain Behavior...........................................................7

2.2.2 Z-Domain Behavior................................................................. 8

2.3. Second Order EA Modulator.......................................................................... 9

2.4. Performance Criteria.......................................................................................  11

2.4.1 Signal-to-Noise Ratio (SNR)...................................................11

2.4.2 Signal-to-Noise-and-Distortion Ratio (SNDR)......................12

2.4.3 Dynamic Range (DR)...............................................................12

2.4.4 Effective Resolution (B).......................................................... 12

2.4.5 Power Dissipation...........................................................................  13

2.5. Top-Down Design Methodology Motivation..................................................14

2.6. Switched Op-Amp EA Modulator Design Methodology............................... 14

3. System Level Behavior

3.1 Comparison between Modulator Architectures................................. 17

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3.2 Single Loop 2 A Modulators using Half Delay Integrators..................19

3.3 Cascade 2A Modulators Using Half Delay Integrators.......................22

3.4 Multibit Topology.................................................................................. 24

3.5 T opology Selection................................................................................ 25

3.6 2 A Modulators Non-idealities...............................................................27

3.7 Clock Jitter Model..................................................................................27

3.8 Integrator Noise Model........................................................................  28

3.8.1 Switch Thermal Noise (KT/C) M odel................................  30

3.8.2 Op-Amp Noise Model.............................................................. 31

3.9 Integrator Non-idealities Model............................................................32

3.9.1 DC Gain..................................................................................... 32

3.9.2 Bandwidth and Slew Rate........................................................ 33

3.9.3 Saturation.................................................................................  35

3.10 Capacitor Mismatching..........................................................................35

3.11 Comparator............................................................................................. 35

3.12 Behavioral Simulation for the Ideal 2A Modulator.............................35

3.13 Behavioral Simulation for the Non-Ideal 2A Modulator................  39

4. Low Voltage Low Power Design Techniques

4.1 Switch Behavior..................................................................................... 44

4.2 Single Switch Behavior......................................................................... 48

4.3 Existing Solutions................................................................................  50

4.4 Original SOTechnique........................................................................  51

4.5 Modified SO Technique.........................................................................52

4.6 Quantization and Circuit Noise............................................................. 54

4.7 Intrinsic Constraint of Power Consumption.........................................57

4.8 Practical Constraints of Power Consumption...................................... 58

4.9 Suppression of Noise Generated Inside the Loop................................58

4.10 System Level Power Saving..................................................................59

5. Building Block Design

5.1 Switched Op-Amp..................................................................................60

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5.2 Switched Op-Amp Integrator................................................................ 66

5.3 Comparator............................................................................................. 68

5.4 Biasing Circuit........................................................................................75

5.5 Half Delay Circuit.................................................................................. 76

5.6 Clock Generator......................................................................................77

6. System Implementation

6.1. Modulator Schematic and Implementation................................................... 79

6.2. Modulator Layout Methodology.................................................................... 84

6.3. Floor-planning.................................................................................................. 85

6.3.1. Power Supply Strategy............................................................ 85

6.3.2. Interface Signals Definition.................................................... 86

6.3.3. Special Design Requirements Consideration..........................86

6.3.4. Size Approximation................................................................. 86

6.4. Sub-block implementation............................................................................ 87

6.4.1 Component Placement.............................................................87

6.4.2 Special Design Requirements................................................. 87

6.4.2.1 Matching of Fully Differential Design.................. 87

6.4.2.2 Guard Rings............................................................. 90

6.4.2.3 Shielding.................................................................. 90

6.4.2.4 Capacitor Layout..................................................... 91

6.4.2.5 Multi-finger Transistors..........................................91

6.4.3 Component Connection......................................................... 94

6.4.4 Sub-Block Layout Verification............................................  94

6.5. Building and Verifying the Modulator Layout..............................................100

6.6. Post-Processing................................................................................................ 100

6.7. Generating the GDSII File.............................................................................. 100

7. Conclusions and Recommended Future Work
7.1 Conclusions......................................................................................................  105

7.2 Recommended Future Work..........................................................................  106

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Appendix A
A.l Slew Rate Modeling...........................................................................................  107

A.2 PSD Plotting.......................................................................................................... 108

A.3 SNR Calculation....................................................................................................110

A.3.1 Extraction of a Sinusoidal Waveform from a Bitstream....................... I l l

References....................................................................................... 112

VitaAuctoris................................................................................ 119

v i i i

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



List of Tables

3 -1. Comparison between modulator architectures...................................................18

3-2. Non-idealities of the fundamental basic blocks................................................ 27

3-3. Second-order modulator coefficients and parameters...................................... 42

3-4. Building block requirements........................................................................... 42

5-1. Cell values for the op-amps..............................................................................  63

5-2. Simulated performance of the first and second op-amp................................... 65

5-3. Cell values of the comparator............................................................................. 74

5-4. Comparator specifications...............................................................................  74

5-5. Cell values for the biasing circuit.......................................................................75

6-1. Modulator specifications.................................................................................  103

6.2. Comparison between this work and previous designs...................................... 104

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



List of Figures

2-1. Typical ADCs block diagrams.........................................................................  5

2-2. Nyquist rate and oversampling ADC.................................................................5

2-3. Pulse density output from a XA modulator for a sine wave input..................6

2-4. Digital and decimation filtering in the XA ADC............................................. 7

2-5. First-order XA modulator...................................................................................8

2-6. Z domain representation of the first-order XA modulator.............................  8

2-7. Second-order XA modulator..............................................................................9

2-8. Comparison of noise shaping for the first, second and third-order

XA modulator......................................................................................................11

2-9. Oversampling ratio versus resolution for the first, second and third

-order XA modulator......................................................................................... 13

2-10. SO XA modulator design methodology............................................................. 16

3 -1. Classic nth order single loop XA modulator topology.......................................19

3-2. Second-order, single-loop XA modulator topology...........................................19

3-3. The nth order single loop XA modulator topology using half delay

integrators.......................................................................................................... 20

3-4. Block diagram of a cascaded XA modulator..................................................... 23

3-5. Cascaded 2-1 XA modulator with half delay integrators..................................23

3 -6. Modeling a random sampling j itter.................................................................... 28

3-7. Noisy integrator model........................................................................................29

3-8. Single-ended SC integrator................................................................................. 29

3-9. Modeling thermal noise (KT/C)..................................................................... 30

3-10. Op-amp noise model............................................................................................31

3-11. Real integrator model.......................................................................................... 32

3-12. SIMULINK model for an ideal second-order XA modulator....................... 36

3-13 SIMULINK simulation scope’s results for the input, first and second

integrator and the modulator output................................................................37

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3-14. Simulated output spectra with -2  dB input sinusoidal for the

ideal second-order modulator...........................................................................38

3-15 SIMULINK model for the non-ideal second-order ZA modulator...............39

3-16 SNDR versus input amplitude.......................................................................... 40

3-17 Simulated output spectra with -2  dB input sinusoidal for the non-ideal

second-order XAmodulator................................................................................41

4-1. Non-inverting SC integrator........................................................................... 45

4-2. Complementary switch......................................................................................46

4-3. Complementary switch simulation results in 0.18 pm process......................47

4-4. Complementary switch with symmetrical on-resistance simulation results

in 0.18 pm process............................................................................................ 47

4-5. Simulation results of the symmetrical on-resistance complementary

switch if the minimum conductivity desired is 600 pG (equivalent to an

on-resistance of 2.1KQ).....................................................................................48

4-6. Simulation of the N-type switch in 0.18 pm technology..................................49

4-7. Simulation of the P-type switch in 0.18 pm technology.................................. 49

4-8. The SO integrator preceded by another integrator............................................52

4-9. The signal swings in the modified SO technique........................................... 53

4-10. The differential modified SO integrator cell................................................... 53

4-11. The noise power spectral densities...................................................................56

5-1. Folded cascade two stage op-amp.................................................................  62

5-2. The common-mode feed back circuit...............................................................63

5-3. The ac response of the op-amp......................................................................... 64

5-4. The DC response of the op-amp.......................................................................65

5-5. SO integrator...................................................................................................... 66

5-6. Output CM simulation result.........................................................................  67

5-7. Transient response to a step input.................................................................... 67

5.8. Three-stage comparator.....................................................................................70

5-9. The ac response of the comparator................................................................... 71

5-10. Comparator response to a ramp input...............................................................71

5-11. Simulating hysteresis in the forward direction..............................................  72

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5-12. Simulating hysteresis in the backward direction............................................72

5-13. Simulating the comparator speed..................................................................... 73

5-14. Simulating the comparator propagation delay.................................................73

5-15. The biasing Circuit............................................................................................ 75

5-16. Half delay circuit............................................................................................... 76

5-17. Half delay circuit simulation result.................................................................. 76

5-18. Clock generation................................................................................................ 77

5-19. Timing diagram..................................................................................................78

6-1. Circuit schematic of the second-order single-loop XA modulator.................79

6-2. Feedback network..............................................................................................81

6-3. Feedback circuit implementation..................................................................... 82

6-4. Second-order single-loop SO XA modulator.................................................  83

6-5. Layout methodology........................................................................................ 84

6-6. Floor-planning steps.......................................................................................... 85

6-7. Implementing the designed sub-blocks............................................................88

6-8. Common centroid input stage transistors.........................................................88

6-9. Op-amp layout....................................................................................................89

6-10. Capacitor layout with guard rings.................................................................... 91

6-11. Shielding the sensitive analog signals............................................................ 92

6-12. Multi-fingering...................................................................................................93

6-13. Building block layout verification steps........................................................  95

6-14. Comparator layout............................................................................................. 96

6-15. Clock generation layout.....................................................................................97

6-16. Half-delay circuit layout....................................................................................98

6-17. Set-reset flip flop layout.................................................................................... 99

6-18. The implemented XA modulator....................................................................  101

6-19. The generated bitstream.....................................................................................102

6-20. The output spectrum......................................................................................... 102

6-21. SNDR versus signal amplitude.....................................................................  103

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Abbreviations

ADC Analog-to-digital converter

CM Common-mode

CMFB Common-mode feedback

CMOS Complementary metal-oxide semiconductor

DAC Digital-to-analog converter

DR Dynamic range

DRC Design rule checker

FF Flip-flop

FOM Figure-of-merit

GBW Gain bandwidth product

GUI Graphical user interface

LVS Layout versus schematic

MOSFET Metal-oxide semiconductor field effect transistor

NMOST Negative-channel metal-oxide semiconductor transistor

NTF Noise transfer function

Op-Amp Operational amplifier

OSR Oversampling ratio

PMOST Positive-channel metal-oxide semiconductor transistor

PSD Power spectral dnsity

RMS Root mean square

RC Resistance capacitor

SC Switched capacitor

ZA Sigma-delta

SNDR Signal-to-noise and distortion ratio

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



SNR Signal to noise ratio

SO Switched op-amp

SOC System on chip

SR Slew rate

SR FF Set-reset flip-flop

STF Signal transfer function

VLSI Very large scale integration

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

x iv



Chapter 1 

Introduction

1.1 Motivation

Modem electronics systems in computers, communications, automotive and 

instrumentation are mostly mixed-signal systems. An analog to digital converter (ADC) 

is a standard building block, unavoidable as interface between the analog world and the 

digital signal processing hardware. The market for portable electronic systems and 

system-on-chip (SOC) such as wireless communications devices and hearing aids, is 

continuously expanding. Both low voltage and low power operation are of great 

importance for portable applications and SOC. Low voltage operation is demanded 

because it is desirable to use as few batteries as possible for size and weight 

considerations. Low power consumption is necessary to ensure a reasonable battery 

lifetime.

The XA converters are based on noise shaping and over-sampling. It has been 

known for nearly thirty years, but only recently has the technology of high-density digital 

VLSI existed to manufacture them as inexpensive integrated circuits. Without the CMOS 

technology, the digital filtering required in XA converters for decimation and 

interpolation makes these circuits too expensive. Low voltage low power design can be 

achieved as the CMOS technology is scaled down. XA converters have low sensitivity to 

the component mismatches at the price of extensive use of digital processing [1],

There are a lot of architectures available to implement XA converters, from 

single-loop [2] to the more sophisticated with multiple feedback loops, cascade 

connection or multi-bit quantization [3] [4] [5] [6] [7] [8]. Most of these architectures 

have been successfully implemented. CMOS XA converters with 20-bit effective 

resolution in instrumentation [9] [10] [11], 16-bit in audio and data acquisition [12] [13] 

[14] [15] [16] and 12-bit or more in communications are feasible [17] [18] [19] [20],

The first and probably largest application of XA converters is in the field of digital 

telephony [21], Digital audio is the most obvious application that takes full advantage of
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the inherent qualities of XA converters [22] [23] [24] [25] [26]. For digital-audio 

applications, the previous researches have already proven that switched-capacitor (SC) 

XA structure is a good candidate. However, these works either employ supply voltages 

as high as 5 V [27], or use out-of-date CMOS technologies with bigger transistor channel 

lengths [27] [28]. In the 0.18 pm technology, XA modulator is presented for digital- 

audio applications using a bootstrapped switch [29]. To the author’s knowledge, there is 

a lack of papers on implementation of digital-audio XA modulators with guaranteed 

performance that is compatible with the latest CMOS technologies. The market does post 

a continuing demand to design XA modulators using technologies with channel length as 

small as 0.18pm or even smaller to be compatible with the latest CMOS technologies and 

with less area-occupation, high-resolution, and low power.

1.2 Objectives

This thesis investigates the development of a switched op-amp (SO) XA 

modulator for digital-audio instrumentations to provide compatibility with the 

continuously decreasing CMOS technology feature size. The specific design objectives 

are:

1. To develop a top down design methodology in order to perform an

analysis at the system architectural level before starting transistor level 

design. To use Matlab/ SIMULINK to implement the system architecture 

and model non-idealities.

2. To choose the proper topology to design the XA modulator for digital-

audio instrumentations, while considering low-power and low-voltage 

design constraints.

3. To carry out the design of the individual building blocks using the 0.18

pm CMOS process. To integrate the building blocks. To verify the 

designed individual circuits and the whole modulator by simulation using 

Hspice in the Cadence design tools.

4. To implement the Layout considering the mixed-signal design

requirements. To verify that the designed XA modulator meets the

2
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required specifications thought post-simulation with parasitic and testing 

the fabricated chip.

1.3 Thesis Organization

Chapter 2 is an introduction to XA modulators. It includes discussing 

oversampling ADC, analyzing the behavior of XA modulators in the Z-domain and 

discussing the performance metrics. The motivation for top-down design methodology is 

discussed and the implemented methodology for this work is shown. In Chapter 3 

different kinds of topologies are compared and the reasons for selecting the single-loop, 

second-order XA modulator for this work are discussed. Non-idealities issues associated 

with XA modulator design and modeling in MATLAB/ SIMULINK are given and the 

behavior simulation to optimize the system and building blocks parameters is then 

developed. In Chapter 4, the switch design constraint and low-voltage, low-power design 

techniques are addressed. Chapter 5 focuses on the implementation of each building 

block in the TSMC 0.18 pm CMOS technology with the simulation results from the 

analog environment of the cadence design tool. Chapter 6 deals with integrating the 

building blocks to implement the SO XA modulator and simulating the results. In 

Chapter 7, conclusion remarks and recommendations for future work are discussed.
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Chapter 2 

XA Modulator Basic Concepts

This Chapter introduces the concept of oversampling ADC, describes the basic 

function of the XA Modulator and explains how the XA Modulation is so beneficial for 

generating high-resolution data. The performance criteria that are necessary to measure 

the performance of the XA Modulator are defined. A top-down design methodology 

using SIMULINK for the design of XA modulator is discussed. The motivation and the 

benefits of the top-down optimization are presented, which featured a shorter design 

cycle, along with ease of implementation and reproducibility. The design steps for the 

SO XA modulator are summarized

2.1 Oversampling ADC

Analog-to-digital converters can be separated into two categories depending on 

the rate of sampling. The first category samples the input at the Nyquist rate, such that:

A = 2 F

Where F  is the signal bandwidth and f N is the sampling rate. The second type samples 

the signal at a rate much higher than the signal bandwidth. This type is called the 

oversampling converter [30].

Figure 2-1 shows the typical process used in ADC. After filtering the signal, to 

help minimizing aliasing effects, the signal is sampled, quantized, and encoded using 

simple digital logic to provide the digital data in the proper format.
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Figure 2-1. Typical ADCs block diagrams, (a) Nyquist rate ADC. 
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Figure 2-2. Nyquist rate and oversampling ADC. (a) Frequency domain for 
Nyquist rate ADC. (b) Aliasing effect for Nyquist rate ADC. (c) 
Frequency domain for oversampling ADC.

A sampled signal in the frequency domain appears as a series of band-limited 

signals at multiples of the sampling frequency. As the sampling frequency decreases, the 

frequency spectra begin to overlap causing aliasing effect. Figure 2-2a shows the 

frequency spectra, while Figure 2-2b shows the aliasing effect when using Nyquist rate 

converters. Complex filters are required to correct the problem. For oversampled ADC, 

aliasing becomes much less of a factor. Since the sampling rate is much greater than the 

bandwidth of the signal, the frequency domain representation shows that the spectra are

5
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widely spaced, as seen in Figure 2-2c. Thus using oversampling ADC, little if any, 

anti alias filtering is needed.

Oversampling converters typically employ SC circuit and therefore do not need 

sample-and-hold circuits. Quantization is provided in the form of a pulse-density 

modulated signal that represents the average of the input signal. The modulator is able to 

construct these pulses in real time, so it is not necessary to hold the input value and 

perform the conversion. Figure 2-3 illustrates the output of the modulator for the positive 

half of a sine wave input. For the peak of the sine wave, most of the pulses are high. As 

the sine wave decreases in value, the pulses become distributed between high and low 

according to the sine wave value.

Digital signal processing should be utilized for the oversampling ADC, which 

filter any out-of-band quantization noise and attenuate any spurious out-of-band signals. 

The output of the filter is then down sampled to the Nyquist rate so that the resulting 

output of the ADC is the digital data, which represents the average value of the analog 

voltage over the oversampling period. Figure 2-4 shows the block diagram and the 

frequency spectrum of the digital part.

\

Figure 2-3. Pulse density output from a ZA modulator for a sine wave input

6
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Figure 2-4. Digital and decimation filtering in the ZA ADC

2.2 First Order SA Modulator

This section examines the time domain and the frequency domain behaviour to 

determine why ZA Modulation is so beneficial for generating high-resolution data. Noise 

shaping, which is a powerful concept used within oversampling ADC, is explained.

2.2.1 Time Domain Behaviour

A basic first order ZA modulator can be seen in Figure 2-5. An integrator and a 

1-bit quantizer are in the forward path, and a 1-bit digital-to-analog (DAC) is in the 

feedback path of a single-feedback loop system. The 1-bit quantizer is simply a 

comparator that converts an analog signal into either a high or low. From the Z-domain 

representation shown in Figure 2-6, the input-output relation can be written in terms of a 

difference equation as [31]:

y(KT)  = x(KT - T )  + Qe (KT ) -  Qe (KT -  T) (2-1)

Where K is an integer. T is the inverse of the sampling frequency ( f s). Qe is the 

quantization noise expressed as:

Qe(KT) = y ( K T ) -u ( K T )

7
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1 bit
Quantizer

Figure 2-5. First-order ZA modulator

Integrator integrator

(a) (b)

Figure 2-6. Z domain representation of the first-order ZA modulator.

(a) Z-domain representation, (b) Conceptual representation.

Therefore, the output of the modulator consists of a quantized value of the input signal 

delayed by one sample period, plus a differencing of the quantization error between the 

present and previous values. Thus, the real power of the ZA Modulator is that the 

quantization noise Qe, cancels itself out to the first order.

2.2.2 Z-Domain Behaviour

Figure 2-6 shows the Z-domain model for the first order ZA modulator. The ideal

Z _1
integrator is represented with the transfer function -— . The 1-bit quantizer is

8
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modeled as a simple error source Q(Z), and the DAC is considered to be ideal. The 

output can be expressed as:

Y(z) = Z-1X ( Z) + ( l - z - l)Q(z) (2-2)

Where Y(z), X(z)  and Q(z) are the z-transform of the modulator output, input, and the

quantization error respectively.

The multiplication factor of X(z) is called the signal transfer function (STF), 

whereas that of Q(z) is called the noise transfer function (NTF). It can be noted that z '1 

represents a unit delay, while the NTF has high pass characteristics, allowing noise 

suppression at low frequencies. The modulator has essentially pushed the power of the 

noise out of the bandwidth of the signal. This high-pass characteristic is known as noise 

shaping. The digital filter will then perform low pass filtering in order to remove all of 

the out-of-band quantization noise, which then permits the signal to be down sampled to 

yield the final high-resolution output

2.3 Second Order ZA modulators

Second order ZAmodulator provides a greater amount of noise shaping. A 

second-order modulator is shown in Figure 2-7.

1 bit
Quantizer:(kn Delay

Figure 2-7. Second-order ZA modulator
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The output of the modulator can be expressed in the time domain as [31]:

y(KT)  = x(KT - T )  + Qe (KT) -  2Qe (KT - T )  + Qe (KT -  2T) (2-3)

The output contained a delayed version of the input plus a second-order differencing of 

the quantization noise Qe.

The z-domain equivalent is given by [32]:

Y(z) = z - lX(z)  + ( l - z - l)2Qe(z) (2-4)

The NTF ( 1 - z '1)2 has two zeros at dc, resulting in second-order noise shaping. In 

general Lth-order noise shaping can be obtained by placing L integrators in the forward 

path of a AS modulator. For Lth-order noise differencing, the noise transfer function 

(NTF) is given by:

NTFq(z) = (1 - z ~ l)L (2-5)

In the frequency domain, the magnitude of the noise transfer function can be written as:

| NTFq ( / )  1=11 -  e jlnfr° \L = (2 sin 7fTs )L (2-6)

Figure 2-8 shows the noise shaping functions of the first, second, and third-order 

modulator. The crosshatched area under each of the curves represents the noise that 

remains in the signal bandwidth. As the order increasers, more of the noise is pushed out 

into the higher frequencies, thus decreasing the noise in the signal bandwidth. Almost all 

of the noise is out of the signal bandwidth; it can be easily filtered, leaving only a small 

portion within the signal bandwidth. As the modulator order and/ or oversampling ratio 

increases, the portion of the quantization noise that falls into the signal band decreases.

10
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Volts

Second-order

Sampling frequency

Figure 2-8. Comparison of noise shaping for the first, second and third-order ZA 
modulator.

In practice, the single-loop modulator having noise-shaping characteristics in the 

form of (1-Z"')L is unstable for (L>2), unless an L-bit quantizer is used [33] [34]

2.4 Performance Criteria

The figures of merit used to characterize A£ modulator are the signal-to-noise 

ratio (SNR), signal-to-noise-and-distortion ratio (SNDR), Dynamic range (DR), the 

effective resolution and the power dissipation.

2.4.1 Signal-to-noise ratio (SNR)

SNR is the ratio between the output power at the frequency of a sinusoidal input 

and the in-band noise power. Ideally with quantization noise only, the SNR results in:

SNR(dB) = 10 log 10

r A 21 2 " 

V pQ J
(2-7)

Where A is the amplitude of the input signal and P q  is the quantization noise power.
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2.4.2 Signal-to-noise-and-distortion ratio (SNDR)

It is the ratio of the output signal power to the in-band noise power due to the 
non-idealities of the circuitry and the quantization noise. Then by definition, SNDR is 
given by:

SNDR(dB) = 10 log 10

f  A 2 12 A

\ PQ + P D J
(2-8)

Where Pd is the harmonic distortion power due to the non-idealities.

Peak SNDR is a useful metric for evaluating the capability of a ZA modulator for 

handling large in-band signals at acceptable linearity. It is especially important for 

applications such as digital audio applications. Peak SNDR is frequency dependant and 

can be used to measure the degradation of the modulator performance as the input signal 

increases in frequency. Since the output data is digital, discrete Fourier transform can be 

used to examine the data in the digital domain.

2.4.3 Dynamic range (DR)

The DR is defined as the ratio between the output power at the frequency of a sinusoidal 

input with full-scale range amplitude and the output power when the input is a sinusoidal 

of the same frequency, but of small amplitude, so that it cannot be distinguished from 

noise; that is, with SNR equals to 0 dB. DR is also called the useful signal range [35].

For a single-bit quantizer, DR is given by [32]:

D R 2 = - ^ ^ M 2L+1 (2-10)
2 n 1L

Where M is the OSR and L is the modulator order

2.4.4 Effective resolution

The number of bits (B) or effective resolution of the ZA modulator as a function 

of its DR is [32]:

12
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order ZA modulator.
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Thus for 16 bit data conversion, one must design a circuit that will have DR of 98 

dB. The resolution also increases as the order of the ZA modulator and the oversampling 

ratio increases, as seen in Figure 2-9 [30]

It can be concluded from equation (2-10) and (2-11) that using a first-order 

modulator, DR increases by 9dB with every doubling of the oversampling ratio. This 

correlates to an approximate increase of 1.5 bits in resolution. The higher order 

modulators have even greater gain in resolution as 2.5 bit increase is attained with each 

doubling of the oversampling ratio using a second-order modulator, while the third-order 

modulator increases by 3.5 bits.

2.4.5 Power Dissipation

In low-voltage, low-power design, power dissipation is an important parameter. It 

is opposes a design constraint. Power dissipation is normally discussed as a trade off 

parameter with target metrics.

13
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2.5 Top-Down Design Methodology Motivation

Despite a high tolerance for non-idealities of the ZA Modulator, it is still 

governed by the limitations of its analog building blocks, especially at the input stage, 

where, no noise shaping has taken place. The design of an analog system consists of 

three obstacles:

1. Architecture selection.

2. Determining the specifications of the analog building blocks necessary to 

implement the chosen architecture.

3. Minimizing the effects of the circuit non-idealities.

If these obstacles are treated separately, the number of design iteration is big and 

consequently the design cycle will take too long to practically meet the market demands 

for the technology. Due to the uncertainty that arises with a change in technology, it is 

more amenable to consider a design process that can begin without a complete 

dependence on a specific technology. Some tools exit aimed at fully automating the 

design process, however they are limited to a small number of fixed schematic [36] [37]. 

These tools, which are not designed to be reproduced, remove the designer from the 

process, and do nothing to increase the designer’s knowledge. Furthermore, the 

techniques used in these programs are hidden and cannot be applied to other designs.

2.6 Switched Op-Amp ZA Modulator Design Methodology

To reduce the number of the design iteration and better explore the design 

options, it is beneficial to perform an analysis at the system architectural level before 

starting transistor level design. This allows for a feasibility analysis in which all the 

design considerations are treated at the highest level of abstraction. The ultimate goal is 

to have the low level circuit parameters dictated by the selected architecture and desired 

performance. High-level optimization geared design avoids the complete dependence on 

a specific technology and provide the designers with values for familiar parameters (such 

as gm or rout for an op-amp), which provide excellent guidelines for the construction of a 

device. A top-down design methodology is needed in conjunction with an optimization 

process for the creation of analog or mixed signal integrated circuits.

14
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There is also a need to provide a mean of tackling the design problem by 

presenting a simple to implement methodology that makes use of widely used and 

available tools. This allows the procedure to be implemented and reused with little 

difficulty or expense [38]. SIMULINK is used to implement the system architecture and 

model non-idealities, while MATLAB [39] is used to create routines to optimize the 

circuit parameters. As a result, the requirements of the building blocks will be specified 

prior to the undertaking of transistor level simulation, saving valued design time. Top 

down design methodology is proposed to design XA modulator. The systematic design 

methodology that is followed in this work is shown in Figure 2-10.

Starting with the required specification, the topology required for hearing-aid 

application is investigated and the optimal architecture is chosen. The system behavior 

simulation is necessary to optimize the AX modulator topology parameters on the system 

level. SIMULINK is used for the behaviour simulation. The key parameters are isolated 

and the sub-circuits is modeled for non-idealities and the behaviour simulation is run 

again to derive the required circuit specification in order to ensure that the real system, 

with non-ideal components, reaches the intended performance. This methodology avoids 

estimation of the required circuit specifications; it is an important part of low power 

design. The building blocks are designed in 0.18 pm process at the circuit level such that 

they achieve the given specifications and hence ensure the overall system performance. 

All the sub-modules and sub-circuits are integrated and simulated. The simulation results 

are compared with the required specification. The system then enters the layout phase. 

Post-simulation is necessary to ensure that the parasitic effect is considered. Finally it is 

sent for fabrication.

15
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Figure 2-10. SO ZA modulator design methodology
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Chapter 3 

System Level Behavior

A variety of XA modulator architectures have been explored recently. XA 

modulators can be classified in two primary groups, the single-loop and cascade. Each of 

which has its advantages and drawbacks. Among these, perhaps the most robust is a 

second-order XA modulator [34], The second-order XA modulator is attractive for 

digital-audio signal acquisition for their stable operation and its tolerance to circuit non­

idealities.

A complete set of SIMULINK models are needed to perform exhaustive 

behavioral simulation of the SC XA modulator taking into account most of the non­

idealities, such as sampling jitter, KT/C noise and op-amp parameters (noise, finite gain, 

finite bandwidth (GBW), slew-rate (SR) and saturation voltages). The models, which 

simulate non-idealities, are utilized in the behavior simulation. The behavior model is 

presented and the results obtained with the modeled blocks for the second-order XA 

modulator are reported.

3.1 Comparison between Modulator Architectures

Different kinds of XA modulators exist. Depending on the number of quantizers, 

modulator can be classified as single-loop and cascade. They can also be classified as 

one-bit or multi-bit modulator according to the number of quantization levels employed 

by the quantizer. The advantage and disadvantage of these topologies are summarized in 

Table 3-1.
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Table 3-1 Comparison between modulator architectures

Modulator Type Advantages Disadvantages

Low-order

Single-loop

Single-bit

• Guaranteed stability

• Simple loop filter design

• Simple circuit design

• High value of OSR for 

high SNR

• More prone to noise 

pattern

High-order

Single-loop

Single-bit

• High SNR for low OSR

• Less prone to noise pattern

• Simple circuit design

• Difficult loop filter design

• Stability is signal 

dependent

• Maximum input range 

must be restricted to 

ensure stability

Multi-loop cascade • High SNR for low OSR

• Stability guaranteed

• Maximum useful input range

• Requires near perfect 

matching between analog 

integrator and digital 

differentiator.

• Complex SC circuits are 

required to ensure 

matching.

Multi-bit • High SNR for very low OSR

• Stability is much easier to be 

achieved than for high-order 

loops.

• Smaller noise pattern

• More complex circuit 

design

• Sensitive to DAC non- 

linearity
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a j(z )

Figure 3-1. Classic nth order single loop ZA modulator topology.

Figure 3-2. Second-order, single-loop ZA modulator topology

3.2 Single Loop ZA modulators using Half Delay Integrators

Single-loop ZA modulators are extremely insensitive to circuit mismatches. 

Practically, second-order, third order, fourth-order, or even higher order ZA modulators 

are used [40] [41]. Figure 3-1 shows the block diagram of an nth order classic single bit 

modulator. The topology has been organized to have the minimum of independent 

parameters. It uses full delay integrators with a transfer function of:

/(z ) = a (3-1)

Second-order ZA modulator for audio applications was suggested by [40]. Figure 

3-2 shows the second-order modulator topology. The output of this modulator in the 

frequency domain is given as follows:

Y(z) = z -xX{z)+ (l -  z_1 )2 E{z) (3-2)

In equation 3-2, the noise transfer function (1 - z '1)2 works as a second-order shaping 

filter to the quantization noise
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Figure 3-3. The nth order single loop ZA modulator topology using half delay 
integrators.

The basic SO integrator cell offers only and exactly a half delay to the signal, thus its 

transfer function is given by:

I 1( z ) = a
- 1 / 2

(3-3)

The half-delay integrator must be followed by an analog half-delay block to 

function as a full-delay integrator [42] [43], This can be implemented by a SC amplifier 

with unity gain, deploying the SO technique. However, this requires an extra op-amp, 

and hence causes an increased power and area allocation. For the purpose of a ZA 

modulator, these additional amplifiers can be avoided by making use of a rearrangement 

topology. In the architecture of Figure 3-3, the half-delay element has been shifted to the 

feedback path [44]. There they are in the digital domain. They can be implemented with 

a half-delay latch and their power consumption is now negligible as compared to the 

analog implementation. Furthermore, the properties of the modulator are identical to the 

full-delay implementation. The loop coefficients that optimize the SNR have not 

changed.

The power spectral density of the shaped quantization noise of an nth-order 

oversampling ZA modulators is calculated as [45]

-J2*jr
e

In
A2

.22" sin2" (x f )71---
12/, I f s )

(3-4)
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Where A is the separation between two consecutive levels

The in-band noise power is calculated by integrating the power spectral density of the 

quantization error expressed in equation 3-4, in the signal band

fb- a2 7tln
N o= lSo ( / W  = — -l x fTTT (3-5)e 12 (2n + \).OSR{ln+l)

Where OSR is the is the oversampling ratio, expressed as: 

OSR = 2 M S 

Then the DR is calculated as:

DR = 10 log
'(A/2)2 

2 N q

(6n + 3)OSR{2n+'] 
2 n 1

= lOlog- ^ -------- (3-6)

Equation 3-6 shows that the DR is a strong function of the OSR and the order (n) of the 

ZA modulator. For each doubling of the OSR, an extra (2n+l)/2 bits can be obtained. 

Thus the designers can tradeoff between OSR and n to meet the required DR. On the 

other hand, the main constraints for single-loop modulators of an order greater than 2 is 

the stability problem. Increasing the loop parameters worsens the stability of the loop

[46] as they become conditionally stable. Stabilizing a high-order modulator requires the 

use of deliberately chosen parameters and more complicated transfer functions than just a 

cascade of integrators and possibly the use of reset circuits in the integrators in case 

instability happens. All of these tend to reduce the DR well below the upper bound given 

by equation 3-6 for a single-loop modulator with orders higher than two.

The second-order modulator is widely used because it is simple to implement and 

insensitive to component mismatch. The NTF “(1-z'1)2 filters out the quantization noise 

out to the second-order. From equation 3-4, the power spectral density of the shaped 

quantization noise is deduced as:
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( 3 -7 )

From equation 3-5, the in band power of the second-order modulator is calculated as:

Equation. 3-8 shows that doubling the OSR leads to decrease of 15dB/octave of the in- 

band noise power.

The DR can be calculated from equation.3-6 as:

3.3 Cascade HA Modulator using Half Delay Integrators

To avoid the instability problem of higher order single-loop modulator, cascade 

architecture could be an alternative. Figure 3-4 shows a block diagram of a cascaded ZA 

modulator. It uses combinations of inherently stable first and second-order ZA 

modulators to achieve higher-order noise shaping. Outputs from all stages pass through a 

digital error cancellation logic to cancel the quantization errors except for that of the last 

stage.

(3-8)

1  ̂DSIR
DR = 10 log 4 = 50 log OAR -11.1354 (3-9)
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R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



First stage

Second stage

Error

Logic

Cancellation

Figure 3-4. Block diagram of a cascaded ZA modulator
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Figure 3-5. Cascaded 2-1 ZA modulator with half delay integrators

It is also possible to implement cascade topologies using half-delay. Figure 3-5 

shows a cascade 2-1 topology with half delay integrators. Linear analysis of these 

structures allows expressing the output signal as a combination of the input signal and the 

quantization noise of the last stage [43].

2 3
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We can see that the output of this cascaded modulator is a third-order noise shaping. The 

in-band noise power is calculated by using a method similar to equation 3-5.

(3-11)

Accordingly, the DR for the 2-1 cascade structure is calculated to be:

DR(dB) = 10 log = 10 log '  21 £ vOSR7'
v 2/T6 , (3-12)

Equation 3-12 shows that the DR increases by 21dB for every doubling of the OSR. It is 

clear that the scaling coefficient cl tend to reduce the DR.

Similarly, a stable higher-order multi-stage ZA modulator can be obtained. In

[47] a 2-1-1 fourth-order cascaded ZA modulator can be realized with an OSR of 24 with 

15 bits resolution. It can be concluded that the noise shaping of a cascaded architecture is 

comparable to, or even better than that of a single-stage modulator whose order is the 

sum of all the orders in the cascade.

3.4 Multibit Topology

The cascade architecture can be combined with multibit DAC converters to 

improve DR further. For example, a 2-1 cascade with a 3-bit DAC converter in the 

second stage achieves 12-bit resolution with an OSR of 24 and 2.1 MS/s Nyquist rate

[48], However, multibit DAC converter is constrained by linearity problem so calibration 

techniques are often needed to make the modulator designed works well. The common 

way to ease the linearity requirements is only using multibit DAC converter at the last 

stage rather than at the overall modulator input as shown in [48].

2 4
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3.5 Topology Selection

For audio applications, both single-loop and cascade structures are published [27] 

[41] [49] [50] [51]. In comparing the single loop topologies with cascaded topologies, 

generally the former are always much worse than the later in term of PSNR. Therefore, if 

the main goal is high resolution, the cascaded topology offers a much better solution than 

single loop topologies. This, however, comes at the cost of much higher sensitivity to 

non-idealities of the building blocks [52]. Although cascade topology offers higher SNR 

and maximizes the input range, the SO technique do not make use of the maximum input 

range. This is because SO technique, only eliminate the need for rail-to-rail switching 

operation at the output of the integrator, however, the input switch for the input signal 

path remains, and it could be implemented as a single switch with limited signal range as 

will be explained in details in Chapter 5.

Single-loop architecture, as compared to cascade, is relatively insensitive to 

component mismatches. As an example, a fourth-order interpolative topology can 

tolerate up to 5% mismatch in its coefficients [53]. In contrast, a 2-2-cascade modulator 

requires about 1% between the analog and digital inter-stage gains to achieve 14-bit 

performance. For a second-order modulator, variation of ±20% in the gain of the first 

integrator has only a minor impact on the modulator’s performance. This gain tolerance 

translates into tolerance for incomplete settling of the integrator outputs as long as the 

settling process is linear [40].

If the second-order modulator is used to implement a ZA modulator of 16 bit 

resolution, the OSR needs to be 256 for the hearing aids application with a signal 

bandwidth of 16 KHz, the sampling rate ( f s) needed is 8.2 MHz. This frequency can be 

realized with 0.18 pm CMOS technology that is used to implement this work. Drawback 

for using such frequency is the need for higher SR and clock jitter requirements. With 

the help of the behavior simulation that consider non-idealities, SR can be estimated and 

a decision can be made if  the figure is practical. Dynamic power dissipation doubles for 

every doubling of the sampling frequency, however if SO ZA modulator is used, the duty 

cycle is 50% as will be explained in Chapter 7.

This design is exploring the possibly of using SO technique to implement a SO 

ZA modulators using the latest IC technology with specified resolution and power
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consumption requirement for a 16 bit hearing aid application with a bandwidth of 16 

KHz. It was suggested in [40] that an ideal second-order modulator combined with 

oversampling ratio of 256 can be employed to realize a 16 dB resolution A/D converter. 

This discussion suggests that second-order single-loop architecture is favorable for this 

design, due to the inherent stability, simplicity and compatibility with SO technique for 

reduced power consumption and the constraint of the reduced input signal range.
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Table 3-2 Non-idealities of the fundamental basic blocks

Basic Block Non-ideality Consequences

Clock Jitter Jitter noise

Switches Thermal noise

Thermal noise

SC 
In

te
gr

at
or Op-Amp

DC gain Increases in quantization noise 

harmonic distortion.

and

BW and SR Incomplete settling noise 

harmonic distortion

and

Saturation Overloading and harmonic distortion

Capacitors Mismatching Increase in quantization noise 

harmonic distortion

and

Comparator Hysteresis, Offset Quantization noise increase

3.6 ZA Modulators Non-Idealities

Table 3-2 compiles the fundamental basic blocks and the non-idealities 

considered.

3.7 Clock Jitter Model

The effect of clock jitter, on a SC ZA modulator can be calculated based on the 

complete charge transfers during each of the clock phases. Once the analog signal has 

been sampled, the circuit is a sampled data system where variations of the clock period 

have no direct effect on the circuit performance. Therefore, the effect of clock jitter on 

the SC circuit is completely described by computing its effect on the sampling of the 

input signal. This means also that the effect of clock jitter on a ZA modulator is 

independent of the structure or order of the modulator.

2 7
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Figure 3-6. Modeling a random sampling jitter

Clock jitter results in a non-uniform sampling and increases the total error power 

in the quantizer output. The magnitude of this error is a function of both the statistical 

properties of the jitter and the input signal to the converter. The error introduced when a 

sinusoidal signal with amplitude A and frequency f n is sampled at an instant, which is in 

error, by an amount 8 is given by:

x(t + S ) -  x(f)« 27finSAcos{27fint) = S — x{t) (3-13)
dt

This effect can be simulated with SIMULINK by using the model shown in Figure 3-6, 

which implements equation 3-13. Here, it is assumed that the sampling uncertainty 8 is 

gaussian random process with “delta” standard deviation. Whether oversampling is 

helpful in reducing the error introduced by the jitter depends on the nature of the jitter. 

The jitter is assumed to be white, so the resultant error has uniform power spectral from 0

to f  s/2, with a total power of (27rfindeltaA)212. In this case, the total error power will be

reduced by the oversampling ratio [54].

3.8 Integrator Noise Model

While the performance o f  the theoretical XA modulator is only determined by the 

in-band quantization noise suppression, the physical implementation of the system with 

solid-state devices has to deal with other noise sources as well. The main additional 

noise sources of a silicon implementation are thermal noise and flicker (1/f) noise.

2 8
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The circuit noise to be dealt with in a ZA modulator is the noise injected into the 

input summing node of the first integrator, since it is added directly to the input signal 

and appears in the output spectrum without any filtering. White noises from the rest of 

the integrators are attenuated by different powers of the oversampling ratio, depending on 

the position of the integrator, and can be neglected.

The circuit thermal noise generated in an integrator has two main origins, the 

white noise due to the resistance of the MOS switches and the op-amp noise of the input 

stage. These noise sources originate a broadband and sampled noise component at the 

output of the integrator. These effects can be successfully simulated with SIMULINK 

using the model of a “noisy” integrator shown in Figure 3-7, where the coefficient b 

represents the integrator gain, which, referring to the schematic of a single-ended SC 

integrator shown in Figure 3-8, is equal to Cs/Cf.. Each noise source and its relevant 

model will be described in the following sub-sections.

o — ►Jfjt)
IN

i - t
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E H - *  OpN'-'iStr I— * — ■ n — I
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i

Figure 3-7. Noisy integrator model

Figure 3-8. Single-ended SC integrator
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Figure 3-9. Modeling thermal noise (KT/C block)

3.8.1 Switch Thermal Noise (KT/C) Model

A  critical source of noise in the system is the KT/C noise injected into the first 

stage integrator of the modulator. As a result, the input capacitor must be large enough to 

counter the additive noise effect that results. Therefore the first key parameter is the 

input sampling capacitor of the first integrator (Cs).

Thermal noise is caused by the random fluctuations of carriers due to thermal 

energy and presents even at equilibrium. Thermal noise has a white spectrum and wide 

band limited only by the time constant of the SCs or the bandwidths of the op-amps. 

Therefore, it must be taken into account for both the switches and the op-amps in the SC 

circuits. For instant, the sampling capacitor Cs in the single-ended SC integrator shown 

in Figure 3-8, is in series with a switch, with finite resistance Ron that periodically opens, 

sampling a noisy voltage onto the capacitor. The switch thermal noise voltage eT (usually 

called KT/C noise) can be found by evaluating the integral [27]:

4KTRon _ kT
+ ( 2 ^ 0„ C j2 Cs

(3-14)

Where K is the Boltzman constant and T is the absolute temperature

The switch thermal noise voltage ex is superimposed to the input voltage x(t) leading to:

x(t)-
kT

bCf
n(t) (3-15)
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Where n(t) denotes a gaussian random process with unity standard deviation and b is the 

integrator gain expressed as:

Equation (3-15) is implemented by the model shown Figure 3-9

Since the noise is aliased in the band from 0 to f s/2, its final spectrum is white with a 

spectral density:

The first integrator will have two switched input capacitor, one carrying the signal and 

the other providing the feedback from the modulator output, each of them contributing to 

the total noise power.

3.8.2 Op-Amp Noise Model

Figure 3-10 shows the model used to simulate the effect of the op-amp noise. 

Here Vn represents the total RMS noise voltage referred to the op-amp input. Flicker 

(1/f) noise, wide-band thermal noise and dc offset, contribute to this value. The total op- 

amp noise power V2n can be evaluated, through circuit simulation, on the circuit of Figure 

3-8 during d>2, by adding the noise contribution of all the devices referred to the op-amp 

input and integrating the resulting value over the whole frequency spectrum.

b = Cs/Cf

(3-16)

Random Zero-Order Noise
Number Hold std. Dev.

Figure 3-10. Op-amp noise model
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Figure 3-11. Real integrator model

3.9 Integrator Non-Idealities Model

The op-amp is the most critical component of the modulator, as its non-idealities 

causes an incomplete transfer of charge, leading to non-linearities. Key parameters that 

govern its behaviour are the noise, finite gain, finite bandwidth, SR, and saturation 

voltages. The SIMULINK model of an ideal integrator with unity gain is shown in the 

inset of Figure 3-2. Its transfer function is expressed as:

H(z)  = ~—~ r  (3-17)
1 — z

Analog circuit implementation of the integrator deviate from this ideal behaviour 

due to several non-ideal effects. One of the major causes of performance degradation in 

SC ZA modulators, indeed, is due to incomplete transfer of charge in the SC integrators. 

This non-ideal effect is a consequence of the op-amp non-idealities, namely finite gain 

and bandwidth, SR and saturation voltages. These will be considered separately in the 

following subsections. Figure 3-11 shows the model of the real integrator including all 

the non-idealities.

3.9.1 DC Gain

The dc gain of the integrator described by equation 3-17 is infinite. In practice, 

however, the gain is limited by circuit constraints. The consequence of this integrator
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leakage is that only a fraction of the previous output of the integrator (a) is added to each 

new input sample. The transfer function of the integrator with leakage becomes:

1 - a z
(3-18)

Therefore the dc gain HO becomes:

H„=H(0) = - i -
1 - a

(3-19)

The limited gain at low frequencies increases the in-band noise.

3.9,2 Bandwidth and Slew Rate

The finite bandwidth and the SR of the op-amp are modeled in Figure 3.11 with a 

building block placed in front of the integrator, which implements a MATLAB function. 

The effect of the finite bandwidth and SR are related to each other and may be interpreted 

as a non-linear gain [55]. With reference to the SC integrator shown in Fig (3.8), the 

evolution of the output node during the nth integration period (when 0 2 is on) is:

Where a  is the integrator leakage, t is the time constant of the integrator expressed as: 

x = 1/ (27t GBW)

Vs is defined as:

v /
(3-20)

V ,= V „ (n T - T /2 )

The slope of this curve reaches its maximum value when t = 0, resulting in:

max r
(3-21)
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Two separate cases will be considered:

1. The value specified by equation 3-21 is lower than the op-amp SR. In this 

case there is no SR limitation and the evolution of v0 fits equation 3-20.

2. The value specified by equation 3-21 is larger than SR. In this case, the op- 

amp is in slewing and, therefore, the first part of the temporal evolution of v0 

(for t<to) is linear with the slope SR. The following equations hold (assuming 

to<T):

vo(0 = v0( n T - T )  + SRt\ t < t 0 (3-22)

vo(t) = vo(to) + {aVs ~ SRt0;
\  1 (3-23)1 -  e T t > t0
V

Imposing the condition for the continuity of the derivatives of equation 3-22 

and 3-23 in to, we get:

aV
t0 = - ^ - r  (3-24)
0 SR

If t0 > T  only Equation.3-22 holds.

The MATLAB function in Figure 3-11 implements the above equations to calculate the 

value reached by v0(t) at time T, which will be different from Vs due to the gain, 

bandwidth and SR limitations of the op-amp. The SR and bandwidth limitations produce 

harmonic distortion reducing the total SNDR of the XA modulator. Appendix A. 1 shows 

the MATLAB function.

3 4
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3.9.3 Saturation

The dynamic of signals in a ZA modulator is a major concern. It is therefore 

important to take into account the saturation levels of the op-amp used. It can simply be 

done in SIMULINK using the saturation block inside the feedback loop of the integrator, 

as shown in Figure 3-11

3.10 Capacitor Mismatching

One of the main advantages of SC circuits is that high precision can be obtained 

as the integrator coefficients are realized with capacitor ratios. However, fabrication 

process still results in capacitor mismatching and causes error to the values of these 

coefficients [56]. Consequently the quantization noise increases. In [53], it is shown that 

single-loop ZA modulator can tolerate this type of error to as large as 5%. This is one of 

the advantages for selecting single-loop, second-order topology, rather than the cascaded 

topology.

3.11 Comparator

The principle design parameter of a comparator include speed, input offset, input- 

referred noise, and hysteresis. Owing to its position in a Z  A modulator, the offset and 

input-referred noise are subjected to noise shaping by feedback loop so can be neglected. 

For digital-audio design, speed is also not a problem. The sensitivity of an A/D converter 

performance to comparator hysteresis can be modeled quite well by an additively white 

noise. This noise also undergoes the same spectral noise shaping as the quantization 

noise. Thus the design requirement for the comparator is usually quite relaxed.

3.12 Behavioral Simulation for the Ideal ZA modulator

Behavioral simulation can be accomplished using SIMULINK tool, as it provides 

a GUI tool so the designer can easily build block diagram, perform simulation, and view 

the simulation results at each point. The necessary functions and programs can be written 

in MATLAB to measure the performance of the modulator. Figure 3-12 shows the block 

diagram of a second-order ZA modulator that is built in SIMULINK for behavioral 

simulation. All of the blocks are predefined in SIMULINK and are ideal. These
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fundamental blocks are the ideal integrator, single-bit quantizer, adders and multipliers. 

Through adequate connections of these few blocks, a full £A modulator can be obtained. 

Scopes are used to monitor all of the critical points. Figure 3-13 shows the input 

sinusoidal, the outputs of the integrators and the modulator output superimposed on the 

input and the second integrator output. Figure 3-14 shows the normalized power spectral 

density at the output with 0.23 V input sinusoidal signal. By setting the different 

integrator coefficients and performing simulation, it is possible for the designer to choose 

the integrator coefficients that maximize the integrator output swing. However, owing to 

the use of ideal building blocks for the modulator, the simulation results cannot be very 

accurate and need to be fine-tuned by further behavioral simulation by using the blocks 

that model non-idealities in Chapter 5.

n
V in

S c o p e 2

□

□S c o p e l

0 .5
y o u t

1-z ' 1 -z ’
IDEAL

In teg ra to r!
y o u tIDEAL

In te g ra to r

Figure 3-12. SIMULINK model for an ideal second-order ZA modulator
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Fig. 3-13 SIMULINK simulation scope’s results for the input, first and second 

integrator and the modulator output
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Figure 3-14. Simulated output spectra with -2  dB input sinusoidal for the ideal 

second-order modulator
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Figure 3-15. SIMULINK model for the non-ideal second-order EA modulator

3.13 Behavioural Simulation for the Non-Ideal EA modulator

The behavior of XA modulator can be affected by errors. The integrator is a 

fundamental block within a XA modulator. Its non-idealities, however, largely affects the 

operation of the modulator. The non-ideality for the first integrator only is considered, 

since their effects are not attenuated by the noise shaping. A single-bit quantizer is 

implemented with a comparator, which is a perfectly linear block and does not introduce 

any non-linearity error. Though linear block, comparators are subject to non-idealities 

such as input offset, comparator hysteresis, etc. However, due to its position in the XA 

modulators, the impact of the comparator non-idealities in the operation of XA 

modulators is much smaller than of integrators as these errors are subject to the same 

treatment as quantization noise.

Figure 3-15 shows the blocks used to simulate the behavior of the second-order 

SC XA modulator with a non-ideal first integrator [57]. To validate the models of the 

various non-idealities affecting the operation of the SC XA modulator, several 

simulations are performed with SIMULINK on the second-order modulator of Figure 3- 

15

Analysis such as power spectral density (PSD) analysis and SNR analysis are 

performed on the output. All the functions and programs in MATLAB are listed in 

Appendix B. From these analyses, it is possible for the designer to optimize the
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integrator coefficients and building block parameters so as to design a XA modulator with 

the best possible performance.

For this design, after intensive simulation with SIMULINK and running the 

necessary programs, the SNDR curve that is believed to be the best outcome is shown in 

Figure 3-15. Within which, a 96 dB peak SNDR and 98 dB DR are achieved. The 

simulated PSD is shown in Figure 3-17 with -2  dB input sin signal. Fig 3.17 shows that 

the noise floor is well under -100 dB for an input signal as big as -2  dB and the 

modulator is thermal noise dominated. The corresponding modulator coefficients and 

building blocks parameters that result in the above performance are listed in Table 3-3 

and 3-4.

SNDR fat ’ lie Behavioural Simulation
100

DFj = 98; Resolution =  16 bjts

OvStaad Level=G.26V

■20-BD ■GO ■A'i 

Inpul Signal Amplilude [dB]
-100

F ig u r e  3 -1 6 . S N D R  v e r s u s  in p u t  a m p litu d e
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PSD of a 2nd-Order Sigma-Delta Modulator
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Figure 3-17. Simulated output spectra with -2  dB input sinusoidal for the non­

ideal second-order £A modulator
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Table 3-3 Second-order modulator coefficients and parameters

Parameter Value

BW 16 KHz

Sampling frequency 8.192 MHz

OSR 256

DR 16 bit

Number of samples 65536

Gain of the first and 

second integrator

al = 0.5; a2 = 0.6

Feedback gain for the first 

and second integrator

bl = 0.2; b2 = 0.26

Supply voltage 1.8 V

Coefficient mismatch <10%

Table 3-4 Building block requirements

Block Parameter Value

Op-Amp Gain >55 dB

GBW >40 MHz

SR >16V/us

Output swing 0.1-1.7V

Comparator Output swing 0-1.8V
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Chapter 4

Low- Voltage Low-Power Design Considerations

When an analog integrated circuit is needed at low supply voltage levels, the SC 

technique is the only technique in CMOS that can be used in practice to achieve good 

quality circuit. Probably the most robust way to implement a £A modulator is with SC 

technique. Their robustness and inherent linearity are the reasons why SC techniques 

have become as widespread as they are nowadays. It would be a great advantage if the 

high-quality SC properties could be kept for low voltage operation. However, when 

designing SC circuits for lower voltages, quite quickly a sever difficulty is encountered 

due to the switch-driving problem. The low supply voltage does not allow enough 

overdrive to turn on the transistors used as switches anymore, and SC circuits at low 

voltages could only be realized either in a special process with extra low threshold 

voltage transistors or by using an on-chip voltage multiplier. The SO technique, derived 

from the standard SC technique, is based on the replacement of critical switches with op- 

amps, which are turned on and off. This technique results in a true very low-voltage 

operation and can be used in a standard CMOS process.

It is plausible that a circuit with a higher frequency of operation requires a higher 

power. It is also plausible that performing analog signal processing with increased 

accuracy requires increased power consumption. So if a certain performance requires 

certain power consumption, altering the performance through a redesign should change 

the necessary power consumption. The proper way to think about low power 

consumption is to define it as a trade off between contradictory specifications, such as 

accuracy, frequency of operation or signal bandwidth and power consumption. Lowering 

the power supply at first looks like it lowers the power consumption because the product 

of voltage and current is smaller. However, lowering the power supply voltage has a 

number of consequences that on the contrary cause the power consumption to increase, as 

will be shown and illustrated further on.

In this Chapter the SO technique is treated. As a starting point the problem of low 

voltage SC signal processing circuits are considered. The key problem is the driving of
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the switches. The existing solutions for it are briefly covered. Then the original SO 

principle is introduced. Next the evolution in this field is described. The endpoint is the 

differential modified SO integrator cell. Low-voltage, low-power considerations are then 

discussed in the context of the single loop XA modulator.

4.1 Switch Behavior

SC circuits are built up of three basic building blocks. An op-amp or an 

operational transconductance, a switch and a capacitor. Figure (4-1) shows a non­

inverting integrator cell. The switches SI through S6 are clocked with two non­

overlapping phases <|)1 and <|>2. Cs is the input sampling capacitor, Q  is the integrating 

capacitor and Cmad is the load capacitor. Lowering the supply voltage of such a circuit 

has implications on the operation of some of the building elements. The functional 

property of a capacitor, namely its capacitance is independent of the supply voltage. Op- 

amps and switches, however, are strongly affected. The former need to cope with much 

less available voltage drop over each transistor. The later always need a minimal 

overdrive voltage in order to assure a certain on-resistance. It is possible to design op- 

amp with quite low supply voltage [58]. The most problematic issue, however, in low 

voltage SC circuits deign is the switching driving problem. About (Vm +Vtp + 0.5 V) is 

the practical minimal power supply voltage for the switch still has rail-to-rail switch input 

range [59] [60].

In classic SC circuits a complementary switch is preferably used. Figure 4-2 

shows the complementary switch designed using 0.18 pm technology. The NMOS and 

PMOS switch on-conductance in this configuration and in settled condition is given by 

equation 4-1 and 4-2 [59], where all are referred to ground

4 4
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C,

Figure 4-1. Non-inverting SC integrator

_
sw,n

C — kP„

V W „

UJ,

(4-1)

(4-2)

Where G5VV is the switch conductance.

Assuming that Vdd > (Vm + Vtp), the N-type switch conducts for an input signal 

from ground on up to Vtn below Vdd. The p-type conducts from Vtp on up to Vdd. 

Figure 4-3 a shows the simulated switch conductance for a 1.8 power supply and for a 

switch W/L dimensions of 0.5 pm/0.18 pm using the 0.18um process. The simulated 

conductance shows that there is no overlapping between Gn and GPj and that Gn 

dominates the total conductance, while Figure 4-3b shows the total Ron resistance, which 

varies by 400% for the full input range. Thus rail-to-rail operation is impossible under 

the 0.18 pm technology.

Equation 4-1 and 4-2 indicate that lower switch resistance and thus fast settling 

can be achieved by up-scaling the device. In trying to increase the size of the P-type to 

obtain a symmetrical total on-resistance response, Figure 4-4 shows the simulation results 

after increasing the size of the P-type twelve times the N-type. In the middle region both 

transistors conduct in parallel. The conductivity for the N and P type overlapped, as
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shown in Figure 4-4a, to allow rail-to-rail operation. But the conductivity of the P-type 

never matches the N-type. The total on-resistance is nearly symmetrical Figure 4-4b, 

however, the total resistance variation is 170%, thus it is impossible to yield a reasonably 

a rail-to-rail constant on-resistance. On the other hand, larger switches give rise to a 

larger clock feed through, an unwanted effect. Also if the minimum desired conductivity 

for the matched complementary switch is 600 pG (Equivalent to 2.1KQ), then the N and 

P switches never overlap, and there exists an input range for which neither of the 

complementary type switches is turned on or conducting anymore as shown in Figure 4- 

5. From these simulation results, it can be concluded that realization of complementary 

switch in the 0.1 pm technology is not possible.

jnd

Figure 4-2. Complementary switch
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Figure 4-3. Complementary switch simulation results in 0.18 pm process.
(a) Single switch and total conductivity.
(b) The total on-resistance.
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Figure 4-4. Complementary switch with symmetrical on-resistance simulation 
results in 0.18 pm technology, a) Single switch and total conductivity,
(b) The total on-resistance.
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Vin (Volts)

Figure 4-5. Simulation results of the symmetrical on-resistance complementary 
switch if the minimum conductivity desired is 600 pG (equivalent to 
an on-resistance of 2.1 KQ)

4.2 Single Switch Behavior

The reduced signal range can still be switched if the signal is located in a range 

where one of the N or P switches is conducting. The best device to choose for 

applications as a single switch is that the one showing lowest on-resistance. Applying the 

maximum overdrive voltage on an N-type switch, the on-resistance is 1.63 KQ (Figure 4- 

6) as compared to 4.8 KQ (Figure 4-7) of the P-type switch with ten times more width 

and with maximum overdrive voltage as well. Therefore it is safe to say that the NMOST 

makes the best single transistor switch.

The on-resistance of the switch together with the sampling capacitor defines an 

RC time constant. Referring to Figure 4-1 again, the input is first sampled onto the 

sampling capacitor Cs- Assuming a zero internal resistance of the signal source, the 

settling of the sampling is completely determined and limited by the RC time constant. 

In the subsequent integration phase the settling process can only go slower than this due 

to the finite GBW of the op-amp [43].
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4.3 Existing Solutions

It is difficult to realize the complementary switch in 0.18 jam technology, as 

illustrated above. Four techniques have been developed to overcome the switch 

limitation. The first one is to use a multi-threshold process, which has low threshold 

voltage, at least for the NMOST device [61]. This technique has some drawbacks. The 

switch-off leakage is much higher than in the case of a high threshold voltage. This 

leakage causes the charge on the integrator capacitor to leak away. This leakage is signal 

dependent and consequently causes harmonic distortion. Another drawback is the high 

cost of dedicated low threshold voltage process.

The second technique is to employ voltage multipliers to generate a higher supply 

voltage on-chip. This method has been particularly useful in the past when an application 

calls for low-voltage external power source (e.g. 2.4 V battery) but the integrated circuit 

is fabricated via a high-voltage process (e.g. 5 V for 2 pm CMOS process). Typically all 

circuit components, excluding the switches and clocks voltages driving them, are 

designed for operation in low voltage. A few low voltage XA modulator based on this 

idea have recently been presented [62] [63]. This technique provides an easy, quick and 

reliable way of designing low-voltage SC circuits. It is very similar to classic SC 

circuits, of which the design procedure is well established and well known. Furthermore, 

it has the advantage that it cuts away an important part of the power dissipation by having 

the op-amp to work with the low supply voltage. This technique, however, still has some 

disadvantages. Although the high on-chip generated voltage is only used to drive 

switches, the voltage multipliers remain area and power consuming. The most important 

disadvantage is that the recent deep sub-micron technologies are operating with low 

power supply and will not sustain higher voltages [60].

The third solution to overcome the switch-driving problem is to use the 

bootstrapping technique [29] [64] [65][66]. However, the first drawback is that it imposes 

an instantaneous higher voltage glitch across the thin gate oxide before the inversion 

takes place under the gate and a channel forms in the MOSFET switch. The second 

possible drawback is the circuit complexity involved in the implementation of a good 

bootstrapped switch.
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4.4 Original SO Technique

The fourth solution to overcome the switch-driving problem is the SO. This 

technique allows the design of true low-voltage SC circuits (filters, ZA modulator, etc.) 

in deep sub-micron technologies [60]. The SO technique would not violate the maximum 

voltage restrictions of a low-voltage CMOS process. Looking at the SC integrator of 

Figure 4-1, it can be concluded that there are two types of switches:

1. Switches that have one terminal fixed to a reference level Vref. This 

connection is either physical as in is the case for switches S2, S3 and S5 

connected to Vref, or via virtual ground as for the switch S1.

2. Switches are not connected to the reference voltage but to a signal source. 

These are the switch S6 connected to the output of the amplifier, and the 

switch S4 at the very input of the system.

The first type of switch can always be turned on if the switch driving voltage is al 

least Vt plus an overdrive voltage (Vov) higher than the reference voltage. The second 

type of switch, however, needs to be able to pass the entire signal range. Because the 

condition under which the operation is being considered here is for a supply voltage too 

low to have proper complementary switch operation, these switches present the 

bottleneck.

The core idea of the original SO technique boils down to eliminate the switch 

itself at the output of the op-amp. So the switch S6 in Figure 4-1 is plainly replaced by a 

short as can be seen in Figure 4-8. Leaving S6 out has a few consequences. During the 

integration phase of the second integrator, the output of the first integrator is shorted to 

Vref. This calls for inactivation of the first integrator by switching it off; hence the 

nomenclature of the technique. A second consequence is that the basic SO integrator cell 

now has a half delay.

The original SO technique further makes the implicit choice to take the dc input 

level of the op-amp equal to the output level, and both are at the reference level Vref. As 

a consequence, the output signal swing is less than the available swing, and the switch 

overdrive voltage is less than maximally possible [44].
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Figure 4-8. The SO integrator preceded by another integrator.

4.5 Modified SO Technique

The modified SO technique enhances output signal swing of the op-amp [67]. 

The dc level at the op-amp output is taken in the middle of the full output swing, in 

practice it is taken to (Vdd +Vss)/2. Furthermore, the dc level at the op-amp input is set 

at Vss. This implies a reference level V ref, (that is equal to the dc level of V;n) equals to 

Vss. These choices are illustrated by Figure 4-9. Due to the mentioned modifications, 

the modified SO technique allows one to reduce the power-supply voltage. The dc offset 

that exists on a sample taken of the op-amp output signal should be removed before being 

applied to next op-amp. This is done by Ccm in the modified SO integrator cell, which is 

shown in Figure 4-10 in differential form. The idea is to remove it with an equal charge 

injection of the opposite polarity that is performed with a capacitor. The proper scaling 

of Ccm is Cs/2 [60]. The capacitors Cs and Cint are the sampling and integrating 

capacitors. Proper operation also requires a high reference level, taken to Vdd. The 

output of the op-amp must be shorted to Vdd during its off phase because shorting it to 

Vss would forward bias the junction diodes of the switches connected to the op-amp 

input nodes. Since two reference levels are now present, they are distinguished by the 

terminology V r e f ,hi and V r e f .io, taken equal to Vdd and Vss, respectively. These two 

reference voltages can in principle be chosen differently from Vdd and Vss. [44].
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4.6 Quantization and Circuit Noise
The theoretical ZA modulator is only determined by the in-band quantization 

noise suppression. The in-band quantization noise for an nth-order oversampling ZA 

modulator is given by [45]:

A2 n ln
N q ~ U ( 2 n  + l).OSR{2n+i) 4̂’3)

Where A is the separation between consecutive levels in the quantizer, OSR is the 

oversampling ratio and n is the order of the modulator.

While the performance of the theoretical ZA modulator is only determined by the 

in-band quantization noise suppression, the physical implementation of the system with 

solid-state devices has to deal with other noise sources as well. The main additional 

noise sources of a CMOS implementation are thermal noise and the flicker noise (1/f 

noise).

The circuit noise to be dealt with a ZA modulator is the noise injected into the 

input summing node. The noise generated in the internal nodes of the loop is suppressed 

by the high loop gain. In a sampled data ZA modulator, the noise is generated by the on- 

resistance of the switches in the sampling and integrating process. An approximate 

expression for the in-band thermal white noise power is

k T
N t = a ———  (4-4)

r CsOSR

Where a  depends on the specific way of performing the feedback, k is the Boltzman 

constant, T is the absolute temperature, Cs the sampling capacitance, and OSR is the 

oversampling ratio

Noise from the switches is the sum of the sampled noise in the sampling phase 

and in the integration phase. It is band limited by the RC time constant during the 

sampling phase and by a combination of this and the amplifier’s time constant during the
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integration phase. There is a noise contribution associated with each capacitor in parallel 

with the sampling capacitor. Equation 4-5 and 4-6 holds for the case of the modified SO 

integrator (Figur.4-10) including feedback capacitors ( C fb ) ,  which besides the sampling 

capacitor C s and the C fb  capacitor also has a common-mode adjust capacitor C cm

p  -  p  + p
N ,sw  N ,sw,samp N,sw,int (4-5)

2 kT
' N ,sw Cs .OSR

c  c

c  cFB CM  y

(4-6)

Equation 4-5 and 4-6 reveal that the noise is increased by the addition of capacitors at the 

input. The switch noise is directly increased. C cm  plays a large role, since it is only half 

the size of Cs.

For this particular realization (second-order modulator), the complete expression 

for the in-band circuit noise is [11]:

N r
2 kT

COSR
( C } 

1 + ^ - +
l  c j \

kTReq’°OSRGBW + 4W n(/* }

\ /  r  \ 2 
1 + ̂ -  

v  CtJ
(4-7)

The first term of equation 4-7 can be replaced by equation 4-6 for the modified SO 

integrator of Figure 4-10. While the second term in equation.4-7 represents the white and 

flicker noise generated in the op-amp, where Req,0pamp is the hypothetical equivalent 

resistor for the op-amp white noise, kopamp is a coefficient for the op-amp’s flicker noise, 

and fb the signal bandwidth. Cs is the sampling capacitance and Ci is the integrating 

capacitance.

A schematic representation of the different noise types is shown in Figure 4-11. 

The SNR of a ZA modulator is determined by the ratio of the signal power (S) and both 

the circuit and quantization noise (NC and NQ, respectively):
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Figure 4-11. The noise power spectral densities

(4-8)

Diminishing the quantization noise can be done by choosing a higher OSR or a 

higher modulator order. If the modulator order is greater than two, stability needs to be 

discussed. Stabilizing then requires the use of deliberately chosen parameters and more 

complicated transfer functions than just a cascade of integrators and possibly the use of 

reset circuits in the integrators in case instability happens.

Diminishing the thermal noise is done by choosing a larger sampling capacitor 

and larger OSR. All of these operations require an extra power allocation. A higher OSR 

require all the integrators to settle faster, thus SR and GBW must increase. In a first- 

order estimation, the extra power consumption is equal to the relative OSR increase: 

doubling the OSR causes double power consumption. A higher modulator order requires 

an extra integrator for each additional order in a classical SC circuits and the modified 

SO case. Because the SO system have a duty cycle of 50%, the power consumption for 

the second-order SO is half of the corresponding one in SC circuits.

The first integrator needs to drive the input sampling capacitor. In order to reduce 

the thermal noise power by a factor of two, the input sampling capacitor must be 

increased with a factor of two.

5 6
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4.7 Intrinsic Constraint of Power Consumption

Generally Low supply voltage in analog circuit causes higher power consumption. 

This is not awkward. A small input voltage must be used. A certain DR requirement 

puts a specification on the thermal noise level. This later requires a minimum sampling 

capacitor size. The smaller the input voltage, the larger the capacitor must be. The 

capacitor is a load to the op-amp in the integrator. The integrator must settle to an error 

set by the DR. Due to the higher load, a higher transconductance is needed, which is set 

by the bias current; hence the higher power consumption. This process is given by the 

following expression [66],

P  oc k T D R 2B W (4-9) 
Vr  DD

Where BW is the signal bandwidth, DR is the dynamic range, and Vov is the Vgs-Vt of 

the input stage transistors.

The proportionality expression for the power consumption of an integrator 

Equation 4-9 reveals that lowering the supply voltage increase the power consumption 

due to the fact that the input signal must scale down at the same time. This fact might be 

called the low voltage low power consideration. Low voltage SC circuits are thus 

expected to show a less favorable power-resolution-bandwidth trade-off. It also suggests 

that lower supply voltage favored by digital circuits and required by deep sub-micron 

CMOS process will have an adverse effect on power dissipation for analog circuits.

The proportionality (equation 4-9) also tells something about the region of 

operation of the transistors as well. For low power the over-drive voltage should be 

minimized. When lowering Vov for a constant current, the transistor width increased, and 

so does Cgs- The latter is a parasitic load capacitance to the amplifier in the integrator 

that is seen in parallel with the sampling capacitor. In many low voltage applications 

such large Cs is required that for the required speeds of operation, the parasitic Cgs is 

negligible. Hence for low voltage and low power operation the over-drive voltage is best 

reduced as much as necessary, but not more. If the supply voltage is not too low a bias in 

the transition region between weak and strong inversion is recommended.
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4.8 Practical Constraints of Power Consumption

The settling speed of an integrator is determined by its GBW. The GBW of the 

modified SO integrator (Figure 4-10) is given by [44]

,opamp (4-10)

With:

(4-11)

(4-12)

Capacitance C fb  is the feedback capacitor in a modulator. These expressions show that 

all the capacitors cause a largely increased capacitive load. There are more capacitors 

and the feedback factor becomes smaller, which increases the effective load capacitance. 

The increased effective load capacitance increases the power consumption.

4.9 Suppression of Noise Generated Inside the Loop

An important property of a LA modulator that must be made use of in order to 

save power is the reduction of noise sources inside the loop. The reduction of the noise 

on node K in a single-loop ZA modulator with integrator coefficient a; and for 

oversampling ratio OSR is quantified by the factor [44] [60]

So, noise injected at the internal summing nodes is reduced so much by the large 

gain of the preceding integrators that it can be neglected. The thermal noise sources 

internal to the loop are strongly suppressed. Therefore the size of the capacitors inside

(4-13)
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the loop can be made much smaller than the input sampling capacitors. The 

corresponding op-amps need lower transconductance. The output stage of the op-amp is 

scaled down, and with it, its power consumption. For low power operation it is thus 

imperative that the integrators are scaled down progressively.

4.10 System Level Power Saving

There is basically only one option for power saving in a SO integrator and it is on 

the system level. The intrinsic SO integrator is a half delay integrator. It is off during 

50% of the time. This means that a power saving of almost 50% is possible without any 

drawback.
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Chapter 5 

Building Block Design

This Chapter describes the design of the SO ZA modulator building blocks 

implemented in the TSMC 0.18 pm single-poly, six-metal CMOS process with 1.8 V 

power supply voltage. Details of the SO and feedback circuit design are discussed. 

Digital part is designed. It includes the design of the non-overlapped clock generator; 

half-delay circuit and set reset FF.

5.1 Switched Op-Amp

The low supply voltage prevents from using stacked structures at the amplifier 

output. A two-stage amplifier is needed to guarantee the desired gain. To avoid the 

power supply noise a practical SO circuit has to be differential, which demands a 

common-mode feedback (CMFB) to be included in the amplifier [54] [47]. The designed 

SO is similar to the one presented in [68]. It consists of an input stage, class A (or 

common source) output stage, the common-mode feedback (CMFB) stage and the 

switching circuit to realize the SO operation.

Figure 5-1 shows the input and the output stage. The input stage consists of a 

PMOS input pair (M l,2) and a folded load consisting of four equal sized PMOS 

transistors (M4,5,6,7). The differential signal, between n3 and n4 nodes, sees high load 

impedance since the transconductance of M4 and M5 are cancelled by the 

transconductance of the cross coupled devices named M6 and M7. However, for a 

common mode (CM) signal, the impedance is low and thus the CM voltage in the first 

stage output is stable enough without a common mode feedback (CMFB).

The class A output stage consists of the common source connected gain 

transistors (M12 and M13), and the current source loads (M14 and M15). The current 

flow in the output stage is interrupted by the switches Ms5 and Ms6 in order to realize the 

SO principle. When the op-amp is off, they switch the output stage to the high 

impedance state and pull Vo+ and Vo- to Vdd. Msl is on, thus nl and n2 are shorted to
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prevent the input stage from saturating. The compensation capacitors cO and cl are 

connected to the cascode node of the input stage (nl and n2), which provides faster 

settling than the classic Miller-compensation. The capacitors are disconnected when the 

op-amp is in the off state by the switches Ms2 and Ms3. This brings two advantages. 

The charge in the capacitors is preserved which speeds up the turn on if the subsequent 

output values do not differ much. In addition the compensation capacitors also boost the 

common mode feedback during the turn on by injecting current in the nodes n l and n2.

Due to the switching operation of the amplifier as it is turned off for one half of 

the clock cycle and its outputs are forced to either ground or Vdd. Fast recovery from the 

off state need to be insured and the CMFB circuit has to be fast and capable of providing 

large current to the output. Typically the common-mode level of the two stages needs 

adjustment. In [69], the need for CMFB in the first stage is eliminated and the fully 

differential two-stage amplifier needs CMFB only for the second stage, and thus a fast a 

simple passive CMFB circuit may be used. The CMFB circuit is shown in Figure 5-2. 

When the op-amp is in the off state, Vo+ and Vo- are connected to Vdd and the node nO 

of the CMFB circuit to Vss. At the same time the capacitors c3 is reset. When the op- 

amp is turned on, the output CM voltage (Vdd/2) is sensed with a capacitive divider 

formed by the capacitors cl and c2. The capacitor c3 is switched to Vdd restoring the 

operating point of node nO to Vss. The capacitor c4 is used to shift the DC level of the 

sensed CM signal to the proper level for the op-amp CMFB input. The offset voltage in 

the capacitor is refreshed during the amplifier off phase. The diode-connected transistor 

provides this voltage M6 that together with the dummy switch M7 forms a replica of the 

current source in the op-amp output stage. The PMOS switch M4 has a relatively small 

overdrive, thus its on-resistance is high. However, since the purpose of the switch is to 

maintain the constant percentage in c4, the poor conductivity is not a problem.

The op-amp is designed for an input CM voltage of 0 V and an output CM voltage 

o f  Vdd/2. The requirements for the op-amp for the first integrator are much stringent 

than that of the second integrators. This is due to scaling down the integrating capacitor. 

Thus output stage of the second op-amp is scaled down.

Table 5-1 gives the dimensions of the transistors and capacitors for the 

integrators. The second op-amp differs from the first op-amp by the size of the output

61

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



devises and is given between parentheses in the Table. The simulated op-amp 

performance is shown in Figure 5-3 and 5-4. The specifications for the first op-amp are 

summarized in Table 5.2, while the specification of the second is given in Table 5-3.

Output StageInput Stage

VDD

H4

< 4 ^  V o -

I" ll(
'MH
" n c h 1

l 2t
CMFB

C l k  I

VSS

Figure 5-1. Folded cascade two stage op-amp
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Table 5-1 Cell values for the op-amps

Element Width/Length Element Width/Length

M l, M2 6 pm/0.18 pm M12, M13 3 pm (1.3 pm )/0.18 pm

M3 1.5 pm/0.35 pm M14, M15 3.9 pm(0.5 pm )/0.18 

pm

M4, M5, M6, M7 0.33 pm/0.35 

pm

CO, Cl 200 fF

M8, M9, M10, M l 1 1.1 pm/0.18 pm M sl, Ms2, Ms3, Ms4, 

Ms5

0.5 pm/0.18 pm

oo
>

V b 1

C lk _ I n v

V o +

u  CM FB  I
■  f  ■ B y  |~~I

CD

on

Figure 5-2. The common-mode feed back circuit
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Figure 5-4. The DC response of the op-amp

Table 5-2 Simulated performance of the first and second op-amp

Parameter 1st Integ. 2nd Integ

DC gain 60 dB 59 dB

GBW (CL = 5pF) 48 MHz 45 MHz

Phase margin 78° 75°

Output swing 0-1.7 V 0-1.7 V

SR 21 V/ps 16 V/ps

Input common-mode range -100m V-500 mV -100 mV-500 mV

Output common-mode 0.9 V 0.9 V

Current (on/off) 374 pA/274 pA 250 pA/145 pA

Power Consumption (on/off) 674 pW/274 450 pW/261 pW
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5.2 Switched Op-Amp Integrator

The SO integrator is implemented using the designed SO in section 8.1. Figure 5- 

5 shows the circuit implementation of the SO integrator. Figure 5-6 is the simulation 

result showing the output CM of 900 mV that is obtained applying zero input. It reset to 

1.8. Figure 5-7 show the transient simulation results applying step input.

vss

M4 w

CLK

V in+
Vo

vo =  100m  
freq  =  16K

Vin

CLK

CLKJNVCLK

MS M6.

VSS

Figure 5-5. SO integrator
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Figure 5-6. Output CM simulation result
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5.3 Comparator

A high speed, high resolution CMOS comparator is designed. The topology is 

shown in Figure 5-8. It consists of three stages, namely the input stage, a positive 

feedback or decision stage (regenerative latch), and an output stage. The input stage 

amplifies the input stage to improve the comparator sensitivity and isolates the input of 

the comparator from switching noise coming from the positive feedback stage (decision 

stage). The positive feedback stage is used to determine which of the input signals is 

larger. The first set of inverters at the output stage work as buffers, amplify this 

information, recover signal levels and output a digital signal. The second set of inverters 

is added to obtain the reset to zero operation.

The input stage and the decision circuit are similar to the circuit presented in [30]. 

The comparator is designed for an input CM voltage of 900 mV. The decision stage is 

designed with some hysteresis for the use in rejecting noise on a signal. M7, M8 are 

cross-gated so the positive feedback increases the gain of the decision stage. Before 

design with hysteresis, M7,8,11,12 are of the same size. When Vin = Vref, the drain 

currents of M7 and M8 equals and all transistors are in saturation. If Vin increases more 

than Vref, such that the drain current of M9 is much larger than that of M10, then M7,12 

are on and M 8,ll are off. If Vin decreases such that the drain current of M10 increases 

and the drain current of M9 decreases, switching takes place when the drain-to-source 

voltage of M7 equals the threshold voltage of M8. At this point, M8 starts to take current 

away from M12. This decreases drain-to-source voltage of M12 and thus starts to turn 

M7 off. Switching takes place such that M l2 and M7 are off when the gate-to-source 

voltages of M7,12 are less than the threshold voltage of the devices. Hysteresis is 

designed by having W/L of M7,8 more than that of M l 1,12. The switching point 

voltage is given by [30 ]:

V - V  - V  -- ^D,M2 ^ Mn’n  for B >B  (5-1)'  switching v in Y re f n  '  A '/W  11,12 W  L J
g™X,2 BM  7,8 ( 1

Pm 11,12
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M37, M38 are the switches used. The input stage does not contain any switches; as a 

result no clock feed through is injected to the input nodes. When the switch is closed, 

out_l, out_2 are low, and the comparator outputs, out+ and out- reset to 0.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



l i z f ^  : 
7 J 7  .

■

UtF

Figure 5-8. Three stage comparator
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Simulated comparator performance is shown in Figure 5-9 to Figure 5-2. Table 5- 

3 gives the dimensions of the transistors. The specifications are summarized in Table 5-4

n: BW= 56MHz60

30

20

10

100M 10G100 10K 1M1
frequency

A: (i)U .9 //9M '4y .B U d)

Figure 5-9. The ac response of the comparator
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Figure 5-10. Comparator response to a ramp input.
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DC Sweep Response

/Vout-F Vref=900m  
d: /vo u t—
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Figure 5-11. Simulating hysteresis in the forward direction
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Figure 5-12. Simulating hysteresis in the backward direction
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Transient Response 0
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Figure 5-13. Simulating the comparator speed
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Figure 5-14. Simulating the comparator propagation delay
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Table 5-3 Cell values of the comparator

Element Width/Length Element Width/Length

MO, M l 1.4 pm/0.18 pm M37, M38, M33, M35 0.5 p/0.18 pm

M2 0.7 pm/0.35 pm M5, M6, M9, M10 0.5 pm/0.35 pm

M7, M8 0.5 pm/1 pm M13, M14, M15, M17 2pm /0.18 pm

M il, M12 0.5 pm/1.21 pm M20, M21, M33, M35 0.5 pm/0.18 pm

Table 5-4 Comparator Specifications

Propagation delay 1.2 ns

Hysteresis 11.3 mV

Current (on/off) 34 pA/14 

pA

Power consumption 

(on/off)

61 pW/25 

pW

Bandwidth 58 MHz

Vref 900 mV

Speed to clock 395 ps
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5.4 Biasing Circuit

The biasing required for the op-amps and the comparator are designed with all 

CMOS voltage divider and shown in Figure 5-13. The values of the transistors are listed 

in Table 5-5

VDD^

'M2 M4
"pch” 

l=353 00n

Vbt

" r i c h "

'MB
, M5 

" p c h "

vss

F ig u r e  5 -1 5 . T h e  b ia s in g  C ir c u it

T a b le  5 -5  C e ll  v a lu e s  fo r  th e  b ia s in g  c ir c u it

E le m e n t W id th /L e n g th E le m e n t W id th /L e n g th

MO, Ml 1.5 pm/0.35 pm M5 0.56 pm/0.7 pm

M2 1.523 pm/2.33 pm M6, M7 1.523 pm/0.7 pm

M3 1 pm/2.12 pm M8 1 pm/0.5 pm

M4 0.7 pm/0.35 pm

75

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5-5 Half Delay Circuit

Half clock period delays, required in the modulator feedback loop, are realized 

using D and S bar R bar FFs. The gates and the FFs are realized using static logic 

design. Figure 5-15 shows the designed circuit and Figure 5-16 shows the simulation 

result.

VDD'

VDD VDD

Q_mv _ O Jn v  
R VSSRvsi
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Figure 5-16. Half delay circuit
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Figure 5-17. Half delay circuit simulation result
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5.6 Clock Generator

Two-phase non-overlapping clocks are required in a SC circuit to reduce the 

signal dependent charge injection. A timing block, shown in Figure 5-17, generates a 

non-overlapping two-phase clock “CLK” and “CLK_INV”. In addition two slightly 

delayed versions are also generated. The timing block is controlled by an external master 

clock. The clock driver is formed using inverters and two NOR gates. One input 

terminal of both of the two-input NOR gates is driven by a cross-feedback which 

guarantees the non-overlap feature of the clock phases. Figure 5-18 shows the timing 

diagram.

Y5!

elk

VDI

VS!
CLKJNV

VDI
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Figure 5-18. Clock generation
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Chapter 6 

System Implementation

This Chapter describes the implementation of a simulated prototype second-order 

single-loop XA modulator in TSMC 0.18 pm single-poly, six-metal CMOS process with 

1.8 V power supply voltage. The simulated results are presented. The discussion starts 

by integrating the sub-blocks to implement the second-order single-loop XA modulator. 

Layout issues are then addressed. Finally, simulated results are presented.

6.1 Modulator Schematic and Implementation

In the modified SO topology [60], the input and output common-mode voltages of 

the op-amps are set independently and the dc offset that exits at the output of each 

integrator is removed using a SC circuit. In this work the topology is further modified to 

save area and decrease the complexity. The DC CM voltage at

Figure 6-1. Circuit schematic of the second-order single-loop ZA modulator

the output of the second integrator is not removed. Thus the SC circuitry after the second 

integrator is eliminated to save 13% of the area required for the capacitors. However,
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this requires the next stage (the comparator) to withstand this DC level. Thus, the input 

stage of the comparator for this work is designed with N-type MOS.

The circuit schematic without the feedback network is shown in Figure 6-1. It is 

obtained by connecting the two SO integrators and the comparator designed in Chapter 5. 

The input and output common-mode voltages are set independently in this design. The 

dc level at the op-amp input (input common-mode voltage) is set to zero while the dc 

level at the op-amp output (output common-mode voltage) is set to half of the supply 

voltage, in this case, 900 mV. The dc offset that exits on a sample taken of the input and 

the op-amp output signal is to be removed. This is done in SC. For instance, the DC CM 

voltage of 900 mV at the output of the first integrator is removed by setting the value of 

Cdcl, Cdc2 to be half of the second integrator's sampling capacitor. Proper operation 

also requires a high reference level, taken to VDD. Since two reference levels are now 

present, they are taken equal to the VSS and VDD. The first integrator in the system 

features the low voltage sampling solution. The input is sampled with reference to its 

CM voltage, which is 0.23 V.

The modulator is scaled according to what was discussed in Chapter 4. That is, 

the actual capacitor values are scaled based on white noise considerations. The sampling 

capacitors for the first integrator are chosen to provide a noise floor low enough for 16- 

bit resolution with some margins for quantization noise and other noise sources. The 

value of this sampling capacitor is 5 pF, while the integration capacitor is 10 pF, which 

implements an integrator coefficient of 0.5. The 5 pF sampling capacitor is chosen to 

provide a noise floor of 103 dB, which is low enough for 16-bit resolution, with some 

margins for the first op-amp noise and quantization noise. The sampling capacitor for the 

second integrator is 2.4 pF. The modulator is controlled by two non-overlapping clock 

phases (CLK and CLK_INV) together with delayed versions of these clock cycles.

The schematic for the differential feedback network is shown in Figure 6-2. The 

feedback signal is produced by using four A N D gates that control the operation o f  the 

inverting and non-inverting SC feedback circuit mechanisms. Only one reference voltage 

is used. The reference voltage is taken to be 400 mV. The reference voltage is sampled 

by the inverting and non-inverting configuration under the control of the feedback output 

and applied to the inputs of the integrators, where A and B are the inputs of the first
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integrator and C and D are the inputs of the second integrator. Figure 6-3 shows the 

implemented Feedback circuit for the first integrator. Figure 6-4 shows the implemented 

modulator.
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Figure 6-2. Feedback network
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Figure 6-3. Feedback circuit implementation
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Figure 6-4. Second-order single-loop SO EA modulator

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6.2 Modulator Layout Methodology
The objective is to produce a design methodology to implement the design and 

assure the layout quality through post-simulation with parasitic. Figure 6-5 shows the 

different phases of the layout methodology that are followed to build the layout of this 

work. The successful layout of the mixed-signal design minimizes the effect of the 

digital switching on the analog circuits. Mixed signal layout strategies are developed 

throughout all phases. The strategies are implemented at the system level, down to the 

device level and ending at the interconnect level.

Building and verifying 
the modulator layout

Generating GDSII file

Floor-planning

Post-processing

Sub-blocks Layout 
Verification

Implementing the 
designed sub-blocks

Figure 6-5. Layout methodology
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6.3 Floor-planning

It involves documenting the general areas where all components and signals will 

go in order to minimize the area and maximize the performance. Figure 6-6 shows the 

activities involved in floor planning.

6.3.1 Power Supply Strategy

Whenever analog and digital circuit reside together on the same die, danger exists 

of injecting noise from the digital system to the sensitive analog circuitry through the 

power supply and ground connections. One way to reduce the interference is to prohibit 

the analog and digital circuit from sharing the same interconnect. The routing for the 

supply and ground for both the analog and digital should be provided separately to 

eliminate the effect of parasitic resistance. The resistance associated with the analog 

connection to ground or supply can be reduced by making the power supply and ground 

as wide as feasible. This reduces the overall resistance of the metal run, thus decreasing 

the voltage spikes that occur across the resistor. Separate VDD and VSS are provided in 

this layout for an analog and digital cells and devices.

Power grid 
strategy

Define the 
interface signals

Special design 
requirements

Approximate
size

Figure 6-6. Floor-planning steps
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6.3.2 Interface Signals Definition

In this stage, all the input and output interface signals are listed and assigned a 

position on the sub-blocks. Signals with special design requirements are identified.

6.3.3 Special Design Requirements Consideration

To minimize the effect of crosstalk, mismatch and noise in mixed signal 

environment, special design requirements at this system level need to be considered 

Symmetry and symmetrical environment is very important in the design of the op-amp. 

Input signals to the first integrator should be placed as close as possible to the input pads. 

High-swing analog circuits such as comparators and output buffer amplifiers should be 

placed between the sensitive analog and the digital circuitry. Since the digital output 

buffers are designed to drive capacitive loads at very high rates, they should be kept 

farthest from the sensitive analog signal.

6.3.4 Size Approximation

With size constraint, there is a need to know the feasibility of meeting such 

constraint. Therefore size should be estimated. Size can be estimated from previous 

knowledge about older design of the same complexity and process design rules and from 

the number of transistors and the layout design rules.
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6.4 Sub-block Implementation

Based on floor planning, each sub-block is implemented. Figure 6-7 shows the 

steps to be followed in this phase.

6.4.1 Component Placement

Sub-blocks may be redesigned if specifications are not achieved through post­

simulation. The ability of the design to be completely routed is usually limited by the 

placement of the components. Labeling signals is advised to avoid connection errors.

6.4.2 Special Design Requirements

Different special design requirements are implemented such as fingering and 

increasing noise immunity. Noise immunity is increased by paying attention to the 

matching of the fully differential design, using guard rings and shielding the analog 

signals.

6.4.2.1 Matching o f Fully Differential Design

The common-mode rejection inherent in the fully differential op-amps eliminates 

most or all of the noise from the digital circuitry coupled through the parasitic stray 

capacitors, if equal amount of noise are injected into the differential amplifiers. This is 

dependent on the symmetry of the amplifier and the matching of the transistors in the op- 

amp. Layout techniques should be used to improve matching. Common-centroid 

techniques ensure matching of transistors. Figure 6-8 shows the p-type input transistors 

of the op-amp implemented as common centroid. Figure 6-9 shows the op-amp layout 

where a complete environment matching is considered.

8 7
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Figure 6-7. Implementing the designed sub-blocks
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Figure 6-8. Common centroid input stage transistors
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6.4.2.2 Guard Rings

Guard rings should be used throughout a mixed signal environment. Circuits that 

process sensitive signals should be placed in a separate well with guard rings attached to 

the analog VDD supply. The n-type devices outside the well should have guard rings 

attached to the analog VS S. Digital circuits should be placed in their own well with 

guard rings attached to the digital VDD. Guard rings placed around the n-type devices 

will also help to minimize the amount of noise transmitted from the digital devices.

Guard rings are used around the SCs to avoid coupled substrate noise. The 

capacitor is laid out over an n-well; the n-well is tied to analog VDD through an n+ 

implant in the n-well and metal. Surrounding the n-well is a ring of p+. This ring is tied 

to an analog ground. The idea is that the p+ will provide a sink for any current injection 

from the surrounding circuitry. Since the ground is the lowest potential in the circuit, the 

noise will terminate on the p+ and may not penetrate the area under the capacitor and 

then not coupled into the capacitor. Noise current that may still move deep under the 

capacitor will sweep out through VDD and not coupled into the capacitor because the n- 

well is held at the most positive potential in the circuit. Figure 6-10 shows the 

implementation.

6.4.2.3 Shielding

The shield implemented for this layout takes the form of a layer tied to analog 

ground placed between two other layers, one carrying the sensitive analog signal and the 

other carrying the digital signal. It is the case when such crossing is unavoidable. Figure 

6-11 shows an example, where the sensitive analog signals exist on metal 2; the crossing 

digital clocks are carried by metal 3, while a grounded metal 3 is used as a shied. This 

shield is used for isolation providing a termination plane for the electric fields resulting 

from the voltages on both the digital and analog signals.

It should be avoided to run interconnects carrying sensitive analog signals parallel and 

adjacent to any interconnect carrying digital signals. If this situation cannot be avoided, 

then an additional line connected to analog ground should be placed between the two 

signals.

9 0
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6.4.2.4 Capacitor Layout

This application require linear and high precision capacitors, thus metal capacitors 

are needed. A multi-metal sandwich of conductive layers can be formed in CMOS 

technology. The 0.18 um CMOS technology offers six metal layers, thus five capacitors 

can be formed on the same area. Capacitors in the modulator are implemented using the 

sandwich structure. Metal 1, metal 3 and metal 5 form the negative plate of the capacitor, 

while metal2 and metal4 make the positive plate of the capacitor.

6.4.2.5 Multi-Finger Transistors

Wide transistors need to be folded so as to reduce the source-drain junction area 

and the gate resistance. Figure 6-12 shows an example.

b 'dnn 'qD ~bSn 'S ffifbao 'B  B 'aant f S T r i T ' P n P ' » V i Y a ^ » n i b j l b d ;

.U lM a  V JLM M IJU U LA hH A U A

Figure 6-10. Capacitor layout with guard rings
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Figure 6-11 Shielding the sensitive analog signals
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Figure 6-12. Multi-fingering
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6.4.3 Component Connection

With good floor planning and placement of components, this step becomes easy. 

Otherwise, completing interconnect routing while respecting special design requirements 

is usually difficult and time consuming. When routing the analog circuitry, the lengths of 

the current carrying paths need to be minimized. This will reduce the amount of voltage 

drop across the path due to parasitic resistance. Minimizing the routing of the signals 

within the design is also important to reduce the input capacitance for signal. Contacts 

should also be used very liberally whenever changing layers to improve the fabrication 

reliability. Using the minimum design rule line may width as routing width may not be 

practical, because connection points may require via or contacts, and the space required 

for vias or contacts is generally wider than the minimum width rule for routing. For the 

digital part, consistent routing direction with specific metal layers should be maintained 

to assure that the layout is routable. However for an analog part, the use of minimum 

number of metal layers is better to increase the noise immunity. Labeling all the 

important signals simplifies error diagnosing in the layout versus schematic activity.

6.4.4 Sub-Block Layout Verification

Figure 6-13 shows verification steps that should be done for each sub-block. 

Design rule check (DRC) step verifies that all polygons and layers of the layout meet the 

0.18 pm CMC process, such as width and space rules. Netlist is generated through the 

extraction step that is compatible for simulation. Once the layout versus schematic 

(LVS) is succeeded then it is assured that electrical connectivity, device sizes and nets are 

correct. The layout is then extracted with parasitic and post-simulation is performed to 

ensure that each sub-block is functioning as expected and that the specifications meet the 

requirements. Figure 6-14, 6-15, 6-16, 6-17 and 6.18 show the layout for the comparator, 

clock generation, half-delay, and the set-reset FF respectively.

9 4
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Figure 6-13. Building block layout verification steps
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Figure 6-14. Comparator layout
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Figure 6-15. Clock generation layout
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Figure 6-16. Half-delay circuit layout
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6.5 Building and Verifying the Modulator Layout

All sub-blocks are integrated based on floor planning. The modulator is verified 

through DRC, LVS and post-simulation with parasitic extraction. Figure 6-18 shows the 

layout of the modulator chip. The chip dimension is 995.6 pm X 985.6 pm. The die area 

is 650 pm X 620 pm.

6.6 Post Processing

Figure 6-19 shows the generated bitstream of the extracted modulator with 

parasitic. The input applied is a differential sin wave of amplitude of 125 mV and 

frequency of 16 KHz.

The output bitstream for a differential sinusoidal input of 5 KHz for 8195 samples 

is then post-processed in MATLAB to calculate the SNDR. To calculate the dynamic- 

range (DR), the SNR is calculated while changing the amplitude for the applied input 

sinusoid. Figure 6-20 shows the achieved SNDR of 98 dB and Figure 6-21 shows the DR 

of 100 dB. The post-simulation verifies that results meet the requirements.

The simulated modulator performance is summarized in table 6.1, which demonstrates 

the success of the design methodology. A figure-of-merit (FOM) based on 

joule/conversion was computed to compare this work with other designs. The proposed 

X]A Modulator has the best FOM moreover; the area is also the minimum as shown in 

Table 6.2

6.7 Generating the GDSII file

The GDSII file is generated and the chip is sent for fabrications
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Figure 6-21. SNDR versus signal amplitude

Table 6-1 Modulator specifications

Sampling rate 8.2 MHz

OSR 256

BW 16 KHz

Supply voltage 1.8 V

SNDR 98 dB

DR 100 dB

Die Area 0.403 mm2

Power

consumption

1321 pW

Process 0.18 pmTSMC

103

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 6-2 Comparison between this work and previous designs

Ref. Type VDD DR
[dB]

BW
[KHz]

Power
[pW]

Area
[mm2]

Sampling 
Rate [MHz]

Figure of 
merit
Joule/second 
[10121

This
work

SO 1.8 100 16 1321 0.403 8.2 161

[50] SC 1 88 25 950 0.63 5 190
[28] SC 1.8 99 25 2500 1.5 4 625
[29] s c 1.8 102 25 2350 1.426 3.2 734
[51] s c 5 104 25 47000 5.2 6.4 7344
[27] s c 5 111 22 520000 25.8 5.632 92329
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Chapter 7

Conclusions and Recommended Future Work

7.1 Conclusions
A 1.8V modulator for an audio hearing-aid application has been designed using a 

SO technique and a 0.18 pm digital CMOS process. The single-loop, second-order 

topology proposed in this work saves approximately 70% of the required area in [29]. 

The use of a SO based YA modulator allows the design to be readily scaled to the latest 

CMOS technologies. In the proposed circuit one DC offset switching capacitor circuit 

was eliminated and this reduced the required area for the capacitors by 13%. The overall 

complexity of the YA  modulator was simplified to increase the robustness of the low- 

voltage low-power design. Simulation results indicated a SNDR of 98 dB and DR of 100 

dB with a 16 kHz signal bandwidth, as required for this hearing-aid application. A 

figure-of-merit based on joule/conversion was computed to compare this work with other 

designs. The proposed YA  modulator has the best figure-of-merit and the minimum area 

when compared to the existing state-of-the-art designs. The modulator circuit features 

reduced complexity, area reduction and low conversion energy. It is the only modulator 

designed based on a SO technique that is compatible with the continuously decreasing 

feature sizes associated with the latest CMOS technology. A research paper based on this 

work has been accepted for publication in the proceedings of the Fourth International 

Workshop on System-on-Chip (IWSOC'2004), Banff, Alberta, July, 2004.

7.2 Recommended Future Work
The results presented and values used to determine specifications and evaluate 

performance metrics are based on simulation results only. The YA modulator was 

submitted for fabrication to the Canadian Microelectronics Corporation (CMC) and the 

layout passed all the design-rule-checks (DRC). The delivery of the fabricated chip was 

delayed due to packaging problem and this has prevented the author from testing the 

physical implementation of the chip. It is hoped that the author will be able to test the
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chip in the future at her new place of employment. In any event, an outline for testing 

methodology that will verify specifications and support the evaluation of performance 

metrics has been developed and left with the author’s research supervisor.

This research has dealt with the design of a EA modulator for use in an ADC. In 

order to complete the design for the EA ADC the associated decimation filter needs to be 

developed. Since the designed EA modulator as it is based on SO, the same topology and 

design methodology can be applied to implement the design in the newest technology, 

such as 0.09 pm CMOS technology. An EA ADC could also be developed in the form of 

an intellectual property (IP) core for use in a system-on-chip (SOC) implementation.
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Appendix A  

MATLAB functions

A .l Slew Rate Modeling

function out = slew(in,alfa,sr,GBW,Ts)
% Models the op-amp slew rate for a discrete time integrator 
% in: input signal amplitude 
% alfa: effect of finite gain (ideal op-amp alfa=l)
% sr: slew rate in V/s
% GBW: gain-bandwidth product of the integrator in Hz
% Ts: sample time
% out: output signal amplitude
tau=l/(2*pi*GBW); % Time constant of the integrator
Tmax = Ts/2;
slope=alfa* abs(in)/tau;
if  slope > sr % Op-amp in slewing

tsl = abs(in)*alfa/sr - tau; % Slewing time
if tsl >= Tmax

error = abs(in) - sr*Tmax;
else

texp = Tmax - tsl;
error = abs(in)*(l-alfa) + (alfa*abs(in) - sr*tsl) * exp(-texp/tau);

end
else % Op-amp in linear region

texp = Tmax;
error = abs(in)*(l-alfa) + alfa*abs(in) * exp(-texp/tau);

end
out = in - sign(in)* error;
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A.2 PSD Plotting

% 2nd Order Sigma-Delta A/D Modulator 
% The modulator structure is simulated using SIMULINK 
% Post-processing of the results is done with Matlab.
% 1. Plots the Power Spectral Density of the bit-stream 
% 2. Calculates the SNR
)|c ^  sjc ^  ^  ^  %|/ ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  \|/ ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  %|* %|* %|* *|j> g>

clear;
tO=clock;
^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  \ |/  ̂  «|̂  ^  ^  ^  ^  ^  ^  ^  «|̂  »|# %|/ ^  «|/ ^  ^  |̂g »|/ »|/ k|/  »|/ jjg «|̂  ^  *|* ^  ĵg ^  ĵg ^  ^  ^  ^  ^  \ |/  %|/ ^|/ ^

% Global Variables
J j  J i  J<  J<  jd  J j  J j  J j  J>  J /  ila  J>  kU 0> O / kid ^  tU  ^  «]> «]> J /  J «  O / kid i j /  «!/ ^  ^  kid ^  ^  ^  kid J #  ^  ^  kid kid kid *3* O  ^  kid ^  kid Jd ^  ^  ^  sU \U  ^  ^  «b «|f k|d )|# kl# 5! /  ^#|C djk djk 9|C djk d|k djk djk djk djk djk 5|% djk djk djk djk djk djk 9f% #|« 7|« 7|« #p dp #p j p  #p i p  #p djk djk dp dp ^  ^  ^  ^  #p ^  *p d|k f p  ^  ^  ^  »p ^p *p *p ^  ^  #p ^  i p  *p #p *p ^

bw=16.05e3;
R=256;
Fs=R*2*bw;
Ts=l/Fs;
N=R*R;
nper=12;
Fin=nper*Fs/N;
Ampl=0.23;

% Base-band

% Sampling Rate

% Samples number

% Input signal frequency (Fin: 
% Input signal amplitude [V]

: nper*Fs/N)

Ntransient=0;
- t-  J j  kid J<  J *  •>/ J j  kid lid lid lid ^  J d  J d  J d  lid dd «i> kid «ld J d  kid kid J d  kid kjd kid kid kid kid kid kid kid ^d  ^  Od kid kid kid kid k]d kid kid ^  J d  ^  ^  k]d kid kid kid ^  ^  ^  ^d  kid kid kid kid k^  k^  ^  k^ kfe ^  kid ^  kid kid kid kid k^ dp I p  djk djk dp dp ^k dp dp dp  dp dp dp dp dp dp  ^  ^  dp dp ^  dj* dp  dp dp  dp dp dp dp ^  V  dp dp ^  ^  ^  ^  dp dfk I p  ^  I p  ^  kjk ^  ^  djk djk ^  ^  ^  djk djk i p  dp dp dp dp dp dp dp kjk dp dp dp dp dp dp dp

% kT/C noise and op-amp non-idealities
kli kl^ kl^ kid kid kid Jd  kid kid kid kid kl# kid kid kid kid kid kid kid kid kid kid kid k|d kid kid kid kid kid kid kid kid kid J d  kid kid kid kid kid kid kid kid kid kid kid kid ^  ^  kid kid kid kid ^  ^d  kid kb ^  k]d kb  kjd J d  J d  kid J d  ^  J d  kid kid kid kid kid kid dp dp dp dp dp dp ^k dp dp dp dp dp dp djk djk djk djk djk djk djk djk djk djk djk djk djk ^k  djk dp dp q> dp ^  djk ^k djk djk djk dp ^  ^k  dp dp djk dp ^k  ^k  dp dp dp ^  dp djk dp djk ^  ^  ^  ^  dp ^  djk ^k  ^  ^1  ^  ^  ^  dp dp djk

echo on;
k=1.38e-23;
Temp=300;
Cf=10e-12;
alfa=(le3-l)/le3;
Amax=0.8;
sr=10e6;
GBW=45e6;
noise l=8e-6;
delta=4e-9;

% Boltzmann Constant 
% Absolute Temperature in Kelvin 
% Integrating Capacitance of the first integrator 
% A=Op-amp finite gain 
% Op-amp saturation value [V]
% Op-amp slew rate [V/s]
% Op-amp GBW [Hz]
% 1 st int. output noise std. dev. [V/sqrt(Hz)]
% Random Sampling jitter (std. dev.)

echo off;
) | j  })C s j l  SjC $jC  5 |C  j j {  S |C  j | j  5 jc  SjC S jc  d{C 5jC  j { (  ) | (  3jC  5fC S$C 5 |C  ^  3jC  5 |C  l |C  5 |C  5 |C  ^  5 |C  5jC  5 |C  5 |C  9 |c  5jC 5jC  3 |C  3 j€  J |C  5 |C  5jC  j |C  ) |C  ) j c  5 |€  5 |C  5jC  5jC  5jC  5jC  5 j?  J j l  5 |C  ) { j  ) |5  3 |{  ? |S  ) | j  i j l  5jC  5jC  9 jc

% Modulator Coefficients

echo on; 
al=0.5; 
a2=0.6; 
bl=0.2; 
b2= 0.25;
Vref=0.9;
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finrad=Fin*2*pi; % Input signal frequency in radians

% Open Simulink diagram first
«!# «!« *1# «1# J a  «|a J a  kla aja aja a<a aja a|a a|a ala ala ata ala ala ala aja aja ala ala ala aja aja aja aja aia «ia «Ja aia ala ala aia ala ala ala ala ala ala afa ata aJa aja aJa aJa ata aJa aja ^  aja aja ^  a]a ala aja J a  ^ a  ^  ^ a  ala ^aja aja aja aja ^  ^  ^  ^  ^  ^  ^  ^  ^ a  ^  aja aja aja aja ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  a p  ^  ^  aja aja aja aja aja aja aja aja aja aja ^  ^  ^  ap  aja aja aja aja aja aja a j  aja aja ^  aja ^  aja aja aja aja

options=simset('InitialState', zeros(l,2), 'RelTol', le-3, 'MaxStep', 1/Fs); 
sim('second', (N+Ntransient)/Fs, options); % Starts Simulink simulation

% Calculates SNR and PSD of the bit-stream and of the signal

w=hann(N); 
echo on;
f=Fin/Fs; % Normalized signal frequency
fB=N*(bw/Fs); % Base-band frequency bins
yyl=zeros(l,N);
yy 1 =yout(2+Ntransient: 1 +N+Ntransient)';
echo off;
ptot=zeros(l,N);
[snr,ptot]=calcSNR(yyl (1 :N),f,fB,w,N,Vref);
Rbit=(snr-1,76)/6.02; % Equivalent resolution in bits

% Output Graphs

figure(l);
elf;
plot(linspace(0,Fs/2,N/2), ptot(l:N/2), 'r'); 
grid on;
title('PSD of a 2nd-Order Sigma-Delta Modulator') 
xlabel('Frequency [Hz]') 
ylabel('PSD [dB]') 
axis([0 Fs/2 -200 0]);

figure(2);
elf;
semilogx(linspace(0,Fs/2,N/2), ptot(l:N/2), 'r'); 
grid on;
title('PSD of a 2nd-Order Sigma-Delta Modulator') 
xlabel('Frequency [Hz]') 
ylabel('PSD [dB]') 
axis([0 Fs/2 -200 0]);

figure(3);
elf;
plot(linspace(0,Fs/2,N/2), ptot(l:N/2), 'r'); 
hold on;
title('PSD of a 2nd-Order Sigma-Delta Modulator (detail)') 
xlabel('Frequency [Hz]')
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ylabel('PSD [dB]') 
axis([0 2*(Fs/R) -200 0]); 
grid on; 
hold off;
text_handle = text(floor(Fs/R),-40, sprintf('SNR = %4.1fdB @ OSR=%d\n',snr,R)); 
text_handle = text(floor(Fs/R),-60, sprintf('Rbit = %2.2f bits @ OSR=%d\n',Rbit,R));

sl=sprintf(' SNR(dB)=%1.3f,snr);
s2-sprintf(' Simulation time =%1.3f min',etime(clock,t0)/60);
disp(sl)
disp(s2)

A.3 SNR Calculation

function
[snrdB,ptotdB,psigdB,pnoisedB,input_extracted,norm_input_extracted,stot,ssignal,snoise 
,input] = calcSNR(vout,f,fB,w,N,Vref)
% vout: Sigma-Delta bit-stream taken at the modulator output 
% f: Normalized signal frequency (fs -> 1)
% fB: Base-band frequency bins 
% w: windowing vector 
% N: samples number
% Vref: feedback reference voltage 
% snrdB: SNR in dB
% ptotdB: Bit-stream power spectral density (vector)
% psigdB: Extracted signal power spectral density (vector)
% pnoisedB: Noise power spectral density (vector) 
fB=ceil(fB);
input_extracted=sinusx(vout( 1 :N). * w, f,N) 
x(n)*Wn()
norm_input_extracted=(N/sum(w)) * sinusx(vout( 1 :N). *w,f,N); 
signal=norm_input_extracted; 
noise=vout(l :N)-signal; 
input= vout(l:N).*w; 
stot=((abs(fft((vout(l:N).*w)'))).A2); 
ssignal=(abs(fft((signal(l :N).*w)'))).A2; 
snoise=(abs(fft((noise(l:N).*w)'))).A2; 
pwsignal=sum(ssignal(l :fB)); 
pwnoise=sum(snoise(l :fB)); 
snr=pwsignal/pwnoise; 
snrdB=dbp(snr); 
norm=sum(stot)A/' refA2;
%if nargout > 1

ptot=stot/norm; 
ptotdB=dbp(ptot);

%end
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% Extracts noise components

% Bit-stream PSD 
% Signal PSD 
% Noise PSD 
% Signal power 
% Noise power

% Normalization
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%if nargout > 2
psig=ssignal/norm;
psigdB=dbp(psig);

%end

%if nargout > 3
pnoise=snoise/norm; 
pnoisedB=dbp(pnoise);

%end

A. 3.1 Extraction o f  a Sinusoidal Waveform from a Bitstream

function outx = sinusx(in,f,n)
% extract a sin wave from a bitstream using hartely transform 
sinx=sin(2*pi*f*[l:n]); 
cosx=cos(2*pi*f*[l:n]); 
in=in(l:n);
a 1 =2 * sinx. * in; % for hartley transform
a=sum(al )/n; % for the inverse hartley transform
bl=2*cosx.*in; 
b=sum(bl)/n;
outx=a.*sinx + b.*cosx; % the completed inverse hartley transform
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